WorldWideScience

Sample records for underlying polyelectrolyte multilayers

  1. Polyelectrolyte Multilayers

    Science.gov (United States)

    Schaaf, P.; Voegel, J.-C.

    The films known as polyelectrolyte multilayers are made by alternating deposition of polyanions (negatively charged polymers) and polycations (positively charged polymers). The development of these films, invented in the 1990s [1,3], has seen a considerable burst of interest, in particular due to their many applications. Indeed, these films are used to make electroluminescent diodes [4], anti-reflecting surfaces [5], water filtering substrates [6], and substrates for the separation of chiral molecules [7]. The alternating deposition of positive and 12 negative species can also be used to make films with a mechanical strength close to that of steel [8]. Applications to biosensors and especially biomaterials are currently under investigation [9]. This is the last example discussed in the present chapter. Polyelectrolytes are charged polymers, usually soluble in an aqueous solution. When a surface, supposed negatively charged, is set in contact with a solution of polycations (positively charged polyelectrolytes), the chains will immediately interact with the surface via electrostatic interaction and adsorb onto it. Like any other polymer, polyelectrolytes do not adsorb lengthwise against the surface, but form loops and tails. This adsorption is generally irreversible, and replacing the polycation solution by the solvent (water) alone will only lead to very slight desorption. This irreversibility of adsorption results from the formation of many anchoring points with the surfaces along the long polymer chains. Even if the interaction energy between a monomer, the basic building block of the polymer, and a surface is small, the fact that a number of contact points are set up makes the overall interaction between a polymer and a surface rather strong. Furthermore, in order for a chain to desorb, all the anchor points on the surface must be broken simultaneously, and such an event is highly improbable.

  2. Polyelectrolyte multilayers: preparation and applications

    Science.gov (United States)

    Izumrudov, V. A.; Mussabayeva, B. Kh; Murzagulova, K. B.

    2018-02-01

    The review concerns the results of studies on the synthesis of polyelectrolyte coatings on charged surfaces. These coatings represent nanostructured systems with clearly defined tendency to self-assembly and self-adjustment, which is of particular interest for materials science, biomedicine and pharmacology. A breakthrough in this area of knowledge is due to the development and introduction of a new technique, so-called layer-by-layer (LbL) deposition of nanofilms. The technique is very simple, viz., multilayers are formed as a result of alternating treatment of a charged substrate of arbitrary shape with water-salt solutions of differently charged polyelectrolytes. Nevertheless, efficient use of the LbL method to fabricate nanofilms requires meeting certain conditions and limitations that were revealed in the course of research on model systems. Prospects for applications of polyelectrolyte layers in various fields are discussed. The bibliography includes 58 references.

  3. Guided wave sensing of polyelectrolyte multilayers

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Cuisinier, F.J.G.

    2006-01-01

    A planar optical waveguide configuration is proposed to monitor the buildup of thick polyelectrolyte multilayers on the surface of the waveguide in aqueous solutions. Instead of detecting the layer by the electromagnetic evanescent field the polyelectrolyte layer acts as an additional waveguiding...... film that is sensed by guided waves instead of evanescent waves. This leads to a considerably improved sensitivity and dynamic range....

  4. Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition

    Directory of Open Access Journals (Sweden)

    Xing H

    2017-10-01

    Full Text Available Helin Xing,1,* Xing Wang,2,* Saisong Xiao,3,* Guilan Zhang,1 Meng Li,1 Peihuan Wang,1 Quan Shi,1 Pengyan Qiao,1 Lingling E,1 Hongchen Liu1 1Institute of Stomatology, Chinese PLA General Hospital, Beijing, 2Hospital of Stomatology, Shanxi Medical University, Taiyuan, 3Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China *These authors contributed equally to this work Purpose: Titanium implant is a widely used method for dental prosthesis restoration. Nevertheless, in patients with systemic diseases, including osteoporosis, diabetes, and cancer, the success rate of the implant is greatly reduced. This study investigates a new implant material loaded with insulin-like growth factor 1 (IGF1, which could potentially improve the implant success rate, accelerate the occurrence of osseointegration, and provide a new strategy for implant treatment in osteoporotic patients. Materials and methods: Biofunctionalized polyelectrolyte multilayers (PEMs with polyethylenimine as the excitation layer and gelatin/chitosan loaded with IGF1 were prepared on the surface of titanium implant by layer-by-layer self-assembly technique. The physical and chemical properties of the biofunctionalized PEMs, the biological characteristics of bone marrow mesenchymal stem cells (BMMSCs, and bone implant contact correlation test indexes were detected and analyzed in vitro and in vivo using osteoporosis rat model. Results: PEMs coatings loaded with IGF1 (TNS-PEM-IGF1-100 implant promoted the early stage of BMMSCs adhesion. Under the action of body fluids, the active coating showed sustained release of growth factors, which in turn promoted the proliferation and differentiation of BMMSCs and the extracellular matrix. At 8 weeks from implant surgery, the new bone around the implants was examined using micro-CT and acid fuchsin/methylene blue staining. The new bone formation increased with time in each group, while the TNS-PEM-IGF1

  5. Netlike knitting of polyelectrolyte multilayers on honeycomb-patterned substrate.

    Science.gov (United States)

    Sun, Wei; Shen, Liyan; Wang, Jiaming; Fu, Ke; Ji, Jian

    2010-09-07

    The pH-amplified exponential growth layer-by-layer (LBL) self-assembly process was directly performed on honeycomb-patterned substrate for achievement of "guided patterning" of polyelectrolyte multilayers. Polyethylenimine (PEI) and poly(acrylic acid) (PAA) were used as polyanions, and their pH were carefully tuned to achieve pH-enhanced exponential growth. Guided by underlying hexagonally patterned islandlike poly(dimethylsiloxane) (PDMS) arrays, the diffusive polyelectrolytes rapidly interweaved into linear, multilayered structures distributed along the grooves between the patterned protuberate and formed a regular network of multilayered film with uniform mesh size. Netlike "knitting" of polyelectrolyte multilayers on honeycomb-patterned substrate has been realized by following this procedure. Superhydrophobic surfaces could be readily obtained after several bilayers of LBL assembly (with thermal cross-linking and surface fluorination by chemical vapor deposition), indicating that successful fabrication of functional micro- and nanoscale hierarchical structures can be achieved. Both high- and low-adhesion superhydrophobic surfaces ("petal effect" and "lotus effect") can be obtained with different bilayers of assembly, proving that different levels of nano- to microstructural hierarchy can be realized using this method. Furthermore, we were able to get topographically asymmetric, free-standing, polyelectrolyte multilayer films in the case that we performed more than eight bilayers of assembly. This research reported template-directed LBL patterning assembly for the first time. It provides a beneficial exploration for the surface patterning technique for the LBL assembly process.

  6. Polyelectrolyte multilayers: An odyssey through interdisciplinary science

    Science.gov (United States)

    Jaber, Jad A.

    This dissertation provides an overview of a self assembled multilayer technique based on the alternating deposition of oppositely charged polyelectrolytes onto charged solid supports. The basic principles and methodologies governing this technique are laid down, and new strategies are built upon the latter, in an effort to develop innovative technologies that would be beneficial for making new products or improving the quality of existing ones. Fundamental studies to characterize the water content, efficiency of ion-pairing, differential strength of electrostatic interactions, topology, and viscoelastic properties of polyelectrolyte multilayers, PEMUs, are illustrated and conducted. In addition, polyelectrolyte multilayers that are stimulus responsive, or support active and controlled bio-motor protein interactions are described. Attenuated total reflectance Fourier transform infrared, (ATR), spectroscopy was used to compare the extent of swelling and doping within PAH/PSS and PDADMA/PSS polyelectrolyte multilayers. Unlike PDADMA/PSS, whose water content depended on the solution ionic strength, PAH/PSS was resistant to swelling by salt. It was stable up to 4.0 M sodium chloride, with 6 water molecules per ion-pair. Using the infrared active perchlorate sodium salt, the amount of residual persistent extrinsic sites in both PDADMA/PSS and PAH/PSS was determined to be 3% and 6%, respectively. The free energy of association between the polymer segments, in the presence of sodium perchlorate, was in the order of 4.5 kJ mol-1 and -9.5 kJ mol-1 for PDADMA/PSS and PAH/PSS correspondingly. Thus, indicating the relatively strong electrostatic association between the polymer segments in a PAH/PSS relative to PDADMA/PSS multilayer. Adjusting the pH of the solution in contact with the PAH/PSS multilayer to 11.5 resulted in a first order discontinuous dissociation of the Pol+Pol- bonds. Techniques used to study the mechanical properties of single muscle fiber were adapted to

  7. Molecular mobility and transport in polymer membranes and polyelectrolyte multilayers.

    Science.gov (United States)

    Sagidullin, Alexandr; Meier-Haack, Jochen; Scheler, Ulrich

    2007-05-01

    Polyelectrolyte multilayers prepared by the layer-by-layer technique provide an efficient way to generate planar structures of tailored surface charge and hydrophobicity, which are used as membranes for pervaporation. The use of polyelectrolyte multilayers to form the membrane permits tailoring the surface charge of the membrane and, thus, selectivity; at the same time, it reduces fouling of the membrane by adsorption of organic matter. Pulsed field gradient (PFG) nuclear magnetic resonance has been used to investigate the diffusion of probe molecules into polymer systems. Evaluation of the apparent diffusion coefficient in porous poly(amide) results in a pore size of 4 microm, as found in electron micrographs. For the pore size obtained for polyelectrolyte multilayers, no equivalent pores could be found in microscopy. Propagators for the diffusion of propanol and propanol-water mixture into multilayers reveal that there might be selective interaction of probe molecules with the polyelectrolyte system.

  8. Long term physical and chemical stability of polyelectrolyte multilayer membranes

    NARCIS (Netherlands)

    de Grooth, Joris; Haakmeester, Brian; Wever, Carlos; Potreck, Jens; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.

    2015-01-01

    This work presents a detailed investigation into the long term stability of polyelectrolyte multilayer (PEM) modified membranes, a key factor for the application of these membranes in water purification processes. Although PEM modified membranes have been frequently investigated, their long term

  9. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes.

    Science.gov (United States)

    Wågberg, Lars; Decher, Gero; Norgren, Magnus; Lindström, Tom; Ankerfors, Mikael; Axnäs, Karl

    2008-02-05

    A new type of nanocellulosic material has been prepared by high-pressure homogenization of carboxymethylated cellulose fibers followed by ultrasonication and centrifugation. This material had a cylindrical cross-section as shown by transmission electron microscopy with a diameter of 5-15 nm and a length of up to 1 microm. Calculations, using the Poisson-Boltzmann equation, showed that the surface potential was between 200 and 250 mV, depending on the pH, the salt concentration, and the size of the fibrils. They also showed that the carboxyl groups on the surface of the nanofibrils are not fully dissociated until the pH has reached pH = approximately 10 in deionized water. Calculations of the interaction between the fibrils using the Derjaguin-Landau-Verwey-Overbeek theory and assuming a cylindrical geometry indicated that there is a large electrostatic repulsion between these fibrils, provided the carboxyl groups are dissociated. If the pH is too low and/or the salt concentration is too high, there will be a large attraction between the fibrils, leading to a rapid aggregation of the fibrils. It is also possible to form polyelectrolyte multilayers (PEMs) by combining different types of polyelectrolytes and microfibrillated cellulose (MFC). In this study, silicon oxide surfaces were first treated with cationic polyelectrolytes before the surfaces were exposed to MFC. The build-up of the layers was monitored with ellipsometry, and they show that it is possible to form very well-defined layers by combinations of MFC and different types of polyelectrolytes and different ionic strengths of the solutions during the adsorption of the polyelectrolyte. A polyelectrolyte with a three-dimensional structure leads to the build-up of thick layers of MFC, whereas the use of a highly charged linear polyelectrolyte leads to the formation of thinner layers of MFC. An increase in the salt concentration during the adsorption of the polyelectrolyte results in the formation of thicker

  10. Electrostatics and charge regulation in polyelectrolyte multilayered assembly.

    Science.gov (United States)

    Cherstvy, Andrey G

    2014-05-01

    We examine the implications of electrostatic interactions on formation of polyelectrolyte multilayers, in application to field-effect based biosensors for label-free detection of charged macromolecules. We present a quantitative model to describe the experimental potentiometric observations and discuss its possibilities and limitations for detection of polyelectrolyte adsorption. We examine the influence of the ionic strength and pH on the sensor response upon polyelectrolyte layer-by-layer formation. The magnitude of potential oscillations on the sensor-electrolyte interface predicted upon repetitive adsorption charge-alternating polymers agrees satisfactorily with experimental results. The model accounts for different screening by mobile ions in electrolyte and inside tightly interdigitated multilayered structure. In particular, we show that sensors' potential oscillations are larger and more persistent at lower salt conditions, while they decay faster with the number of layers at higher salt conditions, in agreement with experiments. The effects of polyelectrolyte layer thickness, substrate potential, and charge regulation on the sensor surface triggered by layer-by-layer deposition are also analyzed.

  11. Acid-base equilibria of multilayered pseudo-polyelectrolytes

    Science.gov (United States)

    Mateo, Ayeisca E.; Priefer, Ronny

    2015-11-01

    The use of weak polyelectrolytes in multilayer polymer systems provides a means of altering the physicochemical properties of these thin films. Previously, we have examined the limits of the polyanions by incorporating the pseudo-polyelectrolytes (pPE's), poly(4-vinylphenol) (PVPh) and poly[5-(2-trifluoromethyl-1,1,1-trifluoro-2-hydroxypropyl)-2-norbornene] (PNBHFA). These pPE's, although being polyacids, should have pKa values in the basic versus acidic pH range. In order to determine the pKa(app) value of these polymers, once multilayered onto Snowtex silica particles with the weak polyelectrolyte, poly(allylamine hydrochloride) (PAH), we employed zeta potential. PVPh demonstrated pKa(app) values ranging from 10.55 to 11.08 which varied based upon assembly pH conditions as well as layer number. PAH yielded pKa(app) values ranging between 9.81 and 10.99 when multilayered with PVPh and 9.91-11.04 when partnered with PNBHFA. However, from our study it would appear that PNBHFA does not interact with PAH electrostatically, but rather via H-bonding, and therefore should actually not be classified as a pPE.

  12. ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS

    Directory of Open Access Journals (Sweden)

    B. H. Mussabayeva

    2017-01-01

    Full Text Available The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide polyelectrolytic multilayers is shown.At pH = 7.4, the degree of release of the drugs from microcapsules without applied multilayersfor 12 hours was

  13. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  14. Emission properties of colloidal quantum dots on polyelectrolyte multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Komarala, Vamsi K [Semiconductor Photonics Group, School of Physics, Trinity College Dublin (Ireland); Rakovich, Yury P [Semiconductor Photonics Group, School of Physics, Trinity College Dublin (Ireland); Bradley, A Louise [Semiconductor Photonics Group, School of Physics, Trinity College Dublin (Ireland); Byrne, Stephen J [School of Chemistry, Trinity College Dublin, Republic of (Ireland); Corr, Serena A [School of Chemistry, Trinity College Dublin, Republic of (Ireland); Gun' ko, Yurii K [School of Chemistry, Trinity College Dublin (Ireland)

    2006-08-28

    We present steady state and time-resolved photoluminescence (PL) characteristics of differently charged CdTe quantum dots (QDs) adsorbed onto a polyelectrolyte (PE) multilayer. The PE multilayer is built up using a layer-by-layer assembly technique. We find that the diffusion of the QDs into the PE multilayer is an important factor in the case of 3-mercapto-1, 2-propanediol stabilized QDs (neutral surface charge), resulting in a {approx}31-fold enhancement in PL intensity accompanied by a blue shift in the PL spectra and an increase in decay lifetime from 3.74 ns to a maximum of 11.65 ns. These modified emission properties are attributed to the enhanced surface related emission resulting from the interaction of the QD's surface with the PE. We find that diffusion does not occur for thioglycolic acid (TGA) stabilized QDs (negative surface charge) or 2-mercaptoethylamine stabilized QDs (positive surface charge), indicating localization of the QDs on top of the PE multilayer. However, the PL lifetime of the TGA stabilized QDs decreases from 9.58 to 5.78 ns with increasing PE multilayer thickness. This provides evidence for increased intrinsic exciton recombination relative to surface related emission, which results in an overall reduction in the average lifetime. Our studies indicate the importance of the QD surface charge in determining the interaction with the PE multilayers and the subsequent modification of the QD emission properties.

  15. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, V. A. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Orekhov, A. S. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Chernyakov, D. D. [St. Petersburg State Chemical Pharmaceutical Academy (Russian Federation); Baklagina, Yu. G. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Romanov, D. P. [Russian Academy of Sciences, Grebenshchikov Institute of Silicate Chemistry (Russian Federation); Kononova, S. V. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation); Volod’ko, A. V.; Ermak, I. M. [Russian Academy of Sciences, Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch (Russian Federation); Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Skorik, Yu. A., E-mail: yury-skorik@mail.ru [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2016-11-15

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  16. Asymmetry of the free-standing polyelectrolyte multilayers

    Science.gov (United States)

    Yu, Li; Yuan, Weichang; Liu, Xiaokong; Xu, Xintong; Ruan, Shuangchen

    2017-11-01

    Free-standing polyelectrolyte multilayers (PEMs) triggered an intense research effort to develop functional capsules and membranes, nevertheless, the comprehensive understanding of the surface distinctions between the two sides of the free-standing PEMs has been rarely studied. In this paper, we demonstrate the asymmetric surface morphologies, compositions, surface charge and wetting properties of the free-standing PEMs made of alternating deposition of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS) on uncharged trimethoxy (octyl) silane modified silicon wafer (TMOS-Si) substrates. The growth behaviors (e.g., linear or exponential growth) of the (PDDA/PSS)n PEMs deposited on TMOS-Si substrates are similar to those deposited on negatively charged substrates except a slower evolution in morphology and thickness, evidenced by atomic force microscopy (AFM) and ellipsometry. The surface charge of the two sides can be tuned as +/+, -/-, and +/- by selecting the first and the terminate layer of the polyelectrolyte during the deposition process, indicated by X-ray photoelectron spectroscopy (XPS) and the surface zeta potential measured by spinning disk method. Further, water contact angle measurements exhibit a strong difference between the back side (the bottom side that was initially contacted with the substrate) (74 ± 4°) and front side (33 ± 2° and 48 ± 3° for PDDA and PSS as the outmost layer, respectively) of the PEMs. The larger water contact angle of the back side is probably resulted from the orientation of the alkyl chains of the polyelectrolytes as the hydrophobic-hydrophobic interactions played significant roles in deposition of a polyelectrolyte onto an uncharged substrate. This paper may gain new insights on understanding surface properties of the PEMs.

  17. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

    NARCIS (Netherlands)

    Cao, Zheng; Gordiichuk, Pavlo; Loos, Katja; Sudhölter, Ernst Jan Robert; Smet, Louis

    2015-01-01

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte

  18. Reactive wet stamping for patterning of polyelectrolyte multilayers.

    Science.gov (United States)

    Cho, Chungyeon; Valverde, Lauralee; Ozin, Geoffrey A; Zacharia, Nicole S

    2010-08-17

    Patterning of soft films, especially their bulk and not only their surface properties, presents a challenge. Several lithographic techniques do exist, but many of them are complex or limited in their ability to change properties. A few methods of patterning polyelectrolyte multilayers (PEM) have been reported, including microcontact printing and selectively growing layers on patterned self-assembled monolayers, but these all come with certain limitations. We present here the use of a modified microcontact printing method, reactive wet stamping (r-WETs), using a hydrogel stamp soaked in aqueous solutions to create patterns in PEMs. With this technique we are able to locally cause swelling and porosity changes in the PEM films and use our method to qualitatively study the evolution of the porous film morphology. This technique has the potential to locally control chemical functionality, film thickness, and mechanical properties, leading to a new ability to control film architectures both at the film surface and within the bulk of the film.

  19. Building a road map for tailoring multilayer polyelectrolyte films

    International Nuclear Information System (INIS)

    Ankner, John Francis; Bardoel, Agatha A.; Sukishvili, Svetlana

    2012-01-01

    Researchers are moving a step closer to a definite road map for building layer-by-layer (LbL) assembled polyelectrolyte films, with the assistance of the Liquids Reflectometer at Oak Ridge National Laboratory's Spallation Neutron Source, in Oak Ridge, Tennessee. Scientists using the liquids reflectometer have successfully taken snapshots in close to real time of these multilayered structures for different applications when they modify the structure and function parameters. Polyelecrolytes are polymers that carry charge in aqueous solutions. They contain chemical groups that dissociate in water, making such polymers charged. Most polyelectrolytes are water soluble. They are important components in foods, soaps, shampoos, and cosmetics products. They show promise for such environmental work as oil recovery and water treatment. Polyelectrolytes are compelling because researchers can chemically modify how they interact with water for multiple applications. When two types of polyelectrolytes of opposite charge are assembled at a surface in a sequential way using the LbL assembly technique, 'the result is the forming of surface films, useful for coatings, biomedical implants and devices, controlling adhesion of biological molecules, and controlling delivery of therapeutic molecules from surfaces,' said Svetlana Sukhishvili of the Stevens Institute of Technology in New Jersey, the lead chemist on the collaboration. 'Medical doctors often prefer to deliver multiple therapeutic compounds from the coatings in a time-resolved manner,' Sukhishvili said. 'To assist them, material scientists need to learn how to build coatings in which polymer layering will not be compromised when exposed to normal physiological conditions.' 'Being able to control these properties, understanding how what you do to the materials affects their properties, this allows you to apply them to situations where interacting with an environment is very helpful, whether in a biological context or any other

  20. Polyelectrolyte multilayers for bio-applications: recent advancements.

    Science.gov (United States)

    Pahal, Suman; Gakhar, Ruchi; Raichur, Ashok M; Varma, Manoj M

    2017-12-01

    The synergistic relationship between structure and the bulk properties of polyelectrolyte multilayer (PEM) films has generated tremendous interest in their application for loading and release of bioactive species. Layer-by-layer assembly is the simplest, cost effective process for fabrication of such PEMs films, leading to one of the most widely accepted platforms for incorporating biological molecules with nanometre precision. The bulk reservoir properties of PEM films render them a potential candidate for applications such as biosensing, drug delivery and tissue engineering. Various biomolecules such as proteins, DNA, RNA or other desired molecules can be incorporated into the PEM stack via electrostatic interactions and various other secondary interactions such as hydrophobic interactions. The location and availability of the biological molecules within the PEM stack mediates its applicability in various fields of biomedical engineering such as programmed drug delivery. The development of advanced technologies for biomedical applications using PEM films has seen rapid progress recently. This review briefly summarises the recent successes of PEM being utilised for diverse bio-applications.

  1. Stretch-induced biodegradation of polyelectrolyte multilayer films for drug release.

    Science.gov (United States)

    Barthes, Julien; Mertz, Damien; Bach, Charlotte; Metz-Boutigue, Marie-Hélène; Senger, Bernard; Voegel, Jean-Claude; Schaaf, Pierre; Lavalle, Philippe

    2012-09-25

    The design of stimuli-responsive polymer assemblies for the controlled release of bioactive molecules has raised considerable interest these two last decades. Herein, we report the design of mechanically responsive drug-releasing films made of polyelectrolyte multilayers. A layer-by-layer (LbL) reservoir containing biodegradable polyelectrolytes is capped with a mechanosensitive LbL barrier and responds to stretching by a total enzymatic degradation of the film. This strategy is successfully applied for the release in solution of an anticancer drug initially loaded within the architecture.

  2. Interaction and structure in polyelectrolyte/clay multilayers: a QCM-D study.

    Science.gov (United States)

    Findenig, Gerald; Kargl, Rupert; Stana-Kleinschek, Karin; Ribitsch, Volker

    2013-07-09

    This study focuses on the investigation of the influence of the ionic strength on the internal structure, film forming behavior, and swelling properties of polyelectrolyte/clay multilayers. Layer-by-layer films were prepared with three different polyelectrolytes [polyethylenimine (PEI), polydiallyldimethylammoniumchloride (pDADMAC), and 2-hydroxy-3-trimethylammonium propyl chloride starch (HPMA starch)] in combination with laponite clay platelets on three different surfaces. All experiments were carried out at two different ionic strengths (30 mM or 500 mM NaCl). The experiments performed with strong polyelectrolytes revealed a higher film thickness and adsorbed masses of clay and polyelectrolyte at 500 mM NaCl. The films containing PEI showed different behavior and were considerably less sensitive to changes in the ionic strength. This was also reflected by the swelling behavior as demonstrated by quartz crystal microbalance with dissipation (QCM-D) measurements. Films comprising PEI showed, in contrast to the other polyelectrolytes, much lower swelling in water leading to more compact and stable films in humid environments which is important for numerous applications of LbL clay coatings.

  3. Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles.

    Science.gov (United States)

    Kolesnikova, Tatiana A; Skirtach, Andre G; Möhwald, Helmuth

    2013-01-01

    Red blood cells (RBCs) and lipid-based carriers on the one hand and polymeric capsules on the other hand represent two of the most widely used carriers in drug delivery. Each class of these carriers has its own set of properties, specificity and advantages. Thorough comparative studies of such systems are reported here for the first time. In this review, RBCs are described in comparison with synthetic polymeric drug delivery vehicles using polyelectrolyte multilayer capsules as an example. Lipid-based composition of the shell in the former case is particularly attractive due to their inherent biocompatibility and flexibility of the carriers. On the other hand, synthetic approaches to fabrication of polyelectrolyte multilayer capsules permit manipulation of the permeability of their shell as well as tuning their composition, mechanical properties, release methods and targeting. In conclusion, properties of RBCs and polyelectrolyte multilayer capsules are reported here highlighting similarities and differences in their preparation and applications. In addition, their advantages and disadvantages are discussed.

  4. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  5. Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers.

    Science.gov (United States)

    Gong, Xiao; Han, Lulu; Yue, Yanan; Gao, Jianrong; Gao, Changyou

    2011-03-15

    Influence of assembly pH on compression and Ag nanoparticle synthesis of polyelectrolyte multilayers was studied using poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid, 1:1SS:MA) sodium salt (PSSMA 1:1) as the building blocks. The thickest multilayers turned out at pH 4. A homogeneous compression by a silicone rubber stamp increased significantly the water contact angle to a same value which was independent on the original assembly pH anymore. The multilayers assembled at pH 4 could be maximumly compressed to a ratio of 70% by a silicone rubber stamp with linear patterns, which was considerably larger than those assembled at other pHs (the compression ratio ~50%). The Ag nanoparticles were then synthesized inside the multilayers either flat compressed or not. The results showed that the compression reduced significantly the amount of Ag nanoparticles for the multilayers assembled at pH 2 and pH 4. The particle amount was also decreased significantly when the multilayers were assembled at higher pH, pH 6, for example, regardless of the compression. Substantial alteration of the multilayers in terms of the surface morphology, thickness and refractive index was found during the reduction of Ag(+) containing multilayers by NaBH(4) solution. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Structure-property relationships in the design, assembly and applications of polyelectrolyte multilayer thin films

    Science.gov (United States)

    Rmaile, Hassan H.

    Ultrathin films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer sequential assembly technique. To augment their typical applications in the water treatment, personal care as well as the pulp and paper industry, the structure and the design of these polyelectrolytes were tailored synthetically to satisfy the requirements of different types of applications. Some were used for surface modifications, hydrophobic and hydrophilic coatings, corrosion protection, conducting and biocompatible surfaces. Others were found to be very efficient for membrane and chromatographic applications. The ease with which these multilayer coatings can be constructed, their robustness and stability make them very good candidates for industrial applications. The dissertation focuses mainly on the structure-property relationships of these polyelectrolytes and their corresponding thin films. Various polyelectrolytes were synthesized or modified in a strategic approach and gave novel and promising properties. Some of them exhibited permeabilities that were higher than any membranes reported in the literature. Also, some are potentially very useful for designing drug delivery systems such as tablets or encapsulations since they were shown to control the permeability of sample drugs and vitamins very efficiently based on their sensitivity to pH changes. Other synthesized polyelectrolytes proved to be very effective in preventing protein adsorption or promoting cell growth and differentiation. Some systems were very useful as robust stationary phases for simple chiral separations in capillary electrochromatography. Along with modifications and improvements, the approach might one day be applied commercially for chiral separations using high performance liquid chromatography and replace currently used stationary phases. Last but not least, the potential for these polyelectrolytes and their

  7. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers.

    Science.gov (United States)

    Bai, Shouli; Sun, Chaozheng; Yan, Hong; Sun, Xiaoming; Zhang, Han; Luo, Liang; Lei, Xiaodong; Wan, Pengbo; Chen, Xiaodong

    2015-11-18

    Transparent and conductive film based electronics have attracted substantial research interest in various wearable and integrated display devices in recent years. The breakdown of transparent electronics prompts the development of transparent electronics integrated with healability. A healable transparent chemical gas sensor device is assembled from layer-by-layer-assembled transparent healable polyelectrolyte multilayer films by developing effective methods to cast transparent carbon nanotube (CNT) networks on healable substrates. The healable CNT network-containing film with transparency and superior network structures on self-healing substrate is obtained by the lateral movement of the underlying self-healing layer to bring the separated areas of the CNT layer back into contact. The as-prepared healable transparent film is assembled into healable transparent chemical gas sensor device for flexible, healable gas sensing at room temperature, due to the 1D confined network structure, relatively high carrier mobility, and large surface-to-volume ratio. The healable transparent chemical gas sensor demonstrates excellent sensing performance, robust healability, reliable flexibility, and good transparency, providing promising opportunities for developing flexible, healable transparent optoelectronic devices with the reduced raw material consumption, decreased maintenance costs, improved lifetime, and robust functional reliability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Human Coronary Artery Smooth Muscle Cell Responses to Bioactive Polyelectrolyte Multilayer Interfaces

    Directory of Open Access Journals (Sweden)

    Robert G. Newcomer

    2011-01-01

    Full Text Available Under normal physiological conditions, mature human coronary artery smooth muscle cells (hCASMCs exhibit a “contractile” phenotype marked by low rates of proliferation and protein synthesis, but these cells possess the remarkable ability to dedifferentiate into a “synthetic” phenotype when stimulated by conditions of pathologic stress. A variety of polyelectrolyte multilayer (PEMU films are shown here to exhibit bioactive properties that induce distinct responses from cultured hCASMCs. Surfaces terminated with Nafion or poly(styrenesulfonic acid (PSS induce changes in the expression and organization of intracellular proteins, while a hydrophilic, zwitterionic copolymer of acrylic acid and 3-[2-(acrylamido-ethyl dimethylammonio] propane sulfonate (PAA-co-PAEDAPS is resistant to cell attachment and suppresses the formation of key cytoskeletal components. Differential expression of heat shock protein 90 and actin is observed, in terms of both their magnitude and cellular localization, and distinct cytoplasmic patterns of vimentin are seen. The ionophore A23187 induces contraction in confluent hCASMC cultures on Nafion-terminated surfaces. These results demonstrate that PEMU coatings exert direct effects on the cytoskeletal organization of attaching hCASMCs, impeding growth in some cases, inducing changes consistent with phenotypic modulation in others, and suggesting potential utility for PEMU surfaces as a coating for coronary artery stents and other implantable medical devices.

  9. Preparation and tribological behavior of Cu-nanoparticle polyelectrolyte multilayers obtained by spin-assisted layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guangbin [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Geng Zhengang [Shanxi Academy of Building Research, Taiyuan 030001 (China); Ma Hongxia; Wu Zhishen [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China); Zhang Pingyu [Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004 (China)], E-mail: pingyu@henu.edu.cn

    2009-01-01

    Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in-situ synthesis Cu nanoparticles. Chemical reaction within the PEMs was initiated by a reaction cycle in which Cu{sup 2+} was absorbed into the polymer-coated substrate and then reduced in NaBH{sub 4} solutions. Repeating the above process resulted in an increase in density of the nanoparticles and further growth in the dimension of the particles initially formed. So, different Cu-nanoparticle polyelectrolyte multilayers were formed in the process. The friction and wear properties of Cu-nanoparticle PEMs formed by different reaction cycles were investigated on a microtribometer against a stainless steel ball. The PEMs reinforced with Cu nanoparticles, prepared under the best preparation conditions, possess good tribological behavior, because of the weakened adhesion between the PEMs and the substrate and decreased mobility of the polymeric chains in the presence of excessive Cu nanoparticles generated at larger reaction cycles.

  10. Polyelectrolyte multilayer capsules as vehicles with tunable permeability.

    Science.gov (United States)

    Antipov, Alexei A; Sukhorukov, Gleb B

    2004-11-29

    This review is devoted to a novel type of polymer micro- and nanocapsules. The shell of the capsule is fabricated by alternate adsorption of oppositely charged polyelectrolytes (PEs) onto the surface of colloidal particles. Cores of different nature (organic or inorganic) with size varied from 0.1 to 10 mum can be used for templating such PE capsules. The shell thickness can be tuned in nanometer range by assembling of defined number of PE layers. The permeability of capsules depends on the pH, ionic strength, solvent, polymer composition, and shell thickness; it can be controlled and varied over wide range of substances regarding their molecular weight and charge. Including functional polymers into capsule wall, such as weak PEs or thermosensitive polymers, makes the capsule permeability sensitive to correspondent external stimuli. Permeability of the capsules is of essential interest in diverse areas related to exploitation of systems with controlled and sustained release properties. The envisaged applications of such capsules/vesicles cover biotechnology, medicine, catalysis, food industry, etc.

  11. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  12. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The pH regulated phycobiliproteins loading and releasing of polyelectrolytes multilayer microcapsules.

    Science.gov (United States)

    Li, Ye; Lu, Liying; Zhang, Hengjian; Wang, Jin

    2012-05-01

    The polyelectrolytes multilayer microcapsules considered as a good matrix can meet the requirements of protein encapsulation and release. It is important to understand the factors affecting the encapsulation and release of proteins in capsules. In this study, the eight layers hollow capsules (PSS/PAH)(4) and nine layers hollow capsules (PSS/PAH)(4)PSS are fabricated. The protein, R-Phycoerythrins (R-PEs) is employed as a probe instead of fluorescein isothiocyanate labeled proteins to investigate protein loading capacities on capsules as a function of pH, since R-PEs demonstrate an excellent stability over a broad pH range. The loading capacities of R-PEs on capsules (PSS/PAH)(4) or (PSS/PAH)(4)PSS are demonstrated to be sensitive to pH. The R-PE encapsulated in capsules exhibit the largest load capacity around isoelectric point of the protein independent of outer most layer of polyelectrolytes. However, if the pH of buffer is far away from the isoelectric point of the protein, they are absorbed on the surface of capsules. Based on a Freundlich model, capsules take up proteins on their surface by monolayer adsorption. The release process of R-PEs from microcapsules to solution is also shown to be sensitive to pH. Proteins show a faster release process around isoelectric point. Therefore, the pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for loading and releasing proteins in biological systems depending on environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Layer-by-Layer Assembly of Polyelectrolyte Multilayer onto PET Fabric for Highly Tunable Dyeing with Water Soluble Dyestuffs

    Directory of Open Access Journals (Sweden)

    Shili Xiao

    2017-12-01

    Full Text Available Poly(ethyleneterephthalate (PET is a multi-purpose and widely used synthetic polymer in many industrial fields because of its remarkable advantages such as low cost, light weight, high toughness and resistance to chemicals, and high abrasion resistance. However, PET suffers from poor dyeability due to its non-polar nature, benzene ring structure as well as high crystallinity. In this study, PET fabrics were firstly treated with an alkaline solution to produce carboxylic acid functional groups on the surface of the PET fabric, and then was modified by polyelectrolyte polymer through the electrostatic layer-by-layer self-assembly technology. The polyelectrolyte multilayer-deposited PET fabric was characterized using scanning electron microscopy SEM, contact angle, Fourier transform infrared (FTIR and X-ray photoelectron spectroscopy (XPS. The dyeability of PET fabrics before and after surface modification was systematically investigated. It showed that the dye-uptake of the polyelectrolyte multilayer-deposited PET fabric has been enhanced compared to that of the pristine PET fabric. In addition, its dyeability is strongly dependent on the surface property of the polyelectrolyte multilayer-deposited PET fabric and the properties of dyestuffs.

  15. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery.

    Science.gov (United States)

    Wang, Chaoyang; He, Chengyi; Tong, Zhen; Liu, Xinxing; Ren, Biye; Zeng, Fang

    2006-02-03

    Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release.

  16. Investigation of metal nanoparticles encapsulated in polyelectrolyte multilayers for catalytic and antibacterial applications

    Science.gov (United States)

    Kidambi, Srividhya

    Metal nanoparticles are an interesting class of materials because they often exhibit properties different from those of the corresponding bulk metals. For example, bulk Au is not catalytically active, but recent studies show that Au nanoparticles can serve as catalysts for oxidation and hydrogenation reactions. Without a suitable support, however, metal particles aggregate, reducing surface area and eventually affecting the particle properties. To overcome this problem, this research employs the layer-by-layer (LbL) assembly technique, which was introduced by Decher in 1991, as a convenient method to prevent the aggregation of nanoparticles and immobilize them on solid supports. While the multilayers help in stabilizing the nanoparticles, they also aid in retaining important properties of Pd (catalytic) and silver (antibacterial) nanoparticles. Catalytic Pd nanoparticles in multilayer polyelectrolyte films can be easily prepared by alternating depositions of poly(acrylic acid) (PAA) and a polyethylenimine (PEI)-Pd(II) complex on alumina, and subsequent reduction of the Pd(II) by NaBH4. The polyelectrolytes limit aggregation of the particles and impart catalytic selectivity in the hydrogenation of alpha-substituted unsaturated alcohols by restricting access to catalytic sites. Hydrogenation of allyl alcohol by encapsulated Pd(0) nanoparticles can occur as much as 24-fold faster than hydrogenation of 3-methyl-l-penten-3-ol. In a related system, alternating adsorption of PdCl42- and polyethylenimine (PEI), followed by reduction of Pd(II), yields catalysts with a higher activity than found in [PAA/PEI-Pd(0)]nPAA films due to greater accessibility of the Pd nanocatalysts. In the [PAA/PEI-Pd(0)] nPAA system, turnover frequency decreases with the number of layers deposited, suggesting that the outer layer of the film is primarily responsible for catalysis. In contrast, turnover frequency increases with the number of deposited layers for reduced [PdCl42-/PEI] n films. We

  17. Nanostructured natural-based polyelectrolyte multilayers to agglomerate chitosan particles into scaffolds for tissue engineering.

    Science.gov (United States)

    Miranda, Emanuel Sá; Silva, Tiago H; Reis, Rui L; Mano, João F

    2011-11-01

    The layer-by-layer (LbL) deposition technique is a self-assembly process that allows the coating of material's surface with nanostructured layers of polyelectrolytes, allowing to control several surface properties. This technique presents some advantages when compared with other thin film assembly techniques, like having the possibility to coat surfaces with complex geometries in mild conditions or to incorporate active compounds. Tissue engineering (TE) involves typically the use of porous biodegradable scaffolds for the temporary support of cells. Such structures can be produced by agglomeration of microspheres that needs to be fixed into a three-dimensional (3D) structure. In this work we suggest the use of LbL to promote such mechanical fixation in free-formed microspheres assemblies and simultaneously to control the properties of its surface. For the proof of concept the biological performance of chitosan/alginate multilayers is first investigated in two-dimensional (2D) models in which the attachment and proliferation of L929 and ATDC5 cells are studied in function of the number of layers and the nature of the final layer. Scaffolds prepared by agglomeration of chitosan particles using the same multilayered system were processed and characterized; it was found that they could support the attachment and proliferation of ATDC5 cells. This study suggests that LbL can be used as a versatile methodology to prepare scaffolds by particle agglomeration that could be suitable for TE applications.

  18. Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor.

    Science.gov (United States)

    Neff, Petra A; Wunderlich, Bernhard K; Klitzing, Regine V; Bausch, Andreas R

    2007-03-27

    The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.

  19. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    Science.gov (United States)

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  20. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly

    International Nuclear Information System (INIS)

    Rani, Adila; Oh, Kyoung Ah; Koo, Hyeyoung; Lee, Hyung jung; Park, Min

    2011-01-01

    Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm -1 , which was sufficient for the construction of advanced electro-optical devices and sensors.

  1. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  2. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  3. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin.

    Science.gov (United States)

    Jiang, Shu-Dong; Tang, Gang; Chen, Junmin; Huang, Zheng-Qi; Hu, Yuan

    2018-01-15

    Here, we describe a multifunctional biobased polyelectrolyte multilayer-coated hollow mesoporous silica (HM-SiO 2 @CS@PCL) as a green flame retardant through layer-by-layer assembly using hollow mesoporous silica (HM-SiO 2 ), chitosan (CS) and phosphorylated cellulose (PCL). The electrostatic interactions deposited the CS/PCL coating on the surface of HM-SiO 2 . Subsequently, this multifunctional flame retardant was used to enhance thermal properties and flame retardancy of epoxy resin. The addition of HM-SiO 2 @CS@PCL to the epoxy resin thermally destabilized the epoxy resin composite, but generated a higher char yield. Furthermore, HM-SiO 2 played a critical role and generated synergies with CS and PCL to improve fire safety of the epoxy resin due to the multiple flame retardancy elements (P, N and Si). This multi-element, synergistic, flame-retardant system resulted in a remarkable reduction (51%) of peak heat release rate and a considerable removal of flammable decomposed products. Additionally, the incorporation of HM-SiO 2 @CS@PCL can sustainably recycle the epoxy resin into high value-added hollow carbon spheres during combustion. Therefore, the HM-SiO 2 @CS@PCL system provides a practical possibility for preparing recyclable polymer materials with multi-functions and high performances. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers

    Directory of Open Access Journals (Sweden)

    Maximilian Zerball

    2016-04-01

    Full Text Available The study addresses the effect of thermal treatment on the internal structure of polyelectrolyte multilayers (PEMs. In order to get insight into the internal structure of PEMs, Neutron Reflectometry (NR was used. PEMs with a deuterated inner block towards the substrate and a non-deuterated outer block were prepared and measured in 1% RH and in D2O before and after a thermal treatment. Complementarily, PEMs with the same number of layers but completely non-deuterated were investigated by ellipsometry. The analysis for the overall thickness (d, the average scattering length density (SLD and the refractive index (n indicate a degradation of the PEM. The loss in material is independent of the number of layers, i.e., only a constant part of the PEM is affected by degradation. The analysis of the internal structure revealed a more complex influence of thermal treatment on PEM structure. Only the outermost part of the PEM degenerates, while the inner part becomes denser during the thermal treatment. In addition, the swelling behavior of PEMs is influenced by the thermal treatment. The untreated PEM shows a well pronounced odd—even effect, i.e., PDADMAC-terminated PEMs take up more water than PSS-terminated PEMs. After the thermal treatment, the odd-even effect becomes much weaker.

  5. Ionic Driven Embedment of Hyaluronic Acid Coated Liposomes in Polyelectrolyte Multilayer Films for Local Therapeutic Delivery

    Science.gov (United States)

    Hayward, Stephen L.; Francis, David M.; Sis, Matthew J.; Kidambi, Srivatsan

    2015-10-01

    The ability to control the spatial distribution and temporal release of a therapeutic remains a central challenge for biomedical research. Here, we report the development and optimization of a novel substrate mediated therapeutic delivery system comprising of hyaluronic acid covalently functionalized liposomes (HALNPs) embedded into polyelectrolyte multilayer (PEM) platform via ionic stabilization. The PEM platform was constructed from sequential deposition of Poly-L-Lysine (PLL) and Poly(Sodium styrene sulfonate) (SPS) “(PLL/SPS)4.5” followed by adsorption of anionic HALNPs. An adsorption affinity assay and saturation curve illustrated the preferential HALNP deposition density for precise therapeutic loading. (PLL/SPS)2.5 capping layer on top of the deposited HALNP monolayer further facilitated complete nanoparticle immobilization, cell adhesion, and provided nanoparticle confinement for controlled linear release profiles of the nanocarrier and encapsulated cargo. To our knowledge, this is the first study to demonstrate the successful embedment of a translatable lipid based nanocarrier into a substrate that allows for temporal and spatial release of both hydrophobic and hydrophilic drugs. Specifically, we have utilized our platform to deliver chemotherapeutic drug Doxorubicin from PEM confined HALNPs. Overall, we believe the development of our HALNP embedded PEM system is significant and will catalyze the usage of substrate mediated delivery platforms in biomedical applications.

  6. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle; Zhou, Jia; Ahmed, Musahid; Gasper, Gerald; Pleticha, F. Douglas; Hanley, Luke

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.

  7. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  8. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device.

    Science.gov (United States)

    Wang, Dongrui; Wang, Xiaogong

    2011-03-01

    Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.

  9. pH-Responsive Host–Guest Complexation in Pillar[6]arene-Containing Polyelectrolyte Multilayer Films

    OpenAIRE

    Henning Nicolas; Bin Yuan; Jiangfei Xu; Xi Zhang; Monika Schönhoff

    2017-01-01

    A water-soluble, anionic pillar[6]arene derivative (WP6) is applied as monomeric building block for the layer-by-layer self-assembly of thin polyelectrolyte multilayer films, and its pH-dependent host–guest properties are employed for the reversible binding and release of a methylviologen guest molecule. The alternating assembly of anionic WP6 and cationic diazo resin (DAR) is monitored in-situ by a dissipative quartz crystal microbalance (QCM-D). In solution, the formation of a stoichiometri...

  10. From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate

    NARCIS (Netherlands)

    Guillaume-Gentil, Orane; Zahn, Raphael; Lindhoud, Saskia; Graf, Norma; Voros, Janos; Zambelli, Tomaso

    2011-01-01

    Using atomic force microscopy, we investigated how the morphology of layer-by-layer deposited polyelectrolyte multilayers is influenced by the physical properties of the supporting substrate. The surface coverage of the assembly and its topography were found to be dependent on the dielectric

  11. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films.

