Static Analysis Numerical Algorithms
2016-04-01
STATIC ANALYSIS OF NUMERICAL ALGORITHMS KESTREL TECHNOLOGY, LLC APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION...3. DATES COVERED (From - To) NOV 2013 – NOV 2015 4. TITLE AND SUBTITLE STATIC ANALYSIS OF NUMERICAL ALGORITHMS 5a. CONTRACT NUMBER FA8750-14-C...and Honeywell Aerospace Advanced Technology to combine model-based development of complex avionics control software with static analysis of the
Friesen, Timothy J; Takahira, Hiroyuki; Allegro, Lisa; Yasuda, Yoshitaka; Kawaji, Masahiro
2002-10-01
Understanding the stability of fluid interfaces subjected to small vibrations under microgravity conditions is important for designing future materials science experiments to be conducted aboard orbiting spacecraft. During the STS-85 mission, experiments investigating the motion of a large bubble resulting from small, controlled vibrations were performed aboard the Space Shuttle Discovery. To better understand the experimental results, two-and three-dimensional simulations of the experiment were performed using level set and volume-of-fluid interface tracking algorithms. The simulations proved capable of predicting accurately the experimentally determined bubble translation behavior. Linear dependence of the bubble translation amplitude on the container translation amplitude was confirmed. In addition, the simulation model was used to confirm predictions of a theoretical inviscid model of bubble motion developed in a previous study.
Numerical algorithms in secondary creep
International Nuclear Information System (INIS)
Feijoo, R.A.; Taroco, E.
1980-01-01
The problem of stationary creep is presented as well as its variational formulation, when weak constraints are established, capable of assuring one single solution. A second, so-called elasto-creep problem, is further analysed, together with its variational formulation. It is shown that its stationary solution coincides with that of the stationary creep and the advantages of this formulation with respect to the former one is emphasized. Some numerical applications showing the efficiency of the method propesed are finally presented [pt
Children, algorithm and the decimal numeral system
Directory of Open Access Journals (Sweden)
Clélia Maria Ignatius Nogueira
2010-08-01
Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.
A numerical algorithm of fuzzy reliability
International Nuclear Information System (INIS)
Jiang Qimi; Chen, C.-H.
2003-01-01
In this paper, a computational model of fuzzy reliability focusing on solving the engineering problems with random general stress-fuzzy general strength is presented. The mathematical basis of this computational model is that the fuzzy probability can be computed with the computational method of conventional probability by use of a mathematical transition. Based on this computational model, a numerical algorithm is given which can be applied to compute the fuzzy reliability of mechanical components, sensors, electronic units, etc. This establishes a basis for the reliability analysis of systems consisting of components with fuzzy reliability. As an example, a case study about the fuzzy reliability analysis of a kind of sensor used in railway systems is provided to verify the logic of this algorithm. The computation results show that this algorithm fits the engineering experience
Numerical optimization for Artificial Retina Algorithm
Borisyak, M.; Ustyuzhanin, A.; Derkach, D.; Belous, M.
2017-10-01
High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.
Adaptive numerical algorithms in space weather modeling
Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-02-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Adaptive numerical algorithms in space weather modeling
International Nuclear Information System (INIS)
Tóth, Gábor; Holst, Bart van der; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav
2012-01-01
Space weather describes the various processes in the Sun–Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit
Adaptive Numerical Algorithms in Space Weather Modeling
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical
Parallel Algorithm for Adaptive Numerical Integration
International Nuclear Information System (INIS)
Sujatmiko, M.; Basarudin, T.
1997-01-01
This paper presents an automation algorithm for integration using adaptive trapezoidal method. The interval is adaptively divided where the width of sub interval are different and fit to the behavior of its function. For a function f, an integration on interval [a,b] can be obtained, with maximum tolerance ε, using estimation (f, a, b, ε). The estimated solution is valid if the error is still in a reasonable range, fulfil certain criteria. If the error is big, however, the problem is solved by dividing it into to similar and independent sub problem on to separate [a, (a+b)/2] and [(a+b)/2, b] interval, i. e. ( f, a, (a+b)/2, ε/2) and (f, (a+b)/2, b, ε/2) estimations. The problems are solved in two different kinds of processor, root processor and worker processor. Root processor function ti divide a main problem into sub problems and distribute them to worker processor. The division mechanism may go further until all of the sub problem are resolved. The solution of each sub problem is then submitted to the root processor such that the solution for the main problem can be obtained. The algorithm is implemented on C-programming-base distributed computer networking system under parallel virtual machine platform
Parallel algorithms for numerical linear algebra
van der Vorst, H
1990-01-01
This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p
Numerical Algorithm for Delta of Asian Option
Directory of Open Access Journals (Sweden)
Boxiang Zhang
2015-01-01
Full Text Available We study the numerical solution of the Greeks of Asian options. In particular, we derive a close form solution of Δ of Asian geometric option and use this analytical form as a control to numerically calculate Δ of Asian arithmetic option, which is known to have no explicit close form solution. We implement our proposed numerical method and compare the standard error with other classical variance reduction methods. Our method provides an efficient solution to the hedging strategy with Asian options.
A Numerical Algorithm to find All Scalar Feedback Nash Equilibria
Engwerda, J.C.
2013-01-01
Abstract: In this note we generalize a numerical algorithm presented in [9] to calculate all solutions of the scalar algebraic Riccati equations that play an important role in finding feedback Nash equilibria of the scalar N-player linear affine-quadratic differential game. The algorithm is based on
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Theoretical and numerical study of an optimum design algorithm
International Nuclear Information System (INIS)
Destuynder, Philippe.
1976-08-01
This work can be separated into two main parts. First, the behavior of the solution of an elliptic variational equation is analyzed when the domain is submitted to a small perturbation. The case of inequations is also considered. Secondly the previous results are used for deriving an optimum design algorithm. This algorithm was suggested by the center-method proposed by Huard. Numerical results show the superiority of the method on other different optimization techniques [fr
An efficient cuckoo search algorithm for numerical function optimization
Ong, Pauline; Zainuddin, Zarita
2013-04-01
Cuckoo search algorithm which reproduces the breeding strategy of the best known brood parasitic bird, the cuckoos has demonstrated its superiority in obtaining the global solution for numerical optimization problems. However, the involvement of fixed step approach in its exploration and exploitation behavior might slow down the search process considerably. In this regards, an improved cuckoo search algorithm with adaptive step size adjustment is introduced and its feasibility on a variety of benchmarks is validated. The obtained results show that the proposed scheme outperforms the standard cuckoo search algorithm in terms of convergence characteristic while preserving the fascinating features of the original method.
Numerical algorithms for contact problems in linear elastostatics
International Nuclear Information System (INIS)
Barbosa, H.J.C.; Feijoo, R.A.
1984-01-01
In this work contact problems in linear elasticity are analysed by means of Finite Elements and Mathematical Programming Techniques. The principle of virtual work leads in this case to a variational inequality which in turn is equivalent, for Hookean materials and infinitesimal strains, to the minimization of the total potential energy over the set of all admissible virtual displacements. The use of Gauss-Seidel algorithm with relaxation and projection and also Lemke's algorithm and Uzawa's algorithm for solving the minimization problem is discussed. Finally numerical examples are presented. (Author) [pt
On a numerical algorithm for uncertain system | Abiola | Science ...
African Journals Online (AJOL)
A numerical method for computing stable control signals for system with bounded input disturbance is developed. The algorithm is an elaboration of the gradient technique and variable metric method for computing control variables in linear and non-linear optimization problems. This method is developed for an integral ...
Fast numerical algorithm for the linear canonical transform.
Hennelly, Bryan M; Sheridan, John T
2005-05-01
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations...... of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
Canonical algorithms for numerical integration of charged particle motion equations
Efimov, I. N.; Morozov, E. A.; Morozova, A. R.
2017-02-01
A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
Numerical model updating technique for structures using firefly algorithm
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
A multilevel evolutionary algorithm for optimizing numerical functions
Directory of Open Access Journals (Sweden)
Reza Akbari
2011-04-01
Full Text Available This is a study on the effects of multilevel selection (MLS theory in optimizing numerical functions. Based on this theory, a Multilevel Evolutionary Optimization algorithm (MLEO is presented. In MLEO, a species is subdivided in cooperative populations and then each population is subdivided in groups, and evolution occurs at two levels so called individual and group levels. A fast population dynamics occurs at individual level. At this level, selection occurs among individuals of the same group. The popular genetic operators such as mutation and crossover are applied within groups. A slow population dynamics occurs at group level. At this level, selection happens among groups of a population. The group level operators such as regrouping, migration, and extinction-colonization are applied among groups. In regrouping process, all the groups are mixed together and then new groups are formed. The migration process encourages an individual to leave its own group and move to one of its neighbour groups. In extinction-colonization process, a group is selected as extinct, and replaced by offspring of a colonist group. In order to evaluate MLEO, the proposed algorithms were used for optimizing a set of well known numerical functions. The preliminary results indicate that the MLEO theory has positive effect on the evolutionary process and provide an efficient way for numerical optimization.
Numerical modeling of materials under extreme conditions
Brown, Eric
2014-01-01
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
A New Numerical Algorithm for Two-Point Boundary Value Problems
Guo, Lihua; Wu, Boying; Zhang, Dazhi
2014-01-01
We present a new numerical algorithm for two-point boundary value problems. We first present the exact solution in the form of series and then prove that the n-term numerical solution converges uniformly to the exact solution. Furthermore, we establish the numerical stability and error analysis. The numerical results show the effectiveness of the proposed algorithm.
BACKSTEPPING ALGORITHM FOR LINEAR SISO PLANTS UNDER STRUCTURAL UNCERTAINTIES
Directory of Open Access Journals (Sweden)
I. B. Furtat
2016-01-01
Full Text Available The robust algorithm is proposed for parametric and structurally uncertain linear plants under external bounded disturbances. The structural uncertainty is an unknown dynamic order of the model of plants. The developed algorithm provides plant output tracking for a smooth bounded reference signal with a required accuracy at a finite time. It is assumed that only scalar input and output of the plants are available for measurement, but not their derivatives. For the synthesis of the control algorithm we use a modified backstepping algorithm. The synthesis of control algorithm is separated into rsteps, where ris an upper bound of the relative degree of control plant model. At each step we synthesize auxiliary controls that stabilize each subsystem about a zero. At the last step we synthesize a basic control law, which provides output tracking for smooth reference signal. It is shown that for the implementation of the algorithm we need to use only one filter of the control signal and the simplified control laws obtained by application of the real derivative elements. It allows simplifying significantly the calculation and implementation of the control system. Numerical examples and results of computer simulation are given, illustrating the operation of the proposed scheme.
Non-deteriorating time domain numerical algorithms for Maxwell's electrodynamics
Petropavlovsky, S.; Tsynkov, S.
2017-05-01
The Huygens' principle and lacunae can help construct efficient far-field closures for the numerical simulation of unsteady waves propagating over unbounded regions. Those closures can be either standalone or combined with other techniques for the treatment of artificial outer boundaries. A standalone lacunae-based closure can be thought of as a special artificial boundary condition (ABC) that is provably free from any error associated with the domain truncation. If combined with a different type of ABC or a perfectly matched layer (PML), a lacunae-based approach can help remove any long-time deterioration (e.g., instability) that arises at the outer boundary regardless of why it occurs in the first place. A specific difficulty associated with Maxwell's equations of electromagnetism is that in general their solutions do not have classical lacunae and rather have quasi-lacunae. Unlike in the classical case, the field inside the quasi-lacunae is not zero; instead, there is an electrostatic solution driven by the electric charges that accumulate over time. In our previous work [23], we have shown that quasi-lacunae can also be used for building the far-field closures. However, for achieving a provably non-deteriorating performance over arbitrarily long time intervals, the accumulated charges need to be known ahead of time. The main contribution of the current paper is that we remove this limitation and modify the algorithm in such a way that one can rather avoid the accumulation of charge all together. Accordingly, the field inside the quasi-lacunae becomes equal to zero, which facilitates obtaining the temporally uniform error estimates as in the case of classical lacunae. The performance of the modified algorithm is corroborated by a series of numerical simulations. The range of problems that the new method can address includes important combined formulations, for which the interior subproblem may be non-Huygens', and only the exterior subproblem, i.e., the far
PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release
Energy Technology Data Exchange (ETDEWEB)
Pizzocri, D.; Rabiti, C.; Luzzi, L.; Barani, T.; Van Uffelen, P.; Pastore, G.
2016-09-01
This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of the corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.
A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics
Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey
2017-10-01
Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.
FuzzySRI-II A fuzzy rule induction algorithm for numerical output prediction
Afifi, A.
2014-01-01
Current inductive learning algorithms have difficulties handling attributes with numerical output values. This paper presents FuzzySRI-II, a new fuzzy rule induction algorithm for the prediction of numerical outputs. FuzzySRI-II integrates the comprehensibility and ease of application of rule induction algorithms with the uncertainty handling and approximate reasoning capabilities of fuzzy sets. The performance of the proposed FuzzySRI-II algorithm in two simulated control applications involv...
Numerical Algorithms for Deterministic Impulse Control Models with Applications
Grass, D.; Chahim, M.
2012-01-01
Abstract: In this paper we describe three different algorithms, from which two (as far as we know) are new in the literature. We take both the size of the jump as the jump times as decision variables. The first (new) algorithm considers an Impulse Control problem as a (multipoint) Boundary Value
Cone Algorithm of Spinning Vehicles under Dynamic Coning Environment
Directory of Open Access Journals (Sweden)
Shuang-biao Zhang
2015-01-01
Full Text Available Due to the fact that attitude error of vehicles has an intense trend of divergence when vehicles undergo worsening coning environment, in this paper, the model of dynamic coning environment is derived firstly. Then, through investigation of the effect on Euler attitude algorithm for the equivalency of traditional attitude algorithm, it is found that attitude error is actually the roll angle error including drifting error and oscillating error, which is induced directly by dynamic coning environment and further affects the pitch angle and yaw angle through transferring. Based on definition of the cone frame and cone attitude, a cone algorithm is proposed by rotation relationship to calculate cone attitude, and the relationship between cone attitude and Euler attitude of spinning vehicle is established. Through numerical simulations with different conditions of dynamic coning environment, it is shown that the induced error of Euler attitude fluctuates by the variation of precession and nutation, especially by that of nutation, and the oscillating frequency of roll angle error is twice that of pitch angle error and yaw angle error. In addition, the rotation angle is more competent to describe the spinning process of vehicles under coning environment than Euler angle gamma, and the real pitch angle and yaw angle are calculated finally.
A multi-group firefly algorithm for numerical optimization
Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun
2017-08-01
To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.
High speed numerical integration algorithm using FPGA | Razak ...
African Journals Online (AJOL)
RRS), Middle Riemann Sum (MRS) and Trapezoidal Sum (TS) algorithms. The system performance is evaluated based on target chip Altera Cyclone IV FPGA in the metrics of resources utilization, clock latency, execution time, power consumption ...
UNIVERSAL ALGORITHM OF NONLINEAR PROCESS NUMERICAL MODELLING OF REINFORCED CONSTRUCTION DEFORMATION
Directory of Open Access Journals (Sweden)
Lizunov P.P.
2014-06-01
Full Text Available A numerical algorithm and software tools for the study of nonlinear deformation and fracture spatial concrete structures are developed. Finite element method is used. Numerical simulation of nonlinear deformation and fracture of materials is performed according to the phenomenological theories. Calculation algorithm is based on the Newton-Kantorovich method. The accuracy of the results was confirmed by comparison with experimental data and numerical calculations performed using other methods.
Scientific applications and numerical algorithms on the midas multiprocessor system
International Nuclear Information System (INIS)
Logan, D.; Maples, C.
1986-01-01
The MIDAS multiprocessor system is a multi-level, hierarchial structure designed at the Advanced Computer Architecture Laboratory of the University of California's Lawrence Berkeley Laboratory. A two-stage, 11-processor system has been operational for over a year and is currently undergoing expansion. It has been employed to investigate the performance of different methods of decomposing various problems and algorithms into a multiprocessor environment. The results of such tests on a variety of applications such as scientific data analysis, Monte Carlo calculations, and image processing, are discussed. Often such decompositions involve investigating the parallel structure of fundamental algorithms. Several basic algorithms dealing with random number generation, matrix diagonalization, fast Fourier transforms, and finite element methods in solving partial differential equations are also discussed. The performance and projected extensibilities of these decompositions on the MIDAS system are reported
Numerical Optimization Algorithms and Software for Systems Biology
Energy Technology Data Exchange (ETDEWEB)
Saunders, Michael
2013-02-02
The basic aims of this work are: to develop reliable algorithms for solving optimization problems involving large stoi- chiometric matrices; to investigate cyclic dependency between metabolic and macromolecular biosynthetic networks; and to quantify the significance of thermodynamic constraints on prokaryotic metabolism.
Numerical Algorithm For Digital Image Enhancement And Noise ...
African Journals Online (AJOL)
We adopt the approach of Vogel and Oman, 1998 and introduce a Lagrange multiplier Ibiejugba, 1985, to obtain an appropriate discrete energy which we minimize, in order to minimize equivalently, the unwanted vibration (noise) associated with a digitally transmitted image. An iterative algorithm is developed for this ...
Directory of Open Access Journals (Sweden)
Tao Min
2014-01-01
Full Text Available This paper is intended to provide a numerical algorithm involving the combined use of the Levenberg-Marquardt algorithm and the Galerkin finite element method for estimating the diffusion coefficient in an inverse heat conduction problem (IHCP. In the present study, the functional form of the diffusion coefficient is unknown a priori. The unknown diffusion coefficient is approximated by the polynomial form and the present numerical algorithm is employed to find the solution. Numerical experiments are presented to show the efficiency of the proposed method.
Computational Fluid Dynamics. [numerical methods and algorithm development
1992-01-01
This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.
Numerical Simulation of the Heston Model under Stochastic Correlation
Directory of Open Access Journals (Sweden)
Long Teng
2017-12-01
Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.
A numeric comparison of variable selection algorithms for supervised learning
International Nuclear Information System (INIS)
Palombo, G.; Narsky, I.
2009-01-01
Datasets in modern High Energy Physics (HEP) experiments are often described by dozens or even hundreds of input variables. Reducing a full variable set to a subset that most completely represents information about data is therefore an important task in analysis of HEP data. We compare various variable selection algorithms for supervised learning using several datasets such as, for instance, imaging gamma-ray Cherenkov telescope (MAGIC) data found at the UCI repository. We use classifiers and variable selection methods implemented in the statistical package StatPatternRecognition (SPR), a free open-source C++ package developed in the HEP community ( (http://sourceforge.net/projects/statpatrec/)). For each dataset, we select a powerful classifier and estimate its learning accuracy on variable subsets obtained by various selection algorithms. When possible, we also estimate the CPU time needed for the variable subset selection. The results of this analysis are compared with those published previously for these datasets using other statistical packages such as R and Weka. We show that the most accurate, yet slowest, method is a wrapper algorithm known as generalized sequential forward selection ('Add N Remove R') implemented in SPR.
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Towards High Resolution Numerical Algorithms for Wave Dominated Physical Phenomena
2009-01-30
Simulation hochfrequenter elektromagnetischer Felder mit der Discontinuous Galerkin Fi- nite Elemente Methode [ Numerical Simulations of High...elektromagnetischer Felder mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- putation of High-Frequency...hochfrequenter elektromagnetischer Felder mit der Discontinuous Galerkin Finite Elemente Methode [ Local Time Integration for Efficient Com- putation of
A bibliography on parallel and vector numerical algorithms
Ortega, James M.; Voigt, Robert G.; Romine, Charles H.
1988-01-01
This is a bibliography on numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are also listed.
Directory of Open Access Journals (Sweden)
S. G. Tikhomirov
2015-01-01
Full Text Available In the article discussed the mathematical formulation and numerical algorithm for solving the problem of calculating the temperature field in the process vulcanizing of the product, whose the thermal characteristics are depended on the temperature. As a mathematical model considered the system of differential equations of heat conduction, taking into account the change in the coefficients of thermal conductivity and heat density in multilayer product of the temperature. The system of equations is solved for a given initial distribution of temperature and for a given (time-dependent temperatures on the border of the product to the press-mold and to the diaphragm. On the border of the contacts of adjacent layers are given the condition of continuity of temperature and heat flux. Change of the thermal conductivity from the time is approximated by linear functions. The activation energy of the vulcanization process is determined on the basis of experimental data obtained in the control test samples using a reometer. Considering the function representing the corresponding integrals of the thermal conductivity, the original system of differential equations is transformed to an equivalent system of differential equations convenient for constructing numerical algorithms for solving the problem. The resulting system of partial differential equations derived using the method of finite-difference approximation is replaced by a system of algebraic equations. Solution of the system of algebraic equations is carried out under the scheme explicit difference approximation. In the article calculated the temperature field for the tire at given initial and boundary conditions. Stability and accuracy of the numerical algorithm for solving the problem is demonstrated by the calculations performed with different sampling step along the time and space coordinates. Assessment of the degree of completion of the process is carried out by calculated equivalent time for
An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets
Directory of Open Access Journals (Sweden)
Kang Zhang
2014-01-01
Full Text Available Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.
Fourier analysis of numerical algorithms for the Maxwell equations
Liu, Yen
1993-01-01
The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.
CALCULATION ALGORITHM TRUSS UNDER CRANE BEAMS
Directory of Open Access Journals (Sweden)
N. K. Akaev1
2016-01-01
Full Text Available Aim.The task of reducing the deflection and increase the rigidity of single-span beams are made. In the article the calculation algorithm for truss crane girders is determined.Methods. To identify the internal effort required for the selection of cross section elements the design uses the Green's function.Results. It was found that the simplest truss system reduces deflection and increases the strength of design. The upper crossbar is subjected not only to bending and shear and compression work due to tightening tension. Preliminary determination of the geometrical characteristics of the crane farms elements are offered to make a comparison with previous similar configuration of his farms, using a simple approximate calculation methods.Conclusion.The method of sequential movements (incrementally the two bridge cranes along the length of the upper crossbar truss beams is suggested. We give the corresponding formulas and conditions of safety.
A Numerical Algorithm for the Solution of a Phase-Field Model of Polycrystalline Materials
Energy Technology Data Exchange (ETDEWEB)
Dorr, M R; Fattebert, J; Wickett, M E; Belak, J F; Turchi, P A
2008-12-04
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
Energy Technology Data Exchange (ETDEWEB)
Copps, Kevin D.; Carnes, Brian R.
2008-04-01
We examine algorithms for the finite element approximation of thermal contact models. We focus on the implementation of thermal contact algorithms in SIERRA Mechanics. Following the mathematical formulation of models for tied contact and resistance contact, we present three numerical algorithms: (1) the multi-point constraint (MPC) algorithm, (2) a resistance algorithm, and (3) a new generalized algorithm. We compare and contrast both the correctness and performance of the algorithms in three test problems. We tabulate the convergence rates of global norms of the temperature solution on sequentially refined meshes. We present the results of a parameter study of the effect of contact search tolerances. We outline best practices in using the software for predictive simulations, and suggest future improvements to the implementation.
Numerical simulation of transverse jet flow field under supersonic inflow
Directory of Open Access Journals (Sweden)
Qian Li
2017-01-01
Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.
Numerical solution of continuous-time DSGE models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
We propose a simple and powerful method for determining the transition process in continuous-time DSGE models under Poisson uncertainty numerically. The idea is to transform the system of stochastic differential equations into a system of functional differential equations of the retarded type. We...... then use the Waveform Relaxation algorithm to provide a guess of the policy function and solve the resulting system of ordinary differential equations by standard methods and fix-point iteration. Analytical solutions are provided as a benchmark from which our numerical method can be used to explore broader...... classes of models. We illustrate the algorithm simulating both the stochastic neoclassical growth model and the Lucas model under Poisson uncertainty which is motivated by the Barro-Rietz rare disaster hypothesis. We find that, even for non-linear policy functions, the maximum (absolute) error is very...
Development of CAD implementing the algorithm of boundary elements’ numerical analytical method
Directory of Open Access Journals (Sweden)
Yulia V. Korniyenko
2015-03-01
Full Text Available Up to recent days the algorithms for numerical-analytical boundary elements method had been implemented with programs written in MATLAB environment language. Each program had a local character, i.e. used to solve a particular problem: calculation of beam, frame, arch, etc. Constructing matrices in these programs was carried out “manually” therefore being time-consuming. The research was purposed onto a reasoned choice of programming language for new CAD development, allows to implement algorithm of numerical analytical boundary elements method and to create visualization tools for initial objects and calculation results. Research conducted shows that among wide variety of programming languages the most efficient one for CAD development, employing the numerical analytical boundary elements method algorithm, is the Java language. This language provides tools not only for development of calculating CAD part, but also to build the graphic interface for geometrical models construction and calculated results interpretation.
A Direct Numerical Reconstruction Algorithm for the 3D Calderón Problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim
2011-01-01
In three dimensions Calderón's problem was addressed and solved in theory in the 1980s in a series of papers, but only recently the numerical implementation of the algorithm was initiated. The main ingredients in the solution of the problem are complex geometrical optics solutions...... to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm is in principle direct and addresses the full non-linear problem immediately. In this paper we will outline the theoretical reconstruction method and describe how the method can be implemented numerically...
Auger, J C
2003-01-01
The multiple scattering problem can be solved using various analytical techniques. One of these techniques, the T-matrix formalism, is at the present time generally solved using iterative algorithms, because the initially proposed recursive algorithms appeared to be numerically unstable. We present here a new set of recursive relations to solve the multiple scattering equation, and discuss their range of application. In order to validate this new formalism, we compare numerical results for various complex systems with the Generalized Multi-particle Mie solution. We show that the results obtained with the recursive method are in very good agreement with those given by iterative techniques.
Directory of Open Access Journals (Sweden)
Peng Wang
2013-01-01
Full Text Available This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO. The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
Wang, Peng; Zhu, Zhouquan; Huang, Shuai
2013-01-01
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
On the impact of communication complexity in the design of parallel numerical algorithms
Gannon, D.; Vanrosendale, J.
1984-01-01
This paper describes two models of the cost of data movement in parallel numerical algorithms. One model is a generalization of an approach due to Hockney, and is suitable for shared memory multiprocessors where each processor has vector capabilities. The other model is applicable to highly parallel nonshared memory MIMD systems. In the second model, algorithm performance is characterized in terms of the communication network design. Techniques used in VLSI complexity theory are also brought in, and algorithm independent upper bounds on system performance are derived for several problems that are important to scientific computation.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications
Povitsky, Alex; Morris, Philip J.
1999-01-01
In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.
A Numerical Algorithm and a Graphical Method to Size a Heat Exchanger
DEFF Research Database (Denmark)
Berning, Torsten
2011-01-01
This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft ExcelTM...
The power-series algorithm. A numerical approach to Markov processes
van den Hout, W.B.
1996-01-01
The development of computer and communication networks and flexible manufacturing systems has led to new and interesting multidimensional queueing models. The Power-Series Algorithm is a numerical method to analyze and optimize the performance of such models. In this thesis, the applicability of the
DEFF Research Database (Denmark)
Cook, Gerald; Lin, Ching-Fang
1980-01-01
The local linearization algorithm is presented as a possible numerical integration scheme to be used in real-time simulation. A second-order nonlinear example problem is solved using different methods. The local linearization approach is shown to require less computing time and give significant...... improvement in accuracy over the classical second-order integration methods....
Numerical Laplace inversion in problems of elastodynamics: Comparison of four algorithms
Czech Academy of Sciences Publication Activity Database
Adámek, V.; Valeš, František; Červ, Jan
2017-01-01
Roč. 113, November (2017), s. 120-129 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : inverse Laplace transform * numerical algorithm * wave propagation * multi-precision computation * Maple code Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 3.000, year: 2016
Directory of Open Access Journals (Sweden)
Benjamin M. Cowan
2013-04-01
Full Text Available We describe a modification to the finite-difference time-domain algorithm for electromagnetics on a Cartesian grid which eliminates numerical dispersion error in vacuum for waves propagating along a grid axis. We provide details of the algorithm, which generalizes previous work by allowing 3D operation with a wide choice of aspect ratio, and give conditions to eliminate dispersive errors along one or more of the coordinate axes. We discuss the algorithm in the context of laser-plasma acceleration simulation, showing significant reduction—up to a factor of 280, at a plasma density of 10^{23} m^{-3}—of the dispersion error of a linear laser pulse in a plasma channel. We then compare the new algorithm with the standard electromagnetic update for laser-plasma accelerator stage simulations, demonstrating that by controlling numerical dispersion, the new algorithm allows more accurate simulation than is otherwise obtained. We also show that the algorithm can be used to overcome the critical but difficult challenge of consistent initialization of a relativistic particle beam and its fields in an accelerator simulation.
International Nuclear Information System (INIS)
Gerganov, G.; Kuvandjiev, V.; Dimitrova, I.; Mitev, K.; Kawrakow, I.
2012-01-01
The objective of this work is to present the capabilities of the NUMERICS web platform for evaluation of the performance of image registration algorithms. The NUMERICS platform is a web accessible tool which provides access to dedicated numerical algorithms for registration and comparison of medical images (http://numerics.phys.uni-sofia.bg). The platform allows comparison of noisy medical images by means of different types of image comparison algorithms, which are based on statistical tests for outliers. The platform also allows 2D image registration with different techniques like Elastic Thin-Plate Spline registration, registration based on rigid transformations, affine transformations, as well as non-rigid image registration based on Mobius transformations. In this work we demonstrate how the platform can be used as a tool for evaluation of the quality of the image registration process. We demonstrate performance evaluation of a deformable image registration technique based on Mobius transformations. The transformations are applied with appropriate cost functions like: Mutual information, Correlation coefficient, Sum of Squared Differences. The accent is on the results provided by the platform to the user and their interpretation in the context of the performance evaluation of 2D image registration. The NUMERICS image registration and image comparison platform provides detailed statistical information about submitted image registration jobs and can be used to perform quantitative evaluation of the performance of different image registration techniques. (authors)
Hennelly, Bryan M.; Sheridan, John T.
2005-05-01
By use of matrix-based techniques it is shown how the space-bandwidth product (SBP) of a signal, as indicated by the location of the signal energy in the Wigner distribution function, can be tracked through any quadratic-phase optical system whose operation is described by the linear canonical transform. Then, applying the regular uniform sampling criteria imposed by the SBP and linking the criteria explicitly to a decomposition of the optical matrix of the system, it is shown how numerical algorithms (employing interpolation and decimation), which exhibit both invertibility and additivity, can be implemented. Algorithms appearing in the literature for a variety of transforms (Fresnel, fractional Fourier) are shown to be special cases of our general approach. The method is shown to allow the existing algorithms to be optimized and is also shown to permit the invention of many new algorithms.
Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees
Directory of Open Access Journals (Sweden)
Izquierdo-Carrasco Fernando
2011-12-01
Full Text Available Abstract Background The rapid accumulation of molecular sequence data, driven by novel wet-lab sequencing technologies, poses new challenges for large-scale maximum likelihood-based phylogenetic analyses on trees with more than 30,000 taxa and several genes. The three main computational challenges are: numerical stability, the scalability of search algorithms, and the high memory requirements for computing the likelihood. Results We introduce methods for solving these three key problems and provide respective proof-of-concept implementations in RAxML. The mechanisms presented here are not RAxML-specific and can thus be applied to any likelihood-based (Bayesian or maximum likelihood tree inference program. We develop a new search strategy that can reduce the time required for tree inferences by more than 50% while yielding equally good trees (in the statistical sense for well-chosen starting trees. We present an adaptation of the Subtree Equality Vector technique for phylogenomic datasets with missing data (already available in RAxML v728 that can reduce execution times and memory requirements by up to 50%. Finally, we discuss issues pertaining to the numerical stability of the Γ model of rate heterogeneity on very large trees and argue in favor of rate heterogeneity models that use a single rate or rate category for each site to resolve these problems. Conclusions We address three major issues pertaining to large scale tree reconstruction under maximum likelihood and propose respective solutions. Respective proof-of-concept/production-level implementations of our ideas are made available as open-source code.
Assessment of numerical optimization algorithms for the development of molecular models
Hülsmann, Marco; Vrabec, Jadran; Maaß, Astrid; Reith, Dirk
2010-05-01
In the pursuit to study the parameterization problem of molecular models with a broad perspective, this paper is focused on an isolated aspect: It is investigated, by which algorithms parameters can be best optimized simultaneously to different types of target data (experimental or theoretical) over a range of temperatures with the lowest number of iteration steps. As an example, nitrogen is regarded, where the intermolecular interactions are well described by the quadrupolar two-center Lennard-Jones model that has four state-independent parameters. The target data comprise experimental values for saturated liquid density, enthalpy of vaporization, and vapor pressure. For the purpose of testing algorithms, molecular simulations are entirely replaced by fit functions of vapor-liquid equilibrium (VLE) properties from the literature to assess efficiently the diverse numerical optimization algorithms investigated, being state-of-the-art gradient-based methods with very good convergency qualities. Additionally, artificial noise was superimposed onto the VLE fit results to evaluate the numerical optimization algorithms so that the calculation of molecular simulation data was mimicked. Large differences in the behavior of the individual optimization algorithms are found and some are identified to be capable to handle noisy function values.
Nacozy, P. E.
1984-01-01
The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.
