WorldWideScience

Sample records for underlying physics principles

  1. Cosmological principles. II. Physical principles

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1974-01-01

    The discussion of cosmological principle covers the uniformity principle of the laws of physics, the gravitation and cognizability principles, and the Dirac creation, chaos, and bootstrap principles. (U.S.)

  2. Variational principles in physics

    CERN Document Server

    Basdevant, Jean-Louis

    2007-01-01

    Optimization under constraints is an essential part of everyday life. Indeed, we routinely solve problems by striking a balance between contradictory interests, individual desires and material contingencies. This notion of equilibrium was dear to thinkers of the enlightenment, as illustrated by Montesquieu’s famous formulation: "In all magistracies, the greatness of the power must be compensated by the brevity of the duration." Astonishingly, natural laws are guided by a similar principle. Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat’s principle, a cornerstone of geometrical optics. Variational Principles in Physics explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. Prof. Basdev...

  3. Physical principles underlying the experimental methods for studying the orientational order of liquid crystals

    International Nuclear Information System (INIS)

    Limmer, S.

    1989-01-01

    The basic physical principles underlying different experimental methods frequently used for the determination of orientational order parameters of liquid crystals are reviewed. The methods that are dealt with here include the anisotropy of the diamagnetic susceptibility, birefringence, linear dichroism, Raman scattering, fluorescence depolarization, electron paramagnetic resonance (EPR), and nuclear magnetic resonance (NMR). The fundamental assertions that can be obtained by the different methods as well as their advantages, drawbacks and limitations are inspected. Typical sources of uncertainties and inaccuracies are discussed. To quantitatively evaluate the experimental data with reference to the orientational order the general tensor formalism developed by Schmiedel was employed throughout according to which the order matrix comprises 25 real elements yet. Within this context the interplay of orientational ordering and molecular conformation is scrutinized. (author)

  4. Principles & practice of physics

    CERN Document Server

    Mazur, Eric; Dourmashkin, Peter A; Pedigo, Daryl; Bieniek, Ronald J

    2015-01-01

    Putting physics first Based on his storied research and teaching, Eric Mazur's Principles & Practice of Physics builds an understanding of physics that is both thorough and accessible. Unique organization and pedagogy allow you to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. *New learning architecture: The book is structured to help you learn physics in an organized way that encourages comprehension and reduces distraction.*Physics on a contemporary foundation: Traditional texts delay the introduction of ideas that we now see as unifying and foundational. This text builds physics on those unifying foundations, helping you to develop an understanding that is stronger, deeper, and fundamentally simpler.*Research-based instruction: This text uses a range of research-based instructional techniques to teach physics in the most effective manner possible. The result is a groundbreaking book that puts physics first, thereby making it more accessible to...

  5. Principles of modern physics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Principles of Modern Physics, divided into twenty one chapters, begins with quantum ideas followed by discussions on special relativity, atomic structure, basic quantum mechanics, hydrogen atom (and Schrodinger equation) and periodic table, the three statistical distributions, X-rays, physics of solids, imperfections in crystals, magnetic properties of materials, superconductivity, Zeeman-, Stark- and Paschen Back- effects, Lasers, Nuclear physics (Yukawa's meson theory and various nuclear models), radioactivity and nuclear reactions, nuclear fission, fusion and plasma, particle accelerators and detectors, the universe, Elementary particles (classification, eight fold way and quark model, standard model and fundamental interactions), cosmic rays, deuteron problem in nuclear physics, and cathode ray oscilloscope. NEW TO THE FOURTH EDITION: The CO2 Laser Theory of magnetic moments on the basis of shell model Geological dating Laser Induced fusion and laser fusion reactor. Hawking radiation The cosmological red ...

  6. In situ growth of Ag nanoparticles on α-Ag2WO4 under electron irradiation: probing the physical principles

    Science.gov (United States)

    San-Miguel, Miguel A.; da Silva, Edison Z.; Zannetti, Sonia M.; Cilense, Mario; Fabbro, Maria T.; Gracia, Lourdes; Andrés, Juan; Longo, Elson

    2016-06-01

    Exploiting the plasmonic behavior of Ag nanoparticles grown on α-Ag2WO4 is a widely employed strategy to produce efficient photocatalysts, ozone sensors, and bactericides. However, a description of the atomic and electronic structure of the semiconductor sites irradiated by electrons is still not available. Such a description is of great importance to understand the mechanisms underlying these physical processes and to improve the design of silver nanoparticles to enhance their activities. Motivated by this, we studied the growth of silver nanoparticles to investigate this novel class of phenomena using both transmission electron microscopy and field emission scanning electron microscopy. A theoretical framework based on density functional theory calculations (DFT), together with experimental analysis and measurements, were developed to examine the changes in the local geometrical and electronic structure of the materials. The physical principles for the formation of Ag nanoparticles on α-Ag2WO4 by electron beam irradiation are described. Quantum mechanical calculations based on DFT show that the (001) of α-Ag2WO4 displays Ag atoms with different coordination numbers. Some of them are able to diffuse out of the surface with a very low energy barrier (less than 0.1 eV), thus, initiating the growth of metallic Ag nanostructures and leaving Ag vacancies in the bulk material. These processes increase the structural disorder of α-Ag2WO4 as well as its electrical resistance as observed in the experimental measurements.

  7. Physical principles in chemoreception

    CERN Document Server

    Wiegel, Frederik W

    1991-01-01

    Is it not sheer foolishness to try to apply the methods of theoretical physics to biological structures? Physics flowered because it limited itself to the study of very simple systems; on the other hand, the essence of "living things" seems to have to do with the extreme intricacy of their structure. Is it a hopeless endeavour to attempt to bring the two together, or should one try nevertheless? Most of my colleagues in theoretical physics feel one should not waste one's time and stick to "the good old hydrogen atom", but some of them feel one should try anyhow. This minority point of view was shared by Bohr in the thirties, Schrödinger in the fourties, Delbrück in the fifties and sixties, PurceIl in the seventies, etc. The theory of chemoreception represents only a very small part of this immense scientific question. Its study was started by Delbriick and others in the fifties. I was introduced to these problems by Charles DeLisi, during a visit to the National Institutes of Health in the summer of 1980. D...

  8. A cyclic symmetry principle in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs

  9. Physical Consequences of Mathematical Principles

    Directory of Open Access Journals (Sweden)

    Comay E.

    2009-10-01

    Full Text Available Physical consequences are derived from the following mathematical structures: the variational principle, Wigner’s classifications of the irreducible representations of the Poincar ́ e group and the duality invariance of the homogeneous Maxwell equations. The analysis is carried out within the validity domain of special relativity. Hierarchical re- lations between physical theories are used. Some new results are pointed out together with their comparison with experimental data. It is also predicted that a genuine Higgs particle will not be detected.

  10. Physical acoustics principles and methods

    CERN Document Server

    Mason, Warren P

    1964-01-01

    Physical Acoustics: Principles and Methods, Volume l-Part A focuses on high frequency sound waves in gases, liquids, and solids that have been proven as powerful tools in analyzing the molecular, defect, domain wall, and other types of motions. The selection first tackles wave propagation in fluids and normal solids and guided wave propagation in elongated cylinders and plates. Discussions focus on fundamentals of continuum mechanics; small-amplitude waves in a linear viscoelastic medium; representation of oscillations and waves; and special effects associated with guided elastic waves in plat

  11. Physical acoustics principles and methods

    CERN Document Server

    Mason, Warren P

    2012-01-01

    Physical Acoustics: Principles and Methods, Volume IV, Part B: Applications to Quantum and Solid State Physics provides an introduction to the various applications of quantum mechanics to acoustics by describing several processes for which such considerations are essential. This book discusses the transmission of sound waves in molten metals. Comprised of seven chapters, this volume starts with an overview of the interactions that can happen between electrons and acoustic waves when magnetic fields are present. This text then describes acoustic and plasma waves in ionized gases wherein oscillations are subject to hydrodynamic as well as electromagnetic forces. Other chapters examine the resonances and relaxations that can take place in polymer systems. This book discusses as well the general theory of the interaction of a weak sinusoidal field with matter. The final chapter describes the sound velocities in the rocks composing the Earth. This book is a valuable resource for physicists and engineers.

  12. Principles and applications of nanomems physics

    CERN Document Server

    Santos, Hector

    2005-01-01

    ""Principles and Applications of NanoMEMS Physics"" presents the first unified exposition of the physical principles at the heart of NanoMEMS-based devices and applications. In particular, after beginning with a comprehensive presentation of the fundamentals and limitations of nanotechnology and MEMS fabrication techniques, the book addresses the physics germane to this dimensional regime, namely, quantum wave-particle phenomena, including, the manifestation of charge discreteness, quantized electrostatic actuation, and the Casimir effect, and quantum wave phenomena, including, quantized elect

  13. Building physics from physical principles to international standards

    CERN Document Server

    Pinterić, Marko

    2017-01-01

    This textbook provides thorough coverage of the most important building physics phenomena: heat transfer, moisture, sound/acoustics, and illumination. Since the book is primarily aimed at engineers, it addresses professional issues with due pragmatism, and by including many practical examples and related ISO standards. Nevertheless, in order to guarantee full comprehension, it also explains the underlying physical principles and relates them to practical aspects in a simple and clear way. This is achieved with the aid of more than 100 figures and consistent cross-referencing of formulas and ideas. In addition, interrelationships between the different building physics phenomena are elucidated in a way that will enable readers to develop performance specifications that inform the design process. The book will primarily appeal to students of civil engineering and architecture, as well as to all practitioners in these areas who wish to broaden their fundamental understanding of topics in building physics.

  14. Nuclear physics principles and applications

    CERN Document Server

    Lilley, J S

    2001-01-01

    This title provides the latest information on nuclear physics. Based on a course entitled Applications of Nuclear Physics. Written from an experimental point of view this text is broadly divided into two parts, firstly a general introduction to Nuclear Physics and secondly its applications.* Includes chapters on practical examples and problems* Contains hints to solving problems which are included in the appendix* Avoids complex and extensive mathematical treatments* A modern approach to nuclear physics, covering the basic theory, but emphasising the many and important applicat

  15. Islamic Principles and Physical Education.

    Science.gov (United States)

    Lindsay, Karen; And Others

    1987-01-01

    Based on interviews with five Islamic respondents, this paper investigates stricter Islamic parents' difficulties with certain assumptions and practices of Australian education, particularly health and physical education. Concerns about modesty and separation of sexes conflict with central aims based on equal educational opportunities and equality…

  16. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  17. The physical principles of rock magnetism

    CERN Document Server

    Stacey, Frank

    1974-01-01

    Developments in Solid Earth Geophysics 5: The Physical Principles of Rock Magnetism explores the physical principles of rock magnetism, with emphasis on the properties of finely divided magnetic materials. It discusses the origin and stability of rock magnetizations, the role of remanent magnetism in interpreting magnetic surveys, magnetic anisotropy as an indicator of rock fabric, and the relationship between piezomagnetic changes and seismic activity. Organized into 13 chapters, this volume discusses the properties of solids, magnetite and hematite grains, and rocks with magnetite grains

  18. Physical acoustics v.8 principles and methods

    CERN Document Server

    Mason, Warren P

    1971-01-01

    Physical Acoustics: Principles and Methods, Volume VIII discusses a number of themes on physical acoustics that are divided into seven chapters. Chapter 1 describes the principles and applications of a tool for investigating phonons in dielectric crystals, the spin phonon spectrometer. The next chapter discusses the use of ultrasound in investigating Landau quantum oscillations in the presence of a magnetic field and their relation to the strain dependence of the Fermi surface of metals. The third chapter focuses on the ultrasonic measurements that are made by pulsing methods with velo

  19. Physical Principle for Generation of Randomness

    Science.gov (United States)

    Zak, Michail

    2009-01-01

    A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)

  20. Nuclear detectors. Physical principles of operation

    International Nuclear Information System (INIS)

    Pochet, Th.

    2005-01-01

    Nuclear detection is used in several domains of activity from the physics research, the nuclear industry, the medical and industrial sectors, the security etc. The particles of interest are the α, β, X, γ and neutrons. This article treats of the basic physical properties of radiation detection, the general characteristics of the different classes of existing detectors and the particle/matter interactions: 1 - general considerations; 2 - measurement types and definitions: pulse mode, current mode, definitions; 3 - physical principles of direct detection: introduction and general problem, materials used in detection, simple device, junction semiconductor device, charges generation and transport inside matter, signal generation; 4 - physical principles of indirect detection: introduction, scintillation mechanisms, definition and properties of scintillators. (J.S.)

  1. Physics Without Physics. The Power of Information-theoretical Principles

    Science.gov (United States)

    D'Ariano, Giacomo Mauro

    2017-01-01

    holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.

  2. Molecular physics. Theoretical principles and experimental methods

    International Nuclear Information System (INIS)

    Demtroeder, W.

    2005-01-01

    This advanced textbook comprehensively explains important principles of diatomic and polyatomic molecules and their spectra in two separate, distinct parts. The first part concentrates on the theoretical aspects of molecular physics, whereas the second part of the book covers experimental techniques, i.e. laser, Fourier, NMR, and ESR spectroscopies, used in the fields of physics, chemistry, biolog, and material science. Appropriate for undergraduate and graduate students in physics and chemistry with a knowledge of atomic physics and familiar with the basics of quantum mechanics. From the contents: - Electronic States of Molecules, - Rotation, Oscillation and Potential Curves of Diatomic Molecules, - The Spectra of Diatomic Molecules, - Molecule Symmetries and Group Theory, - Rotation and Oscillations of Polyatomic Molecules, - Electronic States of Polyatomic Molecules, - The Spectra of Polyatomic Molecules, - Collapse of the Born-Oppenheimer-Approximation, Disturbances in Molecular Spectra, - Molecules in Disturbing Fields, - Van-der-Waals-Molecules and Cluster, - Experimental Techniques in Molecular Physics. (orig.)

  3. Humanist Principles Underlying Philosophy of Argument

    Directory of Open Access Journals (Sweden)

    George Boger

    2008-02-01

    Full Text Available This discussion reviews the thinking of some prominent philosophers of argument to extract principles common to their thinking. It shows that a growing concern with dialogical pragmatics is better appreciated as a part of applied ethics than of applied epistemology. The discussion concludes by indicating a possible consequence for philosophy of argument and invites further discussion by asking whether argumentation philosophy has an implicit, underlying moral, or even political, posture.

  4. Physics of electronic materials principles and applications

    CERN Document Server

    Rammer, Jorgen

    2017-01-01

    Adopting a uniquely pedagogical approach, this comprehensive textbook on the quantum mechanics of semiconductor materials and devices focuses on the materials, components and devices themselves whilst incorporating a substantial amount of fundamental physics related to condensed matter theory and quantum mechanics. Written primarily for advanced undergraduate students in physics and engineering, this book can also be used as a supporting text for introductory quantum mechanics courses, and will be of interest to anyone interested in how electronic devices function at a fundamental level. Complete with numerous exercises, and with all the necessary mathematics and physics included in appendices, this book guides the reader seamlessly through the principles of quantum mechanics and the quantum theory of metals and semiconductors, before describing in detail how devices are exploited within electric circuits and in the hardware of computers, for example as amplifiers, switches and transistors. Includes nume...

  5. Solid state physics principles and modern applications

    CERN Document Server

    Quinn, John J

    2018-01-01

    This book provides the basis for a two-semester graduate course on solid-state physics. The first half presents all the knowledge necessary for a one-semester survey of solid-state physics, but in greater depth than most introductory solid state physics courses. The second half includes most of the important research over the past half-century, covering both the fundamental principles and most recent advances. This new edition includes the latest developments in the treatment of strongly interacting two-dimensional electrons and discusses the generalization from small to larger systems. The book provides explanations in a class-tested tutorial style, and each chapter includes problems reviewing key concepts and calculations. The updated exercises and solutions enable students to become familiar with contemporary research activities, such as the electronic properties of massless fermions in graphene and topological insulators.

  6. Thermodynamics principles characterizing physical and chemical processes

    CERN Document Server

    Honig, Jurgen M

    1999-01-01

    This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory''s approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relat...

  7. On the superposition principle and its physics content

    International Nuclear Information System (INIS)

    Roos, M.

    1984-01-01

    What is commonly denoted the superposition principle is shown to consist of three different physical assumptions: conservation of probability, completeness, and some phase conditions. The latter conditions form the physical assumptions of the superposition principle. These phase conditions are exemplified by the Kobayashi-Maskawa matrix. Some suggestions for testing the superposition principle are given. (Auth.)

  8. A New Principle in Physics: the Principle 'Finiteness', and Some Consequences

    International Nuclear Information System (INIS)

    Sternlieb, Abraham

    2010-01-01

    In this paper I propose a new principle in physics: the principle of 'finiteness'. It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of 'legitimate' laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory or principle in physics. I propose 'finiteness' as a postulate (like the constancy of the speed of light in vacuum, 'c'), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.

  9. Provincial responsibility for carbon emissions in China under different principles

    International Nuclear Information System (INIS)

    Zhang, Youguo

    2015-01-01

    By applying a multi-regional input–output model, the study compares the provincial responsibility for carbon emissions and provincial carbon multipliers in China under seven responsibility-allocating principles, including three basic principles, the production, income and consumption principles, and four shared responsibility principles, the income-weighted, consumption weighted, comprehensive, and weighted comprehensive principles. Empirical results indicate that carbon multipliers of provinces under these principles are significantly different from one another. The carbon multipliers of provinces with higher ratios of carbon intensive sectors in their outputs are also larger. At the same time, the carbon multipliers of the same sector in the provinces are significantly different from one another. Changing the principle causes significant changes in the responsibility for carbon emissions of some provinces, but only slight changes in the responsibilities of some other provinces. However, the responsibilities of provinces with large economic sizes (output) are always the largest, whereas provinces with the smallest economic sizes are always the smallest regardless of the principles. Further, this study proposes a series of regional policies for carbon mitigation according to provincial carbon multipliers and responsibility allocation features under the different principles. - Highlights: • We link regional environmental responsibility to seven benefit principles. • We analyze provincial responsibility for carbon emissions in China. • We also report provincial carbon multipliers under different principles. • We compare the seven principles from the regional perspective. • Policy implications of the study are discussed.

  10. Fundamental quadratic variational principle underlying general relativity

    International Nuclear Information System (INIS)

    Atkins, W.K.

    1983-01-01

    The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

  11. Basic principles of chemistry and physical chemistry

    International Nuclear Information System (INIS)

    Colmenares, C.A.

    1975-01-01

    A course designed to provide communications between the designer of a system such as a mechanical engineer or a physicist and the material scientist such as a chemist or chemical engineer is presented. The topics discussed are stoichiometric principles, behavior of ideal gases, vapor pressure, humidity and saturation, solubility of gases in liquids, diffusion of gases, chemical reaction kinetics, and application of concepts to compatibility problems. The appendix provides problems to be used in conjunction with TV lectures

  12. Towards physical principles of biological evolution

    Science.gov (United States)

    Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.

    2018-03-01

    Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice

  13. Limited entropic uncertainty as new principle of quantum physics

    International Nuclear Information System (INIS)

    Ion, D.B.; Ion, M.L.

    2001-01-01

    The Uncertainty Principle (UP) of quantum mechanics discovered by Heisenberg, which constitute the corner-stone of quantum physics, asserts that: there is an irreducible lower bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables. In order to avoid this state-dependence many authors proposed to use the information entropy as a measure of the uncertainty instead of above standard quantitative formulation of the Heisenberg uncertainty principle. In this paper the Principle of Limited Entropic Uncertainty (LEU-Principle), as a new principle in quantum physics, is proved. Then, consistent experimental tests of the LEU-principle, obtained by using the available 49 sets of the pion-nucleus phase shifts, are presented for both, extensive (q=1) and nonextensive (q=0.5 and q=2.0) cases. Some results obtained by the application of LEU-Principle to the diffraction phenomena are also discussed. The main results and conclusions of our paper can be summarized as follows: (i) We introduced a new principle in quantum physics namely the Principle of Limited Entropic Uncertainty (LEU-Principle). This new principle includes in a more general and exact form not only the old Heisenberg uncertainty principle but also introduce an upper limit on the magnitude of the uncertainty in the quantum physics. The LEU-Principle asserts that: 'there is an irreducible lower bound as well as an upper bound on the uncertainty in the result of a simultaneous measurement of non-commuting observables for any extensive and nonextensive (q ≥ 0) quantum systems'; (ii) Two important concrete realizations of the LEU-Principle are explicitly obtained in this paper, namely: (a) the LEU-inequalities for the quantum scattering of spinless particles and (b) the LEU-inequalities for the diffraction on single slit of width 2a. In particular from our general results, in the limit y → +1 we recover in an exact form all the results previously reported. In our paper an

  14. Physical working principles of medical radar.

    Science.gov (United States)

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  15. Orbital radiation imaging with various physical principles

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Toru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2001-06-01

    This paper describes the characteristics of orbital radiation and authors' investigations on the high spatial resolution X ray-CT, fluorescence X ray-CT and phase-type X ray imaging. Orbital radiation is an X ray generated by relativistic electron bended by magnet in the synchrotron and possesses the high photon density/unit area (>100,000 times higher than that of the ordinary X ray generated by the tube) and broad energy spectrum, which make it possible to select the X ray with appropriate energy for the target. The high spatial resolution X-CT has the resolution of 0.05 mm in contrast to 0.5 mm of the ordinary X-CT and is used for the hard structure like tooth and bone. The CT images of rat lumbar vertebrae and artificial bone are presented. Fluorescence X-CT is utilized for detection of trace elements. Images of the thyroid are presented on iodine detection. Concerning the phase-type X-imaging, the principle using the X ray interferometer is described and actual phase-images of blood vessels and 3-demensional ones of metastatic colon cancer in the liver are given. Imaging with the orbital radiation can be a useful technique in the near future. (K.H.)

  16. Orbital radiation imaging with various physical principles

    International Nuclear Information System (INIS)

    Takeda, Toru; Itai, Yuji

    2001-01-01

    This paper describes the characteristics of orbital radiation and authors' investigations on the high spatial resolution X ray-CT, fluorescence X ray-CT and phase-type X ray imaging. Orbital radiation is an X ray generated by relativistic electron bended by magnet in the synchrotron and possesses the high photon density/unit area (>100,000 times higher than that of the ordinary X ray generated by the tube) and broad energy spectrum, which make it possible to select the X ray with appropriate energy for the target. The high spatial resolution X-CT has the resolution of 0.05 mm in contrast to 0.5 mm of the ordinary X-CT and is used for the hard structure like tooth and bone. The CT images of rat lumbar vertebrae and artificial bone are presented. Fluorescence X-CT is utilized for detection of trace elements. Images of the thyroid are presented on iodine detection. Concerning the phase-type X-imaging, the principle using the X ray interferometer is described and actual phase-images of blood vessels and 3-demensional ones of metastatic colon cancer in the liver are given. Imaging with the orbital radiation can be a useful technique in the near future. (K.H.)

  17. Physical principles of microwave assisted magnetic recording

    International Nuclear Information System (INIS)

    Rivkin, Kirill; Benakli, Mourad; Yin, Huaqing; Tabat, Ned

    2014-01-01

    While the basic physics of Microwave Assisted Magnetization Reversal (MAMR) phenomenon is well established both theoretically and experimentally, its application in a practical magnetic recording environment was so far studied primarily with the help of micromagnetic recording models. In this work, we instead attempt to use analytical formulation and simple numerical models to understand the main challenges as well as benefits that are associated with such a system. It appears that the main difference between the previously introduced theory [G. Bertotti et al., Phys. Rev. Lett. 86, 724 (2001); K. Rivkin et al., Appl. Phys. Lett. 92, 153104 (2008); S. Okamoto et al., J. Appl. Phys. 107, 123914 (2010).] and recording environment is that both the RF and DC magnetic fields are applied at a substantial angle to the anisotropy axis. While the associated symmetry breaking prevents one from describing the reversal process explicitly, it is possible to approximate the solutions well enough to satisfactorily match numerical models both in the case of wire and Spin Torque Oscillator generated RF fields. This approach allows for physical explanation of various effects associated with MAMR such as high gradient of writeable anisotropy and reduction of track width, and offers a clear guidance regarding future optimization of MAMR recording.

  18. Physical principles of microwave assisted magnetic recording

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, Kirill; Benakli, Mourad; Yin, Huaqing [Seagate Technology, Edina, Minnesota 55435 (United States); Tabat, Ned [Semaphore Scientific Inc., Chanhassen, Minnesota 55317 (United States)

    2014-06-07

    While the basic physics of Microwave Assisted Magnetization Reversal (MAMR) phenomenon is well established both theoretically and experimentally, its application in a practical magnetic recording environment was so far studied primarily with the help of micromagnetic recording models. In this work, we instead attempt to use analytical formulation and simple numerical models to understand the main challenges as well as benefits that are associated with such a system. It appears that the main difference between the previously introduced theory [G. Bertotti et al., Phys. Rev. Lett. 86, 724 (2001); K. Rivkin et al., Appl. Phys. Lett. 92, 153104 (2008); S. Okamoto et al., J. Appl. Phys. 107, 123914 (2010).] and recording environment is that both the RF and DC magnetic fields are applied at a substantial angle to the anisotropy axis. While the associated symmetry breaking prevents one from describing the reversal process explicitly, it is possible to approximate the solutions well enough to satisfactorily match numerical models both in the case of wire and Spin Torque Oscillator generated RF fields. This approach allows for physical explanation of various effects associated with MAMR such as high gradient of writeable anisotropy and reduction of track width, and offers a clear guidance regarding future optimization of MAMR recording.

  19. The principle of least action history and physics

    CERN Document Server

    Rojo, Alberto

    2018-01-01

    The principle of least action originates in the idea that, if nature has a purpose, it should follow a minimum or critical path. This simple principle, and its variants and generalizations, applies to optics, mechanics, electromagnetism, relativity, and quantum mechanics, and provides an essential guide to understanding the beauty of physics. This unique text provides an accessible introduction to the action principle across these various fields of physics, and examines its history and fundamental role in science. It includes - with varying levels of mathematical sophistication - explanations from historical sources, discussion of classic papers, and original worked examples. The result is a story that is understandable to those with a modest mathematical background, as well as to researchers and students in physics and the history of physics.

  20. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1990-01-01

    This lecture reviews the production of ionising radiation from the naturally occurring radioactive decay chains and introduces the mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. the behaviour and properties of radon, thoron and their daughter products are described, and units used in the assessments of effective dose from radon daughters are discussed. 16 refs., 1 tab., 15 figs

  1. Solid State Physics Principles and Modern Applications

    CERN Document Server

    Quinn, John J

    2009-01-01

    Intended for a two semester advanced undergraduate or graduate course in Solid State Physics, this treatment offers modern coverage of the theory and related experiments, including the group theoretical approach to band structures, Moessbauer recoil free fraction, semi-classical electron theory, magnetoconductivity, electron self-energy and Landau theory of Fermi liquid, and both quantum and fractional quantum Hall effects. Integrated throughout are developments from the newest semiconductor devices, e.g. space charge layers, quantum wells and superlattices. The first half includes all material usually covered in the introductory course, but in greater depth than most introductory textbooks. The second half includes most of the important developments in solid-state researches of the past half century, addressing e.g. optical and electronic properties such as collective bulk and surface modes and spectral function of a quasiparticle, which is a basic concept for understanding LEED intensities, X ray fine struc...

  2. The physical principles of radiation protection

    International Nuclear Information System (INIS)

    Lokan, K.H.

    1982-01-01

    The production of ionising radiation from the naturally occurring radioactive decay chains is reviewed and mathematical expressions relating to secular equilibrium and the calculation of the activity of daughter products are introduced. The absorption of α, β and γ radiation is discussed from the point of view of the physical processes which occur, e.g. the photoelectric, Compton and pair production processes for γ-rays. Linear energy transfer (LET) and range-energy relationships are discussed for α and β particles. Units of measurement for ionising radiation, relative biological effectiveness, dose equivalence and quality factors for each type of radiation are reviewed. The behaviour and properties of radon, thoron and their daughter products are described, and the definition of the Working Level introduced

  3. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  4. Squids: principles and basic applications in experimental physics

    International Nuclear Information System (INIS)

    Ocio, M.

    1990-01-01

    The basic principles and the description of the technical aspects of SQUIDs (Superconducting Quantum Interference Devices) are described. The applications of SQUIDs in experimental researches and low temperature physics experiments are given. The concepts of fluxoid quantization in a superconductor and Josephson tunnelling are reviewed. The principles, the operation, the noise and the different configurations of r.f. and direct current bias SQUIDs are summarized. The principal characteristics of several SQUIDs are reported

  5. Investigating underlying principles to guide health impact assessment.

    Science.gov (United States)

    Fakhri, Ali; Maleki, Mohammadreza; Gohari, Mahmoodreza; Harris, Patrick

    2014-06-01

    Many countries conduct Health Impact Assessment (HIA) of their projects and policies to predict their positive and negative health impacts. In recent years many guides have been developed to inform HIA practice, largely reflecting local developments in HIA. These guides have often been designed for specific contexts and specific need, making the choice between guides difficult. The objective of the current study is to identify underlying principles in order to guide HIA practice in Iran. This study was conducted in three stages: 1) Studies comparing HIA guidelines were reviewed to identify criteria used for comparison seeking emphasized principles. 2) The HIA characteristics extracted from published papers were categorized in order to determine the principles that could guide HIA practice. 3) Finally, these principles were agreed by experts using nominal group technique. The review of the studies comparing HIA guides demonstrated there are no clear comparison criteria for reviewing HIA guides and no study mentioned HIA principles. Investigating the HIA principles from peer-reviewed papers, we found 14 issues. These were, considering of general features in planning and conducting HIAs such as HIA stream, level, timing and type, considering of the wider socio-political and economic context, considering of economic, technical and legal aspects of HIA and capacities for HIA, rationality and comprehensiveness, using appropriate evidence, elaborating on HIA relation to other forms of Impact Assessment, considering of equity, and encouraging intersectoral and interdisciplinary cooperation, involvement of stakeholders and transparency as underlying principles to guide HIA practice. The results emphasize how critical these technical as well as tactical considerations are in the early scoping step of an HIA which plans the conduct of the HIA in reponse to local contextual issues. Determining the principles of HIA from peer-reviewed papers provides an opportunity for guiding

  6. Investigating Underlying Principles to Guide Health Impact Assessment

    Directory of Open Access Journals (Sweden)

    Ali Fakhri

    2014-06-01

    Full Text Available Background Many countries conduct Health Impact Assessment (HIA of their projects and policies to predict their positive and negative health impacts. In recent years many guides have been developed to inform HIA practice, largely reflecting local developments in HIA. These guides have often been designed for specific contexts and specific need, making the choice between guides difficult. The objective of the current study is to identify underlying principles in order to guide HIA practice in Iran. Methods This study was conducted in three stages: 1 Studies comparing HIA guidelines were reviewed to identify criteria used for comparison seeking emphasized principles. 2 The HIA characteristics extracted from published papers were categorized in order to determine the principles that could guide HIA practice. 3 Finally, these principles were agreed by experts using nominal group technique. Results The review of the studies comparing HIA guides demonstrated there are no clear comparison criteria for reviewing HIA guides and no study mentioned HIA principles. Investigating the HIA principles from peer-reviewed papers, we found 14 issues. These were, considering of general features in planning and conducting HIAs such as HIA stream, level, timing and type, considering of the wider socio-political and economic context, considering of economic, technical and legal aspects of HIA and capacities for HIA, rationality and comprehensiveness, using appropriate evidence, elaborating on HIA relation to other forms of Impact Assessment, considering of equity, and encouraging intersectoral and interdisciplinary cooperation, involvement of stakeholders and transparency as underlying principles to guide HIA practice. The results emphasize how critical these technical as well as tactical considerations are in the early scoping step of an HIA which plans the conduct of the HIA in reponse to local contextual issues. Conclusion Determining the principles of HIA from

  7. The principle of finiteness – a guideline for physical laws

    International Nuclear Information System (INIS)

    Sternlieb, Abraham

    2013-01-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  8. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  9. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  10. Physical Premium Principle: A New Way for Insurance Pricing

    Directory of Open Access Journals (Sweden)

    Amir H. Darooneh

    2005-02-01

    Full Text Available Abstract: In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.

  11. Physical Premium Principle: A New Way for Insurance Pricing

    Science.gov (United States)

    Darooneh, Amir H.

    2005-03-01

    In our previous work we suggested a way for computing the non-life insurance premium. The probable surplus of the insurer company assumed to be distributed according to the canonical ensemble theory. The Esscher premium principle appeared as its special case. The difference between our method and traditional principles for premium calculation was shown by simulation. Here we construct a theoretical foundation for the main assumption in our method, in this respect we present a new (physical) definition for the economic equilibrium. This approach let us to apply the maximum entropy principle in the economic systems. We also extend our method to deal with the problem of premium calculation for correlated risk categories. Like the Buhlman economic premium principle our method considers the effect of the market on the premium but in a different way.

  12. The beauty of physics patterns, principles, and perspectives

    CERN Document Server

    Rau, A R P

    2014-01-01

    The beauty of physics lies in its coherence in terms of a few fundamental concepts and principles. Even physicists have occasion to marvel at the overarching reach of basic principles and their ability to account for features stretching from the microscopic sub-atomic world to the cosmological expanses of the Universe. While mathematics is its natural language, physics is mostly about patterns, connections, and relations between objects and phenomena, and it is this aspect that is emphasized in this book. Since science tries to connect phenomena that at first sight appear widely different, while boiling them down to a small set of essential principles and laws, metaphor and analogy pervade our subject. Consider the pendulum, its swing from one extreme to the other often invoked in social or economic contexts. In molecular vibrations, such as in the CO2 molecule, the quantum motions of electrons and nuclei are metaphorically the pendulums. In electromagnetic radiation, including the visible light we observe, t...

  13. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  14. Relativistic nuclear physics: symmetry and the correlation depletion principle

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1996-01-01

    The author's view on the role of symmetry in fundamental physics is presented. The concept of the 'symmetry of solutions' is analyzed. It is stressed that it is impossible to deduce the basic laws of relativistic nuclear physics from the QCD Lagrangians without recourse to additional hypotheses about the symmetry of solutions (Green functions). The test of these hypotheses is the major prospect of the study of hadron and nuclear collisions. Special importance is given to the Correlation Depletions Principle that makes it possible to construct mathematical models of relativistic nuclear physics, and analyze, by using simple terms, topologically complicated events of nucleus-nucleus collisions. 15 refs., 4 figs

  15. Separation and sorting of cells in microsystems using physical principles

    Science.gov (United States)

    Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull

    2016-01-01

    In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.

  16. Gauge theories under incorporation of a generalized uncertainty principle

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.

  17. Perfect Form: Variational Principles, Methods, and Applications in Elementary Physics

    International Nuclear Information System (INIS)

    Isenberg, C

    1997-01-01

    This short book is concerned with the physical applications of variational principles of the calculus. It is intended for undergraduate students who have taken some introductory lectures on the subject and have been exposed to Lagrangian and Hamiltonian mechanics. Throughout the book the author emphasizes the historical background to the subject and provides numerous problems, mainly from the fields of mechanics and optics. Some of these problems are provided with an answer, while others, regretfully, are not. It would have been an added help to the undergraduate reader if complete solutions could have been provided in an appendix. The introductory chapter is concerned with Fermat's Principle and image formation. This is followed by the derivation of the Euler - Lagrange equation. The third chapter returns to the subject of optical paths without making the link with a mechanical variational principle - that comes later. Chapters on the subjects of minimum potential energy, least action and Hamilton's principle follow. This volume provides an 'easy read' for a student keen to learn more about the subject. It is well illustrated and will make a useful addition to all undergraduate physics libraries. (book review)

  18. Low dimensional physics and gauge principles : Matinyan Festschrift

    CERN Document Server

    Klümper, Andreas; Sedrakyan, A G

    2013-01-01

    This is a collection of articles on fundamental physical principles and methods, the topics ranging from matrix models, random surfaces, quantum dots and rings, to black holes, cosmology and testing of the tiny effects predicted by General Relativity. Among the authors are Sir Roger Penrose and other well-known experts and the articles are addressed to graduate students and researchers. The volume is a Festschrift to a noted physicist and mentor Sergei Matinyan.

  19. Principles of physics from quantum field theory to classical mechanics

    CERN Document Server

    Jun, Ni

    2014-01-01

    This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...

  20. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  1. Principle of minimum distance in space of states as new principle in quantum physics

    International Nuclear Information System (INIS)

    Ion, D. B.; Ion, M. L. D.

    2007-01-01

    The mathematician Leonhard Euler (1707-1783) appears to have been a philosophical optimist having written: 'Since the fabric of universe is the most perfect and is the work of the most wise Creator, nothing whatsoever take place in this universe in which some relation of maximum or minimum does not appear. Wherefore, there is absolutely no doubt that every effect in universe can be explained as satisfactory from final causes themselves the aid of the method of Maxima and Minima, as can from the effective causes'. Having in mind this kind of optimism in the papers mentioned in this work we introduced and investigated the possibility to construct a predictive analytic theory of the elementary particle interaction based on the principle of minimum distance in the space of quantum states (PMD-SQS). So, choosing the partial transition amplitudes as the system variational variables and the distance in the space of the quantum states as a measure of the system effectiveness, we obtained the results presented in this paper. These results proved that the principle of minimum distance in space of quantum states (PMD-SQS) can be chosen as variational principle by which we can find the analytic expressions of the partial transition amplitudes. In this paper we present a description of hadron-hadron scattering via principle of minimum distance PMD-SQS when the distance in space of states is minimized with two directional constraints: dσ/dΩ(±1) = fixed. Then by using the available experimental (pion-nucleon and kaon-nucleon) phase shifts we obtained not only consistent experimental tests of the PMD-SQS optimality, but also strong experimental evidences for new principles in hadronic physics such as: Principle of nonextensivity conjugation via the Riesz-Thorin relation (1/2p + 1/2q = 1) and a new Principle of limited uncertainty in nonextensive quantum physics. The strong experimental evidence obtained here for the nonextensive statistical behavior of the [J,

  2. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  3. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  4. Magnetic resonance angiography: Physical principles and clinical applications

    International Nuclear Information System (INIS)

    Hausmann, R.; Mueller, E.

    1992-01-01

    Within the last four years magnetic resonance angiography (MRA) developed very rapidly towards a well accepted screening technique for vascular examinations as a fast add-on to conventional MR. This review describes the basic physical principles as well as the different methods like time-of-flight and phase-sensitive MRA for visualization of blood vessels. Different applications of 3D, 2D sequential and 3D multivolume MRA are shown from various regions of the head and body. A short outlock to quantitative flow measurments is given in the last chapter including some interesting applications of these techniques which show the still expanding potential of magnetic resonance. (orig.) [de

  5. Psychosocial factors underlying physical activity

    Directory of Open Access Journals (Sweden)

    Ji Cheng-Ye

    2007-09-01

    Full Text Available Abstract Background Given the increasing importance of obesity in China, prevention interventions encouraging physical activity by middle school students are needed. The purpose of this study is to illustrate how a rapid elicitation method can be used to identify salient consequences, referents, and circumstances about physical activity as perceived by middle school students and to provide suggestions for interventions and quantitative research. Method A theory-based qualitative study using a self-completion elicitation was conducted with 155 students from two middle schools in Beijing, China. Following the Theory of Planned Behavior, six open-ended questions asked students for their perceptions about performing physical activity at least 60 minutes each day: advantages of participating in physical activity; disadvantages of doing so; people who approve of participation; people who disapprove; things that make it easy; and things that make it hard. Content analysis revealed categories of salient consequences, reference groups, and circumstances. Results While the three most frequently mentioned advantages elicited from the students were physical health consequences (e.g., will strengthen my body (58.7%, four of the salient advantages were not (e.g., will improve my grades (12.2%. Parents were the most frequently mentioned social referent (42.6% as approving; 27.7% as disapproving when students were asked who might approve or disapprove of their participation. Circumstances perceived to hinder daily physical activity included having too many assignments and not having enough time. Conclusion While many of the beliefs about physical activity elicited from this study were similar to those found with students from England and the US, several were unique to these students from Beijing. The results of this qualitative research suggest that interventions to encourage physical activity among middle school students should address: perceived consequences

  6. Psychosocial factors underlying physical activity.

    Science.gov (United States)

    Zhang, Juan; Middlestadt, Susan E; Ji, Cheng-Ye

    2007-09-19

    Given the increasing importance of obesity in China, prevention interventions encouraging physical activity by middle school students are needed. The purpose of this study is to illustrate how a rapid elicitation method can be used to identify salient consequences, referents, and circumstances about physical activity as perceived by middle school students and to provide suggestions for interventions and quantitative research. A theory-based qualitative study using a self-completion elicitation was conducted with 155 students from two middle schools in Beijing, China. Following the Theory of Planned Behavior, six open-ended questions asked students for their perceptions about performing physical activity at least 60 minutes each day: advantages of participating in physical activity; disadvantages of doing so; people who approve of participation; people who disapprove; things that make it easy; and things that make it hard. Content analysis revealed categories of salient consequences, reference groups, and circumstances. While the three most frequently mentioned advantages elicited from the students were physical health consequences (e.g., will strengthen my body (58.7%)), four of the salient advantages were not (e.g., will improve my grades (12.2%)). Parents were the most frequently mentioned social referent (42.6% as approving; 27.7% as disapproving) when students were asked who might approve or disapprove of their participation. Circumstances perceived to hinder daily physical activity included having too many assignments and not having enough time. While many of the beliefs about physical activity elicited from this study were similar to those found with students from England and the US, several were unique to these students from Beijing. The results of this qualitative research suggest that interventions to encourage physical activity among middle school students should address: perceived consequences of physical activity on academic achievement and other

  7. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  8. The German Physical Society Under National Socialism

    Science.gov (United States)

    Hoffmann, Dieter; Walker, Mark

    2004-12-01

    The history of the German Physical Society from 1933 to 1945 is not the same as a comprehensive history of physics under Adolf Hitler, but it does reflect important aspects of physicists' work and life during the Third Reich.