    Science.gov (United States)

    Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique

    2016-09-01

    Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    Science.gov (United States)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  13. In Vivo Expansion of Melanoma-Specific T Cells Using Microneedle Arrays Coated with Immune-Polyelectrolyte Multilayers.

    Science.gov (United States)

    Zeng, Qin; Gammon, Joshua M; Tostanoski, Lisa H; Chiu, Yu-Chieh; Jewell, Christopher M

    2017-02-13

    Microneedles (MNs) are micron-scale polymeric or metallic structures that offer distinct advantages for vaccines by efficiently targeting skin-resident immune cells, eliminating injection-associated pain, and improving patient compliance. These advantages, along with recent studies showing therapeutic benefits achieved using traditional intradermal injections in human cancer patients, suggest MN delivery might enhance cancer vaccines and immunotherapies. We recently developed a new class of polyelectrolyte multilayers based on the self-assembly of model peptide antigens and molecular toll-like receptor agonists (TLRa) into ultrathin, conformal coatings. Here, we reasoned that these immune polyelectrolyte multilayers (iPEMs) might be a useful platform for assembling cancer vaccine components on MN arrays for intradermal delivery from these substrates. Using conserved human melanoma antigens and a potent TLRa vaccine adjuvant, CpG, we show that iPEMs can be assembled on MNs in an automated fashion. These films, prepared with up to 128 layers, are approximately 200 nm thick but provide cancer vaccine cargo loading >225 μg/cm 2 . In cell culture, iPEM cargo released from MNs is internalized by primary dendritic cells, promotes activation of these cells, and expands T cells during coculture. In mice, application of iPEM-coated MNs results in the codelivery of tumor antigen and CpG through the skin, expanding tumor-specific T cells during initial MN applications and resulting in larger memory recall responses during a subsequent booster MN application. This study support MNs coated with PEMs built from tumor vaccine components as a well-defined, modular system for generating tumor-specific immune responses, enabling new approaches that can be explored in combination with checkpoint blockade or other combination cancer therapies.

  14. pH-Responsive Host–Guest Complexation in Pillar[6]arene-Containing Polyelectrolyte Multilayer Films

    Directory of Open Access Journals (Sweden)

    Henning Nicolas

    2017-12-01

    Full Text Available A water-soluble, anionic pillar[6]arene derivative (WP6 is applied as monomeric building block for the layer-by-layer self-assembly of thin polyelectrolyte multilayer films, and its pH-dependent host–guest properties are employed for the reversible binding and release of a methylviologen guest molecule. The alternating assembly of anionic WP6 and cationic diazo resin (DAR is monitored in-situ by a dissipative quartz crystal microbalance (QCM-D. In solution, the formation of a stoichiometric inclusion complex of WP6 and cationic methylviologen (MV as guest molecule is investigated by isothermal titration calorimetry and UV-vis spectroscopy, respectively, and attributed to electrostatic interactions as primary driving force of the host–guest complexation. Exposure of WP6-containing multilayers to MV solution reveals a significant decrease of the resonance frequency, confirming MV binding. Subsequent release is achieved by pH lowering, decreasing the host–guest interactions. The dissociation of the host–guest complex, release of the guest from the film, as well as full reversibility of the binding event are identified by QCM-D. In addition, UV-vis data quantify the surface coverage of the guest molecule in the film after loading and release, respectively. These findings establish the pH-responsiveness of WP6 as a novel external stimulus for the reversible guest molecule recognition in thin films.

  15. Surfactants as mesogenic agents in layer-by-layer assembled polyelectrolyte/surfactant multilayers: nanoarchitectured "soft" thin films displaying a tailored mesostructure.

    Science.gov (United States)

    Piccinini, Esteban; Tuninetti, Jimena S; Irigoyen Otamendi, Joseba; Moya, Sergio E; Ceolín, Marcelo; Battaglini, Fernando; Azzaroni, Omar

    2018-04-04

    Interfacial supramolecular architectures displaying mesoscale organized components are of fundamental importance for developing materials with novel or optimized properties. Nevertheless, engineering the multilayer assembly of different building blocks onto a surface and exerting control over the internal mesostructure of the resulting film is still a challenging task in materials science. In the present work we demonstrate that the integration of surfactants (as mesogenic agents) into layer-by-layer (LbL) assembled polyelectrolyte multilayers offers a straightforward approach to control the internal film organization at the mesoscale level. The mesostructure of films constituted of hexadecyltrimethylammonium bromide, CTAB, and polyacrylic acid, PAA (of different molecular weights), was characterized as a function of the number of assembled layers. Structural characterization of the multilayered films by grazing-incidence small-angle X-ray scattering (GISAXS), showed the formation of mesostructured composite polyelectrolyte assemblies. Interestingly, the (PAA/CTA)n assemblies prepared with low PAA molecular weight presented different mesostructural regimes which were dependent on the number of assembled layers: a lamellar mesophase for the first bilayers, and a hexagonal circular mesophase for n ≥ 7. This interesting observation was explained in terms of the strong interaction between the substrate and the first layers leading to a particular mesophase. As the film increases its thickness, the prevalence of this strong interaction decreases and the supramolecular architecture exhibits a "bulk" mesophase. Finally, we demonstrated that the molecular weight of the polyelectrolyte has a considerable impact on the meso-organization for the (PAA/CTA)n assemblies. We consider that these studies open a path to new rational methodologies to construct "nanoarchitectured" polyelectrolyte multilayers.

  16. Development of polyelectrolyte multilayer thin film composite membrane for water desalination application

    KAUST Repository

    Fadhillah, F.

    2013-06-01

    Thin film composite membranes were fabricated via spin assisted layer by layer (SA-LbL) assembly by depositing alternate layers of poly(allyl amine hydrochloride) (PAH) and poly(acrylic acid) (PAA) on a polysulfone (PSF) ultrafiltration membrane as support. The suitability of these membranes for potential water purification applications was explored by testing the stability of the deposited thin films and their permeation characteristic using cross-flow permeation cell. Permeation test conducted at a pressure of 40bar, temperature of 25°C, pH of 6 and feed water concentration of 2000ppm NaCl demonstrated that the PAH/PAA multilayer film deposited on polysulfone support remained stable and intact under long-term test conditions. The 120 bilayers of PAH/PAA membrane tested at the above condition showed flux of 15L/m2.h and salt rejection of 65%. The membrane performance evaluation also revealed that SA-LbL PAH/PAA membrane follows the characteristics of the solution diffusion membrane. © 2013 Elsevier B.V.

  17. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    NARCIS (Netherlands)

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent

  18. Anti-Oxidative and Antibacterial Self-Healing Edible Polyelectrolyte Multilayer Film in Fresh-Cut Fruits.

    Science.gov (United States)

    Liu, Xuefan; Han, Wei; Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Zhang, Jianhao; Ge, Liqin

    2018-04-01

    The consumption of fresh-cut fruits is limited because of the oxidation browning and pathogenic bacteria's growth on the fruit surface. Besides, crack of the fresh-keeping film may shorten the preservation time of fruit. In this work, polyelectrolyte multilayer (PEM) film was fabricated by layer-by-layer (LBL) electrostatic deposition method. The film was made by carboxy methylcellulose sodium (CMC) and chitosan (CS). The as-prepared PEM film had good anti-oxidative and antibacterial capability. It inhibited the growth of Gram-negative bacteria and the antibacterial rate was more than 95%. The stratified structure and linear increase of the absorbance in the film verified a linear increase of film thickness. The slight scratched film could self-heal rapidly after the stimulation of water whatever the layer number was. Moreover, the film could heal cracks whose width was far bigger than the thickness. The application of PEM film on fresh-cut apples showed that PEM film had good browning, weight loss and metabolic activity inhibition ability. These results showed that the PEM film is a good candidate as edible film in fresh-cut fruits applications.

  19. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    OpenAIRE

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross...

  20. Surface Property and Stability of Transparent Superhydrophobic Coating Based on SiO2-Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Sunisa JINDASUWAN

    2016-05-01

    Full Text Available Artificial superhydrophobic films were deposited onto a glass slide by performing layer-by-layer deposition of 3.5 bilayers of poly(allylamine hydrochloride/ poly(acrylic acid polyelectrolyte, followed by a layer of SiO2 nanoparticles of various amounts to enhance the surface roughness and a fluorosilane to reduce the surface free energy. Higher SiO2 content incorporated into the films resulted in rougher surface and higher water contact angle. The total surface free energy determined by using the Owens-Wendt equation dramatically decreased from 31.46 mJ·m-2 for the film having the relatively flat surface to only 1.16 mJ·m-2 for the film having the highest surface roughness of 60.2 ± 1.1 nm. All the films were optically transparent and had excellent adhesion based on the peel test. Indoor and accelerated weathering tests revealed good weathering stability.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12952

  1. Antibacterial Efficacy of Silver-Impregnated Polyelectrolyte Multilayers Immobilized on a Biological Dressing in a Murine Wound Infection Model

    Science.gov (United States)

    Guthrie, Kathleen M.; Agarwal, Ankit; Tackes, Dana S.; Johnson, Kevin W.; Abbott, Nicholas L.; Murphy, Christopher J.; Czuprynski, Charles J.; Kierski, Patricia R.; Schurr, Michael J.; McAnulty, Jonathan F.

    2012-01-01

    Objective To investigate the antibacterial effect of augmenting a biological dressing with polymer films containing silver nanoparticles. Background Biological dressings, such as Biobrane, are commonly used for treating partial-thickness wounds and burn injuries. Biological dressings have several advantages over traditional wound dressings. However, as many as 19% of wounds treated with Biobrane become infected, and, once infected, the Biobrane must be removed and a traditional dressing approach should be employed. Silver is a commonly used antimicrobial in wound care products, but current technology uses cytotoxic concentrations of silver in these dressings. We have developed a novel and facile technology that allows immobilization of bioactive molecules on the surfaces of soft materials, demonstrated here by augmentation of Biobrane with nanoparticulate silver. Surfaces modified with nanometer-thick polyelectrolyte multilayers (PEMs) impregnated with silver nanoparticles have been shown previously to result in in vitro antibacterial activity against Staphylococcus epidermidis at loadings of silver that are noncytotoxic. Methods We demonstrated that silver-impregnated PEMs can be nondestructively immobilized onto the surface of Biobrane (Biobrane-Ag) and determined the in vitro antibacterial activity of Biobrane-Ag with Staphylococcus aureus. In this study, we used an in vivo wound infection model in mice induced by topical inoculation of S aureus onto full-thickness 6-mm diameter wounds. After 72 hours, bacterial quantification was performed. Results Wounds treated with Biobrane-Ag had significantly (P silver-impregnated PEMs on the wound-contact surface of Biobrane significantly reduces bacterial bioburden in full-thickness murine skin wounds. Further research will investigate whether this construct can be considered for human use. PMID:22609841

  2. Construction of Compact Polyelectrolyte Multilayers Inspired by Marine Mussel: Effects of Salt Concentration and pH As Observed by QCM-D and AFM.

    Science.gov (United States)

    Wang, Weina; Xu, Yisheng; Backes, Sebastian; Li, Ang; Micciulla, Samantha; Kayitmazer, A Basak; Li, Li; Guo, Xuhong; von Klitzing, Regine

    2016-04-12

    Biomimetic multilayers based on layer-by-layer (LbL) assembly were prepared as functional films with compact structure by incorporating the mussel-inspired catechol cross-linking. Dopamine-modified poly(acrylic acid) (PAADopa) was synthesized as a polyanion to offer electrostatic interaction with the prelayer polyethylenimine (PEI) and consecutively cross-linked by zinc to generate compact multilayers with tunable physicochemical properties. In situ layer-by-layer growth and cross-linking were monitored by a quartz crystal microbalance with dissipation (QCM-D) to reveal the kinetics of the process and the influence of Dopa chemistry. Addition of Dopa enhanced the mass adsorption and led to the formation of a more compact structure. An increase of ionic strength induced an increase in mass adsorption in the Dopa-cross-linked multilayers. This is a universal approach for coating of various surfaces such as Au, SiO2, Ti, and Al2O3. Roughness observed by AFM in both wet and dry conditions was compared to confirm the compact morphology of Dopa-cross-linked multilayers. Because of the pH sensitivity of Dopa moiety, metal-chelated Dopa groups can be turned into softer structure at higher pH as revealed by reduction of Young's modulus determined by MFP-3D AFM. A deeper insight into the growth and mechanical properties of Dopa-cross-linked polyelectrolyte multilayers was addressed in the present study. This allows a better control of these systems for bioapplications.

  3. Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Aulin, Christian; Varga, Imre; Claesson, Per M; Wågberg, Lars; Lindström, Tom

    2008-03-18

    Polyethyleneimine (PEI) and Microfibrillated cellulose (MFC) have been used to buildup polyelectrolyte multilayers (PEM) on silicone oxide and silicone oxynitride surfaces at different pH values and with different electrolyte and polyelectrolyte/colloid concentrations of the components. Consecutive adsorption on these surfaces was studied by in situ dual-polarization interferometry (DPI) and quartz crystal microbalance measurements. The adsorption data obtained from both the techniques showed a steady buildup of multilayers. High pH and electrolyte concentration of the PEI solution was found to be beneficial for achieving a high adsorbed amount of PEI, and hence of MFC, during the buildup of the multilayer. On the other hand, an increase in the electrolyte concentration of the MFC dispersion was found to inhibit the adsorption of MFC onto PEI. The adsorbed amount of MFC was independent of the bulk MFC concentration in the investigated concentration range (15-250 mg/L). Atomic force microscopy measurements were used to image a MFC-treated silicone oxynitride chip from DPI measurements. The surface was found to be almost fully covered by randomly oriented microfibrils after the adsorption of only one bilayer of PEI/MFC. The surface roughness expressed as the rms-roughness over 1 microm2 was calculated to be 4.6 nm (1 bilayer). The adsorbed amount of PEI and MFC and the amount of water entrapped by the individual layers in the multilayer structures were estimated by combining results from the two analytical techniques using the de Feijter formula. These results indicate a total water content of ca. 41% in the PEM.

  4. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.

    Science.gov (United States)

    Baba Ismail, Yanny Marliana; Ferreira, Ana Marina; Bretcanu, Oana; Dalgarno, Kenneth; El Haj, Alicia J

    2017-11-01

    This paper presents a new approach in assembling bone extracellular matrix components onto PLA films, and investigates the most favourable environment which can be created using the technique for cell-material interactions. Poly (lactic acid) (PLA) films were chemically modified by covalently binding the poly(ethylene imine) (PEI) as to prepare the substrate for immobilization of polyelectrolyte multilayers (PEMs) coating. Negatively charged polyelectrolyte consists of well-dispersed silicon-carbonated hydroxyapatite (SiCHA) nanopowders in hyaluronic acid (Hya) was deposited onto the modified PLA films followed by SiCHA in collagen type I as the positively charged polyelectrolyte. The outermost layer was finally cross-linked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrocholoride and N-hydroxysulfosuccinimide sodium salt (EDC/NHS) solutions. The physicochemical features of the coated PLA films were monitored via X-ray Photoelectron Spectroscopy (XPS) and Atomic Force Microscope (AFM). The amounts of calcium and collagen deposited on the surface were qualitatively and quantitatively determined. The surface characterizations suggested that 5-BL has the optimum surface roughness and highest amounts of calcium and collagen depositions among tested films. In vitro human mesenchymal stem cells (hMSCs) cultured on the coated PLA films confirmed that the coating materials greatly improved cell attachment and survival compared to unmodified PLA films. The cell viability, cell proliferation and Alkaline Phosphatase (ALP) expression on 5-BL were found to be the most favourable of the tested films. Hence, this newly developed coating materials assembly could contribute to the improvement of the bioactivity of polymeric materials and structures aimed to bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of a polyelectrolyte multilayer film coating loaded with BMP-2 on titanium and PEEK implants in the rabbit femoral condyle

    Science.gov (United States)

    Guillot, R.; Pignot-Paintrand, I.; Lavaud, J.; Decambron, A.; Bourgeois, E.; Josserand, V.; Logeart-Avramoglou, D.; Viguier, E.; Picart, C.

    2016-01-01

    The aim of this study was to evaluate the osseointegration of titanium implants (Ti-6Al-4V, noted here TA6V) and poly(etheretherketone) PEEK implants induced by a BMP-2-delivering surface coating made of polyelectrolyte multilayer films. The in vitro bioactivity of the polyelectrolyte film-coated implants was assessed using the alkaline phosphatase assay. BMP-2-coated TA6V and PEEK implants with a total dose of 9.3 µg of BMP-2 were inserted into the femoral condyles of New Zealand white rabbits and compared to uncoated implants. Rabbits were sacrificed 4 and 8 weeks after implantation. Histomorphometric analyses on TA6V and PEEK implants and microcomputed tomography on PEEK implants revealed that the bone-to-implant contact and bone area around the implants were significantly lower for the BMP-2-coated implants than for the bare implants. This was confirmed by scanning electron microscopy imaging. This difference was more pronounced at 4 weeks in comparison to the 8-week time point. However, bone growth inside the hexagonal upper hollow cavity of the screws was higher in the case of the BMP-2 coated implants. Overall, this study shows that a high dose of BMP-2 leads to localized and temporary bone impairment, and that the dose of BMP-2 delivered at the surface of an implant needs to be carefully optimized. PMID:26965394

  6. Donnan potential of polyelectrolyte multilayer films made from poly-L-glutamic/polyallylamine hydrochloride and the stability of hexacyanoferrate retained in the films.

    Science.gov (United States)

    Ball, Vincent

    2013-10-14

    Polyelectrolyte multilayer films are a versatile surface functionalization method of solid-liquid interfaces and appear to be interesting reservoirs to load/release drugs and to act as permselective membranes. For the latter applications critical parameters are the porosity of the film and its Donnan potential. In this investigation the Donnan potential of PEI-(PGA-PAH)n (PEI, PGA and PAH stand for polyethyleneimine, poly-L-glutamic acid and polyallylamine) films will be determined as a function of the number of deposition steps and the concentration of the redox probe, hexacyanoferrate anions, for films made from 10 layer pairs. Complementarily, it will be shown that the retention of the redox probe in the films in the presence of 150 mM NaCl electrolyte depends on both the film thickness and the scan rates at which the electrochemical experiments are performed.

  7. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  8. The Effectiveness of the Controlled Release of Gentamicin from Polyelectrolyte Multilayers in the Treatment of Staphylococcus aureus Infection in a Rabbit Bone Model

    Science.gov (United States)

    Moskowitz, Joshua; Blaisse, Michael; Samuel, Raymond; Hsu, Hu-Ping; Harris, Mitchel; Martin, Scott; Lee, Jean; Spector, Myron; Hammond, Paula

    2010-01-01

    While the infection rate of orthopedic implants is low, the required treatment, which can involve six weeks of antibiotic therapy and two additional surgical operations, is life threatening and expensive, and thus motivates the development of a one-stage re-implantation procedure. Polyelectrolyte multilayers incorporating gentamicin were fabricated using the layer-by-layer deposition process for use as a device coating to deal with an existing bone infection in a direct implant exchange operation. The films eluted about 70% of their payload in vitro during the first three days and subsequently continued to release drug for more than four additional weeks, reaching a total average release of over 550 μg/cm2. The coatings were demonstrated to be bactericidal against Staphylococcus aureus, and degradation products were generally nontoxic towards MC3T3-E1 murine preosteoblasts. Film-coated titanium implants were compared to uncoated implants in an in vivo S. aureus bone infection model. After a direct exchange procedure, the antimicrobial-coated devices yielded bone homogenates with a significantly lower degree of infection than uncoated devices at both day four (p < 0.004) and day seven (p < 0.03). This study has demonstrated that a self-assembled ultrathin film coating is capable of effectively treating an experimental bone infection in vivo and lays the foundation for development of a multi-therapeutic film for optimized, synergistic treatment of pain, infection, and osteomyelitis. PMID:20488534

  9. Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer

    OpenAIRE

    Spricigo, Roberto; Dronov, Roman; Lisdat, Fred; Leimk?hler, Silke; Scheller, Frieder W.; Wollenberger, Ulla

    2008-01-01

    An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV?Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, p...

  10. Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer.

    Science.gov (United States)

    Spricigo, Roberto; Dronov, Roman; Lisdat, Fred; Leimkühler, Silke; Scheller, Frieder W; Wollenberger, Ulla

    2009-01-01

    An efficient electrocatalytic biosensor for sulfite detection was developed by co-immobilizing sulfite oxidase and cytochrome c with polyaniline sulfonic acid in a layer-by-layer assembly. QCM, UV-Vis spectroscopy and cyclic voltammetry revealed increasing loading of electrochemically active protein with the formation of multilayers. The sensor operates reagentless at low working potential. A catalytic oxidation current was detected in the presence of sulfite at the modified gold electrode, polarized at +0.1 V (vs. Ag/AgCl 1 M KCl). The stability of the biosensor performance was characterized and optimized. A 17-bilayer electrode has a linear range between 1 and 60 microM sulfite with a sensitivity of 2.19 mA M(-1) sulfite and a response time of 2 min. The electrode retained a stable response for 3 days with a serial reproducibility of 3.8% and lost 20% of sensitivity after 5 days of operation. It is possible to store the sensor in a dry state for more than 2 months. The multilayer electrode was used for determination of sulfite in unspiked and spiked samples of red and white wine. The recovery and the specificity of the signals were evaluated for each sample.

  11. Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture.

    Science.gov (United States)

    Shlar, Ilya; Droby, Samir; Rodov, Victor

    2018-02-05

    Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA) 6 -(PLL-PLGA-PLL-CMBCD) n , with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread. Copyright © 2018. Published by Elsevier B.V.

  12. Scaling Theory of Polyelectrolyte Nanogels

    Science.gov (United States)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  13. Stress analysis in multilayered FGM plates under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Jin, G.; Nishikawa, T.; Honda, S.; Awaji, H. [Dept. of Material Science and Engineering, Nagoya Inst. of Tech. (Japan)

    2003-07-01

    In this study, one-dimensional calculation was employed to evaluate the steady-state and transient temperature/stress distributions in a multilayered functionally graded ceramic-metal composite materials. The residual thermal stress raised from fabrication process because of the macroscopic variation of constituent across the thickness was also evaluated. The alumina/nickel FGM disks were fabricated using a powder stacking method and a pulse electric current sintering technique. The thermal shock tests on the fabricated FGM disks were performed and the stress distributions in the FGM plates under thermal shock were calculated using a critical temperature difference where cracks appeared on the ceramic surface. Then the thermal shock properties of FGM plates were evaluated under the consideration of both the thermal stress and the residual thermal stress distribution. It was indicated that the thermal shock properties of the multilayered alumina-nickel FGM plate were strongly influenced by the residual thermal stress distribution on the alumina surface. (orig.)

  14. Monitoring layer-by-layer assembly of polyelectrolyte multi-layers using high-order cladding mode in long-period fiber gratings

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Kaňka, Jiří; Li, X.; Du, H.

    -, č. 196 (2014), s. 475-479 ISSN 0925-4005 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Layer-by-layer assembly * Polyelectrolyte * Cladding mode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.097, year: 2014

  15. Optical measurement of thermal deformation of multilayer optics under synchrotron radiation

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    An in situ optical technique to visualize surface distortions of the first monochromator crystal under synchrotron beam heat loading has been developed and applied to measure surface profiles of multilayer optics under white wiggler beam at the CHESS A2 beamline. Two identical multilayer structures deposited on Si and SiC substrates have been tested. Comparison of the reconstructed 3D heatbump profiles showed the surface distortions of the multilayer on SiC a factor of two smaller than the same multilayer on a Si substrate

  16. UV light stimulated encapsulation and release by polyelectrolyte microcapsules.

    Science.gov (United States)

    Yi, Qiangying; Sukhorukov, Gleb B

    2014-05-01

    Layer-by-layer assembled polyelectrolyte capsules with well-controlled architectures and great versatility have been the subject of great interest, due to their unique advantages and tremendous potentials of being excellent candidates in multidisciplinary fields. UV light responsive microcapsules, as one class of the stimuli responsive capsules, possess the abilities to active their functionalities by responding to the UV stimulus remotely without requirement of direct contact or interaction. Therefore, any advances in this field will be of great value for the establishment of approaches to fabricate UV responsive polyelectrolyte capsules for desired uses. This review presents current development of UV responsive capsules, with emphasis on the underlying design strategies and their potential applications as delivery vesicles. In particular, UV-stimulated capsule functionalities, such as cargo encapsulation, release and combined multifunctionalities by the multilayers, have been addressed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    Science.gov (United States)

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid/poly(L-lactic acid and self-assembly of polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Elena Dellacasa

    2016-01-01

    Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  19. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    Science.gov (United States)

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  20. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films

    International Nuclear Information System (INIS)

    Guo Yanbao; Wang Deguo; Liu Shuhai

    2010-01-01

    Multilayer polyelectrolyte films containing silver ions were obtained by molecular deposition method on a glass plate or a quartz substrate. The in situ Ag nanoparticles were synthesized in the multilayer polyelectrolyte films which were put into fresh NaBH 4 aqueous solution. The structure and surface morphology of composite molecular deposition films were observed by UV-vis spectrophotometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Tribological characteristic was investigated by AFM and micro-tribometer. It was found that the in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films have lower coefficient of friction and higher anti-wear life than pure polyelectrolyte molecular deposition films.

  1. Peltier effect in multilayered nanopillars under high density charge current

    International Nuclear Information System (INIS)

    Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S

    2006-01-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements

  2. Reversible multi polyelectrolyte layers on gold nanoparticles

    Science.gov (United States)

    Djoumessi Lekeufack, Diane; Brioude, Arnaud; Lalatonne, Yoann; Motte, Laurence; Coleman, Anthony W.; Miele, Philippe

    2012-06-01

    Gold nanoparticles surface can be easily modified by different molecules such as polyelectrolytes. In a typical multilayer system made of polyethyleneimine and poly(styrene sulfonate)sodium alternated layers around gold nanoparticles, we have evaluated the interactions between the different layers and the relative strength of interfacial properties. By means of UV-Visible and FTIR spectroscopies, we have shown that due to its amine functionalities, the bonding of polyethyleneimine to gold particles is stronger than the one implied with the sulfonate anion in the PSS inducing a clean removal of this latter after the last polyethyleneimine deposition. Considering that polyethyleneimine is cytotoxic and that only weak covalent bonds are concerned in polyelectrolyte multilayer, this last point is of main importance since external degradation thus exposing polyethyleneimine sub-layer of multilayer films to in vivo tissue cells can occur by many ways.

  3. Polyelectrolytes thermodynamics and rheology

    CERN Document Server

    P M, Visakh; Picó, Guillermo Alfredo

    2014-01-01

    This book discusses current development of theoretical models and experimental findings on the thermodynamics of polyelectrolytes. Particular emphasis is placed on the rheological description of polyelectrolyte solutions and hydrogels.

  4. Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress

    Energy Technology Data Exchange (ETDEWEB)

    Agra, K.; Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Callegari, G.L.; Dorneles, L.S. [Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2016-12-15

    We investigate the dynamic magnetic response though magnetoimpedance effect of ferromagnetic flexible NiFe/Ta and FeCuNbSiB/Ta multilayers under external stress. We explore the possibility of handling magnetic anisotropy, and consequently the magnetoimpedance effect, of magnetostrictive multilayers deposited onto flexible substrates. We quantify the sensitivity of the multilayers under external stress by calculating the ratio between impedance variations and external stress changes, and show that considerable values can be reached by tuning the magnetic field, frequency, magnetostriction constant, and external stress. The results extend possibilities of application of magnetostrictive multilayers deposited onto flexible substrates when under external stress and place them as very attractive candidates as element sensor for the development of sensitive smart touch sensors. - Highlights: • We investigate the magnetoimpedance effect in magnetostrictive flexible multilayers grown on flexible substrates. • The external applied stress enables to tuning the samples anisotropies, and consequently the MI performance. • The flexible substrate becomes promising candidate for RF-frequency devices.

  5. Enhanced antiadhesive properties of chitosan/hyaluronic acid polyelectrolyte multilayers driven by thermal annealing: Low adherence for mammalian cells and selective decrease in adhesion for Gram-positive bacteria.

    Science.gov (United States)

    Muzzio, Nicolás E; Pasquale, Miguel A; Diamanti, Eleftheria; Gregurec, Danijela; Moro, Marta Martinez; Azzaroni, Omar; Moya, Sergio E

    2017-11-01

    The development of antifouling coatings with restricted cell and bacteria adherence is fundamental for many biomedical applications. A strategy for the fabrication of antifouling coatings based on the layer-by-layer assembly and thermal annealing is presented. Polyelectrolyte multilayers (PEMs) assembled from chitosan and hyaluronic acid were thermally annealed in an oven at 37°C for 72h. The effect of annealing on the PEM properties and topography was studied by atomic force microscopy, ζ-potential, circular dichroism and contact angle measurements. Cell adherence on PEMs before and after annealing was evaluated by measuring the cell spreading area and aspect ratio for the A549 epithelial, BHK kidney fibroblast, C2C12 myoblast and MC-3T3-E1 osteoblast cell lines. Chitosan/hyaluronic acid PEMs show a low cell adherence that decreases with the thermal annealing, as observed from the reduction in the average cell spreading area and more rounded cell morphology. The adhesion of S. aureus (Gram-positive) and E. coli (Gram-negative) bacteria strains was quantified by optical microscopy, counting the number of colony-forming units and measuring the light scattering of bacteria suspension after detachment from the PEM surface. A 20% decrease in bacteria adhesion was selectively observed in the S. aureus strain after annealing. The changes in mammalian cell and bacteria adhesion correlate with the changes in topography of the chitosan/hyaluronic PEMs from a rough fibrillar 3D structure to a smoother and planar surface after thermal annealing. Copyright © 2017. Published by Elsevier B.V.

  6. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s.

    Science.gov (United States)

    Xu, Weinan; Ledin, Petr A; Shevchenko, Valery V; Tsukruk, Vladimir V

    2015-06-17

    Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.

  7. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  8. Moessbauer of phase separation in FeNi multilayers under ion bombardment

    International Nuclear Information System (INIS)

    Amaral, L.; Paesano, A.; Brueckman, M.E.; Shinjo, T.; Ono, T.; Hosoito, N.

    1997-01-01

    We investigated the effect of noble gas irradiation (He, Ne, Ar and Xe) on the Fe-Ni multilayers with a very thin modulation and nominal composition in the invar region Fe 0.63 Ni 0.37 . The evaluation of the formation/stability of the Fe-Ni phases formed under irradiation with different ions and doses was followed by conversion electron Moessbauer spectroscopy (CEMS). (author)

  9. Simultaneous measurements of top surface and its underlying film surfaces in multilayer film structure.

    Science.gov (United States)

    Ghim, Young-Sik; Rhee, Hyug-Gyo; Davies, Angela

    2017-09-19

    With the growth of 3D packaging technology and the development of flexible, transparent electrodes, the use of multilayer thin-films is steadily increasing throughout high-tech industries including semiconductor, flat panel display, and solar photovoltaic industries. Also, this in turn leads to an increase in industrial demands for inspection of internal analysis. However, there still remain many technical limitations to overcome for measurement of the internal structure of the specimen without damage. In this paper, we propose an innovative optical inspection technique for simultaneous measurements of the surface and film thickness corresponding to each layer of multilayer film structures by computing the phase and reflectance over a wide range of wavelengths. For verification of our proposed method, the sample specimen of multilayer films was fabricated via photolithography process, and the surface profile and film thickness of each layer were measured by two different techniques of a stylus profilometer and an ellipsometer, respectively. Comparison results shows that our proposed technique enables simultaneous measurements of the top surface and its underlying film surfaces with high precision, which could not be measured by conventional non-destructive methods.

  10. Ionically Paired Layer-by-Layer Hydrogels: Water and Polyelectrolyte Uptake Controlled by Deposition Time

    Directory of Open Access Journals (Sweden)

    Victor Selin

    2018-01-01

    Full Text Available Despite intense recent interest in weakly bound nonlinear (“exponential” multilayers, the underlying structure-property relationships of these films are still poorly understood. This study explores the effect of time used for deposition of individual layers of nonlinearly growing layer-by-layer (LbL films composed of poly(methacrylic acid (PMAA and quaternized poly-2-(dimethylaminoethyl methacrylate (QPC on film internal structure, swelling, and stability in salt solution, as well as the rate of penetration of invading polyelectrolyte chains. Thicknesses of dry and swollen films were measured by spectroscopic ellipsometry, film internal structure—by neutron reflectometry (NR, and degree of PMAA ionization—by Fourier-transform infrared spectroscopy (FTIR. The results suggest that longer deposition times resulted in thicker films with higher degrees of swelling (up to swelling ratio as high as 4 compared to dry film thickness and stronger film intermixing. The stronger intermixed films were more swollen in water, exhibited lower stability in salt solutions, and supported a faster penetration rate of invading polyelectrolyte chains. These results can be useful in designing polyelectrolyte nanoassemblies for biomedical applications, such as drug delivery coatings for medical implants or tissue engineering matrices.

  11. Layer-by-layer polyelectrolyte films for contact electric energy harvesting

    International Nuclear Information System (INIS)

    Guo, X D; Helseth, L E

    2015-01-01

    We report how self-assembly of polyelectrolyte thin films alters the contact electrification of polyimide polymer films used in contact based triboelectric energy harvesting systems. Polyimide films of the same size do produce a very small current when brought into contact. However, by covering one of the polyimide films with a polyelectrolyte thin film terminated by positively charged poly(allylamine hydrochloride) (PAH), the current is reversed and a much larger current and voltage are generated upon contact with the other polyimide film. A similar increase in contact current is not seen for polyelectrolyte thin films terminated by the negatively charged poly(sodium 4-styrenesulfonate). The PAH-terminated Kapton films are used to create an energy harvesting system providing a voltage of about 60 V and a current of 10 μA. At an average power of 11 μW for a load resistance of 100 MΩ, the energy harvester is able to power several light emitting diodes. Further studies on the contact electrification of the polyelectrolyte demonstrate that nanostructuring of the polymer surface using reactive ion etching does not give rise to polarity reversal. This is explained as hidden pockets of charge not accessible to PAH molecules, but which become accessible when the polymer is put under stress. Although the current originating for a PAH-terminated multilayer film does initially have the opposite sign to that of bare polyimide, it is found that the polarity will switch after subjecting it to a periodical mechanical force. Characteristic changes in current signatures associated with the switch are found, and are interpreted as mechanical interpenetration of the charged layers. (paper)

  12. Equilibrium electrostatics of responsive polyelectrolyte monolayers.

    Science.gov (United States)

    Wang, Kang; Zangmeister, Rebecca A; Levicky, Rastislav

    2009-01-14

    The physical behavior of polyelectrolytes at solid-liquid interfaces presents challenges both in measurement and in interpretation. An informative, yet often overlooked, property that characterizes the equilibrium organization of these systems is their membrane or rest potential. Here a general classification scheme is presented of the relationship between the rest potential and structural response of polyelectrolyte films to salt concentration. A numerical lattice theory, adapted from the polymer community, is used to analyze the rest potential response of end-tethered polyelectrolyte layers in which electrostatics and short-range contact interactions conspire to bring about different structural states. As an experimental quantity the rest potential is a readily accessible, nonperturbing metric of the equilibrium structure of a polyelectrolyte layer. A first set of measurements is reported on monolayers of end-tethered, single-stranded DNA in monovalent (NaCl) and divalent (MgCl(2)) counterion environments. Intriguingly, in NaCl electrolyte at least two different mechanisms appear by which the DNA layers can structurally relax in response to changing salt conditions. In MgCl(2) the layers appear to collapse. The possible molecular mechanisms behind these behaviors are discussed. These studies provide insight into phenomena more generally underlying polyelectrolyte applications in the chemical, environmental, and biotechnological fields.

  13. Temperature-induced changes in polyelectrolyte films at the solid-liquid interface

    International Nuclear Information System (INIS)

    Steitz, R.; Leiner, V.; Tauer, K.; Khrenov, V.; Klitzing, R. v.

    2002-01-01

    Polyelectrolyte multilayers (film thickness 30-60 nm) were built on top of silicon substrates by layer-by-layer deposition of oppositely charged polyelectrolytes from aqueous solutions. Three kinds of films were investigated: (A) films of a homo-polyelectrolyte and a diblock copolymer with a thermosensitive poly(N-isopropyl-acrylamide) block and (B) and (C) two reference systems built solely from homo-polyelectrolytes of opposite charges. Thermal behavior and subsequent structural changes of the functionalized films against D 2 O were investigated by neutron reflectometry. All films showed irreversible annealing effects upon heating. In addition, the thermosensitive films showed a decrease in thickness at elevated temperature (>30 C) while the reference samples, composed of thermo-insensitive polyelectrolytes only, did not. (orig.)

  14. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    Science.gov (United States)

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  15. Non-localized deformation in Cu−Zr multi-layer amorphous films under tension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-09-05

    In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.

  16. Low biofouling chitosan-hyaluronic acid multilayers with ultra-low friction coefficients.

    Science.gov (United States)

    Bongaerts, Jeroen H H; Cooper-White, Justin J; Stokes, Jason R

    2009-05-11

    Resistance to biofouling is an advantageous material property in a variety of biomedical and biofluid processing applications. Protein-resisting surface coatings must also be resistant to wear and degradation and in certain applications good aqueous lubricating properties are required. We show that cross-linked polyelectrolyte multilayers, consisting of chitosan and hyaluronan on polydimethylsiloxane (PDMS) surfaces, form a highly lubricating film that is resistant to wear and protein adsorption. The multilayer film shows much stronger resistance to protein adsorption from human whole saliva than both hydrophobic and hydrophilic PDMS surfaces; the latter two showed identical adsorbed salivary film thicknesses. The boundary friction coefficient under aqueous conditions was extremely low (mu approximately 0.01) between multilayer-coated PDMS substrates and the film is robust against dry rubbing and many hours of tribological experiments in a range of aqueous lubricants. The origins of the assembly's low friction coefficients and robustness are discussed. In addition, we found that the addition of negative phosphate ions to water lowers the boundary lubricating properties of negatively charged hydrophilic PDMS surfaces by 1 order of magnitude to mu approximately 0.01. We consider this to arise from the large hydration sheaths and resulting "ball-bearing" properties of the hydrated phosphate ions, which form a lubricating barrier against asperity contact. These findings offer new insights toward biolubrication processes and suggest that chitosan-hyaluronan polyelectrolyte multilayer films have the potential to be used in (bio-) applications requiring low friction as well as resistance to biofouling and wear.

  17. Generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure

    CERN Document Server

    Wu, Xuan Hui

    2008-01-01

    This book gives a step-by-step presentation of a generalized transmission line method to study the far-zone radiation of antennas under a multilayer structure. Normally, a radiation problem requires a full wave analysis which may be time consuming. The beauty of the generalized transmission line method is that it transforms the radiation problem for a specific type of structure, say the multilayer structure excited by an antenna, into a circuit problem that can be efficiently analyzed. Using the Reciprocity Theorem and far-field approximation, the method computes the far-zone radiation due to

  18. Relaxation phenomena during polyelectrolyte complex formation

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.

    2013-01-01

    Polyelectrolyte complex formation is a well-studied subject in colloid science. Several types of complex formation have been studied, including PEMs, macroscopic polyelectrolyte complexes, soluble complexes and polyelectrolyte complex micelles. The chemical nature of the complex-forming

  19. Scaling Theory of Polyelectrolyte Nanogels

    International Nuclear Information System (INIS)

    Qu Li-Jian

    2017-01-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. (paper)

  20. A mixture model for robust point matching under multi-layer motion.

    Directory of Open Access Journals (Sweden)

    Jiayi Ma

    Full Text Available This paper proposes an efficient mixture model for establishing robust point correspondences between two sets of points under multi-layer motion. Our algorithm starts by creating a set of putative correspondences which can contain a number of false correspondences, or outliers, in addition to the true correspondences (inliers. Next we solve for correspondence by interpolating a set of spatial transformations on the putative correspondence set based on a mixture model, which involves estimating a consensus of inlier points whose matching follows a non-parametric geometrical constraint. We formulate this as a maximum a posteriori (MAP estimation of a Bayesian model with hidden/latent variables indicating whether matches in the putative set are outliers or inliers. We impose non-parametric geometrical constraints on the correspondence, as a prior distribution, in a reproducing kernel Hilbert space (RKHS. MAP estimation is performed by the EM algorithm which by also estimating the variance of the prior model (initialized to a large value is able to obtain good estimates very quickly (e.g., avoiding many of the local minima inherent in this formulation. We further provide a fast implementation based on sparse approximation which can achieve a significant speed-up without much performance degradation. We illustrate the proposed method on 2D and 3D real images for sparse feature correspondence, as well as a public available dataset for shape matching. The quantitative results demonstrate that our method is robust to non-rigid deformation and multi-layer/large discontinuous motion.

  1. The creep of multi-layered moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Takezono, S.; Migita, K.

    1987-01-01

    In the present paper the authors study the creep deformation of the multi-layered thick shells of revolution under asymmetrical loads. The equations of equilibrium and the strain-displacement relations are derived from the Reissner-Naghdi theory (1941, 1957) for elastic shells where a consideration on the effect of shear deformation is given. In the theory of creep it is assumed that in a given increment of time the total strain increments are composed of an elastic part and a part due to creep. The elastic strains are proportional to the stresses by Hooke's law. For the constitutive equations in the creep range, McVetty's equation modified by Arrhenius' equation for thermal effect is employed. The basic differential equations on the creep problems derived for the incremental values with respect to time are numerically solved by a finite difference method and the solutions at any time are obtained by summation of the incremental values. Resultant forces and resultant moments are given from numerical integration of the stresses by Simpson's 1/3 rules. (orig./GL)

  2. 3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate

    Directory of Open Access Journals (Sweden)

    Eduardo Guzmán

    2016-02-01

    Full Text Available This work addresses the formation and the internal morphology of polyelectrolyte layers obtained by the layer-by-layer method. A multimodal characterization showed the absence of stratification of the films formed by the alternate deposition of poly(diallyldimethylammonium chloride and poly(sodium 4-styrenesulfonate. Indeed the final organization might be regarded as three-dimensional solid-supported inter-polyelectrolyte films. The growth mechanism of the multilayers, followed using a quartz crystal microbalance, evidences two different growth trends, which show a dependency on the ionic strength due to its influence onto the polymer conformation. The hydration state does not modify the multilayer growth, but it contributes to the total adsorbed mass of the film. The water associated with the polyelectrolyte films leads to their swelling and plastification. The use of X-ray photoelectron spectroscopy has allowed for deeper insights on the internal structure and composition of the polyelectrolyte multilayers.

  3. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    Science.gov (United States)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  4. Polyelectrolyte determination in drinking water

    African Journals Online (AJOL)

    include: colloidal titration, extraction-spectrophotometry, chro- matography, fluorometry and potentiometry. Methods that are simple to perform and that allow water- works operators to achieve precise results are desirable as quick. TABLE 1. List of contaminants found in polyelectrolyte products. Contaminant. Polyelectrolyte.

  5. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposures

    NARCIS (Netherlands)

    Khorsand, A.R.; Sobierajski, R.; Louis, Eric; Bruijn, S.; Gleeson, A.; van de Kruijs, Robbert Wilhelmus Elisabeth; Gullikson, E.M.; Bijkerk, Frederik

    2010-01-01

    We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and “post-mortem” by

  6. Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit

    Science.gov (United States)

    Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.

    2018-01-01

    The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.

  7. An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions

    International Nuclear Information System (INIS)

    Wang, R; Han, Q; Pan, E

    2010-01-01

    We derive, in this paper, the analytical solution for a three-dimensional transversely isotropic axisymmetric multilayered magneto-electro-elastic (MEE) circular plate under simply supported boundary conditions. The state space vector, the finite Hankel transform and propagating matrix methods are utilized together to obtain the full-field solutions for the MEE plate made of piezoelectric (PE) and piezomagnetic (PM) layers. Numerical examples for three-layered and five-layered PE/PM composites with different stacking sequences and under different loading conditions are presented and discussed. These results can serve as benchmark solutions for future numerical analyses of layered MEE plates

  8. Study of ion implantation in grown layers of multilayer coatings under ion-plasma vacuum deposition

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Erokhin, A.L.