An improved algorithm for numerical calculation of seismic response spectra
Directory of Open Access Journals (Sweden)
Chengwang Liao
2016-03-01
Full Text Available The information of seismic response spectra is key to many problems concerned with aseismic structure and is also helpful for earthquake disaster relief if it is generated in time when earthquake happens. While current numerical calculation methods suffer from poor precision, especially in frequency band near Nyquist frequency, we present a set of improved parameters for precision improvement. It is shown that precision of displacement and velocity response spectra are both further improved compared to current numerical algorithms. A uniform fitting formula is given for computing these parameters for damping ratio range of 0.01–0.9, quite convenient for practical application.
Numerical simulation of void growth under dynamic loading
International Nuclear Information System (INIS)
Iqbal, A.
1996-01-01
Following a brief general review of developments in material behavior under high strain rates, a cylindrical cell surrounding a spherical void in OFHC copper is numerically simulated by Zerri-Armstrong model. This simulation results show that the plastic deformation tends to be concentrated in the vicinity of voids either in the axial or transverse direction depending upon the stress state. This event is associated with the accelerated void through accompanying coalescence causing ductile fracture. A3-node triangular mesh generation code used as input for finite element code is developed by a 'Central Generation' technique. (author)
Modified SIMPLE algorithm for the numerical analysis of incompressible flows with free surface
International Nuclear Information System (INIS)
Mok, Jin Ho; Hong, Chun Pyo; Lee, Jin Ho
2005-01-01
While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipment or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented for the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm
Thickness determination in textile material design: dynamic modeling and numerical algorithms
International Nuclear Information System (INIS)
Xu, Dinghua; Ge, Meibao
2012-01-01
Textile material design is of paramount importance in the study of functional clothing design. It is therefore important to determine the dynamic heat and moisture transfer characteristics in the human body–clothing–environment system, which directly determine the heat–moisture comfort level of the human body. Based on a model of dynamic heat and moisture transfer with condensation in porous fabric at low temperature, this paper presents a new inverse problem of textile thickness determination (IPTTD). Adopting the idea of the least-squares method, we formulate the IPTTD into a function minimization problem. By means of the finite-difference method, quasi-solution method and direct search method for one-dimensional minimization problems, we construct iterative algorithms of the approximated solution for the IPTTD. Numerical simulation results validate the formulation of the IPTTD and demonstrate the effectiveness of the proposed numerical algorithms. (paper)
Numerical Algorithms for Personalized Search in Self-organizing Information Networks
Kamvar, Sep
2010-01-01
This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quad
Glasse, Benjamin; Riefler, Norbert; Fritsching, Udo
2015-01-01
The continuous monitoring of the particle size distribution in particulate processes with suspensions or emulsions requires measurement techniques that can be used as in situ devices in contrast to ex situ or laboratory methods. In this context, for the evaluation of turbidimetric spectral measurements, the application of different numerical inversion algorithms is investigated with respect to the particle size distribution determination of polystyrene suspensions. A modified regularization c...
Numerical simulation of hydrodynamic performance of ship under oblique conditions
Directory of Open Access Journals (Sweden)
CHEN Zhiming
2018-02-01
Full Text Available [Objectives] This paper is intended to study the viscous flow field around a ship under oblique conditions and provide a research basis for ship maneuverability. [Methods] Using commercial software STRA-CCM+, the SST k-ω turbulence model is selected to predict the hydrodynamic performance of the KVLCC2 model at different drift angles, and predict the hull flow field. The pressure distribution of the ship model at different drift angles is observed and the vortex shedding of the ship's hull and constraint streamlines on the hull's surface are also observed. [Results] The results show that numerical simulation can satisfy the demands of engineering application in the prediction of the lateral force, yaw moment and hull surface pressure distribution of a ship. [Conclusions] The research results of this paper can provide valuable references for the study of the flow separation phenomenon under oblique conditions.
Numerical algorithms for steady and unsteady incompressible Navier-Stokes equations
Hafez, Mohammed; Dacles, Jennifer
1989-01-01
The numerical analysis of the incompressible Navier-Stokes equations are becoming important tools in the understanding of some fluid flow problems which are encountered in research as well as in industry. With the advent of the supercomputers, more realistic problems can be studied with a wider choice of numerical algorithms. An alternative formulation is presented for viscous incompressible flows. The incompressible Navier-Stokes equations are cast in a velocity/vorticity formulation. This formulation consists of solving the Poisson equations for the velocity components and the vorticity transport equation. Two numerical algorithms for the steady two-dimensional laminar flows are presented. The first method is based on the actual partial differential equations. This uses a finite-difference approximation of the governing equations on a staggered grid. The second method uses a finite element discretization with the vorticity transport equation approximated using a Galerkin approximation and the Poisson equations are obtained using a least squares method. The equations are solved efficiently using Newton's method and a banded direct matrix solver (LINPACK). The method is extended to steady three-dimensional laminar flows and applied to a cubic driven cavity using finite difference schemes and a staggered grid arrangement on a Cartesian mesh. The equations are solved iteratively using a plane zebra relaxation scheme. Currently, a two-dimensional, unsteady algorithm is being developed using a generalized coordinate system. The equations are discretized using a finite-volume approach. This work will then be extended to three-dimensional flows.
Hu, Shaoxing; Xu, Shike; Wang, Duhu; Zhang, Aiwu
2015-11-11
Aiming at addressing the problem of high computational cost of the traditional Kalman filter in SINS/GPS, a practical optimization algorithm with offline-derivation and parallel processing methods based on the numerical characteristics of the system is presented in this paper. The algorithm exploits the sparseness and/or symmetry of matrices to simplify the computational procedure. Thus plenty of invalid operations can be avoided by offline derivation using a block matrix technique. For enhanced efficiency, a new parallel computational mechanism is established by subdividing and restructuring calculation processes after analyzing the extracted "useful" data. As a result, the algorithm saves about 90% of the CPU processing time and 66% of the memory usage needed in a classical Kalman filter. Meanwhile, the method as a numerical approach needs no precise-loss transformation/approximation of system modules and the accuracy suffers little in comparison with the filter before computational optimization. Furthermore, since no complicated matrix theories are needed, the algorithm can be easily transplanted into other modified filters as a secondary optimization method to achieve further efficiency.
Chierici, A.; Chirco, L.; Da Vià, R.; Manservisi, S.; Scardovelli, R.
2017-11-01
Nowadays the rapidly-increasing computational power allows scientists and engineers to perform numerical simulations of complex systems that can involve many scales and several different physical phenomena. In order to perform such simulations, two main strategies can be adopted: one may develop a new numerical code where all the physical phenomena of interest are modelled or one may couple existing validated codes. With the latter option, the creation of a huge and complex numerical code is avoided but efficient methods for data exchange are required since the performance of the simulation is highly influenced by its coupling techniques. In this work we propose a new algorithm that can be used for volume and/or boundary coupling purposes for both multiscale and multiphysics numerical simulations. The proposed algorithm is used for a multiscale simulation involving several CFD domains and monodimensional loops. We adopt the overlapping domain strategy, so the entire flow domain is simulated with the system code. We correct the system code solution by matching averaged inlet and outlet fields located at the boundaries of the CFD domains that overlap parts of the monodimensional loop. In particular we correct pressure losses and enthalpy values with source-sink terms that are imposed in the system code equations. The 1D-CFD coupling is a defective one since the CFD code requires point-wise values on the coupling interfaces and the system code provides only averaged quantities. In particular we impose, as inlet boundary conditions for the CFD domains, the mass flux and the mean enthalpy that are calculated by the system code. With this method the mass balance is preserved at every time step of the simulation. The coupling between consecutive CFD domains is not a defective one since with the proposed algorithm we can interpolate the field solutions on the boundary interfaces. We use the MED data structure as the base structure where all the field operations are
Genetic Algorithm for Multiuser Discrete Network Design Problem under Demand Uncertainty
Directory of Open Access Journals (Sweden)
Wu Juan
2012-01-01
Full Text Available Discrete network design is an important part of urban transportation planning. The purpose of this paper is to present a bilevel model for discrete network design. The upper-level model aims to minimize the total travel time under a stochastic demand to design a discrete network. In the lower-level model, demands are assigned to the network through a multiuser traffic equilibrium assignment. Generally, discrete network could affect path selections of demands, while the results of the multiuser traffic equilibrium assignment need to reconstruct a new discrete network. An iterative approach including an improved genetic algorithm and Frank-Wolfe algorithm is used to solve the bi-level model. The numerical results on Nguyen Dupuis network show that the model and the related algorithms were effective for discrete network design.
International Nuclear Information System (INIS)
Faucher, V.
2014-01-01
This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author
Numerical Analysis of Vibrations of Structures under Moving Inertial Load
Bajer, Czeslaw I
2012-01-01
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...
Liu, Yongzhi; Geng, Tie; (Tom Turng, Lih-Sheng; Liu, Chuntai; Cao, Wei; Shen, Changyu
2017-09-01
In the multiscale numerical simulation of polymer crystallization during the processing period, flow and temperature of the polymer melt are simulated on the macroscale level, while nucleation and growth of the spherulite are simulated at the mesoscale level. As a part of the multiscale simulation, the meso-simulation requires a fast solving speed because the meso-simulation software must be run several times in every macro-element at each macro-step. Meanwhile, the accuracy of the calculation results is also very important. It is known that the simulation geometry of crystallization includes planar (2D) and three-dimensional space (3D). The 3D calculations are more accurate but more expensive because of the long CPU time consumed. On the contrary, 2D calculations are always much faster but lower in accuracy. To reach the desirable speed and high accuracy at the same time, an algorithm is presented, in which the Delesse law coupled with the Monte Carlo method and pixel method are employed to simulate the nucleation, growth, and impingement of the polymer spherulite at the mesoscale level. Based on this algorithm, a software is developed with the Visual C++ language, and its numerical examples’ results prove that the solving speed of this algorithm is as fast as the 2D classical simulation and the calculation accuracy is at the same level as the 3D simulation.
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Numerical algorithm for rigid body position estimation using the quaternion approach
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Cieszyńska, Agata; Śliwińska-Wilczewska, Sylwia
2017-04-01
mixtures of conditions were applied in the laboratory experiments. Results from these experiments were the foundation to create picocyanobacteria life cycle algorithm - pico-bioalgorithm. The form of algorithm bases on the Ecological Regional Ocean Model formulas for functional phytoplankton groups. According to this, in pico-bioalgorithm the dependence on temperature and salinity of water body and the occurrence of nutrients are provided along with the coefficients determining mortality of picoplankton cells and coefficients of respiration and growth rates. In order to prescribe the limiting properties, modified Michaelis-Menten formula with squared arguments as a limiting function was used. Picoplanktonic organisms are very specific and can live in environments, which may be initially defined as impossible for such organisms to survive. The issue of picoplanktonic species inhabiting the Baltic Sea needs to be explored in details. Present study and proposed algorithm comprise an important step in this scientific exploration. This work has been funded by the National Centre of Science project (contract number: 2012/07/N/ST10/03485) entitled: "Improved understanding of phytoplankton blooms in the Baltic Sea based on numerical models and existing data sets". The Author (AC) received funding from National Centre of Sciences in doctoral scholarship program (contract number: 2016/20/T/ST10/00214);
Design and Implementation of Numerical Linear Algebra Algorithms on Fixed Point DSPs
Nikolić, Zoran; Nguyen, Ha Thai; Frantz, Gene
2007-12-01
Numerical linear algebra algorithms use the inherent elegance of matrix formulations and are usually implemented using C/C++ floating point representation. The system implementation is faced with practical constraints because these algorithms usually need to run in real time on fixed point digital signal processors (DSPs) to reduce total hardware costs. Converting the simulation model to fixed point arithmetic and then porting it to a target DSP device is a difficult and time-consuming process. In this paper, we analyze the conversion process. We transformed selected linear algebra algorithms from floating point to fixed point arithmetic, and compared real-time requirements and performance between the fixed point DSP and floating point DSP algorithm implementations. We also introduce an advanced code optimization and an implementation by DSP-specific, fixed point C code generation. By using the techniques described in the paper, speed can be increased by a factor of up to 10 compared to floating point emulation on fixed point hardware.
A Novel Quantum-Behaved Bat Algorithm with Mean Best Position Directed for Numerical Optimization
Directory of Open Access Journals (Sweden)
Binglian Zhu
2016-01-01
Full Text Available This paper proposes a novel quantum-behaved bat algorithm with the direction of mean best position (QMBA. In QMBA, the position of each bat is mainly updated by the current optimal solution in the early stage of searching and in the late search it also depends on the mean best position which can enhance the convergence speed of the algorithm. During the process of searching, quantum behavior of bats is introduced which is beneficial to jump out of local optimal solution and make the quantum-behaved bats not easily fall into local optimal solution, and it has better ability to adapt complex environment. Meanwhile, QMBA makes good use of statistical information of best position which bats had experienced to generate better quality solutions. This approach not only inherits the characteristic of quick convergence, simplicity, and easy implementation of original bat algorithm, but also increases the diversity of population and improves the accuracy of solution. Twenty-four benchmark test functions are tested and compared with other variant bat algorithms for numerical optimization the simulation results show that this approach is simple and efficient and can achieve a more accurate solution.
Directory of Open Access Journals (Sweden)
Ali Wagdy Mohamed
2014-11-01
Full Text Available In this paper, a novel version of Differential Evolution (DE algorithm based on a couple of local search mutation and a restart mechanism for solving global numerical optimization problems over continuous space is presented. The proposed algorithm is named as Restart Differential Evolution algorithm with Local Search Mutation (RDEL. In RDEL, inspired by Particle Swarm Optimization (PSO, a novel local mutation rule based on the position of the best and the worst individuals among the entire population of a particular generation is introduced. The novel local mutation scheme is joined with the basic mutation rule through a linear decreasing function. The proposed local mutation scheme is proven to enhance local search tendency of the basic DE and speed up the convergence. Furthermore, a restart mechanism based on random mutation scheme and a modified Breeder Genetic Algorithm (BGA mutation scheme is combined to avoid stagnation and/or premature convergence. Additionally, an exponent increased crossover probability rule and a uniform scaling factors of DE are introduced to promote the diversity of the population and to improve the search process, respectively. The performance of RDEL is investigated and compared with basic differential evolution, and state-of-the-art parameter adaptive differential evolution variants. It is discovered that the proposed modifications significantly improve the performance of DE in terms of quality of solution, efficiency and robustness.
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H; Miller, Cass T
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward-difference-formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Generalized random walk algorithm for the numerical modeling of complex diffusion processes
Vamos, C; Vereecken, H
2003-01-01
A generalized form of the random walk algorithm to simulate diffusion processes is introduced. Unlike the usual approach, at a given time all the particles from a grid node are simultaneously scattered using the Bernoulli repartition. This procedure saves memory and computing time and no restrictions are imposed for the maximum number of particles to be used in simulations. We prove that for simple diffusion the method generalizes the finite difference scheme and gives the same precision for large enough number of particles. As an example, simulations of diffusion in random velocity field are performed and the main features of the stochastic mathematical model are numerically tested.
Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Knudsen, Kim
2014-01-01
computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...... to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... to the simpler approximations. In addition, convergence of the numerical solution towards the exact solution of the boundary integral equation is proved....
Numerical Simulation of the Propagation of Hydraulic and Natural Fracture Using Dijkstra’s Algorithm
Directory of Open Access Journals (Sweden)
Yanfang Wu
2016-07-01
Full Text Available Utilization of hydraulic-fracturing technology is dramatically increasing in exploitation of natural gas extraction. However the prediction of the configuration of propagated hydraulic fracture is extremely challenging. This paper presents a numerical method of obtaining the configuration of the propagated hydraulic fracture into discrete natural fracture network system. The method is developed on the basis of weighted fracture which is derived in combination of Dijkstra’s algorithm energy theory and vector method. Numerical results along with experimental data demonstrated that proposed method is capable of predicting the propagated hydraulic fracture configuration reasonably with high computation efficiency. Sensitivity analysis reveals a number of interesting observation results: the shortest path weight value decreases with increasing of fracture density and length, and increases with increasing of the angle between fractures to the maximum principal stress direction. Our method is helpful for evaluating the complexity of the discrete fracture network, to obtain the extension direction of the fracture.
Numerical linked-cluster algorithms. II. t-J models on the square lattice.
Rigol, Marcos; Bryant, Tyler; Singh, Rajiv R P
2007-06-01
We discuss the application of a recently introduced numerical linked-cluster (NLC) algorithm to strongly correlated itinerant models. In particular, we present a study of thermodynamic observables: chemical potential, entropy, specific heat, and uniform susceptibility for the t-J model on the square lattice, with Jt=0.5 and 0.3. Our NLC results are compared with those obtained from high-temperature expansions (HTE) and the finite-temperature Lanczos method (FTLM). We show that there is a sizeable window in temperature where NLC results converge without extrapolations whereas HTE diverges. Upon extrapolations, the overall agreement between NLC, HTE, and FTLM is excellent in some cases down to 0.25t . At intermediate temperatures NLC results are better controlled than other methods, making it easier to judge the convergence and numerical accuracy of the method.
Rajashekararadhya, S. V.; Ranjan, P. Vanaja
India is a multi-lingual multi script country, where eighteen official scripts are accepted and have over hundred regional languages. In this paper we propose a zone based hybrid feature extraction algorithm scheme towards the recognition of off-line handwritten numerals of south Indian scripts. The character centroid is computed and the image (character/numeral) is further divided in to n equal zones. Average distance and Average angle from the character centroid to the pixels present in the zone are computed (two features). Similarly zone centroid is computed (two features). This procedure is repeated sequentially for all the zones/grids/boxes present in the numeral image. There could be some zones that are empty, and then the value of that particular zone image value in the feature vector is zero. Finally 4*n such features are extracted. Nearest neighbor classifier is used for subsequent classification and recognition purpose. We obtained 97.55 %, 94 %, 92.5% and 95.2 % recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.
Directory of Open Access Journals (Sweden)
Ahmed M. Elsayed
2013-01-01
Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.
A numerical algorithm with preference statements to evaluate the performance of scientists.
Ricker, Martin
Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores ) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.
Directory of Open Access Journals (Sweden)
Nilson C. Roberty
2011-01-01
Full Text Available We introduce algorithms marching over a polygonal mesh with elements consistent with the propagation directions of the particle (radiation flux. The decision for adopting this kind of mesh to solve the one-speed Boltzmann transport equation is due to characteristics of the domain of the transport operator which controls derivatives only in the direction of propagation of the particles (radiation flux in the absorbing and scattering media. This a priori adaptivity has the advantages that it formulates a consistent scheme which makes appropriate the application of the Lax equivalence theorem framework to the problem. In this work, we present the main functional spaces involved in the formalism and a description of the algorithms for the mesh generation and the transport equation solution. Some numerical examples related to the solution of a transmission problem in a high-contrast model with absorption and scattering are presented. Also, a comparison with benchmarks problems for source and reactor criticality simulations shows the compatibility between calculations with the algorithms proposed here and theoretical results.
Blind signal processing algorithms under DC biased Gaussian noise
Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok
2013-05-01
Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.
Directory of Open Access Journals (Sweden)
Benjamin Glasse
2015-01-01
Full Text Available The continuous monitoring of the particle size distribution in particulate processes with suspensions or emulsions requires measurement techniques that can be used as in situ devices in contrast to ex situ or laboratory methods. In this context, for the evaluation of turbidimetric spectral measurements, the application of different numerical inversion algorithms is investigated with respect to the particle size distribution determination of polystyrene suspensions. A modified regularization concept consisting of a Twomey-Phillips-Regularization with an integrated nonnegative constraint and a modified L-curve criterion for the selection of the regularization parameter is used. The particle size (i.e., particle diameter of polystyrene suspensions in the range x=0.03–3 µm was validated via dynamic light scattering and differential centrifugal sedimentation and compared to the retrieved particle size distribution from the inverted turbidimetry measurements.
Russell, William S.; Roberts, William W., Jr.
1993-01-01
An automated mathematical method capable of successfully isolating the many different features in prototype and observed spiral galaxies and of accurately measuring the pitch angles and lengths of these individual features is developed. The method is applied to analyze the evolution of specific features in a prototype galaxy exhibiting flocculent spiral structure. The mathematical-computational method was separated into two components. Initially, the galaxy was partitioned into dense regions constituting features using two different methods. The results obtained using these two partitioning algorithms were very similar, from which it is inferred that no numerical biasing was evident and that capturing of the features was consistent. Standard least-squares methods underestimated the true slope of the cloud distribution and were incapable of approximating an orientation of 45 deg. The problems were overcome by introducing a superior fit least-squares method, developed with the intention of calculating true orientation rather than a regression line.
Numerical linked-cluster algorithms. I. Spin systems on square, triangular, and kagomé lattices.
Rigol, Marcos; Bryant, Tyler; Singh, Rajiv R P
2007-06-01
We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagomé lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLCs, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations. For many models and properties NLC results are substantially more accurate than HTE and ED.
A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests
Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars
2015-09-01
The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal
DEFF Research Database (Denmark)
Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter
1995-01-01
The stepwise numerical stability of the Saul'yev finite difference discretization of an example diffusional initial boundary value problem from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention has been paid to the effect...... of unconditional stability of the Saul'yev algorithms, reported in the literature, the left-right variant of the Saul'yev algorithm becomes unstable for large values of the dimensionless diffusion parameter λ = δt/h2, under mixed boundary conditions. This limitation is not, however, severe for most practical...
Numerical Studies of Homogenization under a Fast Cellular Flow
Iyer, Gautam
2012-09-13
We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.
Kim, J.; Sonnenthal, E. L.; Rutqvist, J.
2011-12-01
Rigorous modeling of coupling between fluid, heat, and geomechanics (thermo-poro-mechanics), in fractured porous media is one of the important and difficult topics in geothermal reservoir simulation, because the physics are highly nonlinear and strongly coupled. Coupled fluid/heat flow and geomechanics are investigated using the multiple interacting continua (MINC) method as applied to naturally fractured media. In this study, we generalize constitutive relations for the isothermal elastic dual porosity model proposed by Berryman (2002) to those for the non-isothermal elastic/elastoplastic multiple porosity model, and derive the coupling coefficients of coupled fluid/heat flow and geomechanics and constraints of the coefficients. When the off-diagonal terms of the total compressibility matrix for the flow problem are zero, the upscaled drained bulk modulus for geomechanics becomes the harmonic average of drained bulk moduli of the multiple continua. In this case, the drained elastic/elastoplastic moduli for mechanics are determined by a combination of the drained moduli and volume fractions in multiple porosity materials. We also determine a relation between local strains of all multiple porosity materials in a gridblock and the global strain of the gridblock, from which we can track local and global elastic/plastic variables. For elastoplasticity, the return mapping is performed for all multiple porosity materials in the gridblock. For numerical implementation, we employ and extend the fixed-stress sequential method of the single porosity model to coupled fluid/heat flow and geomechanics in multiple porosity systems, because it provides numerical stability and high accuracy. This sequential scheme can be easily implemented by using a porosity function and its corresponding porosity correction, making use of the existing robust flow and geomechanics simulators. We implemented the proposed modeling and numerical algorithm to the reaction transport simulator
Numerical dynamic analysis of stiffened plates under blast loading
Directory of Open Access Journals (Sweden)
H.R. Tavakoli
Full Text Available Using the general purpose finite element package Abaqus, an investigation has been carried out to examine the dynamic response of steel stiffened plates subjected to uniform blast loading. The main objective of this study is to determine the dynamic response of the stiffened plates considering the effect of stiffener configurations. Several parameters, such as boundary conditions, mesh dependency and strain rate, have been considered in this study. Special emphasis is focused on the evaluation of midpoint displacements and energy of models. The modeling techniques were described in details. The numerical results provide better insight into the effect of stiffener configurations on the nonlinear dynamic response of the stiffened plates subjected to uniform blast loading.
Selective epidemic vaccination under the performant routing algorithms
Bamaarouf, O.; Alweimine, A. Ould Baba; Rachadi, A.; EZ-Zahraouy, H.
2018-04-01
Despite the extensive research on traffic dynamics and epidemic spreading, the effect of the routing algorithms strategies on the traffic-driven epidemic spreading has not received an adequate attention. It is well known that more performant routing algorithm strategies are used to overcome the congestion problem. However, our main result shows unexpectedly that these algorithms favor the virus spreading more than the case where the shortest path based algorithm is used. In this work, we studied the virus spreading in a complex network using the efficient path and the global dynamic routing algorithms as compared to shortest path strategy. Some previous studies have tried to modify the routing rules to limit the virus spreading, but at the expense of reducing the traffic transport efficiency. This work proposed a solution to overcome this drawback by using a selective vaccination procedure instead of a random vaccination used often in the literature. We found that the selective vaccination succeeded in eradicating the virus better than a pure random intervention for the performant routing algorithm strategies.
Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.
2017-01-01
In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
On the analytic and numeric optimisation of airplane trajectories under real atmospheric conditions
Gonzalo, J.; Domínguez, D.; López, D.
2014-12-01
From the beginning of aviation era, economic constraints have forced operators to continuously improve the planning of the flights. The revenue is proportional to the cost per flight and the airspace occupancy. Many methods, the first started in the middle of last century, have explore analytical, numerical and artificial intelligence resources to reach the optimal flight planning. In parallel, advances in meteorology and communications allow an almost real-time knowledge of the atmospheric conditions and a reliable, error-bounded forecast for the near future. Thus, apart from weather risks to be avoided, airplanes can dynamically adapt their trajectories to minimise their costs. International regulators are aware about these capabilities, so it is reasonable to envisage some changes to allow this dynamic planning negotiation to soon become operational. Moreover, current unmanned airplanes, very popular and often small, suffer the impact of winds and other weather conditions in form of dramatic changes in their performance. The present paper reviews analytic and numeric solutions for typical trajectory planning problems. Analytic methods are those trying to solve the problem using the Pontryagin principle, where influence parameters are added to state variables to form a split condition differential equation problem. The system can be solved numerically -indirect optimisation- or using parameterised functions -direct optimisation-. On the other hand, numerical methods are based on Bellman's dynamic programming (or Dijkstra algorithms), where the fact that two optimal trajectories can be concatenated to form a new optimal one if the joint point is demonstrated to belong to the final optimal solution. There is no a-priori conditions for the best method. Traditionally, analytic has been more employed for continuous problems whereas numeric for discrete ones. In the current problem, airplane behaviour is defined by continuous equations, while wind fields are given in a
Létourneau, Pierre-David
2016-09-19
We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.
Evaluation of Underwater Image Enhancement Algorithms under Different Environmental Conditions
Directory of Open Access Journals (Sweden)
Marino Mangeruga
2018-01-01
Full Text Available Underwater images usually suffer from poor visibility, lack of contrast and colour casting, mainly due to light absorption and scattering. In literature, there are many algorithms aimed to enhance the quality of underwater images through different approaches. Our purpose was to identify an algorithm that performs well in different environmental conditions. We have selected some algorithms from the state of the art and we have employed them to enhance a dataset of images produced in various underwater sites, representing different environmental and illumination conditions. These enhanced images have been evaluated through some quantitative metrics. By analysing the results of these metrics, we tried to understand which of the selected algorithms performed better than the others. Another purpose of our research was to establish if a quantitative metric was enough to judge the behaviour of an underwater image enhancement algorithm. We aim to demonstrate that, even if the metrics can provide an indicative estimation of image quality, they could lead to inconsistent or erroneous evaluations.
Numerical optimization of piezolaminated beams under static and dynamic excitations
Directory of Open Access Journals (Sweden)
Rajan L. Wankhade
2017-06-01
Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.
Directory of Open Access Journals (Sweden)
DURUSU, A.
2014-08-01
Full Text Available Maximum power point trackers (MPPTs play an essential role in extracting power from photovoltaic (PV panels as they make the solar panels to operate at the maximum power point (MPP whatever the changes of environmental conditions are. For this reason, they take an important place in the increase of PV system efficiency. MPPTs are driven by MPPT algorithms and a number of MPPT algorithms are proposed in the literature. The comparison of the MPPT algorithms in literature are made by a sun simulator based test system under laboratory conditions for short durations. However, in this study, the performances of four most commonly used MPPT algorithms are compared under real environmental conditions for longer periods. A dual identical experimental setup is designed to make a comparison between two the considered MPPT algorithms as synchronized. As a result of this study, the ranking among these algorithms are presented and the results show that Incremental Conductance (IC algorithm gives the best performance.
Directory of Open Access Journals (Sweden)
Lei Juanmian
2016-08-01
Full Text Available This paper investigates the influence of forward-swept wing (FSW positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5. The numerical method based on Reynolds-averaged Navier–Stokes (RANS equations, Spalart–Allmaras (S–A turbulence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pressure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.
International Nuclear Information System (INIS)
Zee, S.K.
1987-01-01
A numeric algorithm and an associated computer code were developed for the rapid solution of the finite-difference method representation of the few-group neutron-diffusion equations on parallel computers. Applications of the numeric algorithm on both SIMD (vector pipeline) and MIMD/SIMD (multi-CUP/vector pipeline) architectures were explored. The algorithm was successfully implemented in the two-group, 3-D neutron diffusion computer code named DIFPAR3D (DIFfusion PARallel 3-Dimension). Numerical-solution techniques used in the code include the Chebyshev polynomial acceleration technique in conjunction with the power method of outer iteration. For inner iterations, a parallel form of red-black (cyclic) line SOR with automated determination of group dependent relaxation factors and iteration numbers required to achieve specified inner iteration error tolerance is incorporated. The code employs a macroscopic depletion model with trace capability for selected fission products' transients and critical boron. In addition to this, moderator and fuel temperature feedback models are also incorporated into the DIFPAR3D code, for realistic simulation of power reactor cores. The physics models used were proven acceptable in separate benchmarking studies
International Nuclear Information System (INIS)
Blum, T.; Creutz, M.
1999-01-01
The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations
DEFF Research Database (Denmark)
Vesterstrøm, Jacob Svaneborg; Thomsen, Rene
2004-01-01
Several extensions to evolutionary algorithms (EAs) and particle swarm optimization (PSO) have been suggested during the last decades offering improved performance on selected benchmark problems. Recently, another search heuristic termed differential evolution (DE) has shown superior performance...
Directory of Open Access Journals (Sweden)
Li Mao
2016-01-01
Full Text Available Artificial bee colony (ABC algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.
Concrete Mix Design for Service Life of RC Structures under Carbonation Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Seung-Jun Kwon
2014-01-01
Full Text Available Steel corrosion in reinforced concrete (RC structure is such a critical problem to structural safety that many researches have been performed for maintaining required performance during intended service life. This paper is for a numerical technique for obtaining optimum concrete mix proportions through genetic algorithm (GA for RC structures under carbonation which is considered as a serious deterioration in underground sites and big cities. For this study, mix proportions and CO2 diffusion coefficients are analyzed through the previous studies, and then the fitness function of CO2 diffusion coefficient is derived through regression analysis. The fitness function from 69 test results includes 5 variables of mix proportions such as w/c (water to cement ratio, cement content, sand content percentage, coarse aggregate content, and R.H. (relative humidity. Through GA technique, simulated mix proportions are obtained for 12 cases of verification and they show reasonable results with average relative error of 4.6%. Assuming intended service life and design parameters, intended CO2 diffusion coefficients and cement contents are determined and then related mix proportions are simulated. The proposed technique can provide initial concrete mix proportions which satisfy service life under carbonation.
Indian Academy of Sciences (India)
have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming language Is called a program. From activities 1-3, we can observe that: • Each activity is a command.
Numerical Simulations of Dynamic Behavior of Polyurea Toughened Steel Plates under Impact Loading
Directory of Open Access Journals (Sweden)
Chien-Chung Chen
2014-01-01
Full Text Available The objective of the work discussed herein is to develop a nonlinear 3D finite element model to simulate dynamic behavior of polyurea toughened steel plates under impact loading. Experimental and numerical work related to model development are presented. Material properties are incorporated into numerical models to account for strain-rate effects on the dynamic behavior of polyurea and steel. One bare steel plate and four polyurea toughened steel plates were tested under impact loading using a pendulum impact device. Displacement time-history data from experimental work was used to validate the numerical models. Details on material model construction, finite element model development, and model validation are presented and discussed. Results indicate that the developed numerical models can reasonably predict dynamic response of polyurea toughened steel plates under impact loading.
Canadell, Marta; Haro, Àlex
2017-12-01
We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
Directory of Open Access Journals (Sweden)
B. Ojeda-Magaña
2013-01-01
Full Text Available We take the concept of typicality from the field of cognitive psychology, and we apply the meaning to the interpretation of numerical data sets and color images through fuzzy clustering algorithms, particularly the GKPFCM, looking to get better information from the processed data. The Gustafson Kessel Possibilistic Fuzzy c-means (GKPFCM is a hybrid algorithm that is based on a relative typicality (membership degree, Fuzzy c-means and an absolute typicality (typicality value, Possibilistic c-means. Thus, using both typicalities makes it possible to learn and analyze data as well as to relate the results with the theory of prototypes. In order to demonstrate these results we use a synthetic data set and a digitized image of a glass, in a first example, and images from the Berkley database, in a second example. The results clearly demonstrate the advantages of the information obtained about numerical data sets, taking into account the different meaning of typicalities and the availability of both values with the clustering algorithm used. This approach allows the identification of small homogeneous regions, which are difficult to find.