  9. Physical principles of thermoluminescence and recent developments in its measurement

    International Nuclear Information System (INIS)

    Levy, P.W.

    1974-01-01

    The physical principles which are the basis of thermoluminescence techniques for dating and authenticating archaeological and fine art objects are described in non-technical terms. Included is a discussion of the interaction of alpha particles, beta rays, i.e., energetic electrons, and gamma rays with solids, particularly electron-hole ion pair formation, and the trapping of charges by crystal imperfections. Also described is the charge-release process induced by heating and the accompanying emission of luminescence resulting from charge recombination and retrapping. The basic procedure for dating and/or authenticating an artifact is described in a ''how it is done'' manner. Lastly, recently developed apparatus is described for simultaneously measuring luminescent light intensity and wavelength and sample temperature. Examples of studies made with this ''3-D'' apparatus are given and applications to dating and authenticating are described. (U.S.)

  10. Physical principles of neutron-gamma materials monitoring

    Science.gov (United States)

    Pekarskii, G. Sh.

    1986-03-01

    The physical principles of secondary radiation methods in nondestructive testing are discussed. Among the techniques considered are: neutron activation analysis (NAA); the induced-radiation method; and quasialbedo recording of secondary gamma-radiation. Emphasis is given to the neutron-gamma method which consists of exposing test material to a neutron flux and recording the secondary gamma-radiation by means of a spectrometer. The limitations of the method in detecting local inhomogeneous defects (filled pores cracks, and inclusions) in metal layers and multicomponents materials are described, and some advantages of the method over NAA are discussed. Formulas are derived for estimating the optimum density of the gamma-ray flux which is received by the detector.

  11. Principles of radiologic physics, dosimetry, and treatment planning

    International Nuclear Information System (INIS)

    Purdy, J.A.; Lightfoot, D.A.; Glasgow, G.P.

    1987-01-01

    A solid foundation in the principles of radiologic physics, dosimetry, and treatment planning is essential for the practice of radiation oncology. In this chapter, the authors consider several topics that lay the foundation for the material covered other chapters. Among the topics discussed here are atomic and nuclear structure; the production of x-rays; radioactivity; the interaction of x-rays with matter; radiation therapy treatment machines; the measurement of radiation exposure; the determination of absorbed dose; and definitions of various dosimetry parameters, such as percentage depth dose and tissue-air ratio. This chapter also discusses basic concepts used in calculations of dose and the standard correction methods used to account for air gaps and tissue inhomogeneities

  12. A New "Principal Principle" (#14) of Physical Activity Education Is Emerging

    Science.gov (United States)

    Zeigler, Earle F.

    2011-01-01

    There is every reason to believe that a new "principal principle" of physical activity education is emerging. In this article, the author talks about the new "principal principle"(#14) of physical education. Revisiting a historical milestone in the field's history to explain the origin of the term "principal principle," Dr. Arthur H. Steinhaus,…

  13. Organizing principles underlying microorganism's growth-robustness trade-off.

    Science.gov (United States)

    Bolli, Alessandro; Salvador, Armindo

    2014-10-01

    Growth Robustness Reciprocity (GRR) is an intriguing microbial manifestation: the impairment of microorganism's growth enhances their ability to resist acute stresses, and vice-versa. This is caused by regulatory interactions that determine higher expression of protection mechanisms in response to low growth rates. But because such regulatory mechanisms are species-specific, GRR must result from convergent evolution. Why does natural selection favor such an outcome? We used mathematical models of optimal cellular resource allocation to identify the general principles underlying GRR. Non-linear optimization allowed to predict allocation patterns of biosynthetic resources (ribosomes devoted to the synthesis of each cell component) that maximize growth. These models predict the down-regulation of stress defenses under high substrate availabilities and low stress levels. Under these conditions, stress tolerance ensues from growth-related damage dilution: the higher the substrate availability, the fastest the dilution of damaged proteins by newly synthesized proteins, the lower the accumulation of damaged components into the cell. In turn, under low substrate availability growth is too slow for effective damage dilution, and the expression of the defenses up to some optimal level then increases growth. As a consequence, slow-growing cells are pre-adapted to withstand acute stresses. Therefore, the observed negative correlation between growth and stress tolerance can be explained as a consequence of optimal resource allocation for maximal growth. We acknowledge fellowship SFRH/BPD/90065/2012 and grants PEst-C/SAU/LA0001/2013-2014 and FCOMP-01-0124-FEDER-020978 financed by FEDER through the "Programa Operacional Factores de Competitividade, COMPETE" and by national funds through "FCT, Fundação para a Ciência e a Tecnologia" (project PTDC/QUI-BIQ/119657/2010). Copyright © 2014. Published by Elsevier Inc.

  14. Applications of the maximum entropy principle in nuclear physics

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1990-01-01

    Soon after the advent of information theory the principle of maximum entropy was recognized as furnishing the missing rationale for the familiar rules of classical thermodynamics. More recently it has also been applied successfully in nuclear physics. As an elementary example we derive a physically meaningful macroscopic description of the spectrum of neutrons emitted in nuclear fission, and compare the well known result with accurate data on 252 Cf. A second example, derivation of an expression for resonance-averaged cross sections for nuclear reactions like scattering or fission, is less trivial. Entropy maximization, constrained by given transmission coefficients, yields probability distributions for the R- and S-matrix elements, from which average cross sections can be calculated. If constrained only by the range of the spectrum of compound-nuclear levels it produces the Gaussian Orthogonal Ensemble (GOE) of Hamiltonian matrices that again yields expressions for average cross sections. Both avenues give practically the same numbers in spite of the quite different cross section formulae. These results were employed in a new model-aided evaluation of the 238 U neutron cross sections in the unresolved resonance region. (orig.) [de

  15. Ultra-high energy physics and standard basic principles

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV associated to a privileged local reference frame (the "vacuum rest frame", VRF. If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological

  16. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  17. The underlying principles of relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.

    1989-01-01

    The paper deals with the main statements of relativistic theory of gravitation, constructed in result of critical analysis of the general theory of relativity. The principle of geometrization is formulated

  18. BIOMECHANICAL PRINCIPLES PHYSICAL REHABILITATION OF CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    S. D. Korshunov

    2016-01-01

    Full Text Available Aim. We studied the basic biomechanical principles of physical rehabilitation of children with cerebral palsy.Materials and methods. Methods of Motion Tracking and electromyography investigated the biomechanical characteristics of gait in children with cerebral palsy. It is shown that the main differences between dynamic stereotype walk pediatric patients is to delay moving forward center of gravity and the disorganization of the lower limb movements (especially knee in the vertical plane. Prevailing flexion - leading position of the lower extremities during locomotion cycle associated with limitation of motion in the hip joint, offset by an increase swinging body, weakening activity in the rear shock phase and its sharp increase in the fourth phase. Changes in the structure of the movement of the shoulder girdle and upper extremities can be considered as compensatory. Characteristically excessive involvement in the locomotion of the calf muscles and the rectus muscles of the back, with the central mechanisms gipersinhronizatsii activity of motor units are the primary mechanism for adaptation in a group of children that are capable of self-locomotion.Results. As a result of the research it shows that in motor rehabilitation of children with cerebral palsy should include the following elements: exercise to maintain the body balance when performing arm movements, exercises for coordination of hand movements, including motor brushes, exercises to increase mobility in the hip joints and in the back, exercises designed to exercise the calf muscles, the front thigh muscles and the rectus muscles of the back, massage to relieve hyper calf muscles. 

  19. Elementary physical approach to Mach's principle and its observational basis

    International Nuclear Information System (INIS)

    Horak, Z.

    1979-01-01

    It is shown that Mach's principle and the general principle of relativity are logical consequences of a 'materialistic postulate' and that general relativity implies the validity of Mach's principle for a static (or quasistatic) homogeneous and isotropic universe, spatially self-enclosed. The finite velocity of propagation of gravitational field does not imply a retardation of inertial forces due to the distant masses and therefore does not exclude the validity of Mach's principle. Similarly, the experimentally verified isotropy of inertia is compatible with this principle. The recent observational evidence of very high isotropy of the actual universe proves that the 'anti-Machian' Godel world model must be rejected as a nonphysical one. This suggests the possibility of a renaissance of Einstein's first cosmological model by considering-in the spirit of an older idea of Herbert Dingle-a superlarge-scale quasistatic universe consisting of an unknown number of statistically oscillating regions similar to our own, momentarily expanding, metagalaxy. (author)

  20. Elaboration of the recently proposed test of Pauli's principle under strong interactions

    International Nuclear Information System (INIS)

    Ktorides, C.N.; Myung, H.C.; Santilli, R.M.

    1980-01-01

    The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character

  1. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-03-01

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  2. Scattering theory in quantum mechanics. Physical principles and mathematical methods

    International Nuclear Information System (INIS)

    Amrein, W.O.; Jauch, J.M.; Sinha, K.B.

    1977-01-01

    A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods

  3. Physical Principles of Discrete Hierarchies Formation in Protein Macromolecules

    Science.gov (United States)

    Malyshko, E. V.; Tverdislov, V. A.

    2017-11-01

    A model for chiral periodicity with alternating chiral sense in hierarchies of protein and nucleic acid structures is proposed and substantiated. Regular alternation of the chirality sense is revealed in transitions from the lowest to higher levels of structural-functional organization in proteins where it is L-D-L-D. The stratification principle combines the ideas of biomacromolecules folding and molecular biological machines.

  4. Pedagogical Principles of Learning to Teach Meaningful Physical Education

    Science.gov (United States)

    Ní Chróinín, Déirdre; Fletcher, Tim; O'Sullivan, Mary

    2018-01-01

    Background: Concerns that current forms of physical education teacher education (PETE) are not adequately providing teachers with the tools necessary for working with the realities and challenges of teaching physical education in contemporary schools has led some scholars to advocate for an approach that prioritises meaningfulness in physical…

  5. Investigation of the blood behaviour and vascular diseases by using mathematical physic principles

    Science.gov (United States)

    Yardimci, Ahmet; Simsek, Buket

    2017-07-01

    In this paper we prepare a short survey for using of mathematical physic principles in blood flow and vascular diseases researches. The study of the behavior of blood flow in the blood vessels provides understanding on connection between flow and the development of dieseases such as atherosclerosis, thrombosis, aneurysms etc. and how the flow dynamics is changed under these conditions. Blood flow phenomena are often too complex that it would be possible to describe them entirely analytically, although simple models, such as Poiseuille model, can still provide some insight into blood flow. Blood is not an "ideal fluid" and energy is lost as flowing blood overcomes resistance. Resistance to blood flow is a function of viscosity, vessel radius, and vessel length. So, mathematical Physic principles are useful tools for blood flow research studies. Blood flow is a function of pressure gradient and resistance and resistance to flow can be estimates using Poiseuille's law. Reynold's number can be used to determine whether flow is laminar or turbulent.

  6. Principles underlying the Fourth Power Nature of Structured Shock Waves

    Science.gov (United States)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  7. Generalized Tellegen Principle and Physical Correctness of System Representations

    Directory of Open Access Journals (Sweden)

    Vaclav Cerny

    2006-06-01

    Full Text Available The paper deals with a new problem of physical correctness detection in the area of strictly causal system representations. The proposed approach to the problem solution is based on generalization of Tellegen's theorem well known from electrical engineering. Consequently, mathematically as well as physically correct results are obtained. Some known and often used system representation structures are discussed from the developed point of view as an addition.

  8. Anthropic principle and the structure of the physical world

    Energy Technology Data Exchange (ETDEWEB)

    Carr, B J; Rees, M J [Cambridge Univ. Inst. of Astronomy (UK)

    1979-04-12

    It is stated that the basic features of galaxies, stars, planets and the everyday world are essentially determined by a few microphysical constants and by the effects of gravitation. Many interrelations between different scales that at first sight seem surprising are straightforward consequences of simple physical arguments. Several aspects of our Universe - some of which seem to be prerequisites for the evolution of any form of life -depend rather delicately on apparent 'coincidences' among the physical constants.

  9. Principles of general relativity theory in terms of the present day physics

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1986-01-01

    A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development

  10. Physically based principles of cell adhesion mechanosensitivity in tissues

    International Nuclear Information System (INIS)

    Ladoux, Benoit; Nicolas, Alice

    2012-01-01

    The minimal structural unit that defines living organisms is a single cell. By proliferating and mechanically interacting with each other, cells can build complex organization such as tissues that ultimately organize into even more complex multicellular living organisms, such as mammals, composed of billions of single cells interacting with each other. As opposed to passive materials, living cells actively respond to the mechanical perturbations occurring in their environment. Tissue cell adhesion to its surrounding extracellular matrix or to neighbors is an example of a biological process that adapts to physical cues. The adhesion of tissue cells to their surrounding medium induces the generation of intracellular contraction forces whose amplitude adapts to the mechanical properties of the environment. In turn, solicitation of adhering cells with physical forces, such as blood flow shearing the layer of endothelial cells in the lumen of arteries, reinforces cell adhesion and impacts cell contractility. In biological terms, the sensing of physical signals is transduced into biochemical signaling events that guide cellular responses such as cell differentiation, cell growth and cell death. Regarding the biological and developmental consequences of cell adaptation to mechanical perturbations, understanding mechanotransduction in tissue cell adhesion appears as an important step in numerous fields of biology, such as cancer, regenerative medicine or tissue bioengineering for instance. Physicists were first tempted to view cell adhesion as the wetting transition of a soft bag having a complex, adhesive interaction with the surface. But surprising responses of tissue cell adhesion to mechanical cues challenged this view. This, however, did not exclude that cell adhesion could be understood in physical terms. It meant that new models and descriptions had to be created specifically for these biological issues, and could not straightforwardly be adapted from dead matter

  11. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    Science.gov (United States)

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  12. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  13. Physical and measuring principles of nuclear well logging techniques

    International Nuclear Information System (INIS)

    Loetzsch, U.; Winkler, R.

    1981-01-01

    Proceeding from the general task of nuclear geophysics as a special discipline of applied geophyscis, the essential physical problems of nuclear well logging techniques are considered. Particularly, the quantitative relationship between measured values and interesting geologic parameters to be determined are discussed taking into account internal and external perturbation parameters. Resulting from this study, the technological requirements for radiation sources and their shielding, for detectors, electronic circuits in logging tools, signal transmission by cable and recording equipment are derived, and explained on the basis of examples of gamma-gamma and neutron-neutron logging. (author)

  14. Laser physics from principles to practical work in the lab

    CERN Document Server

    Eichhorn, Marc

    2014-01-01

    This textbook originates from a lecture course in laser physics at the Karlsruhe School of Optics and Photonics at the Karlsruhe Institute of Technology (KIT). A main goal in the conception of this textbook was to describe the fundamentals of lasers in a uniform and especially lab-oriented notation and formulation as well as many currently well-known laser types, becoming more and more important in the future. It closes a gap between the measureable spectroscopic quantities and the whole theoretical description and modeling. This textbook contains not only the fundamentals and the context of laser physics in a mathematical and methodical approach important for university-level studies. It allows simultaneously, owing to its conception and its modern notation, to directly implement and use the learned matter in the practical lab work. It is presented in a format suitable for everybody who wants not only to understand the fundamentals of lasers but also use modern lasers or even develop and make laser setups. T...

  15. Applications of the principle of maximum entropy: from physics to ecology.

    Science.gov (United States)

    Banavar, Jayanth R; Maritan, Amos; Volkov, Igor

    2010-02-17

    There are numerous situations in physics and other disciplines which can be described at different levels of detail in terms of probability distributions. Such descriptions arise either intrinsically as in quantum mechanics, or because of the vast amount of details necessary for a complete description as, for example, in Brownian motion and in many-body systems. We show that an application of the principle of maximum entropy for estimating the underlying probability distribution can depend on the variables used for describing the system. The choice of characterization of the system carries with it implicit assumptions about fundamental attributes such as whether the system is classical or quantum mechanical or equivalently whether the individuals are distinguishable or indistinguishable. We show that the correct procedure entails the maximization of the relative entropy subject to known constraints and, additionally, requires knowledge of the behavior of the system in the absence of these constraints. We present an application of the principle of maximum entropy to understanding species diversity in ecology and introduce a new statistical ensemble corresponding to the distribution of a variable population of individuals into a set of species not defined a priori.

  16. Applications of the principle of maximum entropy: from physics to ecology

    International Nuclear Information System (INIS)

    Banavar, Jayanth R; Volkov, Igor; Maritan, Amos

    2010-01-01

    There are numerous situations in physics and other disciplines which can be described at different levels of detail in terms of probability distributions. Such descriptions arise either intrinsically as in quantum mechanics, or because of the vast amount of details necessary for a complete description as, for example, in Brownian motion and in many-body systems. We show that an application of the principle of maximum entropy for estimating the underlying probability distribution can depend on the variables used for describing the system. The choice of characterization of the system carries with it implicit assumptions about fundamental attributes such as whether the system is classical or quantum mechanical or equivalently whether the individuals are distinguishable or indistinguishable. We show that the correct procedure entails the maximization of the relative entropy subject to known constraints and, additionally, requires knowledge of the behavior of the system in the absence of these constraints. We present an application of the principle of maximum entropy to understanding species diversity in ecology and introduce a new statistical ensemble corresponding to the distribution of a variable population of individuals into a set of species not defined a priori. (topical review)

  17. Extreme Scale Computing for First-Principles Plasma Physics Research

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Choogn-Seock [Princeton University

    2011-10-12

    World superpowers are in the middle of the “Computnik” race. US Department of Energy (and National Nuclear Security Administration) wishes to launch exascale computer systems into the scientific (and national security) world by 2018. The objective is to solve important scientific problems and to predict the outcomes using the most fundamental scientific laws, which would not be possible otherwise. Being chosen into the next “frontier” group can be of great benefit to a scientific discipline. An extreme scale computer system requires different types of algorithms and programming philosophy from those we have been accustomed to. Only a handful of scientific codes are blessed to be capable of scalable usage of today’s largest computers in operation at petascale (using more than 100,000 cores concurrently). Fortunately, a few magnetic fusion codes are competing well in this race using the “first principles” gyrokinetic equations.These codes are beginning to study the fusion plasma dynamics in full-scale realistic diverted device geometry in natural nonlinear multiscale, including the large scale neoclassical and small scale turbulence physics, but excluding some ultra fast dynamics. In this talk, most of the above mentioned topics will be introduced at executive level. Representative properties of the extreme scale computers, modern programming exercises to take advantage of them, and different philosophies in the data flows and analyses will be presented. Examples of the multi-scale multi-physics scientific discoveries made possible by solving the gyrokinetic equations on extreme scale computers will be described. Future directions into “virtual tokamak experiments” will also be discussed.

  18. The fundamental principles of the physical protection, the group of six point of view

    International Nuclear Information System (INIS)

    Claeys, M.; Carnas, L.; Robeyns, G.; Rommevaux, G.; Venot, R.; Hagemann, A.; Fontaneda Gonzalez, A.; Gimenez Gonzalez, S.; Isaksson, S.G.; Wager, K.; Price, C.

    2001-01-01

    This paper presents the joint experience of the Group of Six in the field of physical protection against the theft or unauthorized removal of nuclear material and against the sabotage of nuclear material and nuclear facilities, which emerged from the joint discussion. Several fundamental principles stem from this experience. Of course the particular terms and conditions of the implementation of these principles are specific to each country. (authors)

  19. Quantum Physics Principles and Communication in the Acute Healthcare Setting: A Pilot Study.

    Science.gov (United States)

    Helgeson, Heidi L; Peyerl, Colleen Kraft; Solheim-Witt, Marit

    This pilot study explores whether clinician awareness of quantum physics principles could facilitate open communication between patients and providers. In the spirit of action research, this study was conceptualized with a holistic view of human health, using a mixed method design of grounded theory as an emergent method. Instrumentation includes surveys and a focus group discussion with twelve registered nurses working in an acute care hospital setting. Findings document that the preliminary core phenomenon, energy as information, influences communication in the healthcare environment. Key emergent themes include awareness, language, validation, open communication, strategies, coherence, incoherence and power. Research participants indicate that quantum physics principles provide a language and conceptual framework for improving their awareness of communication and interactions in the healthcare environment. Implications of this pilot study support the feasibility of future research and education on awareness of quantum physics principles in other clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Demand of Insurance under the Cost-of-Capital Premium Calculation Principle

    Directory of Open Access Journals (Sweden)

    Michael Merz

    2014-06-01

    Full Text Available We study the optimal insurance design problem. This is a risk sharing problem between an insured and an insurer. The main novelty in this paper is that we study this optimization problem under a risk-adjusted premium calculation principle for the insurance cover. This risk-adjusted premium calculation principle uses the cost-of-capital approach as it is suggested (and used by the regulator and the insurance industry.

  1. Humanoid infers Archimedes' principle: understanding physical relations and object affordances through cumulative learning experiences

    Science.gov (United States)

    2016-01-01

    Emerging studies indicate that several species such as corvids, apes and children solve ‘The Crow and the Pitcher’ task (from Aesop's Fables) in diverse conditions. Hidden beneath this fascinating paradigm is a fundamental question: by cumulatively interacting with different objects, how can an agent abstract the underlying cause–effect relations to predict and creatively exploit potential affordances of novel objects in the context of sought goals? Re-enacting this Aesop's Fable task on a humanoid within an open-ended ‘learning–prediction–abstraction’ loop, we address this problem and (i) present a brain-guided neural framework that emulates rapid one-shot encoding of ongoing experiences into a long-term memory and (ii) propose four task-agnostic learning rules (elimination, growth, uncertainty and status quo) that correlate predictions from remembered past experiences with the unfolding present situation to gradually abstract the underlying causal relations. Driven by the proposed architecture, the ensuing robot behaviours illustrated causal learning and anticipation similar to natural agents. Results further demonstrate that by cumulatively interacting with few objects, the predictions of the robot in case of novel objects converge close to the physical law, i.e. the Archimedes principle: this being independent of both the objects explored during learning and the order of their cumulative exploration. PMID:27466440

  2. Humanoid infers Archimedes' principle: understanding physical relations and object affordances through cumulative learning experiences.

    Science.gov (United States)

    Bhat, Ajaz Ahmad; Mohan, Vishwanathan; Sandini, Giulio; Morasso, Pietro

    2016-07-01

    Emerging studies indicate that several species such as corvids, apes and children solve 'The Crow and the Pitcher' task (from Aesop's Fables) in diverse conditions. Hidden beneath this fascinating paradigm is a fundamental question: by cumulatively interacting with different objects, how can an agent abstract the underlying cause-effect relations to predict and creatively exploit potential affordances of novel objects in the context of sought goals? Re-enacting this Aesop's Fable task on a humanoid within an open-ended 'learning-prediction-abstraction' loop, we address this problem and (i) present a brain-guided neural framework that emulates rapid one-shot encoding of ongoing experiences into a long-term memory and (ii) propose four task-agnostic learning rules (elimination, growth, uncertainty and status quo) that correlate predictions from remembered past experiences with the unfolding present situation to gradually abstract the underlying causal relations. Driven by the proposed architecture, the ensuing robot behaviours illustrated causal learning and anticipation similar to natural agents. Results further demonstrate that by cumulatively interacting with few objects, the predictions of the robot in case of novel objects converge close to the physical law, i.e. the Archimedes principle: this being independent of both the objects explored during learning and the order of their cumulative exploration. © 2016 The Author(s).

  3. The Search for Underlying Principles of Health Impact Assessment: Progress and Prospects; Comment on “Investigating Underlying Principles to Guide Health Impact Assessment”

    Directory of Open Access Journals (Sweden)

    Mirko S. Winkler

    2014-07-01

    Full Text Available Health Impact Assessment (HIA is a relatively young field of endeavour, and hence, future progress will depend on the planning, implementation and rigorous evaluation of additional HIAs of projects, programmes and policies the world over. In the June 2014 issue of the International Journal of Health Policy and Management, Fakhri and colleagues investigated underlying principles of HIA through a comprehensive review of the literature and expert consultation. With an emphasis on the Islamic Republic of Iran, the authors identified multiple issues that are relevant for guiding HIA practice. At the same time, the study unravelled current shortcomings in the understanding and definition of HIA principles and best practice at national, regional, and global levels. In this commentary we scrutinise the research presented, highlight strengths and limitations, and discuss the findings in the context of other recent attempts to guide HIA.

  4. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    International Nuclear Information System (INIS)

    Schroer, Bert

    2005-04-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  5. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  6. Mathematical, physical and numerical principles essential for models of turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV

    2009-01-01

    We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.

  7. Interpretation of the extreme physical information principle in terms of shift information

    International Nuclear Information System (INIS)

    Vstovsky, G.V.

    1995-01-01

    It is shown that Fisher information (FI) can be considered as a limiting case of a related form of Kullback information---a shift information (SI). The compatibility of the use of SI with a basic physical principle of uncertainty is demonstrated. The scope of FI based theory is extended to the nonlinear Klein-Gordon equation

  8. Physical Principles of the Method for Determination of Geometrical Characteristics and Particle Recognition in Digital Holography

    Science.gov (United States)

    Dyomin, V. V.; Polovtsev, I. G.; Davydova, A. Yu.

    2018-03-01

    The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given.

  9. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  10. Physical properties of the tetragonal CuMnAs: A first-principles study

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Kudrnovský, Josef; Drchal, Václav; Carva, K.; Baláž, P.; Turek, I.

    2017-01-01

    Roč. 96, č. 9 (2017), s. 1-8, č. článku 094406. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : first-principles calculations * defects * CuMnAs * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  11. Community-based physical activity intervention using principles of social marketing: a demonstration project in Southern India.

    Science.gov (United States)

    Subitha, L; Soudarssanane, M Bala; Murugesan, R

    2013-01-01

    We aimed to study the development and implementation of promotion of physical activity in a rural community by applying the principles of social marketing and to determine participation behaviour in a physical activity programme in a community setting. The intervention targeted 485 people, 20-49 years of age, residents of Periakattupalayam and Rangareddipalayam villages, Tamil Nadu. This community-based participatory research was based on the principles of 'social marketing'. Health education by one-to-one counselling, written materials and community events were used to popularize moderate intensity physical activity (brisk walking for 30 minutes on 4 days/week). We formed 30 walking groups under four coordinators, in a home-based setting with professional supervision and guidance. A log of physical activity sessions for the 10-week intervention period was maintained in the form of group attendance record. Village leaders, self-help groups and youth clubs were involved in promoting physical activity. Of the 485 subjects, 265 people (54.6%) engaged in brisk walking >4 days a week, while 156 subjects (32.2%) performed walking on 1-4 days per week during the intervention. The drop-out rate was 13.2% (64 subjects). Age, occupation and educational status were important determinants of participation and adherence to the physical activity programme. Application of social marketing techniques in an intervention to promote physical activity was successful in a rural Indian community. Studying the determinants of adoption of a physical activity programme and addressing the barriers to behaviour change are essential for designing relevant policies and effective programmes. Copyright 2012, NMJI.

  12. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, H.P.; Streppel, K.R.; van der Beek, A.J.; van der Woude, L.H.V.; van Harten, W.H.; van Mechelen, W.

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  13. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  14. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  15. Temporal ventriloquism along the path of apparent motion: speed perception under different spatial grouping principles.

    Science.gov (United States)

    Ogulmus, Cansu; Karacaoglu, Merve; Kafaligonul, Hulusi

    2018-03-01

    The coordination of intramodal perceptual grouping and crossmodal interactions plays a critical role in constructing coherent multisensory percepts. However, the basic principles underlying such coordinating mechanisms still remain unclear. By taking advantage of an illusion called temporal ventriloquism and its influences on perceived speed, we investigated how audiovisual interactions in time are modulated by the spatial grouping principles of vision. In our experiments, we manipulated the spatial grouping principles of proximity, uniform connectedness, and similarity/common fate in apparent motion displays. Observers compared the speed of apparent motions across different sound timing conditions. Our results revealed that the effects of sound timing (i.e., temporal ventriloquism effects) on perceived speed also existed in visual displays containing more than one object and were modulated by different spatial grouping principles. In particular, uniform connectedness was found to modulate these audiovisual interactions in time. The effect of sound timing on perceived speed was smaller when horizontal connecting bars were introduced along the path of apparent motion. When the objects in each apparent motion frame were not connected or connected with vertical bars, the sound timing was more influential compared to the horizontal bar conditions. Overall, our findings here suggest that the effects of sound timing on perceived speed exist in different spatial configurations and can be modulated by certain intramodal spatial grouping principles such as uniform connectedness.

  16. TEACHING PHYSICS: An experiment to demonstrate the principles and processes involved in medical Doppler ultrasound

    Science.gov (United States)

    Andrews, D. G. H.

    2000-09-01

    Doppler ultrasound is widely used in medicine for measuring blood velocity. This paper describes an experiment illustrating the principles of medical Doppler ultrasound. It is designed with A-level/undergraduate physics students in mind. Ultrasound is transmitted in air and reflected from a moving target. The return signal is processed using a series of modules, so that students can discover for themselves how each stage in the instrument works. They can also obtain a quantitative value of the speed of the target.

  17. Testing principle working mechanisms of the health action process approach for subjective physical age groups.

    Science.gov (United States)

    Wienert, Julian; Kuhlmann, Tim; Fink, Sebastian; Hambrecht, Rainer; Lippke, Sonia

    2016-01-01

    This study investigated differences in social-cognitive predictors and self-regulatory planning, as proposed by the health action process approach (HAPA), across three different subjective physical age groups for physical activity. With a cross-sectional design, 521 participants across the chronological age span from 25 to 86 years (M = 48.79; SD = 12.66) were separated into three groups: those who feel physically younger than they are in terms of chronological age, the same perceived and chronological age, and feeling physically older compared to their chronological age. Participants were assessed regarding their perceived vulnerability, outcome expectancies, general intentions, planning, self-efficacy, and stages of physical activity (non-intenders, intenders, and actors). Data were analysed via mean comparison and multigroup structural equation modelling. Mean differences for all but one construct were eminent in all groups, generally showing that those feeling physically younger also report better social-cognitive predictors of physical activity (e.g. lower perceived vulnerability) in comparison to those who feel the same age or older. The model showed that basic working mechanisms of the HAPA can be applied to all groups. With that, the results provide for the first time evidence that principle working mechanism of the HAPA can be applied to all subjective physical age groups. These may be used to tailor health promoting interventions according to participants' needs as a more suitable proxy than chronological age.

  18. THE UNDERLYING PRINCIPLES OF SUSILO BAMBANG YUDHOYONO‘S THOUGHT PATTERNS IN HIS ENGLISH SPEECH TEXTS

    Directory of Open Access Journals (Sweden)

    Sulistya ningsih

    2014-10-01

    Full Text Available The underlying principles of thought patterns as shown in SBY's English Speeches Texts are made because there are different responses from the public, a part of public praise that SBY is a good president, and others claim and criticize him that  he is slow (Djalal, 2007: forward page. This title so far has not been investigated. This research was aimed at finding out:  the underlying principles of SBY’s thought patterns in his English Speech Texts related to Javanese philosophy. This research is qualitative. The data selected from SBY’s speech Texts were analyzed using semantic and pragmastylistic theory then were related to Javanese philosophy. The findings are the underlying principles of SBY’s thought patterns based on Javanese philosophy manifested in his English Speech Texts are: first is Memayu Hayuning Bawana, Ambrasta dur Hangkara means to reach safety, peace, happiness and well-being of the world and its contents, to keep the world maintained and harmony. Second, Rukun agawe santosa crah agawe bubrah  means to build the condition of harmony, and avoid conflict, because conflict can be harmful to both parties. Third, tepa selira means keep thinking not to offend others or lighten the burdens of others, tolerance. Fourth is ana rembug becik dirembug means thru negotiations can avoid conflict and achieve cooperation, safety, peace and prosperity. In sum, the world peace can be reached thru discussions without war, soft powers.

  19. Constructing the principles: Method and metaphysics in the progress of theoretical physics

    Science.gov (United States)

    Glass, Lawrence C.

    This thesis presents a new framework for the philosophy of physics focused on methodological differences found in the practice of modern theoretical physics. The starting point for this investigation is the longstanding debate over scientific realism. Some philosophers have argued that it is the aim of science to produce an accurate description of the world including explanations for observable phenomena. These scientific realists hold that our best confirmed theories are approximately true and that the entities they propose actually populate the world, whether or not they have been observed. Others have argued that science achieves only frameworks for the prediction and manipulation of observable phenomena. These anti-realists argue that truth is a misleading concept when applied to empirical knowledge. Instead, focus should be on the empirical adequacy of scientific theories. This thesis argues that the fundamental distinction at issue, a division between true scientific theories and ones which are empirically adequate, is best explored in terms of methodological differences. In analogy with the realism debate, there are at least two methodological strategies. Rather than focusing on scientific theories as wholes, this thesis takes as units of analysis physical principles which are systematic empirical generalizations. The first possible strategy, the conservative, takes the assumption that the empirical adequacy of a theory in one domain serves as good evidence for such adequacy in other domains. This then motivates the application of the principle to new domains. The second strategy, the innovative, assumes that empirical adequacy in one domain does not justify the expectation of adequacy in other domains. New principles are offered as explanations in the new domain. The final part of the thesis is the application of this framework to two examples. On the first, Lorentz's use of the aether is reconstructed in terms of the conservative strategy with respect to

  20. The precautionary principle in fisheries management under climate change: How the international legal framework formulate it?

    Science.gov (United States)

    Latifah, E.; Imanullah, M. N.

    2018-03-01

    One of the objectives of fisheries management is to reach long-term sustainable benefits of the fish stocks while reducing the risk of severe or irreversible damage to the marine ecosystem. Achieving this objective needs, the good scientific knowledge and understanding on fisheries management including scientific data and information on the fish stock, fishing catch, distribution, migration, the proportion of mature fish, the mortality rate, reproduction as well as the knowledge on the impact of fishing on dependent and associated species and other species belonging to the same ecosystem, and further the impact of climate change and climate variability on the fish stocks and marine ecosystem. Lack of this scientific knowledge may lead to high levels of uncertainty. The precautionary principle is one of the basic environmental principles needed in overcoming this problem. An essence of this principle is that, in facing the serious risk as a result of the limited scientific knowledge or the absence of complete evidence of harm, it should not prevent the precautionary measures in minimizing risks and protecting the fish stocks and ecosystem. This study aims to examine how the precautionary principle in fisheries management be formulated into the international legal framework, especially under the climate change framework.

  1. Precautionary principles: a jurisdiction-free framework for decision-making under risk.

    Science.gov (United States)

    Ricci, Paolo F; Cox, Louis A; MacDonald, Thomas R

    2004-12-01

    Fundamental principles of precaution are legal maxims that ask for preventive actions, perhaps as contingent interim measures while relevant information about causality and harm remains unavailable, to minimize the societal impact of potentially severe or irreversible outcomes. Such principles do not explain how to make choices or how to identify what is protective when incomplete and inconsistent scientific evidence of causation characterizes the potential hazards. Rather, they entrust lower jurisdictions, such as agencies or authorities, to make current decisions while recognizing that future information can contradict the scientific basis that supported the initial decision. After reviewing and synthesizing national and international legal aspects of precautionary principles, this paper addresses the key question: How can society manage potentially severe, irreversible or serious environmental outcomes when variability, uncertainty, and limited causal knowledge characterize their decision-making? A decision-analytic solution is outlined that focuses on risky decisions and accounts for prior states of information and scientific beliefs that can be updated as subsequent information becomes available. As a practical and established approach to causal reasoning and decision-making under risk, inherent to precautionary decision-making, these (Bayesian) methods help decision-makers and stakeholders because they formally account for probabilistic outcomes, new information, and are consistent and replicable. Rational choice of an action from among various alternatives--defined as a choice that makes preferred consequences more likely--requires accounting for costs, benefits and the change in risks associated with each candidate action. Decisions under any form of the precautionary principle reviewed must account for the contingent nature of scientific information, creating a link to the decision-analytic principle of expected value of information (VOI), to show the

  2. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.

    1986-01-01

    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  3. High-energy cosmic rays and tests of basic principles of Physics

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres L.

    2014-04-01

    Full Text Available With the present understanding of data, the observed flux suppression for ultra-high energy cosmic rays (UHECR at energies above 4.1019 eV can be a signature of the Greisen-Zatsepin-Kuzmin (GZK cutoff or be related to a similar mechanism. But it may also correspond, for instance, to the maximum energies available at the relevant sources. In both cases, violations of special relativity modifying cosmic-ray propagation or acceleration at very high energy can potentially play a role. Other violations of fundamental principles of standard particle physics (quantum mechanics, energy and momentum conservation, vacuum homogeneity and “static” properties, effective space dimensions, quark confinement… can also be relevant at these energies. In particular, UHECR data would in principle allow to set bounds on Lorentz symmetry violation (LSV in patterns incorporating a privileged local reference frame (the “vacuum rest frame”, VRF. But the precise analysis is far from trivial, and other effects can also be present. The effective parameters can be related to Planckscale physics, or even to physics beyond Planck scale, as well as to the dynamics and effective symmetries of LSV for nucleons, quarks, leptons and the photon. LSV can also be at the origin of GZK-like effects. In the presence of a VRF, and contrary to a “grand unification” view, LSV and other violations of standard principles can modify the internal structure of particles at very high energy and conventional symmetries may cease to be valid at energies close to the Planck scale. We present an updated discussion of these topics, including experimental prospects, new potentialities for high-energy cosmic ray phenomenology and the possible link with unconventional pre-Big Bang scenarios, superbradyon (superluminal preon patterns… The subject of a possible superluminal propagation of neutrinos at accelerator energies is also dealt with.

  4. Principles, Economic and Institutional Prerequisites for Fiscal Decentralization under Conditions of Post-Conflict Reconstruction

    Directory of Open Access Journals (Sweden)

    Vishnevsky Valentine P.

    2016-11-01

    Full Text Available The aim of the article is to study principles, economic and institutional prerequisites for fiscal decentralization on post-conflict territories. It is determined that fiscal decentralization is one of the main ways to solve problems of post-conflict areas. There justified principles, economic and institutional prerequisites of fiscal decentralization on post-conflict territories with regard to the specificity of individual spheres of fiscal relations. Moreover, different spheres of fiscal relations require different approaches: the sphere of public revenues — providing economic efficiency with the formation of the tax structure contributing to the expansion of the tax base; the sphere of public spending — ensuring social justice and transparency in allocation of social cost at the local level; the sphere of subsidies — narrowing the scope of application of intergovernmental transfers with organizing the redistribution of financial resources under the principle of «center - post-conflict regions - post-conflict recipients»; the sphere of external assistance — ensuring proper coordination for cultivation of new co-operative institutions.

  5. Differentiation with Stratification: A Principle of Theoretical Physics in the Tradition of the Memory Art

    Science.gov (United States)

    Pombo, Claudia

    2015-10-01

    The art of memory started with Aristotle's questions on memory. During its long evolution, it had important contributions from alchemists, was transformed by Ramon Llull and apparently ended with Giordano Bruno, who was considered the best known representative of this art. This tradition did not disappear, but lives in the formulations of our modern scientific theories. From its initial form as a method of keeping information via associations, it became a principle of classification and structuring of knowledge. This principle, which we here name differentiation with stratification, is a structural design behind classical mechanics. Integrating two different traditions of science in one structure, this physical theory became the modern paradigm of science. In this paper, we show that this principle can also be formulated as a set of questions. This is done via an analysis of theories, based on the epistemology of observational realism. A combination of Rudolph Carnap's concept of theory as a system of observational and theoretical languages, with a criterion for separating observational languages, based on analytical psychology, shapes this epistemology. The `nuclear' role of the observational laws and the differentiations from these nucleus, reproducing the general cases of phenomena, reveals the memory art's heritage in the theories. Here in this paper we argue that this design is also present in special relativity and in quantum mechanics.

  6. The next generation mass storage devices - Physical principles and current status

    Science.gov (United States)

    Wang, L.; Gai, S.

    2014-04-01

    The amount of digital data today has been increasing at a phenomenal rate due to the widespread digitalisation service in almost every industry. The need to store such ever-increasing data aggressively triggers the requirement to augment the storage capacity of the conventional storage technologies. Unfortunately, the physical limitations that conventional forms face have severely handicapped their potential to meet the storage need from both consumer and industry point of view. The focus has therefore been switched into the development of the innovative data storage technologies such as scanning probe memory, nanocrystal memory, carbon nanotube memory, DNA memory, and organic memory. In this paper, we review the physical principles of these emerging storage technologies and their superiorities as the next generation data storage device, as well as their respective technical challenges on further enhancing the storage capacity. We also compare these novel technologies with the mainstream data storage means according to the technology roadmap on areal density.