    1993-01-01

    The model of ion implantation into growing layers of a multilayer coating produced with vacuum ion-plasma deposition was developed. The model takes into account a possibility for ions to pass through the growing layer and alloys to find the distribution of implanted atoms over the coating thickness. The experimental vitrification of the model was carried out on deposition of Ti and TiN coatings

  9. Self-assembled polyelectrolyte nanorings observed by liquid-cell AFM

    International Nuclear Information System (INIS)

    Menchaca, J-Luis; Flores, Hector; Cuisinier, Frederic; Perez, ElIas

    2004-01-01

    Self-assembled polyelectrolyte nanorings formed by polyelectrolytes are presented for the first time in this work. They are formed by poly(ethylenimine) (PEI) and poly(sodium 4-styrenesulfanate) (PSS) during the two first steps of the formation of the self-assembled polyelectrolyte films (SAPFs). These are formed on a negatively charged glass surface and observed by an in situ liquid-cell AFM technique, which has recently been introduced as an alternative technique to follow polyelectrolyte multilayer formation without drying effects (Menchaca et al 2003 Colloids Surf. A 222 185). Nanoring formation strongly depends on the preparation method and parameters such as polyelectrolyte filtration, air and CO 2 presence during SAPFs formation and buffer solution. A necessary condition to obtain nanorings is that polyelectrolyte solutions have to be filtered prior to injection into the liquid-cell AFM. The outer diameter of nanorings can be varied from hundreds of nanometres to microns by changing these parameters. Nanorings are stable in the liquid cell for hours but they disappear on contact with air. Additionally, carbonate ions seem to be mainly responsible for the formation of this novel structure

  10. Polyelectrolyte nanoparticles mediate vascular gene delivery.

    Science.gov (United States)

    Zaitsev, Sergey; Cartier, Régis; Vyborov, Oleg; Sukhorukov, Gleb; Paulke, Bernd-Reiner; Haberland, Annekathrin; Parfyonova, Yelena; Tkachuk, Vsevolod; Böttger, Michael

    2004-09-01

    The purpose is to develop a non-viral gene delivery system that meets the requirements of colloidal stability of DNA complexes expressed in terms of no particle aggregation under physiologic conditions. The system should be used to transfect cardiovascular tissues. We used a strategy based on the formation of polyelectrolyte nanoparticles by deposition of alternatively charged polyelectrolytes onto a DNA core. Polyelectrolytes were transfer RNA as well as the synthetic polyanion, polyvinyl sulfate (PVS), and the polycation polyethylenimine (PEI). The PEI/DNA complex formed the DNA core. We observed that the DNA is condensed by polycations and further packaged by association with a polyanion. These nanoparticles exhibited negative surface charge and low aggregation tendency. In vivo rat carotid artery experiments revealed high transfection efficiency, not only with the reporter gene but also with the gene encoding human urokinase plasminogen activator (Hu-uPA). Hu-uPA is one of the proteins involved in the recovery of the blood vessels after balloon catheter injury and therefore clinically relevant. A strategy for in vivo gene transfer is proposed that uses the incorporation of polyanions as RNA or PVS into PEI/DNA complexes in order to overcome colloidal instability and to generate a negative surface charge. The particles proved to be transfectionally active in vascular gene transfer.

  11. Empirical Modeling of Physiochemical Immune Response of Multilayer Zinc Oxide Nanomaterials under UV Exposure to Melanoma and Foreskin Fibroblasts

    Science.gov (United States)

    Fakhar-E-Alam, Muhammad; Akram, M. Waseem; Iqbal, Seemab; Alimgeer, K. S.; Atif, M.; Sultana, K.; Willander, M.; Wang, Zhiming M.

    2017-04-01

    Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.

  12. Empirical Modeling of Physiochemical Immune Response of Multilayer Zinc Oxide Nanomaterials under UV Exposure to Melanoma and Foreskin Fibroblasts.

    Science.gov (United States)

    Fakhar-E-Alam, Muhammad; Akram, M Waseem; Iqbal, Seemab; Alimgeer, K S; Atif, M; Sultana, K; Willander, M; Wang, Zhiming M

    2017-04-24

    Carcinogenesis is a complex molecular process starting with genetic and epigenetic alterations, mutation stimulation, and DNA modification, which leads to proteomic adaptation ending with an uncontrolled proliferation mechanism. The current research focused on the empirical modelling of the physiological response of human melanoma cells (FM55P) and human foreskin fibroblasts cells (AG01518) to the multilayer zinc oxide (ZnO) nanomaterials under UV-A exposure. To validate this experimental scheme, multilayer ZnO nanomaterials were grown on a femtotip silver capillary and conjugated with protoporphyrin IX (PpIX). Furthermore, PpIX-conjugated ZnO nanomaterials grown on the probe were inserted into human melanoma (FM55P) and foreskin fibroblasts cells (AG01518) under UV-A light exposure. Interestingly, significant cell necrosis was observed because of a loss in mitochondrial membrane potential just after insertion of the femtotip tool. Intense reactive oxygen species (ROS) fluorescence was observed after exposure to the ZnO NWs conjugated with PpIX femtotip model under UV exposure. Results were verified by applying several experimental techniques, e.g., ROS detection, MTT assay, and fluorescence spectroscopy. The present work reports experimental modelling of cell necrosis in normal human skin as well as a cancerous tissue. These obtained results pave the way for a more rational strategy for biomedical and clinical applications.

  13. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure

    Czech Academy of Sciences Publication Activity Database

    Khorsand, A.R.; Sobierajski, R.; Louis, E.; Bruijn, S.; van Hattum, E.D.; van de Kruijs, R.W.E.; Jurek, M.; Klinger, D.; Pelka, J. B.; Juha, Libor; Burian, Tomáš; Chalupský, Jaromír; Cihelka, Jaroslav; Hájková, Věra; Vyšín, Luděk; Jastrow, U.; Stojanovic, N.; Toleikis, S.; Wabnitz, H.; Tiedtke, K.; Sokolowski-Tinten, K.; Shymanovich, U.; Krzywinski, J.; Hau-Riege, S.; London, R.; Gleeson, A.; Gullikson, E.M.; Bijkerk, F.

    2010-01-01

    Roč. 18, č. 2 (2010), 700-712 ISSN 1094-4087 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser damage * thermal effects * multilayers * optical design and fabrication * free-electron lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.749, year: 2010

  14. Luminescence of nc-Si/dielectric multilayer structures under injection excitation

    CERN Document Server

    Barashevich, Y A; Kamenev, B V

    2002-01-01

    The model of nonequilibrium charge carrier recombination in multilayer nanocrystal Si-dielectric structures is proposed. It has been found that restriction of the carrier transfer via localized states in the dielectric host matrix leads to a non-linear rise of luminescence intensity with increasing the current density. Further the transition of this dependence in the saturation regime is connected with increasing the Auger recombination contribution. It has been established that the increase of the silicon nanodimensional cluster density as well as that of the structure layer number is an effective way of superpressing the nonradiative Auger recombination

  15. Development of multilayered chitosan-based nanofibers

    OpenAIRE

    Croisier, Florence; Aqil, Abdelhafid; Detrembleur, Christophe; Jérôme, Christine

    2009-01-01

    By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of po...

  16. Experimental studies and modeling of X-Rays multilayer mirrors damages under high X-Ray flux generated by a laser-plasma experiment

    International Nuclear Information System (INIS)

    Le Guern, F.

    1996-01-01

    We have been able with this work to point out characterize X-Rays multilayers mirrors damages. We have designed two experimental set-up which have been installed in the HELIOTROPE experimental chamber of the OCTAL facility located at the CEA in Limeil-Valenton. We have demonstrated that X-Rays multilayer mirrors properties were drastically modified by X-Rays emitted by a golden laser plasma. We have, more precisely, introduced the damage speed concept to quantify the expansion of the multilayer mirror period. We have been able to classify different multilayer mirrors in function of their resistance to damage and we have demonstrated that a silicate layer deposited on a mirror allowed to increase his resistance to damage. In a second part we have developed a simulation tool in order to simulate the X-Rays multilayer mirrors optical properties modifications. We have therefore coupled a thermo-mechanic code with an optical program. The results of the simulations are in a rather good agreement with the experiments and can be used to predict, before experiments, the multilayer mirror behavior under X-Rays irradiation. (author)

  17. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    Science.gov (United States)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  18. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  19. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  20. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    Directory of Open Access Journals (Sweden)

    M.R. Mofakhami

    2008-01-01

    Full Text Available In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic properties of the structure are rigorously taken into account with a power law technique that models the viscoelastic damping of the cylinder. A parametric study is also performed for the two layered infinite cylinders to obtain the effect of viscoelastic layer characteristics such as thickness, material type and frequency dependency of viscoelastic properties on the noise reduction. It is shown that using constant and frequency dependent viscoelastic material with high loss factor leads to the uniform noise reduction in the frequency domain. It is also shown that the noise reduction obtained for constant viscoelastic material property is subjected to some errors in the low frequency range with respect to those obtained for the frequency dependent viscoelastic material.

  1. Versatile Electrostatic Assembly of Nanoparticles & Polyelectrolytes: Coating, Clustering and Layer-by-Layer Processes

    OpenAIRE

    Chapel, J. -P.; Berret, J. -F.

    2011-01-01

    Engineered nanoparticles made from noble metals, rare-earth oxides or semiconductors are emerging as the central constituents of future nanotech developments. In this review, a survey of the complexing strategies between nanoparticles and oppositely charged polyelectrolytes developed during the last three years and based on electrostatic interactions is presented. These strategies include the one-step synthesis of stable and functionalized nanoparticles, the one- and multilayer coating of ind...

  2. Hybrid inorganic-organic nano- and microcomposites based on silica sols and synthetic polyelectrolytes

    Directory of Open Access Journals (Sweden)

    2008-02-01

    Full Text Available Interaction between anionic (and cationic colloidal particles of silica having the particles diameters 12 and 22 nm with synthetic cationic (and anionic polyelectrolytes of various nature and structure was studied by potentiometric, conductimetric spectroturbidimetric and viscometric methods in aqueous solution. It was shown that the complexation of silica nanoparticles with linear polyelectrolytes leads to formation of mostly stoichiometric interpolyelectrolyte complexes (IPEC which precipitate from aqueous solution. Casting of water-soluble IPEC followed by thermal treatment gives thin composite films insoluble in water while ‘layer by layer’ (LbL deposition of polyelectrolyte components onto silica sols leads to formation of multilayered nano- and microcomposites. The possible mechanism of formation of LbL multilayers consisting of silica sol (SiO2 ‘cores’ and polyethyeleneimine-polyacrylic acid (PEI-PAA ‘shells’ was suggested. It was found that in diluted aqueous solution the radius of gyration, Rg and hydrodynamic radius, Rhmean of LbL particles are independent on LbL concentration and smaller than 100 nm. The zeta potential values of LbL particles are arranged between –10 and –30 mV. The average size of LbL particles estimated by scanning electron microscopy (SEM is in the range of 200–500 nm. Thermal treatment of LbL multilayers followed by etching of (SiO2 ‘core’ by HF leads to formation of a series of spherical nanocavities and blob-like microcavities.

  3. Static and ultrafast optical properties of nanolayered composites. Gold nanoparticles embedded in polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kiel, Mareike

    2012-08-16

    In the course of this thesis gold nanoparticle/polyelectrolyte multilayer structures were prepared, characterized, and investigated according to their static and ultrafast optical properties. Using the dip-coating or spin-coating layer-by-layer deposition method, gold-nanoparticle layers were embedded in a polyelectrolyte environment with high structural perfection. Typical structures exhibit four repetition units, each consisting of one gold-particle layer and ten double layers of polyelectrolyte (cationic+anionic polyelectrolyte). The structures were characterized by X-ray reflectivity measurements, which reveal Bragg peaks up to the seventh order, evidencing the high stratification of the particle layers. In the same measurements pronounced Kiessig fringes were observed, which indicate a low global roughness of the samples. Atomic force microscopy (AFM) images verified this low roughness, which results from the high smoothing capabilities of polyelectrolyte layers. This smoothing effect facilitates the fabrication of stratified nanoparticle/polyelectrolyte multilayer structures, which were nicely illustrated in a transmission electron microscopy image. The samples' optical properties were investigated by static spectroscopic measurements in the visible and UV range. The measurements revealed a frequency shift of the reflectance and of the plasmon absorption band, depending on the thickness of the polyelectrolyte layers that cover a nanoparticle layer. When the covering layer becomes thicker than the particle interaction range, the absorption spectrum becomes independent of the polymer thickness. However, the reflectance spectrum continues shifting to lower frequencies (even for large thicknesses). The range of plasmon interaction was determined to be in the order of the particle diameter for 10 nm, 20 nm, and 150 nm particles. The transient broadband complex dielectric function of a multilayer structure was determined experimentally by ultrafast pump

  4. TEMPERATURE DISTRIBUTION IN MULTILAYER METAL-CERAMIC COATINGS UNDER NONSTATIONARY THERMAL EFFECTS

    Directory of Open Access Journals (Sweden)

    Vasiliy M. Samoilenko

    2017-01-01

    Full Text Available Progress in the aircraft engine construction is determined by the increase of operation parameters of gas turbine engines, which is inevitably accompanied by an increase of operating temperatures and load for the vital elements of the turbine hot ducts. Furthermore, the requirements for reliability of the engine in general are also increasing. Achievement of these requirements is determined by the performance of the materials turbine blades are made of and is made possible by the application of high-heat Nickel alloys in combination with combined heat-shielding coatings.This article dwells on the problem of assessing the impact of non-stationary thermal effects on the temperature distribution in a multilayer heatproof coating. With the aim of assessing the working capacity of heatproof coatings we propose a method of calculating the temperature field for the blade profile and the coatingdepth, based on the solution of the basic one-dimensional differential equation of heat conduction.This method allows us to assess the performance of heatproof coating and also gives us an opportunity to choose a combination of heatproof coating layers for the specific operating conditions of a gas turbine engine’s blades.In addition, using the proposed method it is possible to evaluate the effect of non-stationary heat flux on the structure of high-temperature alloy of the engine’s turbine blades and, therefore, to evaluate the capacity with the given coating. At temperatures of 1150–1200 °C and higher in heat-resistant Nickel alloys there starts a coagulation process of the main reinforcing coherent particle phase on the basis of the intermetallic compound, long plates with wavy shapes are formed instead of the cuboids, a formation of topologically close-packed phases which are needle-like compositions happens. These processes lead to a significant deterioration of the strength characteristics of heat-resistant alloys. Making calculations according to

  5. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  6. Coarse-Grained Modeling of Polyelectrolyte Solutions

    Science.gov (United States)

    Denton, Alan R.; May, Sylvio

    2014-03-01

    Ionic mixtures, such as electrolyte and polyelectrolyte solutions, have attracted much attention recently for their rich and challenging combination of electrostatic and non-electrostatic interparticle forces and their practical importance, from battery technologies to biological systems. Hydration of ions in aqueous solutions is known to entail ion-specific effects, including variable solubility of organic molecules, as manifested in the classic Hofmeister series for salting-in and salting-out of proteins. The physical mechanism by which the solvent (water) mediates effective interactions between ions, however, is still poorly understood. Starting from a microscopic model of a polyelectrolyte solution, we apply a perturbation theory to derive a coarse-grained model of ions interacting through both long-range electrostatic and short-range solvent-induced pair potentials. Taking these effective interactions as input to molecular dynamics simulations, we calculate structural and thermodynamic properties of aqueous ionic solutions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  7. Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions.

    Science.gov (United States)

    Benjamin, O; Silcock, P; Beauchamp, J; Buettner, A; Everett, D W

    2013-09-01

    The relationship between emulsion structure and the release of volatile organic compounds (VOCs) was investigated using a model mouth system under oral conditions (tongue mastication, artificial saliva, pH and salt). The VOCs were monitored on-line by proton transfer reaction mass spectrometry (PTR-MS). Two types of emulsion system were compared: primary and multilayer oil-in-water (P-O/W, M-O/W) emulsions consisting of soy oil coated by β-lactoglobulin and pectin layers. The P-O/W emulsions showed intensive flocculation at pH 5 and above 200 mM NaCl where the electrostatic repulsive charge was at a minimum. Bridging and depletion flocculation were mostly observed for P-O/W emulsions containing artificial saliva with 1 wt% mucin. The VOC release was found to increase when the emulsion droplets flocculated, thus changing the oil volume phase distribution. The adsorbed pectin layer stabilised the emulsion structure under conditions of short-time oral processing, and hindered the release of hydrophobic VOCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K

    2012-01-01

    formulation was further subjected to lyophilization using a universal stepwise freeze drying cycle. The lyophilized formulation was found to be stable in simulated gastrointestinal fluids and at accelerated stability conditions. In vitro drug release studies revealed that layersome formulation was able...

  9. Protein diffusion in polyelectrolyte solutions

    Science.gov (United States)

    Khandai, Santripti; Jena, Sidhartha S.

    2012-06-01

    The diffusion of green fluorescent protein (GFP) in non-dilute polyelectrolyte solutions of Poly-L-lysine was studied using fluorescence recovery after photobleaching (FRAP) technique. The effect of background charges on probe diffusion of GFP was studied with varying ionic strength of the solution. With increase in polyelectrolyte concentration, increase in solution viscosity and decrease in probe diffusion coefficient was observed. At the same time, we observed the diffusion coefficient increased with increase in salt concentration, while solution viscosity decreased, indicating a competition between electrostatic force between background and probe and viscosity drag. When the probe diffusion coefficient was compared with the predicted Stokes-Einstein (S-E) relation, strong positive deviations were observed for all the solutions with highest deviation observed for solution with zero salt concentration.

  10. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    Science.gov (United States)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  11. Developing a Novel Hybrid Biogeography-Based Optimization Algorithm for Multilayer Perceptron Training under Big Data Challenge

    Directory of Open Access Journals (Sweden)

    Xun Pu

    2018-01-01

    Full Text Available A Multilayer Perceptron (MLP is a feedforward neural network model consisting of one or more hidden layers between the input and output layers. MLPs have been successfully applied to solve a wide range of problems in the fields of neuroscience, computational linguistics, and parallel distributed processing. While MLPs are highly successful in solving problems which are not linearly separable, two of the biggest challenges in their development and application are the local-minima problem and the problem of slow convergence under big data challenge. In order to tackle these problems, this study proposes a Hybrid Chaotic Biogeography-Based Optimization (HCBBO algorithm for training MLPs for big data analysis and processing. Four benchmark datasets are employed to investigate the effectiveness of HCBBO in training MLPs. The accuracy of the results and the convergence of HCBBO are compared to three well-known heuristic algorithms: (a Biogeography-Based Optimization (BBO, (b Particle Swarm Optimization (PSO, and (c Genetic Algorithms (GA. The experimental results show that training MLPs by using HCBBO is better than the other three heuristic learning approaches for big data processing.

  12. An experimental and theoretical investigation of the mechanical behavior of multilayer initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2017-04-07

    We investigate the static and dynamic behavior of a multilayer clamped-free-clamped-free (CFCF) microplate, which is made of polyimide, gold, chromium, and nickel. The microplate is slightly curved away from a stationary electrode and is electrostatically actuated. The free and forced vibrations of the microplate are examined. First, we experimentally investigate the variation of the first natural frequency under the electrostatic DC load. Then, the forced dynamic behavior is investigated by applying a harmonic AC voltage superimposed to a DC voltage. Results are shown demonstrating the transition of the dynamic response of the microplate from hardening to softening as the DC voltage is changed as well the dynamic pull-in phenomenon. For theoretical model, we adopt a dynamic analog of the von-Karman governing equations accounting for initial curvature imperfection. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the mechanical behavior of the microplate. We compare the theoretical results with experimental data and show excellent agreement among the results. We also examine the effect of the initial rise on the natural frequencies of first three symmetric-symmetric modes of the plate.

  13. Layer-by-layer coating of textile with two oppositely charged cyclodextrin polyelectrolytes for extended drug delivery.

    Science.gov (United States)

    Junthip, Jatupol; Tabary, Nicolas; Chai, Feng; Leclercq, Laurent; Maton, Mickael; Cazaux, Frederic; Neut, Christel; Paccou, Laurent; Guinet, Yannick; Staelens, Jean-Noel; Bria, Marc; Landy, David; Hédoux, Alain; Blanchemain, Nicolas; Martel, Bernard

    2016-06-01

    The coating of a nonwoven textile by polyelectrolyte multilayer film (PEM) issued from cationic and anionic β-cyclodextrin (βCD) polyelectrolytes according to the layer-by-layer (LbL) technique was successfully attempted. The tert-butyl benzoic acid (TBBA) was used as drug model to evaluate the loading capacity and sustained release properties of this PEM system. The build-up of the multilayer assembly was monitored in situ by optical waveguide lightmode spectroscopy (OWLS) on the one hand, and was assessed by gravimetry on the other hand when applied onto the textile substrate. In parallel, the complexation study of TBBA with both CD polyelectrolytes was also investigated by nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC). The influence of thermal crosslinking of the multilayered coating on its stability and on TBBA release kinetics in phosphate buffered saline (PBS) at 37°C was studied. Finally, biological and microbiological tests were performed to investigate the cytocompatibility and the intrisic antibacterial activity of multilayer assemblies. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1408-1424, 2016. © 2016 Wiley Periodicals, Inc.

  14. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.

    Science.gov (United States)

    Kantak, Chaitanya; Beyer, Sebastian; Yobas, Levent; Bansal, Tushar; Trau, Dieter

    2011-03-21

    Inspired by the game of "pinball" where rolling metal balls are guided by obstacles, here we describe a novel microfluidic technique which utilizes micropillars in a flow channel to continuously generate, encapsulate and guide Layer-by-Layer (LbL) polyelectrolyte microcapsules. Droplet-based microfluidic techniques were exploited to generate oil droplets which were smoothly guided along a row of micropillars to repeatedly travel through three parallel laminar streams consisting of two polymers and a washing solution. Devices were prototyped in PDMS and generated highly monodisperse and stable 45±2 µm sized polyelectrolyte microcapsules. A total of six layers of hydrogen bonded polyelectrolytes (3 bi-layers) were adsorbed on each droplet within design approach not only provides a faster and more efficient alternative to conventional LbL deposition techniques, but also achieves the highest number of polyelectrolyte multilayers (PEMs) reported thus far using microfluidics. Additionally, with our design, a larger number of PEMs can be deposited without adding any extra operational or interfacial complexities (e.g. syringe pumps) which are a necessity in most other designs. Based on the aforementioned advantages of our device, it may be developed into a great tool for drug encapsulation, or to create capsules for biosensing where deposition of thin nanofilms with controlled interfacial properties is highly required. This journal is © The Royal Society of Chemistry 2011

  15. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    Science.gov (United States)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  16. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  17. Stability of an unsupported multi-layer surfactant laden liquid curtain under gravity

    KAUST Repository

    Henry, D.

    2015-11-07

    The industrial process of curtain coating has long been an important method in coating applications, by which a thin liquid curtain is formed to impinge upon a moving substrate, due to its highly lucrative advantage of being able to coat multiple layers simultaneously. We investigate the linear stability of an unsupported two-layer liquid curtain, which has insoluble surfactants in both liquids, which are widely used in industry to increase the stability of the curtain. We formulate the governing equations, simplified by making a thin film approximation, from which we obtain equations describing the steady-state profiles. We then examine the response of the curtain to small perturbations about this steady state to identify conditions under which the curtain is unstable, finding the addition of surfactants stabilizes the curtain. Our results are then compared to experimental data, showing a favourable trend and thereby extending the works of Brown (J Fluid Mech 10:297–305, 1960) and Dyson et al. (J Eng Math 64:237–250, 2009).

  18. Modeling pH-Responsive Adsorption of Polyelectrolytes at Oil-Water Interfaces

    Science.gov (United States)

    Qin, Shiyi; Yong, Xin

    We use dissipative particle dynamics (DPD) to discover the interfacial adsorption of pH-responsive polyelectrolytes in oil-water binary systems under different pH values. The electrostatic interactions between charged beads and the dielectric discontinuity across the interface are modeled by exploiting a modified Particle-Particle-Particle-Mesh (PPPM) method, which uses an iterative method to solve the Poisson equation on a uniform grid. We first model the adsorption behavior of a single linear polyelectrolyte from the aqueous phase. The Henderson-Hasselbalch equation describes the relation between pH and the degree of ionization of the modeled polyelectrolytes. Through changing the degree of ionization, we explore the influence of pH on the adsorption behavior and show that the electrostatic interactions significantly modulate the adsorption. Time evolutions of the position and conformation of the polyelectrolytes and the variation in the oil-water surface tension will be measured to characterize the adsorption behavior. Furthermore, we model the pH-dependent adsorption behavior of polyelectrolytes with more complicated structures, namely, branched polyelectrolytes with hydrophobic backbones and hydrophilic side chains. We also find that the addition of salts in the medium and the lengths of the backbone and ionized side chain affect the adsorption. This research supported by the American Chemical Society Petroleum Research Fund (Award 56884-DNI9).

  19. Investigation of using Polyelectrolytes as an Interlayer on Polymer Solar Cells

    Science.gov (United States)

    Chen, Wei-Chih; Hsiao, Yung-Cheng; Huang, Yi-Chiang; Lee, Hsu-Feng; Huang, Wen-Yao

    2017-04-01

    A new approach to improve hole extraction anode interfacial layer by introducing polyelectrolytes in polymer solar cells (PSCs). The polyelectrolytes interfacial layer is prepared simply spin-coating on the ITO substrate. Remarkable improvement in the open-circuit voltage(Voc) and short-circuit current density (Jsc) of the PSCs could be achieved upon the introduction of polyelectrolytes anode interfacial layer. To study the effect of polyelectrolytes anode interfacial layer on the device efficiency. The polyelectrolytes are analyzed, exhibited good thermal stability and high transmittance over 85% in visible light region. According to our experiments and measurements, insertion of polyelectrolytes anode interfacial layer can decrease spatial barriers at the active layer/ITO interfaces, planarize the ITO substrate and modify surface of ITO.The PSCs under the optimized structure of ITO/SA8/P3HT:PCBM/LiF/Al exhibited open-circuit voltage of 0.62 V, short-circuit current density of 7.15 mA/cm2, fill factor of 54.84%, and power conversion efficiency of 2.43% at AM 1.5G of 100 mW/cm2

  20. A novel route for waste water treatment: photo-assisted Fenton degradation of dye pollutants accumulated in natural polyelectrolyte microshells.

    Science.gov (United States)

    Tao, Xia; Su, Jingmei; Chen, Jianfeng; Zhao, Jincai

    2005-09-28

    The efficient accumulation of dyes in constructed natural polyelectrolyte microshells under moderate conditions, combined with the photo-assisted Fenton reagent, opens a new route for the effective elimination of dye pollutants from waste water.

  1. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    Directory of Open Access Journals (Sweden)

    Sabine Frühbeißer

    2016-05-01

    Full Text Available Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhanced catalytic activity for the light-driven oxidation of iodide. Aggregates with the hexavalent cationic porphyrin diacids show up to 22 times higher catalytic activity than the corresponding aggregates under neutral conditions. The catalytic activity can be increased by increasing the valency of the porphyrin and by choice of the loading ratio. The structural investigation of the supramolecular catalysts took place via atomic force microscopy and small angle neutron scattering. Hence, a new facile concept for the design of efficient and tunable self-assembled photocatalysts is presented.

  2. Development of multilayered chitosan-based nanofibers for tissue engineering

    OpenAIRE

    Croisier, Florence; Aqil, Abdelhafid; Detrembleur, Christophe; Jérôme, Christine

    2009-01-01

    By combining electrospinning and layer-by-layer deposition techniques, new porous material scaffolds of multilayered, chitosan-based nanofibers were produced. Layer-by-layer (LBL) is a well-known method for surface coating, based on electrostatic interactions. It enables the controllable deposition of a variety of polyelectrolytes including synthetic and natural materials, with designable layer structure, defined layer thickness and size. Electrospinning (ESP) allows the fabrication of po...

  3. Improvement of Wear Performance of Nano-Multilayer PVD Coatings under Dry Hard End Milling Conditions Based on Their Architectural Development

    Directory of Open Access Journals (Sweden)

    Shahereen Chowdhury

    2018-02-01

    Full Text Available The TiAlCrSiYN-based family of PVD (physical vapor deposition hard coatings was specially designed for extreme conditions involving the dry ultra-performance machining of hardened tool steels. However, there is a strong potential for further advances in the wear performance of the coatings through improvements in their architecture. A few different coating architectures (monolayer, multilayer, bi-multilayer, bi-multilayer with increased number of alternating nano-layers were studied in relation to cutting-tool life. Comprehensive characterization of the structure and properties of the coatings has been performed using XRD, SEM, TEM, micro-mechanical studies and tool-life evaluation. The wear performance was then related to the ability of the coating layer to exhibit minimal surface damage under operation, which is directly associated with the various micro-mechanical characteristics (such as hardness, elastic modulus and related characteristics; nano-impact; scratch test-based characteristics. The results presented exhibited that a substantial increase in tool life as well as improvement of the mechanical properties could be achieved through the architectural development of the coatings.

  4. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2014-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic research and application issues. Functionalized conjugated polyelectrolyte materials, which have already drawn considerable interest, will become a major new direction for biomedicine development.

  5. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly.

    Science.gov (United States)

    Costa, Eunice; Lloyd, Margaret M; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T

    2012-07-03

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.

  6. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors

    KAUST Repository

    Pappa, Anna-Maria

    2017-03-06

    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  7. The anti-corrosion behavior under multi-factor impingement of Hastelloy C22 coating prepared by multilayer laser cladding

    Science.gov (United States)

    Chen, Lin; Bai, Shu-Lin

    2018-04-01

    Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.

  8. Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions

    Science.gov (United States)

    Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang

    2014-12-01

    Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.

  9. Comparative study of cytotoxicity of ferromagnetic nanoparticles and magnetitecontaining polyelectrolyte microcapsules

    Science.gov (United States)

    Minaeva, O. V.; Brodovskaya, E. P.; Pyataev, M. A.; Gerasimov, M. V.; Zharkov, M. N.; Yurlov, I. A.; Kulikov, O. A.; Kotlyarov, A. A.; Balykova, L. A.; Kokorev, A. V.; Zaborovskiy, A. V.; Pyataev, N. A.; Sukhorukov, G. B.

    2017-01-01

    The cytotoxicity of magnetite nanoparticles (MNP) stabilized with citrate acidand polyelectrolyte multilayer microcapsules containing these particles in the shell is analyzed. Microcapsules were prepared by co-precipitation of iron (II) and (III) chlorides. Polyelectrolyte microcapsules synthesized by the layer-by-layer method from biodegradable polymers polyarginine and dextran sulfate. Cytotoxicity of the synthesized objects was studied on the L929 cells culture and human leucocytes. It was also investigated the phagocytic activity of leukocytes for the MNP and magnetite containing polyelectrolyte microcapsules (MCPM). A set of tests (MTT assay, neutral red uptake assay, lactate dehydrogenase release assay) was used to study the cytotoxicity in vitro. All the tests have shown that the magnetic nanoparticles have a greater cytotoxicity in comparison with microcapsules containing an equivalent amount of magnetite. In contrast to the mouse fibroblast culture, human leukocytes were more resistant to the toxic effects of magnetite. At the concentrations used in our studies no significant reduction in the viability of leukocytes has been registered. Both MNP and MCPM undergo phagocytosis, however, the phagocytic activity of leukocytes for these particles was lower than for the standard objects (latex microparticles).

  10. Recent Progress and Perspectives in the Electrokinetic Characterization of Polyelectrolyte Films

    Directory of Open Access Journals (Sweden)

    Ralf Zimmermann

    2015-12-01

    Full Text Available The analysis of the charge, structure and molecular interactions of/within polymeric substrates defines an important analytical challenge in materials science. Accordingly, advanced electrokinetic methods and theories have been developed to investigate the charging mechanisms and structure of soft material coatings. In particular, there has been significant progress in the quantitative interpretation of streaming current and surface conductivity data of polymeric films from the application of recent theories developed for the electrohydrodynamics of diffuse soft planar interfaces. Here, we review the theory and experimental strategies to analyze the interrelations of the charge and structure of polyelectrolyte layers supported by planar carriers under electrokinetic conditions. To illustrate the options arising from these developments, we discuss experimental and simulation data for plasma-immobilized poly(acrylic acid films and for a polyelectrolyte bilayer consisting of poly(ethylene imine and poly(acrylic acid. Finally, we briefly outline potential future developments in the field of the electrokinetics of polyelectrolyte layers.

  11. Dynamic force spectroscopy of oppositely charged polyelectrolyte brushes

    NARCIS (Netherlands)

    Spruijt, E.; Cohen Stuart, M.A.; Gucht, van der J.

    2010-01-01

    Ion pairing is the main driving force in the formation of polyelectrolyte complexes, which find widespread use in micellar assemblies, drug carriers, and coatings. In this paper we examine the actual ion pairing forces in a polyelectrolyte complex between two oppositely charged polyelectrolyte

  12. Multilayered Magnetic Gelatin Membrane Scaffolds

    Science.gov (United States)

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  13. The initial growth of ultra-thin films fabricated by a weak polyelectrolyte layer-by-layer adsorption process

    Science.gov (United States)

    Fujita, Shiro; Shiratori, Seimei

    2005-09-01

    A weak polyelectrolyte layer-by-layer self-assembled multilayer has several morphologies depending on solution pH, including the morphology of poly(allylamine hydrochloride) (PAH) pH 7.5/poly(acrylic acid) (PAA) pH 3.5, which is called texture structure. We confirmed the initial growth of a weak polyelectrolyte layer-by-layer (LBL) multilayer in a stepwise adsorption process. The growth states of bilayers from 0.5 to 4.0 and over 4.5 were different when measured by quartz crystal microbalance (QCM), scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and contact angle measurements. The texture structure appeared in 1.0 bilayer, after PAA adsorption. The initial growth was changed around 4.0 bilayers. In this phenomenon, the LBL layer of PAH pH 7.5/PAA pH 3.5 had two zones at least, similar to a strong polyelectrolyte LBL layer.

  14. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles

    Science.gov (United States)

    Zhang, Peipei; Qiao, Yong; Wang, Chaoming; Ma, Liyuan; Su, Ming

    2014-08-01

    A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.

  15. Hydrodynamic size and charge of polyelectrolyte complexes.

    Science.gov (United States)

    Böhme, Ute; Scheler, Ulrich

    2007-07-26

    Polyelectrolyte complexes have a wide range of applications for surface modification and flocculation and sorption of organic molecules from solutions. As an example, complexes between poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate) have been investigated by diffusion and electrophoresis NMR. The formation of primary or soluble complexes is monitored. The hydrodynamic size is characterized by the hydrodynamic radius, calculated from the diffusion coefficient determined by pulsed field gradient NMR. In the combination with electrophoresis NMR, the effective charge of the molecules and complexes is determined. The hydrodynamic size of the primary complex is smaller than that of the pure polyelectrolyte of the larger molecular weight, in the present case poly(styrene sulfonate), in solution, since charges are compensated by the oppositely charged polyelectrolyte and hence the repelling forces diminish. The effective charge of the complexes is drastically reduced.

  16. Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes

    International Nuclear Information System (INIS)

    Kim, Yun-Ho; Lee, Soo-Hyoung; Noh, Jaegeun; Han, Sung-Hwan

    2006-01-01

    Self-assembled poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT) layers were prepared on polyelectrolytes multilayers (polyethylenimine and polyacrylic acid) on an indium-tin oxide (ITO) surface using a layer-by-layer technique. The electroluminescence efficiencies of the devices were drastically enhanced by the addition of self-assembled PEDOT layers between the spin-coated PEDOT and ITO. The ITO corrosion by the acidic PEDOT and the migration of the indium components across the interfacial layers were inhibited in the presence of the polyelectrolyte multilayers. Remarkably, the lifetime of the device was 60% longer than the one without the self-assemblies, which was attributed to the improvement in the interfacial contact

  17. Self-assembly of polyoxometalate-thionine multilayer films on magnetic microspheres as photocatalyst for methyl orange degradation under visible light irradiation.

    Science.gov (United States)

    Li, Hongfang; Gao, Shuiying; Cao, Minna; Cao, Rong

    2013-03-15

    (PW(12)-TH)(n) multilayer films (PW(12)=PW(12)O(40)(3-), TH=thionine) were deposited successfully on core-shell structured Fe(3)O(4)@SiO(2) magnetic microspheres through layer-by-layer (LbL) self-assembly method. The physical and photocatalytic properties of such magnetic microspheres coated with (PW(12)-TH)(n) films have been characterized by SEM, FTIR, and UV-vis spectra. The microspheres exhibit better photocatalytic activity toward the degradation of methyl orange (MO) under visible light irradiation than the quartz slides support. In addition, the use of magnetic support guarantees facile, clean, fast, and efficient separation of the photocatalyst after the degradation of MO. Such catalysts can be reused several times and display good reproducibility by magnetic separation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    Science.gov (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  19. The multi-layered ring under parabolic distribution of radial stresses combined with uniform internal and external pressure

    Directory of Open Access Journals (Sweden)

    Christos F. Markides

    2017-04-01

    Full Text Available A recently introduced solution for the stress- and displacement-fields, developed in a multi-layered circular ring, composed of a finite number of linearly elastic concentric layers, subjected to a parabolic distribution of ra-dial stresses, is here extended to encompass a more general loading scheme, closer to actual conditions. The loading scheme includes, besides the para¬-bolic radial stresses, a combination of uniform pressures acting along the outer- and inner- most boundaries of the layered ring. The analytic solution of the problem is achieved by adopting Savin’s pioneering approach for an infinite plate with a hole strengthened by rings. Taking advantage of the results provided by the ana¬lytic solution, a numerical model, simulating the configuration of a three-layered ring (quite commonly encountered in practic¬al applications is validated. The numerical model is then used for a parametric analysis enlightening some crucial aspects of the overall response of the ring.

  20. Examination of biogenic selenium-containing nanosystems based on polyelectrolyte complexes by atomic force, Kelvin probe force and electron microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.; Volkov, A. Ya.; Kutin, A. A. [Institute of Macromolecular Compounds RAS, 199004 Bolshoy Pr., 31, St.-Petersburg (Russian Federation); Temiryazeva, M. P.; Temiryazev, A. G. [Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) Russian Academy of Sciences, Fryazino, Moscow region, 141190 (Russian Federation)

    2016-06-17

    The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsules and outside them.

  1. Electro-responsive polyelectrolyte-coated surfaces.

    Science.gov (United States)

    Sénéchal, V; Saadaoui, H; Rodriguez-Hernandez, J; Drummond, C

    2017-07-01

    The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.

  2. Polyelectrolyte solutions: Excluded-volume considerations

    Science.gov (United States)

    Mattoussi, Hedi; Karasz, Frank E.

    1993-12-01

    We provide experimental evidence for the electrostatically related excluded-volume effects on the colligative properties and the single chain behavior of polyelectrolyte solutions in the dilute regime. The data are compared to the theory developed by Fixman, Skolnick, Odijk, and Houwaart. Good agreement between these theoretical considerations and the experimental data is observed.

  3. Aqueous dispersions of silver nanoparticles in polyelectrolyte ...

    Indian Academy of Sciences (India)

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous ...

  4. Complexation Behavior of Polyelectrolytes and Polyampholytes

    KAUST Repository

    Nair, Arun Kumar Narayanan

    2017-07-25

    We perform grand canonical Monte Carlo simulations to study the pH titrations of isolated polyampholytes and polyelectrolyte-polyampholyte complexes in dilute solutions. Our simulations indicate that the electrostatic interactions promote the coexistence of opposite charges along the polyampholyte chain during titration. The repulsion between excess charges typically dominates the electrostatic interaction and leads to polymer stretching. Salt ions can screen the repulsion between excess charges as well as the fluctuation-induced attraction between opposite charges, and therefore make the variation between titration curves of polyampholytes and the ideal (no electrostatic interactions) curves less significant. We observe that this screening of charge repulsion decreases the chain size. The presence of pearl-necklace configuration of polyampholytes is diminished by the addition of salt. Similar simulations for the polyelectrolyte-polyampholyte system show that the resulting complexes are generally stable in the low pH region. In comparison to ideal case, electrostatic interactions strongly influence the acid-base properties of polyampholyte chains in the adsorbed state by reducing the presence of the coexistence domain of both positive and negative charges in the titration curves. We attribute the complex formation between polyelectrolyte and polyampholyte chains in the high pH region to, e.g., the high salt content. The pH variation leads to abrupt transition between adsorbed and desorbed states. Independent of charge sequence, a polyampholyte chain in a complex is usually located at one of the ends of the polyelectrolyte chain.

  5. Aqueous dispersions of silver nanoparticles in polyelectrolyte ...

    Indian Academy of Sciences (India)

    anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spec- trophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to ...

  6. Ionic effects in collapse of polyelectrolyte brushes.

    Science.gov (United States)

    Jiang, Tao; Wu, Jianzhong

    2008-07-03

    We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.

  7. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    Science.gov (United States)

    Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

    2014-05-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A `destabilization state' with sharp and intense maximum aggregation was found at charges stoichiometry (isoelectric point). While on the two sides of the isoelectric point, `long-lived stable clusters state' (arrested states) were observed. Dilution and dialysis processes were based on controlled desalting kinetics according to methods developed in molecular biology. Under an external magnetic field ( B = 0.3 T), from dialysis at isoelectric point and at arrested states, cationic polyelectrolytes can `paste' these magnetic nanoparticles (NPs) together to yield irregular aggregates (size of 100 μm) and regular rod-like aggregates, respectively. These straight magnetic wires were fabricated with diameters around 200 nm and lengths comprised between 1 μm and 0.5 mm. The wires can have either positive or negative charges on their surface. After analyzing their orientational behavior under an external rotating field, we also showed that the wires made from different polyelectrolytes have the same magnetic property. The recipe used a wide range of polyelectrolytes thereby enhancing the versatility and applied potentialities of the method. This simple and general approach presents significant perspective for the fabrication of hybrid functional materials.

  8. Influence of Hydrophobicity on Polyelectrolyte Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sadman, Kazi [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wang, Qifeng [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Yaoyao [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Keshavarz, Bavand [Department; Jiang, Zhang [X-ray; Shull, Kenneth R. [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.

  9. Restructuring of polyelectrolyte thin films in the presence of nonsolvent

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2018-03-01

    Effects of nonsolvent (toluene) on two different polyelectrolyte thin films are studied by investigating their out-of-plane structures and in-plane surface morphologies. X-ray reflectivity analysis shows that the thicknesses of sodium poly(acrylic acid) (PAA) and poly(sodium 4-styrenesulfonate) (PSS) thin films increase if the films are kept for longer time inside toluene and nearly a linear relation is maintained between the film thickness and seasoning time. Surface topographies obtained from atomic force microscopy show that the surface morphologies and roughnesses change after dipping the films inside toluene as restructuring takes place on the surfaces of the films. Although toluene is nonsolvent for both PAA and PSS, however, restructuring of nanometer-thick polyelectrolyte is clearly visible and the effect is much more pronounced for thicker PAA and PSS films than the thinner one. Nonsolvent-induced structural relaxation of stressed structures developed under 2D confinement is the most probable reason for such structural and morphological modifications.

  10. In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy.

    Science.gov (United States)

    Feng, Yulin; Zhang, Kailiang; Li, Hui; Wang, Fang; Zhou, Baozeng; Fang, Mingxu; Wang, Weichao; Wei, Jun; Wong, H S Philip

    2017-06-30

    The surface potential (SP) variations in mono and multilayer molybdenum disulfide (MoS 2 ) are visualized in situ and detected using Kelvin probe force microscopy (KPFM) in different humidity conditions for the first time. N-type doping, which originates from the SiO 2 substrate, is discovered in the exfoliated MoS 2 and is accompanied by a screening length of five layers. The influence of water, which serves as an environmental gating for MoS 2 , is investigated by controlling the relative humidities (RHs) in the environmental chamber. A monotonic decrease in the SP is observed when the threshold concentration is achieved. This corresponds to the Fermi level variation, which is dominated by different processes. The results also indicate that water adsorption could result in MoS 2 p-type doping and provide compensation that partially counteracts the substrate effect. Under this condition, the interlayer screening effect is influenced because of the water dipole-induced electric field. Density functional theory calculations are performed to determine the band structure variations and the interactions between water molecules and between water molecules and the MoS 2 surface in mono and trilayer MoS 2 under different RHs. The calculations are in excellent agreement with the experimental results. We propose that in situ measurements of the SP using KPFM under different environmental regimes is a noninvasive and effective method to provide real-time visualization and detection of electronic property variations in two-dimensional materials.

  11. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    Science.gov (United States)

    Faga, Maria Giulia; Gautier, Giovanna; Cartasegna, Federico; Priarone, Paolo C.; Settineri, Luca

    2016-03-01

    Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  12. Method of making coherent multilayer crystals

    Science.gov (United States)

    Schuller, Ivan K.; Falco, Charles M.

    1984-01-01

    A new material consisting of a coherent multilayer crystal of two or more elements where each layer is composed of a single element. Each layer may vary in thickness from about 2 .ANG. to 2500 .ANG.. The multilayer crystals are prepared by sputter deposition under conditions which slow the sputtered atoms to near substrate temperatures before they contact the substrate.

  13. pH Dependence and protein selectivity of poly(ethyleneimine)/poly(acrylic acid) multilayers studied by in situ ATR-FTIR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Muller, M.; Kessler, B.; Houbenov, N.; Bohatá, Karolína; Pientka, Zbyněk; Brynda, Eduard

    2006-01-01

    Roč. 7, č. 4 (2006), s. 1285-1294 ISSN 1525-7797 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte multilayers * self-assembled monolayers * globular protein s Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.664, year: 2006

  14. In-situ ATR-FTIR and AFM studies on poly(etyhleneimine)/poly(acrylic acid) multilayers: dependence on medium parameters and protein selectivity

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Bohatá, Karolína; Kessler, B.; Ouyang, W.; Pientka, Zbyněk; Brynda, Eduard

    2007-01-01

    Roč. 96, - (2007), s. 157-158 ISSN 0743-0515. [PMSE Spring Meeting: Designed Macromolecules Assemblies for Biomedical Applications. Chicago, 25.03.2007-29.03.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : alternating polyelectrolyte multilayers * selective protein adsorption Subject RIV: CD - Macromolecular Chemistry

  15. Limiting law excess sum rule for polyelectrolytes.

    Science.gov (United States)

    Landy, Jonathan; Lee, YongJin; Jho, YongSeok

    2013-11-01

    We revisit the mean-field limiting law screening excess sum rule that holds for rodlike polyelectrolytes. We present an efficient derivation of this law that clarifies its region of applicability: The law holds in the limit of small polymer radius, measured relative to the Debye screening length. From the limiting law, we determine the individual ion excess values for single-salt electrolytes. We also consider the mean-field excess sum away from the limiting region, and we relate this quantity to the osmotic pressure of a dilute polyelectrolyte solution. Finally, we consider numerical simulations of many-body polymer-electrolyte solutions. We conclude that the limiting law often accurately describes the screening of physical charged polymers of interest, such as extended DNA.