Dongarra, Jack
2012-11-01
We propose to study the impact on the energy footprint of two advanced algorithmic strategies in the context of high performance dense linear algebra libraries: (1) mixed precision algorithms with iterative refinement allow to run at the peak performance of single precision floating-point arithmetic while achieving double precision accuracy and (2) tree reduction technique exposes more parallelism when factorizing tall and skinny matrices for solving over determined systems of linear equations or calculating the singular value decomposition. Integrated within the PLASMA library using tile algorithms, which will eventually supersede the block algorithms from LAPACK, both strategies further excel in performance in the presence of a dynamic task scheduler while targeting multicore architecture. Energy consumption measurements are reported along with parallel performance numbers on a dual-socket quad-core Intel Xeon as well as a quad-socket quad-core Intel Sandy Bridge chip, both providing component-based energy monitoring at all levels of the system, through the Power Pack framework and the Running Average Power Limit model, respectively. © 2012 IEEE.
Czech Academy of Sciences Publication Activity Database
Cullum, J. K.; Johnson, K.; Tůma, Miroslav
2003-01-01
Roč. 10, - (2003), s. 445-465 ISSN 1070-5325 R&D Projects: GA ČR GA201/02/0595; GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : parallel algorithms * graph partitioning * problem decomposition * rate of convergence Subject RIV: BA - General Mathematics Impact factor: 1.042, year: 2003
Håvie, T.
1970-01-01
Some quadrature formulae using the derivatives of the integrand are discussed. As special cases are obtained generalizations of both the ordinary and the modified Romberg algorithms. In all cases the error terms are expressed in terms of Bernoulli polynomials and functions.
EM algorithm for one-shot device testing with competing risks under exponential distribution
International Nuclear Information System (INIS)
Balakrishnan, N.; So, H.Y.; Ling, M.H.
2015-01-01
This paper provides an extension of the work of Balakrishnan and Ling [1] by introducing a competing risks model into a one-shot device testing analysis under an accelerated life test setting. An Expectation Maximization (EM) algorithm is then developed for the estimation of the model parameters. An extensive Monte Carlo simulation study is carried out to assess the performance of the EM algorithm and then compare the obtained results with the initial estimates obtained by the Inequality Constrained Least Squares (ICLS) method of estimation. Finally, we apply the EM algorithm to a clinical data, ED01, to illustrate the method of inference developed here. - Highlights: • ALT data analysis for one-shot devices with competing risks is considered. • EM algorithm is developed for the determination of the MLEs. • The estimations of lifetime under normal operating conditions are presented. • The EM algorithm improves the convergence rate
Numerically pricing American options under the generalized mixed fractional Brownian motion model
Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying
2016-06-01
In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.
Application of Numerical Dispersion Compensation of the Yee-FDTD Algorithm on Elongated Domains
DEFF Research Database (Denmark)
Franek, Ondrej; Zhang, Shuai; Olesen, Kim
2017-01-01
A postprocessing method to compensate for the numerical dispersion of the Yee-FDTD scheme is presented. The method makes use of frequency domain deconvolution of the erroneous phase shift from the obtained results and can be applied on certain specific conditions, such as for simulations on elong...... on elongated computational domains. Validation of the method is performed by comparing to analytical solution in a simplified empty-space scenario. Application to simulation of an UWB deflection sensing system is demonstrated, with good match between numerical and measured results....
Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
Algorithmic mechanisms for reliable crowdsourcing computation under collusion.
Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel
2015-01-01
We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.
special algorithm for the numerical solution of system of initial value ...
African Journals Online (AJOL)
Nwokem et al.
study problems in mathematics, engineering, computer science and ..... Equation (10) is evaluated at some ξ points to obtained discrete ...... Int. J. Math. Edu. Sci. Technol. 41:110-118. Lambert, J. D , Computational methods for ordinary differential equations, John Wiley, New York, (1973). Lambert, J. D , Numerical methods ...
Engwerda, Jacob
2015-01-01
This note deals with solving scalar coupled algebraic Riccati equations. These equations arise in finding linear feedback Nash equilibria of the scalar N-player affine quadratic differential game. A numerical procedure is provided to compute all the stabilizing solutions. The main idea is to
International Nuclear Information System (INIS)
Chiche, A.
2012-01-01
This manuscript deals with large-scale optimization problems, and more specifically with solving the electricity unit commitment problem arising at EDF. First, we focused on the augmented Lagrangian algorithm. The behavior of that algorithm on an infeasible convex quadratic optimization problem is analyzed. It is shown that the algorithm finds a point that satisfies the shifted constraints with the smallest possible shift in the sense of the Euclidean norm and that it minimizes the objective on the corresponding shifted constrained set. The convergence to such a point is realized at a global linear rate, which depends explicitly on the augmentation parameter. This suggests us a rule for determining the augmentation parameter to control the speed of convergence of the shifted constraint norm to zero. This rule has the advantage of generating bounded augmentation parameters even when the problem is infeasible. As a by-product, the algorithm computes the smallest translation in the Euclidean norm that makes the constraints feasible. Furthermore, this work provides solution methods for stochastic optimization industrial problems decomposed on a scenario tree, based on the progressive hedging algorithm introduced by [Rockafellar et Wets, 1991]. We also focus on the convergence of that algorithm. On the one hand, we offer a counter-example showing that the algorithm could diverge if its augmentation parameter is iteratively updated. On the other hand, we show how to recover the multipliers associated with the non-dualized constraints defined on the scenario tree from those associated with the corresponding constraints of the scenario subproblems. Their convergence is also analyzed for convex problems. The practical interest of theses solutions techniques is corroborated by numerical experiments performed on the electric production management problem. We apply the progressive hedging algorithm to a realistic industrial problem. More precisely, we solve the French medium
Indian Academy of Sciences (India)
algorithms such as synthetic (polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language ... ·1 x:=sln(theta) x : = sm(theta) 1. ~. Idl d.t Read A.B,C. ~ lei ~ Print x.y.z. L;;;J. Figure 2 Symbols used In flowchart language to rep- resent Assignment, Read.
Indian Academy of Sciences (India)
In the previous articles, we have discussed various common data-structures such as arrays, lists, queues and trees and illustrated the widely used algorithm design paradigm referred to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted ...
Lötstedt, Erik; Jentschura, Ulrich D
2009-02-01
In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
The Deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
E, Weinan; Yu, Bing
2017-01-01
We propose a deep learning based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Directory of Open Access Journals (Sweden)
Lihong Guo
2013-01-01
Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
Directory of Open Access Journals (Sweden)
Jian-Lin Jiang
2013-01-01
Full Text Available This paper considers the locations of multiple facilities in the space , with the aim of minimizing the sum of weighted distances between facilities and regional customers, where the proximity between a facility and a regional customer is evaluated by the closest distance. Due to the fact that facilities are usually allowed to be sited in certain restricted areas, some locational constraints are imposed to the facilities of our problem. In addition, since the symmetry of distances is sometimes violated in practical situations, the gauge is employed in this paper instead of the frequently used norms for measuring both the symmetric and asymmetric distances. In the spirit of the Cooper algorithm (Cooper, 1964, a new location-allocation heuristic algorithm is proposed to solve this problem. In the location phase, the single-source subproblem with regional demands is reformulated into an equivalent linear variational inequality (LVI, and then, a projection-contraction (PC method is adopted to find the optimal locations of facilities, whereas in the allocation phase, the regional customers are allocated to facilities according to the nearest center reclassification (NCR. The convergence of the proposed algorithm is proved under mild assumptions. Some preliminary numerical results are reported to show the effectiveness of the new algorithm.
Direct numerical simulation of bubbles with adaptive mesh refinement with distributed algorithms
International Nuclear Information System (INIS)
Talpaert, Arthur
2017-01-01
This PhD work presents the implementation of the simulation of two-phase flows in conditions of water-cooled nuclear reactors, at the scale of individual bubbles. To achieve that, we study several models for Thermal-Hydraulic flows and we focus on a technique for the capture of the thin interface between liquid and vapour phases. We thus review some possible techniques for adaptive Mesh Refinement (AMR) and provide algorithmic and computational tools adapted to patch-based AMR, which aim is to locally improve the precision in regions of interest. More precisely, we introduce a patch-covering algorithm designed with balanced parallel computing in mind. This approach lets us finely capture changes located at the interface, as we show for advection test cases as well as for models with hyperbolic-elliptic coupling. The computations we present also include the simulation of the incompressible Navier-Stokes system, which models the shape changes of the interface between two non-miscible fluids. (author) [fr
Algorithm for Extracting Digital Terrain Models under Forest Canopy from Airborne LiDAR Data
Directory of Open Access Journals (Sweden)
Almasi S. Maguya
2014-07-01
Full Text Available Extracting digital elevationmodels (DTMs from LiDAR data under forest canopy is a challenging task. This is because the forest canopy tends to block a portion of the LiDAR pulses from reaching the ground, hence introducing gaps in the data. This paper presents an algorithm for DTM extraction from LiDAR data under forest canopy. The algorithm copes with the challenge of low data density by generating a series of coarse DTMs by using the few ground points available and using trend surfaces to interpolate missing elevation values in the vicinity of the available points. This process generates a cloud of ground points from which the final DTM is generated. The algorithm has been compared to two other algorithms proposed in the literature in three different test sites with varying degrees of difficulty. Results show that the algorithm presented in this paper is more tolerant to low data density compared to the other two algorithms. The results further show that with decreasing point density, the differences between the three algorithms dramatically increased from about 0.5m to over 10m.
Numerical algorithm for optimization of positive electrode in lead-acid batteries
Murariu, Ancuta Teodora; Buimaga-Iarinca, Luiza; Morari, Cristian
2017-12-01
The positive electrode in lead-acid batteries is one of the most sensitive parts of the whole battery, since it is affected by various aggresive chemical processes during its life. Therefore, an optimal design of the positive electrode of the battery may have as efect a dramatic improvement of the properties of the battery - such as total capacity or endurance during its life. Our efforts dedicated to this goal cover a range of rather complex tasks, from the design based on numerical analysis to statistic analysis. We present the structure of the software implementation and the results obtained for three types of positive electrodes.
Feskov, Serguei V.; Ivanov, Anatoly I.
2018-03-01
An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model
Drabik, Timothy J.; Title, Mark A.; Lee, Sing H.
1986-06-01
The potential and promise of very high-performance spatial light modulators (SLMs) capable of performing logic operations has motivated the investigation of digital computing systems that possess many desirable attributes of optical systems, namely massive parallelism, global communication at high bandwidths, high reliability, many useful degrees of freedom, robustness in the presence of defects, and simplicity. The parallelism of easily realizable optical single-instruction, multiple-data (SIMD) arrays makes them a natural choice for implementation of highly structured algorithms for the numerical solution of multi-dimensional partial differential equations and the computation of fast numerical transforms. A system comprising several SLMs, an optical read/write memory, and a functional block to perform simple, space-invariant shifts on images has enough flexibility to implement the fastest known methods for partial differential equations (e.g. multi-level methods) as well as a wide variety of numerical transforms (e.g., FFT, Walsh-Hadamard transform, rapid transform), in two or more dimensions, and using either fixed or floating-point arithmetic. Performance is projected at greater than 109 floating-point operations/s using SLMs with resolution 1000 x 1000 operating at 1 MHz frame rates.
International Nuclear Information System (INIS)
Ise, Takeharu
1976-12-01
Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)
Katsuro-Hopkins, Oksana; Sabbagh, S. A.; Bialek, J. M.; Park, H. K.; Kim, J. Y.; You, K.-I.; Glasser, A. H.; Lao, L. L.
2007-11-01
Stability to ideal MHD kink/ballooning modes and the resistive wall mode (RWM) is investigated for the KSTAR tokamak. Free-boundary equilibria that comply with magnetic field coil current constraints are computed for monotonic and reversed shear safety factor profiles and H-mode tokamak pressure profiles. Advanced tokamak operation at moderate to low plasma internal inductance shows that a factor of two improvement in the plasma beta limit over the no-wall beta limit is possible for toroidal mode number of unity. The KSTAR conducting structure, passive stabilizers, and in-vessel control coils are modeled by the VALEN-3D code and the active RWM stabilization performance of the device is evaluated using both standard and advanced feedback algorithms. Steady-state power and voltage requirements for the system are estimated based on the expected noise on the RWM sensor signals. Using NSTX experimental RWM sensors noise data as input, a reduced VALEN state-space LQG controller is designed to realistically assess KSTAR stabilization system performance.
Zhao, Enjin; Shi, Bing; Qu, Ke; Dong, Wenbin; Zhang, Jing
2018-04-01
As a new type of submarine pipeline, the piggyback pipeline has been gradually adopted in engineering practice to enhance the performance and safety of submarine pipelines. However, limited simulation work and few experimental studies have been published on the scour around the piggyback pipeline under steady current. This study numerically and experimentally investigates the local scour of the piggyback pipe under steady current. The influence of prominent factors such as pipe diameter, inflow Reynolds number, and gap between the main and small pipes, on the maximum scour depth have been examined and discussed in detail. Furthermore, one formula to predict the maximum scour depth under the piggyback pipeline has been derived based on the theoretical analysis of scour equilibrium. The feasibility of the proposed formula has been effectively calibrated by both experimental data and numerical results. The findings drawn from this study are instructive in the future design and application of the piggyback pipeline.
Directory of Open Access Journals (Sweden)
Gong Haijun
2013-03-01
Full Text Available A unified numerical model for simulating solidification transport phenomena (STP of steel slab in electromagnetic continuous casting (EMCC process was developed. In order to solve the multi-physics fields coupled problem conveniently, the complicated bidirectional coupled process between EM and STP was simplified as a unidirectional one, and a FEM/FVM-combined numerical simulation technique was adopted. The traveling magnetic fields (TMFs applied to the EMCC process were calculated using the ANSYS11.0 software, and then the EM-data output by ANSYS were converted to FVM-format using a data-format conversion program developed previously. Thereafter, the governing equations were solved using a pressure-based Direct-SIMPLE algorithm. The simulation results of the STP in CC-process show that, due to the influences of Lorentz force and Joule heat, the two strong circulating flows and the temperature field can be obviously damped and changed once TMF with one pair of poles (1-POPs or 2-POPs is applied, which would accordingly improve the quality of casting. It was found in the present research that the integrated actions of 2-POPs TMF are superior to 1-POPs. All the computations indicate that the present numerical model of EM-STP as well as the FEM/FVM-combined technique is successful.
Directory of Open Access Journals (Sweden)
Zhaohui Chong
2017-01-01
Full Text Available At the laboratory scale, locating acoustic emission (AE events is a comparatively mature method for evaluating cracks in rock materials, and the method plays an important role in numerical simulations. This study is aimed at developing a quantitative method for the measurement of acoustic emission (AE events in numerical simulations. Furthermore, this method was applied to estimate the crack initiation, propagation, and coalescence in rock materials. The discrete element method-acoustic emission model (DEM-AE model was developed using an independent subprogram. This model was designed to calculate the scalar seismic tensor of particles in the process of movement and further to determine the magnitude of AE events. An algorithm for identifying the same spatiotemporal AE event is being presented. To validate the model, a systematic physical experiment and numerical simulation for argillaceous sandstones were performed to present a quantitative comparison of the results with confining pressure. The results showed good agreement in terms of magnitude and spatiotemporal evolution between the simulation and the physical experiment. Finally, the magnitude of AE events was analyzed, and the relationship between AE events and microcracks was discussed. This model can provide the research basis for preventing seismic hazards caused by underground coal mining.
Zhou, Meiling; Singh, Alok Kumar; Pedrini, Giancarlo; Osten, Wolfgang; Min, Junwei; Yao, Baoli
2018-03-01
We present a tunable output-frequency filter (TOF) algorithm to reconstruct the object from noisy experimental data under low-power partially coherent illumination, such as LED, when imaging through scattering media. In the iterative algorithm, we employ Gaussian functions with different filter windows at different stages of iteration process to reduce corruption from experimental noise to search for a global minimum in the reconstruction. In comparison with the conventional iterative phase retrieval algorithm, we demonstrate that the proposed TOF algorithm achieves consistent and reliable reconstruction in the presence of experimental noise. Moreover, the spatial resolution and distinctive features are retained in the reconstruction since the filter is applied only to the region outside the object. The feasibility of the proposed method is proved by experimental results.
Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.
2016-10-01
Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.
Directory of Open Access Journals (Sweden)
Kewei Song
2014-01-01
Full Text Available Magnetothermal free convection of air in a square enclosure under a nonuniform magnetic field provided by a permanent neodymium-iron-boron magnet is numerically studied. The natural convection under the gravity field alone is also studied for comparison. The physical fields of magnetizing force, velocity, and temperature as well as the local distribution characteristic of Nusselt number are all presented in this paper. The results show that the buoyancy convection of air in the square enclosure under magnetic field is quite different from that under the gravity field. The local value of Nusselt number under the magnetic field supplied by a permanent magnet with a residual magnetic flux density of about 4.5 Tesla can reach a high value of about three times larger than the maximum local value of Nusselt number under the gravity field. Relatively uniform distributions of temperature gradient and Nusselt number can be obtained along the cold wall of the enclosure under the magnetic field. A permanent magnet with high magnetic energy product with Br reaching to 3.5 Tesla can play a comparative role on the averaged Nusselt number compared with that under the gravity environment.
Indian Academy of Sciences (India)
In the program shown in Figure 1, we have repeated the algorithm. M times and we can make the following observations. Each block is essentially a different instance of "code"; that is, the objects differ by the value to which N is initialized before the execution of the. "code" block. Thus, we can now avoid the repetition of the ...
Indian Academy of Sciences (India)
algorithms built into the computer corresponding to the logic- circuit rules that are used to .... For the purpose of carrying ou t ari thmetic or logical operations the memory is organized in terms .... In fixed point representation, one essentially uses integer arithmetic operators assuming the binary point to be at some point other ...
Real-space, mean-field algorithm to numerically calculate long-range interactions
Cadilhe, A.; Costa, B. V.
2016-02-01
Long-range interactions are known to be of difficult treatment in statistical mechanics models. There are some approaches that introduce a cutoff in the interactions or make use of reaction field approaches. However, those treatments suffer the illness of being of limited use, in particular close to phase transitions. The use of open boundary conditions allows the sum of the long-range interactions over the entire system to be done, however, this approach demands a sum over all degrees of freedom in the system, which makes a numerical treatment prohibitive. Techniques like the Ewald summation or fast multipole expansion account for the exact interactions but are still limited to a few thousands of particles. In this paper we introduce a novel mean-field approach to treat long-range interactions. The method is based in the division of the system in cells. In the inner cell, that contains the particle in sight, the 'local' interactions are computed exactly, the 'far' contributions are then computed as the average over the particles inside a given cell with the particle in sight for each of the remaining cells. Using this approach, the large and small cells limits are exact. At a fixed cell size, the method also becomes exact in the limit of large lattices. We have applied the procedure to the two-dimensional anisotropic dipolar Heisenberg model. A detailed comparison between our method, the exact calculation and the cutoff radius approximation were done. Our results show that the cutoff-cell approach outperforms any cutoff radius approach as it maintains the long-range memory present in these interactions, contrary to the cutoff radius approximation. Besides that, we calculated the critical temperature and the critical behavior of the specific heat of the anisotropic Heisenberg model using our method. The results are in excellent agreement with extensive Monte Carlo simulations using Ewald summation.
Islam, Sk Minhazul; Das, Swagatam; Ghosh, Saurav; Roy, Subhrajit; Suganthan, Ponnuthurai Nagaratnam
2012-04-01
Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.
DEFF Research Database (Denmark)
Zimmermann, Ralf
2017-01-01
We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm...... converges locally and exhibits a linear rate of convergence....
Zimmermann, Ralf
2016-01-01
We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.
Numerical simulation of supersonic over/under expanded jets using adaptive grid
International Nuclear Information System (INIS)
Talebi, S.; Shirani, E.
2001-05-01
Numerical simulation of supersonic under and over expanded jet was simulated. In order to achieve the solution efficiently and with high resolution, adaptive grid is used. The axisymmetric compressible, time dependent Navier-Stokes equations in body fitted curvilinear coordinate were solved numerically. The equations were discretized by using control volume, and the Van Leer flux splitting approach. The equations were solved implicitly. The obtained computer code was used to simulate four different cases of moderate and strong under and over expanded jet flows. The results show that with the adaptation of the grid, the various features of this complicated flow can be observed. It was shown that the adaptation method is very efficient and has the ability to make fine grids near the high gradient regions. (author)
A formally verified algorithm for interactive consistency under a hybrid fault model
Lincoln, Patrick; Rushby, John
1993-01-01
Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.
Directory of Open Access Journals (Sweden)
Xiaohua Nie
2017-01-01
Full Text Available This work presents a maximum power point tracking (MPPT based on the particle swarm optimization (PSO improved shuffled frog leaping algorithm (PSFLA. The swarm intelligence algorithm (SIA has vast computing ability. The MPPT control strategies of PV array based on SIA are attracting considerable interests. Firstly, the PSFLA was proposed by adding the inertia weight factor w of PSO in standard SFLA to overcome the defect of falling into the partial optimal solutions and slow convergence speed. The proposed PSFLA algorithm increased calculation speed and excellent global search capability of MPPT. Then, the PSFLA was applied to MPPT to solve the multiple extreme point problems of nonlinear optimization. Secondly, for the problems of MPPT under complex environments, a new MPPT strategy of the PSFLA combined with recursive least square filtering was proposed to overcome the measurement noise effects on MPPT accuracy. Finally, the simulation comparisons between PSFLA and SFLA algorithm were developed. The experiment and comparison between PSLFA and PSO algorithm under complex environment were executed. The simulation and experiment results indicate that the proposed MPPT control strategy based on PSFLA can suppress the measurement noise effects effectively and improve the PV array efficiency.
Foroughi Pour, Ali; Dalton, Lori A
2018-03-21
Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.
Directory of Open Access Journals (Sweden)
Simon D Angus
Full Text Available Multi-dose radiotherapy protocols (fraction dose and timing currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5% and 7.1% (13.3% improvement (reduction on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h, leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost
Angus, Simon D; Piotrowska, Monika Joanna
2014-01-01
Multi-dose radiotherapy protocols (fraction dose and timing) currently used in the clinic are the product of human selection based on habit, received wisdom, physician experience and intra-day patient timetabling. However, due to combinatorial considerations, the potential treatment protocol space for a given total dose or treatment length is enormous, even for relatively coarse search; well beyond the capacity of traditional in-vitro methods. In constrast, high fidelity numerical simulation of tumor development is well suited to the challenge. Building on our previous single-dose numerical simulation model of EMT6/Ro spheroids, a multi-dose irradiation response module is added and calibrated to the effective dose arising from 18 independent multi-dose treatment programs available in the experimental literature. With the developed model a constrained, non-linear, search for better performing cadidate protocols is conducted within the vicinity of two benchmarks by genetic algorithm (GA) techniques. After evaluating less than 0.01% of the potential benchmark protocol space, candidate protocols were identified by the GA which conferred an average of 9.4% (max benefit 16.5%) and 7.1% (13.3%) improvement (reduction) on tumour cell count compared to the two benchmarks, respectively. Noticing that a convergent phenomenon of the top performing protocols was their temporal synchronicity, a further series of numerical experiments was conducted with periodic time-gap protocols (10 h to 23 h), leading to the discovery that the performance of the GA search candidates could be replicated by 17-18 h periodic candidates. Further dynamic irradiation-response cell-phase analysis revealed that such periodicity cohered with latent EMT6/Ro cell-phase temporal patterning. Taken together, this study provides powerful evidence towards the hypothesis that even simple inter-fraction timing variations for a given fractional dose program may present a facile, and highly cost-effecitive means
Directory of Open Access Journals (Sweden)
Minghui Song
2012-01-01
Full Text Available The main purpose of this paper is to investigate the convergence of the Euler method to stochastic differential equations with piecewise continuous arguments (SEPCAs. The classical Khasminskii-type theorem gives a powerful tool to examine the global existence of solutions for stochastic differential equations (SDEs without the linear growth condition by the use of the Lyapunov functions. However, there is no such result for SEPCAs. Firstly, this paper shows SEPCAs which have nonexplosion global solutions under local Lipschitz condition without the linear growth condition. Then the convergence in probability of numerical solutions to SEPCAs under the same conditions is established. Finally, an example is provided to illustrate our theory.
International Nuclear Information System (INIS)
Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar
2015-01-01
Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
Energy Technology Data Exchange (ETDEWEB)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
Experimental Research and Numerical Simulation of Wing Boxes under Pure Bending Load
Directory of Open Access Journals (Sweden)
Peiyan Wang
2014-07-01
Full Text Available Two full-scale wing boxes with different types of butt joints were investigated under pure bending load, and numerical methods, including global analysis and detailed analysis, were proposed to determine the reasons for failure of the wing boxes. Wing boxes were tested under bending loads applied by a multichannel force control system. The experimental results showed that the region of the butt joint was the weakest location of the wing boxes, and the damage loads were far less than the design load. The global analysis and detailed analysis were carried out on the wing boxes, focusing on the region of the butt joint, to determine the reasons for failure. Global analysis in explicit dynamic modulus was adopted to simulate the loading process of the two wing boxes. Meanwhile, detailed finite element models created in Patran/Nastran were used to evaluate the stability. Comparing experimental results with numerical counterparts, it is shown that the failure of the wing boxes is induced by local buckling occurring around the butt joint. In addition, the wing box that uses butt joints with lap jointed sheets is more rigid than that without lap jointed sheets, and the stress distribution is more uniform. The numerical analysis proposed by the paper can help with structure design in preliminary assessment.
Directory of Open Access Journals (Sweden)
Trong-Minh Hoang
2017-01-01
Full Text Available Security of any wireless network is always an important issue due to its serious impacts on network performance. Practically, the IEEE 802.11 medium access control can be violated by several native or smart attacks that result in downgrading network performance. In recent years, there are several studies using analytical model to analyze medium access control (MAC layer misbehavior issue to explore this problem but they have focused on binary exponential backoff only. Moreover, a practical condition such as the freezing backoff issue is not included in the previous models. Hence, this paper presents a novel analytical model of the IEEE 802.11 MAC to thoroughly understand impacts of misbehaving node on network throughput and delay parameters. Particularly, the model can express detailed backoff algorithms so that the evaluation of the network performance under some typical attacks through numerical simulation results would be easy.
Enhanced Grey Wolf Optimizer based MPPT Algorithm of PV system under Partial Shaded Condition
Directory of Open Access Journals (Sweden)
Santhan Kumar Cherukuri
2017-11-01
Full Text Available Partial shading condition is one of the adverse phenomena which effects the power output of photovoltaic (PV systems due to inaccurate tracking of global maximum power point. Conventional Maximum Power Point Tracking (MPPT techniques like Perturb and Observe, Incremental Conductance and Hill Climbing can track the maximum power point effectively under uniform shaded condition, but fails under partial shaded condition. An attractive solution under partial shaded condition is application of meta-heuristic algorithms to operate at global maximum power point. Hence in this paper, an Enhanced Grey Wolf Optimizer (EGWO based maximum power point tracking algorithm is proposed to track the global maximum power point of PV system under partial shading condition. A Mathematical model of PV system is developed under partial shaded condition using single diode model and EGWO is applied to track global maximum power point. The proposed method is programmed in MATLAB environment and simulations are carried out on 4S and 2S2P PV configurations for dynamically changing shading patterns. The results of the proposed method are analyzed and compared with GWO and PSO algorithms. It is observed that proposed method is effective in tracking global maximum power point with more accuracy in less computation time compared to other methods. Article History: Received June 12nd 2017; Received in revised form August 13rd 2017; Accepted August 15th 2017; Available online How to Cite This Article: Kumar, C.H.S and Rao, R.S. (2017 Enhanced Grey Wolf Optimizer Based MPPT Algorithm of PV System Under Partial Shaded Condition. Int. Journal of Renewable Energy Development, 6(3, 203-212. https://doi.org/10.14710/ijred.6.3.203-212
Numerical and experimental research on annular crossed cable-truss structure under cable rupture
Liu, Renjie; Li, Xiongyan; Xue, Suduo; Mollaert, Marijke; Ye, Jihong
2017-07-01
The Annular Crossed Cable-Truss Structure (ACCTS) is a new type of Tensile Spatial Structure with a configuration suitable to cover large-span stadiums. Its configuration has potential to perform well in resisting disproportionate collapse. However, its disproportionate collapse resistance hasn't yet been analyzed in depth. In this study, numerical and experimental research was carried out to investigate the performance of ACCTS under cable rupture. The numerical analysis was done for ten cable-rupture plans using LS-DYNA (explicit method) and the experimental test on an ACCTS with a diameter of 17.15 m was performed for three cable-rupture plans. It is concluded that, while deflections increase with the number of removed cables, an ACCTS does not undergo a disproportionate collapse and it provides a promising structural concept for tensile spatial structures.
Numerical Simulation of single-stage axial fan operation under dusty flow conditions
Minkov, L. L.; Pikushchak, E. V.
2017-11-01
Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.
Hozman, J.; Tichý, T.
2016-12-01
The paper is based on the results from our recent research on multidimensional option pricing problems. We focus on European option valuation when the price movement of the underlying asset is driven by a stochastic volatility following a square root process proposed by Heston. The stochastic approach incorporates a new additional spatial variable into this model and makes it very robust, i.e. it provides a framework to price a variety of options that is closer to reality. The main topic is to present the numerical scheme arising from the concept of discontinuous Galerkin methods and applicable to the Heston option pricing model. The numerical results are presented on artificial benchmarks as well as on reference market data.
Lollino, Piernicola; Andriani, Gioacchino Francesco
2017-07-01
The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly
Saavedra, Sebastian
2012-07-01
The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.
Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation
Directory of Open Access Journals (Sweden)
A. Lazizi
2014-04-01
Full Text Available This paper studies the numerical simulations of retaining walls supporting tire reinforced sand subjected to El Centro earthquake excitation using finite element analysis. For this, four cases are studied: cantilever retaining wall supporting sand under static and dynamical excitation, and cantilever retaining wall supporting waste tire reinforced sand under static and dynamical excitation. Analytical external stability analyses of the selected retaining wall show that, for all four cases, the factors of safety for base sliding and overturning are less than default minimum values. Numerical analyses show that there are no large differences between the case of wall supporting waste tire reinforced sand and the case of wall supporting sand for static loading. Under seismic excitation, the higher value of Von Mises stress for the case of retaining wall supporting waste tire reinforced sand is 3.46 times lower compared to the case of retaining wall supporting sand. The variation of horizontal displacement (U1 and vertical displacement (U2 near the retaining wall, with depth, are also presented.
A numerical investigation into the behaviour of cracks in uPVC pipes under pressure
2012-01-01
D.Ing. This study is a numerical investigation into the behaviour of cracks in uPVC pipes under pressure. This study is a continuation of a Masters dissertation which showed that leakage exponents vary significantly from the theoretical orifice exponent of 0.5 for cracks in pipes for different materials. This study looks at the behaviour of cracks in more detail and specifically with regard to the parameters of the pipe and crack. Using Finite Element Analysis the relationship between the ...
Baez, M. L.; Borzi, R. A.
2017-02-01
We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along ≤ft[1 0 0\\right] , and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases ≈0.4 K for the parameters corresponding to the best known spin ice materials, \\text{D}{{\\text{y}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} and \\text{H}{{\\text{o}}2}\\text{T}{{\\text{i}}2}{{\\text{O}}7} . This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of ‘strings’ of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along ≤ft[1 0 0\\right] there are only three different stable phases at zero temperature.
Numerical simulation of time-dependent deformations under hygral and thermal transient conditions
International Nuclear Information System (INIS)
Roelfstra, P.E.
1987-01-01
Some basic concepts of numerical simulation of the formation of the microstructure of HCP are outlined. The aim is to replace arbitrary terms like aging by more realistic terms like bond density in the xerogel and bonds between hydrating particles of HCP. Actual state parameters such as temperature, humidity and degree of hydration can be determined under transient hygral and thermal conditions by solving numerically a series of appropriate coupled differential equations with given boundary conditions. Shrinkage of a composite structure without crack formation, based on calculated moisture distributions, has been determined with numerical concrete codes. The influence of crack formation, tensile strain-hardening and softening on the total deformation of a quasi-homogeneous drying material has been studied by means of model based on FEM. The difference between shrinkage without crack formation and shrinkage with crack formation can be quantified. Drying shrinkage and creep of concrete cannot be separated. The total deformation depends on the superimposed stress fields. Transient hygral deformation can be realistically predicted if the concept of point properties is applied rigorously. Transient thermal deformation has to be dealt with in the same way. (orig./HP)
Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes
Directory of Open Access Journals (Sweden)
Pezo Milada L.