  7. Emission tomography with positrons principle, physical performances of a ring detector and quantitative possibilities

    International Nuclear Information System (INIS)

    Soussaline, F.; Plummer, D.; Todd Pokropek, A.E.; Loc'h, C.; Comar, D.

    1979-01-01

    Satisfactory qualitative and quantitative data in positron emission tomography requires the use of a well adapted tomographic system. A number of parameters have been identified which can be considered as the critical characteristics for evaluation and intercomparison of such systems. Using these the choice of a single slice ring positron camera could be justified by its physical performance, which is presented and discussed. Series of physical and mathematical simulations allow an appropriate knowledge of such a system, which has been in use for more than a year in a clinical environment. These studies aid to the interpretation of very interesting physiopathologic studies. In principle, a positron tomographic system permits measurement of absolute quantitative concentration values, which are essential for precise metabolic studies. The main sources of error comprising the calibration of the system, the tail effects and the precision for attenuation correction are analysed. When taking in account these errors, a precision of the order of 10% should be obtainable [fr

  8. Bridging the gap between the Babinet principle and the physical optics approximation: Vectorial problem

    Science.gov (United States)

    Kubické, Gildas; Bourlier, Christophe; Delahaye, Morgane; Corbel, Charlotte; Pinel, Nicolas; Pouliguen, Philippe

    2013-09-01

    For a three-dimensional problem and by assuming perfectly electric conducting objects, this paper shows that the Babinet principle (BP) can be derived from the physical optics (PO) approximation. Indeed, following the same idea as Ufimtsev, from the PO approximation and in the far-field zone, the field scattered by an object can be split up into a field which mainly contributes around the specular direction (illuminated zone) and a field which mainly contributes around the forward direction (shadowed zone), which is strongly related to the scattered field obtained from the BP. The only difference resides in the integration surface. We show mathematically that the involved integral does not depend on the shape of the object but only on its contour. Simulations are provided to illustrate the link between BP and PO. The main gain of this work is that it provides a more complete physical insight into the connection between PO and BP.

  9. An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle

    Directory of Open Access Journals (Sweden)

    Milinkovitch Michel C

    2007-11-01

    Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.

  10. Principles Supporting the Perceptional Teaching of Physics: A ``Practical Teaching Philosophy''

    Science.gov (United States)

    Kurki-Suonio, Kaarle

    2011-03-01

    This article sketches a framework of ideas developed in the context of decades of physics teacher-education that was entitled the "perceptional approach". Individual learning and the scientific enterprise are interpreted as different manifestations of the same process aimed at understanding the natural and social worlds. The process is understood to possess the basic nature of perception, where empirical meanings are first born and then conceptualised. The accumulation of perceived gestalts in the "structure of the mind" leads to structural perception and the generation of conceptual hierarchies, which form a general principle for the expansion of our understanding. The process undergoes hierarchical development from early sensory perception to individual learning and finally to science. The process is discussed in terms of a three-process dynamic. Scientific and technological processes are driven by the interaction of the mind and nature. They are embedded in the social process due to the interaction of individual minds. These sub-processes are defined by their aims: The scientific process affects the mind and aims at understanding; the technological process affects nature and aims at human well-being; and the social process aims at mutual agreement and cooperation. In hierarchical development the interaction of nature and the mind gets structured into a "methodical cycle" by procedures involving conscious activities. Its intuitive nature is preserved due to subordination of the procedures to empirical meanings. In physics, two dimensions of hierarchical development are distinguished: Unification development gives rise to a generalisation hierarchy of concepts; Quantification development transfers the empirical meanings to quantities, laws and theories representing successive hierarchical levels of quantitative concepts. Consequences for physics teaching are discussed in principle, and in the light of examples and experiences from physics teacher education.

  11. Physical and Chemical Properties of Soils under Contrasting Land ...

    African Journals Online (AJOL)

    Physical and Chemical Properties of Soils under Contrasting Land Use ... the aim of understanding the response of the soil to different management practices over time. ... The soil chemical properties studied were soil pH, organic carbon, total ...

  12. Bernoulli's Principle

    Science.gov (United States)

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  13. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    Science.gov (United States)

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.

    Science.gov (United States)

    Lisman, John; Raghavachari, Sridhar

    2015-09-24

    Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these

  15. The biology and polymer physics underlying large-scale chromosome organization.

    Science.gov (United States)

    Sazer, Shelley; Schiessel, Helmut

    2018-02-01

    Chromosome large-scale organization is a beautiful example of the interplay between physics and biology. DNA molecules are polymers and thus belong to the class of molecules for which physicists have developed models and formulated testable hypotheses to understand their arrangement and dynamic properties in solution, based on the principles of polymer physics. Biologists documented and discovered the biochemical basis for the structure, function and dynamic spatial organization of chromosomes in cells. The underlying principles of chromosome organization have recently been revealed in unprecedented detail using high-resolution chromosome capture technology that can simultaneously detect chromosome contact sites throughout the genome. These independent lines of investigation have now converged on a model in which DNA loops, generated by the loop extrusion mechanism, are the basic organizational and functional units of the chromosome. © 2017 The Authors. Traffic published by John Wiley & Sons Ltd.

  16. General Principles and Convention on Contracts for the International Sale of Goods (CISG – Uniformity under an Interpretation Umbrella?

    Directory of Open Access Journals (Sweden)

    Laura Lassila

    2017-01-01

    Full Text Available Globalization and digitalization of international sales creates needs to harmonize rules of international commercial contracts. The question is whether the harmonization should be done by binding rules or using soft law tools or through digitalization. In this article I argue on favor of harmonization through international contracts law rules’ international interpretation.The international interpretation principles used in this article are found from on Art. 7(1 of the Convention on Contracts for the International Sale of Goods (CISG which sets three interpretation rules: international character; promoting uniformity; and observance of good faith in international trade. These principles are not only principles of the CISG, but also principles commonly recognized in international commercial practice and also in domestic contract rules. I argue that by adopting an international interpretation umbrella – the meta-principle of international interpretation, cross-border contracts could be interpreted under the same principle no matter applicable substantial law. The meta-principle functions as an interpretation umbrella covering general principles and Articles of the CISG, general principles of international commercial contracts, Lex Mercatoria, and cross-border contract provision under national law.The outcomes points out that arbitral tribunals have interpreted general principles of the CISG and Lex Mercatoria in various ways. General principles and their application in case law is analyzed in connection with the Civil Code of the Russian Federation. Tribunals found that general principles of the CISG are applicable even if the CISG is not. It follows Art.’s 7(2 logic to promote international standard to cross-border contracts where the closes connection is international commercial practice rather than any national jurisdiction.

  17. First-principles study of the nickel–silicon binary compounds under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuhong, E-mail: zyh388@sina.com [College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hou, Hua [College of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhao, Yuhui [Department of Mechanical and Electronic Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091 (China); Han, Peide [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-08-15

    Highlights: • The structural and elastic properties of Ni–Si system under pressure are firstly studied. • The lattice parameters of NiSi{sub 2} are the most sensitive to external pressure change. • Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} are mechanical stability with pressure up to 50 GPa. • The hardness of the four compounds can be improved by increasing pressure. • Electronic structures are analyzed to understand pressure effect on the seven compounds. - Abstract: The effects of high pressure on structural, stable, elastic, thermodynamic properties and electronic structures of Ni–Si binary compounds (i.e. β-Ni{sub 3}Si, γ-Ni{sub 31}Si{sub 12}, δ-Ni{sub 2}Si, θ-Ni{sub 2}Si, ε-Ni{sub 3}Si{sub 2}, ε-NiSi and α-NiSi{sub 2}) have been firstly studied by first-principles calculation based on density functional theory method within generalized gradient approximation. The calculated lattice parameters of the seven compounds at zero pressure and zero temperature agree well with the available experimental values and previous theoretical data. The values of V/V{sub 0} decrease with pressure going up to 50 GPa and the rate of change decrease gradually. The lattice parameters of NiSi{sub 2} are the most sensitive to external pressure change. Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} are mechanical stability by estimating stability criteria with pressure ranging from 0 to 50 GPa. But Ni{sub 2}Si (θ), NiSi and NiSi{sub 2} are not mechanically stable with pressure up to 10, 40 and 30 GPa, respectively. The calculated results of bulk modulus B, shear modulus G and Young’s modulus E illustrate pressure can improve the hardness of Ni{sub 3}Si, Ni{sub 31}Si{sub 12}, Ni{sub 2}Si (δ) and Ni{sub 3}Si{sub 2} compounds. In addition, ratio of shear modulus to bulk modulus G/B shows that all the considered compounds are ductile materials except NiSi. The Debye temperature Θ{sub D} of Ni{sub 3}Si

  18. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  19. First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi-Jun, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Qin, Han; Jiao, Zhen; Liu, Fu-Sheng [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu 610031 (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Zheng-Tang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-09-01

    First-principles calculations of the structural, elastic, mechanical and electronic properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated in the present paper. Our calculated lattice constants at zero pressure are in agreement with the published theoretical and experimental data. The elastic constants at zero and high pressure have been obtained, which are used to discuss the mechanical stability of ilmenite-type ZnSnO{sub 3}. The mechanical properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio under pressure have been studied. Electronic properties show that ilmenite-type ZnSnO{sub 3} is shown to be a direct bandgap of 1.063 (GGA-PW91)/3.977 (PBE0) eV. The bandgap increases with the increasing pressure. Moreover, the partial density of states has been analyzed to explain the increased bandgap. - Highlights: • Physical properties of ilmenite-type ZnSnO{sub 3} under pressure have been investigated. • Ilmenite-type ZnSnO{sub 3} behaves in a ductile manner. • Ilmenite-type ZnSnO{sub 3} is a direct bandgap compound with 3.977 eV. • Bandgap of Ilmenite-type ZnSnO{sub 3} increases with the increasing pressure.

  20. Physical principles, geometrical aspects, and locality properties of gauge field theories

    International Nuclear Information System (INIS)

    Mack, G.; Hamburg Univ.

    1981-01-01

    Gauge field theories, particularly Yang - Mills theories, are discussed at a classical level from a geometrical point of view. The introductory chapters are concentrated on physical principles and mathematical tools. The main part is devoted to locality problems in gauge field theories. Examples show that locality problems originate from two sources in pure Yang - Mills theories (without matter fields). One is topological and the other is related to the existence of degenerated field configurations of the infinitesimal holonomy groups on some extended region of space or space-time. Nondegenerate field configurations in theories with semisimple gauge groups can be analysed with the help of the concept of a local gauge. Such gauges play a central role in the discussion. (author)

  1. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  2. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    Science.gov (United States)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  3. The physical principles of near infrared breast diaphanography and early diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Song Feijun; Jia Zhuoying

    2009-01-01

    The early-screening and diagnosis of breast cancer is very important for improving the life quality of women as well decreasing the death rate. As a main diagnostic technique, mammography might cause radiation damage to the human body. Near infrared (NIR) computer diaphanography imaging diagnosis (CDI) is a new technique for breast cancer diagnosis which can be performed multiple times with no harm. However, its high incidence of false positivity has raised doubts and questions. We introduce the physical principles of CDI, and discuss the mechanism of how a malignant growth surrounds itself with a dense network of tiny blood-filled capillaries to feed oxygen and nutrients to active tumors, thus forming unique NIR transmittance markers that reveal the presence of cancer. The advantages and difficulties of CDI are evaluated, with the conclusion that CDI satisfies all the 'three-conditions' of imaging diagnosis. The influence of competition with mammography in the development of CDI is reviewed. The opportunities of physics interacting with the life sciences are outlined. (authors)

  4. Review of the gas centrifuge until 1962. Part I: Principles of separation physics

    International Nuclear Information System (INIS)

    Whitley, S.

    1984-01-01

    There are two sets of principles involved in the development of the gas centrifuge, the internal separation physics and the external means of spinning a rotor at very high speeds. Only the first aspect is discussed in this part of the review. First, the industrial requirement for the separation of the uranium isotopes is defined so that the separation history can be put in a modern perspective. The history of separation physics itself is then traced back to the theory of centrifugal force by Huygens and the equivalence of this force to that of gravity. The barometric equation giving the variation of atmospheric pressure with height and the law of partial pressures can then be adapted to the centrifuge to give the steady-state theory of separation. This work was completed in the last century but was not confirmed in its application to isotope separation until 1936. The detailed separation physics for non-steady-state conditions required for a production centrifuge was developed during the American wartime Manhattan Project. During this work the theory giving the maximum output of a centrifuge was developed by Dirac, and soon afterwards Cohen and Kaplan showed that the best method of operation for a production centrifuge is in a countercurrent mode of operation. This method gives a large separation factor at relatively small flow rates through the rotor. The theory of how to set up an internal countercurrent was given by Martin during an equivalent wartime German project, and refinements to the theory, showing how the countercurrent persists along a centrifuge rotor, was given by Dirac and Steenbeck, the latter during a postwar Russian project. This theory was extended by Parker, Ging, and Mayo of the University of Virginia, whose work was completed by 1962, the limit of this review

  5. First Principles Prediction of Structure, Structure Selectivity, and Thermodynamic Stability under Realistic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ceder, Gerbrand [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials and Engineering

    2018-01-28

    Novel materials are often the enabler for new energy technologies. In ab-initio computational materials science, method are developed to predict the behavior of materials starting from the laws of physics, so that properties can be predicted before compounds have to be synthesized and tested. As such, a virtual materials laboratory can be constructed, saving time and money. The objectives of this program were to develop first-principles theory to predict the structure and thermodynamic stability of materials. Since its inception the program focused on the development of the cluster expansion to deal with the increased complexity of complex oxides. This research led to the incorporation of vibrational degrees of freedom in ab-initio thermodynamics, developed methods for multi-component cluster expansions, included the explicit configurational degrees of freedom of localized electrons, developed the formalism for stability in aqueous environments, and culminated in the first ever approach to produce exact ground state predictions of the cluster expansion. Many of these methods have been disseminated to the larger theory community through the Materials Project, pymatgen software, or individual codes. We summarize three of the main accomplishments.

  6. Physical principles and current status of emerging non-volatile solid state memories

    Science.gov (United States)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for

  7. The birth of the blues : how physics underlies music.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M.

    2009-07-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  8. The birth of the blues: how physics underlies music

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J M [Argonne National Laboratory, 9700 Cass Avenue, Argonne IL 60439 (United States)], E-mail: jmgibson@aps.anl.gov

    2009-07-15

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  9. The birth of the blues: how physics underlies music

    International Nuclear Information System (INIS)

    Gibson, J M

    2009-01-01

    Art and science have intimate connections, although these are often underappreciated. Western music provides compelling examples. The sensation of harmony and related melodic development are rooted in physical principles that can be understood with simple mathematics. The focus of this review is not the better known acoustics of instruments, but the structure of music itself. The physical basis of the evolution of Western music in the last half millennium is discussed, culminating with the development of the 'blues'. The paper refers to a number of works which expand the connections, and introduces material specific to the development of the 'blues'. Several conclusions are made: (1) that music is axiomatic like mathematics and that to appreciate music fully listeners must learn the axioms; (2) that this learning does not require specific conscious study but relies on a linkage between the creative and quantitative brain and (3) that a key element of the musical 'blues' comes from recreating missing notes on the modern equal temperament scale. The latter is an example of 'art built on artifacts'. Finally, brief reference is made to the value of music as a tool for teaching physics, mathematics and engineering to non-scientists.

  10. J/ψ+χcJ production at the B factories under the principle of maximum conformality

    International Nuclear Information System (INIS)

    Wang, Sheng-Quan; Wu, Xing-Gang; Zheng, Xu-Chang; Shen, Jian-Ming; Zhang, Qiong-Lian

    2013-01-01

    Under the conventional scale setting, the renormalization scale uncertainty usually constitutes a systematic error for a fixed-order perturbative QCD estimation. The recently suggested principle of maximum conformality (PMC) provides a principle to eliminate such scale ambiguity in a step-by-step way. Using the PMC, all non-conformal terms in perturbative expansion series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent prediction at any finite order. In the paper, we make a detailed PMC analysis for both the polarized and the unpolarized cross sections for the double charmonium production process, e + +e − →J/ψ(ψ ′ )+χ cJ with (J=0,1,2). The running behavior for the coupling constant, governed by the PMC scales, are determined exactly for the specific processes. We compare our predictions with the measurements at the B factories, BaBar and Belle, and the theoretical estimations obtained in the literature. Because the non-conformal terms are different for various polarized and unpolarized cross sections, the PMC scales of these cross sections are different in principle. It is found that all the PMC scales are almost independent of the initial choice of renormalization scale. Thus, the large renormalization scale uncertainty usually adopted in the literature up to ∼40% at the NLO level, obtained from the conventional scale setting, for both the polarized and the unpolarized cross sections are greatly suppressed. It is found that the charmonium production is dominated by J=0 channel. After PMC scale setting, we obtain σ(J/ψ+χ c0 )=12.25 −3.13 +3.70 fb and σ(ψ ′ +χ c0 )=5.23 −1.32 +1.56 fb, where the squared average errors are caused by bound state parameters as m c , |R J/ψ (0)| and |R χ cJ ′ (0)|, which are non-perturbative error sources in different to the QCD scale setting problem. In comparison to the experimental data, a more accurate theoretical estimation shall be helpful for a precise

  11. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS).

    Science.gov (United States)

    Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio

    2017-07-20

    In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.

  12. Basic principles

    International Nuclear Information System (INIS)

    Wilson, P.D.

    1996-01-01

    Some basic explanations are given of the principles underlying the nuclear fuel cycle, starting with the physics of atomic and nuclear structure and continuing with nuclear energy and reactors, fuel and waste management and finally a discussion of economics and the future. An important aspect of the fuel cycle concerns the possibility of ''closing the back end'' i.e. reprocessing the waste or unused fuel in order to re-use it in reactors of various kinds. The alternative, the ''oncethrough'' cycle, discards the discharged fuel completely. An interim measure involves the prolonged storage of highly radioactive waste fuel. (UK)

  13. Risk analysis under uncertainty, the precautionary principle, and the new EU chemicals strategy.

    Science.gov (United States)

    Rogers, Michael D

    2003-06-01

    Three categories of uncertainty in relation to risk assessment are defined; uncertainty in effect, uncertainty in cause, and uncertainty in the relationship between a hypothesised cause and effect. The Precautionary Principle (PP) relates to the third type of uncertainty. Three broad descriptions of the PP are set out, uncertainty justifies action, uncertainty requires action, and uncertainty requires a reversal of the burden of proof for risk assessments. The application of the PP is controversial but what matters in practise is the precautionary action (PA) that follows. The criteria by which the PAs should be judged are detailed. This framework for risk assessment and management under uncertainty is then applied to the envisaged European system for the regulation of chemicals. A new EU regulatory system has been proposed which shifts the burden of proof concerning risk assessments from the regulator to the producer, and embodies the PP in all three of its main regulatory stages. The proposals are critically discussed in relation to three chemicals, namely, atrazine (an endocrine disrupter), cadmium (toxic and possibly carcinogenic), and hydrogen fluoride (a toxic, high-production-volume chemical). Reversing the burden of proof will speed up the regulatory process but the examples demonstrate that applying the PP appropriately, and balancing the countervailing risks and the socio-economic benefits, will continue to be a difficult task for the regulator. The paper concludes with a discussion of the role of precaution in the management of change and of the importance of trust in the effective regulation of uncertain risks.

  14. First-principles calculation of transport property in nano-devices under an external magnetic field

    International Nuclear Information System (INIS)

    Chen Jingzhe; Zhang Jin; Han Rushan

    2008-01-01

    The mesoscopic quantum interference phenomenon (QIP) can be observed and behaves as the oscillation of conductance in nano-devices when the external magnetic field changes. Excluding the factor of impurities or defects, specific QIP is determined by the sample geometry. We have improved a first-principles method based on the matrix Green's function and the density functional theory to simulate the transport behaviour of such systems under a magnetic field. We have studied two kinds of QIP: universal conductance fluctuation (UCF) and Aharonov–Bohm effect (A–B effect). We find that the amplitude of UCF is much smaller than the previous theoretical prediction. We have discussed the origin of difference and concluded that due to the failure of ergodic hypothesis, the ensemble statistics is not applicable, and the conductance fluctuation is determined by the flux-dependent density of states (DOSs). We have also studied the relation between the UCF and the structure of sample. For a specific structure, an atomic circle, the A–B effect is observed and the origin of the oscillation is also discussed

  15. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia

    Directory of Open Access Journals (Sweden)

    Cohen Laurent

    2006-05-01

    Full Text Available Abstract Background Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. Methods "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations. Results The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article 1 describes the evolution of number sense and arithmetic scores before and after training. Conclusion The software, open-source and freely available online, is designed for learning disabled children aged 5–8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains.

  16. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T

    1996-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  17. On the invariance principle

    Energy Technology Data Exchange (ETDEWEB)

    Moller-Nielsen, Thomas [University of Oxford (United Kingdom)

    2014-07-01

    Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.

  18. PROJECTING PRINCIPLES OF «MATHEMATICAL AND PHYSICAL BASICS IN INFORMATICS» MODULE AS PART OF A UNIVERSAL BACCALAUREATE PROGRAM

    Directory of Open Access Journals (Sweden)

    E. K. Samerkhanova

    2016-01-01

    Full Text Available This article is a presentation of “Mathematical and Physical Basics in Informatics” Module projected as part of universal baccalaureate model realized in Minin State Pedagogical University, Nizhny Novgorod, within the educational program for an extended group of qualifications “Informatics and Calculating Machines”. Module authors defined a strategy for baccalaureates preparation in the field of informational technology, which is realized due to a bunch of principles: education fundamentalization, learning systematization, activity, integration and student-centration. The principle of education fundamentalization requires consolidation of scientific and methodological preparation of students. The principle of learning systematization guarantees formation of students’ holistic ideology. The principle of integration is directed onto qualitative interdisciplinary conversion based on mutual enrichment of knowledge and skills. The principle of activity considers student personality, its formation and growth with respect to practical activity as a special form of psychical activity. The principle of student-centration is displayed as social-humanistic purpose of the educational process.

  19. Learning Physics-based Models in Hydrology under the Framework of Generative Adversarial Networks

    Science.gov (United States)

    Karpatne, A.; Kumar, V.

    2017-12-01

    Generative adversarial networks (GANs), that have been highly successful in a number of applications involving large volumes of labeled and unlabeled data such as computer vision, offer huge potential for modeling the dynamics of physical processes that have been traditionally studied using simulations of physics-based models. While conventional physics-based models use labeled samples of input/output variables for model calibration (estimating the right parametric forms of relationships between variables) or data assimilation (identifying the most likely sequence of system states in dynamical systems), there is a greater opportunity to explore the full power of machine learning (ML) methods (e.g, GANs) for studying physical processes currently suffering from large knowledge gaps, e.g. ground-water flow. However, success in this endeavor requires a principled way of combining the strengths of ML methods with physics-based numerical models that are founded on a wealth of scientific knowledge. This is especially important in scientific domains like hydrology where the number of data samples is small (relative to Internet-scale applications such as image recognition where machine learning methods has found great success), and the physical relationships are complex (high-dimensional) and non-stationary. We will present a series of methods for guiding the learning of GANs using physics-based models, e.g., by using the outputs of physics-based models as input data to the generator-learner framework, and by using physics-based models as generators trained using validation data in the adversarial learning framework. These methods are being developed under the broad paradigm of theory-guided data science that we are developing to integrate scientific knowledge with data science methods for accelerating scientific discovery.

  20. Decision-making in Sport under Mental and Physical Stress

    Directory of Open Access Journals (Sweden)

    Teri J. Hepler

    2015-10-01

    Full Text Available Background: Successful decision-making in sport requires good decisions to be made quickly, but little is understood about the decision process under stress. Objective: The purpose of this study was to compare decision outcomes and the Take the First (TTF heuristic under conditions of mental, physical, and no stress.  Method:  Participants (N=112 were divided into 3 stress groups:  mental stress (mental serial subtraction, physical stress (running on treadmill at 60-70% of maximum effort, and no stress (counting backwards by 1. Participants were exposed to 30 seconds of stress and then watched a video depicting an offensive situation in basketball requiring them to decide what the player with the ball should do next. Each participant performed 10 trials of the video decision-making task.  Results: No differences were found between the 3 stress groups on decision quality, TTF frequency, number of options generated, or quality of first generated option.  However, participants in the no stress and physical stress conditions were faster in generating their first option and making their final decision as compared to the mental stress group.  Conclusion: Overall, results suggest that mental stress impairs decision speed and that TTF is an ecologically rationale heuristic in dynamic, time-pressured situations.  Keywords: Take the first, Heuristic, Pressure, Cognitive performance

  1. Connecting Corporate Human Rights Responsibilities and State Obligations under the UN Guiding Principles

    DEFF Research Database (Denmark)

    Buhmann, Karin

    2017-01-01

    Taking its point of departure in the UN Guiding Principles on Business and Human Rights (UNGP), this chapter discusses the complementarity between Pillars One on the State Duty to Respect and Pillar Two the Corporate Responsibility to Respect Human Rights. It does this through HRDD and communicat......Taking its point of departure in the UN Guiding Principles on Business and Human Rights (UNGP), this chapter discusses the complementarity between Pillars One on the State Duty to Respect and Pillar Two the Corporate Responsibility to Respect Human Rights. It does this through HRDD...

  2. The common extremalities in biology and physics maximum energy dissipation principle in chemistry, biology, physics and evolution

    CERN Document Server

    Moroz, Adam

    2011-01-01

    This book is the first unified systemic description of dissipative phenomena, taking place in biology, and non-dissipative (conservative) phenomena, which is more relevant to physics. Fully updated and revised, this new edition extends our understanding of nonlinear phenomena in biology and physics from the extreme / optimal perspective. The first book to provide understanding of physical phenomena from a biological perspective and biological phenomena from a physical perspective Discusses emerging fields and analysis Provides examples.

  3. Exergy performance of human body under physical activities

    International Nuclear Information System (INIS)

    Mady, Carlos Eduardo Keutenedjian; Albuquerque, Cyro; Fernandes, Tiago Lazzaretti; Hernandez, Arnaldo José; Saldiva, Paulo Hilário Nascimento; Yanagihara, Jurandir Itizo; Oliveira, Silvio de

    2013-01-01

    The aim of this work is to apply performance indicators for individuals under physical activity based on the concepts of exergy destroyed and exergy efficiency. The cardiopulmonary exercise test is one of the most used tests to assess the functional capacity of individuals with varying degrees of physical training. To perform the exergy analysis during the test, it is necessary to calculate heat and mass flow rates, associated with radiation, convection, vaporization and respiration, determined from the measurements and some relations found in the literature. The energy balance allowed the determination of the internal temperature over time and the exergy variation of the body along the experiment. Eventually, it was possible to calculate the destroyed exergy and the exergy efficiency from the exergy analysis. The exergy rates and flow rates are dependent of the exercise level and the body metabolism. The results show that the relation between the destroyed exergy and the metabolism is almost constant during the test, furthermore its value has a great dependence of the subject age. From the exergy analysis it was possible to divide the subjects according to their training level, for the same destroyed exergy, subjects with higher lactate threshold can perform more work. - Highlights: • Exergy analysis was applied to the human body under physical activities. • Concept of maximum available work from ATP hydrolysis was compared with exergy analysis results. • For the same destroyed exergy, subjects with higher lactate threshold can perform more work. • Runners during physical activities tend to a state of minimum destroyed exergy and maximum exergy efficiency

  4. Principles of designing cyber-physical system of producing mechanical assembly components at Industry 4.0 enterprise

    Science.gov (United States)

    Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The task of developing principles of cyber-physical system constitution at the Industry 4.0 company of the item designing components of mechanical assembly production is being studied. The task has been solved by analyzing the components and technologies, which have some practical application in the digital production organization. The list of components has been defined and the authors proposed the scheme of the components and technologies interconnection in the Industry 4.0 of mechanical assembly production to make an uninterrupted manufacturing route of the item designing components with application of some cyber-physical systems.

  5. Taylor Principle Supplements the Fisher Effect: Empirical Investigation under the US Context

    Directory of Open Access Journals (Sweden)

    Mohammed Saiful ISLAM

    2012-06-01

    Full Text Available This paper reviews the short- and long-run dynamics of interest rate and inflation of the United States. Basing upon quarterly as well as monthly data over the period 1957 to 2010, we find evidence that interest rate behaviour of the Federal Reserve is consistent with the Taylor principle in short run and with the Fisher hypothesis in long run. Entire sample justifies the existence of a long run cointegrating relationship between federal funds rate and inflation characterised as the Fisher effect. When data are split into different subsamples, the cointegrating relationship disappears. Interest rate dynamics of pre-1980 and post-2001 neither track Fisher hypothesis nor Taylor principle, rather represent substantial discretion.

  6. Self-Regulation Principles Underlying Risk Perception and Decision Making within the Context of Genomic Testing

    Science.gov (United States)

    Cameron, Linda D.; Biesecker, Barbara Bowles; Peters, Ellen; Taber, Jennifer M.; Klein, William M. P.

    2017-01-01

    Advances in theory and research on self-regulation and decision-making processes have yielded important insights into how cognitive, emotional, and social processes shape risk perceptions and risk-related decisions. We examine how self-regulation theory can be applied to inform our understanding of decision-making processes within the context of genomic testing, a clinical arena in which individuals face complex risk information and potentially life-altering decisions. After presenting key principles of self-regulation, we present a genomic testing case example to illustrate how principles related to risk representations, approach and avoidance motivations, emotion regulation, defensive responses, temporal construals, and capacities such as numeric abilities can shape decisions and psychological responses during the genomic testing process. We conclude with implications for using self-regulation theory to advance science within genomic testing and opportunities for how this research can inform further developments in self-regulation theory. PMID:29225669

  7. Self-Regulation Principles Underlying Risk Perception and Decision Making within the Context of Genomic Testing.

    Science.gov (United States)

    Cameron, Linda D; Biesecker, Barbara Bowles; Peters, Ellen; Taber, Jennifer M; Klein, William M P

    2017-05-01

    Advances in theory and research on self-regulation and decision-making processes have yielded important insights into how cognitive, emotional, and social processes shape risk perceptions and risk-related decisions. We examine how self-regulation theory can be applied to inform our understanding of decision-making processes within the context of genomic testing, a clinical arena in which individuals face complex risk information and potentially life-altering decisions. After presenting key principles of self-regulation, we present a genomic testing case example to illustrate how principles related to risk representations, approach and avoidance motivations, emotion regulation, defensive responses, temporal construals, and capacities such as numeric abilities can shape decisions and psychological responses during the genomic testing process. We conclude with implications for using self-regulation theory to advance science within genomic testing and opportunities for how this research can inform further developments in self-regulation theory.

  8. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  9. Serving the Reich the struggle for the soul of physics under Hitler

    CERN Document Server

    Ball, Philip

    2013-01-01

    Serving the Reich tells the story of physics under Hitler. While some scientists tried to create an Aryan physics that excluded any 'Jewish ideas', many others made compromises and concessions as they continued to work under the Nazi regime. Among them were three world-renowned physicists: Max Planck, pioneer of quantum theory, regarded it as his moral duty to carry on under the regime. Peter Debye, a Dutch physicist, rose to run the Reich's most important research institute before leaving for the United States in 1940. Werner Heisenberg, discovered the Uncertainty Principle, and became the leading figure in Germany's race for the atomic bomb. After the war most scientists in Germany maintained they had been apolitical or even resisted the regime: Debye claimed that he had gone to America to escape Nazi interference in his research; Heisenberg and others argued that they had deliberately delayed production of the atomic bomb. Mixing history, science and biography, Serving the Reich is a gripping exploration o...

  10. The Principle of General Tovariance

    Science.gov (United States)

    Heunen, C.; Landsman, N. P.; Spitters, B.

    2008-06-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining these ideas is topos theory, a framework earlier proposed for physics by Isham and collaborators. Our principle of general tovariance states that any mathematical structure appearing in the laws of physics must be definable in an arbitrary topos (with natural numbers object) and must be preserved under so-called geometric morphisms. This principle identifies geometric logic as the mathematical language of physics and restricts the constructions and theorems to those valid in intuitionism: neither Aristotle's principle of the excluded third nor Zermelo's Axiom of Choice may be invoked. Subsequently, our equivalence principle states that any algebra of observables (initially defined in the topos Sets) is empirically equivalent to a commutative one in some other topos.

  11. When the uncertainty principle goes up to 11 or how to explain quantum physics with heavy metal

    CERN Document Server

    Moriarty, Philip

    2018-01-01

    There are deep and fascinating links between heavy metal and quantum physics. No, there are. Really. While teaching at the University of Nottingham, physicist Philip Moriarty noticed something odd--a surprising number of his students were heavily into metal music. Colleagues, too: a Venn diagram of physicists and metal fans would show a shocking amount of overlap. What's more, it turns out that heavy metal music is uniquely well-suited to explaining quantum principles. In When the Uncertainty Principle Goes Up to Eleven, Moriarty explains the mysteries of the universe's inner workings via drum beats and feedback: You'll discover how the Heisenberg uncertainty principle comes into play with every chugging guitar riff, what wave interference has to do with Iron Maiden, and why metalheads in mosh pits behave just like molecules in a gas. If you're a metal fan trying to grasp the complexities of quantum physics, a quantum physicist baffled by heavy metal, or just someone who'd like to know how the fundamental sci...

  12. Social work in a society under pressure. Keeping professional principles and standards upright.

    Directory of Open Access Journals (Sweden)

    Willem Blok

    2016-06-01

    Full Text Available This article is based on the content and outcome of the 5th Annual International Conference on Social Work & Social Work Education in Leeuwarden, The Netherlands on February 5, 2016. It shows how Social Work is embedded in society, and describes the pressure of contemporary (international problems on society, and the way in which authorities respond to it. The article continues with a discussion of the answers given by the 200 conference participants on the question how social workers and social work educators could cope with this pressure without denying their international professional principles and standards.

  13. General Principles for the welfare of animals in production systems: the underlying science and its application.

    Science.gov (United States)

    Fraser, David; Duncan, Ian J H; Edwards, Sandra A; Grandin, Temple; Gregory, Neville G; Guyonnet, Vincent; Hemsworth, Paul H; Huertas, Stella M; Huzzey, Juliana M; Mellor, David J; Mench, Joy A; Spinka, Marek; Whay, H Rebecca

    2013-10-01

    In 2012, the World Organisation for Animal Health adopted 10 'General Principles for the Welfare of Animals in Livestock Production Systems' to guide the development of animal welfare standards. The General Principles draw on half a century of scientific research relevant to animal welfare: (1) how genetic selection affects animal health, behaviour and temperament; (2) how the environment influences injuries and the transmission of diseases and parasites; (3) how the environment affects resting, movement and the performance of natural behaviour; (4) the management of groups to minimize conflict and allow positive social contact; (5) the effects of air quality, temperature and humidity on animal health and comfort; (6) ensuring access to feed and water suited to the animals' needs and adaptations; (7) prevention and control of diseases and parasites, with humane euthanasia if treatment is not feasible or recovery is unlikely; (8) prevention and management of pain; (9) creation of positive human-animal relationships; and (10) ensuring adequate skill and knowledge among animal handlers. Research directed at animal welfare, drawing on animal behaviour, stress physiology, veterinary epidemiology and other fields, complements more established fields of animal and veterinary science and helps to create a more comprehensive scientific basis for animal care and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  15. Physical and Temporal Characteristics of Under 19, Under 21 and Senior Male Beach Volleyball Players

    Directory of Open Access Journals (Sweden)

    Alexandre Medeiros, Rui Marcelino, Isabel Mesquita, José Manuel Palao

    2014-09-01

    Full Text Available This study aimed to assess the effects of age groups and players’ role (blocker vs. defender specialist in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19, 933 rallies from Under 21 (U21, and 1480 rallies from senior (senior (Men’s Swatch World Championships, 2010-2011 were observed using video match analysis. Cluster analysis was used to set teams’ competitive levels and establish quality of opposition as “balanced”, “moderate balanced” and “unbalanced” games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies and physical (number of jumps and number of hits done by defenders and blockers characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player’s role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19 and U21; b moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c unbalanced games, no significant findings were shown. This study suggests differences in players’ performances according to age group and players’ role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics.

  16. Physical and temporal characteristics of under 19, under 21 and senior male beach volleyball players.

    Science.gov (United States)

    Medeiros, Alexandre; Marcelino, Rui; Mesquita, Isabel; Palao, José Manuel

    2014-09-01

    This study aimed to assess the effects of age groups and players' role (blocker vs. defender specialist) in beach volleyball in relation to physical and temporal variables, considering quality of opposition. 1101 rallies from Under 19 (U19), 933 rallies from Under 21 (U21), and 1480 rallies from senior (senior) (Men's Swatch World Championships, 2010-2011) were observed using video match analysis. Cluster analysis was used to set teams' competitive levels and establish quality of opposition as "balanced", "moderate balanced" and "unbalanced" games. The analyzed variables were: temporal (duration of set, total rest time, total work time, duration of rallies, rest time between rallies) and physical (number of jumps and number of hits done by defenders and blockers) characteristics. A one-way ANOVA, independent samples t-test and multinomial logistic regression were performed to analyze the variables studied. The analysis of temporal and physical characteristics showed differences considering age group, player's role and quality of opposition. The duration of set, total rest time, and number of jumps done by defenders significantly increased from the U19 to senior category. Multinomial logistic regression showed that in: a) balanced games, rest time between rallies was higher in seniors than in U19 or U21; number of jumps done by defenders was higher in seniors than in U19) and U21; b) moderate balanced games, number of jumps done by defenders was higher in seniors than in U21 and number of jumps done by blockers was smaller in U19 than U21 or seniors; c) unbalanced games, no significant findings were shown. This study suggests differences in players' performances according to age group and players' role in different qualities of opposition. The article provides reference values that can be useful to guide training and create scenarios that resemble a competition, taking into account physical and temporal characteristics. Key PointsPlayer roles, quality of opposition

  17. Optimisation of structural shielding of accelerator control room for compliance with ALARA principle under Indian conditions

    International Nuclear Information System (INIS)

    Ahmad, Masood; Singh, Brijesh

    1999-01-01

    The case of a 20 MV x-ray accelerator has been considered in this paper for optimisation. An internationally recommended value of α = US$ 1000 per person-sievert has been assumed. Cost of concrete has been assumed as US$ 82.7/m 3 . It is seen that, extra shielding is needed to satisfy the ALARA principle. Further, the amount of requisite shielding increases with the degree of occupancy and, also, if the local construction materials or the labour are cheaper than considered in this paper. Accordingly 1.5 to 4.75 HVLs may be needed as extra shielding in different situations. Therefore, a site specific and installation specific optimisation of shielding is necessary

  18. Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI.

    Science.gov (United States)

    Hakky, Michael; Pandey, Shilpa; Kwak, Ellie; Jara, Hernan; Erbay, Sami H

    2013-08-01

    This article outlines artifactual findings commonly encountered in neuroradiologic MRI studies and offers clues to differentiate them from true pathology on the basis of their physical properties. Basic MR physics concepts are used to shed light on the causes of these artifacts. MRI is one of the most commonly used techniques in neuroradiology. Unfortunately, MRI is prone to image distortion and artifacts that can be difficult to identify. Using the provided case illustrations, practical clues, and relevant physical applications, radiologists may devise algorithms to troubleshoot these artifacts.