  16. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose flocculation.

    Science.gov (United States)

    Raj, Praveena; Batchelor, Warren; Blanco, Angeles; de la Fuente, Elena; Negro, Carlos; Garnier, Gil

    2016-11-01

    long linear polymer reconformed on the MFC surface under a flat conformation. Flocculation with the linear 50% charged 13MDa CPAM happened by bridging with the minimum gel point and maximum flocculation corresponding to roughly half polyelectrolyte surface coverage on cellulose. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. AlSiTiN and AlSiCrN multilayer coatings: Effects of structure and surface composition on tribological behavior under dry and lubricated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Faga, Maria Giulia; Gautier, Giovanna [National Research Council (CNR), Imamoter, Strada delle Cacce 73, 10135, Torino (Italy); Cartasegna, Federico [Clean NT Lab, Environment Park S.p.A., Via Livorno 60, 10144, Torino (Italy); Priarone, Paolo C. [Politecnico di Torino, Department of Management and Production Engineering, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Settineri, Luca, E-mail: luca.settineri@polito.it [Politecnico di Torino, Department of Management and Production Engineering, Corso Duca degli Abruzzi 24, 10129, Torino (Italy)

    2016-03-01

    Graphical abstract: - Highlights: • The demand for high performance nanostructured coatings has been increasing. • AlSiTiN and AlSiCrN nanocomposite coatings were deposited by PVD technique. • Coatings were analyzed in terms of structure, hardness and adhesion. • Tribological properties under dry and lubricated conditions were studied. • The effects of surface and bulk properties on friction evolution were assessed. - Abstract: Nanocomposite coatings have been widely studied over the last years because of their high potential in several applications. The increased interest for these coatings prompted the authors to study the tribological properties of two nanocomposites under dry and lubricated conditions (applying typical MQL media), in order to assess the influence of the surface and bulk properties on friction evolution. To this purpose, multilayer and nanocomposite AlSiTiN and AlSiCrN coatings were deposited onto tungsten carbide-cobalt (WC-Co) samples. Uncoated WC-Co materials were used as reference. Coatings were analyzed in terms of hardness and adhesion. The structure of the samples was assessed by X-ray diffraction (XRD), while the surface composition was studied by XPS analysis. Friction tests were carried out under both dry and lubricated conditions using an inox ball as counterpart. Both coatings showed high hardness and good adhesion to the substrate. As far as the friction properties are concerned, in dry conditions the surface properties affect the sliding contact at the early beginning, while bulk structure and tribolayer formation determine the main behavior. Only AlSiTiN coating shows a low and stable coefficient of friction (COF) under dry condition, while the use of MQL media results in a rapid stabilization of the COF for all the materials.

  18. Controlled thicknesses of vaporized self-assembled multilayers on copper nanopowders under ultra-high vacuum (UHV).

    Science.gov (United States)

    Kwon, Jinhyeong; Park, Shinyoung; Kim, Young-Seok; Lee, Caroline Sunyong

    2012-02-01

    Copper nanoparticles were coated with 1-octanethiol self-assembled monolayers (SAMs) using the dry-coating method for oxidation prevention. In this study, thicknesses of 1-octanethiol SAMs were successfully controlled, and the stability of SAMs as a passivation layer on copper nanoparticles was examined. Thicknesses of 1-octanethiol SAMs varied with vacuum levels and coating cycles. Under low-vacuum conditions, the thickness was 10 nm, regardless of the coating conditions. In contrast, various thicknesses resulted under ultra-high vacuum (UHV) and ranged from 4 nm to 10 nm. SAMs that were nearly a monolayer thick (4 nm) resulted from two coating cycles of 1.5 min, and the oxidation inhibition period was 15 days. Thus, the dry-coating method successfully controlled the thicknesses of SAMs with satisfactory oxidation inhibition properties under ultra-high vacuum.

  19. Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Qiangying Yi

    2015-01-01

    Full Text Available Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride (PDADMAC and Poly(4-styrenesulfonic acid sodium salt (PSS were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA or sodium dodecyl sulfate (SDS as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass, and good thermal stability after cycles of thermal treatments.

  20. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  1. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  2. Advancements to the theory of free solution electrophoresis of polyelectrolytes

    Science.gov (United States)

    McCormick, Laurette

    Capillary electrophoresis (CE) is the workhorse of countless analytical laboratories and is used routinely in various industries including pharmaceutical, forensic and clinical applications. Basically, CE is a method for separating charged molecular species in a buffer-filled capillary by the application of an electric field; the analytes move from one end of the capillary to the detector at the other end at speeds determined by their charge, size and shape. Generally, in free solution CE uniformly charged polyelectrolytes (such as DNA) are free-draining, meaning that their speed is independent of their size. Hence, until recently, a gel or other sieving medium has been necessary for the separation of polyelectrolytes; however, modifying uniformly charged polymers on the molecular level, via conjugation to uncharged polymers, allows for separation in free solution CE. In this thesis, advancements to the theory of free solution electrophoresis of polyelectrolytes, in particular, to the theories for two new free solution electrophoresis methods relying on conjugation, are presented. The first method, called End Labelled Free Solution Electrophoresis (ELFSE), can be used to sequence DNA, a negatively charged polymer in solution. Two different means of improving the resolution of ELFSE are predicted, one based on the molecular end effect, the other based on using a controlled electro-osmotic flow. In addition, a theory for the segregation of the DNA and label coils in ELFSE is presented. The second method is called Free Solution Conjugate Electrophoresis (FSCE); it allows for characterization of a sample of neutral polymers differing in length. The relevant theory, developed herein, elucidates how to accurately determine the molar mass distribution of the sample through FSCE measurements. In addition, supporting theories are developed that clarify the correct equation for the diffusion coefficient of molecules undergoing free solution electrophoresis, as well as

  3. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  4. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  5. New polyelectrolyte complex particles as colloidal dispersions based on weak synthetic and/or natural polyelectrolytes

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available This study aims to evidence the formation of stable polyelectrolyte complex particles as colloidal dispersions using some weak polyelectrolytes: chitosan and poly(allylamine hydrochloride as polycations and poly(acrylic acid (PAA and poly(2-acrylamido-2-methylpropanesulfonic acid – co – acrylic acid (PAMPSAA as polyanions. Polyelectrolyte complex particles as colloidal dispersion were prepared by controlled mixing of the oppositely charged polymers, with a constant addition rate. The influences of the polyelectrolytes structure and the molar ratio between ionic charges on the morphology, size, and colloidal stability of the complex particles have been deeply investigated by turbidimetry, dynamic light scattering and atomic force microscopy. A strong influence of polyanion structure on the values of molar ratio n–/n+ when neutral complex particles were obtained has been noticed, which shifts from the theoretical value of 1.0, observed when PAA was used, to 0.7 for PAMPSAA based complexes. The polyions chain characteristics influenced the size and shape of the complexes, larger particles being obtained when chitosan was used, for the same polyanion, and when PAMPSAA was used, for the same polycation.

  6. Surface and permeability properties of membranes from polyelectrolyte complexes and polyelectrolyte surfactant complexes

    Czech Academy of Sciences Publication Activity Database

    Schwarz, H. H.; Lukáš, Jaromír; Richau, K.

    2003-01-01

    Roč. 218, 1-2 (2003), s. 1-9 ISSN 0376-7388 R&D Projects: GA AV ČR KSK4050111 Keywords : polyelectrolyte complex membranes * pervaporation * dehydration of organics Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.081, year: 2003

  7. SISGR - In situ characterization and modeling of formation reactions under extreme heating rates in nanostructured multilayer foils

    Energy Technology Data Exchange (ETDEWEB)

    Hufnagel, Todd C.

    2014-06-09

    Materials subjected to extreme conditions, such as very rapid heating, behave differently than materials under more ordinary conditions. In this program we examined the effect of rapid heating on solid-state chemical reactions in metallic materials. One primary goal was to develop experimental techniques capable of observing these reactions, which can occur at heating rates in excess of one million degrees Celsius per second. One approach that we used is x-ray diffraction performed using microfocused x-ray beams and very fast x-ray detectors. A second approach is the use of a pulsed electron source for dynamic transmission electron microscopy. With these techniques we were able to observe how the heating rate affects the chemical reaction, from which we were able to discern general principles about how these reactions proceed. A second thrust of this program was to develop computational tools to help us understand and predict the reactions. From atomic-scale simulations were learned about the interdiffusion between different metals at high heating rates, and about how new crystalline phases form. A second class of computational models allow us to predict the shape of the reaction front that occurs in these materials, and to connect our understanding of interdiffusion from the atomistic simulations to measurements made in the laboratory. Both the experimental and computational techniques developed in this program are expected to be broadly applicable to a wider range of scientific problems than the intermetallic solid-state reactions studied here. For example, we have already begun using the x-ray techniques to study how materials respond to mechanical deformation at very high rates.

  8. Ultrahard Multilayer Coatings

    International Nuclear Information System (INIS)

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-01-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600 ampersand deg;C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc

  9. Ultrahard Multilayer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chrzan, D.C.; Dugger, M.; Follstaedt, D.M.; Friedman, Lawrence H.; Friedmann, T.A.; Knapp, J.A.; McCarty, K.F.; Medlin, D.L.; Mirkarimi, P.B.; Missert, N.; Newcomer, P.P.; Sullivan, J.P.; Tallant, D.R.

    1999-05-01

    We have developed a new multilayer a-tC material that is thick stress-free, adherent, low friction, and with hardness and stiffness near that of diamond. The new a-tC material is deposited by J pulsed-laser deposition (PLD) at room temperature, and fully stress-relieved by a short thermal anneal at 600°C. A thick multilayer is built up by repeated deposition and annealing steps. We measured 88 GPa hardness, 1100 GPa Young's modulus, and 0.1 friction coefficient (under high load). Significantly, these results are all well within the range reported for crystalline diamond. In fact, this material, if considered separate from crystalline diamond, is the 2nd hardest material known to man. Stress-free a-tC also has important advantages over thin film diamond; namely, it is smooth, processed at lower temperature, and can be grown on a much broader range of substrates. This breakthrough will enable a host of applications that we are actively pursuing in MEMs, sensors, LIGA, etc.

  10. Polyelectrolytes-promoted Forward Osmosis Processes

    KAUST Repository

    Ge, Q.C.

    2012-11-07

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensive-energy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic.In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven ultrafiltration (UF) membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in UF recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. The magnetic nanoparticle draw solutes can generate reasonably high osmotic pressure in FO system due to the functional groups on the nanoparticles surface and they can be regenerated through magnetic field and reused as draw solutes. Thermo-responsive magnetic nanoparticles are able to be regenerated with high efficiency as the thermo-responsive property can assist the regeneration in a low-strength magnetic field.

  11. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  12. Redox and acid-base coupling in ultrathin polyelectrolyte films.

    Science.gov (United States)

    Tagliazucchi, Mario; Calvo, Ernesto J; Szleifer, Igal

    2008-03-18

    A single layer of poly(allylamine) with a covalently attached osmium pyridine-bipyridine complex adsorbed onto a Au surface modified by mercaptopropanesulfonate has been studied theoretically with a molecular approach and experimentally by cyclic voltammetry. These investigations have been carried out at different pHs and ionic strengths of the electrolyte solution in contact with the redox polyelectrolyte modified electrode. The theory predicts strong coupling between the acid-base and redox equilibria, particularly for low ionic strength, pH close to the pKa, and high concentration of redox sites. The coupling leads to a decrease in the peak potential at pH values above the apparent pKa of the weak polyelectrolyte, in good agreement with the experimental pH dependence at 4 mM NaNO3. Theoretical calculations suggest that the inflection point in the peak position versus pH curves can be used to estimate the apparent pKa of the amino groups in the polymer. Comparison of the apparent pKa for PAH-Os in the film with that of poly(allylamine) reported in the literature shows that the underlying charged thiol strongly influences charge regulation in the film. A systematic study of the film thickness and the degree of protonation in sulfonate and amino groups for solutions of different pH and ionic strength shows the coupling between the different interactions. It is found that the variation of the film properties has a non-monotonic dependence on bulk pH and salt concentration. For example, the film thickness shows a maximum with electrolyte ionic strength, whose origin is attributed to the balance between electrostatic amino-amino repulsions and amino-sulfonate attractions.

  13. Polyelectrolyte as solvent and reaction medium.

    Science.gov (United States)

    Prescher, Simon; Polzer, Frank; Yang, Yan; Siebenbürger, Miriam; Ballauff, Matthias; Yuan, Jiayin

    2014-01-08

    A poly(ionic liquid) with a rather low glass transition temperature of -57°C was synthesized via free radical polymerization of an acrylate-type ionic liquid monomer. It exhibits fluidic behavior in a wide temperature range from room temperature to the threshold of the thermal decomposition. We demonstrate that it could act as a unique type of macromolecular solvent to dissolve various compounds and polymers and separate substances. In addition, this polyelectrolyte could serve successfully as reaction medium for catalysis and colloid particle synthesis. The synergy in the solvation and stabilization properties is a striking character of this polymer to downsize the in situ generated particles.

  14. Multilayer films by blending heparin with semisynthetic cellulose sulfates: Physico-chemical characterization and cell responses.

    Science.gov (United States)

    Aggarwal, Neha; Groth, Thomas

    2014-12-01

    Here, we report fabrication of polyelectrolyte multilayers by blending a natural glycosaminoglycan (heparin) with semisynthetic cellulose sulfates as polyanions paired with polycation chitosan. Two types of polyanionic blends were prepared by mixing heparin with either cellulose sulfates (CS) of high (CS2.6) or intermediate (CS1.6) sulfation degree in equal mass ratios. Multilayer growth was monitored by surface plasmon resonance (SPR) and quartz crystal micro balance with dissipation monitoring (QCM-D) where as surface wettability was measured by water contact angle measurements (WCA). Both SPR and QCM-D showed differences in biomolecular mass adsorption and dissipation values for different multilayers and also helped in estimating the hydration levels of layers. WCA indicated arrangement of polyanion and polycation layers within the multilayer systems, weather distinct layers, or more intermingled multilayers were established. Overall physico-chemical characterization data suggested a dominating incorporation of heparin over CS in blend multilayer systems. Biological interactions of these blend multilayers investigated with C2C12 cells also indicated a leading contribution of heparin in the blend systems. This current study suggested that heparin was preferentially incorporated over CS that are highly sulfated and points towards the dominance of carboxylic groups over sulfate groups in interacting with amino groups of chitosan. © 2014 Wiley Periodicals, Inc.

  15. Modeling competitive substitution in a polyelectrolyte complex

    International Nuclear Information System (INIS)

    Peng, B.; Muthukumar, M.

    2015-01-01

    We have simulated the invasion of a polyelectrolyte complex made of a polycation chain and a polyanion chain, by another longer polyanion chain, using the coarse-grained united atom model for the chains and the Langevin dynamics methodology. Our simulations reveal many intricate details of the substitution reaction in terms of conformational changes of the chains and competition between the invading chain and the chain being displaced for the common complementary chain. We show that the invading chain is required to be sufficiently longer than the chain being displaced for effecting the substitution. Yet, having the invading chain to be longer than a certain threshold value does not reduce the substitution time much further. While most of the simulations were carried out in salt-free conditions, we show that presence of salt facilitates the substitution reaction and reduces the substitution time. Analysis of our data shows that the dominant driving force for the substitution process involving polyelectrolytes lies in the release of counterions during the substitution

  16. Quantum field theory of polyelectrolyte-counterion condensation

    Science.gov (United States)

    Dewey, T. G.

    1988-10-01

    A simple quantum theory of polyelectrolyte-counterion interactions is presented. A model Hamiltonian is employed which describes both the polyelectrolyte and the counterion as free, spinless fermions. This Hamiltonian is transformed into a form which is isomorphous with traditional Hamiltonians used to describe phase transitions. The difference between this theory and early theories of superconductivity is that the counterion-counterion interaction energies will be quite large and will persist at high temperatures. The counterion condensate is a collective mode resulting from polyelectrolyte-mediated polarizations. Colligative properties for this model are compared with the Poisson-Boltzmann theory and to Manning's condensation theory.

  17. Hollow Polyelectrolyte Microcapsules as Advanced Drug Delivery Carriers.

    Science.gov (United States)

    Yu, Wei; Chen, Ying; Mao, Zhengwei

    2016-06-01

    Polyelectrolyte microcapsules based layer-by-layer assembly method have many applications in biomedical field. This review mainly focuses on the recent development of polyelectrolyte microcapsules addressing the potential challenge regarding efficient drug delivery. Firstly, the paper describes the new design criteria of polyelectrolyte microcapsules for advanced functionality, especially stimuli-responsive capsules. Secondly, the surface decoration of capsules is discussed with respect to the requirement of improved biocompatibility and specific targeting. Thirdly, the mutual interaction between capsules and cells such as cell uptake are discussed. Finally, the applications of capsules in vitro and even in vivo are presented.

  18. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using......Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...

  19. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers

    Directory of Open Access Journals (Sweden)

    Lim CM

    2016-02-01

    Full Text Available Chaemin Lim,1,* Yu Seok Youn,2,* Kyung Soo Lee,1 Ngoc Ha Hoang,1 Taehoon Sim,1 Eun Seong Lee,3 Kyung Taek Oh1 1Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, 2Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, 3Division of Biotechnology, The Catholic University of Korea, Gyeonggi-do, South Korea *These authors contributed equally to this work Abstract: A polyelectrolyte ionomer complex (PIC composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol–poly(lactic acid–poly(ethylene imine triblock copolymer (PEG–PLA–PEI and a poly(aspartic acid (P[Asp] homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp blocks (C/A ratio. The doxorubicin (dox-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8 increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. Keywords: polyelectrolyte ionomer complex, PEG–PLA–PEI, nanomedicine, pH-sensitive, animal imaging

  20. Polyelectrolyte-Functionalized Nanofiber Mats Control the Collection and Inactivation of Escherichia coli

    Science.gov (United States)

    Rieger, Katrina A.; Porter, Michael; Schiffman, Jessica D.

    2016-01-01

    Quantifying the effect that nanofiber mat chemistry and hydrophilicity have on microorganism collection and inactivation is critical in biomedical applications. In this study, the collection and inactivation of Escherichia coli K12 was examined using cellulose nanofiber mats that were surface-functionalized using three polyelectrolytes: poly (acrylic acid) (PAA), chitosan (CS), and polydiallyldimethylammonium chloride (pDADMAC). The polyelectrolyte functionalized nanofiber mats retained the cylindrical morphology and average fiber diameter (~0.84 µm) of the underlying cellulose nanofibers. X-ray photoelectron spectroscopy (XPS) and contact angle measurements confirmed the presence of polycations or polyanions on the surface of the nanofiber mats. Both the control cellulose and pDADMAC-functionalized nanofiber mats exhibited a high collection of E. coli K12, which suggests that mat hydrophilicity may play a larger role than surface charge on cell collection. While the minimum concentration of polycations needed to inhibit E. coli K12 was 800 µg/mL for both CS and pDADMAC, once immobilized, pDADMAC-functionalized nanofiber mats exhibited a higher inactivation of E. coli K12, (~97%). Here, we demonstrate that the collection and inactivation of microorganisms by electrospun cellulose nanofiber mats can be tailored through a facile polyelectrolyte functionalization process. PMID:28773422

  1. Chitosan/alginate multilayer film for controlled release of IDM on Cu/LDPE composite intrauterine devices.

    Science.gov (United States)

    Tian, Kuan; Xie, Changsheng; Xia, Xianping

    2013-09-01

    To reduce such side effects as pain and bleeding caused by copper-containing intrauterine device (Cu-IUD), a novel medicated intrauterine device, which is coated with an indomethacin (IDM) delivery system on the surface of copper/low-density polyethylene (Cu/LDPE) composite intrauterine device, has been proposed and developed in the present work. The IDM delivery system is a polyelectrolyte multilayer film, which is composed of IDM containing chitosan and alginate layer by layer, is prepared by using self-assembled polyelectrolyte multilayer method, and the number of the layers of this IDM containing chitosan/alginate multilayer film can be tailored by controlling the cyclic repetition of the deposition process. After the IDM containing chitosan/alginate multilayer film is obtained on the surface of Cu/LDPE composite intrauterine device, its release behavior of both IDM and cupric ion has been studied in vitro. The results show that the release duration of IDM increase with the increasing of thickness of the IDM containing chitosan/alginate multilayer film, and the initial burst release of cupric ion cannot be found in this novel medicated Cu/LDPE composite IUD. These results can be applied to guide the design of novel medicated Cu-IUD with minimal side effects for the future clinical use. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Conformations and solution properties of star-branched polyelectrolytes

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Ballauff, M.; Muller, A.H.E.

    2011-01-01

    Aqueous solutions of star-like polyelectrolytes (PEs) exhibit distinctive features that originate from the topological complexity of branched macromolecules. In a salt-free solution of branched PEs, mobile counterions preferentially localize in the intramolecular volume of branched macroions.

  3. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    Science.gov (United States)

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  4. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution

    OpenAIRE

    Sabine Frühbeißer; Giacomo Mariani; Franziska Gröhn

    2016-01-01

    Developing effective and versatile photocatalytic systems is of great potential in solar energy conversion. Here we investigate the formation of supramolecular catalysts by electrostatic self-assembly in aqueous solution: Combining positively charged porphyrins with negatively charged polyelectrolytes leads to nanoscale assemblies where, next to electrostatic interactions, π–π interactions also play an important role. Porphyrin diacid-polyelectrolyte assemblies exhibit a substantially enhance...

  5. Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions.

    Science.gov (United States)

    Kobayashi, Motoyasu; Terada, Masami; Takahara, Atsushi

    2012-01-01

    Surface-initiated controlled radical copolymerizations of 2-dimethylaminoethyl methacrylate (DMAEMA), 2-(methacryloyloxy)ethyl phosphorylcholine (MPC), 2-(methacryloyloxy)ethyltrimethylammonium chloride) (MTAC), and 3-sulfopropyl methacrylate potassium salt (SPMK) were carried out on a silicon wafer and glass ball to prepare polyelectrolyte brushes with excellent water wettability. The frictional coefficient of the polymer brushes was recorded on a ball-on-plate type tribometer by linear reciprocating motion of the brush specimen at a selected velocity of 1.5 x 10(-3) m s-1 under a normal load of 0.49 N applied to the stationary glass ball (d = 10 mm) at 298 K. The poly(DMAEMA-co-MPC) brush partially cross-linked by bis(2-iodoethoxy)ethane maintained a relatively low friction coefficient around 0.13 under humid air (RH > 75%) even after 200 friction cycles. The poly(SPMK) brush revealed an extremely low friction coefficient around 0.01 even after 450 friction cycles. We supposed that the abrasion of the brush was prevented owing to the good affinity of the poly(SPMK) brush for water forming a water lubrication layer, and electrostatic repulsive interactions among the brushes bearing sulfonic acid groups. Furthermore, the poly(SPMK-co-MTAC) brush with a chemically cross-linked structure showed a stable low friction coefficient in water even after 1400 friction cycles under a normal load of 139 MPa, indicating that the cross-linking structure improved the wear resistance of the brush layer.

  6. Polyelectrolyte brushes at the air/water interface

    International Nuclear Information System (INIS)

    Matsuoka, Hideki

    2005-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water surface was investigated by in situ X-ray and neutron reflectivity. The diblock copolymers used have a long hydrophobic chain and a polyelectrolyte chain as a hydrophilic block. The monolayer was found not to have a simple double layer structure (hydrophobic layer / hydrophilic (carpet) layer) but to have a three layer structure consisting of hydrophobic layer, hydrophilic dense carpet layer, and polyelectrolyte brush layer when the polyelectrolyte block is long enough and the surface pressure (i.e. brush density) is high enough. The transition from carpet only to carpet/brush double layer structure in hydrophilic layer was observed as a function of polyelectrolyte chain length, the surface pressure. When the hydrophilic chain is a weak polyelectrolyte, the monolayer first expanded and then shrunk with increasing salt concentration in the subphase. For the strongly ionic polyelectrolyte, the monolayer structure was not affected by salt addition up to ∼0.2 M. These observations can be explained by a balance of the charged state of the brush chain, an electrostatic repulsion between brush chains and salt concentration in the brush layer

  7. Monte Carlo simulations of polyelectrolytes inside viral capsids

    Science.gov (United States)

    Angelescu, Daniel George; Bruinsma, Robijn; Linse, Per

    2006-04-01

    Structural features of polyelectrolytes as single-stranded RNA or double-stranded DNA confined inside viral capsids and the thermodynamics of the encapsidation of the polyelectrolyte into the viral capsid have been examined for various polyelectrolyte lengths by using a coarse-grained model solved by Monte Carlo simulations. The capsid was modeled as a spherical shell with embedded charges and the genome as a linear jointed chain of oppositely charged beads, and their sizes corresponded to those of a scaled-down T=3 virus. Counterions were explicitly included, but no salt was added. The encapisdated chain was found to be predominantly located at the inner capsid surface, in a disordered manner for flexible chains and in a spool-like structure for stiff chains. The distribution of the small ions was strongly dependent on the polyelectrolyte-capsid charge ratio. The encapsidation enthalpy was negative and its magnitude decreased with increasing polyelectrolyte length, whereas the encapsidation entropy displayed a maximum when the capsid and polyelectrolyte had equal absolute charge. The encapsidation process remained thermodynamically favorable for genome charges ca. 3.5 times the capsid charge. The chain stiffness had only a relatively weak effect on the thermodynamics of the encapsidation.

  8. Electrowetting of Weak Polyelectrolyte-Coated Surfaces.

    Science.gov (United States)

    Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2017-05-23

    Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.

  9. Colloid remediation in groundwater by polyelectrolyte capture

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Rao, S.; Jain, R.

    1992-01-01

    This paper describes an ongoing study to characterize groundwater colloids, to understand the geochemical factors affecting colloid transport in groundwater, and to develop an in-situ colloid remediation process. The colloids and suspended particulate matter used in this study were collected from a perched aquifer site that has radiation levels several hundred times the natural background and where previous researchers have measured and reported the presence of radiocolloids containing plutonium and americium. At this site, radionuclides have spread over several kilometers. Inorganic colloids collected from water samples are characterized with respect to concentration, mineralogy, size distribution, electrophoretic mobility (zeta potential), and radioactivity levels. Presented are the methods used to investigate the physiochemical factors affecting colloid transport and the preliminary analytical results. Included below are a description of a colloid transport model and the corresponding computational code, water analyses, characterization of the inorganic colloids, and a conceptual description of a process for in-situ colloid remediation using the phenomenon of polyelectrolyte capture

  10. Repulsive interactions between two polyelectrolyte networks

    Science.gov (United States)

    Erbas, Aykut; Olvera de La Cruz, Monica; Olvera Group Collaboration

    Surfaces formed by charged polymeric species are highly_abundant in both synthetic and biological systems, for which maintaining_an optimum contact distance and a pressure balance is paramount. We investigate interactions between surfaces of two same-charged and_highly swollen polyelectrolyte gels, using extensive molecular dynamic_simulations and minimal analytical methods. The external-pressure_responses of the gels and the polymer-free ionic solvent layer separating_two surfaces are considered. Simulations confirmed that the surfaces are_held apart by osmotic pressure resulting from excess charges diffusing out_of the network. Both the solvent layer and pressure dependence are well_described by an analytical model based on the Poisson -Boltzmann solution for low and moderate electrostatic strengths. Our results can be of great importance for systems where charged gels or gel-like structures interact in various solvents, including systems encapsulated by gels and microgels in confinement.

  11. The effect of polyelectrolyte chain length on layer-by-layer protein/polyelectrolyte assembly - an experimental study

    Czech Academy of Sciences Publication Activity Database

    Houska, Milan; Brynda, Eduard; Bohatá, Karolína

    2004-01-01

    Roč. 273, č. 1 (2004), s. 140-147 ISSN 0021-9797 R&D Projects: GA AV ČR IAA4050006; GA ČR GA203/02/1326; GA ČR GA102/03/0633 Institutional research plan: CEZ:AV0Z4050913 Keywords : layer-by-layer adsorption * protein/polyelectrolyte assemblies * effect of polyelectrolyte chain length Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.784, year: 2004

  12. Multilayer Brain Networks

    Science.gov (United States)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  13. Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe.

    Science.gov (United States)

    El Haitami, Alae E; Martel, David; Ball, Vincent; Nguyen, Hoan Cong; Gonthier, Eric; Labbé, Pierre; Voegel, Jean-Claude; Schaaf, Pierre; Senger, Bernard; Boulmedais, Fouzia

    2009-02-17

    Quartz crystal microbalance and cyclic voltammetry are used to investigate the influence of the supporting salt of polyelectrolyte solutions on the buildup and the structure of PSS/PAH polyelectrolyte multilayers (PSS: poly(4-styrene sulfonate); PAH: poly(allylamine hydrochloride)). This film constitutes a model polyelectrolyte multilayer system. The supporting electrolytes were sodium salts where the nature of the anion was changed by following the Hofmeister series from cosmotropic to chaotropic anions (F-, Cl-, NO3-, ClO4-). For all the investigated anions, the film thickness increases linearly with the number of deposition steps.Wefind that chaotropic anions lead to larger thickness increments per bilayer during the film buildup than cosmotropic ones, confirming results found on PSS/PDADMA multilayers (PDADMA:poly(diallyldimethylammonium)). Films constituted by more than nine PSS/PAH bilayers are still permeable to hexacyanoferrate(II) ions, Fe(CN)(6)4-, whatever the nature of the supporting salt anion. On the other hand, these films are impermeable to ruthenium(II) hexamine ions, Ru(NH3)(6)2+, after the third PAH layer in the presence of NaF, NaCl, or NaNO3. These results are explained by the presence of an excess of positive charges in the film, which leads to a positive Donnan potential. We find that this potential is more positive when more chaotropic anions are used during the film buildup. We also find that a film constructed in the presence of chaotropic anions swells and becomes more permeable to Fe(CN)(6)4- ions when the film is brought into contact with a solution containing more cosmotropic anions. All our experimental findings can be explained by a strong interaction between chaotropic anions with the NH3+groups of PAH that is equivalent, as far as the multilayer buildup and electrochemical response is concerned, to a deprotonation of PAH as it is observed when the film is constructed at a higher pH. We thus arrive to a coherent explanation of the

  14. Interfacial effects in multilayers

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1998-01-01

    Interfacial structure and the atomic interactions between atoms at interfaces in multilayers or nano-laminates have significant impact on the physical properties of these materials. A technique for the experimental evaluation of interfacial structure and interfacial structure effects is presented and compared to experiment. In this paper the impact of interfacial structure on the performance of x-ray, soft x-ray and extreme ultra-violet multilayer optic structures is emphasized. The paper is concluded with summary of these results and an assessment of their implications relative to multilayer development and the study of buried interfaces in solids in general

  15. Polyelectrolyte Microcapsules: Ion Distributions from a Poisson-Boltzmann Model

    Science.gov (United States)

    Tang, Qiyun; Denton, Alan R.; Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Recent experiments have shown that polystyrene-polyacrylic-acid-polystyrene (PS-PAA-PS) triblock copolymers in a solvent mixture of water and toluene can self-assemble into spherical microcapsules. Suspended in water, the microcapsules have a toluene core surrounded by an elastomer triblock shell. The longer, hydrophilic PAA blocks remain near the outer surface of the shell, becoming charged through dissociation of OH functional groups in water, while the shorter, hydrophobic PS blocks form a networked (glass or gel) structure. Within a mean-field Poisson-Boltzmann theory, we model these polyelectrolyte microcapsules as spherical charged shells, assuming different dielectric constants inside and outside the capsule. By numerically solving the nonlinear Poisson-Boltzmann equation, we calculate the radial distribution of anions and cations and the osmotic pressure within the shell as a function of salt concentration. Our predictions, which can be tested by comparison with experiments, may guide the design of microcapsules for practical applications, such as drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  16. Nanostructured complexes of polyelectrolytes and charged polypeptides

    Czech Academy of Sciences Publication Activity Database

    Müller, M.; Ouyang, W.; Bohatá, Karolína; Kessler, B.

    2010-01-01

    Roč. 12, Sp. Iss. 9 (2010), B519-B528 ISSN 1438-1656. [Sino-German Symposium on Advanced Biomedical Nanostructures /1./. Jena, 26.10.2009-30.10.2009] Institutional research plan: CEZ:AV0Z40500505 Keywords : situ ATR-FTIR * alpha-helical polypeptides * multilayer films Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.746, year: 2010

  17. Multilayer Social Networks

    DEFF Research Database (Denmark)

    Dickison, Mark; Magnani, Matteo; Rossi, Luca

    Multilayer networks, in particular multilayer social networks, where users belong to and interact on different networks at the same time, are an active research area in social network analysis, computer science, and physics. These networks have traditionally been studied within these separate...... research communities, leading to the development of several independent models and methods to deal with the same set of problems. This book unifies and consolidates existing practical and theoretical knowledge on multilayer networks including data collection and analysis, modeling, and mining of multilayer...... social network systems, the evolution of interconnected social networks, and dynamic processes such as information spreading. A single real dataset is used to illustrate the concepts presented throughout the book, demonstrating both the practical utility and the potential shortcomings of the various...

  18. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  19. Experimental studies and modeling of X-Rays multilayer mirrors damages under high X-Ray flux generated by a laser-plasma experiment; Etude experimentale et modelisation de l`endommagement des miroirs multicouches X soumis a de hauts flux de rayonnement X dans le cadre de l`experience plasma-laser

    Energy Technology Data Exchange (ETDEWEB)

    Le Guern, F

    1996-05-24

    We have been able with this work to point out characterize X-Rays multilayers mirrors damages. We have designed two experimental set-up which have been installed in the HELIOTROPE experimental chamber of the OCTAL facility located at the CEA in Limeil-Valenton. We have demonstrated that X-Rays multilayer mirrors properties were drastically modified by X-Rays emitted by a golden laser plasma. We have, more precisely, introduced the damage speed concept to quantify the expansion of the multilayer mirror period. We have been able to classify different multilayer mirrors in function of their resistance to damage and we have demonstrated that a silicate layer deposited on a mirror allowed to increase his resistance to damage. In a second part we have developed a simulation tool in order to simulate the X-Rays multilayer mirrors optical properties modifications. We have therefore coupled a thermo-mechanic code with an optical program. The results of the simulations are in a rather good agreement with the experiments and can be used to predict, before experiments, the multilayer mirror behavior under X-Rays irradiation. (author) 55 refs.

  20. The synthesis and the electric-responsiveness of hydrogels entrapping natural polyelectrolyte

    International Nuclear Information System (INIS)

    Sutani, Kouichi; Kaetsu, Isao; Uchida, Kumao

    2001-01-01

    A mixture of vinyl monomer, a natural polyelectrolyte--hyaluronic acid--and crosslinker was polymerized and crosslinked to entrap the natural polymer into the synthetic gel. The controlled release of the model drug from the obtained gel was studied under the on-off switching of electric field. It was proved that electric-responsive drug releases were possible using hyaluronic acid entrapping gel and the electro-responsiveness was greatly affected by various factors such as degree of swelling, crosslinking density, kind and composition of vinyl monomer and crosslinkers

  1. Macroion induced dehydration of weak polyelectrolyte brushes

    Science.gov (United States)

    Zheng, Zhongli; Zhu, Y. Elaine

    2014-03-01

    The interaction of macroions, including polyelectrolytes, DNAs, and proteins, with polymer and cellular surfaces is critically related to many biomolecular activities, such as protein adsorption and DNA hybridization at probe surfaces. In an experimental approach to examine the macroion electrostatic interaction with a polymer surface while minimizing the long-debated hydrophobic interaction, we study the interaction of molybdenum-based inorganic polyoxometalate (POM) nanoclusters carrying 42 negative charges as model hydrophilic macroions with surface-tethered poly-2-vinylpyridine (P2VP) brushes immersed in aqueous solutions. By AFM, QCM, and contact goniometer, we have observed the collapse of P2VP chains by adding POM macroions at a constant pH. Surprisingly, added POM macroions can cause the shift of swollen-to-collapse transition pH to a lower value, in contrast to the shift to high pH value by adding simple monovalent salts. At sufficiently high POM concentration, a stable POM-P2VP composite layer, showing little dependence on solution pH and additional salts, can be formed, suggesting a simple route to construct meso-porous polymer membranes.

  2. Electrostatic interactions in aqueous solutions of polyelectrolyte

    International Nuclear Information System (INIS)

    Belloni, Luc

    1982-01-01

    In this study, the structure, equilibrium and transport properties of poly-electrolytes solutions are reported. These dissymmetric systems are studied in the context of a primitive model (Charged hard spheres and rods in a solvent continuum). The first phenomenon studied is the strong electrostatic attractive interaction of counterions on the poly-ion surface. The model used considers the poly-ions on a matrix and the different concentrations are calculated using the P.B. equation. Auto-diffusion coefficients obtained give a good description of experimental slowing down of the counterions. The model allows a correlation between the theoretical limits represented by Bjerrum's and Manning's models and gives a physical significance to the concept of condensation. In the second part, the complete structure is calculated using only slightly restrictive H.N.C. approximation. This theory enables all the pair correlation functions to be calculated as well as thermodynamic data and structure factors. The last part of this study treats transport phenomena. Quasi-elastic light scattering gives information on the autocorrelation function of the scattered light intensity. Analysis using cumulants leads to an effective diffusion coefficient which is theoretically related to the structure factor and the hydrodynamic interactions. A crude approximation of the last contribution allows to fit the experimental data. (author) [fr

  3. Atomistic simulations of dilute polyelectrolyte solutions.

    Science.gov (United States)

    Park, Soohyung; Zhu, Xiao; Yethiraj, Arun

    2012-04-12

    The properties of short chains of poly-(styrene)-co-(styrene sulfonate) are studied using atomistic molecular dynamics simulations with explicit solvent. We study single 8-mers and 16-mers with two species of counterions, Na(+) and Mg(2+), and for various degrees of sulfonation, f. We find that single trajectories do not efficiently sample configurational space, even for fairly long 100-ns simulations, because of rotational barriers caused by nonbonded interactions. Hamiltonian replica exchange molecular dynamics (HREMD) simulations or averages over multiple trajectories are required in order to obtain equilibrium properties. A polystyrene sulfonate chain adopts collapsed conformations at low f, in which the sulfonate groups are located outside the globule and benzene rings form the inner region, and adopts extended conformations as f is increased. Interestingly, the pair correlation functions between side groups of polystyrene chains are not sensitive to f and species of counterion, i.e., the balance of electrostatic repulsion between charged groups and hydrophobic attraction between benzene rings is achieved by conformational change in a way preserving pair correlations between side groups in a polymer chain. For Na(+) counterions, no localization is observed in the simulations. For Mg(2+) counterions, there is a large free energy barrier to contact pair formation between the sulfonate groups and the Mg(2+) counterions. As a consequence we do not observe the formation or breaking of contact pairs during the course of a simulation. The simulations provide insight into the important interactions and correlations in polyelectrolyte solutions.

  4. Probing the surface microstructure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers: A grazing-incidence small-angle X-ray scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nie; Yang, Chunming, E-mail: yangchunming@sinap.ac.cn; Wang, Yuzhu; Zhao, Binyu; Bian, Fenggang; Li, Xiuhong; Wang, Jie, E-mail: wangjie@sinap.ac.cn

    2016-01-01

    This study characterized the surface structure of layer-by-layer self-assembly chitosan/poly(L-glutamic acid) multilayers through grazing-incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), and atomic force microscopy (AFM). A weakly long-period ordered structure along the in-plane direction was firstly observed in the polyelectrolyte multilayer by the GISAXS technique. This structure can be attributed to the specific domains on the film surface. In the domain, nanodroplets that were formed by polyelectrolyte molecules were orderly arranged along the free surface of the films. This ordered structure gradually disappeared with the increasing bilayer number because of the complex merging behavior of nanodroplets into large islands. Furthermore, resonant diffuse scattering became evident in the GISAXS patterns as the number of bilayers in the polyelectrolyte multilayer was increased. Notably, the lateral cutoff length of resonant diffuse scattering for these polyelectrolyte films was comparable with the long-period value of the ordered nanodroplets in the polyelectrolyte multilayer. Therefore, the nanodroplets could be considered as a basic transmission unit for structure propagation from the inner interface to the film surface. It suggests that the surface structure with length scale larger than the size of nanodroplets was partially complicated from the interface structure near the substrate, but surface structure smaller than the cutoff length was mainly depended on the conformation of nanodroplets. - Highlights: • The growth of ordered nanodroplets in PEMs was characterized by the GISAXS technique. • The basic transmission units for structure propagation within PEMs were nanodroplets. • High-performance of wave-guiding devices prepared by PEMs was predicted.

  5. Study of polyelectrolytes for Los Alamos National Laboratory. Final report

    International Nuclear Information System (INIS)

    Labonne, N.

    1994-11-01

    To assess the safety of a potential radioactive waste repository, analysis of the fluid solution containing low levels of activity need to be performed. In some cases, the radioactivity would be so weak (3--30 pCi/L) that the solution must be concentrated for measurement. For this purpose, Los Alamos National Laboratory scientists are synthesizing some water soluble polyelectrolytes, which, because they are strong complexing agents for inorganic cations, can concentrate the radioelements in solution. To assist in characterization of these polyelectrolytes, the author has performed experiments to determine physico-chemical constants, such as pKa values and stability constants. The complexation constants between both polyelectrolytes and europium were determined by two methods: solvent extraction and ion exchange. Results are presented

  6. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers

    International Nuclear Information System (INIS)

    Debelle, A.

    2006-09-01

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress (∼ 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a 0 , solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a 0 values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  7. Micropollutants removal from secondary-treated municipal wastewater using weak polyelectrolyte multilayer based nanofiltration membranes

    NARCIS (Netherlands)

    Abtahi, S. Mehran; Ilyas, Shazia; Joannis Cassan, Claire; Albasi, Claire; de Vos, Wiebe M.

    2018-01-01

    Nanofiltration (NF) is seen as a very promising technology to remove micropollutants (MPs) from wastewater. Unfortunately this process tends to produce a highly saline concentrate stream, as commercial NF membranes retain both the MPs and most of the ions. The high salinity makes subsequent

  8. CONJUGATED POLYMERS AND POLYELECTROLYTES IN SOLAR PHOTOCONVERSION, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schanze, Kirk S [University of Florida

    2014-08-05

    This DOE-supported program investigated the fundamental properties of conjugated polyelectrolytes, with emphasis placed on studies of excited state energy transport, self-assembly into conjugated polyelectroyte (CPE) based films and colloids, and exciton transport and charge injection in CPE films constructed atop wide bandgap semiconductors. In the most recent grant period we have also extended efforts to examine the properties of low-bandgap donor-acceptor conjugated polyelectrolytes that feature strong visible light absorption and the ability to adsorb to metal-oxide interfaces.

  9. Refractive index contrast in porous silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)

    2009-07-15

    Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Controlling light with plasmonic multilayers

    DEFF Research Database (Denmark)

    Orlov, Alexey A.; Zhukovsky, Sergei; Iorsh, Ivan V.

    2014-01-01

    metamaterials and describe their use for light manipulation at the nanoscale. While demonstrating the recently emphasized hallmark effect of hyperbolic dispersion, we put special emphasis to the comparison between multilayered hyperbolic metamaterials and more broadly defined plasmonic-multilayer metamaterials...

  11. Formation and Properties of Multilayer Films Based on Polyethyleneimine and Bovine Serum Albumin

    Science.gov (United States)

    Kulikouskaya, V. I.; Lazouskaya, M. E.; Kraskouski, A. N.; Agabekov, V. E.

    2018-01-01

    (Polyethyleneimine/bovine serum albumin) n ((PEI/BSA) n) multilayer films ( n = 1-10) are produced via the layer-by-later deposition of polyelectrolytes. It is shown that thickness and morphology of the formed coatings can be controlled by varying the solution's ionic strength during alternating adsorption of the components. (PEI/BSA)10 multilayer systems that contain up to 0.6 mg of antiseptic miramistin per 1 cm2 of film were created. It is established that the kinetics of miramistin release from (PEI/BSA)10 films in phosphate buffers and physiological solutions obey the Korsmeyer-Peppas equation with a high degree of accuracy ( R 2 > 0.95).

  12. Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field

    Science.gov (United States)

    Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli

    2017-08-01

    Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.

  13. Preparation of polyelectrolyte-modified membranes for heavy metal ions removal.

    Science.gov (United States)

    Mokhter, M A; Lakard, S; Magnenet, C; Euvrard, M; Lakard, B

    2017-10-01

    Polyethersulfone membranes were modified by polyelectrolyte (PE) multilayers, made of poly(allylamine hydrochloride) with poly(styrene sulfonate), to remove Cu 2+ , Zn 2+ and Ni 2+ heavy metal cations from aqueous solutions in a wide range of metal concentration (50-1200 ppm). After characterization of the modified membranes, the efficiency of the process was estimated for single heavy metal ions solution leading to high rejection rates (>90% for 50 ppm) and good adsorption capacities (7.0-8.5 mg cm -2 ) whatever the metal ion tested. The stability in time of the modified membranes was proved by repeating successive filtrations with the same membrane. The filtration process was also used with mixed solutions composed of Cu 2+ , Zn 2+ and Ni 2+ ions. The rejection rates obtained for these ternary systems were very similar to the ones obtained for the single metal solutions, showing that the filtration process is still efficient for mixed solutions and can be applied for the decontamination of complex solutions. The long-term stability of the modified membranes was also demonstrated for mixed solutions. The high efficiency of the filtration process and the good adsorption capacities of the modified membranes are due to the ability of the PEs used to complex all the metallic dications tested in this study.