2016-01-01
Full Text Available This paper presents CFD (Computational Fluid Dynamics approach to prediction of the heat transfer coefficient for nucleate pool boiling under high heat fluxes. Three-dimensional numerical simulations of the atmospheric saturated pool boiling are performed. Mathematical modelling of pool boiling requires a treatment of vapor-liquid two-phase mixture on the macro level, as well as on the micro level, such as bubble growth and departure from the heating surface. Two-phase flow is modelled by the two-fluid model, which consists of the mass, momentum and energy conservation equations for each phase. Interface transfer processes are calculated by the closure laws. Micro level phenomena on the heating surface are modelled with the bubble nucleation site density, the bubble resistance time on the heating wall and with the certain level of randomness in the location of bubble nucleation sites. The developed model was used to determine the heat transfer coefficient and results of numerical simulations are compared with available experimental results and several empirical correlations. A considerable scattering of the predictions of the pool boiling heat transfer coefficient by experimental correlations is observed, while the numerically predicted values are within the range of results calculated by well-known Kutateladze, Mostinski, Kruzhilin and Rohsenow correlations. The presented numerical modeling approach is original regarding both the application of the two-fluid two-phase model for the determination of heat transfer coefficient in pool boiling and the defined boundary conditions at the heated wall surface. [Projekat Ministarstva nauke Republike Srbije, br. 174014
Numerical simulation of flow in centrifugal pump under cavitation and sediment condition
Guo, P. C.; Lu, J. L.; Zheng, X. B.; Zhao, Q.; Luo, X. Q.
2012-11-01
The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.
Indian Academy of Sciences (India)
1 It must be noted that if the input assertion is not satisfied at this point, then any output assertion holds due to the classical implication operator. ..... on our intuitive knowledge about the underlying theory. The above processes can be formalised in a logical framework without relying on the intuitive deductions we have used.
Numerical Investigation of the Transient Behavior of a Hot Gas Duct under Rapid Depressurization
Directory of Open Access Journals (Sweden)
JingBao Liu
2016-01-01
Full Text Available A hot gas duct is an indispensable component for the nuclear-process heat applications of the Very-High-Temperature Reactor (VHTR, which has to fulfill three requirements: to withstand high temperature, high pressure, and large pressure transient. In this paper, numerical investigation of pressure transient is performed for a hot gas duct under rapid depressurization. System depressurization imposes an imploding pressure differential on the internal structural elements of a hot gas duct, the structural integrity of which is susceptible to being damaged. Pressure differential and its imposed duration, which are two key factors to evaluate the damage severity of a hot gas duct under depressurization, are examined in regard to depressurization rate and insulation packing tightness. It is revealed that depressurization rate is a decisive parameter for controlling the pressure differential and its duration, whereas insulating-packing tightness has little effect on them.
Investigation of film boiling thermal hydraulics under FCI conditions. Results of a numerical study
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Dinh, A.T.; Nourgaliev, R.R.; Sehgal, B.R. [Div. of Nuclear Power Safety Royal Inst. of Tech. (RIT), Brinellvaegen 60, 10044 Stockholm (Sweden)
1998-01-01
Film boiling on the surface of a high-temperature melt jet or of a melt particle is one of key phenomena governing the physics of fuel-coolant interactions (FCIs) which may occur during the course of a severe accident in a light water reactor (LWR). A number of experimental and analytical studies have been performed, in the past, to address film boiling heat transfer and the accompanying hydrodynamic aspects. Most of the experiments have, however, been performed for temperature and heat flux conditions, which are significantly lower than the prototypic conditions. For ex-vessel FCIs, high liquid subcooling can significantly affect the FCI thermal hydraulics. Presently, there are large uncertainties in predicting natural-convection film boiling of subcooled liquids on high-temperature surfaces. In this paper, research conducted at the Division of Nuclear Power Safety, Royal Institute of Technology (RIT/NPS), Stockholm, concerning film-boiling thermal hydraulics under FCI condition is presented. Notably, the focus is placed on the effects of (1) water subcooling, (2) high-temperature steam properties, (3) the radiation heat transfer and (4) mixing zone boiling dynamics, on the vapor film characteristics. Numerical investigations are performed using a novel CFD modeling concept named as the local-homogeneous-slip model (LHSM). Results of the analytical and numerical studies are discussed with respect to boiling dynamics under FCI conditions. (author)
Zoccarato, C.; Teatini, P.
2017-12-01
Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes. The prediction of the elevation dynamics of a salt-marsh platform is crucial to forecast its future behavior under potential changing scenarios. An original finite-element (FE) numerical model accounting for the long-term marsh accretion and compaction linked to relative sea level rise is proposed. The accretion term considers the material sedimentation over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modeling approach is based on a 2D groundwater flow simulator coupled to a 1D vertical geomechanical module, where the soil properties may vary with the effective intergranular stress. The model takes also into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The numerical experiments show the potentiality of the proposed 2D model, which consistently integrates in modeling framework the behavior of spatially distributed model parameters. High sedimentation rates and low permeabilities largely impact on the mechanism of soil compaction following the overpressure dissipation.
Numerical Analysis Of Mixing Under Low And High Frequency Pulsations At Serpentine Micromixers
Directory of Open Access Journals (Sweden)
Malecha Ziemowit M.
2014-09-01
Full Text Available The numerical investigation of the mixing process in complex geometry micromixers, as a function of various inlet conditions and various micromixer vibrations, was performed. The examined devices were two-dimensional (2D and three-dimensional (3D types of serpentine micromixers with two inlets. Entering fluids were perturbed with a wide range of the frequency (0 - 50 Hz of pulsations. Additionally, mixing fluids also entered in the same or opposite phase of pulsations. The performed numerical calculations were 3D to capture the proximity of all the walls, which has a substantial influence on microchannel flow. The geometry of the 3D type serpentine micromixer corresponded to the physically existing device, characterised by excellent mixing properties but also a challenging production process (Malecha et al., 2009. It was shown that low-frequency perturbations could improve the average mixing efficiency of the 2D micromixer by only about 2% and additionally led to a disadvantageously non-uniform mixture quality in time. It was also shown that high-frequency mixing could level these fluctuations and more significantly improve the mixing quality. In the second part of the paper a faster and simplified method of evaluation of mixing quality was introduced. This method was based on calculating the length of the contact interface between mixing fluids. It was used to evaluate the 2D type serpentine micromixer performance under various types of vibrations and under a wide range of vibration frequencies.
Word-length algorithm for language identification of under-resourced languages
Directory of Open Access Journals (Sweden)
Ali Selamat
2016-10-01
Full Text Available Language identification is widely used in machine learning, text mining, information retrieval, and speech processing. Available techniques for solving the problem of language identification do require large amount of training text that are not available for under-resourced languages which form the bulk of the World’s languages. The primary objective of this study is to propose a lexicon based algorithm which is able to perform language identification using minimal training data. Because language identification is often the first step in many natural language processing tasks, it is necessary to explore techniques that will perform language identification in the shortest possible time. Hence, the second objective of this research is to study the effect of the proposed algorithm on the run-time performance of language identification. Precision, recall, and F1 measures were used to determine the effectiveness of the proposed word length algorithm using datasets drawn from the Universal Declaration of Human Rights Act in 15 languages. The experimental results show good accuracy on language identification at the document level and at the sentence level based on the available dataset. The improved algorithm also showed significant improvement in run time performance compared with the spelling checker approach.
Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation
Directory of Open Access Journals (Sweden)
Bhukya Krishna Naick
2017-03-01
Full Text Available Photovoltaic (PV system is one of the reliable alternative sources of energy and its contribution in energy sector is growing rapidly. The performance of PV system depends upon the solar insolation, which will be varying throughout the day, season and year. The biggest challenge is to obtain the maximum power from PV array at varying insolation levels. The maximum power point tracking (MPPT controller, in association with tracking algorithm will act as a principal element in driving the PV system at maximum power point (MPP. In this paper, the simulation model has been developed and the results were compared for perturb and observe, incremental conductance, extremum seeking control and fuzzy logic controller based MPPT algorithms at different irradiation levels on a 10 KW PV array. The results obtained were analysed in terms of convergence rate and their efficiency to track the MPP. Keywords: Photovoltaic system, MPPT algorithms, perturb and observe, incremental conductance, scalar gradient extremum seeking control, fuzzy logic controller. Article History: Received 3rd Oct 2016; Received in revised form 6th January 2017; Accepted 10th February 2017; Available online How to Cite This Article: Naick, B. K., Chatterjee, T. K. & Chatterjee, K. (2017 Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation. Int Journal of Renewable Energy Development, 6(1, 65-74. http://dx.doi.org/10.14710/ijred.6.1.65-74
Directory of Open Access Journals (Sweden)
José-Fernando Camacho-Vallejo
2014-01-01
Full Text Available This research highlights the use of game theory to solve the classical problem of the uncapacitated facility location optimization model with customer order preferences through a bilevel approach. The bilevel model provided herein consists of the classical facility location problem and an optimization of the customer preferences, which are the upper and lower level problems, respectively. Also, two reformulations of the bilevel model are presented, reducing it into a mixed-integer single-level problem. An evolutionary algorithm based on the equilibrium in a Stackelberg’s game is proposed to solve the bilevel model. Numerical experimentation is performed in this study and the results are compared to benchmarks from the existing literature on the subject in order to emphasize the benefits of the proposed approach in terms of solution quality and estimation time.
Directory of Open Access Journals (Sweden)
Javid Jouzdani
2016-01-01
Full Text Available With the constantly increasing pressure of the competitive environment, supply chain (SC decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions. In this paper, a mixed integer nonlinear programming (MINLP model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.
Soize, C.
2017-11-01
This paper deals with the optimal design of a titanium mesoscale implant in a cortical bone for which the apparent elasticity tensor is modeled by a non-Gaussian random field at mesoscale, which has been experimentally identified. The external applied forces are also random. The design parameters are geometrical dimensions related to the geometry of the implant. The stochastic elastostatic boundary value problem is discretized by the finite element method. The objective function and the constraints are related to normal, shear, and von Mises stresses inside the cortical bone. The constrained nonconvex optimization problem in presence of uncertainties is solved by using a probabilistic learning algorithm that allows for considerably reducing the numerical cost with respect to the classical approaches.
Numerical simulation of wave-current interaction under strong wind conditions
Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier
2017-04-01
Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).
Nasri, Mohamed Aziz; Robert, Camille; Ammar, Amine; El Arem, Saber; Morel, Franck
2018-02-01
The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In order to analyse the applicability and the performance of the use of a space-time separated representation, the simulations are carried out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the standard solver.
Numerical Simulation of the Layer-Bylayer Destruction of Cylindrical Shells Under Explosive Loading
Abrosimov, N. A.; Novoseltseva, N. A.
2015-09-01
A technique of numerical analysis of the influence of reinforcement structure on the nature of the dynamic response and the process of layer-by-layer destruction of layered fiberglass cylindrical shells under an axisymmetric internal explosive loading is elaborated. The kinematic model of deformation of the laminate package is based on a nonclassical theory of shells. The geometric dependences are based on simple quadratic relations of the nonlinear theory of elasticity. The relationship between the stress and strain tensors are established by using Hooke's law for orthotropic bodies with account of degradation of stiffness characteristics of the multilayer composite due to the local destruction of some its elementary layers. An energetically consistent system of dynamic equations for composite cylindrical shells is obtained by minimizing the functional of total energy of the shell as a three-dimensional body. The numerical method for solving the formulated initial boundary-value problem is based on an explicit variational-difference scheme. Results confirming the reliability of the method used to analyze the influence of reinforcement structure on the character of destruction and the bearing capacity of pulse-loaded cylindrical shells are presented.
Numerical simulation of the shot peening process under previous loading conditions
International Nuclear Information System (INIS)
Romero-Ángeles, B; Urriolagoitia-Sosa, G; Torres-San Miguel, C R; Molina-Ballinas, A; Benítez-García, H A; Vargas-Bustos, J A; Urriolagoitia-Calderón, G
2015-01-01
This research presents a numerical simulation of the shot peening process and determines the residual stress field induced into a component with a previous loading history. The importance of this analysis is based on the fact that mechanical elements under shot peening are also subjected to manufacturing processes, which convert raw material into finished product. However, material is not provided in a virgin state, it has a previous loading history caused by the manner it is fabricated. This condition could alter some beneficial aspects of the residual stress induced by shot peening and could accelerate the crack nucleation and propagation progression. Studies were performed in beams subjected to strain hardening in tension (5ε y ) before shot peening was applied. Latter results were then compared in a numerical assessment of an induced residual stress field by shot peening carried out in a component (beam) without any previous loading history. In this paper, it is clearly shown the detrimental or beneficial effect that previous loading history can bring to the mechanical component and how it can be controlled to improve the mechanical behavior of the material
Numerical Study of Damage Modes and Damage Assessment of CFST Columns under Blast Loading
Directory of Open Access Journals (Sweden)
Junhao Zhang
2016-01-01
Full Text Available Columns of frame structures are the key load-bearing components and the exterior columns are susceptible to attack in terrorist blasts. When subjected to blast loads, the columns would suffer a loss of bearing capacity to a certain extent due to the damage imparted, which may induce the collapse of them and even cause the progressive collapse of the whole structure. In this paper, the high-fidelity physics-based finite element program LS-DYNA was utilized to investigate the dynamic behavior and damage characteristics of the widely used concrete-filled steel tube (CFST columns subjected to blast loads. The established numerical model was calibrated with test data in open literatures. Possible damage modes of CFST columns under blast loading were analyzed, and the damage criterion based on the residual axial load capacity of the columns was adopted to assess the damage degree. A parametric study was conducted to investigate the effects of critical parameters such as blast conditions and column details on the damage degree of CFST columns. Based on the numerical simulation data, an empirical equation was proposed to estimate the variation of columns damage degree with the various parameters.
Makselon, Joanna; Zhou, Dan; Engelhardt, Irina; Jacques, Diederik; Klumpp, Erwin
2017-02-21
Unsaturated column experiments were conducted with an undisturbed loamy sand soil to investigate the influence of flow interruption (FI) and ionic strength (IS) on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP) and the results were compared to those obtained under continuous flow conditions. AgNP concentrations for breakthrough curves (BTCs) and retention profiles (RPs) were analyzed by ICP-MS. Experimental results were simulated by the numerical code HP1 (Hydrus-PhreeqC) with the DLVO theory, extended colloid filtration theory and colloid release model. BTCs of AgNP showed a dramatic drop after FI compared to continuous flow conditions. Evaporation increased due to FI, resulting in increased electrical conductivity of the soil solution, which led to a totally reduced mobility of AgNP. A reduction of IS after FI enhanced AgNP mobility slightly. Here the strongly increased Al and Fe concentration in the effluent suggested that soil colloids facilitated the release of AgNP (cotransport). The numerical model reproduced the measured AgNP BTCs and indicated that attachment to the air-water interface (AWI) occurring during FI was the key process for AgNP retention.
Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie
2018-01-01
As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.
Directory of Open Access Journals (Sweden)
Yan-yan Cai
2018-01-01
Full Text Available Lateral displacement of pile foundation is crucial to the safety of an overall structure. In this study, a numerical simulation on the lateral displacement of pile foundation under stacking loads was conducted to determine its relation with different influencing factors. Simulation results demonstrated that stacking loads at the pile side mostly influence the lateral displacement of pile foundation. The lateral displacement of pile foundation increases by one order of magnitude when the stacking loads increase from 100 kPa to 300 kPa. Other influencing factors are less important than stacking loads. Lateral displacements of the pile body and at the pile top can be reduced effectively by increasing the deformation modulus of surface soil mass, reducing the thickness of soft soil, and expanding pile diameter. Our analysis indicates that a nonlinear relationship exists between the lateral displacement at the pile top and the pile diameter. The lateral resistance of the pile body can be enhanced by coupling the stacking load along piles and the axial force at the pile top. An actual large-scale engineering project was chosen to simulate the effects of postconstructed embankment on lateral displacement and axial force of bridge pile foundation under different construction conditions and to obtain the lateral displacement of the pile body and the negative frictional resistance caused by soft soil compression under stacking loads. On the basis of the calculated results, engineering safety and stability were evaluated, and a guide for the design and construction was proposed.
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
Mamen, B.; Song, J.; Barriere, T.; Gelin, J.-C.
2013-05-01
Powder injection molding (PIM) is a suitable technology for manufacturing of complex shapes with tungsten powders and has a great potential in many applications. Sintering is one of the most important steps in Powder Injection Molding process. The sintering behaviour of tungsten injection moulded components, under pure hydrogen atmosphere at temperature up to 1700°C using fine 0.4μm and coarse powders 7.0 μm, is investigated by means of the beam bending and dilatometric tests in the Setaram{copyright, serif} analyser. To simulate the shrinkage and shape distortion of tungsten injection moulded components during the sintering process using finite element methods, viscoplastic constitutive law is implemented in ABAQUS software as user subroutine UMAT and incorporated with the identified parameters. Comparison between the numerical simulations results and experimental ones, in term of shrinkages and sintered densities, shows good agreement between the two.
The numeric visual evaluation of subsoil structure (SubVESS) under agricultural production
DEFF Research Database (Denmark)
Ball, B.C.; Batey, Tom; Munkholm, Lars Juhl
2015-01-01
Subsoil degradation in agriculture is an increasing problem worldwide, particularly due to compaction caused by heavy machinery. Here, we describe a numeric assessment of subsoil structural quality in relation to soil as a crop growth medium and illustrate its utility with results from compaction...... experiments and from fields under minimum tillage. The scoring scheme resembles the topsoil visual evaluation of soil structure (VESS) (Guimarães et al., 2011) with more emphasis on examination of the profile wall and of soil fragments. The focus is on identification and evaluation of the anthropic...... forest or long-term grassland helped to distinguish whether subsoil structural quality resulted from the natural soil composition or from degradation by land management. The derived scores may be used to judge the requirement for amelioration by subsoil loosening by mechanical inputs (e.g. deep tillage...
Novel stable structure of Li3PS4 predicted by evolutionary algorithm under high-pressure
Directory of Open Access Journals (Sweden)
S. Iikubo
2018-01-01
Full Text Available By combining theoretical predictions and in-situ X-ray diffraction under high pressure, we found a novel stable crystal structure of Li3PS4 under high pressures. At ambient pressure, Li3PS4 shows successive structural transitions from γ-type to β-type and from β-type to α type with increasing temperature, as is well established. In this study, an evolutionary algorithm successfully predicted the γ-type crystal structure at ambient pressure and further predicted a possible stable δ-type crystal structures under high pressure. The stability of the obtained structures is examined in terms of both static and dynamic stability by first-principles calculations. In situ X-ray diffraction using a synchrotron radiation revealed that the high-pressure phase is the predicted δ-Li3PS4 phase.
Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions
Lv, Zhitao; Xia, Caichu; Li, Qiang
2018-04-01
A series of freezing experiments are conducted on saturated sandstone and mortar specimens to investigate the frost heave of saturated rock under uniform freezing conditions. The experimental results show that the frost heave of saturated rock is isotropic under uniform freezing conditions. During the freezing process, three stages are observed in the curves of variation of total frost heaving strain versus time: the thermal contraction stage, the frost heaving stage and the steady stage. Moreover, the amount of final stable frost heave first increases and then decreases with decrease in freezing temperature, and the maximum final stable frost heave occurs at different freezing temperature in saturated sandstone and mortar. Furthermore, a coupled thermal-mechanical (TM) model of frost heave of saturated rock is proposed in which a constraint coefficient \\zeta is used to consider the susceptibility of the internal rock grain structure to the expansion of pore ice. Then, numerical simulations are implemented with COMSOL to solve the governing equations of the TM model. Comparisons of the numerical results with the experimental results are performed to demonstrate the reliability of the model. The influences of elastic modulus and porosity on frost heave are also investigated, and the results show that the total frost heaving strain decreases non-linearly with increasing elastic modulus, and the decrease is significant when the elastic modulus is less than 3000 MPa, or approximately five times the elastic modulus of ice. In addition, the total frost heaving strain increases linearly with increasing porosity. Finally, an empirical equation between total frost heaving strain and freezing temperature is proposed and the equation well describes the variation of total frost heaving strain with freezing temperature.
International Nuclear Information System (INIS)
Radchenko, P A; Batuev, S P; Radchenko, A V; Plevkov, V S
2015-01-01
This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells. (paper)
Numerical study of metal foam heat sinks under uniform impinging flow
International Nuclear Information System (INIS)
Andreozzi, A; Bianco, N; Iasiello, M; Naso, V
2017-01-01
The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses. (paper)
Numerical study of metal foam heat sinks under uniform impinging flow
Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.
2017-01-01
The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.
Unfolding an under-determined neutron spectrum using genetic algorithm based Monte Carlo
International Nuclear Information System (INIS)
Suman, V.; Sarkar, P.K.
2011-01-01
Spallation in addition to the other photon-neutron reactions in target materials and different components in accelerators may result in production of huge amount of energetic protons which further leads to the production of neutron and contributes to the main component of the total dose. For dosimetric purposes in accelerator facilities the detector measurements doesn't provide directly the actual neutron flux values but a cumulative picture. To obtain Neutron spectrum from the measured data, response functions of the measuring instrument together with the measurements are used into many unfolding techniques which are frequently used for unfolding the hidden spectral information. Here we discuss a genetic algorithm based unfolding technique which is in the process of development. Genetic Algorithm is a stochastic method based on natural selection, which mimics Darwinian theory of survival of the best. The above said method has been tested to unfold the neutron spectra obtained from a reaction carried out at an accelerator facility, with energetic carbon ions on thick silver target along with its respective neutron response of BC501A liquid scintillation detector. The problem dealt here is under-determined where the number of measurements is less than the required energy bin information. The results so obtained were compared with those obtained using the established unfolding code FERDOR, which unfolds data for completely determined problems. It is seen that the genetic algorithm based solution has a reasonable match with the results of FERDOR, when smoothening carried out by Monte Carlo is taken into consideration. This method appears to be a promising candidate for unfolding neutron spectrum in cases of under-determined and over-determined, where measurements are more. The method also has advantages of flexibility, computational simplicity and works well without need of any initial guess spectrum. (author)
Experimental and Numeral Investigation on X-cor Sandwich Structure under Low-velocity Impact
Directory of Open Access Journals (Sweden)
ZHU Fei
2017-04-01
Full Text Available X-cor sandwich is a new kind of foam sandwich reinforced by Z-pin techniques. Under low velocity impact damage, failure mechanism of X-cor sandwich structure is complex. Failure behavior of X-cor sandwich structure at different energy stages was analyzed, and the effects of the volume fraction of Z-pin implant and the density of the foam core on the failure behavior were also discussed. Z-pin diameter of specimens in low speed impact test was 0.5 mm, and the implantation angle was 22°, and the type of foam and Z-pin implant volume fraction in the experiment was variable .The results show that under 6 J impact energy, the impact energy is mainly absorbed by the panel’s delamination. The sandwich contained Z-pin is beneficial to reduce the delamination area, while the delamination area of blank sample increases by 45.1%. The foam density has little effect on the delamination area. The Z-pin fails under 12 J impact energy. The residual compressive strength ratio increases first and then decreases with the increase of volume fraction of Z-pin. The sample has the highest residual compressive strength ratio when the volume fraction reaches 0.42%. As the foam density increases, the residual compressive strength ratio increases. When the energy reaches 18 J, shear crack appears in the foam core, and the crack absorbs most of the energy. The weaker the foam core, the larger the residual compressive strength ratio is, and the more the volume fraction of Z-pin implanted, the lower the residual compressive strength ratio is. The low velocity impact model is also established by numerical simulation, and the result of impact damage is directly transferred and applied to study the residual strength model; the result obtained is 25%~29% higher than the experimental value.
Theory and applications of numerical analysis
Phillips, G M
1996-01-01
This text is a self-contained Second Edition, providing an introductory account of the main topics in numerical analysis. The book emphasizes both the theorems which show the underlying rigorous mathematics andthe algorithms which define precisely how to program the numerical methods. Both theoretical and practical examples are included.* a unique blend of theory and applications* two brand new chapters on eigenvalues and splines* inclusion of formal algorithms* numerous fully worked examples* a large number of problems, many with solutions
International Nuclear Information System (INIS)
Shi, Er; Sun, Xiaoqin; He, Yecong; Jiang, Changwei
2017-01-01
Natural convection of cold water near its density maximum in a square enclosure is studied numerically under the influence of a magnetic quadrupole field without gravity. A generalized model which includes a non-Boussinesq parabolic density–temperature relationship is established. The governing equations in primitive variables are discretized using the finite-volume method and solved using the SIMPLE algorithm. The effects of magnetic force number, Rayleigh number and density inversion parameter on flow and heat transfer characteristics are analyzed. The results show that the primary flow pattern depends mainly on the density inversion parameter. Multi-cellular flow structures are observed for certain ranges of density inversion parameter independent of the value of Rayleigh number and magnetic force number. The heat transfer changes non-monotonically under combined actions of the quadrupole magnetic field and density inversion. (paper)
International Nuclear Information System (INIS)
David, Dijo K.; Mangarjuna Rao, P.; Nashine, B.K.; Selvaraj, P.
2015-01-01
Under the unlikely event of severe core meltdown accident in pool type SFR, the molten core materials may rupture the grid plate which supports the fuel subassemblies and it can get relocated in to the lower pool. These debris may eventually settle on the debris collector (i.e., core catcher) installed above the bottom wall of the lower pool. The bed thus formed generates heat due to radioactive decay which has to be passively removed for maintaining the structural integrity of main vessel. By means of natural convection, the heat generated in the debris bed will be transferred to the top pool where the heat sink (i.e., Decay heat exchanger (DHX)) is installed. Heat transfer to the DHX (which is a part of safety grade decay heat removal system) can take place through the opening created in the grid plate which connects the two liquid pools (i.e., the top pool and the lower pool). Heat transfer can also take place through the lateral wall of the lower cylindrical pool to the side pool and eventually to the top pool, and thus to the DHX. This study numerically investigates the effectiveness of heat transfer between lower pool and top pool during PARR by considering them as partially connected cylindrical enclosures. The governing equations have been numerically solved using finite volume method in cylindrical co-ordinates using SIMPLE algorithm. Turbulence has been modeled using k-ω model and the model is validated against benchmark problems of natural convection found in literature. The effect of parameters such as the heat generation rate in the bed and the size of the grid plate opening are evaluated. Also PAHR in SFR pool is modeled using an axi-symmetric model to fund out the influence of grid plate opening on heat removal from core catcher. The results obtained are useful for improving the cooling capability of in-vessel tray type core catcher for handling the whole core meltdown scenarios in SFR. (author)
International Nuclear Information System (INIS)
Masanori Ohtani; Akito Kozuru; Yasuyuki Kashimoto; Mitsuto Montani; Koutaro Takeda; Yasushi Makino
2006-01-01
Asymmetric thermal-hydraulic conditions among primary loops during a postulated steam line break (SLB) induce a non-uniform temperature distribution at a core inlet. When coolant of lower temperature intrudes into a part of core, it leads to a reactivity insertion and a local power increase. Therefore, an appropriate model for the core inlet temperature distribution is required for a realistic SLB analysis. In this study, numerical experiments were conducted to examine the core inlet temperature distribution under the asymmetric thermal-hydraulic coolant conditions among primary loops. 3D steady-state calculations were carried out for Japanese standard Pressurized Water Reactor (PWR) such as 2, 3, 4 loop types and an advanced PWR. Since the flow in a reactor vessel involves time-dependent velocity fluctuations due to a high Reynolds number condition and a complicated geometry of flow path, the turbulent mixing might be enhanced. Hence, the turbulent thermal diffusivity for the steady-state calculation was examined based on experimental results and another transient calculation. As a result, it was confirmed that (1) the turbulent mixing in a downcomer and a lower plenum were enhanced due to time-dependent velocity fluctuations and therefore the turbulent thermal diffusivity for steady-state calculation was specified to be greater, (2) the core inlet temperature distribution predicted by a steady-state calculation reasonably agreed with a experimental data, (3) the patterns of core inlet temperature distribution were comprehended to be dependent on the plant type, i.e. the number of primary loop and (4) under a low flow rate condition, the coolant of lower temperature appeared on the opposite side of the affected loop due to the effect of a natural convection. (authors)
Directory of Open Access Journals (Sweden)
Jong-In Lee
2014-01-01
Full Text Available Fringing reefs play an important role in protecting the coastal area by inducing wave breaking and wave energy dissipation. However, modeling of wave transformation and energy dissipation on this topography is still difficult due to the unique structure. In the present study, two-dimensional laboratory experiments were conducted to investigate the cross-shore variations of wave transformation, setup, and breaking phenomena over an idealized fringing reef with the 1/40 reef slope and to verify the Boussinesq model under monochromatic wave conditions. One-layer and two-layer model configurations of the Boussinesq model were used to figure out the model capability. Both models predicted well (r2>0.8 the cross-shore variation of the wave heights, crests, troughs, and setups when the nonlinearity is not too high (A0/h0<0.07 in this study. However, as the wave nonlinearity and steepness increase, the one-layer model showed problems in prediction and stability due to the error on the vertical profile of fluid velocity. The results in this study revealed that one-layer model is not suitable in the highly nonlinear wave condition over a fringing reef bathymetry. This data set can contribute to the numerical model verification.
Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel
Duan, Yujie; Ta, Wurui; Gao, Yuanwen
2018-02-01
In extreme operating environments, delamination in 2G HTS tapes occurs within and/or near the superconductor layer from high transverse tensile stresses caused by fabrication, Lorentz forces and thermal mismatch, etc. Generally, transverse opening and peeling off are the main delamination modes, and are always studied in anvil and peel tests, respectively. Numerical models of these modes for 2G HTS tape are presented wherein the mixed-mode traction-separation law at the interface of the silver and superconductor layers is considered. Plastic deformations of copper, silver, and Hastelloy® in the HTS tape are taken into account. The results obtained from the transverse opening model show that the maximum average tensile stress is smaller than the delamination tensile strength because delamination is asynchronous in the tape. When a crack appears in the tape, only a small stress ( ≤ 1 MPa) is required to expand the crack to other stress free areas through peeling. Using the peeling model, the dependency of the peel strength on peeling angle is investigated under constant fracture toughness. Peel strength decreases with the peeling angle until the minimum value is reached at 150°, and thereafter increases slightly. Other results indicate that peel strength depends strongly on delamination strength, fracture toughness, and thickness of copper layer. The fracture toughness of the delamination interface, which is difficult to obtain by experiment, can be extracted using the present model.
Numerical Study on the Acoustic Characteristics of an Axial Fan under Rotating Stall Condition
Directory of Open Access Journals (Sweden)
Lei Zhang
2017-11-01
Full Text Available Axial fan is an important piece of equipment in the thermal power plant that provides enough air for combustion of coal. This paper focuses on the aerodynamic noise characteristics of an axial fan in the development from stall inception to stall cells. The aerodynamic noise characteristic of monitoring region in time and frequency domains was simulated employing the large-eddy simulation (LES, with the addition of throttle setting and the Ffowcs Williams-Hawkings (FW-H noise model. The numerical results show that, under the design condition, the acoustic pressure presents regular periodicity along with the time. The noise energy is concentrated with high energy of the fundamental frequency and high order harmonics. During the stall inception stage, the acoustic pressure amplitude starts fluctuating and discrete frequencies are increased significantly in the low frequency; among them, there are three obvious discrete frequencies: 27.66 Hz, 46.10 Hz and 64.55 Hz. On the rotating stall condition, the fluctuation of the acoustic pressure level and amplitude are more serious than that mentioned above. During the whole evolution process, the acoustic pressure peak is difficult to keep stable all the time, and a sudden increase of the peak value at the 34.5th revolution corresponds to the relative velocity’s first sudden increase at the time when the valve coefficient is 0.780.
Modeling and numerical analysis of granite rock specimen under mechanical loading and fire
Directory of Open Access Journals (Sweden)
Luc Leroy Ngueyep. Mambou
2015-02-01
Full Text Available The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the mechanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 °C to 500 °C, the internal stress and internal strain are weak; whereas above 500 °C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.
International Nuclear Information System (INIS)
Lepretre, C.; Millard, A.; Nahas, G.
1989-01-01
The structural analysis of reinforced concrete structures is usually performed either by means of simplified methods of strength of materials type i.e. global methods, or by means of detailed methods of continuum mechanics type, i.e. local methods. For this second type, some constitutive models are available for concrete and rebars in a certain number of finite element systems. These models are often validated on simple homogeneous tests. Therefore, it is important to appraise the validity of the results when applying them to the analysis of a reinforced concrete structure, in order to be able to make correct predictions of the actual behaviour, under normal and faulty conditions. For this purpose, some tests have been performed at I.N.S.A. de Lyon on reinforced concrete beams, subjected to monotonous and cyclic loadings, in order to generate reference solutions to be compared with the numerical predictions given by two finite element systems: - CASTEM, developed by C.E.A./.D.E.M.T. - ELEFINI, developed by I.N.S.A. de Lyon
Numerical analyses of caisson breakwaters on soft foundations under wave cyclic loading
Wang, Yuan-zhan; Yan, Zhen; Wang, Yu-chi
2016-03-01
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.
Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.
2018-03-01
Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.
Andrushchenko, V. A.; Murashkin, I. V.; Shevelev, Yu. D.
2016-06-01
Within the investigation of various aspects of asteroid and comet danger and, in particular, the explosion of several fragments of meteoroids in the atmosphere above the Earth surface, the toy problem about four point explosions in the case of their special arrangement above the underlying surface is numerically solved. Complex interactions of primary and secondary shock waves between themselves, with the hard surface, and with tangential discontinuities are examined. The structure of flow inside gas regions disturbed by the explosions—the occurrence of eddy structures in them and the influence of reflected shocks waves on them—are investigated. The tendency of the external wave fronts of each explosion to form a unified front and the tendency of their internal hot domains to merge into a joined configuration (where the second process proceeds a little later than the first one) is revealed. This unified front and joined configuration are qualitatively identical to the external internal structure for the solitary explosion. The specially arranged explosions are chosen because the effects of multiple diffraction, interference, and, the main thing, cumulation of spherical waves are manifested more clearly in this caseTwo variants with different altitude of the explosions above the surface are calculated.