  19. Physical principle and engineering features of the deep pool reactor for residential heating

    International Nuclear Information System (INIS)

    Shi Gong; Zhao Zhaoyi; Guo Jingren; Tian Jiafu

    1999-01-01

    The use of nuclear energy for low temperature heating is confronted with challenges of safety and economy. The deep pool reactor, a low temperature heating reactor based on novel design principles, has been studied in detail. Results show that it has excellent safety and economic features, and is very suitable for low temperature heating purposes. The whole heating system including the nuclear reactor will be a simple and easy engineering system with the characteristics of reliability, safety and economy because the system and all its devices are based on low temperature and ordinary pressure

  20. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  1. USEFUL: Ultrasound Exam for Underlying Lesions Incorporated into Physical Exam

    Directory of Open Access Journals (Sweden)

    Jon Steller

    2014-05-01

    Full Text Available Introduction: The Ultrasound Screening Exam for Underlying Lesions (USEFUL was developed in an attempt to establish a role for bedside ultrasound in the primary and preventive care setting. It is the purpose of our pilot study to determine if students were first capable of performing all of the various scans required of our USEFUL while defining such an ultrasound-assisted physical exam that would supplement the standard hands-on physical exam in the same head-to-toe structure. We also aimed to assess the time needed for an adequate exam and analyze if times improved with repetition and previous ultrasound training. Methods: Medical students with ranging levels of ultrasound training received a 25-minute presentation on our USEFUL followed by a 30-minute hands-on session. Following the hands-on session, the students were asked to perform a timed USEFUL on 2-3 standardized subjects. All images were documented as normal or abnormal with the understanding that an official detailed exam would be performed if an abnormality were to be found. All images were read and deemed adequate by board eligible emergency medicine ultrasound fellows. Results: Twenty-six exams were performed by 9 students. The average time spent by all students per USEFUL was 11 minutes and 19 seconds. Students who had received the University of California, Irvine School of Medicine’s integrated ultrasound curriculum performed the USEFUL significantly faster (p< 0.0025. The time it took to complete the USEFUL ranged from 6 minutes and 32 seconds to 17 minutes, and improvement was seen with each USEFUL performed. The average time to complete the USEFUL on the first standardized patient was 13 minutes and 20 seconds, while 11 minutes and 2 seconds, and 9 minutes and 20 seconds were spent performing the exam on the second and third patient, respectively. Conclusion: Students were able to effectively complete all scans required by the USEFUL in a timely manner. Students who have

  2. A Test of the Fundamental Physics Underlying Exoplanet Climate Models

    Science.gov (United States)

    Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole

    2018-05-01

    A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the

  3. On the use, by Einstein, of the principle of dimensional homogeneity, in three problems of the physics of solids

    Directory of Open Access Journals (Sweden)

    FERNANDO L. LOBO B. CARNEIRO

    2000-12-01

    Full Text Available Einstein, in 1911, published an article on the application of the principle of dimensional homogeneity to three problems of the physics of solids: the characteristic frequency of the atomic nets of crystalline solids as a function of their moduli of compressibility or of their melting points, and the thermal conductivity of crystalline insulators. Recognizing that the physical dimensions of temperature are not the same as those of energy and heat, Einstein had recourse to the artifice of replace that physical parameter by its product by the Boltzmann constant, so obtaining correct results. But nowadays, with the new basic quantities "Thermodynamic Temperature theta (unit- Kelvin'', "Electric Current I (unit Ampère'' and "Amount of Substance MOL (unit-mole'', incorporated to the SI International System of Units, in 1960 and 1971, the same results are obtained in a more direct and coherent way. At the time of Einstein's article only three basic physical quantities were considered - length L, mass M, and time T. He ignored the pi theorem of dimensional analysis diffused by Buckingham three years later, and obtained the "pi numbers'' by trial and error. In the present paper is presented a revisitation of the article of Einstein, conducted by the modern methodology of dimensional analysis and theory of physical similitude.

  4. Practical application of the ALARA principle in management of the nuclear legacy: optimization under uncertainty

    International Nuclear Information System (INIS)

    Smith, Graham; Sneve, Malgorzata K.

    2008-01-01

    Full text: Radiological protection has a long and distinguished history in taking a balanced approach to optimization. Both utilitarian and individual interests and perspectives are addressed through a process of constrained optimisation, with optimisation intended to lead to the most benefit to the most people, and constraints being operative to limit the degree of inequity among the individuals exposed. At least, expressed simplistically, that is what the recommendations on protection are intended to achieve. This paper examines the difficulties in achieving that objective, based on consideration of the active role of optimisation in regulatory supervision of the historic nuclear legacy. This example is chosen because the application of the ALARA principle has important implications for some very major projects whose objective is remediation of existing legacy facilities. But it is also relevant because timely, effective and cost efficient completion of those projects has implications for confidence in the future development of nuclear power and other uses of radioactive materials. It is also an interesting example because legacy management includes mitigation of some major short and long term hazards, but those mitigating measures themselves involve operations with their own risk, cost and benefit profiles. Like any other complex activity, a legacy management project has to be broken down into logistically feasible parts. However, from a regulatory perspective, simultaneous application of ALARA to worker protection, major accident risk mitigation and long-term environmental and human health protection presents its own challenges. Major uncertainties which exacerbate the problem arise from ill-characterised source terms, estimation of the likelihood of unlikely failures in operational processes, and prospective assessment of radiological impacts over many hundreds of years and longer. The projects themselves are set to run over decades, during which time the

  5. Foundations & principles of distributed manufacturing elements of manufacturing networks, cyber-physical production systems and smart automation

    CERN Document Server

    Kühnle, Hermann

    2015-01-01

    The book presents a coherent description of distributed manufacturing, providing a solid base for further research on the subject as well as smart implementations in companies. It provides a guide for those researching and working in a range of fields, such as smart manufacturing, cloud computing, RFID tracking, distributed automation, cyber physical production and global design anywhere, manufacture anywhere solutions. Foundations & Principles of Distributed Manufacturing anticipates future advances in the fields of embedded systems, the Internet of Things and cyber physical systems, outlining how adopting these innovations could rapidly bring about improvements in key performance indicators, which could in turn generate competition pressure by rendering successful business models obsolete. In laying the groundwork for powerful theoretical models, high standards for the homogeneity and soundness of the suggested setups are applied. The book especially elaborates on the upcoming competition in online manu...

  6. Using Coevolution Genetic Algorithm with Pareto Principles to Solve Project Scheduling Problem under Duration and Cost Constraints

    Directory of Open Access Journals (Sweden)

    Alexandr Victorovich Budylskiy

    2014-06-01

    Full Text Available This article considers the multicriteria optimization approach using the modified genetic algorithm to solve the project-scheduling problem under duration and cost constraints. The work contains the list of choices for solving this problem. The multicriteria optimization approach is justified here. The study describes the Pareto principles, which are used in the modified genetic algorithm. We identify the mathematical model of the project-scheduling problem. We introduced the modified genetic algorithm, the ranking strategies, the elitism approaches. The article includes the example.

  7. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  8. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  9. Differences between the family-centered "COPCA" program and traditional infant physical therapy based on neurodevelopmental treatment principles.

    Science.gov (United States)

    Dirks, Tineke; Blauw-Hospers, Cornill H; Hulshof, Lily J; Hadders-Algra, Mijna

    2011-09-01

    Evidence for effectiveness of pediatric physical therapy in infants at high risk for developmental motor disorders is limited. Therefore, "Coping With and Caring for Infants With Special Needs" (COPCA), a family-centered, early intervention program, was developed. The COPCA program is based on 2 components: (1) family involvement and educational parenting and (2) the neuromotor principles of the neuronal group selection theory. The COPCA coach uses principles of coaching to encourage the family's own capacities for solving problems of daily care and incorporating variation, along with trial and error in daily activities. The purpose of this study was to evaluate whether the content of sessions of the home-based, early intervention COPCA program differs from that of traditional infant physical therapy (TIP) sessions, which in the Netherlands are largely based on neurodevelopmental treatment. The study was conducted at the University Medical Center Groningen in the Netherlands. A quantitative video analysis of therapy sessions was conducted with infants participating in a 2-arm randomized trial. Forty-six infants at high risk for developmental motor disorders were randomly assigned to receive COPCA (n=21) or TIP (n=25) between 3 and 6 months corrected age. Intervention sessions were videotaped at 4 and 6 months corrected age and analyzed with a standardized observation protocol for the classification of physical therapy actions. Outcome parameters were relative amounts of time spent on specific physical therapy actions. The content of COPCA and TIP differed substantially. For instance, in TIP sessions, more time was spent on facilitation techniques, including handling, than in COPCA sessions (29% versus 3%, respectively). During COPCA, more time was spent on family coaching and education than during TIP (16% versus 4%, respectively). The major limitation of the study was its restriction to the Netherlands, implying that findings cannot be generalized automatically to

  10. Solid-State Physics An Introduction to Principles of Materials Science

    CERN Document Server

    Ibach, Harald

    2009-01-01

    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. From a review of the original edition �...

  11. Security and privacy in cyber-physical systems foundations, principles, and applications

    CERN Document Server

    Song, Houbing; Jeschke, Sabina

    2017-01-01

    Written by a team of experts at the forefront of the cyber-physical systems (CPS) revolution, this book provides an in-depth look at security and privacy, two of the most critical challenges facing both the CPS research and development community and ICT professionals. It explores, in depth, the key technical, social, and legal issues at stake, and it provides readers with the information they need to advance research and development in this exciting area. Cyber-physical systems (CPS) are engineered systems that are built from, and depend upon the seamless integration of computational algorithms and physical components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety, security, and usability far in excess of what today's simple embedded systems can provide. Just as the Internet revolutionized the way we interact with information, CPS technology has already begun to transform the way people interact with engineered systems. In the years ahead, smart CPS will drive innovat...

  12. The physics of degradation in engineered materials and devices fundamentals and principles

    CERN Document Server

    Swingler, Jonathan

    2015-01-01

    Degradation is apparent in all things and is fundamental to both manufactured and natural objects. It is often described by the second law of thermodynamics, where entropy, a measure of disorder, tends to increase with time in a closed system. Things age! This concise reference work brings together experts and key players engaged in the physics of degradation to present the background science, current thinking and developments in understanding, and gives a detailed account of emerging issues across a selection of engineering applications. The work has been put together to equip the upper level undergraduate student, postgraduate student, as well as the professional engineer and scientist, in the importance of physics of degradation. The aim of The Physics of Degradation in Engineered Materials and Devices is to bridge the gap between published textbooks on the fundamental science of degradation phenomena and published research on the engineering science of actual fabricated materials and devices. A history o...

  13. First-principles investigations of the physical properties of binary uranium silicide alloys

    International Nuclear Information System (INIS)

    Yang, Jin; Long, Jianping; Yang, Lijun; Li, Dongmei

    2013-01-01

    Graphical abstract: Total density of states for USi 2 . Display Omitted -- Abstract: The structural, elastic properties and the Debye temperature of binary Uranium Silicide (U-Si) alloys are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The ground states properties are found to agree with the available experimental data. The mechanical properties like shear modulus, Young’s modulus, Poisson’s ratio σ and ratio B/G are also calculated. Finally, The averaged sound velocity (v m ), the longitudinal sound velocity (v l ), transverse sound velocity (v t ) and the Debye temperature (θ D ) are obtained. However, the theoretical values are slightly different from few existed experiment data because the latter was obtained at room temperature while the former one at 0 K

  14. Principles and applications of a neutral current detector for neutrino physics and astronomy

    International Nuclear Information System (INIS)

    Drukier, A.; Stodolsky, L.

    1982-01-01

    We study neutrino detection through the elastic scattering of neutrinos on nuclei and identification of the recoil energy. The very large value of the cross section compared to previous methods indicates a detector would be relatively light and suggests the possibility of a true 'neutrino observatory'. We examine a realization in terms of the superconducting grain idea, which appears in principle feasible through extension and extrapolation of presently known techniques. Such a detector would permit determination of the neutrino spectrum and should be intensive to neutrino oscillations. Various applications and tests are discussed, including spallation sources, reactors, supernovas, solar and terrestrial neutrinos. A supernova would permit a simple determination of the number of neutrinos and their masses, while for solar neutrinos rates of thousands of S.N.U. are theoretically attainable. A preliminary estimate of the most difficult backgrounds is attempted. (orig.)

  15. Comparative assessment of Japan's long-term carbon budget under different effort-sharing principles

    NARCIS (Netherlands)

    Kuramochi, Takeshi; Asuka, Jusen; Fekete, Hanna; Tamura, Kentaro; Höhne, Niklas

    2016-01-01

    This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2 °C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay

  16. Principles of astrophysics using gravity and stellar physics to explore the cosmos

    CERN Document Server

    Keeton, Charles

    2014-01-01

    This book gives a survey of astrophysics at the advanced undergraduate level.  It originates from a two-semester course sequence at Rutgers University that is meant to appeal not only to astrophysics students but also more broadly to physics and engineering students.  The organization is driven more by physics than by astronomy; in other words, topics are first developed in physics and then applied to astronomical systems that can be investigated, rather than the other way around. The first half of the book focuses on gravity.  Gravity is the dominant force in many astronomical systems, so a tremendous amount can be learned by studying gravity, motion and mass.  The theme in this part of the book, as well as throughout astrophysics, is using motion to investigate mass.  The goal of Chapters 2-11 is to develop a progressively richer understanding of gravity as it applies to objects ranging from planets and moons to galaxies and the universe as a whole. The second half uses other aspects of physics to addr...

  17. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    Science.gov (United States)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  18. Experimental observation of dynamic ductile damage development under various triaxiality conditions - description of the principle

    Directory of Open Access Journals (Sweden)

    Pillon L.

    2012-08-01

    Full Text Available The Gurson model has been extended by Perrin to describe damage evolution in ductile viscoplastic materials. The so-called Gurson-Perrin model allows representing damage development with respect to strain-rate conditions. In order to fill a lack in current experimental procedures, we propose an experimental project able to test and validate the Gurson-Perrin model under various dynamic conditions and for different stress triaxiality levels.

  19. The structural, mechanical, and electronic properties of LiAlB{sub 4} under pressure from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Tayran, Ceren; Aydin, Sezgin [Department of Physics, Sciences Faculty, Gazi University, 06500, Ankara (Turkey)

    2017-05-15

    The structural, elastic, mechanical, and electronic properties of lithium aluminum tetraboride (LiAlB{sub 4}) under hydrostatic pressure have been investigated by using first-principles density functional theory calculations. The effects of pressure on the lattice parameters, volume, and bond lengths are studied. It is indicated from the calculated elastic constants that LiAlB{sub 4} compound is mechanically stable on 0-40 GPa pressure range. And, by means of these elastic constants set, some mechanical properties such as bulk, shear and Young's moduli, and then Poisson's ratio are determined as a function of pressure. Also, the ductile or brittle nature of LiAlB{sub 4} is examined. Additionally, using the first-principles data obtained from the geometry optimizations, the hardness of LiAlB{sub 4} is calculated, and its nature is investigated under pressure. Furthermore, in order to reveal the effects of pressure on the electronic and binding behavior of the compound, band structures, total and partial density of states, charge densities, Mulliken atomic charges, and bond overlap populations are searched as a function of pressure. To check the stability of the compound, phonon dispersion curves are calculated. And, the results are compared with the other convenient borides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Influence of music on memory and education, and the application of its underlying principles to acupuncture.

    Science.gov (United States)

    Seki, H

    1983-01-01

    The interrelations among learning, brain waves, music and the relief of pain by acupuncture are discussed from the standpoint of an educator, who has some practical experience in suggestive-accelerative learning and teaching (S.A.L.T.). Through the diverse fields of science, e.g. educational psychology, physiology, electronics and acoustics, the principal law governing the l/f fluctuations (where f is frequency), or the inverse frequency distribution of the power spectrum, seems to play an important role in their phenomenological mechanism. The author totally explained in this paper such relations and he arranged the related phenomena into physical, physiological, psychological and pedagogical fields. Finally, he referred to an interesting example of the application of l/f fluctuations to the relief of pain by acupuncture.

  1. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Science.gov (United States)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  2. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reisenegger, Andreas; Zepeda, Felipe S. [Pontificia Universidad Catolica de Chile, Instituto de Astrofisica, Facultad de Fisica, Macul (Chile)

    2016-03-15

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of ''everyday'' matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties. (orig.)

  3. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  4. First-principles calculations for elastic properties of OsB2 under pressure

    International Nuclear Information System (INIS)

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  5. First-principles calculations for elastic properties of OsB 2 under pressure

    Science.gov (United States)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  6. Physics of Lightning under Control of Big Scale Experiments

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Josef

    2007-01-01

    Roč. 52, č. 2 (2007), s. 173-186 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : gas discharges * physics of lightning * long air gaps Subject RIV: BL - Plasma and Gas Discharge Physics

  7. Head waves in ultrasonic testing. Physical principle and application to welded joint testing

    International Nuclear Information System (INIS)

    Wustenberg, H.; Erhard, A.

    1984-01-01

    A head wave sensor is developed from distinct emitter and receiver sensors using longitudinal waves under a 70 0 incidence. These heat wave sensors present a high sensitivity for underlying cracks and are not influenced by surface accidents like liquid drops or welding projection. They are multi mode sensors emitting simultaneously longitudinal head waves, a main longitudinal lobe and a transverse wave with a maximum at about 38 0 . This wave combination can be used for automatic testing of welded joints even with austenitic materials for defect detection near internal or external surfaces. This process can substitute or complete liquid penetrant inspection or magnetic inspection for testing pipes (13 references are given) [fr

  8. Ergonomic principles and tools for best interdisciplinary psycho-physical stress prevention.

    Science.gov (United States)

    Dal Cason, Dott Luigi

    2012-01-01

    The psycho-physical stress is a risk to all intents and purposes,finally acknowledged, it requires increasing attention. Measures forits protection are reflected in the appropriate application of organizational policies on a human scale, or in respect of the"macro-ergonomics". This work consists on several inter-disciplinary tools available to the proper prevention, outbreaks of work-related stress.During work, adequate rests are important to prevent work related physical and mental fatigue. The strategies for maintaining a healthy balance between work rate and work breaks, may differ depending on the individual, subjective habits and peculiarities related to the work environment. Resting does not necessarily mean "going to break". The break-time is important as the work-time. While the latter is regulated, the first is not always clearly defined, though necessary. Knowing the employment contract is the first step towards the implementation of their rights relating to periods of suspension from the activity of work is also essential for high performance working. Breathing exercises, massage therapy, biofeedback, role-playing are some of the tools used during work breaks to prevent mental and physical fatigue. At the end music has a rhythm by alternating strong and weak accents. If the musical notes represent the "vertical" trend of music (melody), figures and pauses, inserted into the rhythmic structure of the measure, regulate the duration of sounds over time and determine the "horizontal" trend of a song. Transferring this concept on work, is meant to understand, using a metaphor, the importance of respect of changes in both vertical and horizontal trends inside a cycle.

  9. A criticism to the fundamental principles of physics: The problem of the quantum measurement (I)

    International Nuclear Information System (INIS)

    Mormontoy Cardenas, Oscar; Marquez Jacome, Mateo

    2008-01-01

    The wave packet model collapse debt to extremely fast fluctuations of quantum field leads to interpreting the phase speed of the harmonic waves that compose the packet, as the speed of time flux. If it consider that harmonics waves keep different phases, the waves packet scattered almost instantly and, as consequence of that, allows the possibility of the quantum system energy it is measure with exactitude absolute in given time. These results induce to think that the time would being a superforce which would determine finally the events of universe and being responsible of the intrinsic pulsations observable in the physics systems. (author)

  10. Principles of structural physics in building construction in the Egyptian desert

    Energy Technology Data Exchange (ETDEWEB)

    Awady El Wakil, Shafak El

    1981-12-01

    Building construction in accordance with the climate in oases of the Egyptian desert is discussed. Climatic conditions and the resulting consequences for structural physics play a major role. With the aid of Olgay's comfort diagram, requirements to be made on buildings in various oases are derived from the climatic data of these oases. To optimize the indoor climate, shading, heat storage and ventilation measures are discussed, and suggestions are made on how to make use of this knowledge in consideration of traditional Egyptian architecture.

  11. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk

  12. Towards nearly zero-energy buildings. Definition of common principles under the EPBD. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hermelink, A.; Schimschar, S.; Boermans, T. [Ecofys, Utrecht (Netherlands); Pagliano, L.; Zangheri, P.; Armani, R. [Energy Department, Politecnico di Milano, Milan (Italy); Voss, K.; Musall, E. [University of Wuppertal, Wuppertal (Germany)

    2013-02-15

    Europe aims at bringing about drastic reductions of greenhouse gas emissions in the residential and service sectors of about 90% compared to 1990 by 2050. Nearly Zero-Energy Buildings are a major element of European climate policy. Already by 2021, every new building in Europe has to meet this standard. During 2012, a consortium led by Ecofys undertook a study for the European Commission to provide more guidance to Member States and the Commission with regards to the implementation of the requirements for nearly zero-energy buildings under the EPBD. The study features benchmarks for nearly zero-energy buildings for different European climates, an analytical framework for evaluating Member States national plans for increasing the number of nearly zero energy buildings, a reporting template for these plans and an analysis of the convergence between cost optimal levels and nearly zero-energy buildings.

  13. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  14. The improving of methodological principles of enterprise competitiveness management under the crisis

    Directory of Open Access Journals (Sweden)

    Marina Dyadyuk

    2016-12-01

    Full Text Available The purpose of this research is methodological bases improving and forming of practical tools for enterprise competitiveness management under the crisis. The specific features of the competitive environment of enterprises in Ukraine under the global and national crisis are researched in the article. From this it is concluded that any enterprise must have a greater degree of flexibility than in periods of stability or economic growth for obtaining and maintaining of competitive advantages in the current period of global instability. Flexibility and adaptability of the economic system is the main prerequisite for obtaining and developing of enterprise competitive advantages and stem component of competitiveness. We identified and characterized the methodological components of adaptive management process on the base of systematic approach and with taking into account views of scientists. The obtained scientific results are the basis for conceptual model of integrated system of enterprise adaptive management in terms of dynamic and uncertainty environment. We propose to implement this kind of control on three levels: strategic (preventive management, functionality (tactical management and operational (symptomatic management on the base of analyzing economically grounded views and existing positions. It all together will ensure effective adaptation at the macroeconomic, meso and micro levels of management. The main purpose of the proposed integrated management system is ensuring the stability and integrity of enterprises activity in terms of variability and uncertainty of the environment. The implementation of such management system provides the enterprise with certain competitive advantages. It will allow to Ukrainian enterprises maintaining the competitive position in unfavorable external conditions, but also maintaining and improving the competitiveness.

  15. Longitudinal bunch diagnostics using coherent transition radiation spectroscopy. Physical principles, multichannel spectrometer, experimental results, mathematical methods

    International Nuclear Information System (INIS)

    Schmidt, Bernhard; Wesch, Stephan; Behrens, Christopher; Koevener, Toke; Hass, Eugen; Casalbuoni, Sara

    2018-03-01

    The generation and properties of transition radiation (TR) are thoroughly treated. The spectral energy density, as described by the Ginzburg-Frank formula, is computed analytically, and the modifications caused by the finite size of the TR screen and by near-field diffraction effects are carefully analyzed. The principles of electron bunch shape reconstruction using coherent transition radiation are outlined. Spectroscopic measurements yield only the magnitude of the longitudinal form factor but not its phase. Two phase retrieval methods are investigated and illustrated with model calculations: analytic phase computation by means of the Kramers-Kronig dispersion relation, and iterative phase retrieval. Particular attention is paid to the ambiguities which are unavoidable in the reconstruction of longitudinal charge density profiles from spectroscopic data. The origin of these ambiguities has been identified and a thorough mathematical analysis is presented. The experimental part of the paper comprises a description of our multichannel infrared and THz spectrometer and a selection of measurements at FLASH, comparing the bunch profiles derived from spectroscopic data with those determined with a transversely deflecting microwave structure. A rigorous derivation of the Kramers-Kronig phase formula is presented in Appendix A. Numerous analytic model calculations can be found in Appendix B. The differences between normal and truncated Gaussians are discussed in Appendix C. Finally, Appendix D contains a short description of the propagation of an electromagnetic wave front by two-dimensional fast Fourier transformation. This is the basis of a powerful numerical Mathematica trademark code THzTransport, which permits the propagation of electromagnetic wave fronts through a beam line consisting of drift spaces, lenses, mirrors and apertures.

  16. Longitudinal bunch diagnostics using coherent transition radiation spectroscopy. Physical principles, multichannel spectrometer, experimental results, mathematical methods

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Bernhard; Wesch, Stephan; Behrens, Christopher [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Koevener, Toke [Hamburg Univ. (Germany); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Hass, Eugen [Hamburg Univ. (Germany); Casalbuoni, Sara [Karlsruhe Institute of Technology (Germany). Inst. for Beam Physics and Technology; Schmueser, Peter [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany)

    2018-03-15

    The generation and properties of transition radiation (TR) are thoroughly treated. The spectral energy density, as described by the Ginzburg-Frank formula, is computed analytically, and the modifications caused by the finite size of the TR screen and by near-field diffraction effects are carefully analyzed. The principles of electron bunch shape reconstruction using coherent transition radiation are outlined. Spectroscopic measurements yield only the magnitude of the longitudinal form factor but not its phase. Two phase retrieval methods are investigated and illustrated with model calculations: analytic phase computation by means of the Kramers-Kronig dispersion relation, and iterative phase retrieval. Particular attention is paid to the ambiguities which are unavoidable in the reconstruction of longitudinal charge density profiles from spectroscopic data. The origin of these ambiguities has been identified and a thorough mathematical analysis is presented. The experimental part of the paper comprises a description of our multichannel infrared and THz spectrometer and a selection of measurements at FLASH, comparing the bunch profiles derived from spectroscopic data with those determined with a transversely deflecting microwave structure. A rigorous derivation of the Kramers-Kronig phase formula is presented in Appendix A. Numerous analytic model calculations can be found in Appendix B. The differences between normal and truncated Gaussians are discussed in Appendix C. Finally, Appendix D contains a short description of the propagation of an electromagnetic wave front by two-dimensional fast Fourier transformation. This is the basis of a powerful numerical Mathematica trademark code THzTransport, which permits the propagation of electromagnetic wave fronts through a beam line consisting of drift spaces, lenses, mirrors and apertures.

  17. The viper fangs: clinical anatomy, principles of physical examination and therapy (a review

    Directory of Open Access Journals (Sweden)

    Matteo Oliveri

    2016-01-01

    Full Text Available The assessment of fangs is a fundamental part of clinical examination of viperid snakes. The long curved venom fang is carried by short, highly mobile maxilla. Short anaesthesia is advised for safe physical examination and radiography of the mouth cavity. The fangs are gently forced outside the fang pocket by passing the bar or forceps on the palato-maxillary arch, and rotating them rostrally shifting the mucosal fold. Functional fangs are periodically shed and several generations of replacement teeth lie behind and beneath each fang. In case of fang fracture, therapy should be limited to flushing with a solution of chlorhexidine or povidone iodine, and topical application of pro-coagulant and antibacterial cream. Therapy of chronic fang inflammation is based on removal of necrotized fang and repeated abundant irrigation of the fang pocket. Treatment of chronic stomatitis consists of flushing with chlorhexidine or povidone iodine, physical removal of the plaques, administration of analgesics and antibiotics (marbofloxacin, enrofloxacin or ceftazidime. Extra-oral surgical approach is the best method for odontogenic abscess removal. A vigorous flushing with sterile saline solution, chlorhexidine and povidone iodine and topical application of antibiotics (antibiotic embedded surgical sponge is advised. Force feeding of the anorectic patient suffering from fang inflammation is a mandatory part of the standard treatment protocol.

  18. PET/CT: underlying physics, instrumentation, and advances.

    Science.gov (United States)

    Torres Espallardo, I

    Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important

  19. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles

    International Nuclear Information System (INIS)

    Qi, Lei; Jin, Yuchun; Zhao, Yuhong; Yang, Xiaomin; Zhao, Hui; Han, Peide

    2015-01-01

    Highlights: • Structural, elastic, electronic properties and Debye temperature under pressure. • Higher hardness of Ni 3 Mo compound may be obtained when pressure increases. • Proper pressure can improve the ductility but excess pressure was just the opposite. • Ni 3 Mo compound has no structural phase transformation under pressure up to 30 GPa. • Debye temperatures increase with increasing pressure. - Abstract: With the help of first principles method based on density functional theory, the structural, elastic, electronic properties and Debye temperature of Ni 3 Mo binary compound under pressure are investigated. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that Ni 3 Mo compound is mechanically stable. Elastic properties such as bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio υ are calculated by the Voigt–Reuss–Hill method. The results of B/G under various pressures show that proper pressure can improve the ductility of Ni 3 Mo but excess pressure will make the ductility decrease. In addition, the density of states as a function of pressure is analyzed. The Debye temperature Θ D calculated from elastic constants increases along with the pressure

  20. Solid phase stability of molybdenum under compression: Sound velocity measurements and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)

    2015-02-07

    The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.

  1. Physiological and biochemical principles underlying volume-targeted therapy--the "Lund concept".

    Science.gov (United States)

    Nordström, Carl-Henrik

    2005-01-01

    The optimal therapy of sustained increase in intracranial pressure (ICP) remains controversial. The volume-targeted therapy ("Lund concept") discussed in this article focuses on the physiological volume regulation of the intracranial compartments. The balance between effective transcapillary hydrostatic and osmotic pressures constitutes the driving force for transcapillary fluid exchange. The low permeability for sodium and chloride combined with the high crystalloid osmotic pressure (approximately 5700 mmHg) on both sides of the blood-brain barrier (BBB) counteracts fluid exchange across the intact BBB. Additionally, variations in systemic blood pressure generally are not transmitted to these capillaries because cerebral intracapillary hydrostatic pressure (and blood flow) is physio-logically tightly autoregulated. Under pathophysiological conditions, the BBB may be partially disrupted. Transcapillary water exchange is then determined by the differences in hydrostatic and colloid osmotic pressure between the intra- and extracapillary compartments. Pressure autoregulation of cerebral blood flow is likely to be impaired in these conditions. A high cerebral perfusion pressure accordingly increases intracapillary hydrostatic pressure and leads to increased intracerebral water content and an increase in ICP. The volume-targeted "Lund concept" has been evaluated in experimental and clinical studies to examine the physiological and biochemical (utilizing intracerebral microdialysis) effects, and the clinical experiences have been favorable.

  2. First principles study of LiAlO2: new dense monoclinic phase under high pressure

    Science.gov (United States)

    Liu, Guangtao; Liu, Hanyu

    2018-03-01

    In this work, we have systematically explored the crystal structures of LiAlO2 at high pressures using crystal structure prediction method in combination with the density functional theory calculations. Besides the reported α, β, γ, δ and ɛ-phases, here we propose a new monoclinic ζ-LiAlO2 (C2/m) structure, which becomes thermodynamically and dynamically stable above 27 GPa. It is found that the cation coordination number increases from 4 to 6 under compression. Consisting of the compact {LiO6} and {AlO6} octahedrons, the newly-discovered ζ-phase possesses a very high density. Further electronic calculations show that LiAlO2 is still an insulator up to 60 GPa, and its bandgap increases upon compression. The present study advances our understanding on the crystal structures and high-pressure phase transitions of LiAlO2 that may trigger applications in multiple areas of industry and provoke more related basic science research.

  3. Wavelets-Computational Aspects of Sterian Realistic Approach to Uncertainty Principle in High Energy Physics: A Transient Approach

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2013-01-01

    Full Text Available This study presents wavelets-computational aspects of Sterian-realistic approach to uncertainty principle in high energy physics. According to this approach, one cannot make a device for the simultaneous measuring of the canonical conjugate variables in reciprocal Fourier spaces. However, such aspects regarding the use of conjugate Fourier spaces can be also noticed in quantum field theory, where the position representation of a quantum wave is replaced by momentum representation before computing the interaction in a certain point of space, at a certain moment of time. For this reason, certain properties regarding the switch from one representation to another in these conjugate Fourier spaces should be established. It is shown that the best results can be obtained using wavelets aspects and support macroscopic functions for computing (i wave-train nonlinear relativistic transformation, (ii reflection/refraction with a constant shift, (iii diffraction considered as interaction with a null phase shift without annihilation of associated wave, (iv deflection by external electromagnetic fields without phase loss, and (v annihilation of associated wave-train through fast and spatially extended phenomena according to uncertainty principle.

  4. The Development of Enterprise Systems based on Cyber- Physical Systems Principles

    Directory of Open Access Journals (Sweden)

    Ioan Ştefan Sacală

    2014-12-01

    Full Text Available Research in the area of Cyber-Physical Systems (CPS and Internet of Things (IoT become, in the last 3 years a priority for both research entities and companies. Implementing Enterprise Systems based on the two paradigms is focused on merging real and virtual objects and thus deals with an increased degree of complexity. The aim of the present paper is to discuss an Enterprise Architecture and a Framework based on the integration of CPS and IoT technologies within Enterprise Systems. An important aspect is related to process mining implemented in two focus areas: the ability to generate business processes from data acquired from sensors and the ability to integrate sensor acquired data with existing business processes.

  5. The complex itinerary of Leibniz’s planetary theory physical convictions, metaphysical principles and Keplerian inspiration

    CERN Document Server

    Bussotti, Paolo

    2015-01-01

    This book presents new insights into Leibniz’s research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler’s influence on Leibniz’s planetary theory and, more generally, on Leibniz’s concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz’s works provide a frame of reference. The book then goes on to discuss research on Leibniz’s conception of gravity and the connection between Leibniz and Kepler. .

  6. Propulsion Physics Under the Changing Density Field Model

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  7. In vitro thermal profile suitability assessment of acids and bases for thermochemical ablation: underlying principles.

    Science.gov (United States)

    Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K

    2010-03-01

    To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  8. Physical quality of an oxisol under different uses

    Directory of Open Access Journals (Sweden)

    Francisco Ocian Bastos Mota

    2012-12-01

    Full Text Available The use of a soil induces changes in the physical properties according to the management, tillage intensity and type of crop. The objective of this work was to measure the alterations of some of the soil physical properties and evaluate the physical quality by the S index, an indicator proposed by Dexter (2004, comparing the land uses: eucalyptus plantations at different ages, grazing pasture, annual crops, and an area of preserved secondary vegetation with an area of preserved native forest (National Forest Araripe - NFA as control. The study was carried out on an Oxisol on the Fazenda Redenção, in Jardim, State of Ceará, Brazil. The experiment was arranged in a completely randomized design with seven treatments and three replications in the layers 0-0.1 and 0.1-0.2 m. The soil was analyzed for the following physical properties: bulk density, particle density, total pore volume, micro and macroporosity, soil water retention curves and water availability. Based on the S index, the hypothesis that the use of a soil deteriorates the physical quality was accepted. Clearly, native forest (NFA was the land use with the best conditions in all physical properties studied, followed closely by the area reforested with 20 year-old eucalyptus. The use as grazing pasture affected the soil physical conditions most, especially in the surface layer (0-0.1 m, as evidenced by increased bulk density and a substantial reduction in soil porosity, mainly in macroporosity. Microporosity was not influenced by any of the uses and in any layer studied.

  9. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    Science.gov (United States)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  10. The Obstacle Version of the Geometric Dynamic Programming Principle: Application to the Pricing of American Options Under Constraints

    International Nuclear Information System (INIS)

    Bouchard, Bruno; Vu, Thanh Nam

    2010-01-01

    We provide an obstacle version of the Geometric Dynamic Programming Principle of Soner and Touzi (J. Eur. Math. Soc. 4:201-236, 2002) for stochastic target problems. This opens the doors to a wide range of applications, particularly in risk control in finance and insurance, in which a controlled stochastic process has to be maintained in a given set on a time interval [0,T]. As an example of application, we show how it can be used to provide a viscosity characterization of the super-hedging cost of American options under portfolio constraints, without appealing to the standard dual formulation from mathematical finance. In particular, we allow for a degenerate volatility, a case which does not seem to have been studied so far in this context.

  11. Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study

    Science.gov (United States)

    Behzad, Somayeh

    2018-04-01

    Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.

  12. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  13. Physical principles of intracellular organization via active and passive phase transitions

    Science.gov (United States)

    Berry, Joel; Brangwynne, Clifford P.; Haataja, Mikko

    2018-04-01

    Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.

  14. Some Physical Principles Governing Spatial and Temporal Organization in Living Systems

    Science.gov (United States)

    Ali, Md Zulfikar

    . Our studies demonstrate both the importance of employing a sequence-based evolutionary scheme and the relative rapidity (in evolutionary time) for the redistribution of function over new nodes via neutral drift. In addition we discovered another much slower timescale for network evolution, reflecting hidden order in sequence space that we interpret in terms of sparsely connected domains. Finally, we use the model to study the evolution of an oscillator from a non-oscillatory network under the influence of external periodic forcing as a model for evolution of circadian rhythm in living systems. We use a greedy algorithm based on optimizing biologically motivated fitness functions and find that the algorithm successfully produces oscillators. However, the distribution of free-period of evolved oscillators depends on the choice of fitness functions and the nature of forcing.

  15. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  16. Developing "Personality" Taxonomies: Metatheoretical and Methodological Rationales Underlying Selection Approaches, Methods of Data Generation and Reduction Principles.

    Science.gov (United States)

    Uher, Jana

    2015-12-01

    Taxonomic "personality" models are widely used in research and applied fields. This article applies the Transdisciplinary Philosophy-of-Science Paradigm for Research on Individuals (TPS-Paradigm) to scrutinise the three methodological steps that are required for developing comprehensive "personality" taxonomies: 1) the approaches used to select the phenomena and events to be studied, 2) the methods used to generate data about the selected phenomena and events and 3) the reduction principles used to extract the "most important" individual-specific variations for constructing "personality" taxonomies. Analyses of some currently popular taxonomies reveal frequent mismatches between the researchers' explicit and implicit metatheories about "personality" and the abilities of previous methodologies to capture the particular kinds of phenomena toward which they are targeted. Serious deficiencies that preclude scientific quantifications are identified in standardised questionnaires, psychology's established standard method of investigation. These mismatches and deficiencies derive from the lack of an explicit formulation and critical reflection on the philosophical and metatheoretical assumptions being made by scientists and from the established practice of radically matching the methodological tools to researchers' preconceived ideas and to pre-existing statistical theories rather than to the particular phenomena and individuals under study. These findings raise serious doubts about the ability of previous taxonomies to appropriately and comprehensively reflect the phenomena towards which they are targeted and the structures of individual-specificity occurring in them. The article elaborates and illustrates with empirical examples methodological principles that allow researchers to appropriately meet the metatheoretical requirements and that are suitable for comprehensively exploring individuals' "personality".

  17. First-principles investigation of mechanical and electronic properties of LaAg5 Laves phase under pressure

    Institute of Scientific and Technical Information of China (English)

    高恩强; 黄福祥; 陈志谦; 王兰兰; 张照超

    2016-01-01

    The effects of applied pressure on the structural, mechanical, and electronic properties of LaAg5 compound were investi-gated employing the first-principles method based on the density functional theory. The mechanical results demonstrated that bulk modulus, shear modulus and Young’s modulus presented the linearly increasing dependences on the external pressure; theB/G and Poisson’s ratio indicated that LaAg5 compound was a ductile material with central forces in interatomic under pressure from 0 to 40 GPa; the universal anisotropic index was performed to investigate the elastic anisotropic of LaAg5. Additionally, the pressure de-pendence of the density of states and Mulliken charge were also discussed. The bonding characterization in LaAg5 was composed of metallic, covalent and ionic. The metallic component was derived from free-electron transferring from Ag-s and Ag-d to Ag-p, and from La-s to La-d. The ionic component was due to the charge movement from La to Ag. The covalent was owing to Ag-p-La-d bonding hybridization and Ag-s-Ag-p in the Ag atomic chains. The covalent and ionic bonds were stronger under pressure but there was no significant change in metallic nature.

  18. nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0

    Directory of Open Access Journals (Sweden)

    P. Good

    2016-11-01

    Full Text Available nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1 to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day, or (2 to understand the state dependence (non-linearity of climate change – i.e. why doubling the forcing may not double the response. State dependence (non-linearity of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM emulation techniques (e.g. energy balance models and pattern-scaling methods. However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above, and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1. nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio – while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5 and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up–ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The

  19. nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0)

    Science.gov (United States)

    Good, Peter; Andrews, Timothy; Chadwick, Robin; Dufresne, Jean-Louis; Gregory, Jonathan M.; Lowe, Jason A.; Schaller, Nathalie; Shiogama, Hideo

    2016-11-01

    nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change - i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1). nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio - while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding

  20. Soil physical and hydraulic properties modification under Arachis ...

    African Journals Online (AJOL)

    A field study was carried out to determine the effects of 3 plant densities (33333, 66667 and 83333 plants/ha)on soil properties and water loss through evaporation from soils under 2 cultivars of Arachis hypogaeaL. (SAMNUT 10 and SAMNUT 21) and Arachis pintoi(PINTOI) in Ibadan, south western Nigeria. The experiment ...

  1. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  2. The extraordinarily beautiful physical principle of thermonuclear charge design (on the occasion of the 50th anniversary of the test of RDS-37 - the first Soviet two-stage thermonuclear charge)

    International Nuclear Information System (INIS)

    Goncharov, German A

    2005-01-01

    On 22 November 1955, the Semipalatinsk test site saw the test of the first domestic two-stage thermonuclear RDS-37 charge. The charge operation was based on the principle of radiation implosion. The kernel of the principle consists in the radiation generated in a primary A-bomb explosion and confined by the radiation-opaque casing propagating throughout the interior casing volume and flowing around the secondary thermonuclear unit. The secondary unit experiences a strong compression under the irradiation, with a resulting nuclear and thermonuclear explosion. The RDS-37 explosion was the strongest of all those ever realized at the Semipalatinsk test site. It produced an indelible impression on the participants in the test. This document-based paper describes the genesis of the ideas underlying the RDS-37 design and reflects the critical moments in its development. The advent of RDS-37 was an outstanding accomplishment of the scientists and engineers of our country. (from the history of physics)

  3. The extraordinarily beautiful physical principle of thermonuclear charge design (on the occasion of the 50th anniversary of the test of RDS-37 - the first Soviet two-stage thermonuclear charge)

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, German A [Russian Federal Nuclear Center ' All-Russian Scientific Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod Region (Russian Federation)

    2005-11-30

    On 22 November 1955, the Semipalatinsk test site saw the test of the first domestic two-stage thermonuclear RDS-37 charge. The charge operation was based on the principle of radiation implosion. The kernel of the principle consists in the radiation generated in a primary A-bomb explosion and confined by the radiation-opaque casing propagating throughout the interior casing volume and flowing around the secondary thermonuclear unit. The secondary unit experiences a strong compression under the irradiation, with a resulting nuclear and thermonuclear explosion. The RDS-37 explosion was the strongest of all those ever realized at the Semipalatinsk test site. It produced an indelible impression on the participants in the test. This document-based paper describes the genesis of the ideas underlying the RDS-37 design and reflects the critical moments in its development. The advent of RDS-37 was an outstanding accomplishment of the scientists and engineers of our country. (from the history of physics)

  4. Assessing participants' perceptions on group-based principles for action in community-based health enhancing physical activity programmes: The APEF tool.