  14. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  15. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  16. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  17. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko

    2014-01-01

    by polymerization via the SI-ATRP route. The cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride] and the anionic [poly(3-sulfopropyl methacrylate), poly(sodium methacrylate)] polyelectrolyte brushes were further exchanged with H(+), Li(+), Na(+), K(+), Ag(+), Ca(2+), La(3+), C16N(+), F(-), Cl(-), BF4...

  18. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms

    Science.gov (United States)

    Viovy, Jean-Louis

    2000-07-01

    The dramatic recent advances in molecular biology, which have opened a new era in medicine and biotechnology, rely on improved techniques to study large molecules. Electrophoresis is one of the most important of these. Separation of DNA by size, in particular, is at the heart of genome mapping and sequencing and is likely to play an increasing role in diagnosis. This article reviews, from the point of view of a physicist, the mechanisms responsible for electrophoretic separation of polyelectrolytes. This separation is mainly performed in gels, and a wide variety of migration mechanisms can come into play, depending on the polyelectrolyte's architecture, on the electric fields applied, and on the properties of the gel. After a brief review of the thermodynamic and electrohydrodynamic principles relating to polyelectrolyte solutions, the author treats the phenomenology of electrophoresis and describes the conceptual and theoretical tools in the field. The reptation mechanisms, by which large flexible polyelectrolytes thread their way through the pores of the gel matrix, play a prominent role. Biased reptation, the extension of this model to electrophoresis, provides a very intuitive framework within which numerous physical ideas can be introduced and discussed. It has been the most popular theory in this domain, and it remains an inspiring concept for current development. There have also been important advances in experimental techniques such as single-molecule viodeomicroscopy and the development of nongel separation media and mechanisms. These, in turn, form the basis for fast-developing and innovative technologies like capillary electrophoresis, electrophoresis on microchips, and molecular ratchets.

  19. An X-ray grazing incidence phase multilayer grating

    CERN Document Server

    Chernov, V A; Mytnichenko, S V

    2001-01-01

    An X-ray grazing incidence phase multilayer grating, representing a thin grating placed on a multilayer mirror, is proposed. A high efficiency of grating diffraction can be obtained by the possibility of changing the phase shift of the wave diffracted from the multilayer under the Bragg and total external reflection conditions. A grazing incidence phase multilayer grating consisting of Pt grating stripes on a Ni/C multilayer and optimized for the hard X-ray range was fabricated. Its diffraction properties were studied at photon energies of 7 and 8 keV. The obtained maximum value of the diffraction efficiency of the +1 grating order was 9% at 7 keV and 6.5% at 8 keV. The data obtained are in a rather good accordance with the theory.

  20. Screening in multilayer graphene

    NARCIS (Netherlands)

    van Gelderen, R.; Olsen, Richard; de Morais Smith, C.

    2013-01-01

    In this paper, we study the static polarization in ABC-stacked multilayer graphene. Since the density of states diverges for these systems if the number of layers exceeds three, screening effects are expected to be important. In the random phase approximation, screening can be included through the

  1. A refined model for characterizing x-ray multilayers

    International Nuclear Information System (INIS)

    Oren, A.L.; Henke, B.L.

    1987-12-01

    The ability to quickly and accurately characterize arbitrary multilayers is very valuable for not only can we use the characterizations to predict the reflectivity of a multilayer for any soft x-ray wavelength, we also can generalize the results to apply to other multilayers of the same type. In addition, we can use the characterizations as a means of evaluating various sputtering environments and refining sputtering techniques to obtain better multilayers. In this report we have obtained improved characterizations for sample molybdenum-silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, so the conclusions that we could draw about the structure of general multilayers is limited. Research involving many multilayers manufactured under the same sputtering conditions is clearly in order. In order to best understand multilayer structures it may be necessary to further refine our model, e.g., adopting a Gaussian form for the interface regions. With such improvements we can expect even better agreement with experimental values and continued concurrence with other characterization techniques. 18 refs., 30 figs., 7 tabs

  2. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    Science.gov (United States)

    Nejati Moshtaghin, Mahboubeh

    of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol

  3. Molecular dynamics simulation of the response of bi-disperse polyelectrolyte brushes to external electric fields

    International Nuclear Information System (INIS)

    Zhang Fen; Ding Huan-Da; Duan Chao; Tong Chao-Hui; Zhao Shuang-Liang

    2017-01-01

    Langevin dynamics simulations have been performed to investigate the response of bi-disperse and strong polyacid chains grafted on an electrode to electric fields generated by opposite surface charges on the polyelectrolyte (PE)-grafted electrode and a second parallel electrode. Simulation results clearly show that, under a negative external electric field, the longer grafted PE chains are more strongly stretched than the shorter ones in terms of the relative change in their respective brush heights. Whereas under a positive external electric field, the grafted shorter chains collapse more significantly than the longer ones. It was found that, under a positive external electric field, the magnitude of the total electric force acting on one shorter PE chain is larger than that on one longer PE chain, or vice versa. The effects of smeared and discrete charge distributions of grafted PE chains on the response of PE brushes to external electric fields were also examined. (paper)

  4. Design considerations for energy efficient, resilient, multi-layer networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Hansen, Line Pyndt; Ruepp, Sarah Renée

    2016-01-01

    This work investigates different network design considerations with respect to energy-efficiency, under green-field resilient multi-layer network deployment. The problem of energy efficient, reliable multi-layer network design is known to result in different trade-offs between key performance...... in multi-layer networks and performance measures such as network resource utilization, availability, agility to traffic fluctuations and energy consumption. A green-field network deployment scenario is considered, where different resiliency methods, design methodologies and grooming strategies are applied...

  5. A molecular-thermodynamic model for polyelectrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1998-01-01

    Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}

  6. Ultramicroelectrode studies of oxygen reduction in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    A study on the oxygen reduction reaction in a solid state electrochemical cell was presented. The oxygen reduction reaction is a rate limiting reaction in the operation of solid polymer electrolyte fuel cells which use H{sub 2} and O{sub 2}. Interest in the oxygen reduction reaction of platinum electrodes in contact with Nafion electrolytes stems from its role in fuel cell technology. The kinetics of the oxygen reduction reaction in different polyelectrolyte membranes, such as Nafion and non-Nafion membranes, were compared. The electrode kinetics and mass transport parameters of the oxygen reduction reaction in polyelectrolyte membranes were measured by ultramicroelectrode techniques. The major difference found between these two classes of membrane was the percentage of water, which is suggestive of superior electrochemical mass transport properties of the non-Nafion membranes. 2 refs. 1 fig.

  7. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    Science.gov (United States)

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  8. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  9. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  10. Exploration of polyelectrolytes as draw solutes in forward osmosis processes

    KAUST Repository

    Ge, Qingchun

    2012-03-01

    The development of the forward osmosis (FO) process has been constrained by the slow development of appropriate draw solutions. Two significant concerns related to draw solutions are the draw solute leakage and intensiveenergy requirement in recycling draw solutes after the FO process. FO would be much attractive if there is no draw solute leakage and the recycle of draw solutes is easy and economic. In this study, polyelectrolytes of a series of polyacrylic acid sodium salts (PAA-Na), were explored as draw solutes in the FO process. The characteristics of high solubility in water and flexibility in structural configuration ensure the suitability of PAA-Na as draw solutes and their relative ease in recycle through pressure-driven membrane processes. The high water flux with insignificant salt leakage in the FO process and the high salt rejection in recycle processes reveal the superiority of PAA-Na to conventional ionic salts, such as NaCl, when comparing their FO performance via the same membranes. The repeatable performance of PAA-Na after recycle indicates the absence of any aggregation problems. The overall performance demonstrates that polyelectrolytes of PAA-Na series are promising as draw solutes, and the new concept of using polyelectrolytes as draw solutes in FO processes is applicable. © 2011 Elsevier Ltd.

  11. In vitro evaluation of chondrosarcoma cells and canine chondrocytes on layer-by-layer (LbL) self-assembled multilayer nanofilms

    International Nuclear Information System (INIS)

    Shaik, J; Mohammed, J Shaikh; McShane, M J; Mills, D K

    2013-01-01

    Short-term cell–substrate interactions of two secondary chondrocyte cell lines (human chondrosarcoma cells, canine chondrocytes) with layer-by-layer self-assembled multilayer nanofilms were investigated for a better understanding of cellular-behaviour dependence on a number of nanofilm layers. Cell–substrate interactions were studied on polyelectrolyte multilayer nanofilms (PMNs) of eleven different biomaterials. Surface characterization of PMNs performed using AFM showed increasing surface roughness with increasing number of layers for most of the biomaterials. LDH-L and MTT assays were performed on chondrosarcoma cells and canine chondrocytes, respectively. A major observation was that 10-bilayer nanofilms exhibited lesser cytotoxicity towards human chondrosarcoma cells than their 5-bilayer counterparts. In the case of canine chondrocytes, BSA enhanced cell metabolic activity with increasing number of layers, underscoring the importance of the multilayer nanofilm architecture on cellular behaviour. (paper)

  12. Comparison of complex coacervate core micelles from two diblock copolymers or a single diblock copolymer with a polyelectrolyte.

    NARCIS (Netherlands)

    Hofs, P.S.; Voets, I.K.; Keizer, de A.; Cohen Stuart, M.A.

    2006-01-01

    With light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of

  13. Adsorption of dispersing polyelectrolytes: stabilization of drilling fluids; Adsorption de polyelectrolytes dispersants: stabilisation des fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Balastre, M.

    1999-11-10

    Instabilities of concentrated colloidal suspensions are a source of many industrial problems, as in drilling fluid formulations where aggregation and severe settling phenomena can occur. Low molecular weight polyelectrolyte dispersants are used to solve these problems, but their optimal use requires a better understanding of the phenomena that are involved. After materials characterization, adsorption mechanisms of two anionic polyelectrolytes (PANa, PSSNa) on a soluble substrate model, barium sulfate powder are studied. Barium sulfate is the principal additive used to adapt the density of drilling fluids. A simple model allows us to propose a distribution of the microscopic species at the interface. Presence of divalent ions induces the formation of a strong complex with the polyelectrolyte. Adsorption and electro-kinetic data are presented and exchange equilibrium are examined in relation with the surface uptake. The binding mechanism and the surface speciation of the polymer groups are deduced from the ion exchange analysis. The macroscopic behavior of suspensions on different conditions (volume fraction, ionic strength, dispersant concentration) is studied by settling and rheological measurements. The macroscopic properties are connected to structural aspects, and we show that dispersing effects are mostly related to electro-steric repulsion. The dispersion state depends on two principal factors adsorbed amounts and adsorbed layer properties, especially the excess charge, and the molecules conformation. (author)

  14. Evaluation of Adhesion Forces for the Manipulation of Micro-Objects in Submerged Environment through Deposition of pH Responsive Polyelectrolyte Layers.

    Science.gov (United States)

    Vrlinic, T; Buron, C C; Lakard, S; Husson, J; Rougeot, P; Gauthier, M; Lakard, B

    2016-01-12

    Optimization of surface treatment for reversible adhesion of micro-objects in liquid environment for the need in microassembly processes is presented. A spherical borosilicate probe and planar oxidized silicon wafer substrates were modified by deposition of pH sensitive polyelectrolyte films through layer-by-layer technique. Branched polyethylenimine (b-PEI) and poly(sodium styrenesulfonate) (PSS) were deposited in alternating manner on surfaces, and the influence of polyelectrolyte concentration, pH of deposition, and number of layers on the adhesion were successively examined. The multilayer buildup was followed by optical reflectometry (OR) and dissipative quartz crystal microbalance (QCM-D). The adhesion forces were monitored in aqueous environment at variable pH values by colloidal probe AFM microscopy. The thermodynamic work of adhesion was derived from the pull-off forces by using the Johnson-Kendall-Roberts (JKR) model and compared to the work of adhesion determined from contact angle measurements. It was found out that they correlate well, however, the values accessed from JKR model were underestimated, which was attributed mainly to the effect of surface roughness. Obtained results have demonstrated that it is possible to achieve repeatable reversible adhesion with the change of pH of submerged environment by appropriately tailoring the surface properties and therefore the prevailing surface forces.

  15. Thermoelastoplastic Deformation of a Multilayer Ball

    Science.gov (United States)

    Murashkin, E. V.; Dats, E. P.

    2017-09-01

    The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.

  16. Digital multilayer tomography

    International Nuclear Information System (INIS)

    Dueber, C.; Klose, K.J.; Thelen, M.

    1991-01-01

    With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de

  17. Adsorption of polyelectrolytes at liquid-liquid interfaces and its effect on emulsification

    NARCIS (Netherlands)

    Böhm, J.T.C.

    1974-01-01

    In this study we have investigated the adsorption behaviour of a number of synthetic polyelectrolytes at the paraffin oil-water interface and the properties of paraffin oil-in-water emulsions stabilized by these polyelectrolytes.

    Polyacrylic acid (PAA), polymethacrylic acid (PMA)

  18. Geodesign the multilayered water safety

    NARCIS (Netherlands)

    Sophronides, Panayiotis; Steenbruggen, John; Scholten, Henk J.; Giaoutzi, Maria

    2016-01-01

    This paper aims to frame the multi-layered water safety concept in the context of a systematic, thorough, multidisciplinary and collaborative methodology for complex problems solving, i.e. geodesign. Multi-layered safety is an integrated flood risk management (FRM) concept based not only on flood

  19. Compositionally Graded Multilayer Ceramic Capacitors.

    Science.gov (United States)

    Song, Hyun-Cheol; Zhou, Jie E; Maurya, Deepam; Yan, Yongke; Wang, Yu U; Priya, Shashank

    2017-09-27

    Multilayer ceramic capacitors (MLCC) are widely used in consumer electronics. Here, we provide a transformative method for achieving high dielectric response and tunability over a wide temperature range through design of compositionally graded multilayer (CGML) architecture. Compositionally graded MLCCs were found to exhibit enhanced dielectric tunability (70%) along with small dielectric losses (design of miniature filters and power converters.

  20. Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform

    Science.gov (United States)

    Chen, Liaohai

    2004-05-18

    The present invention provides a method of detecting a biological agent including contacting a sample with a sensor including a polymer system capable of having an alterable measurable property from the group of luminescence, anisotropy, redox potential and uv/vis absorption, the polymer system including an ionic conjugated polymer and an electronically inert polyelectrolyte having a biological agent recognition element bound thereto, the electronically inert polyelectrolyte adapted for undergoing a conformational structural change upon exposure to a biological agent having affinity for binding to the recognition element bound to the electronically inert polyelectrolyte, and, detecting the detectable change in the alterable measurable property. A chemical moiety being the reaction product of (i) a polyelectrolyte monomer and (ii) a biological agent recognition element-substituted polyelectrolyte monomer is also provided.

  1. Magnetic metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, Randolph Quentin [Univ. of California, Berkeley, CA (United States)

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  2. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  3. Magnetic-plasmonic multilayered nanorods

    Science.gov (United States)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near

  4. Radionuclide labelling of a synthetic heparin-like polyelectrolyte and the adsorption of it onto silicone rubber

    International Nuclear Information System (INIS)

    Kolar, Z.; Sederel, L.C.; Does, L. van der; Bantjes, A.

    1982-04-01

    This report describes attempts to prepare a radionuclide labelled polyelectrolyte tracer of adequate stability and specific activity to study the formation and stability of polyelectrolyte coatings for use as blood compatible materials in medical practice. Two kinds of polyelectrolyte were used, both prepared from polyisoprene, and three different labelling procedures were investigated. 125 I and 35 S were shown to be inadequate tracers but tritium was stably incorporated in the polyelectrolyte molecule with a labelling yield better than 90%. This tracer was then used to perform measurements pertaining to the binding and release of polyelectrolyte by a silicone rubber surface. Irradiation with gamma rays was shown to induce binding. (Auth./C.F.)

  5. Influence of annealing on nano structure of electrodeposited Co-Cu/Cu multilayers

    International Nuclear Information System (INIS)

    Zakerin, M.; Kazeminezhad, I.

    2007-01-01

    Electrodeposited Co-Cu/Cu multilayers were prepared from a bath of CuSO 4 and CoSO 4 in presence of H 3 BO 3 on polycrystalline (101) Ti substrates. Then they were annealed under vacuum condition in different temperatures. Their nano structures of the multilayers were studied using a high-angle X-ray diffractometer and their surface properties were also investigated by scanning electron microscope. The results showed a transition from multilayer to alloyed granular structure.

  6. The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory

    Science.gov (United States)

    Bakhshi Khaniki, H.; Hosseini-Hashemi, Sh.

    2017-05-01

    In this study, the dynamical behavior of mutlilayered microbeam systems with respect to a moving load/mass is investigated. The Winkler elastic foundation beam is used to model the coupling between layers and small-scale effects are modeled by modified couple stress theory. Equations of motion are achieved using Hamilton's principle and the solution process is proposed for a different number of layers. For double- and three-layered microbridge systems, an analytical solution is presented using Laplace transform and moreover, for higher-layered MMBS, a state space method is employed. A comprehensive parametric study is presented to clarify the effects of various parameters such as small-scale effect, coupling, the moving velocity, number of layers, etc. It is shown that material variation and scale effects changes the behavior of microbridge systems and have a significant effect on the dynamic deformation under a moving nanoparticle which could be used in understanding and designing more efficient nanostructures. Accordingly, with the brand new discussions on moving atoms, molecules, cells, nanocars, nanotrims, point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors.

  7. Polyelectrolyte-mediated bridging interactions: columnar macromolecular phases

    International Nuclear Information System (INIS)

    Licer, Matjaz; Podgornik, Rudolf

    2010-01-01

    We present a mean-field theory for charged polymer chains in an external electrostatic field in the weak and strong coupling limits. We apply the theory to describe the statistical mechanics of flexible polyelectrolyte chains in a hexagonal columnar lattice of stiff cylindrical macroions, such as DNA, in a bathing solution of a uni-univalent salt (e.g. NaCl). The salt effects are first described in the Debye-Hueckel framework. This yields the macroion electrostatic field in the screened Coulomb form, which we take to represent the mean field into which the chains are immersed. We introduce the Green's function for the polyelectrolyte chains and derive the corresponding Edwards equation which we solve numerically in the Wigner-Seitz cylindrical cell using the ground state dominance ansatz. The solutions indicate the presence of polyelectrolyte bridging, which results in a like-charge attraction between stiff macroions. Then we reformulate the Edwards theory for the strong coupling case and use the standard Poisson-Boltzmann picture to describe the salt solution. We begin with the free energy which we minimize to obtain the Euler-Lagrange equations. The solutions yield self-consistently determined monomer density and electrostatic fields. We furthermore calculate the free energy density as well as the total osmotic pressure in the system. We again show that bridging implicates like-charge attractions of entropic origin between stiff cylindrical macroions. By analyzing the osmotic pressure we demonstrate that, in certain parts of the parameter space, a phase transition occurs between two phases of the same hexagonal symmetry.

  8. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.

    Science.gov (United States)

    Nap, R J; Tagliazucchi, M; Szleifer, I

    2014-01-14

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  9. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers

    Science.gov (United States)

    Nap, R. J.; Tagliazucchi, M.; Szleifer, I.

    2014-01-01

    This work addresses the effect of the Born self-energy contribution in the modeling of the structural and thermodynamical properties of weak polyelectrolytes confined to planar and curved surfaces. The theoretical framework is based on a theory that explicitly includes the conformations, size, shape, and charge distribution of all molecular species and considers the acid-base equilibrium of the weak polyelectrolyte. Namely, the degree of charge in the polymers is not imposed but it is a local varying property that results from the minimization of the total free energy. Inclusion of the dielectric properties of the polyelectrolyte is important as the environment of a polymer layer is very different from that in the adjacent aqueous solution. The main effect of the Born energy contribution on the molecular organization of an end-grafted weak polyacid layer is uncharging the weak acid (or basic) groups and consequently decreasing the concentration of mobile ions within the layer. The magnitude of the effect increases with polymer density and, in the case of the average degree of charge, it is qualitatively equivalent to a small shift in the equilibrium constant for the acid-base equilibrium of the weak polyelectrolyte monomers. The degree of charge is established by the competition between electrostatic interactions, the polymer conformational entropy, the excluded volume interactions, the translational entropy of the counterions and the acid-base chemical equilibrium. Consideration of the Born energy introduces an additional energetic penalty to the presence of charged groups in the polyelectrolyte layer, whose effect is mitigated by down-regulating the amount of charge, i.e., by shifting the local-acid base equilibrium towards its uncharged state. Shifting of the local acid-base equilibrium and its effect on the properties of the polyelectrolyte layer, without considering the Born energy, have been theoretically predicted previously. Account of the Born energy leads

  10. Compartmentalized multilayer hydrogel formation using a stimulus-responsive self-assembling polysaccharide.

    Science.gov (United States)

    Xiong, Yuan; Yan, Kun; Bentley, William E; Deng, Hongbing; Du, Yumin; Payne, Gregory F; Shi, Xiao-Wen

    2014-02-26

    Polymeric systems that self-assemble through strong noncovalent bonds form structures that are highly dependent on the spatiotemporal sequence of cues that trigger self-assembly. Here, we prepared capsules with a semipermeable alginate-chitosan polyelectrolyte membrane that encapsulates a solution of the pH-responsive self-assembling aminopolysaccharide chitosan. Immersion of these capsules in a basic solution triggers gelation of the capsule contents, and the details of the gel-inducing treatment dramatically affect the final structure of the gelled compartment. Specifically, we show that the sequential transfer of the capsules between the base and water can generate multilayer hydrogel structures, with the thickness of each layer being controlled by the base concentration and immersion times. We further demonstrate that these multilayer hydrogels can serve as templates for the synthesis of iron oxide particles with a complex internal structure (i.e., with a multilayer internal structure). This work demonstrates the ability to enlist the stimulus-responsive self-assembling properties of biological polymers to create materials with complex structures.

  11. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071 (China); Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn [Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  12. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  13. Multi-layers castings

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2010-01-01

    Full Text Available In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200–450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG – Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.

  14. Evolutionary games on multilayer networks: a colloquium

    Science.gov (United States)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  15. In Situ Synthesis of Silver Nanoparticles on the Polyelectrolyte-Coated Sericin/PVA Film for Enhanced Antibacterial Application.

    Science.gov (United States)

    Cai, Rui; Tao, Gang; He, Huawei; Guo, Pengchao; Yang, Meirong; Ding, Chaoxiang; Zuo, Hua; Wang, Lingyan; Zhao, Ping; Wang, Yejing

    2017-08-18

    To develop silk sericin (SS) as a potential antibacterial biomaterial, a novel composite of polyelectrolyte multilayers (PEMs) coated sericin/poly(vinyl alcohol) (SS/PVA) film modified with silver nanoparticles (AgNPs) has been developed using a layer-by-layer assembly technique and ultraviolet-assisted AgNPs synthesis method. Ag ions were enriched by PEMs via the electrostatic attraction between Ag ions and PEMs, and then reduced to AgNPs in situ with the assistance of ultraviolet irradiation. PEMs facilitated the high-density growth of AgNPs and protected the synthesized AgNPs due to the formation of a 3D matrix, and thus endowed SS/PVA film with highly effective and durable antibacterial activity. Scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry, Fourier transfer infrared spectroscopy, water contact angle, mechanical property and thermogravimetric analysis were applied to characterize SS/PVA, PEMs-SS/PVA and AgNPs-PEMs-SS/PVA films, respectively. AgNPs-PEMs-SS/PVA film has exhibited good mechanical performance, hydrophilicity, water absorption capability as well as excellent and durable antibacterial activity against Escherichia coli , Staphylococcus aureus and Pseudomonas aeruginosa and good stability and degradability. This study has developed a simple method to design and prepare AgNPs-PEMs-SS/PVA film for potential antibacterial application.

  16. Mie Scattering by Concentric Multilayers

    Science.gov (United States)

    Smith, David D.; Fuller, Kirk A.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Mie formulation for homogeneous spheres is generalized to handle concentric multilayers in a manner that exploits an analogy with stratified planar systems, enabling these structures to be treated as photonic bandgap materials.

  17. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  18. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  19. Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes

    KAUST Repository

    Schmidt, Martina M.

    2017-12-11

    Conjugated polyelectrolytes (CPEs) are a focus of research because combine their inherent electrical conductivity and the ability to interact with ions in aqueous solutions or biological systems. However, it is still not understood to what degree the counter ion in CPEs influences the properties of the CPE itself and the performance of electronic transducers. In order to investigate this, three different conjugated polyelectrolytes, poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS−X+), are synthesized, which have the same polythiophene backbone but different X+ counter ions: the bulky tetrabutylammonium (TBA+), tetraethylammonium (TEA+), and the smallest tetramethylammonium (TMA+). At the interface with biological systems, thin CPE films have to be stable in an aqueous environment and should allow the inward and outward flow of ions from the electrolyte. Since the studied PTHS−X+ have different solubilities in water, the optical properties of pristine PTHS−X+ as well as of crosslinked PTHS−X+ via UV–vis absorption spectroscopy are investigated additionally. PTHS−TMA+ exhibits better aggregation, fast interdiffusion of ions, and fast recovery from the oxidized state. Additionally, spectroelectrochemical and cyclic voltammetric as well as electrochemical capacitance investigations show that PTHS−TMA+ can be oxidized to a higher degree. This leads to a better performance of PTHS−TMA+-based organic electrochemical transistors.

  20. Adsorption of Derivatized Dextran Polyelectrolytes onto Nanocrystalline Cellulose

    Science.gov (United States)

    Esker, Alan; Kittle, Joshua; Du, Xiaosong; Jiang, Feng; Roman, Maren; Wondraczek, Holger; Koschella, Andreas; Heinze, Thomas

    2012-02-01

    The adsorption of a series of cationically derivatized dextran polyelectrolytes onto anionic nanocrystalline cellulose (ANC) has been studied using quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). Samples of dimethylaminoethyl-dextran (DMAE-Dex), diethylaminoethyl-dextran (DEAE-Dex), and diisopropylaminoethyl-dextran (DIAE-Dex) had degrees of substitution (DS) ranging from 0.06-0.90. DMAE-Dex, DEAE-Dex, and DIAE-Dex all showed decreasing adsorption onto ANC and decreasing water content of the adsorbed film with increasing DS. Additionally, DEAE-Dex films adsorbed onto ANC had lower water contents than DMAE-Dex films with the same DS. Interestingly, QCM-D results for DIAE-Dex with high DS revealed mass loss, while SPR results clearly showed DIAE-Dex adsorbed onto ANC. These observations were consistent with dehydration of the ANC substrate. This study indicates that by controlling the DS and hydrophobic content of the polyelectrolyte, the water content of the film can be tailored.

  1. A Green Route to Conjugated Polyelectrolyte Interlayers for High-Performance Solar Cells.

    Science.gov (United States)

    Subbiah, Jegadesan; Mitchell, Valerie D; Hui, Nicholas K C; Jones, David J; Wong, Wallace W H

    2017-07-10

    Synthesis of fluorene-based conjugated polyelectrolytes was achieved via Suzuki polycondensation in water and completely open to air. The polyelectrolytes were conveniently purified by dialysis and analysis of the materials showed properties expected for fluorene-based conjugated polyelectrolytes. The materials were then employed in solar cell devices as an interlayer in conjunction with ZnO. The double interlayer led to enhanced power conversion efficiency of 10.75 % and 15.1 % for polymer and perovskite solar cells, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  3. Multiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching

    International Nuclear Information System (INIS)

    Leigh, S J; Bowen, J; Preece, J A

    2015-01-01

    The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assembly methodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the lateral size of printed features. The printed cationic polyelectrolyte regions are used as a template to direct the self-assembly of negatively charged gold nanoparticles onto the surface. Micro-scale features are created in the polyelectrolyte/nanoparticle films using AFM scratching to selectively displace material. The effect of substrate wettability on film morphology is discussed. (paper)

  4. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.

    Science.gov (United States)

    Shew, Chwen-Yang; Do, Changwoo; Hong, Kunlun; Liu, Yun; Porcar, Lionel; Smith, Gregory S; Chen, Wei-Ren

    2012-07-14

    We present small angle neutron scattering (SANS) measurements of deuterium oxide (D(2)O) solutions of linear and star sodium poly(styrene sulfonate) (NaPSS) as a function of polyelectrolyte concentration. Emphasis is on understanding the dependence of their SANS coherent scattering cross section I(Q) on the molecular architecture of single polyelectrolyte. The key finding is that for a given concentration, star polyelectrolytes exhibit more pronounced characteristic peaks in I(Q), and the position of the first peak occurs at a smaller Q compared to their linear counterparts. Based on a model of integral equation theory, we first compare the SANS experimental I(Q) of salt-free polyelectrolyte solutions with that predicted theoretically. Having seen their satisfactory qualitative agreement, the dependence of counterion association behavior on polyelectrolyte geometry and concentration is further explored. Our predictions reveal that the ionic environment of polyelectrolyte exhibits a strong dependence on polyelectrolyte geometry at lower polyelectrolyte concentration. However, when both linear and star polyelectrolytes exceed their overlap concentrations, the spatial distribution of counterion is found to be essentially insensitive to polyelectrolyte geometry due to the steric effect.

  5. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  6. Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte-nanoparticle complexation.

    Science.gov (United States)

    Kaufman, Gilad; Nejati, Siamak; Sarfati, Raphael; Boltyanskiy, Rostislav; Loewenberg, Michael; Dufresne, Eric R; Osuji, Chinedum O

    2015-10-14

    Composite microcapsules have been aggressively pursued as designed chemical entities for biomedical and other applications. Common preparations rely on multi-step, time consuming processes. Here, we present a single-step approach to fabricate such microcapsules with shells composed of nanoparticle-polyelectrolyte and protein-polyelectrolyte complexes, and demonstrate control of the mechanical and release properties of these constructs. Interfacial polyelectrolyte-nanoparticle and polyelectrolyte-protein complexation across a water-oil droplet interface results in the formation of capsules with shell thicknesses of a few μm. Silica shell microcapsules exhibited a significant plastic response at small deformations, whereas lysozyme incorporated shells displayed a more elastic response. We exploit the plasticity of nanoparticle incorporated shells to produce microcapsules with high aspect ratio protrusions by micropipette aspiration.

  7. Physicochemical properties of biopolymer-based polyelectrolyte complexes with controlled pH/thermo-responsiveness

    NARCIS (Netherlands)

    Glampedaki, P.; Petzold, G.; Dutschk, Victoria; Miller, R.; Warmoeskerken, Marinus

    2012-01-01

    Polyelectrolyte complexes comprise a significant category of physically crosslinked polymer networks. This study investigates a novel combination between negatively charged pH/thermo-responsive microparticles of poly(N-isopropylacrylamide-co-acrylic acid) (PNIAA) and positively charged chitosan

  8. STUDY OF THE DIGESTED SLUDGE DEWATERING EFFECTIVENESS USING POLYELECTROLYTE GEL BASED ON ORGANIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Marcin Głodniok

    2016-02-01

    Full Text Available The paper addresses the problems connected with sewage sludge dewatering. The premise of the study was the analysis of whether there are opportunities to increase the efficiency of dewatering sludge, a relatively low-cost involving the use of innovative polymers. The authors analyzed the impact of the new type of polyelectrolyte gel on the effectiveness of dewatering sludge. Laboratory studies were carried out at polyelectrolyte dose selection and laboratory testing on the press chamber designed to simulate the actual operation of sludge dewatering system. Two different doses of polyelectrolyte were tested for dose I – 4 ml/m3 and dose II – 8 ml/m3. The conducted analysis on laboratory press showed an increase of sludge dewatering efficiency by about 2% for dose no. I and by about 13% for dose no. II, in comparison to the test without polyelectrolyte.

  9. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    Science.gov (United States)

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein-polyelectrolyte

  10. Changes in the Activity and Structure of Urease in the Interaction with Polyelectrolytes

    Science.gov (United States)

    Saburova, E. A.; Tikhonenko, S. A.; Dybovskaya, Yu. N.; Sukhorukov, B. I.

    2008-03-01

    The influence of polyelectrolytes on the structural and catalytic characteristics of urease ( Canavalia ensiformis) was studied by the methods of steady-state kinetics, fluorescence spectroscopy, and circular dichroism. It was shown that, of the four polyelectrolytes studied, two of which were negatively charged (polystyrene sulfonate and dextran sulfate) and two were positively charged (polyallylamine (PAA) and polydiallyl dimethylammonium chloride), only PAA was a potent urease inhibitor: 0.5 μg/ml of PAA provided a 50% degree of inhibition for enzyme at neutral pH. It was found that polyelectrolyte did not inhibit urease in the presence of micromolar concentrations of ammonium chloride. Based on the experimental data and the calculated structure of urease from Canavalia ensiformis and on the identity with the amino acid sequence of urease from Bacillus pasteurii, the mechanism of urease inactivation by the PAA polyelectrolyte is discussed. This mechanism does not resemble the inhibiting action of polyelectrolytes on the previously studied oligomeric proteins—lactate dehydrogenase, glutamate dehydrogenase, and hemoglobin. It is proposed that the specific cation-binding sites determining the structural dynamics of the enzyme-polyelectrolyte complex play the regulating role in the urease molecule.

  11. Environmentally friendly cellulose-based polyelectrolytes in wastewater treatment.

    Science.gov (United States)

    Grenda, Kinga; Arnold, Julien; Gamelas, José A F; Rasteiro, Maria G

    2017-09-01

    Natural-based polyelectrolytes (PELs), with all the advantages coming from being produced from renewable and biodegradable sources, are a potential solution for the removal of dyes from wastewater. In this work, surplus Eucalyptus bleached cellulose fibres from a paper mill were modified to increase the charge and solubility of cellulose. First, reactive aldehyde groups were introduced in the cellulose backbone by periodate oxidation of cellulose. Further modification with alkylammonium produced positively charged cellulose-based PELs. The final products were characterized by several analytical techniques. The PEL with the highest substitution degree of cationic groups was evaluated for its performance in decolouration processes, bentonite being used as aid. This was found to be effective for colour removal of either anionic or cationic dyes. Bio-PELs can thus be considered as very favourable eco-friendly flocculation agents for decolouration of harsh effluents from several industries, considering their biodegradable nature and thus the ability to produce less sludge.

  12. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  13. Multi-layered water resources, management, and uses under the impacts of global changes in a southern coastal metropolis: When will it be already too late? Crossed analysis in Recife, NE Brazil.

    Science.gov (United States)

    Petelet-Giraud, Emmanuelle; Cary, Lise; Cary, Paul; Bertrand, Guillaume; Giglio-Jacquemot, Armelle; Hirata, Ricardo; Aquilina, Luc; Alves, Lincoln Muniz; Martins, Veridiana; Melo, Ana Maria; Montenegro, Suzana; Chatton, Eliot; Franzen, Melissa; Aurouet, Axel

    2018-03-15

    Coastal water resources are a worldwide key socio-environmental issue considering the increasing concentration of population in these areas. Here, we propose an integrative transdisciplinary approach of water resource, water management and water access in Recife (NE Brazil). The present-day water situation is conceptualized as an imbricated multi-layered system: a multi-layered water resource, managed by a multi-layered governance system and used by a multi-layered social population. This allows identifying processes of quantitative, qualitative, and sanitary conflicts between governance and population strategies regarding water supply, as well as the institutional and individual denials of these conflicts. Based on this model, we anticipate future water-related problematic fates. Concerning the water resource system, the rapid groundwater level decrease due to unsustainable water predatory strategies, and the very low recharge rate have drastically modified the aquifer system functioning, inducing hydraulic connection between shallow groundwater (contaminated and locally salty) and deep ones (mostly fresh, with local inherited salinity), threatening the deep strategic water resource. Concerning the water governance system, the investments to increase the capacity storage of surface water, the water regulation agencies and the public/private partnership should shortly improve the water supply and wastewater issue. Nevertheless, the water situation will remain highly fragile due to the expected water demand increase, the precipitation decrease and the sea-level increase. Concerning the water access system, the population variably perceives these current and further effects and the possible mitigation policies, and develops alternative individual strategies. Authorities, policymakers and water managers will have to implement a well-balanced water governance, taking into account the specificities of the PPP, public and private groundwater users, and with a strong

  14. Research on the Multilayer Free Damping Structure Design

    Directory of Open Access Journals (Sweden)

    Jie Meng

    2018-01-01

    Full Text Available The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specific damping structures, the mathematical model is verified through ABAQUS. With the given structural loss factor (η≥2 and the layer number (n=3,4,5,6, 34 kinds of multilayer free damping structures are then presented. The study is meant to provide a more flexible and more diverse design solution for multilayer free damping structures.

  15. Transfer matrices for multilayer structures

    International Nuclear Information System (INIS)

    Baquero, R.

    1988-08-01

    We consider four of the transfer matrices defined to deal with multilayer structures. We deduce algorithms to calculate them numerically, in a simple and neat way. We illustrate their application to semi-infinite systems using SGFM formulae. These algorithms are of fast convergence and allow a calculation of bulk-, surface- and inner-layers band structure in good agreement with much more sophisticated calculations. Supermatrices, interfaces and multilayer structures can be calculated in this way with a small computational effort. (author). 10 refs

  16. Lab-on-fiber optofluidic platform for in situ monitoring of drug release from therapeutic eluting polyelectrolyte multilayers

    Czech Academy of Sciences Publication Activity Database

    Tian, F.; Min, J.; Kaňka, Jiří; Li, X.; Hammond, P. T.; Du, H.

    2015-01-01

    Roč. 23, č. 15 (2015), s. 20132-20142 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : long-period grating * drug release * thin film Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.148, year: 2015

  17. Layer-by-layer assembled multilayers and polymeric nanoparticles for drug delivery in tissue engineering applications

    Science.gov (United States)

    Mehrotra, Sumit

    Tissues and organs in vivo are structured in three dimensional (3-D) ordered assemblies to maintain their metabolic functions. In the case of an injury, certain tissues lack the regenerative abilities without an external supportive environment. In order to regenerate the natural in vivo environment post-injury, there is a need to design three-dimensional (3-D) tissue engineered constructs of appropriate dimensions along with strategies that can deliver growth factors or drugs at a controlled rate from such constructs. This thesis focuses on the applications of hydrogen bonded (H-bonded) nanoscale layer-by-layer (LbL) assembled multilayers for time controlled drug delivery, fabrication of polymeric nanoparticles as drug delivery carriers, and engineering 3-D cellular constructs. Axonal regeneration in the central nervous system after spinal cord injury is often disorganized and random. To support linear axonal growth into spinal cord lesion sites, certain growth factors, such as brain-derived neurotrophic factor (BDNF), needs to be delivered at a controlled rate from an array of uniaxial channels patterned in a scaffold. In this study, we demonstrate for the first time that H-bonded LbL assembled degradable thin films prepared over agarose hydrogel, whereby the protein was loaded separately from the agarose fabrication, provided sustained release of protein under physiological conditions for more than four weeks. Further, patterned agarose scaffolds implanted at the site of a spinal cord injury forms a reactive cell layer of leptomeningeal fibroblasts in and around the scaffold. This limits the ability of axons to reinnervate the spinal cord. To address this challenge, we demonstrate the time controlled release of an anti-mitotic agent from agarose hydrdgel to control the growth of the reactive cell layer of fibroblasts. Challenges in tissue engineering can also be addressed using gene therapy approaches. Certain growth factors in the body are known to inhibit

  18. Flexoelectric sensing using a multilayered barium strontium titanate structure

    International Nuclear Information System (INIS)

    Kwon, S R; Huang, W B; Yuan, F G; Jiang, X N; Zhang, S J

    2013-01-01

    The flexoelectric effect has been recently explored for its promise in electromechanical sensing. However, the relatively low flexoelectric coefficients of ferroelectrics inhibit the potential to develop flexoelectric sensing devices. In this paper, a multilayered structure using flexoelectric barium strontium titanate (Ba 0.65 Sr 0.35 TiO 3 or BST) ceramic was fabricated in an attempt to enhance the effective flexoelectric coefficients using its inherent scale effect, and hence to improve the flexoelectric sensitivity. The performances of piezoelectric and flexoelectric cantilevers with the same dimensions and under the same conditions were compared. Owing to the flexoelectric scaling effect, under the same force input, the BST flexoelectric structure generated a higher charge output than its piezoelectric P(VDF-TrFE) and PMN-30PT counterparts when its thickness was less than 73.1 μm and 1.43 μm, respectively. Also, amplification of the charge output using the multilayered structure was then experimentally verified. The prototyped structure consisted of three layers of 350 μm-thick BST plates with a parallel electric connection. The charge output was approximately 287% of that obtained using a single-layer structure with the same total thickness of the multilayered structure under the same end deflection input, which suggests high sensitivity sensing can be achieved using multilayer flexoelectric structures. (paper)

  19. Multi-Layer Traffic Steering

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Gimenez, Lucas Chavarria

    2013-01-01

    This paper investigates the potentials of traffic steering in the Radio Resource Control (RRC) Idle state by evaluating the Absolute Priorities (AP) framework in a multilayer Long Term Evolution (LTE) macrocell scenario. Frequency priorities are broadcast on the system information and RRC Idle...

  20. Multilayer Controller for Outdoor Vehicle

    DEFF Research Database (Denmark)

    Reske-Nielsen, Anders; Mejnertsen, Asbjørn; Andersen, Nils Axel

    2006-01-01

    A full software and hardware solution has been designed, implemented and tested for control of a small agricultural automatic tractor. The objective was to realise a user-friendly, multi-layer controller architecture for an outdoor platform. The collaborative research work was done as a part of a...... of a research project within the field of automated agriculture and precision farming....

  1. New developments in Ni/Ti multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.; Hoghoj, P. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    It is now 20 years since super-mirrors were first used as a neutron optical element. Since then the field of multilayer neutron-optics has matured with multilayers finding their way to application in many neutron scattering instruments. However, there is still room for progress in terms of multilayer quality, performance and application. Along with work on multilayers for neutron polarisation Ni/Ti super-mirrors have been optimised. The state-of-the-art Ni/Ti super-mirror performance and the results obtained in two neutron-optics applications of Ni/Ti multilayers are presented. (author).

  2. Transmission enhancement in loss-gain multilayers by resonant suppression of reflection

    DEFF Research Database (Denmark)

    Novitsky, Denis V.; Tuz, Vladimir R.; Prosvirnin, Sergey L.

    2017-01-01

    of enhanced transmission with suppressed reflection originating from the resonant properties of the multilayers. For obliquely incident and evanescent waves, such enhanced transmission under suppressed reflection turns into the reflectionless regime, which is similar to that observed in the PT...

  3. Multilayered nanoclusters of platinum and gold: insights on electrodeposition pathways, electrocatalysis, surface and bulk compositional properties

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2013-06-01

    Full Text Available Electrochemical, surface and bulk compositional properties of multilayered nanoclusters of Pt and Au, electrochemically deposited on glassy carbon under conditions involving sequential surface–limited redox–replacement reactions (performed at open...

  4. Poly-electrolytes for fuel cells: tools and methods for characterization; Polyelectrolytes pour piles a combustible: outils et methodes de caracterisation

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M.

    2004-12-15

    The research works reported in the manuscript are a contribution to the study of poly-electrolytes for Proton Exchange Membrane Fuel Cells (PEMFC). They are supported by two investigation tools, i.e. the study of model molecules and accurate conductivity measurements. With regard to the material science domain, the optimization of poly-sulfone sulfonation procedure allows chain breaking to be reduced and even eliminated while obtaining reproducible sulfonation degrees. It is thus possible to improve the mechanical properties of the dense membrane elaborated with these poly-electrolytes before performing the tests on the MEA (Membrane Electrode Assembly). In parallel, the functionalization of microporous silicon made it possible to prepare poly-electrolytes reinforced by the mechanical strength of the silicon separator. With regard to the physicochemical and electrochemical characterizations, the model molecules, with the same functions and groups than for associated polymers, make it possible to amplify the electrochemical or thermal phenomena vs. the corresponding polymers. Thus, they simulate an accelerated ageing of the poly-electrolytes. The development of a new conductivity measurement set allows conductivity to be obtained with a great accuracy, in a wide range of temperature and relative humidity. (author)

  5. Bilayer-structured nanocomposite of Ag and crosslinked polyelectrolyte for the detection of humidity

    International Nuclear Information System (INIS)

    Li, Yang; Wu, Taotao; Yang, Mujie

    2015-01-01

    Nanocomposites of quaternized and crosslinked poly(4-vinylpyridine) (QC-P4VP) and silver nanoparticles were prepared by a two-step procedure, and characterized by Fourier-transform infrared spectroscopy, Ultraviolet–visible spectroscopy and scanning electron microscopy. Bilayer-structured humidity sensors based on the nanocomposites were fabricated, and the effects of the concentration of silver salt precursor and poly(4-vinylpyridine), the method for the reduction of silver salt, the deposition order of the sensitive layers and environmental temperature on the humidity sensing characteristics of the composite sensor have been examined at room temperature. The composite sensor exhibited low impedance under dry atmosphere due to the introduction of Ag nanoparticles, and could detect very low relative humidity (RH) (down to 1% RH) with good sensitivity (impedance change of 2000% from 1% to 30% RH). In addition, the composite sensor demonstrated very wide measuring range (1–98% RH), and revealed faster response and smaller hysteresis than the sensor based on QC-P4VP alone. The complex impedance spectra of the composite sensor in the environments with different RH levels were investigated to explore its humidity sensing mechanism. - Highlights: • Bilayer-structured nanocomposite of Ag and polyelectrolyte are facilely prepared. • Nanocomposite could measure humidity as low as 1% RH and show small hysteresis. • Nanocomposite is capable of detecting full-range humidity with high sensitivity

  6. EUV multilayer mirror, optical system including a multilayer mirror and method of manufacturing a multilayer mirror

    NARCIS (Netherlands)

    Huang, Qiushi; Louis, Eric; Bijkerk, Frederik; de Boer, Meint J.; von Blanckenhagen, G.