Benchmarking the Algorithms to Detect Seasonal Signals Under Different Noise Conditions
Klos, A.; Bogusz, J.; Bos, M. S.
2017-12-01
Global Positioning System (GPS) position time series contain seasonal signals. Among the others, annual and semi-annual are the most powerful. Widely, these oscillations are modelled as curves with constant amplitudes, using the Weighted Least-Squares (WLS) algorithm. However, in reality, the seasonal signatures vary over time, as their geophysical causes are not constant. Different algorithms have been already used to cover this time-variability, as Wavelet Decomposition (WD), Singular Spectrum Analysis (SSA), Chebyshev Polynomial (CP) or Kalman Filter (KF). In this research, we employed 376 globally distributed GPS stations which time series contributed to the newest International Terrestrial Reference Frame (ITRF2014). We show that for c.a. 20% of stations the amplitudes of seasonal signal varies over time of more than 1.0 mm. Then, we compare the WD, SSA, CP and KF algorithms for a set of synthetic time series to quantify them under different noise conditions. We show that when variations of seasonal signals are ignored, the power-law character is biased towards flicker noise. The most reliable estimates of the variations were found to be given by SSA and KF. These methods also perform the best for other noise levels while WD, and to a lesser extend also CP, have trouble in separating the seasonal signal from the noise which leads to an underestimation in the spectral index of power-law noise of around 0.1. For real ITRF2014 GPS data we discovered, that SSA and KF are capable to model 49-84% and 77-90% of the variance of the true varying seasonal signals, respectively.
Qin, Xiaosheng; Huang, Guohe; Liu, Lei
2010-01-01
A genetic-algorithm-aided stochastic optimization (GASO) model was developed in this study for supporting regional air quality management under uncertainty. The model incorporated genetic algorithm (GA) and Monte Carlo simulation techniques into a general stochastic chance-constrained programming (CCP) framework and allowed uncertainties in simulation and optimization model parameters to be considered explicitly in the design of least-cost strategies. GA was used to seek the optimal solution of the management model by progressively evaluating the performances of individual solutions. Monte Carlo simulation was used to check the feasibility of each solution. A management problem in terms of regional air pollution control was studied to demonstrate the applicability of the proposed method. Results of the case study indicated the proposed model could effectively communicate uncertainties into the optimization process and generate solutions that contained a spectrum of potential air pollutant treatment options with risk and cost information. Decision alternatives could be obtained by analyzing tradeoffs between the overall pollutant treatment cost and the system-failure risk due to inherent uncertainties.
Directory of Open Access Journals (Sweden)
A Moghimi
2015-03-01
Full Text Available In recent years, automation in agricultural field has attracted more attention of researchers and greenhouse producers. The main reasons are to reduce the cost including labor cost and to reduce the hard working conditions in greenhouse. In present research, a vision system of harvesting robot was developed for recognition of green sweet pepper on plant under natural light. The major challenge of this study was noticeable color similarity between sweet pepper and plant leaves. To overcome this challenge, a new texture index based on edge density approximation (EDA has been defined and utilized in combination with color indices such as Hue, Saturation and excessive green index (EGI. Fifty images were captured from fifty sweet pepper plants to evaluate the algorithm. The algorithm could recognize 92 out of 107 (i. e., the detection accuracy of 86% sweet peppers located within the workspace of robot. The error of system in recognition of background, mostly leaves, as a green sweet pepper, decreased 92.98% by using the new defined texture index in comparison with color analysis. This showed the importance of integration of texture with color features when used for recognizing sweet peppers. The main reasons of errors, besides color similarity, were waxy and rough surface of sweet pepper that cause higher reflectance and non-uniform lighting on surface, respectively.
Real-Time Attitude Control Algorithm for Fast Tumbling Objects under Torque Constraint
Tsuda, Yuichi; Nakasuka, Shinichi
This paper describes a new control algorithm for achieving any arbitrary attitude and angular velocity states of a rigid body, even fast and complicated tumbling rotations, under some practical constraints. This technique is expected to be applied for the attitude motion synchronization to capture a non-cooperative, tumbling object in such missions as removal of debris from orbit, servicing broken-down satellites for repairing or inspection, rescue of manned vehicles, etc. For this objective, we have introduced a novel control algorithm called Free Motion Path Method (FMPM) in the previous paper, which was formulated as an open-loop controller. The next step of this consecutive work is to derive a closed-loop FMPM controller, and as the preliminary step toward the objective, this paper attempts to derive a conservative state variables representation of a rigid body dynamics. 6-Dimensional conservative state variables are introduced in place of general angular velocity-attitude angle representation, and how to convert between both representations are shown in this paper.
International Nuclear Information System (INIS)
Drouet, Julie
2014-01-01
Recrystallized zirconium alloys are widely used as constitutive material of cladding tubes in Pressurized Water Reactors. During their lifetime in reactor, these materials are submitted to irradiation, creating a large amount of defects and changing their mechanical behavior. Despite the broad knowledge of macroscopic modifications due to irradiation, microscopic mechanisms involved remain partially known and understood. This study aims at understanding this issue using two different means, experimental and numerical, to investigate interactions between moving dislocations and dislocation loops created by irradiation. The experimental approach is based on irradiating with Zr ions Zircaloy-4 samples. Then, these samples are strained in a transmission electron microscope (TEM). Mobile dislocations interacting with irradiation induced loops are observed, following different mechanisms. Loops can act as strong obstacles to moving dislocations, pinning their further glide and hardening the material. Therefore, this type of mechanism participates in irradiation hardening. Dislocations absorbing loops have also been observed, showing the ability of dislocations to clear up defects. This mechanism explains the formation of clear bands observed in the material after irradiation and mechanical testings. The numerical approach is based on Dislocation Dynamics (DD) simulations of mobile dislocations gliding in prismatic or basal planes of the hexagonal close packed lattice and loops, using NUMODIS. The results of this study are consistent with a recent study of interactions of dislocations in a prismatic plane and loops studied by molecular dynamics. The counterpart of this study with gliding dislocations in the basal plane, performed only using DD simulations, show interesting explanations of the observed clear band formation in basal and prismatic planes, with broader channels in basal planes. A situation observed during in situ TEM experiments has been simulated using DD
El Mountassir, M.; Yaacoubi, S.; Dahmene, F.
2015-07-01
Novelty detection is a widely used algorithm in different fields of study due to its capabilities to recognize any kind of abnormalities in a specific process in order to ensure better working in normal conditions. In the context of Structural Health Monitoring (SHM), this method is utilized as damage detection technique because the presence of defects can be considered as abnormal to the structure. Nevertheless, the performance of such a method could be jeopardized if the structure is operating in harsh environmental and operational conditions (EOCs). In this paper, novelty detection statistical technique is used to investigate the detection of damages under various EOCs. Experiments were conducted with different scenarios: damage sizes and shapes. EOCs effects were simulated by adding stochastic noise to the collected experimental data. Different levels of noise were studied to determine the accuracy and the performance of the proposed method.
International Nuclear Information System (INIS)
Mountassir, M El; Yaacoubi, S; Dahmene, F
2015-01-01
Novelty detection is a widely used algorithm in different fields of study due to its capabilities to recognize any kind of abnormalities in a specific process in order to ensure better working in normal conditions. In the context of Structural Health Monitoring (SHM), this method is utilized as damage detection technique because the presence of defects can be considered as abnormal to the structure. Nevertheless, the performance of such a method could be jeopardized if the structure is operating in harsh environmental and operational conditions (EOCs). In this paper, novelty detection statistical technique is used to investigate the detection of damages under various EOCs. Experiments were conducted with different scenarios: damage sizes and shapes. EOCs effects were simulated by adding stochastic noise to the collected experimental data. Different levels of noise were studied to determine the accuracy and the performance of the proposed method. (paper)
Directory of Open Access Journals (Sweden)
Brown, Andrew
2014-08-01
Full Text Available This paper presents a prototype Stereolithography (STL file format slicing and tool-path generation algorithm, which serves as a data front-end for a Rapid Prototyping (RP entry- level three-dimensional (3-D printer. Used mainly in Additive Manufacturing (AM, 3-D printers are devices that apply plastic, ceramic, and metal, layer by layer, in all three dimensions on a flat surface (X, Y, and Z axis. 3-D printers, unfortunately, cannot print an object without a special algorithm that is required to create the Computer Numerical Control (CNC instructions for printing. An STL algorithm therefore forms a critical component for Layered Manufacturing (LM, also referred to as RP. The purpose of this study was to develop an algorithm that is capable of processing and slicing an STL file or multiple files, resulting in a tool-path, and finally compiling a CNC file for an entry-level 3- D printer. The prototype algorithm was implemented for an entry-level 3-D printer that utilises the Fused Deposition Modelling (FDM process or Solid Freeform Fabrication (SFF process; an AM technology. Following an experimental method, the full data flow path for the prototype algorithm was developed, starting with STL data files, and then processing the STL data file into a G-code file format by slicing the model and creating a tool-path. This layering method is used by most 3-D printers to turn a 2-D object into a 3-D object. The STL algorithm developed in this study presents innovative opportunities for LM, since it allows engineers and architects to transform their ideas easily into a solid model in a fast, simple, and cheap way. This is accomplished by allowing STL models to be sliced rapidly, effectively, and without error, and finally to be processed and prepared into a G-code print file.
MPPT-Based Control Algorithm for PV System Using iteration-PSO under Irregular shadow Conditions
Directory of Open Access Journals (Sweden)
M. Abdulkadir
2017-02-01
Full Text Available The conventional maximum power point tracking (MPPT techniques can hardly track the global maximum power point (GMPP because the power-voltage characteristics of photovoltaic (PV exhibit multiple local peaks in irregular shadow, and therefore easily fall into the local maximum power point. These conditions make it very challenging, and to tackle this deficiency, an efficient Iteration Particle Swarm Optimization (IPSO has been developed to improve the quality of solution and convergence speed of the traditional PSO, so that it can effectively track the GMPP under irregular shadow conditions. This proposed technique has such advantages as simple structure, fast response and strong robustness, and convenient implementation. It is applied to MPPT control of PV system in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verify the rationality of the proposed algorithm, however, recently the dynamic MPPT performance under varying irradiance conditions has been given utmost attention to the PV society. As the European standard EN 50530 which defines the recommended varying irradiance profiles, was released lately, the corresponding researchers have been required to improve the dynamic MPPT performance. This paper tried to evaluate the dynamic MPPT performance using EN 50530 standard. The simulation results show that iterative-PSO method can fast track the global MPP, increase tracking speed and higher dynamic MPPT efficiency under EN 50530 than the conventional PSO.
Directory of Open Access Journals (Sweden)
Chenlong He
Full Text Available In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
International Nuclear Information System (INIS)
Voelzer, Walter; Schaefer, Marc; Rumanus, Erkan; Liedtke, Ralph; Brehmer, Frank
2012-01-01
The mechanical integrity of package units CASTOR registered for a 9-m drop test under accident conditions has to be demonstrated according the requirements of IAEA among others. For reduction of the loads the containers have to be equipped with shock absorbers on the bottom and top sides. The determination of loads under drop test conditions can be performed with experimental or numerical methods. Due to the complexity of the load state and the verification of results both methods are usually used for integrity demonstration. The numerical codes have to model the short-term dynamic behavior of the whole container for different drop orientations and temperatures, local stress states have to be quantifiable for assessment. One of the problems is the modeling of the material behavior of wood that is used in the shock absorbers. The so far used energetic calculation approach will be replaced by a dynamic approach, the numerical models will have to be verified by experimental drop tests.
Czech Academy of Sciences Publication Activity Database
Hannukainen, A.; Korotov, S.; Křížek, Michal
2014-01-01
Roč. 90, Part A (2014), s. 34-41 ISSN 0167-6423 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : bisection algorithm * conforming finite element method * regular family of partitions Subject RIV: BA - General Mathematics Impact factor: 0.715, year: 2014 http://www.sciencedirect.com/science/ article /pii/S0167642313001226
Czech Academy of Sciences Publication Activity Database
Hannukainen, A.; Korotov, S.; Křížek, Michal
2014-01-01
Roč. 90, Part A (2014), s. 34-41 ISSN 0167-6423 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : bisection algorithm * conforming finite element method * regular family of partitions Subject RIV: BA - General Mathematics Impact factor: 0.715, year: 2014 http://www.sciencedirect.com/science/article/pii/S0167642313001226
International Nuclear Information System (INIS)
Zhukov, A.V.; Sorokin, A.P.
2000-01-01
The problems of numerical modeling of thermohydraulics in assembly of fuel elements of fast reactors with the partial blockage of cross-section under the coolant are considered. The information about existing codes constructed on use of subchannel technique and model of porous body are presented. The results of calculation obtained by these codes are presented. (author)
International Nuclear Information System (INIS)
Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin
2015-01-01
Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown
National Aeronautics and Space Administration — Recent work has developed a number of architectures and algorithms for accurately estimating spacecraft and formation states. The estimation accuracy achievable...
Directory of Open Access Journals (Sweden)
GRANDIN, P. H.
2014-06-01
Full Text Available Recommendation systems based on collaborative filtering are open by nature, what makes them vulnerable to profile injection attacks that insert biased evaluations in the system database in order to manipulate recommendations. In this paper we evaluate the stability and robustness of collaborative filtering algorithms applied to semantic web services recommendation when submitted to random and segment profile injection attacks. We evaluated four algorithms: (1 IMEAN, that makes predictions using the average of the evaluations received by the target item; (2 UMEAN, that makes predictions using the average of the evaluation made by the target user; (3 an algorithm based on the k-nearest neighbor (k-NN method and (4, an algorithm based on the k-means clustering method.The experiments showed that the UMEAN algorithm is not affected by the attacks and that IMEAN is the most vulnerable of all algorithms tested. Nevertheless, both UMEAN and IMEAN have little practical application due to the low precision of their predictions. Among the algorithms with intermediate tolerance to attacks but with good prediction performance, the algorithm based on k-nn proved to be more robust and stable than the algorithm based on k-means.
Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition
Siregar, R. I.
2018-02-01
This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.
DEFF Research Database (Denmark)
Hviid, Christian Anker; Petersen, Steffen
2014-01-01
is a numerical study of the performance of a six person office equipped with diffuse ventilation ceiling. In total six extreme, yet realistic, operation scenarios were simulated to study the performance including different occupancy, ventilation rates and supply air temperatures. The performance was studied...
Experimental and Numerical Investigations of RP-2 Under High Heat Fluxes
National Research Council Canada - National Science Library
Billingsley, M. C; Lyu, H. Y; Bates, R. W
2007-01-01
... such as RP-2, an advanced grade of ultra-low sulfur rocket kerosene. This paper reports recent experiments and numerical simulations of RP-2 cooled thermal stability tests conducted in the AFRL High Heat Flux Facility located at Edwards AFB, CA...
Numerical Modeling of Inverse Problems under Uncertainty for Damage Detection in Aircraft Structures
2013-08-01
the nature of the physics involved, from the point of view of the inverse problem, the direct model is only a “black box ” to obtain numerical...Campos, Brasil . As results directly related to this research, several publications and monographs were published and /or are being prepared, as
International Nuclear Information System (INIS)
Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin
2015-01-01
Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21
Kulik D. A.; Wagner T.; Dmytrieva S. V.; Kosakowski G.; Hingerl F. F.; Chudnenko K. V.; Berner U. R.
2013-01-01
Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility chemical kinetics and RMT in general. Efficient RMT simulations can be based on the operator splitting approach where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition temperature or press...
Stamnes, Knut; Tsay, S.-CHEE; Jayaweera, Kolf; Wiscombe, Warren
1988-01-01
The transfer of monochromatic radiation in a scattering, absorbing, and emitting plane-parallel medium with a specified bidirectional reflectivity at the lower boundary is considered. The equations and boundary conditions are summarized. The numerical implementation of the theory is discussed with attention given to the reliable and efficient computation of eigenvalues and eigenvectors. Ways of avoiding fatal overflows and ill-conditioning in the matrix inversion needed to determine the integration constants are also presented.
A Numerical Hydro-Chemo-Mechanical Model for Fault Activation under Reactive Fluid Flow
Pouya, A.; Tounsi, H.; Rohmer, J.
2015-12-01
The migration of CO2-rich fluid in fractured rock masses can cause processes such as mineral dissolution and precipitation, chemically induced weakening, which can affect the long-term mechanical and transport properties of the rock mass as well as the stability of fault systems. Some numerical approaches are already available in the literature for modelling the dissolution/precipitation phenomena in fractures (e.g. Yasuhara & Elsworth 2007) as well as subcritical crack propagation (e.g. Park et al. 2007). Generally, the dissolution is supposed to increase the rock porosity and, in this way, decrease the rock strength. Some experimental data are available for the variation of rock strength and stiffness parameters with the porosity and so as a consequence of dissolution process (Bemer et al. 2004). Also the effect of chemical processes on the mechanical stability has been studied and modelled numerically in the framework of continuum materials and the context, in particular, of weathering in underground galleries (Ghabezloo & Pouya 2006). In the context of fault systems, a complete numerical modelling of the stability evolution with the flow of a reactive fluid has not yet been done. In this paper we present a simplified, but complete, set of equations for a whole system of coupled hydro-chemo-mechanical process of reactive fluid flow inside a fault. These equations have been implemented in Porofis, a FEM numerical code specially conceived for HCM processes in porous fractured media. We show how this numerical method allows to model the coupled HCM processes in the fault and the evolution of the mechanical stability in presence of in situ stresses and reactive fluid flow.
Mohebbi, Akbar
2018-02-01
In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.
Cai, Li; Lee, Taehun
2009-01-01
We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a…
Directory of Open Access Journals (Sweden)
Nozim Kurbonov
2012-01-01
Full Text Available An adequate mathematical model of process of filtration of gas, oil and water in porous media is developed for analyze the functioning, forecasting and control of hydrocarbons extraction under conditions of artificial influence on layers. The results of numerical computer calculations are presented.
International Nuclear Information System (INIS)
RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M
2009-01-01
In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.
Directory of Open Access Journals (Sweden)
PAULINA FORMA
2017-10-01
Full Text Available Every man has a specific personality determined by various factors, including genetic predispositions, environment, education and individual activity. It is because of these elements that one has certain goals to achieve in life and that one performs social roles in a specific way. The importance of the family that one is born to, the creators of the processes of education and socialisation, i.e. parents, teachers, pedagogues, guardians, the environment one spends time in, the schools one attends, the peer groups on identifies with, one's role models is not to be underestimated. Taking into account the multitude of factors determining the education of a child in a numerous family the environmental determinants (including age, education, professional activity of parents or the lack thereof, residence of the numerous family, financial situation, number of children in this system of multiple categories constituting the elements characterising the form of contemporary family of three or more children should be emphasized.
Directory of Open Access Journals (Sweden)
Tuleja J.
2017-06-01
Full Text Available The paper presents a method of the numerical modelling of micro-stresses in carbonised austenitic cast steel being developed during rapid cooling due to differences in the values of thermal expansion coefficients for this material phases – carbides and austenitic matrix. Micro-stresses are indicated as the main cause of crack initiation in the tooling elements of carburising furnaces being mainly made of austenitic cast steel. A calculation model of carbonised and thermally fatigued austenitic cast steel was developed based on the microstructure images obtained using light microscopy techniques and the phase composition evaluated with the X-ray diffraction method. The values of the stress tensor components and the reduced stress in the complex models of test material structure were determined numerically by the finite element method. The effort analysis was performed and the areas where development of cracks is to be expected were identified, which was experimentally confirmed.
Numerical analysis of energy piles under different boundary conditions and thermal loading cycles
Directory of Open Access Journals (Sweden)
Khosravi Ali
2016-01-01
Full Text Available The thermo- mechanical behavior of energy piles has been studied extensively in recent years. In the present study, a numerical model was adapted to study the effect of various parameters (e.g. heating/cooling temperature, head loading condition and soil stiffness on the thermo-mechanical behavior of an energy pile installed in unsaturated sandstone. The results from the simulations were compared with measurements from a thermal response test on a prototype energy pile installed beneath a 1-story building at the US Air Force Academy (USAFA in Colorado Springs, CO. A good agreement was achieved between the results obtained from the prototype and the numerical models. A parametric evaluation were also carried out which indicated the significance of the stiffness of the unsaturated sandstone and pile’s head loading condition on stress-strain response of the energy pile during heating/cooling cycles.
Three-dimensional numerical simulation of natural convection under the influence of magnetic fields
International Nuclear Information System (INIS)
Moessner, R.
1996-04-01
This report deals with the influence of strong magnetic fields on three-dimensional natural convection. First the dimensionless basic equations are derived in cartesian coordinates. This equations are solved numerically in rectangular domains with a Finite-Difference-Method. The following calculations investigate the flow in an electrically insulated cube which is heated and cooled at side walls. It is possible to perform systematic computations for the variation of the direction of the magnetic field and thermal boundary conditions. (orig.)
Biomechanical model of the thorax under blast loading: a three dimensional numerical study.
Goumtcha, Aristide Awoukeng; Thoral-Pierre, Karine; Roth, Sébastien
2014-12-01
Injury mechanisms due to high speed dynamic loads, such as blasts, are not well understood. These research fields are widely investigated in the literature, both at the experimental and numerical levels, and try to answer questions about the safety and efficiency of protection devices or biomechanical traumas. At a numerical level, the development of powerful mathematical models tends to study tolerance limits and injury mechanisms in order to avoid experimental tests which cannot be easily conducted. In a military framework, developing a fighter/soldier numerical model can help to the understanding of many traumas which are specific to soldier injuries, like mines, ballistic impacts or blast traumas. The aim of this study is to investigate the consequences of violent loads in terms of human body response, submitting a developed and validated three-dimensional thorax finite element (FE) model to blast loadings. Specific formulations of FE methods are used to simulate this loading, and its consequence on the biomechanical model. Mechanical parameters such as pressure in the air field and also in internal organs are observed, and these values are compared to the experimental data in the literature. This study gives encouraging results and allows going further in soldier trauma investigations. Copyright © 2014 John Wiley & Sons, Ltd.
An analysis dictionary learning algorithm under a noisy data model with orthogonality constraint.
Zhang, Ye; Yu, Tenglong; Wang, Wenwu
2014-01-01
Two common problems are often encountered in analysis dictionary learning (ADL) algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high), as represented by the Analysis K-SVD (AK-SVD) algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST) algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure) and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.
Directory of Open Access Journals (Sweden)
Abid Ali Minhas
2006-06-01
Full Text Available Routing algorithms have shown their importance in the power aware wireless micro-sensor networks. In this paper first we present virtual circuit algorithm (VCRA, a routing algorithm for wireless sensor networks. We analyze the power utilized by nodes to lengthen the battery life and thus improving the lifetime of wireless sensor network. We discuss VCRA in comparison with the Multihoprouter, an algorithm developed by UC Berkeley. Then we present Improved Virtual Circuit Routing Algorithm (IVCRA which is an improved form of VCRA. In IVCRA node failure detection and path repairing scheme has been implemented. We also present the energy analysis of IVCRA and prove that IVCRA is the best choice. We first implement our routing algorithms in simulator TOSSIM and then on real hardware of mica2 mote-sensor network platform and prove the reliable routing of the data packets from different nodes to the base station. The motes used as nodes in our mote-sensor network are from Berkeley USA. By using simulator POWERTOSSIM, we estimate and present the energy utilized by different nodes of the network. At the end we present a comparison of our work with the network layer of Zigbee/IEEE 802.15.4, which is an emerging standard for wireless sensor networks and then compare its energy efficiency with the packet size chosen for our algorithm.
An Analysis Dictionary Learning Algorithm under a Noisy Data Model with Orthogonality Constraint
Directory of Open Access Journals (Sweden)
Ye Zhang
2014-01-01
Full Text Available Two common problems are often encountered in analysis dictionary learning (ADL algorithms. The first one is that the original clean signals for learning the dictionary are assumed to be known, which otherwise need to be estimated from noisy measurements. This, however, renders a computationally slow optimization process and potentially unreliable estimation (if the noise level is high, as represented by the Analysis K-SVD (AK-SVD algorithm. The other problem is the trivial solution to the dictionary, for example, the null dictionary matrix that may be given by a dictionary learning algorithm, as discussed in the learning overcomplete sparsifying transform (LOST algorithm. Here we propose a novel optimization model and an iterative algorithm to learn the analysis dictionary, where we directly employ the observed data to compute the approximate analysis sparse representation of the original signals (leading to a fast optimization procedure and enforce an orthogonality constraint on the optimization criterion to avoid the trivial solutions. Experiments demonstrate the competitive performance of the proposed algorithm as compared with three baselines, namely, the AK-SVD, LOST, and NAAOLA algorithms.
Ara, Asmat; Khan, Najeeb Alam; Naz, Farah; Raja, Muhammad Asif Zahoor; Rubbab, Qammar
2018-01-01
This article explores the Jeffery-Hamel flow of an incompressible non-Newtonian fluid inside non-parallel walls and observes the influence of heat transfer in the flow field. The fluid is considered to be micropolar fluid that flows in a convergent/divergent channel. The governing nonlinear partial differential equations (PDEs) are converted to nonlinear coupled ordinary differential equations (ODEs) with the help of a suitable similarity transformation. The resulting nonlinear analysis is determined analytically with the utilization of the Taylor optimization method based on differential evolution (DE) algorithm. In order to understand the flow field, the effects of pertinent parameters such as the coupling parameter, spin gradient viscosity parameter and the Reynolds number have been examined on velocity and temperature profiles. It concedes that the good results can be attained by an implementation of the proposed method. Ultimately, the accuracy of the method is confirmed by comparing the present results with the results obtained by Runge-Kutta method.
International Nuclear Information System (INIS)
Chen, Chih-Jung; Hung, Chen-I.; Chen, Wei-Hsin
2012-01-01
Highlights: ► A numerical method is developed to predict coal gasification phenomena. ► Particular emphasis is placed on the influence of injection pattern upon syngas production. ► The parameter of steam/coal ratio is also taken into account. ► The appropriate injection for the performance of coal gasification is suggested. ► The obtained results have provided a useful insight into the operation of coal gasification. -- Abstract: Gasification plays an important role in the development of clean coal technology. To seek appropriate operations for synthesis gas (syngas) formation, the present study develops a numerical method to predict coal gasification phenomena in an entrained-flow gasifier. Particular emphasis is placed on the influence of injection pattern upon syngas production. The parameter of steam/coal ratio is also taken into account to evaluate its impact on hydrogen generation. The simulations suggest that the developed numerical method is able to provide an accurate prediction on syngas formation. With oxygen injected from the center inlet and coal from the middle ring inlet of the reactor, the operating pattern gives the best performance of coal gasification where the carbon conversion (CC) and coal gas efficiency (CGE) are 89% and 72%, respectively. Increasing steam into the reactor reduces CC and less CO is generated. Nevertheless, more H 2 is produced stemming from water gas shift reaction. This results in slight variation in CGE with altering steam/coal ratio. The obtained results have provided a useful insight into the operation of fuel and oxidant injection for coal gasification.
Directory of Open Access Journals (Sweden)
Shi Ying
2016-01-01
Full Text Available The fuzzy clustering algorithm is to classify the data or indicators with a greater degree of similarity based on the principle of the same type of individuals possessing a greater similarity, and different types of individuals possessing differences, establish clear category boundaries, form any shape of relationship clusters in the solving process, and input the research indicators at random, in order to accurately analyze the significance of the indicators in the algorithm. The evaluation value of the clustering analysis can be obtained by the establishment of the fuzzy factor set based on the membership analysis, and the evaluation result can be analyzed through reference to the evaluation indicators of the fuzzy clustering analysis. The “micro-lecture” English teaching mode can be estimated and the analysis indicators can be rationally established based on the fuzzy clustering analysis algorithm, with better algorithm applicability.
National Aeronautics and Space Administration — Recent work on distributed multi-spacecraft systems has resulted in a number of architectures and algorithms for accurate estimation of spacecraft and formation...
Directory of Open Access Journals (Sweden)
Brajesh Kumar Singh
2018-03-01
Full Text Available In this paper, a new approach “modified extended cubic B-Spline differential quadrature (mECDQ method” has been developed for the numerical computation of two dimensional hyperbolic telegraph equation. The mECDQ method is a DQM based on modified extended cubic B-spline functions as new base functions. The mECDQ method reduces the hyperbolic telegraph equation into an amenable system of ordinary differential equations (ODEs, in time. The resulting system of ODEs has been solved by adopting an optimal five stage fourth-order strong stability preserving Runge - Kutta (SSP-RK54 scheme. The stability of the method is also studied by computing the eigenvalues of the coefficient matrices. It is shown that the mECDQ method produces stable solution for the telegraph equation. The accuracy of the method is illustrated by computing the errors between analytical solutions and numerical solutions are measured in terms of L2 and L∞ and average error norms for each problem. A comparison of mECDQ solutions with the results of the other numerical methods has been carried out for various space sizes and time step sizes, which shows that the mECDQ solutions are converging very fast in comparison with the various existing schemes. Keywords: Differential quadrature method, Hyperbolic telegraph equation, Modified extended cubic B-splines, mECDQ method, Thomas algorithm
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2009-12-01
Full Text Available Some numerical and experimental investigations are made on the performance of five different hyperelastic constitutive models (second order polynomial, Yeoh, Arruda-Boyce, Ogden and Marlow in tension and compressionmodes. First, the results of the tensile and compression tests on a rubber sample were used to determine the parameters of the models by curve fitting methods. Next, by using an algorithm based on adaptive meshing technique and minimizing the Mises Equivalent Stress, the best finite element mesh of the tensile and compression specimens were obtained. These finite element meshes were then employed for the simulation of the tests, and the predicted force-displacements curves were compared by the experimentally measured data. It is found that the Marlow model gives the best result provided that the stress-strain curve of the simple tension experiment is available.
Nie, Xiaohua; Nie, Haoyao
2017-01-01
This work presents a maximum power point tracking (MPPT) based on the particle swarm optimization (PSO) improved shuffled frog leaping algorithm (PSFLA). The swarm intelligence algorithm (SIA) has vast computing ability. The MPPT control strategies of PV array based on SIA are attracting considerable interests. Firstly, the PSFLA was proposed by adding the inertia weight factor w of PSO in standard SFLA to overcome the defect of falling into the partial optimal solutions and slow convergence ...
Directory of Open Access Journals (Sweden)
D. A. Viattchenin
2009-01-01
Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible clusterization with partial training is proposed in the paper. The method is based on data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.
An Online Algorithm for Learning Buyer Behavior under Realistic Pricing Restrictions
Saharoy, Debjyoti; Tulabandhula, Theja
2018-01-01
We propose a new efficient online algorithm to learn the parameters governing the purchasing behavior of a utility maximizing buyer, who responds to prices, in a repeated interaction setting. The key feature of our algorithm is that it can learn even non-linear buyer utility while working with arbitrary price constraints that the seller may impose. This overcomes a major shortcoming of previous approaches, which use unrealistic prices to learn these parameters making them unsuitable in practice.
Aydın, Levent; Artem, Hatice Seçil
2011-01-01
The aim of the present study is to design the stacking sequence of the laminated composites that have low coefficient of thermal expansion and high elastic moduli. In design process, multi-objective genetic algorithm optimization of the carbon fiber laminated composite plates is verified by single objective optimization approach using three different stochastic optimization methods: genetic algorithm, generalized pattern search, and simulated annealing. However, both the multi- and single-obj...
Salama, Amgad
2015-06-01
In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.
Numerical analysis of deteriorated sub-sea pipelines under environmental loads
Gücüyen, Engin
2015-11-01
The significant point is the bidirectional interaction technique in FSI analysis while investigating subsea corrosion effect. By this way, pipe environment is accurately modelled and fluid effects are also considered. The effect of external corrosion defects on structural behaviour of a pipeline is studied by creating a nonlinear numerical model based on the finite element method according to ABAQUS analysis program. Corrosion losses of sections are obtained from experimental results and applied to the model. Numerical model is formed by a span of sub-sea pipeline that is subjected to environmental loads. Seismic and wind-generated irregular wave loads are considered as environmental loads. Irregular wave is represented with equivalent eight regular waves via FFT. The pipe is modelled according to two different types which are non-corroded(intact) and corroded (deteriorated) to demonstrate corrosion effects on it. The visible type of corrosion in marine environment is named `pitting' corrosion, in which the material loss is locally interpenetrated over the surface. By considering this situation, the corroded and non-corroded pipes are modelled as 3D solid elements. The main point is revealing how the subsea corrosion affects the structural behaviour of pipelines on the basis of implementation of experimental results to a model structure due to changes of stresses and displacement.
Directory of Open Access Journals (Sweden)
Viet Tra
2017-12-01
Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.
Yang, Mei
2016-01-01
Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k−ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared. PMID:27458729
Directory of Open Access Journals (Sweden)
Mei Yang
Full Text Available Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.