    Science.gov (United States)

    Herens, Marion; Wagemakers, Annemarie

    2017-12-01

    In community-based health enhancing physical activity (CBHEPA) programmes, group-based principles for action such as active participation, enjoyment, and fostering group processes are widely advocated. However, not much is known about participants' perceptions of these principles as there are no assessment tools available. Therefore, this article describes the development of the APEF (Active Participation, Enjoyment, and Fostering group processes) tool and reports on its implementation in a Dutch CBHEPA programme. Indicators for the principles have been identified from literature research, interviews with professionals, and secondary analysis of three group interviews with 11 practitioners. To address the identified indicators, the APEF tool was developed, pretested, and used in 10 focus groups with 76 participants. The APEF tool consists of eight statements about group-based principles for action, on which CBHEPA participants vote, followed by in-depth discussion. The voting procedure engages participants. Spider diagrams visualise participants' perceptions of group-based principles. The APEF tool addresses the challenge of relating group level outcomes to individual outcomes such as physical activity behaviour. The tool facilitates as well as evaluates group-based principles for action, it stimulates dialogue and is culturally sensitive, but it needs strong facilitating skills to manage group dynamics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The under-critical reactors physics for the hybrid systems

    International Nuclear Information System (INIS)

    Schapira, J.P.; Vergnes, J.; Zaetta, A.

    1998-01-01

    This day, organized by the SFEN, took place at Paris the 12 march 1998. Nine papers were presented. They take stock on the hybrid systems and more specifically the under-critical reactors. One of the major current preoccupation of nuclear industry is the problems of the increase of radioactive wastes produced in the plants and the destruction of the present stocks. To solve these problems a solution is the utilisation of hybrid systems: the coupling of a particle acceleration to an under-critical reactor. Historical aspects, advantages and performances of such hybrid reactors are presented in general papers. More technical papers are devoted to the spallation, the MUSE and the TARC experiments. (A.L.B.)

  6. Underlying Event Studies and Forward Physics at CMS

    International Nuclear Information System (INIS)

    Krammer, Manfred; Bartalini, Paolo

    2010-01-01

    Studies of the underlying event and forward processes are important tests of the standard model and inputs for Monte Carlo tuning. By selecting regions transverse and parallel to the hard parton-parton scatter, different aspects of non-perturbative QCD are enhanced and allow fine tuning of different Monte Carlo models. The underlying event in pp interactions, recorded by the CMS detector, is studied measuring the charged multiplicity density and the charged energy density in a region perpendicular to the plane of the hard 2-to-2 scattering. Two different methodologies are adopted to identify the direction and the energy scale of the hard scattering in Minimum Bias events that rely on the leading charged track and on the leading charged jet. The study allows to discriminate between various QCD Monte Carlo models with different multiple parton interaction schemes. In addition, we present the measurement of the underlying event using the jet area/ median approach. We demonstrate its sensitivity to different underlying event scenarios and tunes on generator level after applying detector specific cuts and thresholds. In the forward direction, the first measurement of forward energy flow in 3 35 GeV and compare to model with different multi-parton interaction schemes. In addition, the absence of energy deposition in the forward region is used to observe diffractive events. We compare our results with predictions from Monte Carlo event generators including a simulation of multi-parton scattering. All four measurements can be used to determine the parameters of multi-parton interaction models in a extended region of phase space. (author)

  7. Physical activity buffers fatigue only under low chronic stress.

    Science.gov (United States)

    Strahler, Jana; Doerr, Johanna M; Ditzen, Beate; Linnemann, Alexandra; Skoluda, Nadine; Nater, Urs M

    2016-09-01

    Fatigue is one of the most commonly reported complaints in the general population. As physical activity (PA) has been shown to have beneficial effects, we hypothesized that everyday life PA improves fatigue. Thirty-three healthy students (21 women, 22.8 ± 3.3 years, 21.7 ± 2.3 kg/m(2)) completed two ambulatory assessment periods. During five days at the beginning of the semester (control condition) and five days during final examination preparation (examination condition), participants repeatedly reported on general fatigue (awakening, 10 am, 2 pm, 6 pm and 9 pm) by means of an electronic diary, collected saliva samples for the assessment of cortisol and α-amylase immediately after providing information on fatigue and wore a triaxial accelerometer to continuously record PA. Self-perceived chronic stress was assessed as a moderator. Using hierarchical linear modeling, including PA, condition (control vs. examination), sex and chronic stress as predictors, PA level during the 15 min prior to data entry did not predict momentary fatigue level. Furthermore, there was no effect of condition. However, a significant cross-level interaction of perceived chronic stress with PA was observed. In fact, the (negative) relationship between PA and fatigue was stronger in those participants with less chronic stress. Neither cortisol nor α-amylase was significantly related to physical activity or fatigue. Our study showed an immediate short-term buffering effect of everyday life PA on general fatigue, but only when experiencing lower chronic stress. There seems to be no short-term benefit of PA in the face of higher chronic stress. These findings highlight the importance of considering chronic stress when evaluating the effectiveness of PA interventions in different target populations, in particular among chronically stressed and fatigued subjects.

  8. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  9. First-principles study on the electronic structure, phonons and optical properties of LaB_6 under high-pressure

    International Nuclear Information System (INIS)

    Chao, Luomeng; Bao, Lihong; Wei, Wei; O, Tegus; Zhang, Zhidong

    2016-01-01

    The electronic structure, phonons and optical properties of LaB_6 compound under different pressure have been studied by first-principles calculation. The electronic structure calculation shows that the d band along the M-Γ direction of the Brillouin zone moves up with increasing pressure and the band minimum is above the Fermi level at 45 GPa. The pressure-induced charge transfer from La to B atoms is reflected in the upshift of d band along the M-Γ direction with pressure. The calculated phonon dispersion curve at zero pressure is in good agreement with the experimental results. However, the phonon dispersion under high pressure does not show any information about the phase transition at 10 GPa, which was reported previously. The acoustic and optical phonon modes harden all the way with increasing pressure. In addition, the dielectric function is in accordance with the Drude model in the pressure range of 0 GPa–35 GPa and follows the Lorentz model at 45 GPa. The LaB_6 compound exhibits better visible light transmittance performance with the increasing pressure in the range of 0 GPa–35 GPa and visible light transmittance peak would be shifted towards ultraviolet region. - Highlights: • Physical properties of LaB_6 under high pressure have been theoretically studied. • Predict an electronic topological transition occurs at 45 GPa for LaB_6. • Predict a pressure-induced charge transfer from La to B atoms. • The phonon modes at Γ point show an increasing trend with increasing pressure. • The LaB_6 exhibits better heat-shielding performance with the increasing pressure.

  10. Elastic properties and electronic structure of WS{sub 2} under pressure from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Civil Aviation Flight Univ. of China, Guanghan (China). Dept. of Physics; Zeng, Zhao-Yi [Chongqing Normal Univ., Chongqing (China). College of Physics and Electronic Engineering; Liang, Ting; Tang, Mei; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics

    2017-07-01

    The influence of pressure on the elastic and mechanical properties of the hexagonal transition-metal dichalcogenide WS{sub 2} is investigated using the first-principles calculations. With the increase in pressure, the lattice parameters and the volume of WS{sub 2} decrease, which is exactly in agreement with the available experimental data and other calculated results. The elastic constants C{sub ij}, bulk modulus B, shear modulus G, Young's modulus E, and Poisson's ratio σ of WS{sub 2} also increase with pressure. At last, for the first time, the band gaps of energy, the partial density of states, and the total density of states under three different pressures are obtained and analysed. It is found that the band gap of WS{sub 2} decreases from 0.843 to 0 eV when the external pressure varies from 0 to 20 GPa, which implies that WS{sub 2} may transform from semiconductors to semimetal phase at a pressure about 20 GPa.

  11. Autonomous physics-based color learning under daylight

    Science.gov (United States)

    Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.

    1999-09-01

    An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.

  12. Advancing solar energy forecasting through the underlying physics

    Science.gov (United States)

    Yang, H.; Ghonima, M. S.; Zhong, X.; Ozge, B.; Kurtz, B.; Wu, E.; Mejia, F. A.; Zamora, M.; Wang, G.; Clemesha, R.; Norris, J. R.; Heus, T.; Kleissl, J. P.

    2017-12-01

    As solar power comprises an increasingly large portion of the energy generation mix, the ability to accurately forecast solar photovoltaic generation becomes increasingly important. Due to the variability of solar power caused by cloud cover, knowledge of both the magnitude and timing of expected solar power production ahead of time facilitates the integration of solar power onto the electric grid by reducing electricity generation from traditional ancillary generators such as gas and oil power plants, as well as decreasing the ramping of all generators, reducing start and shutdown costs, and minimizing solar power curtailment, thereby providing annual economic value. The time scales involved in both the energy markets and solar variability range from intra-hour to several days ahead. This wide range of time horizons led to the development of a multitude of techniques, with each offering unique advantages in specific applications. For example, sky imagery provides site-specific forecasts on the minute-scale. Statistical techniques including machine learning algorithms are commonly used in the intra-day forecast horizon for regional applications, while numerical weather prediction models can provide mesoscale forecasts on both the intra-day and days-ahead time scale. This talk will provide an overview of the challenges unique to each technique and highlight the advances in their ongoing development which come alongside advances in the fundamental physics underneath.

  13. Neural mechanisms underlying motivation of mental versus physical effort.

    Directory of Open Access Journals (Sweden)

    Liane Schmidt

    2012-02-01

    Full Text Available Mental and physical efforts, such as paying attention and lifting weights, have been shown to involve different brain systems. These cognitive and motor systems, respectively, include cortical networks (prefronto-parietal and precentral regions as well as subregions of the dorsal basal ganglia (caudate and putamen. Both systems appeared sensitive to incentive motivation: their activity increases when we work for higher rewards. Another brain system, including the ventral prefrontal cortex and the ventral basal ganglia, has been implicated in encoding expected rewards. How this motivational system drives the cognitive and motor systems remains poorly understood. More specifically, it is unclear whether cognitive and motor systems can be driven by a common motivational center or if they are driven by distinct, dedicated motivational modules. To address this issue, we used functional MRI to scan healthy participants while performing a task in which incentive motivation, cognitive, and motor demands were varied independently. We reasoned that a common motivational node should (1 represent the reward expected from effort exertion, (2 correlate with the performance attained, and (3 switch effective connectivity between cognitive and motor regions depending on task demand. The ventral striatum fulfilled all three criteria and therefore qualified as a common motivational node capable of driving both cognitive and motor regions of the dorsal striatum. Thus, we suggest that the interaction between a common motivational system and the different task-specific systems underpinning behavioral performance might occur within the basal ganglia.

  14. Soil physical properties of high mountain fields under bauxite mining

    Directory of Open Access Journals (Sweden)

    Dalmo Arantes de Barros

    2013-10-01

    Full Text Available Mining contributes to the life quality of contemporary society, but can generate significant impacts, these being mitigated due to environmental controls adopted. This study aimed to characterize soil physical properties in high-altitude areas affected by bauxite mining, and to edaphic factors responses to restoration techniques used to recover mined areas in Poços de Caldas plateau, MG, Brazil. The experiment used 3 randomized block design involving within 2 treatments (before mining intervention and after environmental recovery, and 4 replicates (N=24. In each treatment, soil samples with deformed structures were determined: granulometry, water-dispersible clay content, flocculation index, particle density, stoniness level, water aggregate stability, and organic matter contend. Soil samples with preserved structures were used to determine soil density and the total volume of pores, macropores, and micropores. Homogenization of stoniness between soil layers as a result of soil mobilization was observed after the mined area recovery. Stoniness decreased in 0.10-0.20 m layer after recovery, but was similar in the 0-0.10 m layer in before and after samples. The recovery techniques restored organic matter levels to pre-mining levels. However, changes in soil, including an increase in soil flocculation degree and a decrease in water-dispersible clays, were still apparent post-recovery. Furthermore, mining operations caused structural changes to the superficial layer of soil, as demonstrated by an increase in soil density and a decrease in total porosity and macroporosity. Decreases in the water stability of aggregates were observed after mining operations.

  15. The 26th International Physics Olympiad: On top down under!

    Science.gov (United States)

    1996-01-01

    As they opened the plane door on arrival at Canberra it was like stepping inside a freezer. I had escaped from the heatwave in Britain to experience winter in Australia. I have not found anyone who believes that there was really frost! The Australian welcome did its best to combat the cold, however, and Professor Rod Jury had soon introduced our guides and got us settled in on the campus of Canberra University. The British team of five students, selected through the British Physics Olympiad, were: Alan Bain of Birkenhead School, Chris Blake of King Edward VI School, Southampton, Richard Davies of Dulwich College, Tom Down of Embley Park School, Romsey and Chris Webb of Royal Grammar School, Worcester. The two Leaders of the party were Cyril Isenberg of the University of Kent and Guy Bagnall of Harrow School. Chris Robson of St Bee's School and myself from Stoke on Trent Sixth form College were interested Observers and Guy's wife, Jenny, completed the party. For the old hands there were many friendships stretching back years to renew, and with 51 countries this year many new ones to be made. Â Photo Figure 1. Photograph taken by C Robson of the British Physics Team immediately after the Awards Ceremony in Canberra in July 1995. From left to right: Chris Webb, Richard Davies, Tom Down, Alan Bain and Chris Blake. In addition to the confusion caused by the Sun being in the North and the Moon appearing to lie on its back, we had to get used to the flocks of chattering parrots browsing on the lawns and the kangaroos on campus! Everyone was presented with a boomerang and there were several sessions introducing the art of throwing them, even in the dark! The Opening Ceremony was colourful and a good mix of ceremony and fun with the Aboriginal entertainment and the Flame of Science to be lit. This was followed by my first examiners' meeting. Once the questions have been introduced no one is allowed to leave the group until ten hours later when the students are in bed! The

  16. Radiation exposure and image quality in X-ray diagnostic radiology. Physical principles and clinical applications. 2. ed.

    International Nuclear Information System (INIS)

    Saebel, Manfred; Aichinger, Horst; Dierker, Joachim; Joite-Barfuss, Sigrid

    2012-01-01

    Diagnostic X-rays are the largest contributor to radiation exposure to the general population, and protecting the patient from radiation damage is a major aim of modern health policy. Once the decision has been taken to use ionising radiation for imaging in a particular patient, it is necessary to optimize the image acquisition process taking into account the diagnostic quality of the images and the radiation dose to the patient. Both image quality and radiation dose are affected by a number of parameters, knowledge of which permits scientifically based decision making. The authors of this second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology have spent many years studying the optimization of radiological imaging. In this book they present in detail the basic physical principles of diagnostic radiology and their application to clinical problems. Particular attention is devoted to evaluation of the dose to the patient, the influence of scattered radiation on image quality, the use of antiscatter grids, and optimization of image quality and dose. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader's own programs. Since the first edition, the text, figures, tables, and references have all been thoroughly updated, and more detailed attention is now paid to image quality and radiation exposure when using digital imaging and computed tomography. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers. (orig.)

  17. What makes a reach movement effortful? Physical effort discounting supports common minimization principles in decision making and motor control.

    Directory of Open Access Journals (Sweden)

    Pierre Morel

    2017-06-01

    Full Text Available When deciding between alternative options, a rational agent chooses on the basis of the desirability of each outcome, including associated costs. As different options typically result in different actions, the effort associated with each action is an essential cost parameter. How do humans discount physical effort when deciding between movements? We used an action-selection task to characterize how subjective effort depends on the parameters of arm transport movements and controlled for potential confounding factors such as delay discounting and performance. First, by repeatedly asking subjects to choose between 2 arm movements of different amplitudes or durations, performed against different levels of force, we identified parameter combinations that subjects experienced as identical in effort (isoeffort curves. Movements with a long duration were judged more effortful than short-duration movements against the same force, while movement amplitudes did not influence effort. Biomechanics of the movements also affected effort, as movements towards the body midline were preferred to movements away from it. Second, by introducing movement repetitions, we further determined that the cost function for choosing between effortful movements had a quadratic relationship with force, while choices were made on the basis of the logarithm of these costs. Our results show that effort-based action selection during reaching cannot easily be explained by metabolic costs. Instead, force-loaded reaches, a widely occurring natural behavior, imposed an effort cost for decision making similar to cost functions in motor control. Our results thereby support the idea that motor control and economic choice are governed by partly overlapping optimization principles.

  18. Healthy kids out of school: using mixed methods to develop principles for promoting healthy eating and physical activity in out-of-school settings in the United States.

    Science.gov (United States)

    Sliwa, Sarah A; Sharma, Shanti; Dietz, William H; Dolan, Peter R; Nelson, Miriam E; Newman, Molly B; Rockeymoore, Maya; Economos, Christina D

    2014-12-31

    Widespread practices supporting availability of healthful foods, beverages, and physical activity in out-of-school-time (OST) settings would further obesity prevention efforts. The objective of this article was to describe principles to guide policy development in support of healthy eating and physical activity practices in out-of-school settings to promote obesity prevention. The Institute of Medicine's L.E.A.D. framework (Locate Evidence, Evaluate it, Assemble it, and Inform Decisions) was used to identify practices relevant to children's healthful eating in most OST settings: 1) locate and evaluate information from a national survey of children's perceptions of healthful-food access; published research, reports, policies and guidelines; and roundtables with OST organizations' administrators; 2) assemble information to prioritize actionable practices; and 3) inform programmatic direction. Three evidence-informed guiding principles for short-duration OST resulted: 1) drink right: choose water instead of sugar-sweetened beverages; 2) move more: boost movement and physical activity in all programs; and 3) snack smart: fuel up on fruits and vegetables. Healthy Kids Out of School was launched to support the dissemination and implementation of these guiding principles in short-duration OST settings, complementing efforts in other OST settings to shift norms around eating and physical activity.

  19. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    OpenAIRE

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Caires,Eduardo Fávero; Dias,Carlos Tadeu dos Santos

    2014-01-01

    Although integrated crop-livestock system (ICLS) under no-tillage (NT) is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastur...

  20. Free-electron lasers in the ultraviolet and X-ray regime physical principles, experimental results, technical realization

    CERN Document Server

    Schmüser, Peter; Rossbach, Jörg; Behrens, Christopher

    2014-01-01

    The main goal of the book is to provide a systematic and didactic approach to the physics and technology of free-electron lasers. Numerous figures are used for illustrating the underlying ideas and concepts, and links to other fields of physics are provided. After an introduction to undulator radiation and the low-gain FEL, the one-dimensional theory of the high-gain FEL is developed in a systematic way. Particular emphasis is put on explaining and justifying the various assumptions and approximations that are needed to obtain the differential and integral equations governing the FEL dynamics. Analytical and numerical solutions are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. One of the most important features of a high-gain FEL, the formation of microbunches, is studied at length. The increase of gain length due to beam energy spread, space charge forces, and three-dimensional effects such as betatron oscillations and optical diffraction is anal...

  1. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  2. Genetic and environmental transactions underlying the association between physical fitness/physical exercise and body composition

    DEFF Research Database (Denmark)

    Johnson, Wendy; de Ruiter, Ingrid; Kyvik, Kirsten Ohm

    2015-01-01

    suppressed variance in adiposity, but this study provided further insight. Variance suppression appeared to have both genetic and environmental pathways. Some mean effects appeared due to reciprocal influences of environmental circumstances differing among families but not between co-twins, suggesting...... in attempting to understand the pathways involved in their linkages, and constraint in interpreting results if only single measures are available. Future research indications include identifying which physical activity-related environmental circumstances have relatively uniform effects on adiposity in everyone......, and which should be individually tailored to maximize motivation to continue involvement....

  3. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    Science.gov (United States)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  4. Students’ understanding and application of the area under the curve concept in physics problems

    Directory of Open Access Journals (Sweden)

    Dong-Hai Nguyen

    2011-06-01

    Full Text Available This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving the area under the curve concept. We found that only a few students could recognize that the concept of area under the curve was applicable in physics problems. Even when students could invoke the area under the curve concept, they did not necessarily understand the relationship between the process of accumulation and the area under a curve, so they failed to apply it to novel situations. We also found that when presented with several graphs, students had difficulty in selecting the graph such that the area under the graph corresponded to a given integral, although all of them could state that “the integral equaled the area under the curve.” The findings in this study are consistent with those in previous mathematics education research and research in physics education on students’ use of the area under the curve.

  5. Acute physical exercise under hypoxia improves sleep, mood and reaction time.

    Science.gov (United States)

    de Aquino-Lemos, Valdir; Santos, Ronaldo Vagner T; Antunes, Hanna Karen Moreira; Lira, Fabio S; Luz Bittar, Irene G; Caris, Aline V; Tufik, Sergio; de Mello, Marco Tulio

    2016-02-01

    This study aimed to assess the effect of two sessions of acute physical exercise at 50% VO2peak performed under hypoxia (equivalent to an altitude of 4500 m for 28 h) on sleep, mood and reaction time. Forty healthy men were randomized into 4 groups: Normoxia (NG) (n = 10); Hypoxia (HG) (n = 10); Exercise under Normoxia (ENG) (n = 10); and Exercise under Hypoxia (EHG) (n = 10). All mood and reaction time assessments were performed 40 min after awakening. Sleep was reassessed on the first day at 14 h after the initiation of hypoxia; mood and reaction time were measured 28 h later. Two sessions of acute physical exercise at 50% VO2peak were performed for 60 min on the first and second days after 3 and 27 h, respectively, after starting to hypoxia. Improved sleep efficiency, stage N3 and REM sleep and reduced wake after sleep onset were observed under hypoxia after acute physical exercise. Tension, anger, depressed mood, vigor and reaction time scores improved after exercise under hypoxia. We conclude that hypoxia impairs sleep, reaction time and mood. Acute physical exercise at 50% VO2peak under hypoxia improves sleep efficiency, reversing the aspects that had been adversely affected under hypoxia, possibly contributing to improved mood and reaction time.

  6. Extremum principles for irreversible processes

    International Nuclear Information System (INIS)

    Hillert, M.; Agren, J.

    2006-01-01

    Hamilton's extremum principle is a powerful mathematical tool in classical mechanics. Onsager's extremum principle may play a similar role in irreversible thermodynamics and may also become a valuable tool. His principle may formally be regarded as a principle of maximum rate of entropy production but does not have a clear physical interpretation. Prigogine's principle of minimum rate of entropy production has a physical interpretation when it applies, but is not strictly valid except for a very special case

  7. Principles underlying the epizootiology of viral hemorrhagic septicemia in Pacific herring and other fishes throughout the North Pacific Ocean

    Science.gov (United States)

    Hershberger, Paul K.; Garver, Kyle A.; Winton, James R.

    2016-01-01

    Although viral hemorrhagic septicemia virus (VHSV) typically occurs at low prevalence and intensity in natural populations of Pacific herring (Clupea pallasii) and other marine fishes in the Northeast Pacific Ocean, epizootics of the resulting disease (VHS) periodically occur, often in association with observed fish kills. Here we identify a list of principles, based on a combination of field studies, controlled laboratory experiments, and previously unpublished observations, that govern the epizootiology of VHS in Pacific herring. A thorough understanding of these principles provides the basis for identifying risk factors that predispose certain marine fish populations to VHS epizootics, including the lack of population resistance, presence of chronic viral carriers in a population, copious viral shedding by infected individuals, cool water temperatures, limited water circulation patterns, and gregarious host behavioral patterns. Further, these principles are used to define the epizootiological stages of the disease in Pacific herring, including the susceptible (where susceptible individuals predominate a school or subpopulation), enzootic (where infection prevalence and intensity are often below the limits of reasonable laboratory detection), disease amplification (where infection prevalence and intensity increase rapidly), outbreak (often accompanied by host mortalities with high virus loads and active shedding), recovery (in which the mortality rate and virus load decline owing to an active host immune response), and refractory stages (characterized by little or no susceptibility and where viral clearance occurs in most VHS survivors). In addition to providing a foundation for quantitatively assessing the potential risks of future VHS epizootics in Pacific herring, these principles provide insights into the epizootiology of VHS in other fish communities where susceptible species exist.

  8. Can Evolutionary Principles Explain Patterns of Family Violence?

    Science.gov (United States)

    Archer, John

    2013-01-01

    The article's aim is to evaluate the application of the evolutionary principles of kin selection, reproductive value, and resource holding power to the understanding of family violence. The principles are described in relation to specific predictions and the mechanisms underlying these. Predictions are evaluated for physical violence perpetrated…

  9. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  10. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept.

    Science.gov (United States)

    Winter, Sebastian E; Bäumler, Andreas J

    2014-02-01

    The large intestine is host to a complex ecological community composed predominantly of obligate anaerobic bacteria belonging to the classes Bacteroidia and Clostridia. This community confers benefits through its metabolic activities and host interactions. However, a microbial imbalance (dysbiosis) characterized by a decreased abundance of Clostridia and a bloom of facultative anaerobic Proteobacteria is commonly observed during inflammation in the large bowel. Here we review recent insights into the principles that favour simultaneous increases in the abundance of closely related species belonging to the Proteobacteria during inflammation, which provides important clues for the rational design of strategies to treat dysbiosis. © 2013 John Wiley & Sons Ltd.

  11. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  12. Physics of Particle Entrainment Under the Influence of an Impinging Jet

    Science.gov (United States)

    2008-12-01

    Approved for public release; distribution unlimited 1 PHYSICS OF PARTICLE ENTRAINMENT UNDER THE INFLUENCE OF AN IMPINGING JET Robert Haehnel...Ing. Wesen. Heft 361). Phares, D.J., Smedley , G.T. and Flagan, R.C. (2000) "The wall shear stress produced by the normal impingement of a jet on a

  13. Quantum Physics for Scientists and Technologists Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists

    CERN Document Server

    Sanghera, Paul

    2011-01-01

    Presenting quantum physics for the non-physicists, Quantum Physics for Scientists and Technologists is a self-contained, cohesive, concise, yet comprehensive, story of quantum physics from the fields of science and technology, including computer science, biology, chemistry, and nanotechnology. The authors explain the concepts and phenomena in a practical fashion with only a minimum amount of math. Examples from, and references to, computer science, biology, chemistry, and nanotechnology throughout the book make the material accessible to biologists, chemists, computer scientists, and non-techn

  14. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    Science.gov (United States)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  15. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    Science.gov (United States)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  16. Physical properties evaluation of roselle extract-egg white mixture under various drying temperatures

    Science.gov (United States)

    Triyastuti, M. S.; Kumoro, A. C.; Djaeni, M.

    2017-03-01

    Roselle contains anthocyanin that is potential for food colorant. Occasionally, roselle extract is provided in dry powder prepared under high temperature. In this case, the anthocyanin color degrades due to the intervention of heat. The foammat drying with egg white is a potential method to speed up the drying process as well as minimize color degradation. This research aims to study the physical properties of roselle extract under foam mat drying. As indicators, the powder size and color intensity were observed. The result showed that at high temperatures, roselle powder under foam mat drying has the fine size with porous structure. However, at the higher the drying temperature the color retention decreased.

  17. Physics in the Real World...Teaching outside the Textbook. A Teacher's Perspective on the Principles of Technology.

    Science.gov (United States)

    Rosengrant, David

    2003-01-01

    A physics teacher in a technical high school describes how he teaches outside the book through lab involvement, student projects, and thematic lessons. Describes a roller coaster construction project. (JOW)

  18. Physics Based Electrolytic Capacitor Degradation Models for Prognostic Studies under Thermal Overstress

    Science.gov (United States)

    Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam

    2012-01-01

    Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.

  19. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  20. Principles of object-oriented modeling and simulation with Modelica 3.3 a cyber-physical approach

    CERN Document Server

    Fritzson, Peter

    2014-01-01

    Fritzson covers the Modelica language in impressive depth from the basic concepts such as cyber-physical, equation-base, object-oriented, system, model, and simulation, while also incorporating over a hundred exercises and their solutions for a tutorial, easy-to-read experience. The only book with complete Modelica 3.3 coverage Over one hundred exercises and solutions Examines basic concepts such as cyber-physical, equation-based, object-oriented, system, model, and simulation

  1. First-principles investigation of mechanical and electronic properties of tetragonal NbAl3 under tension

    Science.gov (United States)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2018-06-01

    Using the density functional theory calculations, the mechanical and electronic properties of NbAl3 under different tensile loads were investigated. The calculated lattice parameters, elastic constants and mechanical properties (bulk modulus, shear modulus, Young's modulus, Poisson's ratio, Pugh's criterion and Cauchy's pressure) indicated that our results were in agreement with the published experimental and theoretical data at zero tension. With respect to NbAl3 under tension in this paper, the crystal structure was changed from tetragonal to orthorhombic under tension along the [100] and [101] directions. The NbAl3 crystal has been classified as brittle material under tension from 0 to 20 GPa. The obtained Young's modulus and Debye temperature monotonically decreased with increasing tension stress. Combining with mechanical and electronic properties in detail, the decreased mechanical properties were mainly due to the weakening of covalency.

  2. Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study

    International Nuclear Information System (INIS)

    Zhou, G.C.; Sun, L.Z.; Wang, J.B.; Zhong, X.L.; Zhou, Y.C.

    2008-01-01

    The electronic structure and the bonding mechanism of ZnO under isotropic pressure have been studied by using the full-potential linear augmented plane wave (FP-LAPW) method within the density-functional theory (DFT) based on LDA+U exchange correlation (EXC) potential. We used the theory of Atoms in Molecules (AIM) method to analyze the change of the charge transfer and the bonding strength under isotropic pressure. The results of the theoretical analysis show that charge transfer between Zn and O atomic basins nearly linearly increases with the increasing pressure. Charge density along the Zn-O bond increases under the high pressure. The bonding strength and the ionicity of Zn-O bond also increase with the increasing pressure. The linear evolution process of the bonding mechanism under isotropic pressure was shown clearly in the present paper

  3. Principles of developing a well-rounded program of physical rehabilitation for female students in the special medical group with consideration of physical activity impairment

    Directory of Open Access Journals (Sweden)

    N. R. Golod

    2015-05-01

    Full Text Available Purpose : to highlight the main provisions of a comprehensive physical rehabilitation program for students of special medical group based on violations of the motor capacity. Material : testing 24 students of special medical group and the same number of their healthy peers on standardized tests of physical qualities. To reflect the movement disorders applied functional movement screen. Results : a program of rehabilitation of the students included: lifestyle modification; morning hygienic gymnastics; kinesitherapy (using yoga fitness, functional training; aerobic exercise (swimming, Nordic Walking, jogging, aerobics wellness; massage. First presented a unified approach to working with students of special medical groups - selection based on load capacity motor disorders according to the results of tests of functional movement screen. The complexity of the impact of the program involves the impact on the physical, social and mental health components. Conclusions : the author's program of physical rehabilitation of students of special medical group is complex.

  4. Denaturation of collagen structures and their transformation under the physical and chemical effects

    Science.gov (United States)

    Ivankin, A.; Boldirev, V.; Fadeev, G.; Baburina, M.; Kulikovskii, A.; Vostrikova, N.

    2017-11-01

    The process of denaturation of collagen structures under the influence of physical and chemical factors play an important role in the manufacture of food technology and the production of drugs for medicine and cosmetology. The paper discussed the problem of the combined effects of heat treatment, mechanical dispersion and ultrasonic action on the structural changes of the animal collagen in the presence of weak protonated organic acids. Algorithm combined effects of physical and chemical factors as a result of the formation of the technological properties of products containing collagen has been shown.

  5. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    Science.gov (United States)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  6. The system of parliamentary government: The possibility of balance under the principle of the separation of powers

    Directory of Open Access Journals (Sweden)

    Pejić Irena

    2016-01-01

    Full Text Available The minimum consensus in defining the concept of a parliamentary system is closely related to the presence of the responsible government in the system governed by the principle of the separation of powers, which is the essential characteristic of parliamentarism. A constitutional and political theory classify this system as a model of parliamentary government that is elected by Parliament and responsible to Parliament, which is the essence and the common denominator of this system. Moreover, all the modalities of the system develop in line with the relations established between the legislative and the executive authorities, i.e. between the head of state, the government and the parliament. Nowadays, there is no 'pure' model of the parliamentary government, for at least two reasons. First, modern constitutions set up instruments of rationalization and transfer the focus of the constitutional power either to the government or to the head of state, but in any case 'away from' the parliament. Second, political framework of modern parliamentarism significantly contributes to the situation where the constitutional instruments aimed at preserving the balance receive a new legal and political meaning; thus, they serve some functions other than those prescribed by the constitution.

  7. Solid-state physics. An introduction to principles of materials science. 4. ext. upd. and enl. ed.

    International Nuclear Information System (INIS)

    Ibach, Harald; Lueth, Hans

    2009-01-01

    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completely updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. (orig.)

  8. Minimum entropy production principle

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2013-01-01

    Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle

  9. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    Science.gov (United States)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve

  10. Application of the Physical Disector Principle for Quantification of Dopaminergic Neuronal Loss in a Rat 6-Hydroxydopamine Nigral Lesion Model of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Katrine Fabricius

    2017-12-01

    Full Text Available Stereological analysis is the optimal tool for quantitative assessment of brain morphological and cellular changes induced by neurotoxic lesions or treatment interventions. Stereological methods based on random sampling techniques yield unbiased estimates of particle counts within a defined volume, thereby providing a true quantitative estimate of the target cell population. Neurodegenerative diseases involve loss of specific neuron types, such as the midbrain tyrosine hydroxylase-positive dopamine neurons in Parkinson's disease and in animal models of nigrostriatal degeneration. Therefore, we applied an established automated physical disector principle in a fractionator design for efficient stereological quantitative analysis of tyrosine hydroxylase (TH-positive dopamine neurons in the substantia nigra pars compacta of hemiparkinsonian rats with unilateral 6-hydroxydopamine (6-OHDA lesions. We obtained reliable estimates of dopamine neuron numbers, and established the relationship between behavioral asymmetry and dopamine neuron loss on the lesioned side. In conclusion, the automated physical disector principle provided a useful and efficient tool for unbiased estimation of TH-positive neurons in rat midbrain, and should prove valuable for investigating neuroprotective strategies in 6-OHDA model of parkinsonism, while generalizing to other immunohistochemically-defined cell populations.

  11. Ultraviolet and soft X-ray free-electron lasers introduction to physical principles, experimental results, technological challenges

    CERN Document Server

    Schmüser, Peter; Rossbach, Jörg; Fujimori, A; Kühn, J; Müller, T; Steiner, F; Trümper, J; Varma, C; Wölfle, P

    2008-01-01

    In the introduction accelerator-based light sources are considered and a comparison is made between free-electron lasers and conventional quantum lasers. The motion and radiation of relativistic electrons in undulator magnets is discussed. The principle of a low-gain free-electron laser is explained and the pendulum equations are introduced that characterize the electron dynamics in the field of a light wave. The differential equations of the high-gain FEL are derived from the Maxwell equations of electrodynamics. Analytical and numerical solutions of the FEL equations are presented and important FEL parameters are defined, such as gain length, FEL bandwidth and saturation power. A detailed numerical study of the all-important microbunching process is presented. The mechanism of Self Amplified Spontaneous Emission is described theoretically and illustrated with numerous experimental results. Three-dimensional effects such as betatron oscillations and optical diffraction are addressed and their impact on the F...

  12. Effects of adatom and gas molecule adsorption on the physical properties of tellurene: a first principles investigation.

    Science.gov (United States)

    Wang, Xiao Hua; Wang, Da Wei; Yang, Ai Jun; Koratkar, Nikhil; Chu, Ji Feng; Lv, Pin Lei; Rong, Ming Zhe

    2018-02-07

    Tellurene is a new member of the two-dimensional (2D) materials' family, whose existence has been recently confirmed by first principles calculation and experimental work. Tellurene is also the first 2D mono-elemental material of group-VI predicted by scientists, and investigations of its basic properties are still in their infancy. In this study, we use first principles calculation based on density functional theory to investigate the adsorption of nineteen typical adatoms (Li, Na, K, Ca, Fe, Co, Ni, Cu, Zn, Ag, Au, Pd, Pt, B, N, O, Si, Cl, and Al), and five typical gas molecules (H 2 , O 2 , H 2 O, NO 2 , and NH 3 ) on α-phase as well as β-phase tellurene sheets. Our calculations shows that most adatoms are chemisorbed on tellurene sheets with large adsorption energies. Moreover, some of the adatoms are observed to give rise to distinct structural deformations and even local reconstructions. We report that a variety of electronic states are induced by the adatoms, which implies that different electronic structures can be engineered by the adsorption of adatoms. In fact, n-type doping, p-type doping, half-metal, and spin-gapless semiconductor features can be acquired by doping adatoms on tellurene sheets. Our calculations also show that the five gas molecules are all physisorbed on tellurene sheets, and no splitting behaviors are observed. Therefore, the adsorption of the five gas molecules has a weak effect on the electronic properties of tellurene. To conclude, our results indicate that adatom engineering may be used to greatly expand the potential applications of 2D tellurene.

  13. Differences Between the Family-Centered "COPCA" Program and Traditional Infant Physical Therapy Based on Neurodevelopmental Treatment Principles

    NARCIS (Netherlands)

    Dirks, Tineke; Blauw-Hospers, Cornill H.; Hulshof, Lily J.; Hadders-Algra, Mijna

    Background. Evidence for effectiveness of pediatric physical therapy in infants at high risk for developmental motor disorders is limited. Therefore, "Coping With and Caring for Infants With Special Needs" (COPCA), a family-centered, early intervention program, was developed. The COPCA program is

  14. Water resource quality policy: the approach adopted by the Department of Water Affairs and Forestry under the Water Law principles

    CSIR Research Space (South Africa)

    Harris, J

    1999-01-01

    Full Text Available . More discussion in this paper is, therefore, centred on ecological integrity than on individual water users under the assumption that the resource will only be able to provide for long term water uses if ecological integrity is assured. A water Reserve...

  15. Soil physical indicators of management systems in traditional agricultural areas under manure application

    Directory of Open Access Journals (Sweden)

    Luiz Paulo Rauber

    Full Text Available ABSTRACT Studies of the successive application of manure as fertilizer and its combined effect with long-term soil management systems are important to the identification of the interdependence of physical attributes. The aim of this study was to evaluate changes in the physical properties of a Rhodic Kandiudox under management systems employing successive applications of pig slurry and poultry litter, and select physical indicators that distinguish these systems using canonical discriminant analysis (CDA. The systems consisting of treatments including land use, management and the application time of organic fertilizers are described as follows: silage maize under no-tillage (NT-M7 years; silage maize under conventional tillage (CT-M20 years; annual pasture with chisel plowing (CP-P3 years; annual pasture with chisel plowing (CP-P15 years; perennial pasture without tillage (NT-PP20 years; and no-tillage yerba mate (NT-YM20 years and were compared with native forest (NF and native pasture (NP. Soil samples were collected from the layers at the following depths: 0.0-0.05, 0.05-0.10, and 0.10-0.20 m, and were analyzed for bulk density, porosity, aggregation, flocculation, penetration resistance, water availability and total clay content. Canonical discriminant analysis was an important tool in the study of physical indicators of soil quality. Organic fertilization, along with soil management, influences soil structure and its porosity. Total porosity was the most important physical property in the distinction of areas with management systems and application times of manure for the 0.0-0.05 and 0.10-0.20 m layers. Soil aeration and micropores differentiated areas in the 0.05-0.10 m layer. Animal trampling and machinery traffic were the main factors inducing compaction of this clayey soil.

  16. FROM THE HISTORY OF PHYSICS: The extraordinarily beautiful physical principle of thermonuclear charge design (on the occasion of the 50th anniversary of the test of RDS-37 — the first Soviet two-stage thermonuclear charge)

    Science.gov (United States)

    Goncharov, German A.

    2005-11-01

    On 22 November 1955, the Semipalatinsk test site saw the test of the first domestic two-stage thermonuclear RDS-37 charge. The charge operation was based on the principle of radiation implosion. The kernel of the principle consists in the radiation generated in a primary A-bomb explosion and confined by the radiation-opaque casing propagating throughout the interior casing volume and flowing around the secondary thermonuclear unit. The secondary unit experiences a strong compression under the irradiation, with a resulting nuclear and thermonuclear explosion. The RDS-37 explosion was the strongest of all those ever realized at the Semipalatinsk test site. It produced an indelible impression on the participants in the test. This document-based paper describes the genesis of the ideas underlying the RDS-37 design and reflects the critical moments in its development. The advent of RDS-37 was an outstanding accomplishment of the scientists and engineers of our country.

  17. Soil physical and microbiological attributes cultivated with the common bean under two management systems

    Directory of Open Access Journals (Sweden)

    Lorena Adriana De Gennaro

    Full Text Available Agricultural management systems can alter the physical and biological soil quality, interfering with crop development. The objective of this study was to evaluate the physical and microbiological attributes of a Red Latosol, and its relationship to the biometric parameters of the common bean (Phaseolus vulgaris, irrigated and grown under two management systems (conventional tillage and direct seeding, in Campinas in the state of São Paulo, Brazil. The experimental design was of randomised blocks, with a split-plot arrangement for the management system and soil depth, analysed during the 2006/7 and 2007/8 harvest seasons, with 4 replications. The soil physical and microbiological attributes were evaluated at depths of 0.00-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m. The following were determined for the crop: density, number of pods per plant, number of beans per pod, thousand seed weight, total weight of the shoots and harvest index. Direct seeding resulted in a lower soil physical quality at a depth of 0.00-0.05 m compared to conventional tillage, while the opposite occurred at a depth of 0.05-0.10 m. The direct seeding showed higher soil biological quality, mainly indicated by the microbial biomass nitrogen, basal respiration and metabolic quotient. The biometric parameters in the bean were higher under the direct seeding compared to conventional tillage.