    2016-01-01

    A multilayer mirror (M) reflecting extreme ultraviolet (EUV) radiation from a first wave-length range in a EUV spectral region comprises a substrate (SUB) and a stack of layers (SL) on the substrate, the stack of layers comprising layers comprising a low index material and a high index material, the

  7. Dry etching technologies for reflective multilayer

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  8. Nanostructure of polymer monolayer and polyelectrolyte brush at air/water interface by X-ray and neutron reflectometry

    CERN Document Server

    Matsuoka, H; Matsumoto, K

    2003-01-01

    The nanostructure of amphiphilic diblock copolymer monolayer on water was directly investigated by in situ X-ray and neutron reflectivity techniques. The diblock copolymer consists of polysilacyclobutane, which is very flexible, as a hydrophobic block and polymethacrylic acid, an anionic polymer, as a hydrophilic block. The polymers with shorter hydrophilic segment formed a very smooth and uniform monolayer with hydrophobic layer on water and dense hydrophilic layer under the water. But the longer hydrophilic segment polymer formed three-layered monolayer with polyelectrolyte brush in addition to hydrophobic and dense hydrophilic layers. The dense hydrophilic layer is thought to be formed to avoid a contact between hydrophobic polymer layer and water. Its role is something like a 'carpet'. An additional interesting information is that the thickness of the 'carpet layer' is almost 15A, independent the surface pressure and hydrophilic polymer length. Highly quantitative information was obtained about the nanost...

  9. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zielińska, Katarzyna, E-mail: kzielinska@gmail.com; Leeuwen, Herman P. van

    2014-09-24

    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex.

  10. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    International Nuclear Information System (INIS)

    Zielińska, Katarzyna; Leeuwen, Herman P. van

    2014-01-01

    Highlights: • For the first time SPME fiber is coated with polyelectrolyte layer. • Sorption of nanoparticles on the solid phase surface is prevented. • Polyelectrolyte-modified fiber enables extraction of free analyte in presence of sorbing nanoparticles. - Abstract: In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of poly(diallyldimethylammonium chloride), and poly(sodium 4-styrenesulfonate). The modified fiber provides reproducible, convenient and fast extraction capabilities toward the model analyte, triclosan (TCS). A negatively charged polyelectrolyte coating prevents sorbing oxidic nanoparticles from both partitioning into the PDMS phase and aggregation at its surface. The results for the TCS/nanoparticle sample show that the polyelectrolyte layer-modified solid phase extracts just the free form of the organic compound and enables dynamic speciation analysis of the nanoparticulate target analyte complex

  11. Breast Cancer/Stromal Cells Coculture on Polyelectrolyte Films Emulates Tumor Stages and miRNA Profiles of Clinical Samples.

    Science.gov (United States)

    Daverey, Amita; Brown, Karleen M; Kidambi, Srivatsan

    2015-09-15

    In this study, we demonstrate a method for controlling breast cancer cells adhesion on polyelectrolyte multilayer (PEM) films without the aid of adhesive proteins/ligands to study the role of tumor and stromal cell interaction on cancer biology. Numerous studies have explored engineering coculture of tumor and stromal cells predominantly using transwell coculture of stromal cells cultured onto coverslips that were subsequently added to tumor cell cultures. However, these systems imposed an artificial boundary that precluded cell-cell interactions. To our knowledge, this is the first demonstration of patterned coculture of tumor cells and stromal cells that captures the temporal changes in the miRNA signature as the breast tumor develops through various stages. In our study we used synthetic polymers, namely poly(diallyldimethylammonium chloride) (PDAC) and sulfonated poly(styrene) (SPS), as the polycation and polyanion, respectively, to build PEMs. Breast cancer cells attached and spread preferentially on SPS surfaces while stromal cells attached to both SPS and PDAC surfaces. SPS patterns were formed on PEM surfaces, by either capillary force lithography (CFL) of SPS onto PDAC surfaces or vice versa, to obtain patterns of breast cancer cells and patterned cocultures of breast cancer and stromal cells. In this study, we utilized cancer cells derived from two different tumor stages and two different stromal cells to effectively model a heterogeneous tumor microenvironment and emulate various tumor stages. The coculture model mimics the proliferative index (Ki67 expression) and tumor aggressiveness (HER-2 expression) akin to those observed in clinical tumor samples. We also demonstrated that our patterned coculture model captures the temporal changes in the miRNA-21 and miRNA-34 signature as the breast tumor develops through various stages. The engineered coculture platform lays groundwork toward precision medicine wherein patient-derived tumor cells can be

  12. Dichroic ATR-FTIR spectroscopy on oriented α-helical poly( L-lysine) multilayered with polyanions

    Science.gov (United States)

    Müller, M.; Ouyang, W.; Keßler, B.

    2010-11-01

    The preparation and spectroscopic and microscopic characterization of oriented polyelectrolyte multilayers (PEM) interesting for defined nanostructured functional materials and surfaces are reviewed. Oriented PEM were generated by consecutively adsorbing α-helical poly( L-lysine) (PLL) and oppositely charged polyanions like poly(vinylsulfate) (PVS) or poly(styrene sulfonate) (PSS) at silicon substrates texturized by parallel nanoscopic surface grooves, respectively. Dichroic Attenuated Total Reflexion Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to study the conformation and macromolecular order of stiff polyelectrolytes within PEM. High order parameters up to S = 0.82 ( S = 1 for high, S = 0 for low order) were obtained from the dichroic ratios of the Amide I and Amide II bands suggesting a significant alignment of charged α-helical polypeptides in PEM. For PEM consisting of PLL/polyanion the S values significantly increased with increasing molecular weight of PLL and with decreasing molecular weight of the polyanion. These spectroscopic findings were supported by SFM images on PEM-PLL/PVS with high molecular PLL and PEM-PLL/PSS with low molecular PSS, which both showed anisotropically oriented worm-like structures, while PEM-PLL/PVS with low molecular PLL and PEM-PLL/PSS with high molecular PSS showed no orientation features.

  13. Controlling the swelling and wettability of weak polyelectrolyte brushes

    Science.gov (United States)

    Gurtowski, Richard; Jing, Benxin; Zhu, Elaine

    2011-03-01

    Weak polyelectrolytes (PE) of tunable ionization shows great potential as ``smart'' polymer materials for diverse applications from drug delivery to energy storage. However, the conformational dynamics of surfaced-tethered weak PE chains remain inadequately understood due to the complexity of their dynamic charge states in response to solvation and surface immobilization conditions. In this work, we investigate the wetting and swelling characteristics of poly(2-vinyl pyridine) (P2VP) brushes grafted to a gold substrate by AFM and water contact angle measurements. We observe the collapse of P2VP brushes, accompanied with increased surface hydrophobicity, as increasing solution pH across a critical transition pH, which is considerably lower than the pKa of free P2VP chains in bulk solution. Surprisingly, the broadness of the transition pH range shows a strong dependence with brush thickness, but not grafting density, suggesting a distribution of chain ionization along grafted P2VP brushes. We further manipulate P2VP brush structures by applying ac-electric fields across the brushes to make tunable and switchable polymer surfaces.

  14. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization.

    Science.gov (United States)

    Ortmann, Thomas; Ahrens, Heiko; Lawrenz, Frank; Gröning, Andreas; Nestler, Peter; Günther, Jens-Uwe; Helm, Christiane A

    2014-06-17

    Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.

  15. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany); Hoss, Mareike [Institute of Pathology, Electron Microscopy Facility, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Wong, John Erik, E-mail: John.Wong@avt.rwth-aachen.de [Chemical Process Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen (Germany); DWI – Leibniz Institute for Interactive Materials Research, Forckenbeckstrasse 50, Aachen (Germany); Hieronymus, Thomas, E-mail: thomas.hieronymus@rwth-aachen.de [Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen (Germany); Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen (Germany)

    2015-04-15

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3{sup +} DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  16. Equilibrium properties of a grafted polyelectrolyte with explicit counterions

    Science.gov (United States)

    Jayasree, Kandiledath; Ranjith, P.; Rao, Madan; Kumar, P. B. Sunil

    2009-03-01

    We study the equilibrium conformations of a grafted polyelectrolyte (PE) in the presence of explicit counterions (CIs) using Monte Carlo simulations. The interplay between attractive Lennard-Jones interactions (parametrized by ɛ) and electrostatics (parametrized by A =q2lB/a, where q is the CI valency, lB is the Bjerrum length, and a is the monomer diameter) results in a variety of conformations, characterized as extended (E), pearls with m beads (Pm), sausage (S), and globular (G). For large ɛ, we observe a transition from G →P2→P3→…→S→G with increasing A, i.e., a change from poor to good, to re-entrant poor solvent, whereas, at lower ɛ, the sequence of transitions is E →S→G. The conformation changes are directly related to the nature of binding of CI onto the PE. The transition between S →G is continuous and associated with critical fluctuations in the shape driven by fluctuations in the fraction of condensed CI.

  17. Polyelectrolyte scaling laws for microgel yielding near jamming.

    Science.gov (United States)

    Bhattacharjee, Tapomoy; Kabb, Christopher P; O'Bryan, Christopher S; Urueña, Juan M; Sumerlin, Brent S; Sawyer, W Gregory; Angelini, Thomas E

    2018-02-28

    Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress.

  18. Characterization of Responsive Hydrogel Nanoparticles upon Polyelectrolyte Complexation

    Directory of Open Access Journals (Sweden)

    Su-Kyoung Lee

    2017-02-01

    Full Text Available Characterization of responsive hydrogels and their interaction with other molecules have significantly expanded our understanding of the functional materials. We here report on the response of poly(N-isopropylacrylamide-co-acrylic acid (pNIPAm-co-AAc nanogels to the addition of the poly(allylamine hydrochloride (PAH in aqueous dispersions. We find that the hydrodynamic radius and stability of nanogels are dependent on the PAH/nanogel stoichiometry. If the nanogel solution is titrated with very small aliquots of PAH, the nanogels decrease in radius until the equivalence point, followed by aggregation at suprastoichiometric PAH additions. Conversely, when titrated with large aliquots, the nanogel charge switches rapidly from anionic to cationic, and no aggregation is observed. This behavior correlates well with electrophoretic mobility measurements, which shows the nanogel charge transitioning from negative to positive upon PAH addition. The volume phase transition temperature (VPTT of the nanogels is also measured to discover the effect of polyelectrolyte complexation on the deswelling thermodynamics. These data show that charge neutralization upon PAH addition decreases the VPTT of the nanogel at pH 6.5. However, if an excess amount of PAH is added to the nanogel solution, the VPTT shifts back to higher temperatures due to the formation of a net positive charge in the nanogel network.

  19. Crosslink effect and albumin adsorption onto chitosan/alginate multilayered systems: an in situ QCM-D study.

    Science.gov (United States)

    Martins, Gabriela V; Merino, Esther G; Mano, João F; Alves, Natália M

    2010-12-08

    The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming, E-mail: xmzhang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI){sub 5}). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI){sub 5} sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI){sub 5} to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI){sub 5} was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  1. Anomalous magnetoresistance in Fibonacci multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  2. Trade-off analysis of discharge-desiltation-turbidity and ANN analysis on sedimentation of a combined reservoir-reach system under multi-phase and multi-layer conjunctive releasing operation

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao

    2017-10-01

    Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however

  3. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.

    Science.gov (United States)

    Ohshima, Hiroyuki

    An approximate analytic expression is derived for the interaction energy between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution. The interaction energy has three components: electrostatic interaction energy between two brush layers before and after their contact, steric interaction energy between two brush layers after their contact, and the van der Waals interaction energy between the cores of the plates. It is shown that these three components are of the same order of magnitude and contribute equally to the total interaction energy between two polyelectrolyte-coated plates in an electrolyte solution. On the basis of Derjaguin's approximation, an approximate expression for the interaction energy between two spherical particles covered with polyelectrolyte brush layers is also derived.

  4. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  5. Structural and optical behavior of thin films of protein (BSA)-Polyelectrolyte (PAA, PSS) complexes

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2017-05-01

    Optical behaviors of protein (BSA) in the presence of negatively charged polyelectrolytes (PAA and PSS) in thin film confirmation are studied using UV-Vis and photoluminescence spectroscopy. The out-of-plane structures and in-plane surface morphologies of the thin films of protein-polyelectrolyte complexes (PPC) are investigated using X-ray reflectivity (XRR) and Atomic force microscopy (AFM) respectively. It is found that although the out-of-plane structure and surface morphology of PPC is nearly same as in pure polyelectrolyte but a larger red-shift of ≈ 23 nm is obtained in optical emissions from the thin films of PPC in comparison with that of the pure protein and PPC solutions. Mechanism is proposed for such larger red-shift from the thin film of PPC.

  6. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    Science.gov (United States)

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  7. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  8. Synthesis and characterization of metal-rich phosphonium polyelectrolytes and their use as precursors to nanomaterials.

    Science.gov (United States)

    Rabiee Kenaree, Amir; Gilroy, Joe B

    2016-11-15

    Upon efficient quaternization and salt metathesis of stable triethyl ferrocene/ruthenocene phosphines, styrene-based phosphonium triflate monomers with four different stoichiometric ratios of Fe/Ru were synthesized. Free-radical polymerization of the monomers afforded four polyelectrolytes (M n : 38 650-69 100 g mol -1 , Đ: 3.16-4.10) that retained many of the spectroscopic and electrochemical properties of the ferrocene/ruthenocene units. TGA studies demonstrated the thermal stability (onset of decomposition: ∼310 °C) and high char yields (33-54% at 1000 °C) of the polyelectrolytes. Pyrolysis in N 2 /H 2 (95/5) (film thickness of ∼6 μm, 1000 °C, 3 h) yielded crystalline, mixed-phase nanomaterials containing iron, ruthenium, and phosphorus with compositions influenced by the structure of the parent polyelectrolytes.

  9. Skyrmions in magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wanjun; Chen, Gong; Liu, Kai; Zang, Jiadong; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2017-08-01

    Symmetry breaking together with strong spin orbit interaction gives rise to many exciting phenomena within condensed matter physics. A recent example is the existence of chiral spin textures, which are observed in magnetic systems lacking inversion symmetry. These chiral spin textures, including domain walls and magnetic skyrmions, are both fundamentally interesting and technologically promising. For example, they can be driven very efficiently by electrical currents, and exhibit many new physical properties determined by their real-space topological characteristics. Depending on the details of the competing interactions, these spin textures exist in different parameter spaces. However, the governing mechanism underlying their physical behaviors remains essentially the same. In this review article, the fundamental topological physics underlying these chiral spin textures, the key factors for materials optimization, and current developments and future challenges will be discussed. In the end, a few promising directions that will advance the development of skyrmion based spintronics will be highlighted.

  10. Constructing multilayers with absorbing materials

    OpenAIRE

    Larruquert, Juan Ignacio; Vidal-Dasilva, M.; García-Cortés, S.; Fernández Perea, Mónica; Méndez, José Antonio; Aznárez, José Antonio

    2010-01-01

    The strong absorption of materials in the extreme ultraviolet (EUV) above ~50 nm has precluded the development of efficient coatings. The development of novel coatings with improved EUV performance is presented. An extensive research was performed on the search and characterization of materials with moderate absorption, such as various lanthanides. Based on this research, novel multilayers based on Yb, Al, and SiO have been developed with a narrowband performance in the 50-92 nm range. Furthe...

  11. Co/Pt multilayer based reference layers in magnetic tunnel junctions for nonvolatile spintronics VLSIs

    Science.gov (United States)

    Sato, Hideo; Ikeda, Shoji; Fukami, Shunsuke; Honjo, Hiroaki; Ishikawa, Shinya; Yamanouchi, Michihiko; Mizunuma, Kotaro; Matsukura, Fumihiro; Ohno, Hideo

    2014-01-01

    We investigated properties of Co/Pt multilayer for reference layer in CoFeB-MgO magnetic tunnel junctions with perpendicular easy axis. The sufficient thermal stability factor of 284 was obtained under zero applied field in 40-nm-diameter Co/Pt multilayer based reference layer annealed at 350 °C. By applying a synthetic ferrimagnetic (SyF) structure to the Co/Pt multilayer based reference layer, the shift of the center of minor resistance-magnetic field curves was suppressed, leading to higher thermal stability of antiparallel magnetization configuration than that without a SyF structure.

  12. Mathematical Formulation of Multilayer Networks

    Science.gov (United States)

    De Domenico, Manlio; Solé-Ribalta, Albert; Cozzo, Emanuele; Kivelä, Mikko; Moreno, Yamir; Porter, Mason A.; Gómez, Sergio; Arenas, Alex

    2013-10-01

    A network representation is useful for describing the structure of a large variety of complex systems. However, most real and engineered systems have multiple subsystems and layers of connectivity, and the data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates generalizing “traditional” network theory, and the newfound deluge of data now makes it possible to test increasingly general frameworks for the study of networks. In particular, although adjacency matrices are useful to describe traditional single-layer networks, such a representation is insufficient for the analysis and description of multiplex and time-dependent networks. One must therefore develop a more general mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper, we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of several important network descriptors and dynamical processes—including degree centrality, clustering coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework. We examine the impact of different choices in constructing these generalizations, and we illustrate how to obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is influencing whom (and by which media) in multichannel social networks and developing routing techniques for multimodal transportation systems.

  13. Biofunctionalization of polyelectrolyte microcapsules with biotinylated polyethylene glycol-grafted liposomes.

    Science.gov (United States)

    Gao, Jie; Reibetanz, Uta; Venkatraman, Subbu; Neu, Björn

    2011-08-11

    Hollow polyelectrolyte microcapsules (PEMC) are prepared using layer-by-layer self-assembly of polyelectrolytes on melamine formaldehyde templates, followed by template dissolution, and subsequent coating with biotinylated polyethylene glycol-grafted liposomes. These potential site-specific carrier systems show a high specificity for NeutrAvidin binding and a strong resistance against unspecific protein binding. It is concluded that this design with NeutrAvidin as the outermost layer of such capsules provides an ideal platform for the biofunctionalization of PEMC as drug delivery systems or as artificial cell-like structures for biomimetic studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The effect of temperature and pressure on the oxygen reduction reactions in polyelectrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Abdou, M.S.; Beattie, P.; Basura, V. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    1997-12-31

    The effect of temperature and pressure on the oxygen reduction reaction in polyelectrolyte membranes was described. Polyelectrolytes chosen for the experiment differed in composition, weight and flexibility of the polymer chains. The study was conducted in a solid state electrochemical cell at temperatures between 30 and 95 degrees C and in the pressure range of 1 to 5 atm. The solubility of oxygen in these membranes was found to follow Henry`s Law, while the diffusion coefficient decreased with pressure. The effect of temperature on the solubility of oxygen and the diffusion coefficient of oxygen in the membranes was similar to that observed in solution electrolytes. 2 refs., 3 figs.

  15. Novel surfactant-selective membrane electrode based on polyelectrolyte-surfactant complex.

    Science.gov (United States)

    Zorin, Ivan; Scherbinina, Tatiana; Fetin, Petr; Makarov, Ivan; Bilibin, Alexander

    2014-12-01

    Novel class of active ionophores for surfactant selective electrodes is proposed. PVC membrane doped with polyelectrolyte-surfactant stoichiometric complex is used for ion-selective electrode construction responsive to cetyltrimethyl ammonium bromide and related surfactants. New ionophore is quite stable and completely insoluble in aqueous media in wide range of pH. The electrode displays nearly Nernstian slope in CTAB concentration range 10(-6)-10(-3)M. Polyelectrolyte platform allows to design wide range of different ionophores responsive to cationic organic substances. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Evaluation of Multilayered Waveguide Holographic Memory Media

    Science.gov (United States)

    Ishihara, Kei; Fujiwara, Tsuyoshi; Esaki, Akira

    2004-07-01

    A multilayered waveguide holographic memory media consists of a stack of single-mode slab waveguides. An UV embossing process has been developed for fabricating this structure. This process is suitable for mass production at low cost, but it is has a disadvantage of poor precision in the control of layer thickness and data position. The distribution of the core inclination and the error in data position alignment were checked, and the results showed that this process is sufficiently accurate for fabricating the above media. Also, the durability of the media fabricated by the UV embossing process was tested. The media was preserved under high-temperature and high-humidity conditions (80°C and 85%RH respectively). The results showed that this media has sufficient durability for practical use.

  17. Nanoprocessing of metastable nm-period multilayers

    Science.gov (United States)

    Gorbunov, A. A.; Richter, J.; Pompe, W.

    Nanometer-period nickel-carbon multilayers were used as a medium for the fabrication of nanostructures by gap voltage manipulations in a scanning tunneling microscope. The written metallic structures were stable over at least several weeks. No traces of tip material were found in the processed areas. Two well-distinguished hillock-like nanostructure types were observed depending on the tip-sample separation, polarity and interaction time. Relatively slow local annealing under positive sample potential without a direct tip-sample contact resulted in the formation of nanostructures about 20 nm wide and a few nm high. Rapid melting followed by metal melt extrusion was observed if the tip contacted the sample during the nanostructure formation. These metal-like structures were tens of nm high and had a good electronic contrast to the initial carbon-coated surface. The formation of nanostructures was strongly dependent on the tip condition. Possible mechanisms of nanostructure formation are discussed.

  18. Multilayer Radar Absorbing Non-Woven Material

    Science.gov (United States)

    Dedov, A. V.; Nazarov, V. G.

    2016-06-01

    We study the electrical properties of multilayer radar absorbing materials obtained by adding nonwoven sheets of dielectric fibers with an intermediate layer of electrically conductive carbon fibers. Multilayer materials that absorb electromagnetic radiation in a wide frequency range are obtained by varying the content of the carbon fibers. The carbon-fiber content dependent mechanism of absorption of electromagnetic radiation by sheets and multilayer materials is considered.

  19. Destruction and damage of X-ray multi-layer reflector

    International Nuclear Information System (INIS)

    Chunyu Shutai; Gu Yuqiu; You Yonglu; Huang Wenzhong; He Yingling; Ma Yueying; Pei Shu; Cao Jianlin

    1999-08-01

    Especially for the applications of X-ray lasers, X-ray multi-layer reflector is an important element for soft X-ray optics. With developing of the X-ray lasers and its applications, the uses of the X-ray multi-layer reflector become more wide-ranging. But the plasma environment which creates X-ray laser brings the difficulties to the application of X-ray multi-layer reflector. The biggest difficulty is that the X-ray emitted by the plasma destroys and damages the multi-layer reflector. It is shown by the experiments that the damage threshold of Mo/Si multi-layer reflector made in China is less than 0.10 J/cm 2 . Under the exposure to this radiation dose, the root-mean square roughness of multi-layer apparently increases and the reflectivity almost drops to zero. According to these results, the authors give some ideas for preventing damages of the multi-layer reflector

  20. Complexation of oppositely charged polyelectrolytes in gene delivery and biology

    Science.gov (United States)

    Shklovskii, Boris

    2009-03-01

    Charge inversion of a DNA double helix by a positively charged flexible polymer (polyelectrolyte) is widely used to facilitate DNA contact with negative cell membranes for gene delivery. Motivated by this application in the first part of the talk I study the phase diagram a solution of long polyanions (PA) with a shorter polycations (PC) as a function the ratio of total charges of PC and PA in the solution, x, and the concentration of monovalent salt. Each PA attracts many PCs to form a complex. When x= 1, the complexes are neutral and condense in a macroscopic drop. When x is far away from 1, complexes are strongly charged and stable. PA are overcharged by PC at x > 1 and undercharged by PC at x < 1. As x approaches 1, PCs attached to PA disproportionate between complexes. Some complexes become neutral and condensed in a macroscopic drop while others become even stronger charged and stay free. The second part of the talk deals with biological example of PA -PC complexes namely self-assembly of vegetable viruses from long ss-RNA molecule paying role of scaffold and identical capsid proteins with long positive tails. I show that optimization Coulomb energy of the virus leads to the charge of RNA twice larger than the total charge of the capsid, in agreement with the experimental data. Then I discuss kinetics of the Coulomb complexation driven virus self-assembly. Capsid proteins stick to unassembled chain of ss RNA (which we call ``antenna'') and slide on it towards the assembly site. I show that at excess of capsid proteins such one-dimensional diffusion accelerates self-assembly more than ten times. On the other hand at excess of ss-RNA, antenna slows self-assembly down. Several experiments are proposed to verify the role of ss-RNA antenna in self-assembly.

  1. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  2. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors.

    Science.gov (United States)

    Serdyukov, V I; Sinitsa, L N; Lugovskoi, A A

    2016-06-10

    The influence of water vapor on the reflection coefficient of multilayer mirrors was studied using a gas cell with multiple reflections from the mirrors. A strong change in the reflection coefficient of the mirrors (up to 0.9%) was found when water vapor under a pressure of 23 mbar was injected into the cell, which was interpreted as a change in the refraction index of the layers of multilayer coatings when water vapor penetrated into the porous coating structure.

  3. Magnetic depth profiling of Fe/Au multilayer using neutron ...

    Indian Academy of Sciences (India)

    Au multilayer sample for characterizing the layer structure and magnetic moment density profile. Fe/Au multilayer shows strong spin-dependent scattering at interfaces, making it a prospective GMR material. Fe/Au multilayer with bilayer ...

  4. Failure of multi-layer graphene coatings in acidic media

    DEFF Research Database (Denmark)

    Yu, Feng; Stoot, Adam Carsten; Bøggild, Peter

    2016-01-01

    Being impermeable to all gases, graphene has been proposed as an effective ultrathin barrier film and protective coating. However, here it is shown how the gastight property of graphene-based coatings may indirectly lead to their catastrophic failure under certain conditions. When nickel coated...... as an effective ultrathin barrier film and protective coating. However, here it is shown how the gastight property of graphene-based coatings may indirectly lead to their catastrophic failure under certain conditions. When nickel coated with thick, high-quality chemical vapor deposited multilayered graphene...... with thick, high-quality chemical vapor deposited multilayered graphene is exposed to acidic solutions, a dramatic evolution of gas is observed at the coating–substrate interface. The gas bubbles grow and merge, eventually rupturing and delaminating the coating. This behavior, attributed to cathodic hydrogen...

  5. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    International Nuclear Information System (INIS)

    Ribeiro, J F; Sousa, R; Cunha, D J; Vieira, E M F; Goncalves, L M; Silva, M M; Dupont, L

    2015-01-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO 2 ) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si 3 N 4 ). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber. (paper)

  6. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    Science.gov (United States)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  7. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Science.gov (United States)

    Zhou, Weitao; Huang, Haitao; Du, Shan; Huo, Yingdong; He, Jianxin; Cui, Shizhong

    2015-08-01

    In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  8. Collective polyelectrolyte diffusion as a function of counterion size and dielectric constant

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Seery, T. A. P.; Kříž, Jaroslav; Hrubý, Martin; Černoch, Peter; Sedláček, Ondřej; Kadlec, Petr; Pánek, Jiří; Štěpánek, Petr

    2013-01-01

    Roč. 62, č. 9 (2013), s. 1271-1276 ISSN 0959-8103 R&D Projects: GA MŠk ME09059 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte * counterion binding * sodium polystyrene sulfonate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.247, year: 2013

  9. Interaction of a hydophobic weak polyelectrolyte star with an apolar surface

    NARCIS (Netherlands)

    Rudd, O.V.; Leermakers, F.A.M.; Birshtein, T.M.

    2014-01-01

    We consider star-like polymers with weak, that is, pH-dependent, hydrophobic polyelectrolyte arms. For low ionic strength conditions, a microphase-segregated quasimicellar structure is found, for which the star features a compact apolar core and a charged and swollen corona. This state is jump-like

  10. Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation

    Directory of Open Access Journals (Sweden)

    Xiaozheng Duan

    2013-06-01

    Full Text Available We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl–choline, PC and multivalent anionic (phosphatidylinositol, PIP2 lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.

  11. Release of polyanions from polyelectrolyte complexes by selective degradation of the polycation

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Boustta, M.; Leclercq, L.; Vert, M.

    2006-01-01

    Roč. 21, č. 2 (2006), s. 89-105 ISSN 0883-9115 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte complex * enzymatic degradation * hydrolytic degradation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.925, year: 2006

  12. Poisson–Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes

    NARCIS (Netherlands)

    Ubbink, J.; Khokhlov, A.R.

    2004-01-01

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the

  13. Incorporation of a Cationic Conjugated Polyelectrolyte CPE within an Aqueous Poly(vinyl alcohol) Sol

    DEFF Research Database (Denmark)

    Knaapila, Matti; Stewart, Beverly; Costa, Telma

    2016-01-01

    We report on a multiscale polymer-within-polymer structure of the cationic conjugated polyelectrolyte poly{[9,9-bis(6-N,N,N-trimethylammonium)hexyl]fluorene phenylene} (HTMAPFP) in aqueous poly(vinyl alcohol).(PVA) sol. Molecular dynamics simulations and small-angle neutron scattering (SANS) data...

  14. Investigation of polyelectrolytes by total reflection x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Varga, I.; Nagy, M.

    2000-01-01

    Water soluble polyelectrolyte samples containing mono-, bi- and trivalent metal ions were investigated without any pretreatment. Acid digestion of linear polymers may lead to a product insoluble in water so the digestion has to be avoided. The aim of this paper was the determination of analytical characteristics and limitations of the total reflection x-ray fluorescence (TXRF) analysis for poly (vinylalcohol-vinylsulphate) salts and poly (acrylic acid, acrylamide) copolymers containing the following cations: K + , Cs + , Ba 2+ , Cu 2+ and La 3+ . On the basis of our results efficiency of ion-exchange during preparation of polyelectrolytes and stoichiometry of the end-product were determined. TXRF results were compared with data gained by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements except in the case of Cs + which has poor sensitivity in ICP-AES. Good agreement was found between the results of the two techniques and calculations from titrimetric data. Concentration of Li + and Mg 2+ in polymer samples was measured by ICP-AES. In majority of cases film-like dry residues of aqueous solutions of polyelectrolytes can be characterized by homogeneous spatial distribution of metal ions within the organic matrix. This is because the migration of the ions is hindered during drying process. Determination of metals in polyelectrolyte films by TXRF is quite ideal as model for analysis of plant, animal or human tissues which is a frequent task in environmental and inorganic biomedical analytical chemistry. (author)

  15. Polyelectrolyte coatings prevent interferences from charged nanoparticles in SPME speciation analysis

    NARCIS (Netherlands)

    Zielinska, K.; Leeuwen, van H.P.

    2014-01-01

    In this work we present a new approach for protection of the fiber in solid phase microextraction (SPME) from interfering charged particles present in the sample medium. It involves coating of commercial poly(dimethylsiloxane) extraction phase with polyelectrolyte layer composed of

  16. Adsorption of polyelectrolytes and charged block copolymers on oxides consequences for colloidal stability

    NARCIS (Netherlands)

    Hoogeveen, N.G.

    1996-01-01


    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised

  17. Electrostatic self-assembly in polyelectrolyte-neutral block copolymers and oppositely charged surfactant solutions

    International Nuclear Information System (INIS)

    Berret, J.-F.Jean-Francois; Oberdisse, Julian

    2004-01-01

    We report on small-angle neutron scattering (SANS) of colloidal complexes resulting from the electrostatic self-assembly of polyelectrolyte-neutral copolymers and oppositely charged surfactants. The polymers are double hydrophilic block copolymers of low molecular weight (between 5000 and 50 000 g/mol). One block is a polyelectrolyte chain, which can be either positively or negatively charged, whereas the second block is neutral and in good solvent conditions. In aqueous solutions, surfactants with an opposite charge to that of the polyelectrolyte interact strongly with these copolymers. The two species associate into stable 100 nm-colloidal complexes which exhibit a core-shell microstructure. For different polymer/surfactant couples, we have shown that the core is constituted from densely packed surfactant micelles connected by the polyelectrolyte chains. The outer part of the complex is a corona formed by the neutral soluble chains. Using a model of aggregation based on a Monte-Carlo algorithm, we have simulated the internal structure of the aggregates. The model assumes spherical cages containing one to several hundreds of micelles in a closely packed state. The agreement between the model and the data is remarkable

  18. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  19. Salt-Induced Disintegration of Lysozyme-Containing Polyelectrolyte Complex Micelles

    NARCIS (Netherlands)

    Lindhoud, Saskia; Voorhaar, Lenny; de Vries, Renko; Schweins, Ralf; Stuart, Martien A. Cohen; Norde, Willem

    2009-01-01

    The salt-induced disintegration of lysozyme-filled polyelectrolyte complex micelles, consisting of positively charged homopolymers (PDMAEMA(150)), negatively charged diblock copolymers (PAA(42)-PAAm(417)) and lysozyme, has been Studied with dynamic light scattering (DL) and small-angle neutron

  20. Salt-Induced Disintegration of Lysozyme-Containing Polyelectrolyte Complex Micelles

    NARCIS (Netherlands)

    Lindhoud, S.; Cohen Stuart, M.A.; Norde, W.; Vries, de R.J.; Schweins, R.; Voorhaar, L.

    2009-01-01

    The salt-induced disintegration of lysozyme-filled polyelectrolyte complex micelles, consisting of positively charged homopolymers (PDMAEMA150), negatively charged diblock copolymers (PAA42-PAAm417), and lysozyme, has been studied with dynamic light scattering (DLS) and small-angle neutron

  1. Effects of pH of medium and molecular weight on polyelectrolyte ...

    African Journals Online (AJOL)

    The effects of pH of medium and molecular weight of chitosan on polyelectrolyte complex (PEC) formation between pectin and chitosan was investigated using capillary viscometry. The intrinsic viscosity of the polymers was determined using Huggin's plot. PECs were formed between pectin and chitosan in the pH range ...

  2. Polythiophene-based conjugated polyelectrolyte: Optical properties and association behavior in solution

    Czech Academy of Sciences Publication Activity Database

    Urbánek, P.; di Martino, A.; Gladyš, S.; Kuřitka, I.; Minařík, A.; Pavlova, Ewa; Bondarev, D.

    2015-01-01

    Roč. 202, April (2015), s. 16-24 ISSN 0379-6779 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP108/12/1143 Institutional support: RVO:61389013 Keywords : polyelectrolyte * conjugated polymer * UV–vis spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.299, year: 2015

  3. Influence of corona structure on binding of an ionic surfactant in oppositely charged amphiphilic polyelectrolyte micelles

    Czech Academy of Sciences Publication Activity Database

    Delisavva, F.; Uchman, M.; Škvarla, J.; Wozniak, E.; Pavlova, Ewa; Šlouf, Miroslav; Garamus, V. M.; Procházka, K.; Štěpánek, M.

    2016-01-01

    Roč. 32, č. 16 (2016), s. 4059-4065 ISSN 0743-7463 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : amphiphilic polymers * polyelectrolyte * corona structure Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.833, year: 2016

  4. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    Science.gov (United States)

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  5. Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    NARCIS (Netherlands)

    Lindhoud, Saskia; Cohen Stuart, Martinus Abraham; Norde, Willem; Leermakers, Frans A.M.

    2009-01-01

    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using

  6. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  7. Elucidating the Role of Conjugated Polyelectrolyte Interlayers for High-Efficiency Organic Photovoltaics.

    Science.gov (United States)

    Lim, Kyung-Geun; Park, Sung Min; Woo, Han Young; Lee, Tae-Woo

    2015-09-21

    Despite the promising function of conjugated polyelectrolytes (CPEs) as an interfacial layer in organic photovoltaics (OPVs), the underlying mechanism of dipole orientation and the electrical characteristics of CPE interlayers remain unclear. Currently, the ionic functionality of CPEs (i.e., whether they are cationic or anionic) is believed to determine the interfacial dipole alignment and the resulting electron or hole extraction properties at the interface between an organic photoactive layer and a metal electrode. In this research, we find that in contrast to this common belief, the photovoltaic efficiency can be improved significantly by both cationic and anionic CPE layers regardless of the ion functionality of the CPE. This improvement occurs because the interfacial dipoles of cationic and anionic CPEs are realigned in the identical direction despite the different ionic functionality. The net dipole is determined not by the intrinsic molecular dipole of the CPE but by the ionic redistribution in the CPE layer and the resulting interfacial dipole at the intimate contact with adjacent layers. We also demonstrated that the energy level alignment and performance parameters of OPVs can be controlled systematically by the electrically poled CPE layers with the oriented interfacial dipoles; the distribution of positive and negative ions in the CPE layer was adjusted by applying an appropriate external electric field, and the energy alignment was reversible by changing the electric field direction. The anionic and cationic CPEs (PSBFP-Na and PAHFP-Br) based on the same π-conjugated backbone of fluorene-phenylene were each used as the electron extraction layer on a photoactive layer. Both anionic and cationic CPE interlayers improved the energy level alignment at the interface between the photoactive layer and the electrode and the resulting performance parameters, which thereby increased the power conversion efficiency to 8.3 %. © 2015 WILEY-VCH Verlag GmbH & Co

  8. Langmuir Blodgett multilayers and related nanostructures

    Indian Academy of Sciences (India)

    S S Major, S S Talwar and R S Srinivasa for 50 mol% CdA or more (not shown here) the scissoring band doublet dominates and resembles the features associated with pure CdA multilayer. Figure 5 shows the corresponding X-ray reflectivity scans of these multilayers showing third and higher order Bragg reflections.

  9. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables

  10. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  11. An improved multi-layer stopper in a GaN-based laser diode

    International Nuclear Information System (INIS)

    Zhang, D; Liu, Z C; Hu, X D

    2009-01-01

    In pursuit of a more efficient GaN-based laser diode, a multi-layer structure has recently been proposed to replace the traditional single AlGaN layer as a stopper layer in order to control electron overflow. Based upon the multi-layer idea, this paper combines the Poisson–Schrödinger self-consistent method and the transfer matrix method to investigate the transport properties of the stopper layer under polarization both for the electron and the hole. Two new structures proposed by references are compared with the original one. The reason for a better structure is analyzed and the conclusion is drawn that the multi-layer structure can improve the hole transport. Also, a varied Al content multi-layer structure is theoretically calculated. The Al content for AlGaN layers is gradually increased from the active region to give a better performance both for the purpose of electron blocking and hole tunneling

  12. Figure correction of multilayer coated optics

    Science.gov (United States)

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  13. Multilayer Nanoporous Graphene Membranes for Water Desalination.

    Science.gov (United States)

    Cohen-Tanugi, David; Lin, Li-Chiang; Grossman, Jeffrey C

    2016-02-10

    While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical molecular dynamic simulations. We show that, while multilayer NPG exhibits similarly promising desalination properties to single-layer membranes, their separation performance can be designed by manipulating various configurational variables in the multilayer case. This work establishes an atomic-level understanding of the effects of additional NPG layers, layer separation, and pore alignment on desalination performance, providing useful guidelines for the design of multilayer NPG membranes.

  14. Multilayer Pressure Vessel Materials Testing and Analysis. Phase 1

    Science.gov (United States)

    Cardinal, Joseph W.; Popelar, Carl F.; Page, Richard A.

    2014-01-01

    To provide NASA a comprehensive suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for aging multilayer pressure vessels, Southwest Research Institute (R) (SwRI) was contracted in two phases to obtain relevant material property data from a representative vessel. This report describes Phase 1 of this effort which includes a preliminary material property assessment as well as a fractographic, fracture mechanics and fatigue crack growth analyses of an induced flaw in the outer shell of a representative multilayer vessel that was subjected to cyclic pressure test. SwRI performed this Phase 1 effort under contract to the Digital Wave Corporation in support of their contract to Jacobs ATOM for the NASA Ames Research Center.

  15. Magnetic multilayers and giant magnetoresistance fundamentals and industrial applications

    CERN Document Server

    2000-01-01

    Magneto-electronics is certainly one of the most rapidly expanding fields in basic research and industrial application. Magnetic multilayers are the key devices in this field; they allow the utilization of unique micromagnetic, magneto-optic, and magneto-electronic phenomena which cannot be realized on the basis of conventional materials. This book provides a detailed and well-balanced introduction to both the underlying physical fundamentals and the technological applications in terms of devices that are just entering the market or are of high industrial relevance for the near future. In particular, the employment of magnetic multilayers in magneto-optical recording, in GMR and spin-valve devices, and as configurations yielding a striking nonlinear magneto-optical response is discussed in a comprehensive way. This state-of-the-art review involves an extensive list of key references to original work and thus makes the vast knowledge already accumulated in the field accessible to the reader.

  16. Scattering in multilayered structures: Diffraction from a nanohole

    International Nuclear Information System (INIS)

    Fernandez-Corbaton, Ivan; Molina-Terriza, Gabriel; Tischler, Nora

    2011-01-01

    The spectral expansion of the Green's tensor for a planar multilayered structure allows us to semianalytically obtain the angular spectrum representation of the field scattered by an arbitrary dielectric perturbation present in the structure. In this paper we present a method to find the expansion coefficients of the scattered field, given that the electric field inside the perturbation is available. The method uses a complete set of orthogonal vector wave functions to solve the structure's vector wave equation. In the two semi-infinite bottom and top media, those vector wave functions coincide with the plane-wave basis vectors, including both propagating and evanescent components. The technique is used to obtain the complete angular spectrum of the field scattered by a nanohole in a metallic film under Gaussian illumination. We also show how the obtained formalism can easily be extended to spherically and cylindrically multilayered media. In those cases, the expansion coefficients would multiply the spherical and cylindrical vector wave functions.

  17. Thermal stability of nanoscale metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.S., E-mail: sofia.ramos@dem.uc.pt [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Cavaleiro, A.J.; Vieira, M.T. [CEMUC, Departamento de Engenharia Mecânica, Universidade de Coimbra, 3030-788 Coimbra (Portugal); Morgiel, J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Cracow (Poland); Safran, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, H-1121 Budapest (Hungary)

    2014-11-28

    Metallic nanolayered thin films/foils, in particular Ni/Al multilayers, have been used to promote joining. The objective of this work is to evaluate the thermal stability of nanoscale metallic multilayers with potential for joining applications. Multilayers thin films with low (Ti/Al and Ni/Ti), medium (Ni/Al) and high (Pd/Al) enthalpies of exothermic reaction were prepared by dual cathode magnetron sputtering. Their thermal stability was studied by: i) differential scanning calorimetry combined with X-ray diffraction (XRD), ii) in-situ XRD using cobalt radiation, and iii) in-situ transmission electron microscopy. It was possible to detect traces of intermetallic or amorphous phases in the as-deposited short period (bilayer thickness) multilayers, except for the Ti/Al films where no reaction products that might be formed during deposition were identified. For short periods (below 20 nm) the equilibrium phases are directly achieved upon annealing, whereas for higher periods intermediate trialuminide phases are present for Ti/Al and Ni/Al multilayers. The formation of B2-NiTi from Ni/Ti multilayers occurs without the formation of intermediate phases. On the contrary, for the Pd–Al system the formation of intermediate phases was never avoided. The viability of nanoscale multilayers as “filler” materials for joining macro or microparts/devices was demonstrated. - Highlights: • Me1 and Me2 (Me—metal) alternated nanolayers deposited by magnetron sputtering • Reactive Me1/Me2 multilayer thin films with nanometric modulation period • By heat treatment the films always evolve to the equilibrium intermetallic phase. • For some Me1–Me2 systems and periods, the formation of intermediate phases occurs. • Me1/Me2 multilayer thin films can be used as filler materials to enhance joining.

  18. Highly Efficient Multilayer Thermoelectric Devices

    Science.gov (United States)

    Boufelfel, Ali

    2006-01-01

    Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron

  19. Thermionic cooling in semiconductor multilayers

    International Nuclear Information System (INIS)

    Lee, S.; Lewis, R.A.; Lough, B.; Zhang, C.

    2000-01-01

    Full text: A solid-state refrigerator in which electrons transport heat has advantages over the conventional vapour-cycle, compressor-based domestic refrigerator since it has no moving parts, it is low-maintenance, silent, vibration-free and does not require the use of refrigerant gases. The usual approach to making an all-electrical refrigerator is by thermoelectric refrigeration. After a period of intense research in the 1950s and 60s it was realised that the efficiency of thermoelectric devices was less than, and unlikely to exceed, that of conventional compressor units. While thermoelectric cooling has found specialised applications in cases where reliability, compactness and weight are important considerations, it does not appear that thermo-electrics will ever successfully compete in the domestic market, in spite of recent advances in the design and fabrication of thermoelectric materials. A new approach to an all-electric refrigerator is to employ thermionic emission over potential barriers. A key difference between a thermoelectric device and a thermionic device is that in the former the electrons are scattered in their motion and in the latter they are not. Thus thermionic cooling, in principle, can be much more efficient than thermoelectric cooling. A radical new realisation of the thermionic refrigerator was suggested recently in which a multilayer semiconductor structure would be used. We discuss the optimisation of such a multilayer semiconductor cooling system by considering (1) electron-phonon interactions in the barriers and electrodes; (2) the detailed treatment of thermal conductivity; (3) an exact numerical solution of the heat and energy currents (in contrast to the previous approximate analytic solutions); (4) the effect of varying layer thickness across the device; and (5) the effect of varying current density across the device

  20. Nondestructive diagnosis of multilayer electronic plates

    International Nuclear Information System (INIS)

    Matvienko, A.N.; Savin, D.O.; Yas'ko, A.V.