Experimental and numerical study of plastic shear instability under high-speed loading conditions
International Nuclear Information System (INIS)
Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg
2014-01-01
The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically
Numerical simulation of a full-loop circulating fluidized bed under different operating conditions
Energy Technology Data Exchange (ETDEWEB)
Xu, Yupeng [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Musser, Jordan M. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Li, Tingwen [National Energy Technology Lab. (NETL), Morgantown, WV (United States); AECOM, Morgantown, WV (United States); Rogers, William A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)
2017-10-17
Both experimental and computational studies of the fluidization of high-density polyethylene (HDPE) particles in a small-scale full-loop circulating fluidized bed are conducted. Experimental measurements of pressure drop are taken at different locations along the bed. The solids circulation rate is measured with an advanced Particle Image Velocimetry (PIV) technique. The bed height of the quasi-static region in the standpipe is also measured. Comparative numerical simulations are performed with a Computational Fluid Dynamics solver utilizing a Discrete Element Method (CFD-DEM). This paper reports a detailed and direct comparison between CFD-DEM results and experimental data for realistic gas-solid fluidization in a full-loop circulating fluidized bed system. The comparison reveals good agreement with respect to system component pressure drop and inventory height in the standpipe. In addition, the effect of different drag laws applied within the CFD simulation is examined and compared with experimental results.
Li, Yanhui; Guo, Hao; Wang, Lin; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.
Directory of Open Access Journals (Sweden)
Yanhui Li
2013-01-01
Full Text Available Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment.
Guo, Hao; Fu, Jing
2013-01-01
Facility location, inventory control, and vehicle routes scheduling are critical and highly related problems in the design of logistics system for e-business. Meanwhile, the return ratio in Internet sales was significantly higher than in the traditional business. Many of returned merchandise have no quality defects, which can reenter sales channels just after a simple repackaging process. Focusing on the existing problem in e-commerce logistics system, we formulate a location-inventory-routing problem model with no quality defects returns. To solve this NP-hard problem, an effective hybrid genetic simulated annealing algorithm (HGSAA) is proposed. Results of numerical examples show that HGSAA outperforms GA on computing time, optimal solution, and computing stability. The proposed model is very useful to help managers make the right decisions under e-supply chain environment. PMID:24489489
Directory of Open Access Journals (Sweden)
Yongshui Kang
2014-10-01
Full Text Available Water-bearing rocks exposed to freezing temperature can be subjected to freeze–thaw cycles leading to crack initiation and propagation, which are the main causes of frost damage to rocks. Based on the Griffith theory of brittle fracture mechanics, the crack initiation criterion, propagation direction, and crack length under freezing pressure and far-field stress are analyzed. Furthermore, a calculation method is proposed for the stress intensity factor (SIF of the crack tip under non-uniformly distributed freezing pressure. The formulae for the crack/fracture propagation direction and length of the wing crack under freezing pressure are obtained, and the mechanism for coalescence of adjacent cracks is investigated. In addition, the necessary conditions for different coalescence modes of cracks are studied. Using the topology theory, a new algorithm for frost crack propagation is proposed, which has the capability to define the crack growth path and identify and update the cracked elements. A model that incorporates multiple cracks is built by ANSYS and then imported into FLAC3D. The SIFs are then calculated using a FISH procedure, and the growth path of the freezing cracks after several calculation steps is demonstrated using the new algorithm. The proposed method can be applied to rocks containing fillings such as detritus and slurry.
Directory of Open Access Journals (Sweden)
2015-12-01
Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.
Numerical Simulation for the Soil-Pile-Structure Interaction under Seismic Loading
Directory of Open Access Journals (Sweden)
Lifeng Luan
2015-01-01
Full Text Available Piles are widely used as reinforcement structures in geotechnical engineering designs. If the settlement of the soil is greater than the pile, the pile is pulled down by the soil, and negative friction force is produced. Previous studies have mainly focused on the interaction of pile-soil under static condition. However, many pile projects are located in earthquake-prone areas, which indicate the importance of determining the response of the pile-soil structure under seismic load. In this paper, the nonlinear, explicit, and finite difference program FLAC3D, which considers the mechanical behavior of soil-pile interaction, is used to establish an underconsolidated soil-pile mode. The response processes of the pile side friction force, the pile axial force, and the soil response under seismic load are also analyzed.
Jiang, Yulian; Liu, Jianchang; Tan, Shubin; Ming, Pingsong
2014-09-01
In this paper, a robust consensus algorithm is developed and sufficient conditions for convergence to consensus are proposed for a multi-agent system (MAS) with exogenous disturbances subject to partial information. By utilizing H∞ robust control, differential game theory and a design-based approach, the consensus problem of the MAS with exogenous bounded interference is resolved and the disturbances are restrained, simultaneously. Attention is focused on designing an H∞ robust controller (the robust consensus algorithm) based on minimisation of our proposed rational and individual cost functions according to goals of the MAS. Furthermore, sufficient conditions for convergence of the robust consensus algorithm are given. An example is employed to demonstrate that our results are effective and more capable to restrain exogenous disturbances than the existing literature.
Zheleznyak, Mark; Kolomiets, Pavlo; Dzjuba, Natalia; Ievgen, Ievgen; Sorokin, Maxim; Denisov, Nickolai; Ischuk, Oleksiy; Koeppel, Sonja
2015-04-01
The Dniester river is shared by Ukraine and Moldova. Ukraine being both upstream and downstream of Moldova. The basin is especially suffering from heavy floods, often with transboundary impacts: in Ukraine, disastrous floods in July 2008, which were possibly partly caused or exacerbated by climate change. Within the UNECE | ENVSEC project "Reducing vulnerability to extreme floods and climate change in the Dniester river basin" the numerical flood risks mapping for several "hot spots" along the Dniester river was initiated Two transboundary sites: "Mohyliv Podylskiy- Ataki" and "Dubossary HPP-, Mayaki" (in the delta zone) were chosen for flood risk modelling/mapping. . Floodplain inundation at Mohyliv Podylskiy- Ataki during historical and projected extreme floods scenarios is simulated by 2D model COASTOX -UN based on the numerical solution of shallow water equations on unstructured grid. The scenario of extreme flood, July 2008 that caused hazardous flooding of the riverside areas of Mohyliv Podylskiy has been used for model verification and calibration. The floodmarks of the inundated in 2008 streets have been collected and GIS processed to be used together with the data from the city's water gage station for model testing. The comparison of the simulated dynamics of floodplain inundation during 2008 flood with the observed data show good accuracy of the model. The technologies of the flood modeling and GIS based risk assessments verified for this site are implemented for analyses of the vulnerability to extreme floods for Q=7600 m3 / sec inflow to Dniester reservoir ( 1% flood for contemporary climate assessment) and for Q=8700 m3 / sec. that is considered as projection of 1% flood maximum for XXI century The detailed flood mapping was provided for all cases and was shown that 13% increase in water elevation for future extreme flood scenario will provide at 20% increasing of flooded areas in Mohilev Podolsky. For the site Dubossary NPP in Moldova downstream till
International Nuclear Information System (INIS)
Reivinen, M.; Freund, J.; Eloranta, E.
1996-08-01
The aim of the study is to model the geodynamic response of a ground rock block under horizontal stresses and also consider the thermal fields and deformations, especially on the ground surface, caused by the heat produced by nuclear waste. (12 refs.)
Directory of Open Access Journals (Sweden)
Zhentao Wang
2014-07-01
Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Numerical Simulation of Pre-heated Confined PBX Charge Under Low Velocity
Hu, Cai; Wu, Yanqing; Huang, Fenglei; Liu, Yan; Explosion; damage Team
2017-06-01
Impact sensitivity and thermal safety are very important for explosive safety usage.To investigate the effect of thermal softening on impact sensitivity of HMX-based PBX, a finite element model aiming at pre-heated confined PBX charge sbujected to bullets impact has been established. The predicted ignition starting area of the explosive charge was evaluated based on volume strain and equivalent strain contours. It showed that the ignition starting area moves towards the center of the explosives from the surface with increase of heating temperature. The threshold velocity does not increase monotonically with the pre-heating temperature increases. Instead, the threshold velocity rises till 360 m/s when the cook-off temperature is lower than 75°, then decreases the increased temperature. The results imply that our PBX has the lowest impact sensitivity at about 75°. These numerical results agree very well with the corresponding experiment results conducted by Dai et al. The influence of thermal softening on the impact sensitivity has been analyzed. As the strength decreases, more impact energy will be absorbed. At the same time, shear resistance ability will be weaken and volume compression work may play a more important role to ignition. China National Nature Science Foundation (11572045), ``Science Challenging Program'' (JCKY2016212A501), opening fund from Safety ammunition research and Development Center (RMC2015B03).
Directory of Open Access Journals (Sweden)
Zhitao Zheng
2015-11-01
Full Text Available Sudden falls of large-area hard roofs in a mined area release a large amount of elastic energy, generate dynamic loads, and cause disasters such as impact ground pressure and gas outbursts. To address these problems, in this study, the sleeve fracturing method (SFM was applied to weaken a hard roof. The numerical simulation software FLAC3D was used to develop three models based on an analysis of the SFM working mechanism. These models were applied to an analysis of the fracturing effects of various factors such as the borehole diameter, hole spacing, and sleeve pressure. Finally, the results of a simulation were validated using experiments with similar models. Our research indicated the following: (1 The crack propagation directions in the models were affected by the maximum principal stress and hole spacing. When the borehole diameter was fixed, the fracturing pressure increased with increasing hole spacing. In contrast, when the fracturing pressure was fixed, the fracturing range increased with increasing borehole diameter; (2 The most ideal fracturing effect was found at a fracturing pressure of 17.6 MPa in the model with a borehole diameter of 40 mm and hole spacing of 400 mm. The results showed that it is possible to regulate the falls of hard roofs using the SFM. This research may provide a theoretical basis for controlling hard roofs in mining.
Numerical Simulation on the Performance of a Mixed-Flow Pump under Various Casing Structures
Directory of Open Access Journals (Sweden)
Wu Dazhuan
2013-01-01
Full Text Available With regard to the reactor coolant pump and high flow-rate circulating pump, the requirements on the compactness of the structure, safety, and hydraulic performance are particularly important. Thus, the mixed-flow pump with cylindrical casing is adopted in some occasions. Due to the different characteristics between the special cylindrical casing and the common pump casing, the influence of the special casing on a mixed-flow pump characteristics was numerically investigated to obtain better performance and flow structure in the casing. The results show that the models with cylindrical casing have much worse head and efficiency characteristics than the experimental model, and this is caused by the flow in the pump casing. By moving the guide vanes half inside the pump casing, the efficiency gets improved while the low pressure zone at the corner of outlet pipe and pump casing disappeared. When the length of pump casing increases from the size equal to the diameter of outlet pipe to that larger than it, the efficiency drops obviously and the flow field in the outlet pipe improved without curved flow. In addition, the length of the pump casing has greater impacts on the pump performance than the radius of it.
Numerical Analysis of Helical Pile–Soil Interaction under Compressive Loads
Polishchuk, A. I.; Maksimov, F. A.
2017-11-01
The results of the field tests of full-scale steel helical piles in clay soils intended for prefabricated temporary buildings foundations are presented in this article. The finite element modeling was used for the evaluation of stress distribution of the clay soil around helical piles. An approach of modeling of the screw-pile geometry has been proposed through the Finite Element Analysis. Steel helical piles with a length of 2.0 m, shaft diameter of 0.108 m and a blade diameter of 0.3 m were used in the experiments. The experiments have shown the efficiency of double-bladed helical piles in the clay soils compared to single-bladed piles. It has been experimentally established that the introduction of the second blade into the pile shaft provides an increase of the bearing capacity in clay soil up to 30% compared to a single-bladed helical pile with similar geometrical dimensions. The numerical results are compared with the measurements obtained by a large scale test and the bearing capacity has been estimated. It has been found that the model results fit the field results. For a double-bladed helical pile it was revealed that shear stresses upon pile loading are formed along the lateral surface forming a cylindrical failure surface.
Directory of Open Access Journals (Sweden)
Takashi Amemiya
2005-12-01
Full Text Available An abstract version of the comprehensive aquatic simulation model (CASM is found to exhibit bistability under intermediate loading of nutrient input, supporting the alternative-stable-states theory and field observations for shallow lakes. Our simulations of biomanipulations under the bistable conditions reveal that a reduction in the abundance of zooplanktivorous fish cannot switch the system from a turbid to a clear state. Rather, a direct reduction of phytoplankton and detritus was found to be most effective to make this switch in the present model. These results imply that multiple manipulations may be effective for practical restorations of lakes. We discuss the present results of biomanipulations in terms of ecological resilience in multivariable systems or natural systems.
Niyazi Uğur TERZİ; Sönmez YILDIRIM
2009-01-01
Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transdu...
A numerical investigation into the behaviour of leak openings in pipes under pressure.
2008-01-01
South Africa is a water scarce country where a large number of people still are not provided with adequate water. This project will help to manage water resources in a sustainable manner that will benefit the country as a whole. This study concentrated on the behaviour of pipe materials with leak openings under different pressure conditions. The stress distribution throughout a pipe is known due to the pressures within the pipe i.e. the longitudinal and circumferential stresses as well as the...
Portevin-Le Chatelier effect under cyclic loading: experimental and numerical investigations
Mazière, M.; Pujol d'Andrebo, Q.
2015-10-01
The Portevin-Le Chatelier (PLC) effect is generally evidenced by the apparition of serrated yielding under monotonic tensile loading conditions. It appears at room temperature in some aluminium alloys, around ? in some steels and in many other metallic materials. This effect is associated with the propagation of bands of plastic deformation in tensile specimens and can in some cases lead to unexpected failures. The PLC effect has been widely simulated under monotonic conditions using finite elements and an appropriate mechanical model able to reproduce serrations and strain localization. The occurrence of serrations can be predicted using an analytical stability analysis. Recently, this serrated yielding has also been observed in specimens made of Cobalt-based superalloy under cyclic loading, after a large number of cycles. The mechanical model has been identified in this case to accurately reproduce this critical number of cycle where serrations appear. The associated apparition of localized bands of deformation in specimens and their influence on its failure has also been investigated using finite element simulations.
Numerical study on a single bladed vertical axis wind turbine under dynamic stall
Energy Technology Data Exchange (ETDEWEB)
Bangga, Galih [Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Stuttgart (Germany); Hutomo, Go; Sasongko, Herman [Dept. of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya (Indonesia); Wiranegara, Raditya [School of Mechanical Aerospace and Civil Engineering, University of Manchester, Manchester (United Kingdom)
2017-01-15
The aim of this study is to investigate the flow development of a single bladed vertical axis wind turbine using Computational fluid dynamics (CFD) methods. The blade is constructed using the NACA 0012 profile and is operating under stalled conditions at tip speed ratio of 2. Two dimensional simulations are performed using a commercial CFD package, ANSYS Fluent 15.0, employing the Menter-SST turbulence model. For the preliminary study, simulations of the NACA 0012 airfoil under static conditions are carried out and compared with available measurement data and calculations using the boundary layer code XFOIL. The CFD results under the dynamic case are presented and the resulting aerodynamic forces are evaluated. The turbine is observed to generate negative power at certain azimuth angles which can be divided into three main zones. The blade vortex interaction is observed to strongly influence the flow behavior near the blade and contributes to the power production loss. However, the impact is considered small since it covers only 6.4 % of the azimuth angle range where the power is negative compared to the dynamic stall impact which covers almost 22 % of the azimuth angle range.
Numerical analysis of high-speed Lithium jet flow under vacuum conditions
Energy Technology Data Exchange (ETDEWEB)
Gordeev, Sergej, E-mail: sergej.gordeev@kit.edu; Groeschel, Friedrich; Stieglitz, Robert
2016-11-01
The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10{sup −3} Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.
Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
Directory of Open Access Journals (Sweden)
Ningyu Li
Full Text Available Numerical simulations are employed to study the hydrodynamics of self-propelled thunniform swimming. The swimmer is modeled as a tuna-like flexible body undulating with kinematics of thunniform type. The wake evolution follows the vortex structures arranged nearly vertical to the forward direction, vortex dipole formation resulting in the propulsion motion, and finally a reverse Kármán vortex street. We also carry out a systematic parametric study of various aspects of the fluid dynamics behind the freely swimming behavior, including the swimming speed, hydrodynamic forces, power requirement and wake vortices. The present results show that the fin thrust as well as swimming velocity is an increasing function of both tail undulating amplitude Ap and oscillating amplitude of the caudal fin θm. Whereas change on the propulsive performance with Ap is associated with the strength of wake vortices and the area of suction region on the fin, the swimming performance improves with θm due to the favorable tilting of the fin that make the pressure difference force more oriented toward the thrust direction. Moreover, the energy loss in the transverse direction and the power requirement increase with Ap but decrease with θm, and this indicates that for achieving a desired swimming speed increasing θm seems more efficiently than increasing Ap. Furthermore, we have compared the current simulations with the published experimental studies on undulatory swimming. Comparisons show that our work tackles the flow regime of natural thunniform swimmers and follows the principal scaling law of undulatory locomotion reported. Finally, this study enables a detailed quantitative analysis, which is difficult to obtain by experiments, of the force production of the thunniform mode as well as its connection to the self-propelled swimming kinematics and vortex wake structure. The current findings help provide insights into the swimming performance and mechanisms of self
Numerical analysis of high-speed Lithium jet flow under vacuum conditions
International Nuclear Information System (INIS)
Gordeev, Sergej; Groeschel, Friedrich; Stieglitz, Robert
2016-01-01
The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10 −3 Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.
Spanoudaki, Katerina; Bockelmann-Evans, Bettina; Schaefer, Florian; Kampanis, Nikolaos; Nanou-Giannarou, Aikaterini; Stamou, Anastasios; Falconer, Roger
2015-04-01
continuous tide on the coastal side. The integrated surface water-groundwater numerical model IRENE (Spanoudaki et al., 2009, Spanoudaki, 2010) was also used in the study, with the numerical model predictions being compared with experimental results, which provide a valuable database for model calibration and validation. IRENE couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. The model uses the finite volume method with a cell-centered structured grid providing thus flexibility and accuracy in simulating irregular boundary geometries. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. References Ebrahimi, K., Falconer, R.A. and Lin B. (2007). Flow and solute fluxes in integrated wetland and coastal systems. Environmental Modelling and Software, 22 (9), 1337-1348. Hughes, S.A. (1995). Physical Modelling and Laboratory Techniques in Coastal Engineering. World Scientific Publishing Co. Pte. Ltd., Singapore. Kuan, W.K., Jin, G., Xin, P., Robinson, C. Gibbes, B. and Li. L. (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers. Water Resources Research, 48 (2), doi:10.1029/2011WR010678. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek
Directory of Open Access Journals (Sweden)
M. A. Aziz
2014-01-01
Full Text Available The design of a transonic-fan rotor is optimized using numerical computations of the full three-dimensional Navier-Stokes equations. The CFDRC-ACE multiphysics module, which is a pressure-based solver, is used for the numerical simulation. The code is coupled with simplex optimization algorithm. The optimization process is started from a suitable design point obtained using low fidelity analytical methods that is based on experimental correlations for the pressure losses and blade deviation angle. The fan blade shape is defined by its stacking line and airfoil shape which are considered the optimization parameters. The stacking line is defined by lean, sweep, and skews, while blade airfoil shape is modified considering the thickness and camber distributions. The optimization has been performed to maximize the rotor total pressure ratio while keeping the rotor efficiency and surge margin above certain required values. The results obtained are verified with the experimental data of Rotor 67. In addition, the results of the optimized fan indicate that the optimum design is found to be leaned in the direction of rotation and has a forward sweep from the hub to mean section and backward sweep to the tip. The pressure ratio increases from 1.427 to 1.627 at the design speed and mass flow rate.
上町, 亮介; KAMMACHI, Ryosuke
2015-01-01
In this paper, we describe about a study of dead-reckoning algorithm for mecanum wheel based mobile robot under various types of road surface. Because of mecanum wheel based mobile robot can move omni-direction by utilizing tire-road surface friction. Therefore depending on road surface condition, it is difficult to estimate accurate self-position by applying conventional dead-reckoning method. In order to overcome inaccuracy of conventional dead-reckoning method for mecanum wheel based mobil...
A Numerical Method for Two-Stage Stochastic Programs under Uncertainty
Directory of Open Access Journals (Sweden)
Paul Bosch
2011-01-01
power generation companies, this work extends the traditional two-stage linear stochastic program by adding probabilistic constraints in the second stage. In this work we describe, under special assumptions, how the two-stage stochastic programs with mixed probabilities can be treated computationally. We obtain a convex conservative approximations of the chance constraints defined in second stage of our model and use Monte Carlo simulation techniques for approximating the expectation function in the first stage by the average. This approach raises with another question: how to solve the linear program with the convex conservative approximation (nonlinear constrains for each scenario?
International Nuclear Information System (INIS)
Qian Tianwei; Li, Shushen; Ding Qingwei; Wu Guibin; Zhao Dongye
2009-01-01
90 Sr is a fission byproduct of uranium and plutonium, and it presents a major health problem in the environment. A field test on the transport of various radionuclides including 90 Sr in an unsaturated Chinese loess was conducted under artificial rain conditions from July 1997 to August 2000. The vertical concentration distribution of 90 Sr displayed an unusual profile of double concentration peaks, which were separated by a thin (0.7 cm) source layer. In order to interpret the double-peak concentration profile, the transport of 3 H and 90 Sr in the unsaturated Chinese loess under artificial sprinkling conditions was simulated using WATERM, a numerical code for simulating flow field, and NESOR, also a numerical code but for simulating nuclide migration. The models were able to adequately simulate the double-peak concentration profile. The observation suggested that the fine arenaceous quartz layer, though 0.7 cm thick, formed a capillary barrier together with the local loess, which prevented water from penetrating. A significant discrepancy was observed between the model-fitted distribution coefficient (K d ) of 90 Sr and that determined from independent laboratory experiments, which can be attributed to a number of factors such as the capillary barrier effect, solution-to-solid ratio and soil water content. Therefore, when the model is used for predictive purposes where K d is used as an input parameter, K d must be determined under well controlled conditions by taking into account these factors as well as the heterogeneity in the field.
Energy Technology Data Exchange (ETDEWEB)
Duka, M V; Dvoretskaya, L N; Babelkin, N S; Khodzitskii, M K; Chivilikhin, S A; Smolyanskaya, O A [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)
2014-08-31
We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 – 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth. (laser biophotonics)
Duka, M. V.; Dvoretskaya, L. N.; Babelkin, N. S.; Khodzitskii, M. K.; Chivilikhin, S. A.; Smolyanskaya, O. A.
2014-08-01
We have studied the mechanisms underlying the effect of pulsed broadband terahertz radiation on the growth of neurites of sensory ganglia using a comparative analysis of measured reflection spectra of ganglion neurites (in the frequency range 0.1 - 2.0 THz) and spectra obtained by numerical simulation with CST Microwave Studio. The observed changes are shown to be mainly due to pulse energy absorption in the ganglion neurites. Of particular interest are the observed single resonance frequencies related to resonance size effects, which can be used to irradiate ganglia in order to activate their growth.
Xiao, Yao; Zeng, Pan; Lei, Liping
2017-12-01
In this paper, a micromechanical-based constitutive model is proposed for superelastic NiTi shape memory alloy and it is implemented into the finite element software. The thermodynamic driving forces of martensitic transformation and martensitic reorientation are derived from the reduced Clausius–Duhem inequality. In order to achieve numerical stability and to improve computational efficiency, additional constraints on the evolution of martensite volume fraction are introduced. The texture of NiTi tubes is taken into consideration. It is verified that the measured superelastic responses under various loading conditions are well approximated by the presented approach.
Ghoreishi, Seyed Saleh; Yousefi, Reza; Saghafi, Kamyar; Aderang, Habib
2017-08-01
In this article, a detailed performance comparison is made between ballistic and dissipative quantum transport of metal oxide semicondutor-like graphene nanoribbon field-effect transistor, in ON and OFF-state conditions. By the self-consistent mode-space non-equilibrium Green's function approach, inter- and intraband scattering is accounted and the role of acoustic and optical phonon scattering on the performance of the devices is evaluated. We found that in this structure the dominant mechanism of scattering changes according to the ranges of voltage bias. Under large biasing conditions, the influence of optical phonon scattering becomes important. Also, the ambipolar and OFF-current are impressed by the phonon-assisted band-to-band tunneling and increased considerably compared to the ballistic conditions, although sub-threshold swing degrades due to optical phonon scattering.
Directory of Open Access Journals (Sweden)
Niyazi Uğur TERZİ
2009-01-01
Full Text Available Deformation characteristics of polyethylene based flexible pipes are different than rigid pipes such as concrete and iron pipes. Deflection patterns and stress-strain behaviors of flexible pipes have strict relation between the engineering properties of backfill and its settlement method. In this study, deformation behavior of a 100 mm HDPE flexible pipe under vertical loads is investigated in laboratory conditions. Steel test box, pressurized membrane, raining system, linear position transducers and strain gauge rosettes are used in the laboratory tests. In order to analyze the buried pipe performance; Masada Derivation Formula which is mostly used by designers is employed. According to the test and mathematical studies, it is understood that relative density of backfill and its settlement method is a considerable effect on buried pipe performance and Masada Derivation method is very efficient for predicting the pipe performance.
DEFF Research Database (Denmark)
Zhou, H.W.; Li, H.Y.; Gui, L.L.
2013-01-01
Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different...... the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure....... With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational...
International Nuclear Information System (INIS)
Arcos, D.; Sena, C.; Salas, J.
2010-01-01
Document available in extended abstract form only. In the KBS-3 concept for the nuclear waste repository, designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB), the bentonite buffer is placed around the copper canisters that contain the spent nuclear fuel, isolating it of the host rock. In order to check - hypotheses for the evolution of the bentonite buffer under the thermo-hydraulic conditions expected in a KBS-3 repository, SKB is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL). In the present work, numerical simulations are developed to simulate: i) thermo-hydraulic processes; ii) geochemical reactions and; iii) transport of solutes, that have been measured in the LOT A2 test, and, that are expected in the near-field of a KBS-3 repository. The numerical model for the LOT A2 test is based on analytical results and on field-scale experiments. The validation of this model allows us to implement it for the thermal period of the near field of the KBS-3 repository, based on previous modelling exercises. During the operation of a KBS-3 repository (after deposition of the copper canisters), the unsaturated bentonite will be submitted to a relatively high thermal gradient, induced by the radioactive decay of the spent nuclear fuel. On the other hand, the saturated host rock will provide aqueous solution to the unsaturated bentonite, induced by differential hydraulic pressures, under specific thermal and mechanic conditions. In this context, the bentonite will gradually become fully water saturated. Experimental results indicate that during the saturation period, the transport of solutes in the bentonite buffer will be influenced by water uptake from the surrounding host rock towards the wetting front, and also by a cyclic evaporation/condensation process, induced by the thermal gradient. Our numerical models take into account the transport of solutes and geochemical reactions under nonisothermal
Waldispühl, Jérôme; Ponty, Yann
2011-11-01
The analysis of the relationship between sequences and structures (i.e., how mutations affect structures and reciprocally how structures influence mutations) is essential to decipher the principles driving molecular evolution, to infer the origins of genetic diseases, and to develop bioengineering applications such as the design of artificial molecules. Because their structures can be predicted from the sequence data only, RNA molecules provide a good framework to study this sequence-structure relationship. We recently introduced a suite of algorithms called RNAmutants which allows a complete exploration of RNA sequence-structure maps in polynomial time and space. Formally, RNAmutants takes an input sequence (or seed) to compute the Boltzmann-weighted ensembles of mutants with exactly k mutations, and sample mutations from these ensembles. However, this approach suffers from major limitations. Indeed, since the Boltzmann probabilities of the mutations depend of the free energy of the structures, RNAmutants has difficulties to sample mutant sequences with low G+C-contents. In this article, we introduce an unbiased adaptive sampling algorithm that enables RNAmutants to sample regions of the mutational landscape poorly covered by classical algorithms. We applied these methods to sample mutations with low G+C-contents. These adaptive sampling techniques can be easily adapted to explore other regions of the sequence and structural landscapes which are difficult to sample. Importantly, these algorithms come at a minimal computational cost. We demonstrate the insights offered by these techniques on studies of complete RNA sequence structures maps of sizes up to 40 nucleotides. Our results indicate that the G+C-content has a strong influence on the size and shape of the evolutionary accessible sequence and structural spaces. In particular, we show that low G+C-contents favor the apparition of internal loops and thus possibly the synthesis of tertiary structure motifs. On
Directory of Open Access Journals (Sweden)
N. Askarizadeh
2017-12-01
Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.
Directory of Open Access Journals (Sweden)
Yingning Qiu
2016-07-01
Full Text Available Although Permanent Magnet Synchronous Generator (PMSG wind turbines (WTs mitigate gearbox impacts, they requires high reliability of generators and converters. Statistical analysis shows that the failure rate of direct-drive PMSG wind turbines’ generators and inverters are high. Intelligent fault diagnosis algorithms to detect inverters faults is a premise for the condition monitoring system aimed at improving wind turbines’ reliability and availability. The influences of random wind speed and diversified control strategies lead to challenges for developing intelligent fault diagnosis algorithms for converters. This paper studies open-circuit fault features of wind turbine converters in variable wind speed situations through systematic simulation and experiment. A new fault diagnosis algorithm named Wind Speed Based Normalized Current Trajectory is proposed and used to accurately detect and locate faulted IGBT in the circuit arms. It is compared to direct current monitoring and current vector trajectory pattern approaches. The results show that the proposed method has advantages in the accuracy of fault diagnosis and has superior anti-noise capability in variable wind speed situations. The impact of the control strategy is also identified. Experimental results demonstrate its applicability on practical WT condition monitoring system which is used to improve wind turbine reliability and reduce their maintenance cost.
On an algorithm of data compressian under filmless pickup of data from streamer chambers
International Nuclear Information System (INIS)
Ososkov, G.A.; Perelygin, S.P.; Prikhod'ko, V.I.; Ton, T.; Chelnokova, V.V.
1978-01-01
A primary data compression algorithm is discussed with features feasible loss of accuracy during reconstruction of event geometry. The most effective methods of data compression problem solution are: residual classes calculus and contour following. An approach toWards residual classes calculus operation is suggested, Which consists of two stages of digitized data processing. First, transformation of Cartesian coordination system With 12 13 x2 9 samples along X and Y axes, correspondingly, into a system with 2 8 x2 4 samples. The second stage can be fulfilled in either way: simple sorting of all transformed coordinates of tracks and interference - this algorithm can be implemented in two 2 8 x2 5 bit matrices (per each TV camera) resulting in 13-15-fold compression or track following with calculation of X increment perline at the end of each slice. The second algorithm needs a set of followers which can be implemented in 16x100 bit matrix. It also requires a controller which has some 100 medium IC's. This will enable to achieve 20-30-fold compression of data
Energy Technology Data Exchange (ETDEWEB)
Xie, Yu; Sengupta, Manajit; Dooraghi, Mike
2018-05-01
Development of accurate transposition models to simulate plane-of-array (POA) irradiance from horizontal measurements or simulations is a complex process mainly because of the anisotropic distribution of diffuse solar radiation in the atmosphere. The limited availability of reliable POA measurements at large temporal and spatial scales leads to difficulties in the comprehensive evaluation of transposition models. This paper proposes new algorithms to assess the uncertainty of transposition models using both surface-based observations and modeling tools. We reviewed the analytical derivation of POA irradiance and the approximation of isotropic diffuse radiation that simplifies the computation. Two transposition models are evaluated against the computation by the rigorous analytical solution. We proposed a new algorithm to evaluate transposition models using the clear-sky measurements at the National Renewable Energy Laboratory's (NREL's) Solar Radiation Research Laboratory (SRRL) and a radiative transfer model that integrates diffuse radiances of various sky-viewing angles. We found that the radiative transfer model and a transposition model based on empirical regressions are superior to the isotropic models when compared to measurements. We further compared the radiative transfer model to the transposition models under an extensive range of idealized conditions. Our results suggest that the empirical transposition model has slightly higher cloudy-sky POA irradiance than the radiative transfer model, but performs better than the isotropic models under clear-sky conditions. Significantly smaller POA irradiances computed by the transposition models are observed when the photovoltaics (PV) panel deviates from the azimuthal direction of the sun. The new algorithms developed in the current study have opened the door to a more comprehensive evaluation of transposition models for various atmospheric conditions and solar and PV orientations.
Numerical simulations and observations of surface wave fields under an extreme tropical cyclone
Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.
2009-01-01
The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.
Directory of Open Access Journals (Sweden)
Paulina Krolo
2016-01-01
Full Text Available To simulate the effect of variable strains on steel grades S275 and S355, an experimental displacement control test of plate specimens was performed. Specimens were tested under monotonic and cyclic loading according to the standard loading protocol of SAC 2000. During experimental testing, strain values were measured with an extensometer at the tapered part of the specimen. Strains obtained by the experimental tests are disproportional to the applied displacements at the ends of the specimens. This phenomenon occurs due to the imperfections of the specimen, hardening of the material, and the buckling behaviour that appears in real structures due to the high deformation experienced during earthquakes. Due to the relative simplicity and wide applicability of the Chaboche hardening model of steel, the calibration of hardening parameters based on experimental test results was conducted. For the first time, calibration of steel hardening parameters was performed following the Chaboche procedure to define the cyclic behaviour with variable strain ranges. The accuracy of the hardening model with variable strain ranges, which were simulated using ABAQUS software, was verified using the experimental results.