  18. Gunslingers, poker players, and chickens 1: Decision making under physical performance pressure in elite athletes.

    Science.gov (United States)

    Parkin, Beth L; Warriner, Katie; Walsh, Vincent

    2017-01-01

    The cognitive skills required during sport are highly demanding; accurate decisions based on the processing of dynamic environments are made in a fraction of a second (Walsh, 2014). Optimal decision-making abilities are crucial for success in sporting competition (Bar-Eli et al., 2011; Kaya, 2014). Moreover, for the elite athlete, decision making is required under conditions of intense mental and physical pressure (Anshel and Wells, 2000), yet much of the work in this area has largely ignored the highly stressful context in which athletes operate. A number of studies have shown that conditions of elevated pressure influence athletes' decision quality (Kinrade et al., 2015; Smith et al., 2016), response times (Hepler, 2015; Smith et al., 2016) and risk taking (Pighin et al., 2015). However, almost all of this work has been undertaken in nonelite athletes and participants who do not routinely operate under conditions of high stress. Thus, there is very little known about the influence of pressure on decision making in elite athletes. This study investigated the influence of physical performance pressure on decision making in a sample of world-class elite athletes. This allowed an examination of whether findings from the previous work in nonelite athletes extend to those who routinely operate under conditions of high stress. How this work could be applied to improve insight and understanding of decision making among sport professionals is examined. We sought to introduce a categorization of decision making useful to practitioners in sport: gunslingers, poker players, and chickens. Twenty-three elite athletes who compete and have frequent success at an international level (including six Olympic medal winners) performed tasks relating to three categories of decision making under conditions of low and high physical pressure. Decision making under risk was measured with performance on the Cambridge Gambling Task (CGT; Rogers et al., 1999), decision making under

  19. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    Science.gov (United States)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  20. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

    Science.gov (United States)

    Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas

    2017-10-01

    In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.

  1. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  2. Evaluation of physical quality indices of a soil under a seasonal semideciduous forest

    Directory of Open Access Journals (Sweden)

    Thalita Campos Oliveira

    2014-04-01

    Full Text Available The concept of soil quality is currently the subject of great discussion due to the interaction of soil with the environment (soil-plant-atmosphere and practices of human intervention. However, concepts of soil quality relate quality to agricultural productivity, but assessment of soil quality in an agronomic context may be different from its assessment in natural areas. The aim of this study was to assess physical quality indices, the S index, soil aeration capacity (ACt/Pt, and water storage capacity (FC/Pt of the soil from a permanent plot in the Caetetus Ecological Reserve (Galia, São Paulo, Brazil under a seasonal semideciduous forest and compare them with the reference values for soil physical quality found in the literature. Water retention curves were used for that purpose. The S values found were higher than the proposed limit for soil physical quality (0.035. The A and E horizons showed the highest values because their sandy texture leads to a high slope of the water retention curve. The B horizons showed the lowest S values because their natural density leads to a lower slope of the water retention curve. The values found for ACt/Pt and FC/Pt were higher and lower than the idealized limits. The values obtained from these indices under natural vegetation can provide reference values for soils with similar properties that undergo changes due to anthropic activities. All the indices evaluated were effective in differentiating the effects of soil horizons in the natural hydro-physical functioning of the soils under study.

  3. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast.

    Science.gov (United States)

    Belagal, Praveen; Normand, Christophe; Shukla, Ashutosh; Wang, Renjie; Léger-Silvestre, Isabelle; Dez, Christophe; Bhargava, Purnima; Gadal, Olivier

    2016-10-15

    The association of RNA polymerase III (Pol III)-transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III-transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements-centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III-transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III-transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III-dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III-transcribed genes required active transcription. We conclude that the association of Pol III-transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. © 2016 Belagal et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  5. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  6. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    Science.gov (United States)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  7. The Registration of Special Notarial Bonds under the Security by Means of Movable Property Act and the Publicity Principle: Lessons from Developments in Belgium

    Directory of Open Access Journals (Sweden)

    Lefa

    2018-01-01

    Full Text Available Many people do not own immovable property to offer as security but do have movable property which can be offered as security for the repayment of a debt. In today's world, where the costs of a motor car can exceed that of a house, the increasing value of movable things makes them popular and appropriate security objects. Under the common law pledge, delivery of the movable property from the pledgor (the debtor to the pledgee (the creditor has to take place in order for the pledgee to acquire a real security right in the property. Delivery of the property is aimed at ensuring compliance with the publicity principle. The principle of publicity entails that the existence of a real security must be known to the public. With the aim of promoting commerce, certain countries have taken the initiative in reforming their laws on pledge to allow the debtor to retain possession of the movable property that serves as security. Furthermore, technology has advanced to a level where national registration systems which can be accessed easily and at minimal cost can be established. The South African legislature enacted the Security by Means of Movable Property Act 57 of 1993 which makes provision for a pledge without possession. This Act deemed a duly registered notarial bond over specified movable property to have been delivered as if delivery had in fact taken place, thereby substituting the common law delivery requirement with registration in the Deeds Office. On 30 May 2013 the Belgian House of Representatives adopted a Belgian Pledge Act which allows for a non-possessory pledge on movable property subject to registration in a newly created public register called the Electronic Pledge Register. This article therefore examines the efficacy of the registration system of special notarial bonds in South African law and whether this form of registration complies with the publicity principle looking at the developments of a computerised registration system taking

  8. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.

    2018-01-15

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent, with Kaneka setting the world\\'s silicon solar cell efficiency record of 26.63% using silicon heterojunction contacts in an interdigitated configuration. Although passivating-contact solar cells are remarkably efficient, their underlying device physics is not yet completely understood, not in the least because they are constructed from diverse materials that may introduce electronic barriers in the current flow. To bridge this gap in understanding, we explore the device physics of passivating contact silicon heterojunction (SHJ) solar cells. Here, we identify the key properties of heterojunctions that affect cell efficiency, analyze the dependence of key heterojunction properties on carrier transport under light and dark conditions, provide a self-consistent multiprobe approach to extract heterojunction parameters using several characterization techniques (including dark J-V, light J-V, C-V, admittance spectroscopy, and Suns-Voc), propose design guidelines to address bottlenecks in energy production in SHJ cells, and develop a process-to-module modeling framework to establish the module\\'s performance limits. We expect that our proposed guidelines resulting from this multiscale and self-consistent framework will improve the performance of future SHJ cells as well as other passivating contact-based solar cells.

  9. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    Directory of Open Access Journals (Sweden)

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  10. Polarization-dependent force driving the Eg mode in bismuth under optical excitation: comparison of first-principles theory with ultra-fast x-ray experiments

    Science.gov (United States)

    Fahy, Stephen; Murray, Eamonn

    2015-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of a ultrafast pulse of polarized light. To compare the results with recent ultra-fast, time-resolved x-ray diffraction experiments, we include the decay of the force due to carrier scattering, as measured in optical Raman scattering experiments, and simulate the optical absorption process, depth-dependent atomic driving forces, and x-ray diffraction in the experimental geometry. We find excellent agreement between the theoretical predictions and the observed oscillations of the x-ray diffraction signal, indicating that first-principles theory of optical absorption is well suited to the calculation of initial atomic driving forces in photo-excited materials following ultrafast excitation. This work is supported by Science Foundation Ireland (Grant No. 12/IA/1601) and EU Commission under the Marie Curie Incoming International Fellowships (Grant No. PIIF-GA-2012-329695).

  11. Influence of physical and chemical dispersion on the biodegradation of oil under simulated marine conditions

    International Nuclear Information System (INIS)

    Swannell, R. P. J.; Daniel, F.; Croft, B. C.; Engelhardt, M. A.; Wilson, S.; Mitchell, D. J.; Lunel, T.

    1997-01-01

    Dispersion and biodegradation of oil was studied in marine microcosms designed to simulate oil dispersion at sea. Dispersion was studied using both Phase Doppler Particle Analyser and a Chamber Slide technique. In both natural and artificial seawater, oil addition was observed to encourage the growth of hydrocarbon-degrading bacteria in the presence of sufficient nitrogen and phosphorus. Results showed that microorganisms enhanced oil dispersion by colonizing physically-dispersed oil droplets and preventing re-coalescence with the surface slick. The addition of dispersants increased the rate of colonization as well as the number of degraded droplets. These results suggest that stimulation of physical dispersion by chemical means increase the rate of oil biodegradation under natural conditions. 25 refs., 3 tabs., 14 figs

  12. Analysis of underlying causes of inter-expert disagreement in retinopathy of prematurity diagnosis. Application of machine learning principles.

    Science.gov (United States)

    Ataer-Cansizoglu, E; Kalpathy-Cramer, J; You, S; Keck, K; Erdogmus, D; Chiang, M F

    2015-01-01

    Inter-expert variability in image-based clinical diagnosis has been demonstrated in many diseases including retinopathy of prematurity (ROP), which is a disease affecting low birth weight infants and is a major cause of childhood blindness. In order to better understand the underlying causes of variability among experts, we propose a method to quantify the variability of expert decisions and analyze the relationship between expert diagnoses and features computed from the images. Identification of these features is relevant for development of computer-based decision support systems and educational systems in ROP, and these methods may be applicable to other diseases where inter-expert variability is observed. The experiments were carried out on a dataset of 34 retinal images, each with diagnoses provided independently by 22 experts. Analysis was performed using concepts of Mutual Information (MI) and Kernel Density Estimation. A large set of structural features (a total of 66) were extracted from retinal images. Feature selection was utilized to identify the most important features that correlated to actual clinical decisions by the 22 study experts. The best three features for each observer were selected by an exhaustive search on all possible feature subsets and considering joint MI as a relevance criterion. We also compared our results with the results of Cohen's Kappa [36] as an inter-rater reliability measure. The results demonstrate that a group of observers (17 among 22) decide consistently with each other. Mean and second central moment of arteriolar tortuosity is among the reasons of disagreement between this group and the rest of the observers, meaning that the group of experts consider amount of tortuosity as well as the variation of tortuosity in the image. Given a set of image-based features, the proposed analysis method can identify critical image-based features that lead to expert agreement and disagreement in diagnosis of ROP. Although tree

  13. Cumulative and Synergistic Effects of Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can We Listen for Open Water?

    Science.gov (United States)

    2013-09-30

    Physical, Biological, and Acoustic Signals on Marine Mammal Habitat Use Physical Oceanography Component: Soundscapes Under Sea Ice: Can we listen for... Soundscapes Under Sea Ice: Can we listen for open water? 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...the source. These different sounds can be described as “ soundscapes ”, and graphically represented by comparing two or more features of the sound

  14. The principle of general tovariance

    NARCIS (Netherlands)

    Heunen, C.; Landsman, N.P.; Spitters, B.A.W.; Loja Fernandes, R.; Picken, R.

    2008-01-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance

  15. Fundamental Principle for Quantum Theory

    OpenAIRE

    Khrennikov, Andrei

    2002-01-01

    We propose the principle, the law of statistical balance for basic physical observables, which specifies quantum statistical theory among all other statistical theories of measurements. It seems that this principle might play in quantum theory the role that is similar to the role of Einstein's relativity principle.

  16. Particle physics and QFT at the turn of the century: old principles with new concepts (an essay on local quantum physics))

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-04-01

    The present state of QFT is analyzed from a new viewpoint whose mathematical basis is the modular theory of von Neumann algebras. It physical consequences suggest new ways of dealing with interactions, symmetries, Hawking-Unruh thermal properties and possibly also extensions of the scheme of renormalized perturbation theory. Interactions are incorporated by using the fact that the S-matrix is a relative modular invariant of the interacting-relative to the incoming-net of wedge algebras. This new point of view allows many interesting comparisons with the standard quantization approach to QFT and is shown to be firmly rooted in the history of QFT. Its radical change of paradigm aspect becomes particularly visible in the quantum measurement problem. (author)

  17. Particle physics and QFT at the turn of the century: old principles with new concepts (an essay on local quantum physics)

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik. E-mail: schroer@cbpf.br

    2000-04-01

    The present state of QFT is analyzed from a new viewpoint whose mathematical basis is the modular theory of von Neumann algebras. It physical consequences suggest new ways of dealing with interactions, symmetries, Hawking-Unruh thermal properties and possibly also extensions of the scheme of renormalized perturbation theory. Interactions are incorporated by using the fact that the S-matrix is a relative modular invariant of the interacting-relative to the incoming-net of wedge algebras. This new point of view allows many interesting comparisons with the standard quantization approach to QFT and is shown to be firmly rooted in the history of QFT. Its radical change of paradigm aspect becomes particularly visible in the quantum measurement problem. (author)

  18. Global Harmonic Current Rejection of Nonlinear Backstepping Control with Multivariable Adaptive Internal Model Principle for Grid-Connected Inverter under Distorted Grid Voltage

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.

  19. Physical scale modeling of single free head piles under lateral loading in cohesive soils

    Directory of Open Access Journals (Sweden)

    Edgar Leonardo Salamanca-Medina

    2017-06-01

    Full Text Available This paper presents the results of the small scale modeling of free head wood piles under horizontal loading in cohesive soils, tested in order to compare the results with analytical models proposed by various authors. Characteristic Load (CLM and P-Y Curves methods were used for the prediction of lateral deflections at the head of the piles and the method proposed by Broms for estimating the ultimate lateral load. These predictions were compared with the results of the physical modeling, obtaining a good approximation between them.

  20. Physical Modelling of Bucket Foundation Under Long-Term Cyclic Lateral Loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    Offshore wind farms are a promising renewable energy source. The monopod bucket foundation has the potential to become a reliable and cost-effective concept for offshore wind turbines. The bucket foundation must be designed by accounting for the cyclic loading which might endanger the turbine...... functioning. In this article a 1g physical model of bucket foundation under horizontal and moment cyclic loading is described. A testing program including four tests was carried out. Every test was conducted for at least 30000 cycles, each with different loading features. The capability of the model...

  1. Dynamic principle for ensemble control tools.

    Science.gov (United States)

    Samoletov, A; Vasiev, B

    2017-11-28

    Dynamical equations describing physical systems in contact with a thermal bath are commonly extended by mathematical tools called "thermostats." These tools are designed for sampling ensembles in statistical mechanics. Here we propose a dynamic principle underlying a range of thermostats which is derived using fundamental laws of statistical physics and ensures invariance of the canonical measure. The principle covers both stochastic and deterministic thermostat schemes. Our method has a clear advantage over a range of proposed and widely used thermostat schemes that are based on formal mathematical reasoning. Following the derivation of the proposed principle, we show its generality and illustrate its applications including design of temperature control tools that differ from the Nosé-Hoover-Langevin scheme.

  2. High-pressure and high-temperature physical properties of half-metallic full-Heusler alloy Mn{sub 2}RuSi by first-principles and quasi-harmonic Debye model

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, Zi-Jiang [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Wei, Xiao-Ping [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    First-principles calculations based on density functional theory and quasi-harmonic Debye model are used to investigate the high-pressure and high-temperature physical properties, including the lattice constant, magnetic moment, density of states, pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter for the new Mn-based full-Heusler alloy Mn{sub 2}RuSi in CuHg{sub 2}Ti-type structure. The optimized equilibrium lattice constant is consistent with experimental and other theoretical results. The calculated total spin magnetic moment remains an integral value of 2.0 μ{sub B} in the lattice constant range of 5.454–5.758 Å, and then decreases very slowly with the decrease of lattice constant to 5.333 Å. By the spin resolved density of states calculations, we have shown that Mn{sub 2}RuSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The effects of temperature and pressure on bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter are opposite, which are consistent with a compression rate of volume. Furthermore, the results show that the effect of temperature is larger than pressure for heat capacity and the effect of high temperature and pressure on thermal expansion coefficient is small. All the properties of Mn{sub 2}RuSi alloy are summarized in the pressure range of 0–100 GPa and the temperature up to 1200 K. - Highlights: • High-pressure and high-temperature physical properties of Mn2RuSi were investigated. • Ferrimagnetic ground state has been confirmed in Mn2RuSi alloy. • The first-principle calculations and quasi-harmonic Debye model were used. • The pressure up to 100 GPa and the temperature up to 1200 K.

  3. Design Principles for resilient cyber-physical Early Warning Systems - Challenges, Experiences, Design Patterns, and Best Practices

    Science.gov (United States)

    Gensch, S.; Wächter, J.; Schnor, B.

    2014-12-01

    Early warning systems (EWS) are safety-critical IT-infrastructures that serve the purpose of potentially saving lives or assets by observing real-world phenomena and issuing timely warning products to authorities and communities. An EWS consists of sensors, communication networks, data centers, simulation platforms, and dissemination channels. The components of this cyber-physical system may all be affected by both natural hazards and malfunctions of components alike. Resilience engineering so far has mostly been applied to safety-critical systems and processes in transportation (aviation, automobile), construction and medicine. Early warning systems need equivalent techniques to compensate for failures, and furthermore means to adapt to changing threats, emerging technology and research findings. We present threats and pitfalls from our experiences with the German and Indonesian tsunami early warning system, as well as architectural, technological and organizational concepts employed that can enhance an EWS' resilience. The current EWS is comprised of a multi-type sensor data upstream part, different processing and analysis engines, a decision support system, and various warning dissemination channels. Each subsystem requires a set of approaches towards ensuring stable functionality across system layer boundaries, including also institutional borders. Not only must services be available, but also produce correct results. Most sensors are distributed components with restricted resources, communication channels and power supply. An example for successful resilience engineering is the power capacity based functional management for buoy and tide gauge stations. We discuss various fault-models like cause and effect models on linear pathways, interaction of multiple events, complex and non-linear interaction of assumedly reliable subsystems and fault tolerance means implemented to tackle these threats.

  4. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  5. First-principles study on the phase transition, elastic properties and electronic structure of Pt{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanjun [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Huang, Huawei [National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power of China, Chengdu, Sichuan 610041 (China); Pan, Yong, E-mail: yongpanyn@163.com [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming 650106 (China); Zhao, Guanghui; Liang, Zheng [Key Laboratory of Oil and Gas Equipment of Ministry of Education, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2014-06-01

    Highlights: • The phase transition of Pt{sub 3}Al alloys occurs at 60 GPa. • The elastic modulus of Pt{sub 3}Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt{sub 3}Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt{sub 3}Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E{sub F} decrease. The cubic Pt{sub 3}Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure.

  6. First-principles study on the phase transition, elastic properties and electronic structure of Pt3Al alloys under high pressure

    International Nuclear Information System (INIS)

    Liu, Yanjun; Huang, Huawei; Pan, Yong; Zhao, Guanghui; Liang, Zheng

    2014-01-01

    Highlights: • The phase transition of Pt 3 Al alloys occurs at 60 GPa. • The elastic modulus of Pt 3 Al alloys increase with increasing pressure. • The cubic structure has good resistance to volume deformation under high pressure. • The pressure enhances the hybridization between Pt atom and Al atom. - Abstract: The phase transition, formation enthalpies, elastic properties and electronic structure of Pt 3 Al alloys are studied using first-principle approach. The calculated results show that the pressure leads to phase transition from tetragonal structure to cubic structure at 60 GPa. With increasing pressure, the elastic constants, bulk modulus and shear modulus of these Pt 3 Al alloys increase linearly and the bond lengths of Pt–Al metallic bonds and the peak at E F decrease. The cubic Pt 3 Al alloy has excellent resistance to volume deformation under high pressure. We suggest that the phase transition is derived from the hybridization between Pt and Al atoms for cubic structure is stronger than that of tetragonal structure and forms the strong Pt–Al metallic bonds under high pressure

  7. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Pierre, E-mail: pierre.rossi@lcpc.fr; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-09-15

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack.

  8. Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms

    International Nuclear Information System (INIS)

    Rossi, Pierre; Boulay, Claude; Tailhan, Jean-Louis; Martin, Eric; Desnoyers, Dominic

    2014-01-01

    This study presents a series of 4-point bending tests performed to describe the delayed behavior of unreinforced pre-cracked beams under low, moderate and high sustained loading levels. The deflection creep rate, the failure time and the load level were assessed. A linear relation, in a semi-log scale, was found for the deflection creep rate at high load levels. In addition, a linear relation, in a log–log scale, between the secondary deflection creep rate and failure time was observed. Besides, it was shown that the secondary creep deflection rate increases with the sustained loading level and the macrocrack propagation rate when macrocrack propagation occurs during the sustained loading. Physical mechanisms are proposed to explain these results and may be summarized as follows: the delayed behavior of an unreinforced cracked concrete specimen under sustained loading is mainly due to the cracking evolution, thus the creation of microcracks and/or the propagation of a macrocrack

  9. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  10. Monte Carlo principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center

    1976-03-01

    The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.

  11. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  12. Chemical and physical soil attributes in integrated crop-livestock system under no-tillage

    Directory of Open Access Journals (Sweden)

    Hernani Alves da Silva

    Full Text Available Although integrated crop-livestock system (ICLS under no-tillage (NT is an attractive practice for intensify agricultural production, little regional information is available on the effects of animal grazing and trampling, particularly dairy heifers, on the soil chemical and physical attributes. The objective of this study was to evaluate the effects of animal grazing on the chemical and physical attributes of the soil after 21 months of ICLS under NT in a succession of annual winter pastures (2008, soybeans (2008/2009, annual winter pastures (2009, and maize (2009/10. The experiment was performed in the municipality of Castro (PR in a dystrophic Humic Rhodic Hapludox with a clay texture. The treatments included a combination of two pasture (annual ryegrass monoculture and multicropping - annual ryegrass, black oat, white clover and red clover with animal grazing during the fall-winter period with two animal weight categories (light and heavy, in a completely randomized block experimental design with 12 replications. After the maize harvest (21 months after beginning, soil samples were collected at 0-10 and 10-20 cm layers to measure soil chemical and physical attributes. The different combinations of pasture and animal weight did not alter the total organic carbon and nitrogen in the soil, but they influence the attributes of soil acidity and exchangeable cations. The monoculture pasture of ryegrass showed greater soil acidification process compared to the multicropping pasture. When using heavier animals, the multicropping pasture showed lesser increase in soil bulk density and greater macroporosity.

  13. PETher - Physical Properties of Thermal Water under In-situ-Conditions

    Science.gov (United States)

    Herfurth, Sarah; Schröder, Elisabeth

    2016-04-01

    The objective of PETher, a research project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi), is to experimentally determine thermo-physical properties (specific isobaric heat capacity, kinematic viscosity, density and thermal conductivity) of geothermal water in-situ-conditions (pressure, temperature, chemical composition including gas content of the brine) present in geothermal applications. Knowing these thermo-physical properties reduces the uncertainties with respect to estimating the thermal output and therefore the economic viability of the power plant. Up to now, only a limited number of measurements of selected physical properties have been made, usually under laboratory conditions and for individual geothermal plants. In-situ measured parameters, especially in the temperature range of 120°C and higher, at pressures of 20 bar and higher, as well as with a salinity of up to 250 g/l, are sparse to non-existing. Therefore, pure water properties are often used as reference data and for designing the power plant and its components. Currently available numerical models describing the thermo-physical properties are typically not valid for the conditions in geothermal applications and do not consider the substantial influence of the chemical composition of the thermal water. Also, actual geothermal waters have not been subject of detailed measurements systematically performed under operational conditions on a large-scale basis. Owing to the lack of reliable data, a validation of numerical models for investigating geothermal systems is not possible. In order to determine the dependency of the thermo-physical properties of geothermal water on temperature, pressure and salinity in-situ measurements are conducted. The measurements are taking place directly at several geothermal applications located in Germany's hydrogeothermal key regions. In order to do this, a mobile testing unit was developed and refined with instruments specifically

  14. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  15. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    Science.gov (United States)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  16. Research on desulfurisation of fine coal under compounding the physics force field

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.; Fu, D.; Tao, D.; Liu, J.; Zhao, Y. [China University of Mining and Technology, Xuzhou (China)

    2005-08-15

    Desulphurization experiment carried on under compounding the physics force field was described for -0.5 mm fine particle of high sulphur coal. The experiment factorial plan of desulphurization on centrifugal gravity Falcon separator was designed and its results were analyzed by using Design-Expert 6.0 software. The 2-reactor interaction relation model between comprehensive desulphurization efficiency of pyrite sulphur and different operation variable was drawn, i.e. 2 FI model, and the 2-factor interaction on pyrite desulphurization efficiency of the operation factors differently was analyzed. The interaction on pyrite desulphurization efficiency of feed rate and feed concentration is significant. The optimization test condition for desulphurization was proposed by Design-Expert 6.0, and comprehensive desulphurization efficiency of 86.90% can be achieved. 5 refs., 3 figs., 7 tabs.

  17. A closed-loop hybrid physiological model relating to subjects under physical stress.

    Science.gov (United States)

    El-Samahy, Emad; Mahfouf, Mahdi; Linkens, Derek A

    2006-11-01

    The objective of this research study is to derive a comprehensive physiological model relating to subjects under physical stress conditions. The model should describe the behaviour of the cardiovascular system, respiratory system, thermoregulation and brain activity in response to physical workload. An experimental testing rig was built which consists of recumbent high performance bicycle for inducing the physical load and a data acquisition system comprising monitors and PCs. The signals acquired and used within this study are the blood pressure, heart rate, respiration, body temperature, and EEG signals. The proposed model is based on a grey-box based modelling approach which was used because of the sufficient level of details it provides. Cardiovascular and EEG Data relating to 16 healthy subject volunteers (data from 12 subjects were used for training/validation and the data from 4 subjects were used for model testing) were collected using the Finapres and the ProComp+ monitors. For model validation, residual analysis via the computing of the confidence intervals as well as related histograms was performed. Closed-loop simulations for different subjects showed that the model can provide reliable predictions for heart rate, blood pressure, body temperature, respiration, and the EEG signals. These findings were also reinforced by the residual analyses data obtained, which suggested that the residuals were within the 90% confidence bands and that the corresponding histograms were of a normal distribution. A higher intelligent level was added to the model, based on neural networks, to extend the capabilities of the model to predict over a wide range of subjects dynamics. The elicited physiological model describing the effect of physiological stress on several physiological variables can be used to predict performance breakdown of operators in critical environments. Such a model architecture lends itself naturally to exploitation via feedback control in a 'reverse

  18. EVALUATION OF PHYSICAL ATTRIBUTES OF A DYSTROFERRIC RED LATOSOL (OXISOL UNDER DIFFERENT FOREST SETTLEMENTS

    Directory of Open Access Journals (Sweden)

    Sérgio Gualberto Martins

    2002-01-01

    Full Text Available This study aimed to evaluate the structural quality of a dystroferric Red Latosol (Oxisol under four forest settlements at Federal University of Lavras campus. The studied forest settlements were: Pinus sp. (PP, Eucalyptus sp. (PE, Hevea brasiliensis (PHB, and native forest (PNF. The mean annual precipitation and temperature for the region are 1493 mm and 19.3°C, respectively. For each studied settlement, disturbed and undisturbed samples from 0-5 cm depth were collected. The studied physical attributes were: aggregates stability, expressed through geometric average diameter, porosity distribution, penetration resistance and permeability. The PNF revealed the highest permeability value (139 mm h-1, followed by PHB (57 mm h-1, PP and PE (40 mm h-1. The highest value for penetration resistance was verified for PP, followed by PE and PHB. The smallest value was presented by PNF. Through this study, it can be concluded that the physical attributes, permeability and soil resistance to penetration, utilized as indicators of soil structural quality, present good performance in distinguishing the effects proportionated by the introduction of fast growth species, contributing for the sustainable management of the studied soil.

  19. THE DEVELOPMENT OF STUDENTS’ MOTIVATIONAL DIMENSIONS UNDER THE PHYSICAL EDUCATION EXPERIMENTAL PROGRAMME

    Directory of Open Access Journals (Sweden)

    Said Hasanbegović

    2014-04-01

    Full Text Available This study shows the development of some motivational dimensions of secondary school students when they are treated by the experimental way of teaching. The study was conducted on a sample of 240 pupils of The Secondary School Banovici, out of which 124 males and 116 females. The pupils were divided into two groups. The first group consisted of 120 pupils divided into four sections, out of which 73 males and 47 females. This is the control group. The second group also consisted of 120 pupils divided into four sections, out of which 51 male and 69 females. This group was subjected to the experimental way of teaching and thus represents the experimental group. Results show the changes in pupils’ motivational characteristics under the influence of innovative educational content that are reflected through their activities and final attitudes on the physical education value. The discriminate analysis revealed the statistically important differences between pupils that are treated by the experimental program compared to students treated by traditional program in terms of motivation in physical education classes (PE classes. However, the study, in some way, solves the problem of inactivity and pupils’ lack of interest for the PE classes, i.e. it suggests the pupils’ possible development of motivation for work using the appropriate educational contents.

  20. [Physics of materials and female stress urinary continence: New concepts: I) Elasticity under bladder].

    Science.gov (United States)

    Guerquin, B

    2015-09-01

    Improving the understanding of the adaptation to stress of urinary continence. A transversal analysis between physics of materials and the female anatomy. Laws of physics of the materials and of their viscoelastic behavior are applied to the anatomy of the anterior vaginal wall. The anterior vaginal wall may be divided into two segments of different viscoelastic behavior, the vertical segment below the urethra and the horizontal segment below the bladder. If the urethra gets crushed on the first segment according to the hammock theory, the crushing of the bladder on the second segment is, on the other hand, damped by its important elasticity. The importance of this elasticity evokes an unknown function: damping under the bladder that moderates and delays the increase of intravesical pressure. This damping function below the bladder is increased in the cystocele, which is therefore a continence factor; on the other hand, it is impaired in obesity, which is therefore a factor of SUI. It is necessary to include in the theory of stress continence, the notion of a damping function below the bladder. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Physical optics principles and practices

    CERN Document Server

    Al-Azzawi, Abdul

    2006-01-01

    WAVESIntroductionThe Nature of WavesTypes of WavesCharacteristics of WavesTrigonometric Notation of WavesSimple Harmonic MotionPeriod and Frequency of Simple Harmonic MotionThe Simple PendulumExperimental WorkList of ReferencesAppendicesFurther ReadingINTERFERENCE AND DIFFRACTIONIntroductionInterference of LightYoung's Double-Slit ExperimentWave Phase Changes Due to ReflectionInterference in Thin FilmsNewton's RingsThin Film ApplicationsDiffractionExperimental WorkList of ReferencesAppendicesFurther ReadingTHE DIFFRACTION GRATINGIntroductionDiffraction GratingsProfiles of GratingsPlanar Diffraction GratingsConcave GratingsCharacteristics of GratingsEfficiency of Diffraction GratingsManufacturing of Diffraction GratingsDiffraction Grating InstrumentsExperimental WorkList of ReferencesAppendicesFurther ReadingINTERFEROMETERSIntroductionThe Michelson InterferometerThe Mach-Zehnder InterferometerThe Twyman-Green InterferometerThe Fizeau InterferometerThe Fabry-Pérot InterferometerOther types of InterferometersEx...

  2. Synchronized mammalian cell culture: part I--a physical strategy for synchronized cultivation under physiological conditions.

    Science.gov (United States)

    Barradas, Oscar Platas; Jandt, Uwe; Becker, Max; Bahnemann, Janina; Pörtner, Ralf; Zeng, An-Ping

    2015-01-01

    Conventional analysis and optimization procedures of mammalian cell culture processes mostly treat the culture as a homogeneous population. Hence, the focus is on cell physiology and metabolism, cell line development, and process control strategy. Impact on cultivations caused by potential variations in cellular properties between different subpopulations, however, has not yet been evaluated systematically. One main cause for the formation of such subpopulations is the progress of all cells through the cell cycle. The interaction of potential cell cycle specific variations in the cell behavior with large-scale process conditions can be optimally determined by means of (partially) synchronized cultivations, with subsequent population resolved model analysis. Therefore, it is desirable to synchronize a culture with minimal perturbation, which is possible with different yield and quality using physical selection methods, but not with frequently used chemical or whole-culture methods. Conventional nonsynchronizing methods with subsequent cell-specific, for example, flow cytometric analysis, can only resolve cell-limited effects of the cell cycle. In this work, we demonstrate countercurrent-flow centrifugal elutriation as a useful physical method to enrich mammalian cell populations within different phases of a cell cycle, which can be further cultivated for synchronized growth in bioreactors under physiological conditions. The presented combined approach contrasts with other physical selection methods especially with respect to the achievable yield, which makes it suitable for bioreactor scale cultivations. As shown with two industrial cell lines (CHO-K1 and human AGE1.HN), synchronous inocula can be obtained with overall synchrony degrees of up to 82% in the G1 phase, 53% in the S phase and 60% in the G2/M phase, with enrichment factors (Ysync) of 1.71, 1.79, and 4.24 respectively. Cells are able to grow with synchrony in bioreactors over several cell cycles. This

  3. Physical principles demonstrate that the biceps femoris muscle relative to the other hamstring muscles exerts the most force: implications for hamstring muscle strain injuries.

    Science.gov (United States)

    Dolman, Bronwyn; Verrall, Geoffrey; Reid, Iain

    2014-07-01

    Of the hamstring muscle group the biceps femoris muscle is the most commonly injured muscle in sports requiring interval sprinting. The reason for this observation is unknown. The objective of this study was to calculate the forces of all three hamstring muscles, relative to each other, during a lengthening contraction to assess for any differences that may help explain the biceps femoris predilection for injury during interval sprinting. To calculate the displacement of each individual hamstring muscle previously performed studies on cadaveric anatomical data and hamstring kinematics during sprinting were used. From these displacement calculations for each individual hamstring muscle physical principles were then used to deduce the proportion of force exerted by each individual hamstring muscle during a lengthening muscle contraction. These deductions demonstrate that the biceps femoris muscle is required to exert proportionally more force in a lengthening muscle contraction relative to the semimembranosus and semitendinosus muscles primarily as a consequence of having to lengthen over a greater distance within the same time frame. It is hypothesized that this property maybe a factor in the known observation of the increased susceptibility of the biceps femoris muscle to injury during repeated sprints where recurrent higher force is required.

  4. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.

    Science.gov (United States)

    Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li

    2018-06-01

    State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.

  5. First Principles Investigation of the Mechanical, Thermodynamic and Electronic Properties of FeSn{sub 5} and CoSn{sub 5} Intermetallic Phases under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenming; Liu, Jing; Wang, Hong [China Building Materials Academy, Beijing (China); Zhang, Zhenwei [Linyi Academy of Technology Cooperation and Application, Linyi (China); Zhang, Liang [NeoTrident Technology Ltd., Shanghai (China); Bu, Yuxiang [Shandong University, Jinan (China)

    2017-02-15

    For guidance for developing Fe/Co-Sn-based anode materials for lithium-ion batteries, the mechanical, thermodynamic and electronic properties of FeSn{sub 5} and CoSn{sub 5} intermetallic phases under pressures ranging from 0 to 30 GPa have been investigated systematically using first-principles total-energy calculations within the framework of the generalized gradient approximation. The pressure was found to have significant effects on the mechanical, thermodynamic and electronic properties of these compounds. In the selected pressure range, CoSn{sub 5} has a more negative formation enthalpy than FeSn{sub 5}. Based on the calculated elastic constants, the bulk modulus, shear modulus, and Young's modulus were determined via the Viogt-Reuss-Hill averaging scheme. The variations of specific heats at constant volume for FeSn{sub 5} and CoSn{sub 5} in a wide pressure (0 - 30 GPa) and temperature (0 - 1000 K) range are also predicted from phonon density of states calculation. The calculated results suggested that both FeSn{sub 5} and CoSn{sub 5} are mechanically stable at pressure from 0 to 30 GPa. FeSn{sub 5} is dynamically stable at pressure up to, 30 GPa, at least, however, CoSn{sub 5} is dynamically stable no higher than 15 GPa.

  6. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    Science.gov (United States)

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  7. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  8. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    In this article survey of variational principles has been given. Variational principles play a significant role in mathematical theory with emphasis on the physical aspects. There are two principals used i.e. to represent the equation of the system in a succinct way and to enable a particular computation in the system to be carried out with greater accuracy. The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basic finite element methods on variational principles. (A.B.)

  9. The Principle of the Fermionic Projector: An Approach for Quantum Gravity?

    Science.gov (United States)

    Finster, Felix

    In this short article we introduce the mathematical framework of the principle of the fermionic projector and set up a variational principle in discrete space-time. The underlying physical principles are discussed. We outline the connection to the continuum theory and state recent results. In the last two sections, we speculate on how it might be possible to describe quantum gravity within this framework.

  10. Radiation physics for medical physicists

    CERN Document Server

    Podgorsak, Ervin B

    2016-01-01

    This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or ...

  11. The Bohr Correspondence Principle

    Indian Academy of Sciences (India)

    IAS Admin

    Deepak Dhar. Keywords. Correspondence principle, hy- drogen atom, Kepler orbit. Deepak Dhar works at the. Tata Institute of Funda- mental Research,. Mumbai. His research interests are mainly in the area of statistical physics. We consider the quantum-mechanical non-relati- vistic hydrogen atom. We show that for bound.

  12. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  13. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Science.gov (United States)

    2012-01-01

    Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use

  14. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems.

    Science.gov (United States)

    Rachid, Caio T C C; Piccolo, Marisa C; Leite, Deborah Catharine A; Balieiro, Fabiano C; Coutinho, Heitor Luiz C; van Elsas, Jan Dirk; Peixoto, Raquel S; Rosado, Alexandre S

    2012-08-08

    Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under

  15. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    Directory of Open Access Journals (Sweden)

    Rachid Caio TCC

    2012-08-01

    Full Text Available Abstract Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane, next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA and denitrifying (nirK genes, greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil

  16. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    Science.gov (United States)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  17. Dynamics of overall physical performance of the first year students of medical college under the influence of differentiate amount of physical activity.

    Directory of Open Access Journals (Sweden)

    Semenova N.V.

    2012-09-01

    Full Text Available Here shown the results of overall physical capacity determined by Harvard step test first-year students of medical college aged 15-16 years щдв. The study involved 56 students, who for health reasons attributed to the primary and preparatory medical groups. It has been revealed that the level of overall physical performance during the school year remained within the "below average". Directions of increase of indexes of general physical capacity of students are shown due to differentiation of volume of motive activity. It has been established that under the influence of differentiate the amount of motor activity a significant of increase general efficiency in the experimental group in the second semester of study has taken. In the control group a significant increase in overall physical performance have been identified.

  18. Physical simulation technique on the behaviour of oil spills in grease ice under wave actions

    International Nuclear Information System (INIS)

    Li, Z.; Hollebone, B.; Fingas, M.; Fieldhouse, B.

    2008-01-01

    Light or medium oil spilled on ice tends to rise and remain the surface in unconsolidated frazil or grease ice. This study looked for a new system for studying the oil emulsion in grease ice under experimental conditions. A physical simulation technique was designed to test the effect of wave energy on the spilled oil grease ice emulsion. The newly developed test system has the ability to perform simulation tests in wave, wave-ice, wave-oil and wave-ice-oil. This paper presented the design concept of the developed test system and introduced the experimental certifications of its capability in terms of temperature control, wave-making and grease ice-making. The key feature of the technique is a mini wave flume which derives its wave making power from an oscillator in a chemical laboratory. Video cameras record the wave action in the flume in order to obtain wave parameters. The wave making capability tests in this study were used to determine the relation of wave height, length and frequency with oscillator power transfer, oscillator frequency and the depth of the water flume. 16 refs., 10 figs

  19. Evaluating the soil physical quality under long-term field experiments in Southern Italy

    Science.gov (United States)

    Castellini, Mirko; Stellacci, Anna Maria; Iovino, Massimo; Rinaldi, Michele; Ventrella, Domenico

    2017-04-01

    Long-term field experiments performed in experimental farms are important research tools to assess the soil physical quality (SPQ) given that relatively stable conditions can be expected in these soils. However, different SPQ indicators may sometimes provide redundant or conflicting results, making difficult an SPQ evaluation (Castellini et al., 2014). As a consequence, it is necessary to apply appropriate statistical procedures to obtain a minimum set of key indicators. The study was carried out at the Experimental Farm of CREA-SCA (Foggia) in two long-term field experiments performed on durum wheat. The first long-term experiment is aiming at evaluating the effects of two residue management systems (burning, B or soil incorporation of crop residues, I) while the second at comparing the effect of tillage (conventional tillage, CT) and sod-seeding (direct drilling, DD). In order to take into account both optimal and non-optimal soil conditions, five SPQ indicators were monitored at 5-6 sampling dates during the crop season (i.e., between November and June): soil bulk density (BD), macroporosity (PMAC), air capacity (AC), plant available water capacity (PAWC) and relative field capacity (RFC). Two additional data sets, collected on DD plot in different cropping seasons and in Sicilian soils differing for texture, depth and land use (N=140), were also used with the aim to check the correlation among indicators. Impact of soil management was assessed by comparing SPQ evaluated under different management systems with optimal reference values reported in literature. Two techniques of multivariate analysis (principal component analysis, PCA and stepwise discriminant analysis, SDA) were applied to select the most suitable indicator to facilitate the judgment on SPQ. Regardless of the considered management system, sampling date or auxiliary data set, correlation matrices always showed significant negative relationships between RFC and AC. Decreasing RFC at increasing AC is

  20. Engineering physics

    CERN Document Server

    Mukherji, Uma

    2015-01-01

    ENGINEERING PHYSICS is designed as a textbook for first year engineering students of a two semester course in Applied Physics according to new revised syllabus. However the scope of this book is not only limited to undergraduate engineering students and science students, it can also serve as a reference book for practicing scientists.Advanced technological topics like LCD, Squid, Maglev system, Electron microscopes, MRI, Photonics - Photonic fibre, Nano-particles, CNT, Quantum computing etc., are explained with basic underlying principles of Physics.This text explained following topics with numerous solved, unsolved problems and questions from different angles. Part-I contains crystal structure, Liquid crystal, Thermo-electric effect, Thermionic emission, Ultrasonic, Acoustics, semiconductor and magnetic materials. Whereas Part-2 contains Optics, X-rays, Electron optics, Dielectric materials, Quantum Physics and Schrodinger wave equation, Laser, Fibre-optics and Holography, Radio-activity, Super-conductivity,...