    1992-01-01

    Methods of non-destructive tomographic investigation into multilayer printed plates using x radiation are described. Mathematic problem setting is given, experimental facility and methods for source data ecquisition are described. A special attention is paid to the consideration of the main factors differing the actual problem setting from the idealized one. Methods for accounting and correction of these factors are described. The efficiency of the approach proposed is demonstrated using the actual problems of reducing separate layers of multilayer printed plate metallization. The method developed is useful when exersizing control over multilayer printed plate production

  1. Thermal performance measurement and application of a multilayer insulator for emergency architecture

    International Nuclear Information System (INIS)

    Salvalai, Graziano; Imperadori, Marco; Scaccabarozzi, Diego; Pusceddu, Cristina

    2015-01-01

    Lightness coupled with a quick assembly method is crucial for emergency architecture in post-disaster area where accessibility and action time play a huge barer to rescue people. In this prospective, the following work analyses the potentiality (technological and thermal performances) of multilayer insulator for a new shelter envelope able to provide superior thermal comfort for the users. The thermal characteristics are derived experimentally by means of a guard ring apparatus under different working temperatures. Tests are performed on the multilayer insulator itself and on a composite structure, made of the multilayer insulator and two air gaps wrapped by a polyester cover, which is the core of a new lightweight emergency architecture. Experimental results show good agreement with literature data, providing a thermal conductivity and transmittance of about 0.04 W/(m °C) and 1.6 W/(m 2  °C) for the tested multilayer. The composite structure called Thermo Reflective Multilayer System (TRMS) shows better insulation performances, providing a thermal transmittance set to 0.85 W/(m 2  °C). A thermal model of an emergency tent based on the new insulating structure (TRMS) has been developed and its thermal performances have been compared with those of a UNHCR traditional emergency shelter. The shelter model was simulated (Trnsys v.17 environment) in the winter season considering the climate of Belgrade and using only the casual gains from occupant and solar radiation through opaque wall. Numerical simulations evidenced that the new insulating composite envelope reduces required heating load of about two and four times with respect to the traditional insulation. The study sets a starting point to develop a lightweight emergency architecture made with a combination between multilayer, air, polyester and vulcanized rubber. - Highlights: • Multilayer insulator tested by means of a guard ring apparatus. • Thermo reflective multilayer system (TRMS) development

  2. Fabrication and in vitro evaluation of stable collagen/hyaluronic acid biomimetic multilayer on titanium coatings

    Science.gov (United States)

    Ao, Haiyong; Xie, Youtao; Tan, Honglue; Yang, Shengbing; Li, Kai; Wu, Xiaodong; Zheng, Xuebin; Tang, Tingting

    2013-01-01

    Layer-by-layer (LBL) self-assembly technique has been proved to be a highly effective method to immobilize the main components of the extracellular matrix such as collagen and hyaluronic acid on titanium-based implants and form a polyelectrolyte multilayer (PEM) film by electrostatic interaction. However, the formed PEM film is unstable in the physiological environment and affects the long-time effectiveness of PEM film. In this study, a modified LBL technology has been developed to fabricate a stable collagen/hyaluronic acid (Col/HA) PEM film on titanium coating (TC) by introducing covalent immobilization. Scanning electron microscopy, diffuse reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the PEM film. Results of Sirius red staining demonstrated that the chemical stability of PEM film was greatly improved by covalent cross-linking. Cell culture assays further illustrated that the functions of human mesenchymal stem cells, such as attachment, spreading, proliferation and differentiation, were obviously enhanced by the covalently immobilized Col/HA PEM on TCs compared with the absorbed Col/HA PEM. The improved stability and biological properties of the Col/HA PEM covalently immobilized TC may be beneficial to the early osseointegration of the implants. PMID:23635490

  3. Nanoemulsion-templated multilayer nanocapsules for cyanine-type photosensitizer delivery to human breast carcinoma cells.

    Science.gov (United States)

    Bazylińska, Urszula; Pietkiewicz, Jadwiga; Saczko, Jolanta; Nattich-Rak, Małgorzata; Rossowska, Joanna; Garbiec, Arnold; Wilk, Kazimiera A

    2012-09-29

    There is great clinical interest in developing novel nanocarriers for hydrophobic cyanine dyes used as photosensitizing agents in photodynamic therapy (PDT). In the present study we have employed nanoemulsion-templated oil-core multilayer nanocapsules as robust nanocarriers for a cyanine-type photosensitizer IR-786. These nanoproducts were fabricated via layer-by-layer (LbL) adsorption of oppositely charged polyelectrolytes (PEs), i.e., anionic PSS and cationic PDADMAC on nanoemulsion liquid cores created by dicephalic or bulky saccharide-derived cationic surfactants. All nanocapsules, with different thicknesses of the PE shell and average size photosensitizing agent. In vitro biological experiments demonstrated that the properties of studied nanostructures depended upon the PE type and the envelope thickness as well as on the surfactant architecture in the nanoemulsion-based templates employed for the nanocapsule fabrication. Similarity of results obtained for stored (three weeks in the dark at room temperature) and freshly-prepared nanocapsules, attests to viability of this stable, promising drug delivery system for poorly water-soluble cyanines useful in PDT. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Dimensionality reduction and spectral properties of multilayer networks

    Science.gov (United States)

    Sánchez-García, Rubén J.; Cozzo, Emanuele; Moreno, Yamir

    2014-05-01

    Network representations are useful for describing the structure of a large variety of complex systems. Although most studies of real-world networks suppose that nodes are connected by only a single type of edge, most natural and engineered systems include multiple subsystems and layers of connectivity. This new paradigm has attracted a great deal of attention and one fundamental challenge is to characterize multilayer networks both structurally and dynamically. One way to address this question is to study the spectral properties of such networks. Here we apply the framework of graph quotients, which occurs naturally in this context, and the associated eigenvalue interlacing results to the adjacency and Laplacian matrices of undirected multilayer networks. Specifically, we describe relationships between the eigenvalue spectra of multilayer networks and their two most natural quotients, the network of layers and the aggregate network, and show the dynamical implications of working with either of the two simplified representations. Our work thus contributes in particular to the study of dynamical processes whose critical properties are determined by the spectral properties of the underlying network.

  5. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Directory of Open Access Journals (Sweden)

    Zakieh I. Al-Kurdi

    2015-03-01

    Full Text Available The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC in a reverse micelle (RM system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity.

  6. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  7. Rheology Control of Highly Concentrated Mullite Suspensions with Polyelectrolyte for Robocasting

    Energy Technology Data Exchange (ETDEWEB)

    STUECKER,JOHN N.; CESARANO III,JOSEPH; HIRSCHFELD,DEIDRE A.

    2000-06-12

    Highly concentrated, aqueous mullite slurries were characterized and stabilized at solids concentrations as high as 60 vol% using less than 2 vol% of an organic polyelectrolyte dispersant. The maximum slurry concentration (60 vol%) is within 3 vol% of the maximum consolidated density of the slurry. The slurries were subsequently cast into parts by a solid freeform fabrication technique termed robocasting and characterized. Sedimentation analysis and viscometry provided the means of slurry characterization, while knowledge of polyelectrolyte and interparticle forces was used to interpret the sedimentation and viscometry data. Through proper control of slurry conditions, pseudoplastic mullite slurries were fabricated for use in the robocasting process. The slurries were robocast at 52 vol% solids and subsequently yielded a green density of 55 vol%. Fired densities of the robocasted slurries were high, with mullite >96% dense at 1,650 C.

  8. Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Jue Lu

    2010-01-01

    Full Text Available Exfoliated graphite nanoplatelets (xGnPs with an average thickness of 1–10 nm present an inexpensive alternative to carbon nanotubes in many applications. In this paper, stable aqueous suspension of xGnP was achieved by noncovalent functionalization of xGnP with polyelectrolytes. The surfactants and polyelectrolytes were compared with respect to their ability to suspend graphite nanoplatelets. The surface charge of the nanoplatelets was characterized with zeta potential measurements, and the bonding strength of the polymer chains to the surface of xGnP was characterized with Raman spectroscopy. This robust method opens up the possibility of using this inexpensive nanomaterial in many applications, including electrochemical devices, and leads to simple processing techniques such as layer-by-layer deposition. Therefore, the formation of xGnP conductive coatings using layer-by-layer deposition was also demonstrated.

  9. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents

    Science.gov (United States)

    Ono, Toshikazu; Sugimoto, Takahiro; Shinkai, Seiji; Sada, Kazuki

    2007-06-01

    Polyelectrolyte gels that are known as super-absorbent polymers swell and absorb water up to several hundred times their dried weights and have become ubiquitous and indispensable materials in many applications. Their superior swelling abilities originate from the electrostatic repulsion between the charges on the polymer chains and the osmotic imbalance between the interior and exterior of the gels. However, no super-absorbent polymers for volatile organic compounds (VOCs), and especially for nonpolar organic solvents (ɛpolymer networks. This expands the potential of polyelectrolytes that have been used only in aqueous solutions or highly polar solvents, and provides soft materials that swell in a variety of media. These materials could find applications as protective barriers for VOCs spilled in the environment and as absorbents for waste oil.

  10. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    Science.gov (United States)

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  11. Effective charge of polyelectrolytes as a function of the dielectric constant of a solution.

    Science.gov (United States)

    Böhme, Ute; Scheler, Ulrich

    2007-05-15

    The combination of diffusion and electrophoresis NMR is applied to determine the effective charge of poly(styrene sulfonate) in solution. While electrophoresis NMR yields the electrophoretic mobility of the molecules in solution, the hydrodynamic friction is determined from diffusion NMR. From the force balance between electrostatic force and hydrodynamic friction, the effective charge of the molecule is determined free of any model. In the present study poly(styrene sulfonate) has been investigated in mixtures of water and methanol of varying composition. The lower dielectric constant in the mixtures with high methanol content results in a drastically reduced effective charge of the polyelectrolytes. The reduced effective charge along the polymer chain is the reason for a much more compact conformation of the polyelectrolyte, which is seen in a smaller hydrodynamic size of the molecule.

  12. The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium.

    Science.gov (United States)

    Voron'ko, Nicolay G; Derkach, Svetlana R; Kuchina, Yuliya A; Sokolan, Nina I

    2016-03-15

    The interaction of cationic polysaccharide chitosan and gelatin accompanied by the stoichiometric (bio)polyelectrolyte complexes formation has been studied by the methods of capillary viscometry, UV and FTIR spectroscopy and dispersion of light scattering. Complexes were formed in the aqueous phase, with pH being less than the isoelectric point of gelatin (pIgel). The particle size of the disperse phase increases along with the growth of the relative viscosity in comparison with sols of the individual components-polysaccharide and gelatin. Possible models and mechanism of (bio)polyelectrolyte complexes formation have been discussed. It was shown that the complex formation takes place not only due to the hydrogen bonds, but also due to the electrostatic interactions between the positively charged amino-groups of chitosan and negatively charged amino acid residues (glutamic Glu and aspartic Asp acids) of gelatin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ordered organic-organic multilayer growth

    Science.gov (United States)

    Forrest, Stephen R; Lunt, Richard R

    2015-01-13

    An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.

  14. Fast internal dynamics in polyelectrolyte gels measured by dynamic light scattering

    Czech Academy of Sciences Publication Activity Database

    Rasmark, P. J.; Koňák, Čestmír; Štěpánek, Petr; Elvingson, C.

    2005-01-01

    Roč. 54, 4-5 (2005), s. 335-342 ISSN 0170-0839 R&D Projects: GA AV ČR IAA4050306; GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyelectrolyte gel * dynamic light scattering * poly(acrylic acid) Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.904, year: 2005

  15. A simple model for electrical charge in globular macromolecules and linear polyelectrolytes in solution

    OpenAIRE

    Krishnan, M.

    2017-01-01

    We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostat...

  16. Electrostatic complexation of polyelectrolyte and magnetic nanoparticles: from wild clustering to controllable magnetic wires

    OpenAIRE

    Yan, Minhao; Qu, Li; Fan, Jiangxia; Ren, Yong

    2014-01-01

    We present the electrostatic complexation between polyelectrolytes and charged nanoparticles. The nanoparticles in solution are γ-Fe2O3 (maghemite) spheres with 8.3 nm diameter and anionic surface charges. The complexation was monitored using three different formulation pathways such as direct mixing, dilution, and dialysis. In the first process, the hybrids were obtained by mixing stock solutions of polymers and nanoparticles. A ‘destabilization state’ with sharp and intense maximum aggregat...

  17. Reentrant Variation of Single-Chain Elasticity of Polyelectrolyte Induced by Monovalent Salt.

    Science.gov (United States)

    Yu, Miao; Qian, Lu; Cui, Shuxun

    2017-04-27

    The interactions between monovalent counterions and polyelectrolyte are important in chemical and biological systems. The condensation and screening effect of counterions complicate the polyelectrolyte solutions. By means of single-molecule AFM, the single-chain mechanics of a strong polyelectrolyte, poly(sodium styrenesulfonate) (PSSNa), in KCl aqueous solutions over almost whole concentration range have been studied. The M-FJC model has been used to describe the single-chain elasticity of PSSNa in KCl solutions with a parameter of single-chain modulus (K 0 ). Along with the increase of the concentration of KCl from zero to almost the saturation concentration, a reentrant variation of K 0 of single PSSNa chain can be observed. When [K + ] is between 0.01 to 3 M, the charges on the PSSNa backbone are almost completely screened, i.e., the PSSNa chain is virtually neutral in this case. Because K 0 has a positive correlation with the net charge of the polymer chain, the increased K 0 at very high KCl concentrations (≥3.5 M) indicates that the chain is charged again. Due to the negative charges on the backbone of PSSNa, only the positively charged counterions (K + ) can be adsorbed on the chain. Thus, the PSSNa chain should be positively charged when KCl concentrations ≥3.5 M. That is, the charge inversion occurs in this case, which is induced by a monovalent salt. This finding may lay the foundation for the future applications of drug delivery and gene therapy.

  18. Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Josias H. Hamman

    2010-04-01

    Full Text Available Chitosan has been the subject of interest for its use as a polymeric drug carrier material in dosage form design due to its appealing properties such as biocompatibility, biodegradability, low toxicity and relatively low production cost from abundant natural sources. However, one drawback of using this natural polysaccharide in modified release dosage forms for oral administration is its fast dissolution rate in the stomach. Since chitosan is positively charged at low pH values (below its pKa value, it spontaneously associates with negatively charged polyions in solution to form polyelectrolyte complexes. These chitosan based polyelectrolyte complexes exhibit favourable physicochemical properties with preservation of chitosan’s biocompatible characteristics. These complexes are therefore good candidate excipient materials for the design of different types of dosage forms. It is the aim of this review to describe complexation of chitosan with selected natural and synthetic polyanions and to indicate some of the factors that influence the formation and stability of these polyelectrolyte complexes. Furthermore, recent investigations into the use of these complexes as excipients in drug delivery systems such as nano- and microparticles, beads, fibers, sponges and matrix type tablets are briefly described.

  19. Polystyrene sulfonate-porphyrin assemblies: influence of polyelectrolyte and porphyrin structure.

    Science.gov (United States)

    Ruthard, Christian; Maskos, Michael; Kolb, Ute; Gröhn, Franziska

    2011-05-19

    In this study, electrostatic self-assembly of different polystyrene sulfonates and a set of tetravalent cationic porphyrins is investigated. It is shown that association of linear polystyrene sulfonates of different molar masses yields finite size nanoscale assemblies that are stable in aqueous solution. Aggregates are compared to the ones of cylindrical brushes, revealing that both form assemblies in the 100 nm range with the charge ratio (molar ratio of porphyrin charges to polyelectrolyte charges) being determining, while the morphology of the resulting network-like assemblies is different for both polyelectrolyte architectures. For the smallest 8k polystyrene sulfonate, in addition, stoichiometric conditions differ. The influence of the molecular porphyrin structure was investigated by comparing meso-tetrakis(4-(trimethyl-ammonium)phenyl)porphyrin (TAPP) with its Cu(II) and Zn(II) loaded analogues and meso-tetrakis(4-N-methylpyridinium)porphyrin (TMPyP), revealing differences in stacking tendency and geometry. Additionally, the TMPyP accumulates more in the inside of the brush than the other porphyrins, likely due to the different position of its charged groups. The supramolecular nanostructures formed were characterized by UV-vis spectroscopy, light scattering, atomic force microscopy, cryo transmission electron microscopy, and small-angle neutron scattering. Results may build a valuable basis for the use of polyelectrolyte-porphyrin assemblies in medicine, catalysis, or energy conversion. © 2011 American Chemical Society

  20. Filterability of membrane bioreactor (MBR) sludge: impacts of polyelectrolytes and mixing with conventional activated sludge.

    Science.gov (United States)

    Yigit, Nevzat O; Civelekoglu, Gokhan; Cinar, Ozer; Kitis, Mehmet

    2010-01-01

    The main objective of this work was to investigate the filterability of MBR sludge and its mixture with conventional activated sludge (CAS). In addition, the impacts of type and dose of various polyelectrolytes, filter type and sludge properties on the filterability of both MBR and Mixed sludges were determined. Specific cake resistance (SCR) measured by the Buchner funnel filtration test apparatus and the solids content of the resulting sludge cake were used to assess the dewaterability of tested sludges. The type of filter paper used in Buchner tests affected the results of filterability for MBR, CAS and Mixed sludges. SCR values and optimum polyelectrolyte doses increased with increasing MLSS concentrations in the MBR, which suggested that increase in MLSS concentrations accompanied by increases in EPS and SMP concentrations and a shift toward smaller particles caused poorer dewaterability of the MBR sludge. The significant differences observed among the filterability of CAS and MBR sludges suggested that MLSS alone is not a good predictor of sludge dewaterability. Combining CAS and MBR sludges at different proportions generally improved their dewaterability. Combining MBR sludges having typically high MLSS and EPS concentrations with CAS having much lower MLSS concentrations may be an option for full-scale treatment plants experiencing sludge dewaterability problems. Better filterability and higher cake dry solids were achieved with cationic polyelectrolytes compared to anionic and non-ionic ones for all sludge types tested.

  1. Controlling the rejection of protein during membrane filtration by adding selected polyelectrolytes

    DEFF Research Database (Denmark)

    Pinelo, Manuel; Ferrer Roca, Carme; Meyer, Anne S.

    2012-01-01

    ) changing the pH, on the permeate flux and membrane transmission of bovin serum albumina (BSA) through a PVDF membrane. The addition of PS-co-AA to the feed solution resulted in significant increases of the BSA transmission at pH 7.4 as compared to the transmission of a pure BSA solution (1g....../L). The addition of pectin to BSA at pH 7.4 also resulted in higher permeate fluxes and improved BSA transmission, as compared to the individual solution of pectin or BSA. The BSA transmission decreased at lower pHs i.e. at 4.7 (isoelectric point of BSA) and 2 with each polyelectrolyte as the apparent interactions...... between the BSA and the polyelectrolyte favoured deposition and aggregation phenomena, resulting in higher fouling. The results suggest that the addition of a polyelectrolyte to a protein solution at a certain pH can dramatically modify the profile of electrostatic interactions causing fouling, and can...

  2. Small angle neutron scattering study of polyelectrolyte brushes grafted to well-defined gold nanoparticle interfaces.

    Science.gov (United States)

    Jia, Haidong; Grillo, Isabelle; Titmuss, Simon

    2010-05-18

    Small angle neutron scattering (SANS) has been used to study the conformations, and response to added salt, of a polyelectrolyte layer grafted to the interfaces of well-defined gold nanoparticles. The polyelectrolyte layer is prepared at a constant coverage by grafting thiol-functionalized polystyrene (M(w) = 53k) to gold nanoparticles of well-defined interfacial curvature (R(c) = 26.5 nm) followed by a soft-sulfonation of 38% of the segments to sodium polystyrene sulfonate (NaPSS). The SANS profiles can be fit by Fermi-Dirac distributions that are consistent with a Gaussian distribution but are better described by a parabolic distribution plus an exponential tail, particularly in the high salt regime. These distributions are consistent with the predictions and measurements for osmotic and salted brushes at interfaces of low curvature. When the concentration of added salt exceeds the concentration of counterions inside the brush, there is a salt-induced deswelling, but even at the highest salt concentration the brush remains significantly swollen due to a short-ranged excluded volume interaction. This is responsible for the observed resistance to aggregation of these comparatively high concentration polyelectrolyte stabilized gold nanoparticle dispersions even in the presence of a high concentration of added salt.

  3. Enzyme-polyelectrolyte complex: Salt effects on the reaction of urease with polyallylamine

    Science.gov (United States)

    Tikhonenko, S. A.; Saburova, E. A.; Durdenko, E. N.; Sukhorukov, B. I.

    2009-10-01

    The effects of inorganic mono- and divalent salts of different types on how the cation polyelectrolyte polyallylamine hydrochloride (PAA) binds with the oligomer enzyme urease were studied. It was shown that in solutions of the monovalent salts NaCl, KCl, and NH4Cl, polyelectrolyte-protein complexes formed by electrostatic interactions, which decreased monotonically as the salt concentrations increased according to the classic law of statistical physics, correlating the Debye radius with the ionic strength of the solution. In solutions of the divalent salts Na2SO4 and (NH4)2SO4, the efficiency of the formation of the polyelectrolyte-protein complexes changed abruptly (the enzyme was drastically activated) at low salt concentrations (˜0.6-0.8 mM), which was not consistent with the classic theory of charge interactions in solutions with different ionic strengths. Turbidimetric titration at different salt concentrations in the given range revealed a high aggregative ability for sulfates and low ability for chlorides. It was concluded that the anomalies in the concentration dependence of the enzyme activity and aggregative ability were related to the formation of stable bonds PAA to the divalent SO{4/2-} anion, which increased drastically when the ratio of anion concentration to the number of positively charged PAA monomers in solution reached 1: 2.

  4. Water-resistive humidity sensor prepared by printing process using polyelectrolyte ink derived from new monomer.

    Science.gov (United States)

    Kim, Min-Ji; Gong, Myoung-Seon

    2012-03-21

    A simple strategy was developed based on a new monomer containing both photocurable function and ammonium salt, N-(2-cinnamoyloxy)ethyl-N-(2-(methacryloyloxy)ethyl)-N,N-dimethyl ammonium bromide (CMDAB) to obtain photocurable polyelectrolyte ink and stable humidity-sensitive membranes by printing process. Humidity-sensitive membranes are photocrosslinked polyelectrolytes obtained from copolymers of [2-(methacryloyloxy)ethyl] dimethyl propyl ammonium bromide (MEPAB), CMDAB and MMA. A flexible gold electrode/polyimide was pretreated with 2-(mercaptoethyl) cinnamamide (MEC) containing a thiol-coupling agent for the purpose of anchoring the humidity-sensitive polyelectrolyte to the gold electrode. The sensors using screen printing methods reduced the deflection of sensor characteristics showing humidity precision ±1%RH. The photocured copolymer MEPAB/CMDAB/MMA = 63/7/30 show good sensitivity (0.0586 logΩ/%RH) changing resistance approximately four orders of magnitude with relative humidity varying from 20% to 95% and fast response and recovery time. The resultant sensors showed acceptable linearity (Y = -0.04X + 7.0, R(2) = -0.9900) and small hysteresis. The reliability including water resistance and a long-term stability were estimated for the application of the flexible humidity sensor prepared by screen printing process.

  5. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials.

    Science.gov (United States)

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko

    2012-06-01

    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin.

    Directory of Open Access Journals (Sweden)

    Gaotian Shen

    Full Text Available Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8 and a positively charged regenerated silk fibroin solution (pH = 2. Finally, the negatively charged regenerated silk fibroin solution (pH = 8 was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting

  7. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  8. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  9. TAPE CALENDERING MANUFACTURING PROCESS FOR MULTILAYER THIN-FILM SOLID OXIDE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Kurt Montgomery

    2004-10-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the Phases I and II under Contract DE-AC26-00NT40705 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Tape Calendering Manufacturing Process For Multilayer Thin-Film Solid Oxide Fuel Cells''. The main objective of this project was to develop the manufacturing process based on tape calendering for multilayer solid oxide fuel cells (SOFC's) using the unitized cell design concept and to demonstrate cell performance under specified operating conditions. Summarized in this report is the development and improvements to multilayer SOFC cells and the unitized cell design. Improvements to the multilayer SOFC cell were made in electrochemical performance, in both the anode and cathode, with cells demonstrating power densities of nearly 0.9 W/cm{sup 2} for 650 C operation and other cell configurations showing greater than 1.0 W/cm{sup 2} at 75% fuel utilization and 800 C. The unitized cell design was matured through design, analysis and development testing to a point that cell operation at greater than 70% fuel utilization was demonstrated at 800 C. The manufacturing process for both the multilayer cell and unitized cell design were assessed and refined, process maps were developed, forming approaches explored, and nondestructive evaluation (NDE) techniques examined.

  10. Interactions between colloidal particles in the presence of an ultrahighly charged amphiphilic polyelectrolyte.

    Science.gov (United States)

    Yu, Danfeng; Yang, Hui; Wang, Hui; Cui, Yingxian; Yang, Guang; Zhang, Jian; Wang, Jinben

    2014-12-09

    A novel amphiphilic polyelectrolyte denoted as PAGC8 and a traditional amphiphilic polyelectrolyte denoted as PASC8 were prepared. PAGC8 consisted of gemini-type surfactant segment based on 1,3-bis (N,N-dimethyl-N-octylammonium)-2-propyl acrylate dibromide, while PASC8 incorporated acryloyloxyethyl-N,N-dimethyl-N-dodecylammonium bromide as single chain surfactant units within its repeat unit structure. Turbidity, stability, and zeta potential measurements were performed in the presence of PAGC8 and PASC8, respectively, to evaluate their effectiveness in inducing solid/liquid separations. It was found that the maximum transmittance was observed before the zeta potential values reached the isoelectric point, implying that not only charge neutralization but also charge-patch mechanism contributed to the separation process. Colloid probe atomic force microscopy technique was introduced to directly determine the interactions between surfaces in the presence of ultrahighly charged amphiphilic polyelectrolyte. On the basis of the AFM results, we have successfully interpreted the influence of the charge density of the polyelectrolytes on the phase stability. Electrostatic interaction played the dominant role in the flocculation processes, although both electrostatic interaction and hydrophobic effect provided contributions to the colloidal dispersions. The attractions upon surfaces approach in the case of PAGC8 were significantly larger than that of PASC8 due to the higher charge density. The strong peeling events upon retraction in the presence of PAGC8 implied that the hydrophobic effect was stronger than that of PASC8, which displayed the loose pulling events. A strong attraction was identified at shorter separation distances for both systems. However, these interactions cannot be successfully described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloid stability due to the participation of charge-patch and strong hydrophobic effect. To account for the

  11. Polyelectrolyte-assisted preparation of gold nanocluster-doped silica particles with high incorporation efficiency and improved stability

    Science.gov (United States)

    Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng

    2017-07-01

    In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.

  12. A drug-loaded gel based on polyelectrolyte complexes of poly (acrylic acid) with poly (vinylpyrrolidone) and chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Jin Shuping [Key Laboratory of Resources and Environmental Chemistry of West China, Department of Chemistry, Hexi University, Zhangye 734000 (China); Liu Mingzhu, E-mail: mzliu@lzu.edu.cn [Department of Chemistry and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Shilan [Department of Chemistry, Chongqing University of Science and Technology, Chongqing 401331 (China); Gao Chunmei [Department of Chemistry and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2010-10-01

    A drug-loaded gel (CSPP) based on ionic crosslinked chitosan (CS) and polyelectrolyte complexes of poly (acrylic acid) (PAA) with poly (vinylpyrrolidone) (PVP) was prepared by dropping CS solution containing suitable amount of PVP into PAA and trisodium citrate co-existing gelling solution. The surface and cross-section morphology of the gel was observed using scanning electron microscopy, and the observation showed that the CSPP gel had more compact structure than CS gel. In vitro release profiles of model drug from the CSPP gel, which was prepared under different conditions, were investigated in simulative gastric fluid (pH 1.8) using an UV/vis spectrophotometer. The results showed that the rapid release of the model was restrained due to the complex of PVP and PAA, and the CSPP gel could serve as a suitable candidate in drug delivery system such as the site-specific controlled release of the drug in stomach. In addition, the release mechanism of drug was analyzed by fitting the amount of drug released into Peppa's potential equation.

  13. Shearing and compression behavior of end-grafted polyelectrolyte brushes with mono- and trivalent counterions: a molecular dynamics simulation

    International Nuclear Information System (INIS)

    Cao, Qianqian; Zuo, Chuncheng; Li, Lujuan; He, Hongwei

    2010-01-01

    We investigate polyelectrolytes end-grafted on two apposing walls using molecular dynamics simulation techniques. Monovalent and trivalent counterions are explicitly treated. Under normal compression, the osmotic pressure is examined in detail by decomposing it into various virial terms. It has been found that at small wall separations the increase in the osmotic pressure can be ascribed to the increase in the short-range virial term. At large wall separations, a negative osmotic pressure is observed in trivalent systems. Moreover, we study the effect of lateral shear on the density profiles of monomers and counterions, the net charge distribution, the local pressure tensor, the degree of interpenetration and the friction coefficient. At large shear ratios, the electrostatic interactions are weakened at the interface between two brushes. It is worth noting that although the magnitudes of the normal and shear stress components for the trivalent case are significantly lesser than those for the monovalent case, the friction coefficient is larger in the trivalent systems

  14. Metal-carbide multilayers for molten Pu containment

    International Nuclear Information System (INIS)

    Summers, T.S.E.; Curtis, P.G.; Juntz, R.S.; Krueger, R.L.

    1991-12-01

    Multilayers composed of nine or ten alternating layers of Ta or W and TaC were studied for the feasibility of their use in containing molten plutonium (Pu) at 1200 degrees C. Single layers of W and TaC were also investigated. A two-source electron beam evaporation process was developed to deposit these coatings onto the inside surface of hemispherical Ta cups about 38 mm in diameter. Pu testing was done by melting Pu in the coated hemispherical cups and holding them under vacuum at 1200 degrees C for two hours. Metallographic examination and microprobe analysis of cross sections showed that Pu had penetrated to the Ta substrate in all cases to some extent. Full penetration to the outer surface of the Ta substrate, however, occurred in only a few of the samples. The fact that full penetration occurred in any of the samples suggests that it would have occurred in uncoated Ta under these testing conditions which in turn suggests that the multilayer coatings do afford some protection against Pu attack. The TaC used for these specimens was wet by Pu under these testing conditions, and following testing, Pu was found uniformly distributed throughout the carbide layers which appeared to be rather porous. Pu was seen in the W and Ta layers only when exposed directly to molten Pu during testing or near defects suggesting that Pu penetrated the multilayers at defects in the coating and traveled parallel to the layers along the carbide layers. These results indicate that the use of alternating metal and ceramic layers for Pu containment should be possible through the use of nonporous ceramic that is not wet by molten Pu and defect-free films

  15. Research on the Multilayer Free Damping Structure Design

    OpenAIRE

    Meng, Jie; Sun, Dagang

    2018-01-01

    The aim of this paper is to put forward a design model for multilayer free damping structures. It sets up a mathematical model and deduces the formula for its structural loss factor η and analyzes the change rules of η along with the change rate of the elastic modulus ratio q1, the change rate of the loss factors of damping materials q2, and the change rate of the layer thickness ratio q3 under the condition with the layer thickness ratio h2=1,3,5,10 by software MATLAB. Based on three specifi...

  16. Study of multilayered insulation pipe penetration. Thermal acoustic oscillation

    Science.gov (United States)

    Lovin, J. K.

    1974-01-01

    Tests were conducted to determine the net heat leak to a source of liquid nitrogen caused by a metal penetration through the blanket of multilayer insulation. The conditions under which the tests were conducted are described. A graph of the theoretical and experimental temperature distribution is developed for comparison. The variables involved in the computer program to process the data are defined. A study was conducted to develop analytical methods for predicting the effect and magnitudes of thermoacoustic oscillations on the penetration heat leak to cryogens. The oscillations develop as a result of large thermal gradients imposed on a compressible fluid. The predominant amplitudes and frequencies of the thermal acoustic oscillations were investigated.

  17. Physicochemical and antimicrobial properties of ε-polylysine/carboxymethyl chitosan polyelectrolyte complexes and their effect against spoilage microorganisms in raw pork.

    Science.gov (United States)

    Guo, Liang; Meng, Yuecheng; Fang, Sheng

    2017-06-01

    This study investigated the properties of polyelectrolyte complexes (PECs) fabricated by using ε-polylysine (EPL) and N,O-carboxymethyl chitosan (NOCC) and their potential applications in raw pork. The phase behaviors of PECs in aqueous solutions are characterized by the ζ-potential, mean radius and turbidimetric measurements. Stable colloidal and soluble PEC systems can be fabricated by carefully adjusting the mass ratio of NOCC to EPL. The minimum inhibitory concentration (MIC) assay showed that the colloidal and soluble PECs could maintain the antimicrobial activity of EPL in a laboratory medium. The antimicrobial effectiveness of coatings incorporating three PECs against spoilage microorganisms of raw pork under refrigerated conditions (4 °C) was evaluated. Microbial analysis demonstrated that the bacterial counts were significantly (P 0.05) among all samples in the case of molds and yeasts.

  18. Study of the effects of the reaction conditions on the modification of clays with polyelectrolytes and silanes.

    Science.gov (United States)

    de la Orden, M U; Arranz, J; Lorenzo, V; Pérez, E; Martínez Urreaga, J

    2010-02-01

    New organically modified clays have been obtained from sodium montmorillonite, using either a cationic polyelectrolyte (polyethylenimine) or a novel homemade bisphenol-A silane as modifiers. The modification processes have been carried out in different reaction media, in order to study the effects on the properties of the modified clays of several reaction parameters, such as the pH of the polyethylenimine solution or the nature of the solvent used in the silanization. The obtained clays were characterized using X-ray diffraction, thermogravimetric analysis, and FTIR spectroscopy. Clays modified with polyelectrolyte or silane show significant increases in the basal spacing. The properties of polyelectrolyte-modified clays depend on the pH of the treating solution. The increase in the basal spacing of polyelectrolyte-modified clays varies only slightly with the pH; however, this reaction parameter clearly determines the total amount of polyelectrolyte introduced in the clay. The properties and applications of silane-modified clays are strongly dependent on the presence of water in the reaction media used for the silanization. These results have been explained by considering that the reaction conditions determine the nature and the amount of material intercalated into the clay. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Depletion and double layer forces acting between charged particles in solutions of like-charged polyelectrolytes and monovalent salts.

    Science.gov (United States)

    Moazzami-Gudarzi, Mohsen; Maroni, Plinio; Borkovec, Michal; Trefalt, Gregor

    2017-05-14

    Interaction forces between silica particles were measured in aqueous solutions of the sodium salt of poly(styrene sulphonate) (PSS) and NaCl using the colloidal probe technique based on an atomic force microscope (AFM). The observed forces can be rationalized through a superposition of damped oscillatory forces and double layer forces quantitatively. The double layer forces are modeled using Poisson-Boltzmann (PB) theory for a mixture of a monovalent symmetric electrolyte and a highly asymmetric electrolyte, whereby the multivalent coions represent the polyelectrolyte chains. The effective charge of the polyelectrolyte is found to be smaller than the bare number of charged groups residing on one polyelectrolyte molecule. This effect can be explained by counterion condensation. The interplay between depletion and double layer forces can be further used to predict the phase of the depletion force oscillations. However, this picture holds only at not too elevated concentrations of the polyelectrolyte and salt. At higher salt concentrations, attractive van der Waals forces become important, while at higher polyelectrolyte concentrations, the macromolecules adsorb onto the like-charged silica interface.

  20. Studies on interaction of poly(sodium acrylate) and poly(sodium styrenesulfonate) with cationic surfactants: effects of polyelectrolyte molar mass, chain flexibility, and surfactant architecture.

    Science.gov (United States)

    Wang, Hao; Wang, Yilin

    2010-08-19

    Isothermal titration microcalorimetry, turbidity, and steady-state fluorescence measurements have been used to study interactions of cationic ammonium gemini surfactant (C(12)C(6)C(12)Br(2)) and single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with anionic polyelectrolytes poly(sodium styrenesulfonates) (NaPSS) and poly(sodium acrylates) (NaPAA) with different molar masses. Without any surfactants, NaPSS with lower molar mass has already self-aggregated into aggregates, whereas NaPAA has no aggregation at any molar mass. All of the polyelectrolytes show a remarkable interaction with the cationic surfactants. Compared with DTAB, C(12)C(6)C(12)Br(2) can bind to NaPSS and NaPAA at a very low concentration and has stronger interactions with NaPSS and NaPAA. The flexible NaPAA shows moderately endothermic enthalpies while interacting with the surfactants, but the interaction of the stiff NaPSS with the surfactants exhibits highly exothermic enthalpies. Moreover, the interaction of the stiff NaPSS with the surfactants strongly depends on the polyelectrolyte molar mass, but the polyelectrolyte molar mass almost does not affect the interaction of the flexible NaPAA with the surfactants. Especially, the effect of the polyelectrolyte molar mass becomes more significant when the polyelectrolytes interact with gemini surfactant than with single-chain surfactant. It is revealed that the effects of polyelectrolyte molar mass, chain flexibility, and surfactant architecture on surfactant/polyelectrolyte interactions confine each other.

  1. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    International Nuclear Information System (INIS)

    Zhou, Weitao; Huang, Haitao; Du, Shan; Huo, Yingdong; He, Jianxin; Cui, Shizhong

    2015-01-01

    Graphical abstract: - Highlights: • Polyethylenimine coated silk fibroin nanofibrous nonwovens were fabricated. • The characteristics such as the fiber shape and porous structure were well maintained. • The structure and adsorption properties were studied. The adsorption property for copper ions is good. - Abstract: In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu 2+ adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions

  2. Removal of copper ions from aqueous solution by adsorption onto novel polyelectrolyte film-coated nanofibrous silk fibroin non-wovens

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weitao, E-mail: weitao_zhou@yahoo.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Huang, Haitao [School of Textile, Henan Institute of Engineering, Zhengzhou 451191 (China); Du, Shan [Australian Future Fibers Research and Innovation Centre for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Huo, Yingdong; He, Jianxin [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China); Cui, Shizhong, E-mail: snowballer@163.com [Key Laboratory of Functional Textiles, The Education Department of Henan Province, Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Polyethylenimine coated silk fibroin nanofibrous nonwovens were fabricated. • The characteristics such as the fiber shape and porous structure were well maintained. • The structure and adsorption properties were studied. The adsorption property for copper ions is good. - Abstract: In this approach, polyelectrolyte film-coated nanofibrous silk fibroin (SF) nonwovens were prepared from the alternate deposition of positively charged polyethylenimine (PEI) and negatively charged SF using electrostatic layer-by-layer (LBL) self-assembled technology. The composite membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometer. The SF-PEI multilayer-assembled nanofibers (less than five layers) were fine and uniform with the fiber diameter from 400 nm to 600 nm, and had very large surface area and high porosity (more than 70%). The amino groups of PEI were proved to be deposited onto SF nonwovens, which granted the coated nonwovens with potential applicability for copper ions adsorption. The PEI films coated SF substrate showed much higher copper ions adsorption capacity than that of ethanol treated SF nanofibers. Adding the number of PEI coated could enhance the Cu{sup 2+} adsorption capacity significantly. The maximum milligrams per gram of copper ions adsorbed reached 59.7 mg/g when the SF substrate was coated with 5 bilayers of SF-PEI. However, the copper ions adsorption capacity had no obvious change as the number of PEI continued to increase. These results suggest potential for PEL film-coated nanofibrous nonwovens as a new adsorbent for metal ions.

  3. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  4. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  5. High-resolution X-ray Multilayers

    International Nuclear Information System (INIS)

    Martynov, V.V.; Platonov, Yu.; Kazimirov, A.; Bilderback, D.H.

    2004-01-01

    Two new approaches are taken in multilayer fabrication to help bridge the gap in bandwidth between traditional multilayers (1 to 2%) and perfect crystals (0.01%). The first approach is based on creating many layers of low-contrast Al2O3/ B4C materials. The second approach is based on using multilayer structures with a small d-spacing using traditional W/B4C and Mo/B4C materials. With 8 keV x-rays on the Chess A2 beamline, we measured a bandwidth of 0.27% with a reflectivity of 40% and a Darwin width of 17 arc seconds from a 26 A d-spacing multilayer with 800 bi-layers of Al2O3/B4C using the low-contrast approach. On the other hand, the short period approach with a W/B4C multilayer and a 14.8 A d-spacing showed a resolution of 0.5 % and a reflectivity of 58.5%. Two more Mo/B4C samples with d-spacings of 15 A and 20 A showed energy resolutions of 0.25% and 0.52% with corresponding reflectivities of 39% and 66%. Thus we observe that both methods can produce useful x-ray optical components

  6. Critical interfaces in geosynthetic multilayer liner system of a landfill

    Directory of Open Access Journals (Sweden)

    Qian Xuede

    2008-12-01

    Full Text Available This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak and residual interface strengths. According to current landfill design procedures, conducting stability analysis along the same interface at both the back slope and base may result in a non-conservative result. The critical interfaces with the minimum factor of safety are generally found at different locations along the back slope and base. The critical interface for a multilayer liner system cannot simply be assumed during stability analysis. It can shift from one interface to another with changes in the leachate level and with different leachate buildup cases. The factor of safety for an interface with a high friction angle and low apparent cohesion generally drops much more quickly than it does under inverse conditions when the leachate level increases. The failure interface in a liner system under residual conditions is usually different from the failure interface under peak conditions.

  7. An Analytical Model for CMUTs with Square Multilayer Membranes Using the Ritz Method

    Directory of Open Access Journals (Sweden)

    Wen Zhang

    2016-03-01

    Full Text Available Capacitive micromachined ultrasonic transducer (CMUT multilayer membrane plays an important role in the performance metrics including the transmitting efficiency and the receiving sensitivity. However, there are few studies of the multilayer membranes. Some analytical models simplify the multilayer membrane as monolayer, which results in inaccuracies. This paper presents a new analytical model for CMUTs with multilayer membranes, which can rapidly and accurately predict static deflection and response frequency of the multilayer membrane under external pressures. The derivation is based on the Ritz method and Hamilton’s principle. The mathematical relationships between the external pressure, static deflection, and response frequency are obtained. Relevant residual stress compensation method is derived. The model has been verified for three-layer and double-layer CMUT membranes by comparing its results with finite element method (FEM simulations, experimental data, and other monolayer models that treat CMUTs as monolayer plates/membranes. For three-layer CMUT membranes, the relative errors are ranging from 0.71%–3.51% for the static deflection profiles, and 0.35%–4.96% for the response frequencies, respectively. For the double-layer CMUT membrane, the relative error with residual stress compensation is 4.14% for the central deflection, and −1.17% for the response frequencies, respectively. This proposed analytical model can serve as a reliable reference and an accurate tool for CMUT design and optimization.

  8. Transmission fingerprints in quasiperiodic magnonic multilayers

    Science.gov (United States)

    Coelho, I. P.; Vasconcelos, M. S.; Bezerra, C. G.

    2011-12-01

    In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants JA and JB and spin quantum numbers SA and SB, respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant JC and spin quantum number SC. For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints.

  9. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  10. Sewage sludge dehydration with biodegradable polyelectrolytes as flocculants. Final report. Pt. 1. Development of synthetic polyelectrolytes; Klaerschlammentwaesserung unter Einsatz biologisch abbaubarer Polyelektrolyte als Flockungshilfsmittel. Abschlussbericht. T. 1. Entwicklung der synthetischen Polyelektrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Matuschewski, H.; Gohlke, U.; Jaeger, W.

    1997-09-01

    Polyelectrolytes with improved degradability were to be developed for dehydration of uncontaminated sewage sludge. Part-project I investigated the synthesis of polymers. For this purpose, polyvinyl alcohol was functionalized into polyelectrolytes by etheration, Mannich reaction, acetalisation and graft copolymerisation. Some of the new polymers have very good flocculation and dehydration characteristics. (SR) [Deutsch] Ziel des Vorhabens war es, Ergebnisse zur Entwaesserung nicht kontaminierter Klaerschlaemme mit Polyelektrolyten mit verbesserter Abbaubarkeit zu erarbeiten. Ziel des Teilvorhabens I war die Synthese entsprechender Polymerer. Dazu wurde Polyvinylalkohol durch Veretherung, Mannichreaktion, Acetalisierung und Propfcopolymerisation zu Polyelektrolyten funktionalisiert. Die neuen Polymere weisen zum Teil sehr gute Flockungs- und Entwaesserungseigenschaften auf. (SR)

  11. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    Directory of Open Access Journals (Sweden)

    Troy W. Lowry

    2015-08-01

    Full Text Available Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.

  12. Microstructure and tribological properties of WS2/MoS2 multilayer films

    International Nuclear Information System (INIS)

    Zhu Lina; Wang Chengbiao; Wang Haidou; Xu Binshi; Zhuang Daming; Liu Jiajun; Li Guolu

    2012-01-01

    In this paper, a novel method, namely, magnetron sputtering and low temperature ion sulfurizing combined technique was used to fabricate the solid lubrication WS 2 /MoS 2 multilayer films. Scanning Electron Microscopy (SEM) was used to observe the surface and worn scar morphologies. X-ray diffraction (XRD) was utilized to analyze the phase structure. The nano-hardness and elastic modulus of WS 2 /MoS 2 multilayer films were surveyed by the nano-indentation tester. The friction and wear test were conducted on a ball-on-disk wear tester under dry sliding condition. The results obtained showed that the WS 2 /MoS 2 multilayer films exhibited a lower friction coefficient and better wear-resistance when compared with single WS 2 film and original 1045 steel.

  13. Classification of PolSAR Images Using Multilayer Autoencoders and a Self-Paced Learning Approach

    Directory of Open Access Journals (Sweden)

    Wenshuai Chen

    2018-01-01

    Full Text Available In this paper, a novel polarimetric synthetic aperture radar (PolSAR image classification method based on multilayer autoencoders and self-paced learning (SPL is proposed. The multilayer autoencoders network is used to learn the features, which convert raw data into more abstract expressions. Then, softmax regression is applied to produce the predicted probability distributions over all the classes of each pixel. When we optimize the multilayer autoencoders network, self-paced learning is used to accelerate the learning convergence and achieve a stronger generalization capability. Under this learning paradigm, the network learns the easier samples first and gradually involves more difficult samples in the training process. The proposed method achieves the overall classification accuracies of 94.73%, 94.82% and 78.12% on the Flevoland dataset from AIRSAR, Flevoland dataset from RADARSAT-2 and Yellow River delta dataset, respectively. Such results are comparable with other state-of-the-art methods.