Licer, Matjaz; Mourre, Baptiste; Troupin, Charles; Krietemeyer, Andreas; Tintoré, Joaquín
2017-04-01
A high resolution nested ocean modelling system forced by synthetic atmospheric gravity waves is used to investigate meteotsunami generation, amplification and propagation properties over the Mallorca-Menorca shelf (Balearic Islands, Western Mediterranean Sea). We determine how meteotsunami amplitude outside and inside of the Balearic port of Ciutadella depends on forcing gravity wave direction, speed and trajectory. Contributions of Mallorca shelves and Menorca Channel are quantified for different gravity wave forcing angles and speeds. Results indicate that the Channel is the key build-up region and that Northern and Southern Mallorca shelves do not significantly contribute to the amplitude of substantial harbour oscillations in Ciutadella. This fact seriously reduces early-warning alert times in cases of locally generated pressure perturbations. Tracking meteotsunami propagation paths in the Menorca Channel for several forcing velocities, we show that the Channel bathymetry serves as a focusing lens for meteotsunami waves whose paths are constrained by the forcing direction. Faster meteotsunamis are shown to propagate over deeper ocean regions, as required by the Proudman resonance. Meteotsunami speed under sub- and supercritical forcing is estimated and a first order estimate of its magnitude is derived. Meteotsunamis generated by the supercritical gravity waves are found to propagate with a velocity which is equal to an arithmetic mean of the gravity wave speed and local ocean barotropic wave speed.
Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions
Jiang, Wei; Peng, Yanli; Zhang, Ya; Lapenta, Giovanni
2016-12-01
We have simulated tokamak breakdown phase driven by pure Ohmic heating with implicit particle in cell/Monte Carlo collision (PIC/MCC) method. We have found two modes can be differentiated. When performing breakdown at low initial gas pressure, we find that it works at lower density and current, but higher temperature, and requires lower heating power, compared to when having a high initial pressure. Further, two stages can be distinguished during the avalanche process. One is the fast avalanche stage, in which the plasma is heated by induced toroidal electric field. The other is the slow avalanche stage, which begins when the plasma density reaches 1015 m-3. It has been shown that ions are mainly heated by ambipolar field and become stochastic in the velocity distribution. However, when the induced electric field is low, there exists a transition phase between the two stages. Our model simulates the breakdown and early hydrogen burn-through under ideal conditions during tokamak start-up. It adopted fewer assumptions, and can give an idealized range of operative parameters for Ohmic start-up. Qualitatively, the results agree well with certain experimental observations.
Li, Kangmei; Jing, Dalei; Hu, Jun; Ding, Xiaohong; Yao, Zhenqiang
2017-01-01
Surface texturing is an important approach for controlling the tribological behavior of friction pairs used in mechanical and biological engineering. In this study, by utilizing the method of three-dimensional computational fluid dynamics (CFD) simulation, the lubrication model of a friction pair with micro-dimple array was established based on the Navier-Stokes equations. The typical pressure distribution of the lubricant film was analyzed. It was found that a positive hydrodynamic pressure is generated in the convergent part of the micro-dimple, while a negative hydrodynamic pressure is generated in the divergent part. With suitable parameters, the total integration of the pressure is positive, which can increase the load-carrying capacity of a friction pair. The effects of the micro-dimple parameters as well as fluid properties on tribological performance were investigated. It was concluded that under the condition of hydrodynamic lubrication, the main mechanism for the improvement in the tribological performance is the combined effects of wedging and recirculation. Within the range of parameters investigated in this study, the optimum texture density is 13%, while the optimum aspect ratio varies with the Reynolds number. For a given Reynolds number, there exists a combination of texture density and aspect ratio at which the optimum tribological performance could be obtained. Conclusions from this study could be helpful for the design of texture parameters in mechanical friction components and even in artificial joints.
An, Yanzhao
2017-09-23
In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.
International Nuclear Information System (INIS)
Vincent, E.
2006-12-01
In this work, we have developed a model of point defect (vacancies and interstitials) diffusion whose aim is to simulate by kinetic Monte Carlo (KMC) the formation of solute rich clusters observed experimentally in irradiated FeCuNiMnSi model alloys and in pressure vessel steels. Electronic structure calculations have been used to characterize the interactions between point defects and the different solute atoms. Each of these solute atoms establishes an attractive bond with the vacancy. As for Mn, which is the element which has the weakest bond with the vacancy, it establishes more favourable bonds with interstitials. Binding energies, migration energies as well as other atomic scale properties, determined by ab initio calculations, have led to a parameter set for the KMC code. Firstly, these parameters have been optimised on thermal ageing experiments realised on the FeCu binary alloy and on complex alloys, described in the literature. The vacancy diffusion thermal annealing simulations show that when a vacancy is available, all the solutes migrate and form clusters, in agreement with the observed experimental tendencies. Secondly, to simulate the microstructural evolution under irradiation, we have introduced interstitials in the KMC code. Their presence leads to a more efficient transport of Mn. The first simulations of electron and neutron irradiations show that the model results are globally qualitatively coherent with the experimentally observed tendencies. (author)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
Directory of Open Access Journals (Sweden)
Hongxiao Wang
2018-01-01
Full Text Available This study examined the influence mechanism of temperature on the interfacial shear strength (IFSS between carbon fiber (CF and epoxy resin (EP matrices under various thermal loads using experimental and numerical simulation methods. To evaluate the change in IFSS as a function of the increase in temperature, a microbond test was performed under controlled temperature environment from 23°C to 150°C. The experimental results showed that IFSS values of CF/EP reduce significantly when the temperature reaches near glass transition temperature. To interpret the effect of thermal loads on IFSS, a thermal-mechanical coupling finite element model was used to simulate the process of fiber pull-out from EP. The results revealed that temperature dependence of IFSS is linked to modulus of the matrix as well as to the coefficients of thermal expansion of the fiber and matrix.
Numerical Simulations of Fluid Flow in a Single Fracture under Loading and Unloading Conditions
Kling, T.; Huo, D.; Schwarz, J. O.; Enzmann, F.; Blum, P.; Benson, S. M.
2014-12-01
Hydraulic aperture is one of the most important parameters to describe fluid flow in fractured rocks. Hydraulic apertures are typically determined indirectly by fluid flow experiments or hydraulic field tests based on the cubic law. Alternatively, there are different equations approximating an empirical relation between mechanical and hydraulic aperture. However, these methods most widely neglect mechanisms such as stress changes, where increasing stresses decrease the mechanical aperture and, therefore, also the effective hydraulic aperture. Hence, the objective of the present study is to simulate fluid flow in a single fracture under loading/unloading conditions and validate the results with core flooding experiments. Core flooding data and X-ray CT scans (voxel size 0.5 x 0.5 x 1 mm) of a sandstone sample with a single fracture (measured mean aperture of around 0.1 mm) were obtained by laboratory experiments. The fluid flow simulations are performed by solving the incompressible Navier-Stokes equation by using a finite volume method. Input data are given by experimental flow rates, pressures, applied stress levels and CT images of the fracture. In addition, an error analysis is performed to establish confidence in results. Results of the validation exhibit significant effects of stress on aperture distribution such as channeling and stress-dependent fracture permeability. A significant stress sensitivity of hydraulic aperture compared to the mechanical aperture was found, which can be explained by roughness changes resulting from loading. Observations indicate that with increasing stress, changes in mechanical aperture are small, while changes in hydraulic aperture can be very large. Since previous equations for hydraulic aperture do not consider changes in normal stress, a modification of these equations is proposed, including the stress-dependency of mechanical apertures to provide a better approximation to the observed hydraulic apertures.
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Taro, E-mail: watanabe_t@qe.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: takata.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: yamaguchi@n.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)
2017-03-15
Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.
Directory of Open Access Journals (Sweden)
Nameer Abdul-Ameer Alwash
2017-05-01
Full Text Available In this paper, the punching behavior of square simply supported reinforced concrete flat slabs was experimentally and numerically investigated. Four models of reinforced concrete flat slabs were constructed and tested. The test variables were type of concrete and load (four models: High Strength Concrete flat slabs under monotonicload or repeated load (two models and Normal Strength Concreteflat slabs under monotonicload or repeatedload (two models. The results showed that the punching shear strength of flat slabmodels increased up to 60% with the use of HSC. While, repeated load reduces the punching shear strength of flat slabmodels by about (34.4%-10%; it depends on the level of loading, number of cycles and type of concrete. Three-dimensional (3D nonlinear finite element (NFE analysis has been carried out to conduct the numerical investigation of the general behavior of HSC and NSC flat slab models. The ABAQUS model succeeded to an acceptable degree in predicting the structural behavior of the analyzed flat slabswith average of differences of about 5% between the predicted and experimental ultimate load
A Simplified Mass Conserving Algorithm for Journal Bearing under Large Dynamic Loads
Directory of Open Access Journals (Sweden)
H. Hirani
2001-01-01
Full Text Available A simplified mass conserving solution approach, consisting of analytical and numerical methods, for performance evaluation of dynamically loaded journal bearings is presented. The analytical technique is used to determine position and velocity of journal center for given force components. Subsequently a finite difference formulation of universal Reynolds equation is used to calculate realistic oil flow. The proposed formulation is applied for analysis of an engine main bearing. The entry and exit flow and maximum pressure in the bearing are determined over complete cycle and matched with published results obtained by numerical scheme. The suggested hybrid computational method typically takes 55 s on ICL DRS 6000, and 29 s on 150 MHz Pentium-Pro computer.
Directory of Open Access Journals (Sweden)
Chocat Rudy
2015-01-01
Full Text Available The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.
Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S
2017-11-01
Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.
Name-letter branding under scrutiny: real products, new algorithms, and the probability of buying.
Stieger, Stefan
2010-06-01
People like letters matching their own first and last name initials more than nonname letters. This name-letter effect has also been found for brands, i.e., people like brands resembling their own name letters (initial or first three). This has been termed name-letter branding effect. In the present study of 199 participants, ages 12 to 79 years, this name-letter branding effect was found for a modified design (1) using real products, (2) concentrating on product names rather than brand names, (3) using five different products for each letter of the Roman alphabet, (4) asking for the buying probability, and (5) using recently introduced algorithms, controlling for individual response tendencies (i.e., liking all letters more or less) and general normative popularity of particular letters (i.e., some letters are generally preferred more than other letters).
Yue, Yingchao; Fan, Wenhui; Xiao, Tianyuan; Ma, Cheng
2013-07-01
High level architecture(HLA) is the open standard in the collaborative simulation field. Scholars have been paying close attention to theoretical research on and engineering applications of collaborative simulation based on HLA/RTI, which extends HLA in various aspects like functionality and efficiency. However, related study on the load balancing problem of HLA collaborative simulation is insufficient. Without load balancing, collaborative simulation under HLA/RTI may encounter performance reduction or even fatal errors. In this paper, load balancing is further divided into static problems and dynamic problems. A multi-objective model is established and the randomness of model parameters is taken into consideration for static load balancing, which makes the model more credible. The Monte Carlo based optimization algorithm(MCOA) is excogitated to gain static load balance. For dynamic load balancing, a new type of dynamic load balancing problem is put forward with regards to the variable-structured collaborative simulation under HLA/RTI. In order to minimize the influence against the running collaborative simulation, the ordinal optimization based algorithm(OOA) is devised to shorten the optimization time. Furthermore, the two algorithms are adopted in simulation experiments of different scenarios, which demonstrate their effectiveness and efficiency. An engineering experiment about collaborative simulation under HLA/RTI of high speed electricity multiple units(EMU) is also conducted to indentify credibility of the proposed models and supportive utility of MCOA and OOA to practical engineering systems. The proposed research ensures compatibility of traditional HLA, enhances the ability for assigning simulation loads onto computing units both statically and dynamically, improves the performance of collaborative simulation system and makes full use of the hardware resources.
Directory of Open Access Journals (Sweden)
Oleg G. Kumpyak
2017-12-01
Full Text Available Occurrence of extreme man-made impacts on buildings and structures has become frequent lately as a consequence of condensed explosives or explosive combustion of gas- vapor or air-fuel mixtures. Such accidents involve large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies (finite element, 3D nonlinear of strength and deformability of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; elasto-plastic with hardening. The methodology for numerical studies performance was described. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with increase of deformable elements rigidity dependency between load and deformation of yielding supports in elastic and plastic stages have linear character. Significant reduction of dynamic response and increase of deformation time of yielding supports was observed by increasing the plastic component. Therefore it allows assuming on possibility of their application as supporting units in reinforced concrete constructions
Directory of Open Access Journals (Sweden)
Hsien-Hung Ting
2015-01-01
Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.
International Nuclear Information System (INIS)
Jia Manni; Zhong, F.C.; Sun, Y.W.; Wang, L.; Gan, K.
2015-01-01
A numerical code using field line tracing for modeling the three-dimensional magnetic field topology under resonant magnetic perturbations (RMPs) has been developed and applied in Experimental Advanced Superconducting Tokamak (EAST) 2014 campaign. Currently, the model is simplified by using vacuum paradigm and neglecting the toroidal field ripple. The modeling result predicts that the possible strike point splitting on plasma facing component and the lobes like structure on the boundary are observable in various diagnostics at different locations. lt is shown that the strike point splitting strongly depends on the edge stochasticity, which is a combined effect of both perturbation spectrum and equi librium properties. In a lower single null configuration, it is found that RMP may also change the magnetic structure near the upper x-point and form a similar strike point splitting on the upper divertor. It depends on the distance between the two separatrix, which threshold value depends on both the RMP strength and the equilibrium properties. To examine the RMP system on EAST and its effect on plasmas, some experiments with RMPs were hold in the 2014 campaign. The static and rotational perturbation were both tested and results confirm the RMP efficiency. Particle flux profiles on divertor targets measured by divertor probes had verified the existing strike point splitting induced by RMPs. The results are consistent with the numerical modeling within measurement uncertainties and confirm the edge stochasticity induced by RMPs. (author)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Scott, L Ridgway
2011-01-01
Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that ex...
Closed-Form Algorithm for 3-D Near-Field OFDM Signal Localization under Uniform Circular Array.
Su, Xiaolong; Liu, Zhen; Chen, Xin; Wei, Xizhang
2018-01-14
Due to its widespread application in communications, radar, etc., the orthogonal frequency division multiplexing (OFDM) signal has become increasingly urgent in the field of localization. Under uniform circular array (UCA) and near-field conditions, this paper presents a closed-form algorithm based on phase difference for estimating the three-dimensional (3-D) location (azimuth angle, elevation angle, and range) of the OFDM signal. In the algorithm, considering that it is difficult to distinguish the frequency of the OFDM signal's subcarriers and the phase-based method is always affected by errors of the frequency estimation, this paper employs sparse representation (SR) to obtain the super-resolution frequencies and the corresponding phases of subcarriers. Further, as the phase differences of the adjacent sensors including azimuth angle, elevation angle and range parameters can be expressed as indefinite equations, the near-field OFDM signal's 3-D location is obtained by employing the least square method, where the phase differences are based on the average of the estimated subcarriers. Finally, the performance of the proposed algorithm is demonstrated by several simulations.
Directory of Open Access Journals (Sweden)
Xun Pu
2018-01-01
Full Text Available A Multilayer Perceptron (MLP is a feedforward neural network model consisting of one or more hidden layers between the input and output layers. MLPs have been successfully applied to solve a wide range of problems in the fields of neuroscience, computational linguistics, and parallel distributed processing. While MLPs are highly successful in solving problems which are not linearly separable, two of the biggest challenges in their development and application are the local-minima problem and the problem of slow convergence under big data challenge. In order to tackle these problems, this study proposes a Hybrid Chaotic Biogeography-Based Optimization (HCBBO algorithm for training MLPs for big data analysis and processing. Four benchmark datasets are employed to investigate the effectiveness of HCBBO in training MLPs. The accuracy of the results and the convergence of HCBBO are compared to three well-known heuristic algorithms: (a Biogeography-Based Optimization (BBO, (b Particle Swarm Optimization (PSO, and (c Genetic Algorithms (GA. The experimental results show that training MLPs by using HCBBO is better than the other three heuristic learning approaches for big data processing.
Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H
2013-07-01
This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.
de la Rosa Castolo, Guillermo; Guevara Perez, Sonia V; Arnoux, Pierre-Jean; Badih, Laurent; Bonnet, Franck; Behr, Michel
2017-07-15
Implant prosthodontics provides high-quality outcomes thanks to recent technological developments and certification procedures such as International Organization for Standardization (ISO) standard 14801. However, these certification tests are costly, and the result is highly uncertain as the influence of design variables (materials and structure) is still unknown. The design process could be significantly improved if the influence of design parameters were identified. The purpose of this in vitro study was to use finite element analysis (FEA) to assess the influence of design parameters on the mechanical performance of an implant in regard to testing conditions of ISO 14801 standard. An endosseous dental implant was loaded under ISO standard 14801 testing conditions by numerical simulation, with 4 parameters evaluated under the following conditions: conditions of the contact surface area between the implant and the loading tool, length of the fixation screw, implant embedding depth, and material used for implant stiffness. FEA was used to compare the force that needed to reach the implant's yield and fracture strength. A dental implant's fracture point can be increased by 41% by improving the contact surface area, by 20% depending on the type of material, by 4% depending on the length of the fixation screw, and by 1.4% by changing the implant embedding depth. FEA made it possible to evaluate 4 performance parameters of a dental implant under ISO standard 14801 conditions. Under these conditions, the contact surface area was found to be the major parameter influencing implant performance. This observation was validated experimentally in a fatigue test under ISO standard 14801 conditions. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Kurt, Hueseyin; Ozkaymak, Mehmet; Binark, A. Korhan
2006-01-01
The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na 2 CO 3 ) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond
Energy Technology Data Exchange (ETDEWEB)
Kurt, Hueseyin; Ozkaymak, Mehmet [Zonguldak Karaelmas University, Technical Education Faculty, 78200 Karabuk (Turkey); Binark, A. Korhan [Marmara University, Technical Education Faculty, 34722 Kuyubasi-Istanbul (Turkey)
2006-04-01
The objective of this study is to investigate experimentally and theoretically whether sodium carbonate (Na{sub 2}CO{sub 3}) salt is suitable for establishing a salinity gradient in a salt-gradient solar-pond (SGSP). For this purpose, a small-scale prismatic solar-pond was constructed. Experiments were conducted in the laboratory under the incident radiation from two halogen-lamps acting as a solar simulator. Furthermore, a one-dimensional transient mathematical model that describes the heat and mass transfer behaviour of the SGSP was developed. The differential equations obtained were solved numerically using a finite-difference method. It was found from the experiments that the density gradient, achieved using sodium carbonate salt, can suppress convection from the bottom to the surface of the pond. (author)
Directory of Open Access Journals (Sweden)
Huazhi Chen
2018-01-01
Full Text Available Particles can move directionally in a trough with finlike asperities under longitudinal vibrations. Here, we present an analysis of the particle conveyance mechanism and the influence of the asperity shape on the particle conveyance capacity by employing a numerical simulation based on the discrete element method (DEM. A dynamic-static matching method is proposed to characterize the three microcontact parameters in the simulation: the restitution coefficient, static friction coefficient, and rolling friction coefficient. The simulation shows that the asymmetric force induced by the finlike asperities and its cumulative effect over time lead to the particle directional conveyance. The conveyance velocity increases with increasing vibration time and is related to the median coordination number. The asperity height and slope inclination angles determine the trough shape and distance between two asperities directly. An undersized or oversized distance reduces the steady conveyance velocity. We find the optimal distance to be between one and two particle diameters.
Directory of Open Access Journals (Sweden)
Liu Jian-jun
2013-01-01
Full Text Available Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore pressure and stress changes with time under different injection-production ratio, which disclosed the dynamic change regulation of pore pressure and stress of surrounding rock nearby the injection and production wells. These results may have implications in the treatment of wellbore stability and optimizing the injection and production processes during oil and gas production.
Directory of Open Access Journals (Sweden)
Muhammad Hashim
2017-05-01
Full Text Available Purpose: The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for
Energy Technology Data Exchange (ETDEWEB)
Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.
2017-07-01
The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world
International Nuclear Information System (INIS)
Hashim, M.; Nazam, M.; Yao, L.; Baig, S.A.; Abrar, M.; Zia-ur-Rehman, M.
2017-01-01
The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM). Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS) problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS) problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS) decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM) and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS) under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM) with fuzzy coefficients constructed in present research should be helpful for solving real world
Barna, M.; Javurek, M.; Willers, B.; Eckert, S.; Reiter, J.
2016-07-01
At the voestalpine Stahl Donawitz GmbH the continuous casting of round steel blooms is commonly supported by electromagnetically induced stirring of the liquid steel flow. A number of beneficial effects are attributed to electromagnetic stirring in the mould region (M-EMS), e.g. the enhanced transition from columnar to equiaxed solidification, the homogenization of the liquid steel flow or the reduction of surface and subsurface defects. Although the positive effects of M-EMS can be seen on the blooms (e.g. in etchings), the link between electromagnetic stirring of the steel melt and the quality of the solidified bloom is not sufficiently understood. Theoretical considerations are often limited to general cases and their results are therefore not directly applicable to real continuous casting geometries. On the other hand, plant measurements can only be performed to a limited extent due to the harsh conditions and other restrictions (e.g. safety regulations). In this work an alternative approach is used to investigate the steel flow in a round bloom caster under the influence of M-EMS. In a 1:3 scale Perspex model of a round bloom strand, measurements of the flow under the influence of a rotating magnetic field can be conducted. These measurements provide a validation benchmark for the numeric simulations. A numeric model of the before mentioned 1:3 scale model is implemented, encompassing the strand, the submerged entry nozzle as well as the M-EMS device. In the modelling approach, the bidirectional coupling between liquid steel flow and the electromagnetic field/forces has to be considered because otherwise the resulting tangential velocities will be overestimated. With the validated modelling approach, simulations of real casting machines can then be conducted, stirring parameter influences can be shown and conclusions for the real casting process can be drawn.
International Nuclear Information System (INIS)
Arutunjan, R.V.; Bolshov, L.A.; Vitukov, V.V.; Goloviznin, V.M.; Dykhne, A.M.; Kiselev, V.P.; Klementova, S.V.; Krayushkin, I.E.; Moskovchenko, A.V.; Pismennii, V.D.; Popkov, A.G.; Chernov, S.Y.; Chudanov, V.V.; Khoruzhii, O.V.; Yudin, A.I.
1990-01-01
Migration of fuel fragments and core fission products during severe accidents on nuclear plants is studied analytically and numerically. The problems of heat transfer and migration of volume heat sources in construction materials and underlying soils are considered
Thompson, J. F.; Mcwhorter, J. C.; Siddiqi, S. A.; Shanks, S. P.
1973-01-01
Numerical methods of integration of the equations of motion of a controlled satellite under the influence of gravity-gradient torque are considered. The results of computer experimentation using a number of Runge-Kutta, multi-step, and extrapolation methods for the numerical integration of this differential system are presented, and particularly efficient methods are noted. A large bibliography of numerical methods for initial value problems for ordinary differential equations is presented, and a compilation of Runge-Kutta and multistep formulas is given. Less common numerical integration techniques from the literature are noted for further consideration.
Resource-Constrained Project Scheduling Under Uncertainty: Models, Algorithms and Applications
2014-11-10
Make-to-Order (MTO) Production Planning using Bayesian Updating, International Journal of Production Economics (04 2014) Norman Keith Womer, Haitao...2013) Made-to-Order Production Scheduling using Bayesian Updating, Working Paper, under second-round review in International Journal of Production Economics . VI
International Nuclear Information System (INIS)
Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.
2011-01-01
The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)
Directory of Open Access Journals (Sweden)
Leyong Chen
2015-12-01
Full Text Available The fissures and rock bridges with different dips had different contributions to crack's initiation, propagation, convergence and penetration. In this paper, based on the rock fracture theory, the crack's propagation and evolution process on rock specimen with double fissures under uniaxial compression was simulated. As a result, the crack propagation and evolution law of rocks with different fissure dips (α = 0°, 15°, 30°, 45°, 60°, 75°, 90°; β = 45° and different rock bridge dips (β = 0°, 30°, 45°, 60°, 90°; α = 45° was obtained by numerical tests. Meanwhile, the fissure and rock bridge dips influence on the macro mechanical properties of rock was analyzed. Besides, the paper investigated the influences of different fissure dips and different rock bridge dips on the bridge transfixion. The study is of great significance to reveal the impact of different dips on the mechanical mechanism of multiple-fissures rock under specific conditions, and it also has important theoretical significance for the research on multiple-fissure rock.
Energy Technology Data Exchange (ETDEWEB)
Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.
2012-05-15
This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Yousef, Mohamed S.; Abdel Rahman, Ali K.; Ookawara, S.
2016-01-01
Highlights: • Influence of cooling on the performance of photovoltaic systems. • A comprehensive model (optical, thermal, and electrical) was developed. • Experimental measurements were conducted under hot climate conditions. • For conventional photovoltaic with cooling, about 11% more power was obtained. • For concentrated photovoltaic with cooling, about 15% more power was obtained. - Abstract: In this study, a comparative performance analysis was performed between a conventional photovoltaic system and a low-concentration photovoltaic system. Two typical photovoltaic modules and two compound parabolic concentrating photovoltaic systems were examined. A Cooling system was employed to lower the temperature of the solar cells in each of the two configurations. Experimental and numerical investigations of the performance of the two arrangements with and without cooling were presented. Experiments were conducted outdoors at the Egypt-Japan University of Science and Technology, subjected to the hot climate conditions of New Borg El-Arab City, Alexandria, Egypt (Longitude/Latitude: E 029°42′/N 30°55′). A comprehensive system model was established, which comprises an optical model, coupled with thermal and electrical models. The coupled model was developed analytically and solved numerically, using MATLAB software, to assess the overall performance of the two configurations, considering the concentration ratio of the concentrated photovoltaic system to be 2.4X. The results indicated that cooling the solar panels considerably improved the electrical power yield of the photovoltaic systems. By employing cooling, the temperatures of the conventional photovoltaic system and the concentrated photovoltaic system were effectively lowered by approximately 25% and 30%, respectively, resulting in a significant enhancement in the electrical power output of the photovoltaic system by 11% and that of the concentrated photovoltaic system by 15%. Furthermore, the
Directory of Open Access Journals (Sweden)
Dipak Kumar Jana
2013-01-01
Full Text Available An inventory model for deteriorating item is considered in a random planning horizon under inflation and time value money. The model is described in two different environments: random and fuzzy random. The proposed model allows stock-dependent consumption rate and shortages with partial backlogging. In the fuzzy stochastic model, possibility chance constraints are used for defuzzification of imprecise expected total profit. Finally, genetic algorithm (GA and fuzzy simulation-based genetic algorithm (FSGA are used to make decisions for the above inventory models. The models are illustrated with some numerical data. Sensitivity analysis on expected profit function is also presented. Scope and Purpose. The traditional inventory model considers the ideal case in which depletion of inventory is caused by a constant demand rate. However, to keep sales higher, the inventory level would need to remain high. Of course, this would also result in higher holding or procurement cost. Also, in many real situations, during a longer-shortage period some of the customers may refuse the management. For instance, for fashionable commodities and high-tech products with short product life cycle, the willingness for a customer to wait for backlogging is diminishing with the length of the waiting time. Most of the classical inventory models did not take into account the effects of inflation and time value of money. But in the past, the economic situation of most of the countries has changed to such an extent due to large-scale inflation and consequent sharp decline in the purchasing power of money. So, it has not been possible to ignore the effects of inflation and time value of money any more. The purpose of this paper is to maximize the expected profit in the random planning horizon.
Directory of Open Access Journals (Sweden)
Arkadeb Mukhopadhyay
2016-12-01
Full Text Available The present study aims to investigate the tribological behavior of Ni-P-W coating under dry and lubricated condition. The coating is deposited onto mild steel (AISI 1040 specimens by the electroless method using a sodium hypophosphite based alkaline bath. Coating characterization is done to investigate the effect of microstructure on its performance. The change in microhardness is observed to be quite significant after annealing the deposits at 400°C for 1h. A pin–on–disc type tribo-tester is used to investigate the tribological behavior of the coating under dry and lubricated conditions. The experimental design formulation is based on Taguchi’s orthogonal array. The design parameters considered are the applied normal load, sliding speed and sliding duration while the response parameter is wear depth. Multiple regression analysis is employed to obtain a quadratic model of the response variables with the main design parameters under considerations. A high value of coefficient of determination of 95.3% and 87.5% of wear depth is obtained under dry and lubricated conditions, respectively which indicate good correlation between experimental results and the multiple regression models. Analysis of variance at a confidence level of 95% shows that the models are statistically significant. Finally, the quadratic equations are used as objective functions to obtain the optimal combination of tribo testing parameters for minimum wear depth using genetic algorithm (GA.
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude
2017-09-01
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.
Newell, Nicolas; Salzar, Rob; Bull, Anthony M J; Masouros, Spyros D
2016-03-21
Under-vehicle explosions often result in injury of occupants׳ lower extremities. The majority of these injuries are associated with poor outcomes. The protective ability of vehicles against explosions is assessed with Anthropometric Test Devices (ATDs) such as the MIL-Lx, which is designed to behave in a similar way to the human lower extremity when subjected to axial loading. It incorporates tibia load cells, the response of which can provide an indication of the risk of injury to the lower extremity through the use of injury risk curves developed from cadaveric experiments. In this study an axisymmetric finite element model of the MIL-Lx with a combat boot was developed and validated. Model geometry was obtained from measurements taken using digital callipers and rulers from the MIL-Lx, and using CT images for the combat boot. Appropriate experimental methods were used to obtain material properties. These included dynamic, uniaxial compression tests, quasi-static stress-relaxation tests and 3 point bending tests. The model was validated by comparing force-time response measured at the tibia load cells and the amount of compliant element compression obtained experimentally and computationally using two blast-injury experimental rigs. Good correlations between the numerical and experimental results were obtained with both. This model can now be used as a virtual test-bed of mitigation designs and in surrogate device development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaewchoothong, N.; Maliwan, K.; Nuntadusit, C.
2017-09-01
The main objective of this research is to study the flow and heat transfer characteristics in a rotating two-pass square channel with ribbed walls. In this study, the channel length-to-hydraulic diameter ratio of the rotating two-pass square channel (L/Dh ), the rib height-to-hydraulic diameter ratio (e/Dh ), rib angle of attack (α) and the rib pitch-to-height (p/e) ratio are fixed at 11.33, 0.13, 60° and 10, respectively. The test fluid is air having the flow rate in terms of constant Reynolds number (Re) of 10,000. The rotation numbers (Ro ) are varied from 0.1 to 0.4. The details of the local heat transfer distribution and the flow field of the rotating two-pass square channel are numerically studied by using commercial software ANSYS Fluent (ver.15.0). The results show that the ribbed walls enhance the heat transfer rate significantly. Under rotation, the average Nu in the first pass with radial outward flow is increased while that in the second pass is decreased, and also found that maximum heat transfer rate is observed for rotation number of 0.4 which is higher about 10-20% when compared with the other rotation number cases.
DEFF Research Database (Denmark)
Kowalska, Justyna D; Mocroft, Amanda; Ledergerber, Bruno
2011-01-01
cohort classification (LCC) as reported by the site investigator, and 4 algorithms (ALG) created based on survival times after specific AIDS events. Results: A total of 2,783 deaths occurred, 540 CoDe forms were collected, and 488 were used to evaluate agreements. The agreement between CC and LCC...... are a natural consequence of an increased awareness and knowledge in the field. To monitor and analyze changes in mortality over time, we have explored this issue within the EuroSIDA study and propose a standardized protocol unifying data collected and allowing for classification of all deaths as AIDS or non-AIDS...... related, including events with missing cause of death. Methods: Several classifications of the underlying cause of death as AIDS or non-AIDS related within the EuroSIDA study were compared: central classification (CC-reference group) based on an externally standardised method (the CoDe procedures), local...
International Nuclear Information System (INIS)
Tao, Y.B.; He, Y.L.
2011-01-01
Highlights: → Based on the unstable solar radiation, a model was established for phase change process under unsteady boundary. → The PCM melting time decreases with the initial inlet temperature increase under the same average inlet temperature. → The melting time reduces about 51.9% with the initial inlet temperature increase from 30 o C to 90 o C. → The melting time decreases with the initial inlet mass flow rate increase under the same average inlet mass flow rate. → The melting time reduces about 36.5% with the initial inlet mass flow rate increase from 2.0 x 10 -4 kg/s to 8.0 x 10 -4 kg/s. -- Abstract: Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 o C to 90 o C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate
Clegg, Richard A.; Hayhurst, Colin J.