  1. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  2. Dynamics of cardiovascular parameters in combined aortic malformations under the influence of a physical therapy program during the rehabilitation process

    Directory of Open Access Journals (Sweden)

    Serhii Kalmykov

    2017-12-01

    Full Text Available Purpose: to study hemodynamic parameters and the reaction of the cardiovascular system to the dosed physical load of patients combined aortic defect with heart failure of the I degree under the influence of the complex physical therapy program developed by us during the rehabilitation process. Material & Methods: the study involved 26 middle-aged men with a diagnosis: combined aortic valve disease, HF I st. Result: dynamics of functional parameters of the cardiovascular system of patients under the influence of the physical therapy program is analyzed. Conclusion: the combination of morning hygienic gymnastics, therapeutic gymnastics, independent activities and dosed walking with a therapeutic massage contributes to the normalization of vascular tone, motor-vascular reflexes and blood pressure, increasing the tolerance of the cardiovascular system to physical activity.

  3. Impact of Mental and Physical Stress on Blood Pressure and Pulse Pressure under Normobaric versus Hypoxic Conditions

    Science.gov (United States)

    Trapp, Michael; Trapp, Eva-Maria; Egger, Josef W.; Domej, Wolfgang; Schillaci, Giuseppe; Avian, Alexander; Rohrer, Peter M.; Hörlesberger, Nina; Magometschnigg, Dieter; Cervar-Zivkovic, Mila; Komericki, Peter; Velik, Rosemarie; Baulmann, Johannes

    2014-01-01

    Objective Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car. Methods 36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m). Results A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004). Conclusion Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the

  4. Impact of mental and physical stress on blood pressure and pulse pressure under normobaric versus hypoxic conditions.

    Directory of Open Access Journals (Sweden)

    Michael Trapp

    Full Text Available Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP and pulse pressure (PP. We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car.36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R, period of rest 2, combined mental (KLT-R and physical task (bicycle ergometry and a last period of rest both at Graz, Austria (353 m asl and at the top station Dachstein (2700 m asl. Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m.A significant interaction of kind of stress (mental vs. combined mental and physical and study location (Graz vs. Dachstein was found in the systolic BP (p = .007 and PP (p = .002 changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz and under hypobaric hypoxia (Dachstein. During the passive ascent in cable car less trivialization (psychological coping strategy was associated with an increase in PP (p = .004.Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia and psychological stressors depend on predetermined psychological traits (stress coping strategies. Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the biopsychosocial concept.

  5. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  6. Safety Principles

    Directory of Open Access Journals (Sweden)

    V. A. Grinenko

    2011-06-01

    Full Text Available The offered material in the article is picked up so that the reader could have a complete representation about concept “safety”, intrinsic characteristics and formalization possibilities. Principles and possible strategy of safety are considered. A material of the article is destined for the experts who are taking up the problems of safety.

  7. Maquet principle

    Energy Technology Data Exchange (ETDEWEB)

    Levine, R.B.; Stassi, J.; Karasick, D.

    1985-04-01

    Anterior displacement of the tibial tubercle is a well-accepted orthopedic procedure in the treatment of certain patellofemoral disorders. The radiologic appearance of surgical procedures utilizing the Maquet principle has not been described in the radiologic literature. Familiarity with the physiologic and biochemical basis for the procedure and its postoperative appearance is necessary for appropriate roentgenographic evaluation and the radiographic recognition of complications.

  8. Modern vacuum physics

    CERN Document Server

    Chambers, Austin

    2005-01-01

    Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.

  9. Rest rages between physical execise under the influence of cardivascular sistem

    OpenAIRE

    Jurevičiūtė, Eglė

    2005-01-01

    SUMMARY Peculiarities of organizm to adaptation physical strain are very relevant problem to sport and its range. Relative narrow and particular purpose is raised in the solution of this problem: to estimate conception of professionals working in athletic club and those who goes in for sports there – abaut the importance of rest intervals in training for seeking result during the physical exercising also to ascertain the influence of rest intervals between physical strains to pe...

  10. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  11. Physics based Degradation Modeling and Prognostics of Electrolytic Capacitors under Electrical Overstress Conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper proposes a physics based degradation modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors are critical components in...

  12. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  13. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    Science.gov (United States)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  14. Principles of Lasers

    CERN Document Server

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  15. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  16. Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia

    Science.gov (United States)

    T.P. Beldini; R.C. Oliveira Junior; Michael Keller; P.B. de Camargo; P.M. Crill; A. Damasceno da Silva; D. Bentes dos Santos; D. Rocha de Oliveira

    2015-01-01

    Land-use change in the Amazon basin has occurred at an accelerated pace during the last decade, and it is important that the effects induced by these changes on soil properties are better understood. This study investigated the chemical, physical, and biological properties of soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest....

  17. Fundamental principles of quantum theory

    International Nuclear Information System (INIS)

    Bugajski, S.

    1980-01-01

    After introducing general versions of three fundamental quantum postulates - the superposition principle, the uncertainty principle and the complementarity principle - the question of whether the three principles are sufficiently strong to restrict the general Mackey description of quantum systems to the standard Hilbert-space quantum theory is discussed. An example which shows that the answer must be negative is constructed. An abstract version of the projection postulate is introduced and it is demonstrated that it could serve as the missing physical link between the general Mackey description and the standard quantum theory. (author)

  18. Device physics underlying silicon heterojunction and passivating-contact solar cells: A topical review

    KAUST Repository

    Chavali, Raghu V. K.; De Wolf, Stefaan; Alam, Muhammad A.

    2018-01-01

    The device physics of commercially dominant diffused-junction silicon solar cells is well understood, allowing sophisticated optimization of this class of devices. Recently, so-called passivating-contact solar cell technologies have become prominent

  19. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting...... saturation-unsaturation compositions. The sensitivity analyses for non-reacting and reacting sprays were carried out against a total of 12 thermo-physical properties, at an ambient temperature of 900 K and density of 22.8 kg/m3. For the sensitivity analyses, all the thermo-physical properties were set...... as the baseline case and each property was individually replaced by that of diesel. The significance of individual thermo-physical property was determined based on the deviations found in predictions such as liquid penetration, ignition delay period and peak soot concentration when compared to those of baseline...

  20. A Principle of Intentionality.

    Science.gov (United States)

    Turner, Charles K

    2017-01-01

    The mainstream theories and models of the physical sciences, including neuroscience, are all consistent with the principle of causality. Wholly causal explanations make sense of how things go, but are inherently value-neutral, providing no objective basis for true beliefs being better than false beliefs, nor for it being better to intend wisely than foolishly. Dennett (1987) makes a related point in calling the brain a syntactic (procedure-based) engine. He says that you cannot get to a semantic (meaning-based) engine from there. He suggests that folk psychology revolves around an intentional stance that is independent of the causal theories of the brain, and accounts for constructs such as meanings, agency, true belief, and wise desire. Dennett proposes that the intentional stance is so powerful that it can be developed into a valid intentional theory. This article expands Dennett's model into a principle of intentionality that revolves around the construct of objective wisdom. This principle provides a structure that can account for all mental processes, and for the scientific understanding of objective value. It is suggested that science can develop a far more complete worldview with a combination of the principles of causality and intentionality than would be possible with scientific theories that are consistent with the principle of causality alone.

  1. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  2. High Energy Physics Model Database - HEPMDB - Towards decoding the underlying theory at the LHC

    International Nuclear Information System (INIS)

    Bondarenko, M.; Belyaev, A.; Basso, L.; Boos, E.; Bunichev, V.; Sekhar Chivukula, R.; Christensen, D.; Cox, S.; De Roeck, A.; Moretti, S.; Pukhov, A.; Sekmen, S.; Semenov, A.; Simmons, E.H.; Shepherd-Themistocleus, C.; Speckner, C.

    2012-01-01

    We present here the first stage of development of the High Energy Physics Model Data-Base (HEPMDB) which is a convenient centralized storage environment for HEP (High Energy Physics) models, and can accommodate, via web interface to the HPC cluster, the validation of models, evaluation of LHC predictions and event generation-simulation chain. The ultimate goal of HEPMDB is to perform an effective LHC data interpretation isolating the most successful theory for explaining LHC observations. (authors)

  3. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  4. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  5. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  6. Motor performance of tongue with a computer-integrated system under different levels of background physical exertion

    Science.gov (United States)

    Huo, Xueliang; Johnson-Long, Ashley N.; Ghovanloo, Maysam; Shinohara, Minoru

    2015-01-01

    The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue. Slow waveform tracking performance by the tongue was compromised with an additional motor or cognitive task, but with an additional motor task only for the hand. Practitioner Summary We investigated the influence of task complexity and background physical exertion on the motor performance of tongue and hand. Results indicate the task performance degrades with an additional concurrent task or physical exertion due to the limited attentional resources available for handling both the motor task and background exertion. PMID:24003900

  7. Zymography Principles.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2017-01-01

    Zymography, the detection, identification, and even quantification of enzyme activity fractionated by gel electrophoresis, has received increasing attention in the last years, as revealed by the number of articles published. A number of enzymes are routinely detected by zymography, especially with clinical interest. This introductory chapter reviews the major principles behind zymography. New advances of this method are basically focused towards two-dimensional zymography and transfer zymography as will be explained in the rest of the chapters. Some general considerations when performing the experiments are outlined as well as the major troubleshooting and safety issues necessary for correct development of the electrophoresis.

  8. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  9. Selected Physical Properties of Andisols under Different Land Use Condition in Gunung Kerinci Subdistrict, Jambi

    Directory of Open Access Journals (Sweden)

    Endriani

    2010-05-01

    Full Text Available Objective of the research was to study the effect of different land use at some land slopecondition on some physical properties of Andisols in Gunung Kerinci Subdistrict, Jambi.. The research was conductusing field survey and purposive random sampling methods to collect soil. The land use which was using in this studywere: forest, cultivation, cinnamon, and coffee plantation, while land slope level weres: 3-8%, 8-15%, 15-25 %, and> 25%. The results showed that among land use types, the rank of soil physical properties, such as: soil organicmatter, bulk density, porosity, percentage of agregation, stability of agregate, pore distribution and permeability werein order of : forest > cultivation > cinnamon > coffee. Land conversion from forest to agricultural land causeddecreasing in the soil physical properties. The higher level of land slope caused the decreasing of soil physicalproperties at all type of land use.

  10. How inflammation underlies physical and organ function in acutely admitted older medical patients

    DEFF Research Database (Denmark)

    Klausen, Henrik Hedegaard; Bodilsen, Ann Christine; Petersen, Janne

    2017-01-01

    OBJECTIVES: To investigate whether systemic inflammation in acutely admitted older medical patients (age >65 years) is associated with physical performance and organ dysfunction. Organ dysfunction´s association with physical performance, and whether these associations are mediated by systemic...... inflammation was assessed by suPAR, TNFα, and IL-6. Associations were investigated by regression analyses adjusted for age, sex, cognitive impairment, CRP, and VitalPAC Modified Early Warning Score. RESULTS: A total of 369 patients were evaluated. In adjusted analyses, suPAR and TNFα was associated with both...

  11. Thermionics basic principles of electronics

    CERN Document Server

    Jenkins, J; Ashhurst, W

    2013-01-01

    Basic Principles of Electronics, Volume I : Thermionics serves as a textbook for students in physics. It focuses on thermionic devices. The book covers topics on electron dynamics, electron emission, and the themionic vacuum diode and triode. Power amplifiers, oscillators, and electronic measuring equipment are studied as well. The text will be of great use to physics and electronics students, and inventors.

  12. The Principle of Least Action

    Indian Academy of Sciences (India)

    THOLASI

    Reproduced from the book A Survey of Physical Theory (formerly titled: A Survey ... The dynamical laws for physical systems are usually expressed in the form of ... The reason for the difference in the results derived from the two principles lies ...

  13. Coastal proximity and physical activity: Is the coast an under-appreciated public health resource?

    Science.gov (United States)

    White, Mathew P; Wheeler, Benedict W; Herbert, Stephen; Alcock, Ian; Depledge, Michael H

    2014-12-01

    Recent findings suggest that individuals living near the coast are healthier than those living inland. Here we investigated whether this may be related to higher levels of physical activity among coastal dwellers in England, arising in part as a result of more visits to outdoor coastal settings. Participants (n=183,755) were drawn from Natural England's Monitor of Engagement with the Natural Environment Survey (2009-2012). Analyses were based on self-reported physical activity for leisure and transport. A small, but significant coastal proximity gradient was seen for the likelihood of achieving recommended guidelines of physical activity a week after adjusting for relevant area and individual level controls. This effect was statistically mediated by the likelihood of having visited the coast in the last seven days. Stratification by region, however, suggested that while the main effect was relatively strong for west coast regions, it was not significant for those in the east. In general, our findings replicate and extend work from Australia and New Zealand. Further work is needed to explain the marked regional differences in the relationship between coastal proximity and physical activity in England to better understand the coast's potential role as a public health resource. Copyright © 2014. Published by Elsevier Inc.

  14. 42 CFR 413.106 - Reasonable cost of physical and other therapy services furnished under arrangements.

    Science.gov (United States)

    2010-10-01

    ... of therapy, to therapists working full time in an employment relationship. (2) Fringe benefit and... geographical area in which the services are furnished and a standard travel allowance. (3) If therapy services... 42 Public Health 2 2010-10-01 2010-10-01 false Reasonable cost of physical and other therapy...

  15. Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions

    DEFF Research Database (Denmark)

    Cheng, Xinwei; Ng, Hoon Kiat; Gan, Suyin

    2016-01-01

    This reported work investigates the sensitivities of spray and soot developments to the change of thermo-physical properties for coconut and soybean methyl esters, using two-dimensional computational fluid dynamics fuel spray modelling. The choice of test fuels made was due to their contrasting s...

  16. General principles of radiotherapy

    International Nuclear Information System (INIS)

    Easson, E.C.

    1985-01-01

    The daily practice of any established branch of medicine should be based on some acceptable principles. This chapter is concerned with the general principles on which the radiotherapy of the Manchester school is based. Though many radiotherapists in other centres would doubtless accept these principles, there are sufficiently wide differences in practice throughout the world to suggest that some therapists adhere to a fundamentally different philosophy. The authors believe it is important, especially for those beginning their formal training in radiotherapy, to subscribe to an internally consistent school of thought, employing methods of treatment for each type of lesion in each anatomical site that are based on accepted principles and subjected to continuous rigorous scrutiny to test their effectiveness. Not only must each therapeutic technique be evaluated, but the underlying principles too must be questioned if and when this seems indicated. It is a feature of this hospital that similar lesions are all treated by the same technique, so long as statistical evidence justifies such a policy. All members of the staff adhere to the accepted policy until or unless reliable reasons are adduced to change this policy

  17. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  18. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  19. Physical, Chemical, and Biological Properties of Soil under Decaying Wood in a Tropical Wet Forest in Puerto Rico

    Science.gov (United States)

    Marcela Zalamea; Grizelle Gonzalez; D. Jean Lodge

    2016-01-01

    Decaying wood is related to nutrient cycling through its role as either a sink or source of nutrients. However, at micro scales, what is the effect of decaying logs on the physical, chemical,and biotic characteristics of the soil underneath? We took samples from a 0 to 5 cm depth under and a 50 cm distance away from decaying logs (Dacryodes excelsa and Swietenia...

  20. Heisenberg's principles

    CERN Multimedia

    1971-01-01

    Remote from the noise and bustle of Europe's capital cities, in the charming German lake-side town of Lindau, close to the borders of Austria and Switzerland, Nobel Prize Winners in physics gathered together from June 28-July 2 to talk of their science and its interaction with society.

  1. Distinct effects of reminding mortality and physical pain on the default-mode activity and activity underlying self-reflection.

    Science.gov (United States)

    Shi, Zhenhao; Han, Shihui

    2018-06-01

    Behavioral research suggests that reminding both mortality and negative affect influences self-related thoughts. Using functional magnetic resonance imaging (MRI), we tested the hypothesis that reminders of mortality and physical pain decrease brain activity underlying self-related thoughts. Three groups of adults underwent priming procedures during which they answered questions pertaining to mortality, physical pain, or leisure time, respectively. Before and after priming, participants performed personality trait judgments on oneself or a celebrity, identified the font of words, or passively viewed a fixation. The default-mode activity and neural activity underlying self-reflection were identified by contrasting viewing a fixation vs. font judgment and trait judgments on oneself vs. a celebrity, respectively. The analyses of the pre-priming functional MRI (fMRI) data identified the default-mode activity in the posterior cingulate cortex (PCC), ventral medial prefrontal cortex (MPFC), and parahippocampal gyrus, and the activity underlying instructed self-reflection in both the ventral and dorsal regions of the MPFC. The analyses of the post-priming fMRI data revealed that, relative to leisure time priming, reminding mortality significantly reduced the default-mode PCC activity, and reminding physical pain significantly decreased the dorsal MPFC activity during instructed self-reflection. Our findings suggest distinct neural underpinnings of the effect of reminding morality and aversive emotion on default-mode and instructed self-reflection.

  2. A large data base on a small computer. Neutron Physics data and bibliography under IDMS

    International Nuclear Information System (INIS)

    Schofield, A.; Pellegrino, L.; Tubbs, N.

    1978-01-01

    The transfer of three associated files to an IDMS data base is reported: the CINDA bibliographic index to neutron physics publications, the cumulated EXFOR exchange tapes used for maintaining parallel data collections at all four centres and the CCDN's internal data storage and retrieval system NEUDADA. With associated dictionaries and inter-file conversion tables the corresponding IDMS data base will be about 160 Mbytes. The main characteristics of the three files are shown

  3. Knowledge-Oriented Physics-Based Motion Planning for Grasping Under Uncertainty

    OpenAIRE

    Ud Din, Muhayy; Akbari, Aliakbar; Rosell Gratacòs, Jan

    2017-01-01

    Grasping an object in unstructured and uncertain environments is a challenging task, particularly when a collision-free trajectory does not exits. High-level knowledge and reasoning processes, as well as the allowing of interaction between objects, can enhance the planning efficiency in such environments. In this direction, this study proposes a knowledge-oriented physics-based motion planning approach for a hand-arm system that uses a high-level knowledge-based reasoning to partition the wor...

  4. A perfect wetting of Mg monolayer on Ag(111) under atomic scale investigation: First principles calculations, scanning tunneling microscopy, and Auger spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migaou, Amani; Guiltat, Mathilde; Payen, Kevin; Landa, Georges; Hémeryck, Anne, E-mail: anne.hemeryck@laas.fr [LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse (France); Sarpi, Brice; Daineche, Rachid; Vizzini, Sébastien [Aix Marseille University, IM2NP, Fac Sci St. Jérôme, F-13397 Marseille (France)

    2016-05-21

    First principles calculations, scanning tunneling microscopy, and Auger spectroscopy experiments of the adsorption of Mg on Ag(111) substrate are conducted. This detailed study reveals that an atomic scale controlled deposition of a metallic Mg monolayer perfectly wets the silver substrate without any alloy formation at the interface at room temperature. A liquid-like behavior of the Mg species on the Ag substrate is highlighted as no dot formation is observed when coverage increases. Finally a layer-by-layer growth mode of Mg on Ag(111) can be predicted, thanks to density functional theory calculations as observed experimentally.

  5. Similarity principles for equipment qualification by experience

    International Nuclear Information System (INIS)

    Kana, D.D.; Pomerening, D.J.

    1988-07-01

    A methodology is developed for seismic qualification of nuclear plant equipment by applying similarity principles to existing experience data. Experience data are available from previous qualifications by analysis or testing, or from actual earthquake events. Similarity principles are defined in terms of excitation, equipment physical characteristics, and equipment response. Physical similarity is further defined in terms of a critical transfer function for response at a location on a primary structure, whose response can be assumed directly related to ultimate fragility of the item under elevated levels of excitation. Procedures are developed for combining experience data into composite specifications for qualification of equipment that can be shown to be physically similar to the reference equipment. Other procedures are developed for extending qualifications beyond the original specifications under certain conditions. Some examples for application of the procedures and verification of them are given for certain cases that can be approximated by a two degree of freedom simple primary/secondary system. Other examples are based on use of actual test data available from previous qualifications. Relationships of the developments with other previously-published methods are discussed. The developments are intended to elaborate on the rather broad revised guidelines developed by the IEEE 344 Standards Committee for equipment qualification in new nuclear plants. However, the results also contribute to filling a gap that exists between the IEEE 344 methodology and that previously developed by the Seismic Qualification Utilities Group. The relationship of the results to safety margin methodology is also discussed. (author)

  6. A Development of the Principle of Virtual Laws and its Conceptual Framework in Mechanics as Fundamental Relationship between Physics and Mathematics

    Directory of Open Access Journals (Sweden)

    Raffaele Pisano

    2017-06-01

    Full Text Available Generally speaking, virtual displacement or work concerns to a timely idea according to which a motion of a certain body is not the unique possible motion. The process of reducing this motion to a particular magnitude and concept, eventually minimizing as a hypothesis, can be traced back to the Aristotelian school. In the history and philosophy of science one finds various enunciations of the Principle of Virtual Laws and its virtual displacement or work applications, i.e., from Aristotle to Leibniz’s vis viva, from Maupertuis’ least action to Euler and Lagrange with calculus of variations (statics and dynamics to Lazare Carnot’s mechanics. In this case study, I will demonstrate that a particular approach used by Lazare Carnot is original by explaining within the historical context of rival approaches such as the development of the Principle of virtual Laws (also known as the Principle of virtual velocity or of virtual work. I will also discuss Carnot’s geometric motion as one of the possible but invertible movements applied to virtual displacement as employed in his theories of machines and collisions. I will then go on to explore how the originality of an invertible motion within his mechanical and, in general, mathematical research program permitted Carnot to introduce a new way of structuring a scientific theory and making mechanics, with respect to the Newtonian paradigm, to scholars and his students of the École polytechnique de Paris.

  7. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  8. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  9. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Stakhov, A.P. [International Club of the Golden Section, 6 McCreary Trail, Bolton, ON, L7E 2C8 (Canada)] e-mail: goldenmuseum@rogers.com

    2005-10-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles.

  10. The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2005-01-01

    The 'Dichotomy Principle' and the classical 'Golden Section Principle' are two of the most important principles of Nature, Science and also Art. The Generalized Principle of the Golden Section that follows from studying the diagonal sums of the Pascal triangle is a sweeping generalization of these important principles. This underlies the foundation of 'Harmony Mathematics', a new proposed mathematical direction. Harmony Mathematics includes a number of new mathematical theories: an algorithmic measurement theory, a new number theory, a new theory of hyperbolic functions based on Fibonacci and Lucas numbers, and a theory of the Fibonacci and 'Golden' matrices. These mathematical theories are the source of many new ideas in mathematics, philosophy, botanic and biology, electrical and computer science and engineering, communication systems, mathematical education as well as theoretical physics and physics of high energy particles

  11. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  12. The physical capabilities underlying timed "Up and Go" test are time-dependent in community-dwelling older women.

    Science.gov (United States)

    Coelho-Junior, Hélio José; Rodrigues, Bruno; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Uchida, Marco Carlos; Marzetti, Emanuele

    2018-04-01

    Timed 'Up and Go' (TUG) has been widely used in research and clinical practice to evaluate physical function and mobility in older adults. However, the physical capabilities underlying TUG performance are not well elucidated. Therefore, the present study aimed at investigating a selection of physical capacities underlying TUG performance in community-dwelling older women. Four hundred and sixty-eight apparently healthy older women independent to perform the activities of daily living (mean age: 65.8 ± 6.0 years) were recruited from two specialized healthcare centers for older adults to participate in the study. Volunteers had their medical books reviewed and underwent evaluations of anthropometric data as well as physical and functional capacities. Pearson's correlation results indicate that TUG performance was significantly associated with upper (i.e., handgrip strength) and lower (i.e., sit-to-stand) limb muscle strength, balance (i.e., one-leg stand), lower limb muscle power (i.e., countermovement jump), aerobic capacity (i.e., 6-minute walk test), and mobility (i.e., usual and maximal walking speeds). When the analyses were performed based on TUG quartiles, a larger number of physical capabilities were associated with TUG >75% in comparison with TUG <25%. Multiple linear regression results indicate that the variability in TUG (~20%) was explained by lower limb muscle strength (13%) and power (1%), balance (4%), mobility (2%), and aerobic capacity (<1%), even after adjusted by age and age plus body mass index (BMI). However, when TUG results were added as quartiles, a decrease in the impact of physical capacities on TUG performance was determined. As a whole, our findings indicate that the contribution of physical capabilities to TUG performance is altered according to the time taken to perform the test, so that older women in the lower quartiles - indicating a higher performance - have an important contribution of lower limb muscle strength, while

  13. Restorability on 3-connected WDM Networks Under Single and Dual Physical Link Failures

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Jensen, Michael; Riaz, Tahir

    2013-01-01

    This work studies the influence the network interconnection has over restoration techniques. The way physical links are distributed to interconnect network nodes has a great impact on parameters such as path distances when failures occur and restoration is applied. The work focuses on single and ...... to network planning, the trade-off network length vs. performance of the different topological options is studied. The results show how 3-connected graphs could provide a reasonable trade-off between costs, link failure rates, and restored path parameters....

  14. Under the spell of Landau when theoretical physics was shaping destinies

    CERN Document Server

    2013-01-01

    This invaluable collection of memoirs and reviews on scientific activities of the most prominent theoretical physicists belonging to the Landau School - Landau, Anselm, Gribov, Zeldovich, Kirzhnits, Migdal, Ter-Martirosyan and Larkin - are being published in English for the first time. The main goal is to acquaint readers with the life and work of outstanding Soviet physicists who, to a large extent, shaped theoretical physics in the 1950s - 70s. Many intriguing details have remained unknown beyond the "Iron Curtain" which was dismantled only with the fall of the USSR.

  15. Quantum principles in field interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1986-01-01

    The concept of quantum principle is intruduced as a principle whosee formulation is based on specific quantum ideas and notions. We consider three such principles, viz. those of quantizability, local gauge symmetry, and supersymmetry, and their role in the development of the quantum field theory (QFT). Concerning the first of these, we analyze the formal aspects and physical contents of the renormalization procedure in QFT and its relation to ultraviolet divergences and the renorm group. The quantizability principle is formulated as an existence condition of a self-consistent quantum version with a given mechanism of the field interaction. It is shown that the consecutive (from a historial point of view) use of these quantum principles puts still larger limitations on possible forms of field interactions

  16. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users.

    Science.gov (United States)

    Hoekstra, Sven; Valent, Linda; Gobets, David; van der Woude, Lucas; de Groot, Sonja

    2017-08-01

    Recognizing the encouraging effect of challenging events, the HandbikeBattle (HBB) was created to promote exercise among wheelchair users. The purpose of this study was to reveal the effects on physical fitness and health outcomes of four-month handbike training under free-living conditions in preparation for the event. In this prospective cohort study, 59 relatively inexperienced handyclists participated in the HBB of 2013 or 2014. Incremental exercise tests were conducted, respiratory function was tested and anthropometrics were measured before and after the preparation period. Main outcome measures were peak power output (POpeak), peak oxygen uptake (VO2peak) and waist circumference, of which the changes were tested using repeated measures ANOVA. To detect possible determinants of changes in physical fitness, a linear regression analysis was conducted with personal characteristics, executed training volume and upper-extremity complaints during the training period as independent variables. POpeak, VO2peak and waist circumference improved significantly with 17%, 7% and 4.1%, respectively. None of the included variables were significant determinants for the changes in POpeak found as a result of the training. A challenging event such as the HBB provokes training regimes among participants of sufficient load to realize substantial improvements in physical fitness and health outcomes. Implications for Rehabilitation Due to the often impaired muscle function in the lower-limbs and an inactive lifestyle, wheelchair users generally show considerably lower levels of fitness compared to able-bodied individuals. This prospective cohort study showed that four months of handbike training under free-living conditions in preparation for this event resulted in substantial improvements in physical fitness and health outcomes in wheelchair users. The creation of a challenging event such as the HandbikeBattle as part of a follow-up rehabilitation practice can therefore be a useful

  17. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems

    NARCIS (Netherlands)

    Rachid, Caio T. C. C.; Piccolo, Marisa C.; Leite, Deborah Catharine A.; Balieiro, Fabiano C.; Coutinho, Heitor Luiz C.; van Elsas, Jan Dirk; Peixoto, Raquel S.; Rosado, Alexandre S.

    2012-01-01

    Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes

  18. Principles of Mobile Communication

    CERN Document Server

    Stüber, Gordon L

    2012-01-01

    This mathematically rigorous overview of physical layer wireless communications is now in a third, fully revised and updated edition. Along with coverage of basic principles sufficient for novice students, the volume includes plenty of finer details that will satisfy the requirements of graduate students aiming to research the topic in depth. It also has a role as a handy reference for wireless engineers. The content stresses core principles that are applicable to a broad range of wireless standards. Beginning with a survey of the field that introduces an array of issues relevant to wireless communications and which traces the historical development of today’s accepted wireless standards, the book moves on to cover all the relevant discrete subjects, from radio propagation to error probability performance and cellular radio resource management. A valuable appendix provides a succinct and focused tutorial on probability and random processes, concepts widely used throughout the book. This new edition, revised...

  19. Principles of mobile communication

    CERN Document Server

    Stüber, Gordon L

    2017-01-01

    This mathematically rigorous overview of physical layer wireless communications is now in a 4th, fully revised and updated edition. The new edition features new content on 4G cellular systems, 5G cellular outlook, bandpass signals and systems, and polarization, among many other topics, in addition to a new chapters on channel assignment techniques. Along with coverage of fundamentals and basic principles sufficient for novice students, the volume includes finer details that satisfy the requirements of graduate students aiming to conduct in-depth research. The book begins with a survey of the field, introducing issues relevant to wireless communications. The book moves on to cover relevant discrete subjects, from radio propagation, to error probability performance, and cellular radio resource management. An appendix provides a tutorial on probability and random processes. The content stresses core principles that are applicable to a broad range of wireless standards. New examples are provided throughout the bo...

  20. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  1. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  2. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  3. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  4. Heavy physical work under time pressure: the garbage collection service--a case study.

    Science.gov (United States)

    Camada, Ilza Mitsuko de Oliveira; Pataro, Silvana Maria Santos; Fernandes, Rita de Cássia Pereira

    2012-01-01

    The increased generation of garbage has become a problem in large cities, with greater demand for collection services. The collector is subjected to high workload. This study describes the work in garbage collection service, highlighting the requirements of time, resulting in physical and psychosocial demands to collectors. Ergonomic Work Analysis (EWA) - a method focused on the study of work in real situations was used. Initially, technical visits, global observations and unstructured interviews with different subjects of a garbage collection company were conducted. The following step of the systematic observations was accompanied by interviews conducted during the execution of tasks, inquiring about the actions taken, and also interviews about the actions, but conducted after the development of the tasks, photographic records and audiovisual recordings, of workers from two garbage collection teams. Contradictions between the prescribed work and activities (actual work) were identified, as well as the variability present in this process, and strategies adopted by these workers to regulate the workload. It was concluded that the insufficiency of means and the organizational structure of management ensue a situation where the collection process is maintained at the expense of hyper-requesting these workers, both physically and psychosocially.

  5. Monitoring soil chemical and physical parameters under Douglas fir in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Konsten, C.J.M.; Tiktak, A.; Bouten, W.

    1987-01-01

    In march 1987 a monitoring program started in two Douglas fir stands of different vitality in the Netherlands. Aim of the study is to provide insight in the chemical and physical rooting conditions of the vegetation and to quantify the contributions of atmospheric deposition to soil acidification. The hydrological part of the monitoring progam consists of automated measurements of precipitation, throughfall, soil water pressure head and soil water content; in addition soil water content is determined by neutron sonde measurements and gravimetry. These data are used as input data for simulation models which calculate water fluxes through the vegetation and soil. For the soil chemical part of the program precipitation (bulk and wet-only), throughfall and litter fall are sampled. The soil solution is sampled by suction from porous cups and from porous plates by a new, continous technique. Combination of soil chemical and soil physical data will result in chemical fluxes through the vegetation and through various soil compartments. Element budgets for the ecosystem will also be calculated. The program forms part of an interdisciplinary monitoring project within the Dutch Priority Programme on Acidification. 2 figs., 1 tab., 19 refs.

  6. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  7. The Leibniz principle in quantum logic

    International Nuclear Information System (INIS)

    Giuntini, R.; Mittelstaedt, P.

    1989-01-01

    The principle of the identity of indiscernibles (Leibniz Principle) is investigated within the framework of the formal language of quantum physics, which is given by an orthomodular lattice. The authors show that the validity of this principle is based on very strong preconditions (concerning the existence of convenient predicates) which are given in the language of classical physics but which cannot be fulfilled in orthomodular quantum logic

  8. Survival, physical and physiological changes of Taenia hydatigena eggs under different conditions of water stress.

    Science.gov (United States)

    Sánchez Thevenet, Paula; Alvarez, Hector Manuel; Basualdo, Juan Angel

    2017-06-01

    Taenia hydatigena eggs were investigated for morphological and physiological changes under water stress conditions. Fresh eggs were exposed at 31%, 47% and 89% of relative humidity (RH), and survival, size and ultrastructural changes were accounted up to 365 days of exposition. The article shows how each RH environment affects the vitality of the eggs. Results of this study suggest that T. hydatigena eggs have mechanisms to withstand water stress, indicating that the eggs clustering improves protection against desiccation, and that endogenous metabolism using triacylglycerols play an important role in the maintenance of embryo vitality under low, medium and high relative humidity conditions. This contributes to understanding the water stress resistance mechanism in eggs belonging to Taeniidae family. The findings shown herein have provided a basis to better comprehend basic biology and epidemiology of the cysticercosis caused by T. hydatigena. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Determining Need for School-Based Physical Therapy Under IDEA: Commonalities Across Practice Guidelines.

    Science.gov (United States)

    Vialu, Carlo; Doyle, Maura

    2017-10-01

    The Individuals with Disabilities Education Act (IDEA) includes physical therapy (PT) as a related service that may be provided to help students with disabilities benefit from their education. However, the IDEA does not provide specific guidance for the provision of school-based PT, resulting in variations in practice across the United States. The authors examined 22 state and local education agency guidelines available online to find commonalities related to the determination of a student's need for PT. Seven commonalities found: educational benefit, team decision, need for PT expertise, establishment of Individualized Education Program (IEP) goal before determining need for PT, distinction between medical and educational PT, the student's disability adversely affects education, and the student's potential for improvement. These commonalities are discussed in relation to current PT and special education literature. This article suggests applying these commonalities as procedural requirements and questions for discussion during an IEP team meeting.

  10. Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions

    International Nuclear Information System (INIS)

    Cliff, W.C.; Smith, J.D.

    1980-02-01

    A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration

  11. Physical health of young and middle age women under influence of step-aerobics exercises

    Directory of Open Access Journals (Sweden)

    I.P. Masliak

    2015-10-01

    Full Text Available Purpose: to determine the degree of step-aerobics exercises’ influence on 20-35 years age women’s health. Material: in the research 28 women of 20-35 years old age participated. Anthropometric indicators, heart beats rate in rest and after load (20 squats for 30 sec., blood pressure, vital capacity of lungs, hand dynamometry were registered. Results: level of physical health has been determined; influence of step-aerobics on women’s health has been found; age differences in the tested indicators have been analyzed. It was found out that step-aerobic trainings influence greatly on the following indicators: body mass, circumferential sizes and cardio vascular system; on functioning of respiratory system, strength of hand’s flexors and regulation of 31-35 years age women’s cardio-vascular system. Conclusions: application of step-aerobic exercises positively influenced on health of 20-35 years old women.

  12. EFOMP policy statement 16: The role and competences of medical physicists and medical physics experts under 2013/59/EURATOM.

    Science.gov (United States)

    Caruana, Carmel J; Tsapaki, Virginia; Damilakis, John; Brambilla, Marco; Martín, Guadalupe Martín; Dimov, Asen; Bosmans, Hilde; Egan, Gillian; Bacher, Klaus; McClean, Brendan

    2018-04-01

    On 5 December 2013 the European Council promulgated Directive 2013/59/EURATOM. This Directive is important for Medical Physicists and Medical Physics Experts as it puts the profession on solid foundations and describes it more comprehensively. Much commentary regarding the role and competences has been developed in the context of the European Commission project "European Guidelines on the Medical Physics Expert" published as Radiation Protection Report RP174. The guidelines elaborate on the role and responsibilities under 2013/59/EURATOM in terms of a mission statement and competence profile in the specialty areas of Medical Physics relating to medical radiological services, namely Diagnostic and Interventional Radiology, Radiation Oncology and Nuclear Medicine. The present policy statement summarises the provisions of Directive 2013/59/EURATOM regarding the role and competences, reiterates the results of the European Guidelines on the Medical Physics Expert document relating to role and competences of the profession and provides additional commentary regarding further issues arising following the publication of the RP174 guidelines. Copyright © 2018. Published by Elsevier Ltd.

  13. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...

  14. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    The Physics Groups are actively engaged on analyses of the first data from the LHC at 7 TeV, targeting many results for the ICHEP conference taking place in Paris this summer. The first large batch of physics approvals is scheduled for this CMS Week, to be followed by four more weeks of approvals and analysis updates leading to the start of the conference in July. Several high priority analysis areas were organized into task forces to ensure sufficient coverage from the relevant detector, object, and analysis groups in the preparation of these analyses. Already some results on charged particle correlations and multiplicities in 7 TeV minimum bias collisions have been approved. Only one small detail remains before ICHEP: further integrated luminosity delivered by the LHC! Beyond the Standard Model measurements that can be done with these data, the focus changes to the search for new physics at the TeV scale and for the Higgs boson in the period after ICHEP. Particle Flow The PFT group is focusing on the ...

  15. PHYSICS

    CERN Multimedia

    the PAG conveners

    2011-01-01

    The delivered LHC integrated luminosity of more than 1 inverse femtobarn by summer and more than 5 by the end of 2011 has been a gold mine for the physics groups. With 2011 data, we have submitted or published 14 papers, 7 others are in collaboration-wide review, and 75 Physics Analysis Summaries have been approved already. They add to the 73 papers already published based on the 2010 and 2009 datasets. Highlights from each physics analysis group are described below. Heavy ions Many important results have been obtained from the first lead-ion collision run in 2010. The published measurements include the first ever indications of Υ excited state suppression (PRL synopsis), long-range correlation in PbPb, and track multiplicity over a wide η range. Preliminary results include the first ever measurement of isolated photons (showing no modification), J/ψ suppression including the separation of the non-prompt component, further study of jet fragmentation, nuclear modification factor...

  16. PHYSICS

    CERN Multimedia

    L. Demortier

    Physics-wise, the CMS week in December was dominated by discussions of the analyses that will be carried out in the “next six months”, i.e. while waiting for the first LHC collisions.  As presented in December, analysis approvals based on Monte Carlo simulation were re-opened, with the caveat that for this work to be helpful to the goals of CMS, it should be carried out using the new software (CMSSW_2_X) and associated samples.  By the end of the week, the goal for the physics groups was set to be the porting of our physics commissioning methods and plans, as well as the early analyses (based an integrated luminosity in the range 10-100pb-1) into this new software. Since December, the large data samples from CMSSW_2_1 were completed. A big effort by the production group gave a significant number of events over the end-of-year break – but also gave out the first samples with the fast simulation. Meanwhile, as mentioned in December, the arrival of 2_2 meant that ...

  17. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  18. PHYSICS

    CERN Document Server

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  19. Dynamics of Physical and Physicochemical Properties of Urban Soils under the Effect of Ice-Melting Salts

    Science.gov (United States)

    Azovtseva, N. A.; Smagin, A. V.