  14. Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity

    Science.gov (United States)

    Manfredi, S.; Di Tucci, E.; Latora, V.

    2018-02-01

    Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.

  15. Magnetic depth profiling of Fe/Au multilayer using neutron ...

    Indian Academy of Sciences (India)

    We present unpolarized and polarized neutron reflectometry data on Fe/Au multilayer sample for characterizing the layer structure and magnetic moment density profile. Fe/Au multilayer shows strong spin-dependent scattering at interfaces, making it a prospective GMR material. Fe/Au multilayer with bilayer thickness of 130 ...

  16. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  17. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.

    Science.gov (United States)

    Li, Hao; Chen, Guang; Das, Siddhartha

    2016-11-01

    Understanding the behavior and properties of spherical polyelectrolyte brushes (SPEBs), which are polyelectrolyte brushes grafted to a spherical core, is fundamental to many applications in biomedical, chemical and petroleum engineering as well as in pharmaceutics. In this paper, we study the pH-responsive electrostatics of such SPEBs in the decoupled regime. In the first part of the paper, we derive the scaling conditions in terms of the grafting density of the PEs on the spherical core that ensure that the analysis can be performed in the decoupled regime. In such a regime the elastic and the excluded volume effects of polyelectrolyte brushes (PEBs) can be decoupled from the electrostatic effects associated with the PE charge and the induced EDL. As a consequence the PE brush height, assumed to be dictated by the balance of the elastic and excluded volume effects, can be independent of the electrostatic effects. In the second part, we quantify the pH-responsive electrostatics of the SPEBs - we pinpoint that the radial monomer distribution for a given brush molecule exhibit a non-unique cubic distribution that decays away from the spherical core. Such a monomer distribution ensures that the hydrogen ion concentration is appropriately accounted for in the description of the SPEB thermodynamics. We anticipate that the present analysis, which provides possibly one of the first models for probing the electrostatics of pH-responsive SPEBs in a thermodynamically-consistent framework, will be vital for understanding the behavior of a large number of entities ranging from PE-coated NPs and stealth liposomes to biomolecules like bacteria and viruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    Science.gov (United States)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  19. On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)

    2015-08-21

    Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and

  20. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties.

    Science.gov (United States)

    Gu, Haibin; Ciganda, Roberto; Hernandez, Ricardo; Castel, Patricia; Zhao, Pengxiang; Ruiz, Jaime; Astruc, Didier

    2016-04-01

    Diblock metallopolymer polyelectrolytes containing the two redox-robust cationic sandwich units [CoCp'Cp](+) and [FeCp'(η(6)-C6 Me6)](+) (Cp = η(5)-C5 H5; Cp' = η(5)-C5H4-) as hexafluorophosphate ([PF6](-)) salts are synthesized by ring-opening metathesis polymerization using Grubbs' third generation catalyst. Their electrochemical properties show full chemical and electrochemical reversibilities allowing fine determination of the copolymer molecular weight using Bard-Anson's electrochemical method by cyclic voltammetry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Formation of J-Aggregates of an Anionic Oxacarbocyanine Dye Upon Interaction with Proteins and Polyelectrolytes

    Science.gov (United States)

    Pronkin, P. G.; Tatikolov, A. S.

    2017-05-01

    J-aggregation of the anionic oxacarbocyanine dye 3,3'-di-(γ-sulfopropyl)-5,5'-diphenyl-9-ethyloxacarbocyanine betaine was studied in aqueous solutions in the presence of proteins (collagens, immunoglobulin G, serum albumins) and polyelectrolytes (polyethyleneimine, polyvinylpyrrolidone). It was found that denaturation of human serum albumin by urea stimulated J-aggregation of the dye. The dye formed two types of J-aggregates in the presence of denatured albumin and polyethyleneimine. J-aggregates formed in the presence of polyethyleneimine rearranged over time.

  2. Low molecular weight chitosan–insulin polyelectrolyte complex: characterization and stability studies

    OpenAIRE

    Al-Kurdi, Zakieh; Chowdhry, Babur Z.; Leharne, Stephen A.; Omari, Mahmoud; Badwan, Adnan

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and che...

  3. Coherent multilayer crystals and method of making

    Science.gov (United States)

    Schuller, I.K.; Falco, C.M.

    A new material consisting of a multilayer crystalline structure is described which is coherent perpendicular to the layers and where each layer is composed of a single crystallilne element. The individual layers may vary from 2A to 100A or more in thickness.

  4. Multilayer Network Planning - A Practical Perspective

    OpenAIRE

    Autenrieth, Achim

    2018-01-01

    The paper presents a pragmatic and practical multilayer network planning approach based on a candidate lightpath auxiliary graph model. The paper discusses, how this approach can be applied to offline network planning as well as dynamic planning and provisioning of services.

  5. Mechanical properties of glass polymer multilayer composite

    Indian Academy of Sciences (India)

    Unknown

    Mechanical properties of glass polymer multilayer composite. A SEAL, N R BOSE, S K DALUI, A K MUKHOPADHYAY*, K K PHANI and. H S MAITI. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The preliminary experimental studies on the comparative behaviour of the deformation ...

  6. Optical and structural study of BST multilayers

    Czech Academy of Sciences Publication Activity Database

    Železný, Vladimír; Chvostová, Dagmar; Pajasová, Libuše; Jelínek, Miroslav; Kocourek, Tomáš; Daniš, S.; Valvoda, V.

    2010-01-01

    Roč. 12, č. 3 (2010), 538-541 ISSN 1454-4164 R&D Projects: GA ČR GA202/07/0591 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z10100520 Keywords : ellipsometry * structure * ferroelectric multilayers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  7. Lamellar multilayer hexadecylaniline-modified gold nanoparticle ...

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  8. Langmuir Blodgett multilayers and related nanostructures

    Indian Academy of Sciences (India)

    Langmuir Blodgett (LB) process is an important route to the development of organized molecular layered structures of a variety of organic molecules with suitably designed architecture and functionality. LB multilayers have also been used as templates and precursors to develop nano-structured thin films. In this article ...

  9. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...... to the recently derived plasma resonance phenomena for high T-c superconductors of the BSCCO type is discussed....

  10. Tunable self-organization of nanocomposite multilayers

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Shaha, K.P.; Hosson, J.Th.M. De

    2010-01-01

    In this letter we report the controlled growth and microstructural evolution of self-assembled nanocomposite multilayers that are induced by surface ion-impingement. The nanoscale structures together with chemical composition, especially at the growing front, have been investigated with

  11. Transmission fingerprints in quasiperiodic magnonic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, I.P. [Departamento de Ensino Superior, Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao, Imperatriz-MA 65919-050 (Brazil); Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Vasconcelos, M.S. [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil); Bezerra, C.G., E-mail: cbezerra@dfte.ufrn.br [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, Natal-RN 59072-970 (Brazil)

    2011-12-15

    In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J{sub A} and J{sub B} and spin quantum numbers S{sub A} and S{sub B}, respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J{sub C} and spin quantum number S{sub C}. For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: > We model quasiperiodic magnetic multilayers presenting mirror symmetry. > We investigated the allowed and forbidden bands of magnonic transmission. > Transmission return maps show the influence of mirror symmetry. > Mirror symmetry has no effect on the Fibonacci case. > Mirror symmetry does have effect on the Thue-Morse and double period cases.

  12. Transmission fingerprints in quasiperiodic magnonic multilayers

    International Nuclear Information System (INIS)

    Coelho, I.P.; Vasconcelos, M.S.; Bezerra, C.G.

    2011-01-01

    In this paper we investigated the influence of mirror symmetry on the transmission spectra of quasiperiodic magnonic multilayers arranged according to Fibonacci, Thue-Morse and double period quasiperiodic sequences. We consider that the multilayers composed of two simple cubic Heisenberg ferromagnets with bulk exchange constants J A and J B and spin quantum numbers S A and S B , respectively. The multilayer structure is surrounded by two semi-infinite slabs of a third Heisenberg ferromagnetic material with exchange constant J C and spin quantum number S C . For simplicity, the lattice constant has the same value a in each material, corresponding to epitaxial growth at the interfaces. The transfer matrix treatment was used for the exchange-dominated regime, taking into account the random phase approximation (RPA). Our numerical results illustrate the effects of mirror symmetry on (i) transmission spectra and (ii) transmission fingerprints. - Highlights: → We model quasiperiodic magnetic multilayers presenting mirror symmetry. → We investigated the allowed and forbidden bands of magnonic transmission. → Transmission return maps show the influence of mirror symmetry. → Mirror symmetry has no effect on the Fibonacci case. → Mirror symmetry does have effect on the Thue-Morse and double period cases.

  13. Lamellar multilayer hexadecylaniline-modified gold nanoparticle

    Indian Academy of Sciences (India)

    Organization of hexadecylaniline (HDA)-modified colloidal gold particles at the air-water interface and the formation thereafter of lamellar, multilayer films of gold nanoparticles by the Langmuir-Blodgett technique is described in this paper. Formation of HDA-capped gold nanoparticles is accomplished by a simple biphasic ...

  14. Measure of Node Similarity in Multilayer Networks

    DEFF Research Database (Denmark)

    Møllgaard, Anders; Zettler, Ingo; Dammeyer, Jesper

    2016-01-01

    university.Our analysis is based on data obtained using smartphones equipped with customdata collection software, complemented by questionnaire-based data. The networkof social contacts is represented as a weighted multilayer network constructedfrom different channels of telecommunication as well as data...

  15. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  16. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  17. Langmuir Blodgett multilayers and related nanostructures

    Indian Academy of Sciences (India)

    Abstract. Langmuir Blodgett (LB) process is an important route to the development of organized molecular layered structures of a variety of organic molecules with suitably designed architecture and functionality. LB multilayers have also been used as templates and precursors to develop nano-structured thin films.

  18. Ceramic-Metal Interfaces in Multilayer Actuators

    DEFF Research Database (Denmark)

    Engell, John; Pedersen, Henrik Guldberg; Andersen, Bjørn

    1996-01-01

    Multilayer actuators consist of a number of piezoelectric or electrostrictive ceramic layers, separated by thin metal electrodes. Thus, the ceramic-metal interface plays an even more important role than for bulk piezoceramics. The performance and durability of the actuator depends closely...

  19. Plasticity and microstructure of epitaxial Ag/Ni multilayers; Mechanische Eigenschaften und Mikrostruktur epitaktischer Ag/Ni-Multilagenschichten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias K.

    2007-10-15

    To meet the still increasing technical demands of new materials, it is required to improve basic knowledge of thin films and multilayers. This thesis describes the microstructure and mechanical behaviour of thin epitaxial Ag/Ni-multilayers. Former investigations were only done on polycrystalline multilayers or epitaxial single layers. The manufacture of epitaxial Ag/Ni-multilayers on (111) orientated Si-substrates was performed by a magnetron sputtering technique under ultra high vacuum (UHV). The thickness of the alternating Ag- and Ni-layers varies between 100 and 400 nm, the thickness of the whole film varies between 200 and 800 nm. Hardness and flow stress of Ag/Ni-multilayers were measured with a nanoindentation technique, a substrate curvature method and by X-ray diffraction. The hardness of these multilayers varies between 1.5 and 2.0 GPa. The Ag single film hardness is 0.5 GPa and Ni film 1.8 GPa. The flow stress of the Ag/Ni-multilayers varies between 350 and 800 MPa. The Ag single layer shows a flow stress of 100 MPa and Ni of 450 MPa. Both hardness and flow stress increase with decreasing layer thickness. In situ TEM and HRTEM experiments showed a semicoherent Ag/Ni-interface. It was observed that these interfaces act as sources and sinks. Dislocation loops formed at the interface expand and shrink according to the stress state. They combine with loops from the opposite interface or with the interface itself and form threading dislocations. Dislocation loops penetrating an interface were not observed. Results were compared with various models which simulate flow stress in thin films and multilayers. The most important models are calculated by Nix-Freund, the Source-model after von Blanckenhagen and the Hall-Petch-model. (orig.)

  20. Affibody-attached hyperbranched conjugated polyelectrolyte for targeted fluorescence imaging of HER2-positive cancer cell.

    Science.gov (United States)

    Pu, Kan-Yi; Shi, Jianbing; Cai, Liping; Li, Kai; Liu, Bin

    2011-08-08

    A hyperbranched conjugated polyelectrolyte (HCPE) with a core-shell structure is designed and synthesized via alkyne polycyclotrimerization and click chemistry. The HCPE has an emission maximum at 565 nm with a quantum yield of 12% and a large Stokes shift of 143 nm in water. By virtue of its poly(ethylene glycol) shell, this polymer naturally forms spherical nanoparticles that minimize nonspecific interaction with biomolecules in aqueous solution, consequently allowing for efficient bioconjugation with anti-HER2 affibody via carbodiimide-activated coupling reaction. The resulting affibody-attached HCPE can be utilized as a reliable fluorescent probe for targeted cellular imaging of HER2-overexpressed cancer cells such as SKBR-3. Considering its low cytotoxicity and good photostability, the HCPE nanoprobe holds great promise in practical imaging tasks. This study also provides a molecular engineering strategy to overcome the intrinsic limitations of traditional fluorescent polymers (e.g., chromophore-tethered polymers and linear conjugated polyelectrolytes) for bioconjugation and applications.

  1. Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films

    International Nuclear Information System (INIS)

    Carballo, R.R.; Campodall' Orto, V.; Hurst, J.A.; Spiaggi, A.; Bonazzola, C.; Rezzano, I.N.

    2008-01-01

    A formylporphyrin has been covalently bound to Poly (Allylamine Hydrochloride) (PAH) and electrostatically self-assembled polyelectrolyte films, containing the attached metalloporphyrin, have been constructed. The UV-vis absorption band at 390 nm has been followed as core porphyrin marker. The reflection-absorption IR spectra of the gold films modified with layer-by-layer (LBL) polyelectrolytes were recorded after 6 and 12 layers. Characteristic infrared absorbance bands of porphyrin, PAH and PVS became more evident on increasing the number of bilayers. The absorption bands at 750, 1214 and 2960 cm -1 , attributed at ν(S-O), ν s (SO 3 - ) and ν(=NH 2 + ), respectively, showed a linear growth (R 2 > 0.99) with the number of adsorbed layers. A lower correlation coefficient was observed for the band at 1585 cm -1 attributed to Fe-protoporphyrin. In order to evaluate the electron transfer (ET) rate, the ΔE p of the [Fe(CN) 6 ] 4- /[Fe(CN) 6 ] 3- couple in solution was measured after covering the electrode. A proportional increase of the ΔE p with the number of layers is observed up to the 4th layer. After the second bilayer, the magnitude of the peak separation is highly related to the charge of the topmost layer. The method allowed controlling the film thickness via the number of deposited layers (LBL). The electrode described, resulted in a good catalyst for O 2 reduction and sulfite oxidation

  2. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes.

    Science.gov (United States)

    Guo, Yong; van Ravensteijn, Bas G P; Evers, Chris H J; Kegel, Willem K

    2017-05-09

    We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies.

  3. Effect of nanoparticles size and polyelectrolyte on nanoparticles aggregation in a cellulose fibrous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Raghuwanshi, Vikram Singh; Garusinghe, Uthpala Manavi; Ilavsky, Jan; Batchelor, Warren J.; Garnier, Gil

    2018-01-01

    Controlling nanoparticles (NPs) aggregation in cellulose/NPs composites allows to optimise NPs driven properties and their applications. Polyelectrolytes are used to control NPs aggregation and their retention within the fibrous matrix. Here, we aim at evaluating how a polyelectrolyte (Cationic Polyacrylamide; CPAM, molecular weight: 13 MDa, charge: 50%, Radius of gyration: 30–36 nm) adsorbs and re-conforms onto the surface of silica(SiO2) NPs differing in diameter (8, 22 and 74 nm) and to investigate the respective NPs aggregation in cellulose matrices. SEM shows the local area distribution of NPs in composites. Ultra-SAXS (USAXS) allows to evaluate the average NPs size distribution and the inter-particle interactions at length scale ranging from 1 to 1000 nm. USAXS data analysis reveals that CPAM covers multiple NPs of the smaller diameter (8 nm), presumably with a single chain to form large size NPs aggregates. As the NPs diameter is increased to 22 nm, CPAM re-conforms over NP surface forming a large shell of thickness 5.5 nm. For the composites with NPs of diameter 74 nm, the CPAM chain re-conforms further onto NP surface and the surrounding shell thickness decreases to 2.2 nm. Structure factor analysis reveals higher structural ordering for NPs as increases their diameter, which is caused by different conformations adopted by CPAM onto NPs surface.

  4. Condensation of Counterions Gives Rise to Contraction Transitions in a One-Dimensional Polyelectrolyte Gel

    Directory of Open Access Journals (Sweden)

    Gerald S. Manning

    2018-04-01

    Full Text Available The equilibrium volume of a polyelectrolyte gel results from a balance between the tendency to swell caused by outbound polymer/counterion diffusion along with Coulomb interactions on the one hand; and, on the other, the elastic resilience of the cross-linked polymer network. Direct Coulomb forces contribute both to non-ideality of the equilibrated Donnan osmotic pressure, but also to stretching of the network. To isolate the effect of polyelectrolyte expansion, we have analyzed a “one-dimensional” version of a gel, a linear chain of charged beads connected by Hooke’s law springs. As in the range of weak Coulomb strengths previously studied, the springs are significantly stretched by the repulsive interactions among the beads even when the Coulomb strength is strong enough to cause condensation of counterions. There is a quasi-abrupt transition from a stretched state to a partially collapsed state in a transition range between weak and strong Coulomb strengths. Fluctuations between stretched and contracted conformations occur within the transition range. As the solvent quality decreases past the transition range, a progressive collapse can result if the condensed counterions strengthen the spring constant.

  5. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    Science.gov (United States)

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    Science.gov (United States)

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-assembled nanoparticles from a block polyelectrolyte in aqueous media: structural characterization by SANS.

    Science.gov (United States)

    Papagiannopoulos, Aristeidis; Karayianni, Maria; Mountrichas, Grigoris; Pispas, Stergios; Radulescu, Aurel

    2010-06-10

    We present a small angle neutron scattering (SANS) study of polystyrene-b-sodium (sulfamate/carboxylate) isoprene (PS-PSCI) nanoparticles in aqueous media. The SANS experiments are complemented by static and dynamic light scattering measurements. A detailed analysis of the scattering form factor obtained by SANS for the self-assembled block polyelectrolyte spherical nanoparticles implies a two-region power-law model for the radial volume fraction profiles. The theoretically predicted scaling of the osmotic brush regime phi(r) approximately r(-2) for the inner region and the osmotic annealing brush regime phi(r) approximately r(-8/3) for the outer region are in agreement with our experimental findings. A concentrated shell of PSCI polyelectrolyte chains collapsed on the polystyrene core is needed in the form factor analysis so that the aggregation number of the nanoparticles is self-consistent. The self-assembled nanoparticles are found to be kinetically frozen i.e. their aggregation number is not sensitive to the solution conditions and is defined by the preparation protocol. The size of the spherical nanoparticles tends to decrease upon the addition of salt and the drop of pH.

  8. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.

    Science.gov (United States)

    Jian, Yongjun; Li, Fengqin; Liu, Yongbo; Chang, Long; Liu, Quansheng; Yang, Liangui

    2017-08-01

    In order to conduct extensive investigation of energy harvesting capabilities of nanofluidic devices, we provide analytical solutions for streaming potential and electrokinetic energy conversion (EKEC) efficiency through taking the combined consequences of soft nanochannel, a rigid nanochannel whose surface is covered by charged polyelectrolyte layer, and viscoelastic rheology into account. The viscoelasticity of the fluid is considered by employing the Maxwell constitutive model when the forcing frequency of an oscillatory driving pressure flow matches with the inverse of the relaxation time scale of a typical viscoelastic fluid. We compare the streaming potential and EKEC efficiency with those of a rigid nanochannel, having zeta potential equal to the electrostatic potential at the solid-polyelectrolyte interface of the soft nanochannels. Within the present selected parameter ranges, it is shown that the different peaks of maximal streaming potential and EKEC efficiency for the rigid nanochannel are larger than those for the soft nanochannel when forcing frequencies of the driving pressure gradient are close to resonating frequencies. However, more enhanced streaming potential and EKEC efficiency for a soft nanochannel can be found in most of the regions away from these resonant frequencies. Moreover, the influence of several dimensionless parameters on EKEC efficiency is discussed in detail. Finally, within the given parametric regions, the maximum efficiency at some resonant frequency obtained in present analysis is about 25%. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Self-Assembled Polyelectrolyte Nanoparticles as Fluorophore-Free Contrast Agents for Multicolor Optical Imaging

    Directory of Open Access Journals (Sweden)

    Da Hye Shin

    2015-03-01

    Full Text Available In this work, we describe the fabrication of self-assembled polyelectrolyte nanoparticles that provide a multicolor optical imaging modality. Poly(γ-glutamic acid(γ-PGA formed self-assembled nanoparticles through electrostatic interactions with two different cationic polymers: poly(L-lysine(PLL and chitosan. The self-assembled γ-PGA/PLL and γ-PGA/chitosan nanoparticles were crosslinked by glutaraldehyde. Crosslinking of the ionic self-assembled nanoparticles with glutaraldehyde not only stabilized the nanoparticles but also generated a strong autofluorescence signal. Fluorescent Schiff base bonds (C=N and double bonds (C=C were generated simultaneously by crosslinking of the amine moiety of the cationic polyelectrolytes with monomeric glutaraldehyde or with polymeric glutaraldehyde. The unique optical properties of the nanoparticles that resulted from the crosslinking by glutaraldehyde were analyzed using UV/Vis and fluorescence spectroscopy. We observed that the fluorescence intensity of the nanoparticles could be regulated by adjusting the crosslinker concentration and the reaction time. The nanoparticles also exhibited high performance in the labeling and monitoring of therapeutic immune cells (macrophages and dendritic cells. These self-assembled nanoparticles are expected to be a promising multicolor optical imaging contrast agent for the labeling, detection, and monitoring of cells.

  11. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes

    Science.gov (United States)

    Li, Yiye; Lu, Zhenzhen; Li, Zhongjun; Nie, Guangjun; Fang, Ying

    2014-05-01

    We report a facile approach for the fabrication of a new class of graphene oxide (GO)-based nanoassemblies by layer-by-layer (LbL) technique. The single-layer thickness and intrinsic negatively charged carboxyl groups of GO nanosheets provide a natural platform for LbL assembly of polyelectrolyte nanofilms by electrostatic forces at mild and aqueous conditions. The general applicability of our approach is demonstrated by the preparation of GO nanoassemblies with sizes of 100-200 nm using various charged polyelectrolytes, including synthetic polymers, polypeptides, and DNA oligonucleotides. Systemic assessment of cytotoxicity and acute stress response show that no discernable signs of cytotoxicity are associated with exposure of GO and its nanoassemblies [GO/PLL (poly ( l-lysine)), GO/PLL/PSS (poly(sodium-4-styrenesulfonate)), GO/PLL-PEG (PEGlayted PLL), GO/PLL/PLGA-PEG (PEGlayted poly ( l-glutamic acid))] up to 1 μg/mL. Studies on cellular uptake and subcellular localization show that a representative nanoassembly, GO/PLL-PEG, can effectively cross cell membranes and localize mainly in lysosomal compartments, without induction of noticeable harmful effects as confirmed by detection of mitochondrial depolarization and lysosomal pH.

  12. Polyelectrolyte flocculation of grain stillage for improved clarification and water recovery within bioethanol production facilities.

    Science.gov (United States)

    Menkhaus, Todd J; Anderson, Jason; Lane, Samuel; Waddell, Evan

    2010-04-01

    Polyelectrolytes were investigated for flocculation of a corn whole stillage stream to improve solid-liquid clarification operations and reduce downstream utility requirements for evaporation and drying within a bioethanol process. Despite a negative zeta potential for the stillage solids, an anionic polyelectrolyte was found to provide the best flocculation. At the optimal dosage of 1.1mg polymer/g dry suspended solids, an anionic flocculant provided a clarified stream with only 0.15% w/w suspended solids (equivalent to a total dissolved solid to total suspended solid ratio greater than 40, and a viscosity reduction of 39% compared to an unflocculated "clarified" stream). The resulting solids cake had greater than 40% w/w solids, and more than 80% water recovery was found in the clarified stream. Addition of flocculant improved filtration flux by six fold and/or would allow for up to a 4-times higher flow rate if using a decanting centrifuge for clarification of corn stillage. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. A multilayered electrospun graft as vascular access for hemodialysis.

    Science.gov (United States)

    Radakovic, D; Reboredo, J; Helm, M; Weigel, T; Schürlein, S; Kupczyk, E; Leyh, R G; Walles, H; Hansmann, J

    2017-01-01

    Despite medical achievements, the number of patients with end-stage kidney disease keeps steadily raising, thereby entailing a high number of surgical and interventional procedures to establish and maintain arteriovenous vascular access for hemodialysis. Due to vascular disease, aneurysms or infection, the preferred access-an autogenous arteriovenous fistula-is not always available and appropriate. Moreover, when replacing small diameter blood vessels, synthetic vascular grafts possess well-known disadvantages. A continuous multilayered gradient electrospinning was used to produce vascular grafts made of collagen type I nanofibers on luminal and adventitial graft side, and poly-ɛ-caprolactone as medial layer. Therefore, a custom-made electrospinner with robust environmental control was developed. The morphology of electrospun grafts was characterized by scanning electron microscopy and measurement of mechanical properties. Human microvascular endothelial cells were cultured in the graft under static culture conditions and compared to cultures obtained from dynamic continuous flow bioreactors. Immunofluorescent analysis showed that endothelial cells form a continuous luminal layer and functional characteristics were confirmed by uptake of acetylated low-density-lipoprotein. Incorporation of vancomycin and gentamicin to the medial graft layer allowed antimicrobial inhibition without exhibiting an adverse impact on cell viability. Most striking a physiological hemocompatibility was achieved for the multilayered grafts.

  14. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  15. Progressive halftone watermarking using multilayer table lookup strategy.

    Science.gov (United States)

    Guo, Jing-Ming; Lai, Guo-Hung; Wong, Koksheik; Chang, Li-Chung

    2015-07-01

    In this paper, a halftoning-based multilayer watermarking of low computational complexity is proposed. An additional data-hiding technique is also employed to embed multiple watermarks into the watermark to be embedded to improve the security and embedding capacity. At the encoder, the efficient direct binary search method is employed to generate 256 reference tables to ensure the output is in halftone format. Subsequently, watermarks are embedded by a set of optimized compressed tables with various textural angles for table lookup. At the decoder, the least mean square metric is considered to increase the differences among those generated phenotypes of the embedding angles and reduce the required number of dimensions for each angle. Finally, the naïve Bayes classifier is employed to collect the possibilities of multilayer information for classifying the associated angles to extract the embedded watermarks. These decoded watermarks can be further overlapped for retrieving the additional hidden-layer watermarks. Experimental results show that the proposed method requires only 8.4 ms for embedding a watermark into an image of size 512×512 , under the 32-bit Windows 7 platform running on 4GB RAM, Intel core i7 Sandy Bridge with 4GB RAM and IDE Visual Studio 2010. Finally, only 2 MB is required to store the proposed compressed reference table.

  16. Laser stereolithography by multilayer cladding of metal powders

    Science.gov (United States)

    Jendrzejewski, Rafal; Rabczuk, Grazyna T.; Zaremba, R.; Sliwinski, Gerard

    1998-07-01

    3D-structures obtained by means of laser cladding of the metal alloy powders: bronze B10 and stellite 6 and the process parameters are studied experimentally. The structures are made trace-on-trace by remelting of the metal powder injected into the focusing region of the 1.2 kW CO2 laser beam. For the powder and sample feeding rates of 8-22 g/min and 0.4-1.2 m/min, respectively, and the applied beam intensities not exceeding 2 X 105 W cm-2 the process is stable and regular traces connected via fusion zones are produced for each material. The thickness of these zones does not exceed several per cent of the layer height. The process results in the efficient formation of multilayer structures. From their geometry the effect of energy coupling and interaction parameters are deduced. Moreover, the microanalysis by means of SEM- and optical photographs of samples produced under different experimental conditions confirms the expected mechanical properties, low porosity and highly homogenous structure of the multilayers. In addition to the known material stellite 6 the bronze B10 is originally proposed for a rapid prototyping.

  17. Aggregation of superparamagnetic iron oxide nanoparticles in dilute aqueous dispersions: Effect of coating by double-hydrophilic block polyelectrolyte

    Czech Academy of Sciences Publication Activity Database

    Hajduová, J.; Uchman, M.; Šafařík, Ivo; Šafaříková, Miroslava; Šlouf, Miroslav; Pispas, S.; Štěpánek, M.

    2015-01-01

    Roč. 483, oct (2015), s. 1-7 ISSN 0927-7757 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:67179843 ; RVO:61389013 Keywords : magnetic nanoparticles * block polyelectrolytes * aggregation * small-angle light scattering Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 2.760, year: 2015

  18. Adsorption of flexible polyelectrolytes : a theoretical and experimental study of polystyrene sulfonate adsorption on polyoxymethylene single crystals

    NARCIS (Netherlands)

    Papenhuijzen, J.

    1985-01-01

    The objective of the present work was to collect systematic adsorption data for a well-defined polyelectrolyte on an uncharged, homogeneous surface, and to compare these with the new theory that was recently developed by Van der Schee.

    In chapter 1 we shortly describe which

  19. Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications.

    Science.gov (United States)

    Hasani-Sadrabadi, Mohammad Mahdi; Dashtimoghadam, Erfan; Majedi, Fatemeh S; Kabiri, Kourosh; Mokarram, Nassir; Solati-Hashjin, Mehran; Moaddel, Homayoun

    2010-09-21

    This study is concerned with electrochemical investigation of novel high-performance proton exchange membranes based on bio-functionalized montmorillonite and Nafion. It was found that the incorporation of 2 wt% BMMT into Nafion polyelectrolyte matrix results in significantly improved methanol-air fuel cell efficiency of 30% compared to 14% for Nafion(R)117, and about 23-times higher membrane selectivity.

  20. Aqueous AGET ATRP of sodium 2-acrylamido-2-methyl-N-propane sulfonate yielding strong anionic comb polyelectrolytes

    Czech Academy of Sciences Publication Activity Database

    Tolstov, A.; Gromadzki, Daniel; Netopilík, Miloš; Makuška, R.

    -, 075 (2012), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR GCP205/11/J043 Institutional research plan: CEZ:AV0Z40500505 Keywords : AGET ATRP * polyelectrolytes Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.400, year: 2012 http://www.e-polymers.org/journal/papers/dgromadzki_260812.pdf

  1. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    Science.gov (United States)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  2. Novel multilayer microcapsules based on soy protein isolate fibrils and high methoxyl pectin: Production, characterization and release modeling.

    Science.gov (United States)

    Ansarifar, Elham; Mohebbi, Mohebbat; Shahidi, Fakhri; Koocheki, Arash; Ramezanian, Navid

    2017-04-01

    In this study, novel microcapsules were produced through the layer by layer adsorption of food-grade and plant-based polyelectrolytes, soy protein isolate (SPI) fibrils and high methoxyl pectin (HMP). The physical properties of the fibrils were investigated by TEM and AFM and the properties of the microcapsules such as size, uniformity, zeta potential, morphology, functional groups, modeling and the release kinetics of limonene were examined. The results revealed that SPI-fibrils had a thickness varying from 1 to 10nm and strand like structure. SEM images showed that the microcapsules were spherical and the thickness increased by the number of layers which led to the improvement of shell strength. The FTIR results confirmed that HMP and SPI-fibrils were adsorbed layer by layer as the walls of microcapsules and presence of limonene was stable into microcapsules. By increasing the number of layers of the shell from 2 to 6, the release rate of limonene decreased significantly. The index n in Rigter-Peppas model indicates that the release mechanism of limonene from multilayer microcapsules followed a non-Fick law. This method of microcapsule production is very simple and could be readily industrialized, especially for the manufacture of food products for vegetarians. Copyright © 2017. Published by Elsevier B.V.

  3. Damage of multilayer polymer materials under creep loading

    Czech Academy of Sciences Publication Activity Database

    Zouhar, Michal; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2011-01-01

    Roč. 465, - (2011), s. 153-156 ISSN 1013-9826 R&D Projects: GA ČR GA106/09/0279; GA ČR GC101/09/J027 Institutional research plan: CEZ:AV0Z20410507 Keywords : CMOD * material interface * creep * fracture mechanics Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

    International Nuclear Information System (INIS)

    Biro, D.; Barna, P.B.; Szekely, L.; Geszti, O.; Hattori, T.; Devenyi, A.

    2008-01-01

    The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness

  5. Measure of Node Similarity in Multilayer Networks

    DEFF Research Database (Denmark)

    Møllgaard, Anders; Zettler, Ingo; Dammeyer, Jesper

    2016-01-01

    The weight of links in a network is often related to the similarity of thenodes. Here, we introduce a simple tunable measure for analysing the similarityof nodes across different link weights. In particular, we use the measure toanalyze homophily in a group of 659 freshman students at a large...... university.Our analysis is based on data obtained using smartphones equipped with customdata collection software, complemented by questionnaire-based data. The networkof social contacts is represented as a weighted multilayer network constructedfrom different channels of telecommunication as well as data...... might bepresent in one layer of the multilayer network and simultaneously be absent inthe other layers. For a variable such as gender, our measure reveals atransition from similarity between nodes connected with links of relatively lowweight to dis-similarity for the nodes connected by the strongest...

  6. Biexciton cascade emission in multilayered organic nanofibers

    Science.gov (United States)

    Evaristo de Sousa, Leonardo; Ferreira da Cunha, Wiliam; Antônio da Silva Filho, Demétrio; de Oliveira Neto, Pedro Henrique

    2018-04-01

    The optical performance of multilayered organic nanofibers results from the dynamics of excited states in the system. Here, we show that the presence of biexcitons is crucial to correctly describe such dynamics. This may be the case even if the intensity of the light source is not high. The cascade emission mediated by biexcitons is mainly responsible for the behavior of the photoluminescence profile in the initial steps after light absorption. By using a combination of Kinetic Monte Carlo model and Genetic Algorithm, we simulate Time-Resolved Photoluminescence measurements of multilayered nanofibers. These simulations are compared with experimental results, thus revealing that the usual singlet exciton recombination is insufficient to reproduce the complete physical picture. Our results also include predictions for the behavior of the biexciton signal. These findings are observed to be valid for a wide temperature range, showing the importance of the biexciton cascade emission in several regimes for organic nanofibers in general.

  7. Polymeric multilayer capsules in drug delivery.

    Science.gov (United States)

    De Cock, Liesbeth J; De Koker, Stefaan; De Geest, Bruno G; Grooten, Johan; Vervaet, Chris; Remon, Jean Paul; Sukhorukov, Gleb B; Antipina, Maria N

    2010-09-17

    Recent advances in medicine and biotechnology have prompted the need to develop nanoengineered delivery systems that can encapsulate a wide variety of novel therapeutics such as proteins, chemotherapeutics, and nucleic acids. Moreover, these delivery systems should be "intelligent", such that they can deliver their payload at a well-defined time, place, or after a specific stimulus. Polymeric multilayer capsules, made by layer-by-layer (LbL) coating of a sacrificial template followed by dissolution of the template, allow the design of microcapsules in aqueous conditions by using simple building blocks and assembly procedures, and provide a previously unmet control over the functionality of the microcapsules. Polymeric multilayer capsules have recently received increased interest from the life science community, and many interesting systems have appeared in the literature with biodegradable components and biospecific functionalities. In this Review we give an overview of the recent breakthroughs in their application for drug delivery.

  8. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  9. KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON

    Directory of Open Access Journals (Sweden)

    Nyoman Purnama

    2014-12-01

    Full Text Available Sistem klasifikasi merupakan proses temu balik informasi yang sangat bergantung dari elemen-elemen penyusunnya.Sistem ini banyak digunakan untuk mengatasi permasalahan segmentasi data. Klasifikasi dapat digunakan pada website sebagaimetode untuk mengelompokkan website. Website merupakan salah satu data yang memiliki informasi yang beraneka-ragam,sehingga pengelompokan data ini penting untuk diteliti. Sistem klasifikasi dimulai dengan melakukan proses pengumpulaninformasi dari halaman website (parsing dan untuk setiap hasil parsing dilakukan proses penghapusan kata henti, stemming,feature selection dengan tf-idf. Hasil dari proses ini berupa fitur yang menjadi inputan algoritma Multilayer Perceptron. Dalamalgoritma ini terjadi proses pembelajaran terhadap pola input masukan dan pembuatan bobot pelatihan. Bobot ini akandigunakan pada proses klasifikasi. Hasil dari penelitian menunjukkan bahwa algoritma Multilayer Perceptron dapatmenghasilkan klasifikasi website dengan akurasi yang bagus. Hal ini dibuktikan dengan beberapa tahapan penelitian yangberbeda dan didapatkan nilai akurasi rata-rata diatas 70%.

  10. Staggered broad-band reflecting multilayers.

    Science.gov (United States)

    Heavens, O S; Liddell, H M

    1966-03-01

    Considerable broadening of the reflectance band of a multilayer stack may be obtained by staggering the layer thicknesses in such a way that they form either an arithmetic or geometric progression. Results are shown for asymmetric and symmetric filters of 15, 25, and 35 layers. The presence of the narrowband transmission peaks exhibited by the symmetric filters is explained, and the advantages of the use of this type of filter as an interference filter is discussed.

  11. Analysis of Fracture Behaviour of Multilayer Pipes

    Czech Academy of Sciences Publication Activity Database

    Nezbedová, E.; Knésl, Zdeněk; Vlach, B.

    2007-01-01

    Roč. 36, č. 5 (2007), s. 207-212 ISSN 1465-8011. [Plastic Pipes /13./. Washington, D. C., 02.10.2006-05.10.2006] R&D Projects: GA ČR GA106/07/1284 Institutional research plan: CEZ:AV0Z20410507 Keywords : multi-layer pipes Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.431, year: 2007

  12. Quaternionic Multilayer Perceptron with Local Analyticity

    Directory of Open Access Journals (Sweden)

    Nobuyuki Matsui

    2012-11-01

    Full Text Available A multi-layered perceptron type neural network is presented and analyzed in this paper. All neuronal parameters such as input, output, action potential and connection weight are encoded by quaternions, which are a class of hypercomplex number system. Local analytic condition is imposed on the activation function in updating neurons’ states in order to construct learning algorithm for this network. An error back-propagation algorithm is introduced for modifying the connection weights of the network.

  13. The polymorphic, multilayered and networked urbanised territory

    DEFF Research Database (Denmark)

    Nielsen, Tom

    2015-01-01

    The discussion of the network city has in recent years been supplemented by an increasing interest in reconsidering the notion of territory. Looking into both geographical and urban design theories, we find examples of a focus on how the networks of the city not only connect them irreversibly...... in theory. The concept of The Polymorphic, Multilayered and Networked Urbanised Territory is introduced to grasp the reality experienced in European regions outside the largest and most potent versions of contemporary cities....

  14. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface

    Energy Technology Data Exchange (ETDEWEB)

    Ou Chaofeng [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: yuanruo@swu.edu.cn; Chai Yaqin; Tang Mingyu; Chai Rong; He Xiulan [Chongqing Key Laboratory of Analytical Chemistry, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2007-11-12

    A highly sensitive and label-free amperometric immunosensor has been developed for the detection of carcinoembryonic antigen (CEA) based on layer-by-layer (LBL) assembly of gold nanoparticles (GNPs), multi-walled carbon nanotubes-thionine (MWNTs-THI) and chitosan (CHIT) on 3-mercaptopropanesulfonic, sodium salt (MPS)-modified gold electrode surface by electrostatic adsorption. The stepwise LBL assembly process of electroactive species on electrode surface was characterized by means of cyclic voltammetry (CV) in PBS. The factors influencing the performance of the resulting immunosensor were studied in detail. The morphologies of MWNTs, MWNTs-THI and GNPs-MWNTs-THI-CHIT were further characterized by transmission electron microscopy (TEM). The immunosensor was highly sensitive to CEA with a detection limit of 0.01 ng mL{sup -1} (signal/noise ratio of 3) and the linear range with two concentration intermittences was from 0.5 to 15.0 ng mL{sup -1} and from 15.0 to 200.0 ng mL{sup -1}, respectively. In addition, the prepared immunosensor could be regenerated 10 times with 5 M urea solution. When the immunosensor was stored at 4 deg. C and measured intermittently (every 4-6 days), no apparent change was found over 3 months. The immunosensor system showed an excellent reproducibility and stability.

  15. Multilayer modal actuator-based piezoelectric transformers.

    Science.gov (United States)

    Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung

    2007-02-01

    An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.

  16. Performance of multilayer coated silicon pore optics

    Science.gov (United States)

    Ackermann, M. D.; Collon, M. J.; Jensen, C. P.; Christensen, F. E.; Krumrey, M.; Cibik, L.; Marggraf, S.; Bavdaz, M.; Lumb, D.; Shortt, B.

    2010-07-01

    The requirements for the IXO (International X-ray Observatory) telescope are very challenging in respect of angular resolution and effective area. Within a clear aperture with 1.7 m > R > 0.25 m that is dictated by the spacecraft envelope, the optics technology must be developed to satisfy simultaneously requirements for effective area of 2.5 m2 at 1.25 keV, 0.65 m2 at 6 keV and 150 cm2 at 30 keV. The reflectivity of the bare mirror substrate materials does not allow these requirements to be met. As such the IXO baseline design contains a coating layout that varies as a function of mirror radius and in accordance with the variation in grazing incidence angle. The higher energy photon response is enhanced through the use of depth-graded multilayer coatings on the inner radii mirror modules. In this paper we report on the first reflectivity measurements of wedged ribbed silicon pore optics mirror plates coated with a depth graded W/Si multilayer. The measurements demonstrate that the deposition and performance of the multilayer coatings is compatible with the SPO production process.

  17. Inkjet-printed Polyvinyl Alcohol Multilayers.

    Science.gov (United States)

    Salaoru, Iulia; Zhou, Zuoxin; Morris, Peter; Gibbons, Gregory J

    2017-05-11

    Inkjet printing is a modern method for polymer processing, and in this work, we demonstrate that this technology is capable of producing polyvinyl alcohol (PVOH) multilayer structures. A polyvinyl alcohol aqueous solution was formulated. The intrinsic properties of the ink, such as surface tension, viscosity, pH, and time stability, were investigated. The PVOH-based ink was a neutral solution (pH 6.7) with a surface tension of 39.3 mN/m and a viscosity of 7.5 cP. The ink displayed pseudoplastic (non-Newtonian shear thinning) behavior at low shear rates, and overall, it demonstrated good time stability. The wettability of the ink on different substrates was investigated, and glass was identified as the most suitable substrate in this particular case. A proprietary 3D inkjet printer was employed to manufacture polymer multilayer structures. The morphology, surface profile, and thickness uniformity of inkjet-printed multilayers were evaluated via optical microscopy.

  18. Interface roughness in Mo/Si multilayers

    International Nuclear Information System (INIS)

    Nedelcu, I.; Kruijs, R.W.E. van de; Yakshin, A.E.; Tichelaar, F.; Zoethout, E.; Louis, E.; Enkisch, H.; Muellender, S.; Bijkerk, F.

    2006-01-01

    In this work we present a study of surface roughness development at the molybdenum-on-silicon and silicon-on-molybdenum interfaces in Mo/Si multilayers as employed in Extreme UV lithography. Thin Mo/Si multilayers, with layer thicknesses of 3-5 nm, were deposited using electron beam evaporation. The effect of ion treatment on the surface roughness was studied by X-ray reflectometry and transmission electron microscopy. Without ion treatment we observed build up of correlated roughness. The roughness development is shown here to depend strongly on the thickness of the crystalline Mo layer. Independent of the Mo ratio in a period, we show that a minimal amount of ion treatment is required to smoothen the multilayer roughness, which is also confirmed by EUV reflectivity measurements. At high ion energies the layers become smoother due to a larger ion penetration depth. The higher penetration depth is also shown to initiate additional interdiffusion and structural changes at buried interfaces

  19. Adhesion toughness of multilayer graphene films.

    Science.gov (United States)

    Wood, Joseph D; Harvey, Christopher M; Wang, Simon

    2017-12-05

    Interface adhesion toughness between multilayer graphene films and substrates is a major concern for their integration into functional devices. Results from the circular blister test, however, display seemingly anomalous behaviour as adhesion toughness depends on number of graphene layers. Here we show that interlayer shearing and sliding near the blister crack tip, caused by the transition from membrane stretching to combined bending, stretching and through-thickness shearing, decreases fracture mode mixity G II /G I , leading to lower adhesion toughness. For silicon oxide substrate and pressure loading, mode mixity decreases from 232% for monolayer films to 130% for multilayer films, causing the adhesion toughness G c to decrease from 0.424 J m -2 to 0.365 J m -2 . The mode I and II adhesion toughnesses are found to be G Ic  = 0.230 J m -2 and G IIc  = 0.666 J m -2 , respectively. With point loading, mode mixity decreases from 741% for monolayer films to 262% for multilayer films, while the adhesion toughness G c decreases from 0.543 J m -2 to 0.438 J m -2 .

  20. Automation Enhancement of Multilayer Laue Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.