    2018-01-01

    Physical (water content, density, and air and water regimes) and physicochemical (electrical conductivity, pH, and SAR) properties of urban soils were investigated on test plots of Moscow to evaluate their dynamics under anthropogenic impact. The wilting point and the dependence of the capillary-sorption and total water potentials of the soil water content were determined in laboratory experiments with natural and artificially saline soil samples to evaluate the effect of salt antifreeze substances on water availability for plants under conditions of active application of deicing reagents. Seasonal dynamics of these parameters were investigated. It was found that electrolytes display a steady tendency for the accumulation and redistribution in the root zone rather than for their deep leaching despite humid climatic conditions in Moscow megalopolis. In summer, regular droughts result in drying of the root zone to critical values and to the concentration of electrolytes up to the values that make the total water potential of soil unsuitable for water uptake by roots. The key factor of soil degradation under the impact of electrolytes is the soil dispersity: the finer the texture, the higher the soil salinization and solonetzicity and the stronger irreversible changes in the soil water retention capacity and physical properties.

  20. Determination of equilibrium composition of thermally ionized monoatomic gas under different physical conditions

    Science.gov (United States)

    Romanova, M. S.; Rydalevskaya, M. A.

    2017-05-01

    Perfect gas mixtures that result from thermal ionization of spatially and chemically homogeneous monoatomic gases are considered. Equilibrium concentrations of the components of such mixtures are determined using integration over the momentum space and summation with respect to energy levels of the distribution functions that maximize the entropy of system under condition for constancy of the total number of nuclei and electrons. It is demonstrated that such a method allows significant simplification of the calculation of the equilibrium composition for ionized mixtures at different temperatures and makes it possible to study the degree of ionization of gas versus gas density and number in the periodic table of elements.

  1. Statistical evaluation of physical examinations conducted under atomic bomb survivors medical treatment law Nagasaki

    Energy Technology Data Exchange (ETDEWEB)

    Ohri, Shigehisa; Shimada, Daisaburo; Ishida, Morthiro; Onishi, Shigeyuki

    1961-09-19

    An evaluation was made of the reliability and validity of the information obtained by the first examination completed under the ABSMTL. Results of the analysis show clearly that the materials hardly can be utilized for studying the relationship between findings obtained from the medical examination and distance from the hypocenter. From the standpoint of clinical medicine, the lack of exactness in the examinations may be a major difficulty. However, as long as the degree of inexactness of the medical examinations is distributed equally to all sample members, comparison of the findings may be made within the limits of their accuracy. 4 references, 1 figure, 3 tables.

  2. From the Physical World to the Biological Universe: Historical Developments Underlying SETI

    Science.gov (United States)

    Dick, Steven J.

    More than thirty years ago the French historian of science Alexandre Koyré (1957) wrote his classic volume, From the Closed World to the Infinite Universe, in which he argued that a fundamental shift in world view had taken place in 17th century cosmology. Between Nicholas of Cusa in the fifteenth century and Newton and Leibniz in the seventeenth, he found that the very terms in which humans thought about their universe had changed. These changes he characterized broadly as the destruction of the closed finite cosmos and the geometrization of space. The occasion of the Third International Bioastronomy Symposium in France is an especially appropriate time to argue that the SETI endeavor represents a test for a similar fundamental shift in cosmological world view, from the physical world to the biological universe. I define the biological universe, equivalent to what I have called before the biophysical cosmology (Dick, 1989), as the scientific world view which holds that life is widespread throughout the universe. In this case the biological universe does not necessarily supersede the physical universe, but a universe filled with life would certainly fundamentally alter our attitude toward the universe, and our place in it. Although Koyré mentioned life beyond the Earth as an adjunct to the revolution from the closed world to the infinite universe, only in the 1980s has the history of science begun to give full treatment to the subject. What follows is meant to be a contribution to that ongoing endeavor to understand where the extraterrestrial life debate fits in the history of science. The modern era in the extraterrestrial life debate is normally dated from Cocconi and Morrison's paper in 1959, and though one can always find precursors, this in my view is a valid perception. Cocconi and Morrison gave definite form to SETI, Frank Drake independently first carried out the experiment, a network of interested scientists began to form and met in Green Bank in

  3. Assessment of soil organic matter persistence under different land uses applying a physical fractionation procedure

    Science.gov (United States)

    Giannetta, Beatrice; Plaza, César; López-de-Sá, Esther G.; Vischetti, Costantino; Zaccone, Claudio

    2017-04-01

    The understanding of the mechanisms involved in the build-up of soil organic matter (SOM) pools with long residence time is tightly linked to the comprehension of C dynamics. Organo-mineral associations are known to be strongly correlated with the accumulation of selective preserved C forms. Adsorption to minerals, as well as occlusion within aggregates, may affect SOM protection in different ways depending on its molecular structure and pedo-climatic conditions. In this research, we investigated changes in quantity and quality of SOM pools characterized by different protection mechanisms in coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil with different organic amendments, in order to evaluate the influence of both land use and organic matter nature on physical and/or chemical stabilization of SOM. In particular, free (FR), intra-macroaggregate (MA), intra-microaggregate (MI), and mineral-associated (Min) fractions were separated in order to define physical and chemical mechanisms responsible for the SOM protection against degradation. All these SOM fractions were analyzed for organic C and total N concentration, and their stability assessed by thermogravimetric analysis (TD-TGA). Preliminary data show that, for all land uses, most of the organic C (40-60%) is found in the Min pool, followed by FR (20-40%)>MI MA. With the only exception of the FR, no significant correlations were found between the C/N ratio and a thermal stability index (H550-400/400-250) of each fraction; at the same time, a highly significant and positive correlation was found between these two parameters in all fractions isolated from agricultural soils. In particular, the thermal stability index measured in all Min fractions may be related to the more marked presence of labile compounds in this pool relative to recalcitrant compounds. Conversely, FR OM could not always represent a fresh and readily decomposable fraction.Furthermore, OM associated

  4. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  5. Physics-based electromechanical model of IPMC considering various underlying currents

    Science.gov (United States)

    Pugal, D.; Kim, K. J.; Palmre, V.; Leang, K. K.; Aabloo, A.

    2012-04-01

    Experiments indicate that the electrodes affect the charge dynamics, and therefore actuation of ionic polymermetal composite (IPMC) via three different types of currents - electric potential induced ionic current, leakage current, and electrochemical current if approximately higher than 2 V voltage is applied to a typical 200 μm thick IPMC. The ionic current via charge accumulation near the electrodes is the direct cause of the osmotic and electrostatic stresses in the polymer and therefore carries the major role in the actuation of IPMC. However, the leakage and the electrochemical - electrolysis in case of water based IPMCs - currents do not affect the actuation dynamics as directly but cause potential gradients on the electrodes. These in turn affect the ionic current. A physics based finite element (FE) model was developed to incorporate the effect of the electrodes and three different types of currents in the actuation calculations. The Poisson-Nernst-Planck system of equations is used in the model to describe the ionic current and the Butler-Volmer relation is used to describe the electrolysis current for different applied voltages and IPMC thicknesses. To validate the model, calculated tip deflection, applied net current, and potential drop in case of various IPMC thicknesses and applied voltages are compared to experimental data.

  6. Physical Performance Comparison Between Under 15 Elite and Sub-Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Trecroci Athos

    2018-03-01

    Full Text Available The aim of this study was to compare the physical performance profile among young soccer players of different competitive levels. Two teams of elite (n = 22 and sub-elite (n = 22 soccer players at national (highly skilled and regional (moderately skilled level were recruited in the study. All participants were tested using a modified Illinois change of direction speed test, a T-drill with and without a ball, a countermovement jump, and a 10-m sprint. The analysis revealed significant differences in favor of elite players in sprint (d = 1.54, large and vertical jump (d = 2.03, very large outcomes, while no differences were observed in both modified Illinois change of direction speed (d = 0.16, trivial and T-drill (d = 0.20, small tests between the groups. The ability to change direction and speed with and without a ball was found not to be suitable enough to highlight the difference among youth players with moderate-to-high level of play. In conclusion, multi-testing approach based on task-related power should include vertical jump and sprint performance to delineate players of a higher level.

  7. Physics at 13 TeV: ALICE - scratching under the surface

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    ALICE’s wonderland materialises where the lead-lead ultrarelativistic collisions happen in the LHC. With a jump of over one order of magnitude in collision energy from the Relativistic Heavy Ion Collider (RHIC) and using state-of-the-art detectors, the experiment studies the quark-gluon plasma, a state of matter that existed during the Universe’s infancy.   The hugely hot medium was observed to behave almost like an ideal fluid, which, although absorbing their energy, leaves single propagating quarks and gluons almost undeflected, enhances the production of strange quarks, suppresses the production of particles made of quarks and antiquarks, and seems to be emitting light in the early stages of its expansion. “The data from the first LHC run have already challenged some of the notions that had emerged from the previous RHIC programme,” says Federico Antinori, ALICE Physics Coordinator. “The abundance of hard probes, that is, high-energy partic...

  8. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    Science.gov (United States)

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  9. Reducing repeat pregnancies in adolescence: applying realist principles as part of a mixed-methods systematic review to explore what works, for whom, how and under what circumstances.

    Science.gov (United States)

    Charles, Joanna M; Rycroft-Malone, Jo; Aslam, Rabeea'h; Hendry, Maggie; Pasterfield, Diana; Whitaker, Rhiannon

    2016-09-20

    Previous research has demonstrated emotional, psychological and educational harm to young mothers following unintended conceptions. The UK has one of the highest rates of pregnancies in adolescence in Western Europe with a high proportion of these being repeat pregnancies, making it a topic of interest for public health policy makers, and health and social care practitioners. As part of a wider mixed-methods systematic review, realist principles were applied to synthesise evidence about interventions aiming to reduce repeat pregnancies in adolescence. A multi-streamed, mixed-methods systematic review was conducted searching 11 major electronic databases and 9 additional databases from 1995 onwards, using key terms such as pregnancy, teen or adolescent. The principles of realist synthesis were applied to all included literature to uncover theories about what works, for whom, how and in what context. Initial theory areas were developed through evidence scoping, group discussion by the authors and stakeholder engagement to uncover context + mechanism = outcome (CMO) configurations and related narratives. The searches identified 8,664 documents initially, and 403 in repeat searches, filtering to 81 included studies, including qualitative studies, randomised controlled trials, quantitative studies and grey literature. Three CMO configurations were developed. The individual experiences of young mothers' triggered self-efficacy, notions of perceived risks, susceptibility and benefits of pregnancy, resulting in the adolescent taking control of their fertility and sexual encounters. The choice between motherhood and other goals triggered notions of motivations, resulting in the adolescent managing their expectations of motherhood and controlling their fertility and sexual encounters. Barriers and facilitators to accessing services triggered notions of connectedness and self-determination; resulting in interventions that are tailored so they are relevant to young

  10. Radiation Physics for Medical Physicists

    CERN Document Server

    Podgorsak, Ervin B

    2010-01-01

    This well-received textbook and reference summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other hand. This expanded and revised second edition offers reorganized and expanded coverage. Several of the original chapters have been split into two with new sections added for completeness and better flow. New chapters on Coulomb scattering; on energy transfer and energy absorption in photon interactions; and on waveguide theory have been added in recognition of their importance. Others tra...

  11. Expanding Uncertainty Principle to Certainty-Uncertainty Principles with Neutrosophy and Quad-stage Method

    Directory of Open Access Journals (Sweden)

    Fu Yuhua

    2015-03-01

    Full Text Available The most famous contribution of Heisenberg is uncertainty principle. But the original uncertainty principle is improper. Considering all the possible situations (including the case that people can create laws and applying Neutrosophy and Quad-stage Method, this paper presents "certainty-uncertainty principles" with general form and variable dimension fractal form. According to the classification of Neutrosophy, "certainty-uncertainty principles" can be divided into three principles in different conditions: "certainty principle", namely a particle’s position and momentum can be known simultaneously; "uncertainty principle", namely a particle’s position and momentum cannot be known simultaneously; and neutral (fuzzy "indeterminacy principle", namely whether or not a particle’s position and momentum can be known simultaneously is undetermined. The special cases of "certain ty-uncertainty principles" include the original uncertainty principle and Ozawa inequality. In addition, in accordance with the original uncertainty principle, discussing high-speed particle’s speed and track with Newton mechanics is unreasonable; but according to "certaintyuncertainty principles", Newton mechanics can be used to discuss the problem of gravitational defection of a photon orbit around the Sun (it gives the same result of deflection angle as given by general relativity. Finally, for the reason that in physics the principles, laws and the like that are regardless of the principle (law of conservation of energy may be invalid; therefore "certaintyuncertainty principles" should be restricted (or constrained by principle (law of conservation of energy, and thus it can satisfy the principle (law of conservation of energy.

  12. Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

    International Nuclear Information System (INIS)

    Hiwatari, R.; Asaoka, Y.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2004-01-01

    This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with β N = 1.8, HH = 1.0, andf nGW 0.85 had sufficient potential to achieve the electric break-even condition (net electric power P e net = 0MW) under the following engineering conditions: machine major radius 6.5m ≤ R p ≤ 8.5m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency η e 30%, and NBI system efficiency η NBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and fη GW . ≥ 3.0 is required for P e net ∼ 600MW with fusion power P f ∼ 3000MW. On the other hand, fη GW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of T ave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs P f (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius R p ∼ 7.5m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy. (author)

  13. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study

    Science.gov (United States)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.

    2018-01-01

    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  14. Physical properties of pizza Mozzarella cheese manufactured under different cheese-making conditions.

    Science.gov (United States)

    Banville, V; Morin, P; Pouliot, Y; Britten, M

    2013-08-01

    The effect of manufacturing factors on the shreddability and meltability of pizza Mozzarella cheese was studied. Four experimental cheeses were produced with 2 concentrations of denatured whey protein added to milk (0 or 0.25%) and 2 renneting pH values (6.4 or 6.5). The cheeses were aged 8, 22, or 36d before testing. Shreddability was assessed by the presence of fines, size of the shreds, and adhesion to the blade after shredding at 4, 13, or 22°C. A semi-empirical method was developed to measure the matting behavior of shreds by simulating industrial bulk packaging. Rheological measurements were performed on cheeses with and without a premelting treatment to assess melt and postmelt cheese physical properties. Lowering the pH of milk at renneting and aging the cheeses generally decreased the fines production during shredding. Adding whey protein to the cheeses also altered the fines production, but the effect varied depending on the renneting and aging conditions. The shred size distribution, adhesion to the blade, and matting behavior of the cheeses were adversely affected by increased temperature at shredding. The melting profiles obtained by rheological measurements showed that better meltability can be achieved by lowering the pH of milk at renneting or aging the cheese. The premelted cheeses were found to be softer at low temperatures (50°C) compared with the cheeses that had not undergone the premelting treatment. Understanding and controlling milk standardization, curd acidification, and cheese aging are essential for the production of Mozzarella cheese with desirable shreddability and meltability. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. PHYSICS

    CERN Multimedia

    J. D'Hondt

    The Electroweak and Top Quark Workshop (16-17th of July) A Workshop on Electroweak and Top Quark Physics, dedicated on early measurements, took place on 16th-17th July. We had more than 40 presentations at the Workshop, which was an important milestone for 2007 physics analyses in the EWK and TOP areas. The Standard Model has been tested empirically by many previous experiments. Observables which are nowadays known with high precision will play a major role for data-based CMS calibrations. A typical example is the use of the Z to monitor electron and muon reconstruction in di-lepton inclusive samples. Another example is the use of the W mass as a constraint for di-jets in the kinematic fitting of top-quark events, providing information on the jet energy scale. The predictions of the Standard Model, for what concerns proton collisions at the LHC, are accurate to a level that the production of W/Z and top-quark events can be used as a powerful tool to commission our experiment. On the other hand the measure...

  16. PHYSICS

    CERN Multimedia

    Christopher Hill

    2013-01-01

    Since the last CMS Bulletin, the CMS Physics Analysis Groups have completed more than 70 new analyses, many of which are based on the complete Run 1 dataset. In parallel the Snowmass whitepaper on projected discovery potential of CMS for HL-LHC has been completed, while the ECFA HL-LHC future physics studies has been summarised in a report and nine published benchmark analyses. Run 1 summary studies on b-tag and jet identification, quark-gluon discrimination and boosted topologies have been documented in BTV-13-001 and JME-13-002/005/006, respectively. The new tracking alignment and performance papers are being prepared for submission as well. The Higgs analysis group produced several new results including the search for ttH with H decaying to ZZ, WW, ττ+bb (HIG-13-019/020) where an excess of ~2.5σ is observed in the like-sign di-muon channel, and new searches for high-mass Higgs bosons (HIG-13-022). Search for invisible Higgs decays have also been performed both using the associ...

  17. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    In the period since the last CMS Bulletin, the LHC – and CMS – have entered LS1. During this time, CMS Physics Analysis Groups have performed more than 40 new analyses, many of which are based on the complete 8 TeV dataset delivered by the LHC in 2012 (and in some cases on the full Run 1 dataset). These results were shown at, and well received by, several high-profile conferences in the spring of 2013, including the inaugural meeting of the Large Hadron Collider    Physics Conference (LHCP) in Barcelona, and the 26th International Symposium on Lepton Photon Interactions at High Energies (LP) in San Francisco. In parallel, there have been significant developments in preparations for Run 2 of the LHC and on “future physics” studies for both Phase 1 and Phase 2 upgrades of the CMS detector. The Higgs analysis group produced five new results for LHCP including a new H-to-bb search in VBF production (HIG-13-011), ttH with H to γ&ga...

  18. PHYSICS

    CERN Multimedia

    C. Hill

    2013-01-01

    The period since the last CMS bulletin has seen the end of proton collisions at a centre-of-mass energy 8 TeV, a successful proton-lead collision run at 5 TeV/nucleon, as well as a “reference” proton run at 2.76 TeV. With these final LHC Run 1 datasets in hand, CMS Physics Analysis Groups have been busy analysing these data in preparation for the winter conferences. Moreover, despite the fact that the pp run only concluded in mid-December (and there was consequently less time to complete data analyses), CMS again made a strong showing at the Rencontres de Moriond in La Thuile (EW and QCD) where nearly 40 new results were presented. The highlight of these preliminary results was the eagerly anticipated updated studies of the properties of the Higgs boson discovered in July of last year. Meanwhile, preparations for Run 2 and physics performance studies for Phase 1 and Phase 2 upgrade scenarios are ongoing. The Higgs analysis group produced updated analyses on the full Run 1 dataset (~25 f...

  19. Principles of European Contract Law

    DEFF Research Database (Denmark)

    Lando, Ole; Beale, Hugh

    This text provides a comprehensive guide to the principles of European contract law. They have been drawn up by an independent body of experts from each Member State of the EU, under a project supported by the European Commission and many other organizations. The principles are stated in the form...... of articles, with a detailed commentary explaining the purpose and operation of each article and its relation to the remainder. Each article also has extensive comparative notes surveying the national laws and other international provisions on the topic. "The Principles of European Contract Law Parts I &...... in developing a common European legal culture. The European Parliament has twice called for the creation of a European Civil Code. The principles of European contract law are essential steps in these projects. This text provides a comprehensive guide to the Principles of European contract law. They have been...

  20. Bioreactor principles

    Science.gov (United States)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. 5 CFR 551.202 - General principles.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false General principles. 551.202 Section 551... ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Exemptions and Exclusions § 551.202 General principles. In all exemption determinations, the agency must observe the following principles: (a) Each employee is presumed to...

  2. 24 CFR 3282.402 - General principles.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General principles. 3282.402... and Remedial Actions § 3282.402 General principles. (a) Nothing in this subpart or in these... manufactured home manufacturers to provide remedial actions under this subpart is limited by the principle that...

  3. Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions

    Directory of Open Access Journals (Sweden)

    Arizzi, A.

    2015-06-01

    Full Text Available This work focuses on the chemical-mineralogical, textural and physical-mechanical properties of hydraulic lime mortars made with siliceous and calcareous aggregate. Mortars were cured at 60% and 90% of relative humidity, so as to assess the variability of mortar petrophysical properties in the hardened state due to the moisture conditions. The final aim was to determine the most adequate moisture conditions to be maintained during application and hardening of hydraulic mortars intended for repair interventions. We found out that using a calcareous aggregate and curing mortar at 90% of relative humidity give place to better textural and mechanical properties. However, these characteristics mostly depend on the maximum size of the aggregate grains, which should be smaller than 6 mm, in order to avoid the occurrence of mechanical discontinuities in the mortar.En este trabajo se han estudiado las propiedades químico-mineralógicas, texturales y físico-mecánicas de morteros de cal hidráulica elaborados con áridos silíceo y calcítico. Estos morteros se han curado al 60% y 90% de humedad relativa, con el fin de evaluar las eventuales diferencias en las propiedades petrofísicas de los morteros una vez endurecidos y así establecer cuál de los dos ambientes es recomendable durante la aplicación y fraguado de morteros de cal hidráulica destinados a obras de restauración. Se ha encontrado que el uso de un árido de composición calcítica y el curado al 90% de humedad relativa dan lugar a morteros hidráulicos con mejores características texturales y propiedades mecánicas. De todas formas, estas características dependen principalmente del tamaño máximo del árido empleado, que debería ser inferior a 6 mm para evitar discontinuidades mecánicas en el mortero.

  4. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  5. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  6. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    Directory of Open Access Journals (Sweden)

    Philippe Thomen

    Full Text Available Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  7. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    Science.gov (United States)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  8. Changes in body size and physical characteristics of South African under-20 rugby union players over a 13-year period.

    Science.gov (United States)

    Lombard, Wayne P; Durandt, Justin J; Masimla, Herman; Green, Mervin; Lambert, Michael I

    2015-04-01

    This study compared changes in the body size and physical characteristics of South African under-20 rugby union players over a 13-year period. A total of 453 South African under-20 players (forwards: n = 256 and backs: n = 197) underwent measurements of body mass, stature, muscular strength, endurance, and 10- and 40-m sprint times. A 2-way analysis of variance was used to determine significant differences for the main effects of position (forwards vs. backs) and time (1998-2010). The pooled data showed that forwards were significantly heavier (22%), taller (5%), and stronger (18%) than the backs. However, when 1 repetition maximum strength scores were adjusted for body mass, backs were stronger per kg body mass. Stature did not change over the 13-year period for both groups. There were, however, significant increases in muscular strength (50%), body mass (20%), and muscular endurance (50%). Furthermore, an improvement in sprint times over 40 (4%) and 10 m (7%) was evident over the period of the study. In conclusion, the players became heavier, stronger, taller, and improved their upper-body muscular endurance over the 13 years of the study. Furthermore, sprint times over 10 and 40 m improved over the same time period despite the increase in body mass. It can be speculated that the changes in physical characteristics of the players over time are possibly a consequence of (a) adaptations to the changing demands of the game and (b) advancements in training methods.

  9. The Influence of Basic Physical Properties of Soil on its Electrical Resistivity Value under Loose and Dense Condition

    Science.gov (United States)

    Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.

    2014-04-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  10. The influence of basic physical properties of soil on its electrical resistivity value under loose and dense condition

    International Nuclear Information System (INIS)

    Abidin, M H Z; Ahmad, F; Wijeyesekera, D C; Saad, R

    2014-01-01

    Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρ bulk/dry ), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρ bulk/dry , ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.

  11. A framework for back-up and restore under the Experimental Physics and Industrial Control System

    International Nuclear Information System (INIS)

    Karonis, N.T.

    1992-12-01

    EPICS is a system that allows one to design and implement a controls system. At its foundation, i.e., the level closest to the devices being controlled, are autonomous computers, each called an Input/Output Controller or IOC. In EPICS, devices controlled by an IOC are represented by software entities called process variables. All devices are monitored/controlled by reading/writing values from/to their associated process variables. Under this schema, distributing processing over a number of IOCs and representing devices with process variables, there are a variety of ways one can view or group the information in the control system. Two of the more common groupings are by IOC (location) and by devices (function). Simply stated, the authors require a system capable of restoring the state of the machine, in their case the Advanced Photon Source, to a known desired state from somewhere in the past. To that end, they propose a framework which describes a system that periodically records and preserves the values of key process variables so that later on, those values can be written to the machine in an attempt to restore it to that same state. One of the more powerful notions that must be preserved in any system that solves this problem is the independence between the specification of what is monitored and the specification of what is written. In other words, grouping process variables for monitoring must be kept independent of the number of different ways to group process variables (e.g., by IOC, by device, etc.) when they are written

  12. The landscape of theoretical physics a global view from point particles to the brane world and beyond, in search of a unifying principle

    CERN Document Server

    Pavšič, Matej

    2002-01-01

    This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, the elegant description of geometry by means of Clifford algebra, about the fascinating possibilities the latter algebra offers in reformulating the existing physical theories, and quantizing them in a natural way. It is shown how Clifford algebra provides much more: it provides room for new physics, with the prospects of resolving certain long standing puzzles. The theory of branes and the idea of how a 3-brane might represent our world is discussed in detail. Much attention is paid to the elegant geometric theory of branes which employs the infinite dimensional space of functions describing branes. Clifford algebra is generalized to the infinite dimensional spaces. In short, this is a book for anybody who would like to explore how the ``theory of everything'' might possibly be formulated. The the...

  13. The gauge principle vs. the equivalence principle

    International Nuclear Information System (INIS)

    Gates, S.J. Jr.

    1984-01-01

    Within the context of field theory, it is argued that the role of the equivalence principle may be replaced by the principle of gauge invariance to provide a logical framework for theories of gravitation

  14. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of Planck’s constant

    Science.gov (United States)

    Boriev, I. A.

    2018-03-01

    Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.

  15. Radiation chemistry; principles and applications

    International Nuclear Information System (INIS)

    Aziz, F.; Rodgers, M.A.J.

    1994-01-01

    The book attempts to present those fields of radiation chemistry which depend on the principles of radiation chemistry. The first four chapters are some prelude about radiation chemistry principles with respect to how ionizing radiation interacts with matter, and primary results from these interactions and, which kinetic laws are followed by these primary interactions and which equipment for qualitative studies is necessary. Following chapters included principles fields of radiation chemistry. The last six chapters discussed of principle of chemistry from physical and chemical point of view. In this connection the fundamentals of radiation on biological system is emphasised. On one hand, the importance of it for hygiene and safety as neoplasms therapy is discussed. on the other hand, its industrial importance is presented

  16. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  17. Synchronized personalized music audio-playlists to improve adherence to physical activity among patients participating in a structured exercise program: a proof-of-principle feasibility study.

    Science.gov (United States)

    Alter, David A; O'Sullivan, Mary; Oh, Paul I; Redelmeier, Donald A; Marzolini, Susan; Liu, Richard; Forhan, Mary; Silver, Michael; Goodman, Jack M; Bartel, Lee R

    2015-01-01

    Preference-based tempo-pace synchronized music has been shown to reduce perceived physical activity exertion and improve exercise performance. The extent to which such strategies can improve adherence to physical activity remains unknown. The objective of the study is to explore the feasibility and efficacy of tempo-pace synchronized preference-based music audio-playlists on adherence to physical activity among cardiovascular disease patients participating in a cardiac rehabilitation. Thirty-four cardiac rehabilitation patients were randomly allocated to one of two strategies: (1) no music usual-care control and (2) tempo-pace synchronized audio-devices with personalized music playlists + usual-care. All songs uploaded onto audio-playlist devices took into account patient personal music genre and artist preferences. However, actual song selection was restricted to music whose tempos approximated patients' prescribed exercise walking/running pace (steps per minute) to achieve tempo-pace synchrony. Patients allocated to audio-music playlists underwent further randomization in which half of the patients received songs that were sonically enhanced with rhythmic auditory stimulation (RAS) to accentuate tempo-pace synchrony, whereas the other half did not. RAS was achieved through blinded rhythmic sonic-enhancements undertaken manually to songs within individuals' music playlists. The primary outcome consisted of the weekly volume of physical activity undertaken over 3 months as determined by tri-axial accelerometers. Statistical methods employed an intention to treat and repeated-measures design. Patients randomized to personalized audio-playlists with tempo-pace synchrony achieved higher weekly volumes of physical activity than did their non-music usual-care comparators (475.6 min vs. 370.2 min, P  music usual-care controls, respectively, P  music with RAS utilized their audio-playlist devices more frequently than did non-RAS music counterparts ( P

  18. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  19. [Heidaigou Opencast Coal Mine: Soil Enzyme Activities and Soil Physical and Chemical Properties Under Different Vegetation Restoration].

    Science.gov (United States)

    Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li

    2016-03-15

    Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.

  20. PHYSICS

    CERN Multimedia

    V.Ciulli

    2011-01-01

    The main programme of the Physics Week held between 16th and 20th May was a series of topology-oriented workshops on di-leptons, di-photons, inclusive W, and all-hadronic final states. The goal of these workshops was to reach a common understanding for the set of objects (ID, cleaning...), the handling of pile-up, calibration, efficiency and purity determination, as well as to revisit critical common issues such as the trigger. Di-lepton workshop Most analysis groups use a di-lepton trigger or a combination of single and di-lepton triggers in 2011. Some groups need to collect leptons with as low PT as possible with strong isolation and identification requirements as for Higgs into WW at low mass, others with intermediate PT values as in Drell-Yan studies, or high PT as in the Exotica group. Electron and muon reconstruction, identification and isolation, was extensively described in the workshop. For electrons, VBTF selection cuts for low PT and HEEP cuts for high PT were discussed, as well as more complex d...

  1. An uncertainty principle for star formation - II. A new method for characterising the cloud-scale physics of star formation and feedback across cosmic history

    Science.gov (United States)

    Kruijssen, J. M. Diederik; Schruba, Andreas; Hygate, Alexander P. S.; Hu, Chia-Yu; Haydon, Daniel T.; Longmore, Steven N.

    2018-05-01

    The cloud-scale physics of star formation and feedback represent the main uncertainty in galaxy formation studies. Progress is hampered by the limited empirical constraints outside the restricted environment of the Local Group. In particular, the poorly-quantified time evolution of the molecular cloud lifecycle, star formation, and feedback obstructs robust predictions on the scales smaller than the disc scale height that are resolved in modern galaxy formation simulations. We present a new statistical method to derive the evolutionary timeline of molecular clouds and star-forming regions. By quantifying the excess or deficit of the gas-to-stellar flux ratio around peaks of gas or star formation tracer emission, we directly measure the relative rarity of these peaks, which allows us to derive their lifetimes. We present a step-by-step, quantitative description of the method and demonstrate its practical application. The method's accuracy is tested in nearly 300 experiments using simulated galaxy maps, showing that it is capable of constraining the molecular cloud lifetime and feedback time-scale to <0.1 dex precision. Access to the evolutionary timeline provides a variety of additional physical quantities, such as the cloud-scale star formation efficiency, the feedback outflow velocity, the mass loading factor, and the feedback energy or momentum coupling efficiencies to the ambient medium. We show that the results are robust for a wide variety of gas and star formation tracers, spatial resolutions, galaxy inclinations, and galaxy sizes. Finally, we demonstrate that our method can be applied out to high redshift (z≲ 4) with a feasible time investment on current large-scale observatories. This is a major shift from previous studies that constrained the physics of star formation and feedback in the immediate vicinity of the Sun.

  2. Magic Physics?

    Science.gov (United States)

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  3. Identifying and sharing data for secondary data analysis of physical activity, sedentary behaviour and their determinants across the life course in Europe : general principles and an example from DEDIPAC

    NARCIS (Netherlands)

    Lakerveld, J.; Loyen, A.; Ling, F.C.M.; De Craemer, M.; van der Ploeg, H.P.; O’Gorman, D.J.; Carlin, A.; Caprinica, L.; Kalter, J.; Oppert, J.-M.; Chastin, S.; Cardon, G.; Brug, J.; MacDonncha, C.

    2017-01-01

    Background The utilisation of available cross-European data for secondary data analyses on physical activity, sedentary behaviours and their underlying determinants may benefit from the wide variation that exists across Europe in terms of these behaviours and their determinants. Such reuse of

  4. Can quantum probes satisfy the weak equivalence principle?

    Energy Technology Data Exchange (ETDEWEB)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); Paris, Matteo G.A. [Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano (Italy); INFN, Sezione di Milano, I-20133 Milano (Italy)

    2017-05-15

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’s mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.

  5. Can quantum probes satisfy the weak equivalence principle?

    International Nuclear Information System (INIS)

    Seveso, Luigi; Paris, Matteo G.A.

    2017-01-01

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’s mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.

  6. Coordinated Scheme of Under-Frequency Load Shedding with Intelligent Appliances in a Cyber Physical Power System

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-08-01

    Full Text Available The construction of a cyber physical system in a power grid provides more potential control strategies for the power grid. With the rapid employment of intelligent terminal equipment (e.g., smart meters and intelligent appliances in the environment of a smart grid, abundant dynamic response information could be introduced to support a secure and stable power system. Combining demand response technology with the traditional under-frequency load shedding (UFLS scheme, a new UFLS strategy-determining method involving intelligent appliances is put forward to achieve the coordinated control of quick response resources and the traditional control resources. Based on this method, intelligent appliances can be used to meet the regulatory requirements of system operation in advance and prevent significant frequency drop, thereby improving the flexibility and stability of the system. Time-domain simulation verifies the effectiveness of the scheme, which is able to mitigate frequency drop and reduce the amount of load shedding.

  7. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position

    DEFF Research Database (Denmark)

    Rebelo, A; Brito, J; Maia, J

    2013-01-01

    Anthropometric characteristics, physical fitness and technical skills of under-19 (U19) soccer players were compared by competitive level (elite, n=95; non-elite, n=85) and playing position (goalkeeper, central defender, fullback, midfield, forward). Fitness tests included 5- and 30-m sprints......, agility, squat jump (SJ) and countermovement jump (CMJ), strength and Yo-Yo intermittent endurance test level 2 (Yo-Yo IE2). Soccer-specific skills included ball control and dribbling. Independent of position, elite players presented more hours of training per year than non-elite players (d>1.2). Stature...... and body mass discriminated elite from non-elite players among goalkeepers and central defenders (d>0.6). Major differences were noted between elite and non-elite goalkeepers for SJ, CMJ, Yo-Yo IE2, and ball control (d>1.2). Elite central defenders performed better than their non-elite counterparts in SJ...

  8. Probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty

    International Nuclear Information System (INIS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Peng, Weiwen; Wang, Hai-Kun; Mahadevan, Sankaran

    2016-01-01

    A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs operating under uncertainty is developed. The framework incorporates the overall uncertainties appearing in a structural integrity assessment. A comprehensive uncertainty quantification (UQ) procedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ methods. In addition, the factors that contribute the most to the resulting output uncertainty are investigated and identified for uncertainty reduction in decision-making. A high prediction accuracy of the proposed framework is validated through a comparison of model predictions to the experimental results of GH4133 superalloy and full-scale tests of aero engine high-pressure turbine discs. - Highlights: • A probabilistic PoF-based framework for fatigue life prediction is proposed. • A comprehensive procedure forquantifyingmultiple types of uncertaintyis presented. • The factors that contribute most to the resulting output uncertainty are identified. • The proposed frameworkdemonstrates high prediction accuracybyfull-scale tests.

  9. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    Science.gov (United States)

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in

  10. Principles of nuclear magnetic resonance (NMR) - current state of the art

    International Nuclear Information System (INIS)

    Lerski, R.A.

    1985-01-01

    Nuclear magnetic resonance (NMR) imaging has progressed rapidly from laboratory curiosity to commercial exploitation and clinical application in the space of only three years. The physical principles underlying the technique are described and the equipment requirements outlined. The question of optimal magnetic field strength is discussed. (author)

  11. BNNTs under the influence of external electric field as potential new drug delivery vehicle of Glu, Lys, Gly and Ser amino acids: A first-principles study

    International Nuclear Information System (INIS)

    Farmanzadeh, Davood; Ghazanfary, Samereh

    2014-01-01

    Graphical abstract: - Highlights: • Solvation energies show that the BNNTs/amino acids complex stabilizes in presence of solvent. • The adsorption process is sensitive to the external electric field. • The electric field is a suitable method for adsorption and storage of amino acids on BNNTs. - Abstract: The interaction of Glu (Glutamic acid), Lys (Lysine), Gly (Glycine) and Ser (Serine) amino acids with different polarities and (9, 0) zigzag single-wall boron nitride nanotubes (BNNTs) with various lengths in the presence and absence of external electric field (EF) in gas and solvent phases, are studied using density functional theory. It is found that interaction of Glu, Lys, Gly and Ser amino acids with BNNTs in both phases is energetically favorable. From solvation energy calculations, it can be seen that the BNNTs/amino acid complex dissolution in water is spontaneous. The adsorption energies and quantum molecular descriptors changed in the presence of external EF. Therefore, the study of BNNTs/amino acid complex under influence of external electric field is very important in proposing or designing new drug delivery systems in the presence of external EF. Results indicate that Glu, Lys, Gly and Ser amino acids can be adsorbed considerably on the BNNTs in the existence of external electric field. Our results showed that the BNNTs can act as a suitable drug delivery vehicle of Glu, Lys, Gly and Ser amino acids within biological systems and strength of adsorption and rate of drug release can be controlled by the external EF

  12. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  13. Le Chatelier principle in replicator dynamics

    OpenAIRE

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-01-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nas...

  14. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  15. Wheat yield and physical properties of a brown latosol under no-tillage in south-central Paraná

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Kramer

    2013-10-01

    Full Text Available Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT. The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006, wheat (2007 and maize (2009 of a plot (150 ha, zones with higher and lower yield potential (Z1 and Z2, respectively were identified. Sampling grids with 16 units (50 x 50 m and three sampling points per unit were established. The wheat grain yield (GY and water infiltration capacity (WIC were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg levels and the latter to determine soil bulk density (BD, total porosity (TP, macroporosity (Mac, and microporosity (Mic. Soil penetration resistance (PR and water content (SWC were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 % than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between

  16. Turbulence and the Stabilization Principle

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Further results of research, reported in several previous NASA Tech Briefs articles, were obtained on a mathematical formalism for postinstability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence). To recapitulate: Fictitious control forces are introduced to couple the dynamical equations with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in ordinary perceived three-dimensional space is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. Con sequently, the postinstability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable. The previously reported findings are analyzed from the perspective of the authors Stabilization Principle, according to which (1) stability is recognized as an attribute of mathematical formalism rather than of underlying physics and (2) a dynamical system that appears unstable when modeled by differentiable functions only can be rendered stable by modifying the dynamical equations to incorporate intrinsic stochasticity.

  17. First-principles investigations on structural, elastic, dynamical, and thermal properties of earth-abundant nitride semiconductor CaZn{sub 2}N{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying-Qin; Liu, Lei; Cheng, Yan [Sichuan Univ. (China). College of Physical Science and Technology; Hu, Cui E. [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Cai, Ling-Cang [CAEP, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research

    2017-04-01

    We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn{sub 2}N{sub 2} using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn{sub 2}N{sub 2} at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants C{sub ij} together with other derived mechanical properties of CaZn{sub 2}N{sub 2} compound have also been systematically investigated. The results reveal that CaZn{sub 2}N{sub 2} is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn{sub 2}N{sub 2} compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Γ points together with the atoms that contributed to these vibrations of CaZn{sub 2}N{sub 2}. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0-20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn{sub 2}N{sub 2} as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grueneisen parameter γ.

  18. Scientific principles underlying the production of metallurgy-grade formed coke from weakly baking coals. Nauchnye osnovy proizvodstva formovannogo metallurgicheskogo koksa iz slabospekayushchikhsya uglei

    Energy Technology Data Exchange (ETDEWEB)

    Speranskaya, G.V.; Tyutyunnikov, Yu.B.; Erkin, L.I.; Nefedov, P.Ya.; Sheptovitskii, M.S.; Toryanik, E.I.

    1987-01-01

    Coking coal resources of the USSR are nonuniformly distributed among major coal basins (Donetsk 26%, Pechora 7%, Kizelovsk and L'vov-Volyn' 0.5% each, Kuznetsk 48.2%, Karaganda 7%, South Yakutiya 4.4%, others 7.4%). Only one-third of the resources are available in the European area of the USSR where the demand for blast-furnace coke is greater. The use of weakly baking and nonbaking coals for the production of metallurgy-grade formed coke has been found to be the simplest way to avoid transportation of fat components of coking blends and to cut the cost of pig iron production under Soviet circumstances. Commercial production of the formed coke should enable the blast-furnace coke production to be raised by 15 Mio t/a now and by 20-22 Mio t/a in the nearest future without the structure of the Soviet coal production being significantly affected. The book describes technical properties of the gas, weakly baking and long-flame coals (G, SS and D types, respectively) from Donetsk, Kuznetsk, Irkutsk and Karaganda coal basins used as coking blend components, discusses many scientific and technological aspects of the industrial-scale process (i.e. thermal pretreatment of coal with a gaseous heat-carrier, effect of pressure on the plastic layer formation in weakly baking coal blends, coke oven construction), and reviews technical properties of formed coke (shape and size of coke lumps, drum strength, macro- and microstructure, thermal stability, reactivity) used in the blast-furnace process. 122 refs., 118 figs., 87 tabs.

  19. Hooke's Law: Applications of a Recurring Principle

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; Palani, Gurunanthan; DiCarlo, Stephen E.

    2009-01-01

    Students generally approach topics in physiology as a series of unrelated phenomena that share few underlying principles. However, if students recognized that the same underlying principles can be used to explain many physiological phenomena, they may gain a more unified understanding of physiological systems. To address this concern, we…

  20. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...