1999-06-01
Ceramic materials, including glass, are commonly used as ballistic protection materials. The response of a ceramic to impact, perforation and penetration is complex and difficult and/or expensive to instrument for obtaining detailed physical data. This paper demonstrates how a hydrocode, such as AUTODYN, can be used to aid in the understanding of the response of brittle materials to high pressure impact loading and thus promote an efficient and cost effective design process. Hydrocode simulations cannot be made without appropriate characterisation of the material. Because of the complexitiy of the response of ceramic materials this often requires a number of complex material tests. Here we present a methodology for using the results of flyer plate tests, in conjunction with numerical simulations, to derive input to the Johnson-Holmquist material model for ceramics. Most of the research effort in relation to the development of hydrocode material models for ceramics has concentrated on the material behaviour under compression and shear. While the penetration process is dominated by these aspects of the material response, the final damaged state of the material can be significantly influenced by the tensile behaviour. Modelling of the final damage state is important since this is often the only physical information which is available. In this paper we present a unique implementation, in a hydrocode, for improved modelling of brittle materials in the tensile regime. Tensile failure initiation is based on any combination of principal stress or strain while the post-failure tensile response of the material is controlled through a Rankine plasticity damaging failure surface. The tensile failure surface can be combined with any of the traditional plasticity and/or compressive damage models. Finally, the models and data are applied in both traditional grid based Lagrangian and Eulerian solution techniques and the relativley new SPH (Smooth Particle Hydrodynamics) meshless
DEFF Research Database (Denmark)
Zhao, Xiaojun; Zhang, Chunjiang; Chai, Xiuhui
2018-01-01
In three-phase four-wire systems, unbalanced loads can cause grid currents to be unbalanced, and this may cause the neutral point potential on the grid side to shift. The neutral point potential shift will worsen the control precision as well as the performance of the threephase four-wire unified...... power quality conditioner (UPQC), and it also leads to unbalanced three-phase output voltage, even causing damage to electric equipment. To deal with unbalanced loads, this paper proposes a matching-ratio compensation algorithm (MCA) for the fundamental active component of load currents......, and by employing this MCA, balanced three-phase grid currents can be realized under 100% unbalanced loads. The steady-state fluctuation and the transient drop of the DC bus voltage can also be restrained. This paper establishes the mathematical model of the UPQC, analyzes the mechanism of the DC bus voltage...... fluctuations, and elaborates the interaction between unbalanced grid currents and DC bus voltage fluctuations; two control strategies of UPQC under three-phase stationary coordinate based on the MCA are given, and finally, the feasibility and effectiveness of the proposed control strategy are verified...
Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung
2018-04-01
Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.
Algorithmically specialized parallel computers
Snyder, Lawrence; Gannon, Dennis B
1985-01-01
Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster
Bernales, Jorge; Rogozhina, Irina; Greve, Ralf
2014-05-01
The mid-Pliocene (3.15 to 2.85 million years before present) is the most recent period in Earth's history when temperatures and CO2 concentrations were likely sustainedly higher than pre-industrial values. Furthermore, the positions of the continents and their sea-land distributions had already reached their present configuration, sharing some similarities with today's patterns of ocean circulation and vegetation distributions. Although significant differences exist -such as a peak sea level that could have been 22 ± 10 m higher than it is today and sea surface temperatures particularly warmer at higher latitudes, mid-Pliocene has been identified as an ideal interval for studying the climate system under conditions similar to those projected for the end of this century. Among the sources of uncertainty in the projections, the response of the Antarctic ice sheet (AIS) to warmer-than-today conditions seems to play a central role. Therefore, a better understanding of AIS's behavior during periods like the mid-Pliocene will provide valuable information that could help improve future predictions. For this purpose, we have compiled a wide range of local field-based reconstructions of the ice-sheet margin from Pliocene sediments (with the inclusions of organic matters such as, for instance, diatoms or palynoflora, or ice rafted debris), geochemical records, volcanic ashes and rocks, and geomorphology, and designed numerical experiments of the AIS dynamics during the mid-Pliocene warm period using the large-scale polythermal ice sheet-shelf model SICOPOLIS (Greve, 1997 [1]; Sato and Greve, 2012 [2]). The model is run with a horizontal resolution of 40 × 40 km by the climatology obtained from the PlioMIP Atmosphere Ocean Global Circulation Model experiments (Dolan et al., 2012 [3]). Parameters of the AIS model (e.g. ice calving, sub-ice shelf and surface ice melt, basal sliding, etc.) have initially been estimated using ice-sheet simulations driven by the present
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Directory of Open Access Journals (Sweden)
Gonglin Yuan
Full Text Available Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1 βk ≥ 0 2 the search direction has the trust region property without the use of any line search method 3 the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Izadi, Arman; Kimiagari, Ali Mohammad
2014-05-01
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The main feature of this research is solving the model with unknown demand function which is suitable with the real-world problems. To consider the uncertainty, a set of possible scenarios for customer demands is created based on the Monte Carlo simulation. The coefficient of variation of costs is mentioned as a measure of risk and the most stable structure for firm's distribution network is defined based on the concept of robust optimization. The best structure is identified using genetic algorithms and 14 % reduction in total supply chain costs is the outcome. Moreover, it imposes the least cost variation created by fluctuation in customer demands (such as epidemic diseases outbreak in some areas of the country) to the logistical system. It is noteworthy that this research is done in one of the largest pharmaceutical distribution firms in Iran.
Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna
2017-10-01
The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.
Directory of Open Access Journals (Sweden)
Jonas Kalderstam
Full Text Available We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart, which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do.
Mansoor, Mohammad M.
2012-02-01
A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.
DEFF Research Database (Denmark)
Vogel, Stephan; Lopez, Javier; Holbøll, Joachim
2015-01-01
Different types of tall structures are severely exposed to lightning discharges, including power lines, communicationtowers, buildings and wind turbines all over the world. Thepresent paper focuses on the numerical modelling and simulationof the effect of wind on the electric field developed over...... facing the wind, leading toa higher probability of lightning attachment....
Directory of Open Access Journals (Sweden)
Rossikhin Yury A.
2018-01-01
Full Text Available Non-linear damped vibrations of a cylindrical shell embedded into a fractional derivative medium are investigated for the case of the combinational internal resonance, resulting in modal interaction, using two different numerical methods with further comparison of the results obtained. The damping properties of the surrounding medium are described by the fractional derivative Kelvin-Voigt model utilizing the Riemann-Liouville fractional derivatives. Within the first method, the generalized displacements of a coupled set of nonlinear ordinary differential equations of the second order are estimated using numerical solution of nonlinear multi-term fractional differential equations by the procedure based on the reduction of the problem to a system of fractional differential equations. According to the second method, the amplitudes and phases of nonlinear vibrations are estimated from the governing nonlinear differential equations describing amplitude-and-phase modulations for the case of the combinational internal resonance. A good agreement in results is declared.
Bucur, Florina; Trana, Eugen; Rotariu, Adrian; Gavrus, Adinel; Barbu, Cristian; Guines, Dominique
2015-09-01
This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.
Directory of Open Access Journals (Sweden)
Bucur Florina
2015-01-01
Full Text Available This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.
Sequential and Adaptive Learning Algorithms for M-Estimation
Directory of Open Access Journals (Sweden)
Guang Deng
2008-05-01
Full Text Available The M-estimate of a linear observation model has many important engineering applications such as identifying a linear system under non-Gaussian noise. Batch algorithms based on the EM algorithm or the iterative reweighted least squares algorithm have been widely adopted. In recent years, several sequential algorithms have been proposed. In this paper, we propose a family of sequential algorithms based on the Bayesian formulation of the problem. The basic idea is that in each step we use a Gaussian approximation for the posterior and a quadratic approximation for the log-likelihood function. The maximum a posteriori (MAP estimation leads naturally to algorithms similar to the recursive least squares (RLSs algorithm. We discuss the quality of the estimate, issues related to the initialization and estimation of parameters, and robustness of the proposed algorithm. We then develop LMS-type algorithms by replacing the covariance matrix with a scaled identity matrix under the constraint that the determinant of the covariance matrix is preserved. We have proposed two LMS-type algorithms which are effective and low-cost replacement of RLS-type of algorithms working under Gaussian and impulsive noise, respectively. Numerical examples show that the performance of the proposed algorithms are very competitive to that of other recently published algorithms.
International Nuclear Information System (INIS)
Razali, Azhani Mohd; Abdullah, Jaafar
2015-01-01
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm
Energy Technology Data Exchange (ETDEWEB)
Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)
2015-04-29
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
Razali, Azhani Mohd; Abdullah, Jaafar
2015-04-01
Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.
Directory of Open Access Journals (Sweden)
Graba M.
2016-12-01
Full Text Available This paper presents a numerical analysis of the relationship between in-plane constraints and the crack tip opening displacement (CTOD for single-edge notched bend (SEN(B specimens under predominantly plane strain conditions. It provides details of the numerical model and discusses the influence of external load and in-plane constraints on the CTOD. The work also reviews methods for determining the CTOD. The new formula proposed in this paper can be used to estimate the value of the coefficient dn as a function of the relative crack length, the strain hardening exponent and the yield strength - dn(n, σ0/E, a/W, with these parameters affecting the level of in-plane constraints. Some of the numerical results were approximated using simple mathematical formulae.
Liu Jian-jun; Yu Xian-bin; Zhao Jin-zhou
2013-01-01
Geostress evolution in the process of oil field development can directly influence wellbore stability. Therefore, it is significant to strengthen the research of the evolution rule for well drilling and casing protection. Considering the interaction between reservoir seepage and stress fields, a mathematical model to characterize the stress evolution around wellbore was built. Using the FEM Software ABAQUS, through numerical simulation, the authors studied the evolution features of pore press...
Gao, Z. Q.; Liu, C. S.; Gao, W.; Chang, N. B.
2010-07-01
Evapotranspiration (ET) may be used as an ecological indicator to address the ecosystem complexity. The accurate measurement of ET is of great significance for studying environmental sustainability, global climate changes, and biodiversity. Remote sensing technologies are capable of monitoring both energy and water fluxes on the surface of the Earth. With this advancement, existing models, such as SEBAL, S_SEBI and SEBS, enable us to estimate the regional ET with limited temporal and spatial scales. This paper extends the existing modeling efforts with the inclusion of new components for ET estimation at varying temporal and spatial scales under complex terrain. Following a coupled remote sensing and surface energy balance approach, this study emphasizes the structure and function of the Surface Energy Balance with Topography Algorithm (SEBTA). With the aid of the elevation and landscape information, such as slope and aspect parameters derived from the digital elevation model (DEM), and the vegetation cover derived from satellite images, the SEBTA can fully account for the dynamic impacts of complex terrain and changing land cover in concert with some varying kinetic parameters (i.e., roughness and zero-plane displacement) over time. Besides, the dry and wet pixels can be recognized automatically and dynamically in image processing thereby making the SEBTA more sensitive to derive the sensible heat flux for ET estimation. To prove the application potential, the SEBTA was carried out to present the robust estimates of 24 h solar radiation over time, which leads to the smooth simulation of the ET over seasons in northern China where the regional climate and vegetation cover in different seasons compound the ET calculations. The SEBTA was validated by the measured data at the ground level. During validation, it shows that the consistency index reached 0.92 and the correlation coefficient was 0.87.
National Aeronautics and Space Administration — SSCI is proposing to develop, test and deliver a set of topology control algorithms and software for a formation flying spacecraft that can be used to design and...
National Aeronautics and Space Administration — SSCI is proposing to develop a set of topology control algorithms for a formation flying spacecraft that can be used to design and evaluate candidate formation...
Directory of Open Access Journals (Sweden)
Dong-Man Ryu
2017-09-01
Full Text Available Experiments and a numerical simulation were conducted to investigate the deformation and impact behavior of a corroded pipe, as corrosion, fatigue, and collision phenomena frequently occur in subsea pipelines. This study focuses on the deformation of the corrosion region and the variation of the geometry of the pipe under impact loading. The experiments for the impact behavior of the corroded pipe were performed using an impact test apparatus to validate the results of the simulation. In addition, during the simulation, material tests were performed, and the results were applied to the simulation. The ABAQUS explicit finite element analysis program was used to perform numerical simulations for the parametric study, as well as experiment scenarios, to investigate the effects of defects under impact loading. In addition, the modified ASME B31.8 code formula was proposed to define the damage range for the dented pipe.
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-04-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC 3D ), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance ( h cv , the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and h cv . The range of h cv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-01-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool—Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a
Bucur Florina; Trana Eugen; Rotariu Adrian; Gavrus Adinel; Barbu Cristian; Guines Dominique
2015-01-01
This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern o...
Directory of Open Access Journals (Sweden)
Evgenij Kalentev
2017-06-01
Full Text Available The paper presents the results of a numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions. Calculations are done using the ANSYS software package. Different approaches to calculation of the stress-strain state of ropes are reviewed, and their advantages and deficiencies are considered. The analysis of the obtained results leads us to the conclusion that the proposed method can be used in engineering calculations.
DEFF Research Database (Denmark)
Celia, Michael A.; Binning, Philip John
1992-01-01
A numerical algorithm for simulation of two-phase flow in porous media is presented. The algorithm is based on a modified Picard linearization of the governing equations of flow, coupled with a lumped finite element approximation in space and dynamic time step control. Numerical results indicate...... that describe two-phase flow in porous media....... that the algorithm produces solutions that are essentially mass conservative and oscillation free, even in the presence of steep infiltrating fronts. When the algorithm is applied to the case of air and water flow in unsaturated soils, numerical results confirm the conditions under which Richards's equation is valid...
Zhuang, Jinda; Ju, Y Sungtaek
2015-09-22
The deformation and rupture of axisymmetric liquid bridges being stretched between two fully wetted coaxial disks are studied experimentally and theoretically. We numerically solve the time-dependent Navier-Stokes equations while tracking the deformation of the liquid-air interface using the arbitrary Lagrangian-Eulerian (ALE) moving mesh method to fully account for the effects of inertia and viscous forces on bridge dynamics. The effects of the stretching velocity, liquid properties, and liquid volume on the dynamics of liquid bridges are systematically investigated to provide direct experimental validation of our numerical model for stretching velocities as high as 3 m/s. The Ohnesorge number (Oh) of liquid bridges is a primary factor governing the dynamics of liquid bridge rupture, especially the dependence of the rupture distance on the stretching velocity. The rupture distance generally increases with the stretching velocity, far in excess of the static stability limit. For bridges with low Ohnesorge numbers, however, the rupture distance stay nearly constant or decreases with the stretching velocity within certain velocity windows due to the relative rupture position switching and the thread shape change. Our work provides an experimentally validated modeling approach and experimental data to help establish foundation for systematic further studies and applications of liquid bridges.
Asada, Toichiro; Douskos, Christos; Markellos, Panagiotis
2011-01-01
The stability of equilibrium and the possibility of generation of business cycles in a discrete interregional Kaldorian macrodynamic model with fixed exchange rates are explored using numerical methods. One of the aims is to illustrate the feasibility and effectiveness of the numerical approach for dynamical systems of moderately high dimensionality and several parameters. The model considered is five-dimensional with four parameters, the speeds of adjustment of the goods markets and the degrees of economic interactions between the regions through trade and capital movement. Using a grid search method for the determination of the region of stability of equilibrium in two-dimensional parameter subspaces, and coefficient criteria for the flip bifurcation - and Hopf bifurcation - curve, we determine the stability region in several parameter ranges and identify Hopf bifurcation curves when they exist. It is found that interregional cycles emerge only for sufficient interregional trade. The relevant threshold is predicted by the model at 14 - 16 % of trade transactions. By contrast, no minimum level of capital mobility exists in a global sense as a requirement for the emergence of interregional cycles; the main conclusion being, therefore, that cycles may occur for very low levels of capital mobility if trade is sufficient. Examples of bifurcation and Lyapunov exponent diagrams illustrating the occurrence of cycles or period doubling, and examples of the development of the occurring cycles, are given. Both supercritical and subcritical bifurcations are found to occur, the latter type indicating coexistence of a point and a cyclical attractor.
International Nuclear Information System (INIS)
Li Li; Zhang Xinlu; Chen Lixue
2008-01-01
In this paper, we predict and numerically demonstrate the intrinsic intensity bistability, spectra bistability and chromatic switching of visible-infrared emission in Tm 3+ single-doped systems that are pumped by the photon avalanche scheme at 648 nm. Based on the coupled rate equation theory, the evolutions of the populations at various Tm 3+ energy levels, emission spectra and fluorescence intensity versus pump excitation are numerically investigated in detail. The results show that intrinsic optical bistability (IOB) associated with emission spectra and luminescence intensity takes place in the vicinity of the avalanche threshold (∼10 kW cm -2 ). When the pump excitation rises above the switching threshold (∼17.5 kW cm -2 ), the chromatic switching between the infrared (1716 nm) and the visible blue (452/469 nm) spectra can be performed. Moreover, the influences of system parameters on IOB and the origin of chromatic switching are discussed. These unique characteristics of Tm 3+ -doped systems would lead to the new possibility of the development of pump-controlled all-solid-state luminescence switches and optical bistability switches.
Liolios, K.; Georgiev, I.; Liolios, A.
2012-10-01
A numerical approach for a problem arising in Civil and Environmental Engineering is presented. This problem concerns the dynamic soil-pipeline interaction, when unilateral contact conditions due to tensionless and elastoplastic softening/fracturing behaviour of the soil as well as due to gapping caused by earthquake excitations are taken into account. Moreover, soil-capacity degradation due to environmental effects are taken into account. The mathematical formulation of this dynamic elastoplasticity problem leads to a system of partial differential equations with equality domain and inequality boundary conditions. The proposed numerical approach is based on a double discretization, in space and time, and on mathematical programming methods. First, in space the finite element method (FEM) is used for the simulation of the pipeline and the unilateral contact interface, in combination with the boundary element method (BEM) for the soil simulation. Concepts of the non-convex analysis are used. Next, with the aid of Laplace transform, the equality problem conditions are transformed to convolutional ones involving as unknowns the unilateral quantities only. So the number of unknowns is significantly reduced. Then a marching-time approach is applied and a non-convex linear complementarity problem is solved in each time-step.
Directory of Open Access Journals (Sweden)
Liangbiao Chen
2015-05-01
Full Text Available To obtain an insight to high humidity-caused friction modulation in brake pad-rotor interface, the adhesion phenomenon due to a liquid bridge is simulated using an advanced particle method by varying the shearing speed of the interface. The method, called generalized interpolation material point for fluid-solid interactions (GIMP-FSI, was recently developed from the material point method (MPM for fluid-solid interactions at small scales where surface tension dominates, thus suitable for studying the partially wet brake friction due to high humidity at a scale of 10 m. Dynamic capillary effects due to surface tension and contact angles are simulated. Adhesion forces calculated by GIMP-FSI are consistent with those from the existing approximate meniscus models. Moreover, the numerical results show that capillary effects induce modulations of adhesion as slip speed changes. In particular, the adhesion modulation could be above 30% at low speed. This finding provides insights into how the high humidity-caused friction could cause modulations of brake, which are unable to be achieved by conventional models. Therefore, the numerical analysis helps to elucidate the complex friction mechanisms associated with brakes that are exposed to high humidity environments.
Directory of Open Access Journals (Sweden)
R. Sepe
2017-01-01
Full Text Available The aim of the proposed research activity is to investigate the mechanical behaviour of a part of aerospace horizontal stabilizer, made of composite materials and undergoing static loads. The prototype design and manufacturing phases have been carried out in the framework of this research activity. The structural components of such stabilizer are made of composite sandwich panels (HTA 5131/RTM 6 with honeycomb core (HRH-10-1/8-4.0; the sandwich skins have been made by means of Resin Transfer Moulding (RTM process. In order to assess the mechanical strength of this stabilizer, experimental tests have been performed. In particular, the most critical inflight recorded aerodynamic load has been experimentally reproduced and applied on the stabilizer. A numerical model, based on the Finite Element Method (FEM and aimed at reducing the experimental effort, has been preliminarily developed to calibrate amplitude, direction, and distribution of an equivalent and simpler load vector to be used in the experimental test. The FEM analysis, performed by using NASTRAN code, has allowed modelling the skins of the composite sandwich plates by definition of material properties and stack orientation of each lamina, while the honeycomb core has been modelled by using an equivalent orthotropic plate. Numerical and experimental results have been compared and a good agreement has been achieved.
Directory of Open Access Journals (Sweden)
Alejandro Said
2016-08-01
Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.
Directory of Open Access Journals (Sweden)
Nee Alexander E.
2017-01-01
Full Text Available The numerical simulation results of three-dimensional natural convection in a closed cavity were presented under conditions of the bottom horizontal solid-fluid interface radiant heating and conjugate heat exchange. Conservation equations of mass, momentum, and energy were formulated in terms of vorticity vector – vector potential – temperature dimensionless variables and solved by means of the finite difference method. It was found that the heat transfer process under study had a significant unsteady nature. According to the results of conjugate heat exchange integral analysis, it was shown that similar trends of mean Nusselt numbers versus dimensionless time were formed for both two and three dimensional problem formulations.
International Nuclear Information System (INIS)
Watanabe, Y.; Asano, A.; Banno, K.; Yokota, K.; Sugiura, M.
2001-01-01
A model of NO x selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De-NO x catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant. The behavior of HC and NO x reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10-15 driving cycle. Our model is expected to optimize the design of selective diesel NO x reduction systems using a diesel fuel as a supplemental reductant
Pratama, Heru Berian; Miryani Saptadji, Nenny
2017-12-01
The main issue in the management of the two-phase liquid-dominated geothermal field is rapid decline pressure in the reservoir so that the supply of steam to the power plant cannot be fulfilled. To understanding that, modelling and numerical simulation used reservoir simulators. The model is developed on liquid-dominated geothermal fields are assessed in various scenarios of production strategies (focusing only steam cap, brine reservoir and a combination) and injection strategies (deep and shallow injection, centered and dispersed injection), with the calculation using separated steam cycle method. The simulation results of the model for sustainable production are production 25% from steam cap + 75% from brine reservoir, dispersed and deep reinjection with make-up wells from steam cap results 9 make-up well number. The implementation of production-injection strategy needs to be planned right from the beginning of exploitation so that the strategy can adapt to changes in reservoir characteristics.
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
International Nuclear Information System (INIS)
Abramov, Alexey G; Smirnov, Evgueni M; Goryachev, Valery D
2014-01-01
Results of direct numerical simulations for time-developing air natural-convection boundary layer are presented. Computations have been performed assuming periodicity conditions in both the directions parallel to the vertical isothermal hot plate. The contribution is mainly focused on understanding of laminar–turbulent transition peculiarities in the case of perturbation action of external turbulence that is modeled by isotropic disturbances initially introduced into the computational domain. Special attention is paid to identification and analysis of evolving three-dimensional vortices that clearly manifest themselves through the whole stages of laminar–turbulent transition in the boundary layer. A comparison of computed profiles of mean velocity, mean temperature and fluctuation characteristics for turbulent regimes of convection with experimental data is performed as well. (paper)
International Nuclear Information System (INIS)
Carrasco, P.; Jornet, N.; Duch, M.A.; Weber, L.; Ginjaume, M.; Eudaldo, T.; Jurado, D.; Ruiz, A.; Ribas, M.
2004-01-01
An extensive set of benchmark measurement of PDDs and beam profiles was performed in a heterogeneous layer phantom, including a lung equivalent heterogeneity, by means of several detectors and compared against the predicted dose values by different calculation algorithms in two treatment planning systems. PDDs were measured with TLDs, plane parallel and cylindrical ionization chambers and beam profiles with films. Additionally, Monte Carlo simulations by meansof the PENELOPE code were performed. Four different field sizes (10x10, 5x5, 2x2, and1x1 cm 2 ) and two lung equivalent materials (CIRS, ρ e w =0.195 and St. Bartholomew Hospital, London, ρ e w =0.244-0.322) were studied. The performance of four correction-based algorithms and one based on convolution-superposition was analyzed. The correction-based algorithms were the Batho, the Modified Batho, and the Equivalent TAR implemented in the Cadplan (Varian) treatment planning system and the TMS Pencil Beam from the Helax-TMS (Nucletron) treatment planning system. The convolution-superposition algorithm was the Collapsed Cone implemented in the Helax-TMS. The only studied calculation methods that correlated successfully with the measured values with a 2% average inside all media were the Collapsed Cone and the Monte Carlo simulation. The biggest difference between the predicted and the delivered dose in the beam axis was found for the EqTAR algorithm inside the CIRS lung equivalent material in a 2x2 cm 2 18 MV x-ray beam. In these conditions, average and maximum difference against the TLD measurements were 32% and 39%, respectively. In the water equivalent part of the phantom every algorithm correctly predicted the dose (within 2%) everywhere except very close to the interfaces where differences up to 24% were found for 2x2 cm 2 18 MV photon beams. Consistent values were found between the reference detector (ionization chamber in water and TLD in lung) and Monte Carlo simulations, yielding minimal differences (0
Holzner, Felix; Hagmeyer, Britta; Schütte, Julia; Kubon, Massimo; Angres, Brigitte; Stelzle, Martin
2011-09-01
This research is part of a program aiming at the development of a fluidic microsystem for in vitro drug testing. For this purpose, primary cells need to be assembled to form cellular aggregates in such a way as to resemble the basic functional units of organs. By providing for in vivo-like cellular contacts, proper extracellular matrix interaction and medium perfusion it is expected that cells will retain their phenotype over prolonged periods of time. In this way, in vitro test systems exhibiting in vivo type predictivity in drug testing are envisioned. Towards this goal a 3-D microstructure micro-milled in a cyclic olefin copolymer (COC) was designed in such a way as to assemble liver cells via insulator-based dielectrophoresis (iDEP) in a sinusoid-type fashion. First, numeric modelling and simulation of dielectrophoretic and hydrodynamic forces acting on cells in this microsystem was performed. In particular, the problem of the discontinuity of the electric field at the interface between the fluid media in the system and the polymer materials it consists of was addressed. It was shown that in certain cases, the material of the microsystem may be neglected altogether without introducing considerable error into the numerical solution. This simplification enabled the simulation of 3-D cell trajectories in complex chip geometries. Secondly, the assembly of HepG2 cells by insulator-based dielectrophoresis in this device is demonstrated. Finally, theoretical results were validated by recording 3-D cell trajectories and the Clausius-Mossotti factor of liver cells was determined by combining results obtained from both simulation and experiment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A New Modified Firefly Algorithm
Directory of Open Access Journals (Sweden)
Medha Gupta
2016-07-01
Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.
DEFF Research Database (Denmark)
Vogel, Stephan; Lopez, Javier; Holbøll, Joachim
2015-01-01
agrounded object under thunderstorm conditions. The electric fieldcreated by the charge distribution in the thundercloud above theobject, which is in first place enhanced by its geometry, leadsto the generation and secondly upward propagation of chargefrom the object. Recent investigations underline...... facing the wind, leading toa higher probability of lightning attachment....
DaNa L. Carlis; Yi-Leng Chen; Vernon R. Morris
2010-01-01
The fifth-generation Pennsylvania State UniversityâNCAR Mesoscale Model (MM5) coupled with the Noah land surface model (LSM) is employed to simulate island-scale airflow and circulations over Maui County, Hawaii, under summer trade wind conditions, during JulyâAugust 2005. The model forecasts are validated by surface observations with good agreement.
Directory of Open Access Journals (Sweden)
Thomas Jin-Chee Liu
2017-01-01
Full Text Available This paper discusses the Joule heating effect and residual compressive stress near the crack tip under the electro-thermo-structural coupling state. For the crack tip field, the compressive condition is important for retarding or stopping the crack growth.
International Nuclear Information System (INIS)
Lagier, Benjamin
2014-01-01
Future fusion reactor devices such as ITER or JT-60SA will produce thermonuclear fusion reaction in plasmas at several millions of degrees. The confinement in the center of the chamber is achieved by very intense magnetic fields generated by superconducting magnets. These coils have to be cooled down to 4.4 K through a forced flow of supercritical helium. The cyclic behavior of the machines leads to pulsed thermal heat loads which will have to be handled by the refrigerator. The HELIOS experiment built in CEA Grenoble is a scaled down model of the helium distribution system of the tokamak JT-60SA composed of a saturated helium bath and a supercritical helium loop. The thesis work explores HELIOS capabilities for experimental and numerical investigations on three heat load smoothing strategies: the use of the saturated helium bath as an open thermal buffer, the rotation speed variation of the cold circulator and the bypassing of the heated section. The developed model describes well the physical evolutions of the helium loop (pressure, temperature, mass flow) submitted to heat loads observed during experiments. Advanced controls have been tested and validated to improve the stability of the refrigerator and to optimize the refrigeration power. (author) [fr
Cui, Peng; Xu, WanWu; Li, Qinglian
2018-01-01
Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.
Directory of Open Access Journals (Sweden)
Hamad F. Alharbi
2018-01-01
Full Text Available The deformation behavior and texture evolution of pure magnesium were investigated during plane strain compression, simple compression, and uniaxial tension at room temperature. The distinctive stages in the measured anisotropic stress-strain responses and numerically computed strain-hardening rates were correlated with texture and deformation mechanisms. More specifically, in plane strain compression and simple compression, the onset of tensile twins and the accompanying texture-hardening effect were associated with the initial high strain-hardening rates observed in specimens loaded in directions perpendicular to the crystallographic c-axis in most of the grains. The subsequent drop in strain-hardening rates in these samples was correlated with the exhaustion of tensile twins and the activation of pyramidal slip systems. The falling strain-hardening rates were observed in simple compression and plane strain compression with loading directions parallel to the c-axis where the second pyramidal slip systems were the only slip families that can accommodate deformation. For uniaxial tension with the basal plane parallel to the tensile axis, the prismatic and second pyramidal slips are the main deformation mechanisms. The predicted relative slip and twin activities from the crystal plasticity simulations clearly showed the effect of texture on the type of activated deformation mechanisms.
Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.
2016-03-01
NASA astronaut Pettit has conducted thermocapillary flow experiments in water films suspended in a solid ring onboard the International Space Station (ISS) in 2003 and 2011. In one of these experiments, an oscillatory thermocapillary flow was observed. The developed flow broke its symmetry along the centerline of the film. To the best of our knowledge, there are no studies on such oscillatory thermocapillary flows in thin films, and the flow-mechanism giving rise to such oscillatory flows is also not well understood. In order to shed light on the subject, we have carried out a numerical simulation study. The simulation results have shown that the water film geometry (film surface shape; being concave) is an important parameter and give rise to three oscillatory flow structures in the film, namely, a hydrothermal wave developing near the heated section, a symmetric oscillatory flow due to temperature variations, and a symmetry breaking flow due to the hydrodynamic instability along the free boundary layer (mixing layer) and the development of the hydrothermal waves. Simulation results show that the symmetry-breaking phenomenon observed in the thin film experiment on the ISS can be explained by the hydrodynamic instability and the development of hydrothermal waves.
Energy Technology Data Exchange (ETDEWEB)
Tsukada, Raphael I.; Morooka, Celso K. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Mecanica; Franciss, Ricardo; Matt, Cyntia G.C. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)
2009-07-01
Hydrocarbon discoveries in ultra deep waters and the recent pre-salt deep carbonate reservoirs along the Brazilian coast demand further technological development in order to exploit these resources. These developments usually require new concepts for offshore sea surface structures and subsea systems for the petroleum and gas production, which means cost effective solutions that provides higher operational safety on drilling and production operations. In this scenario, the effect of the natural phenomenon of Vortex-Induced Vibration (VIV) on risers is one of the concerns for its design due to the tendency of VIV to increase levels of stresses in the riser structure. Therefore the correct prediction of stresses and displacements due to VIV is of great importance for designing riser systems. The present work presents new developments based on previous results for VIV in vertical risers extended to curved risers such as steel catenary risers (SCR). Numerical simulations have been performed in time domain, and experimental results from model tests with a scaled SCR in a towing tank have been used to evaluate the proposed developments. Finally, the conclusions from the analysis of the results bring very promising results. (author)
Shuaib, M.; Daoud, O.
2015-07-01
This paper includes an investigation for the deformations, including deflections and damage modes, which occur in reinforced concrete (RC) slabs when subjected to blast loads of explosions. The slab considered for the investigation is a one-way square RC slab with the dimensions of 1000 x 1000 x 40 mm, fixed supported at two opposite sides. It was subjected to close-in detonations of three different charge weights for a constant standoff distance. For the study, the slab was analysed using the numerical method by means of nonlinear finite element analysis. The slab was modelled as 3-D structural continuum using LS-DYNA software. For concrete modelling, two constitutive models were selected, namely the KCC and Winfrith concrete models. Blast loads were applied to the slab through the Lagrangian approach, and the blast command available in the software, namely LOAD_BLAST_ENHANCED, was selected for the application. The deflections and damage modes results obtained were compared to those from a previously published experiment. From the study, both the KCC and Winfrith concrete models effectively and satisfactorily estimated the actual slab maximum deflection. For damage modes, the KCC model appeared to be capable to capture satisfactorily the general damage mode including flexural cracks. However, the model could not capture the local shear mode at the middle of slab (spallation) because the Lagrangian approach does not simulate the interaction between the ambient air and the solid slab.
Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field
Directory of Open Access Journals (Sweden)
Zhang Yong
2010-08-01
Full Text Available This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAl melt under two electric fields. FEM (Finite Element Method and APDL (ANSYS Parametric Design Language were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAl melt to flow stronger than what the sinusoidal electric field does.
Ni, Aleksey; Cheema, Taqi Ahmad; Park, Cheol Woo
2015-05-01
Alcohol significantly affects blood rheology and influences the mechanical behavior of red blood cells (RBCs). Previous studies indicate that plasma-RBC and multiple RBC interaction are important indicators for atherosclerosis progression. Therefore, multiphysics interactions under highly viscous conditions of alcohol consumption and stenosis structure must be investigated. A 2D microcapillary model, wherein multiple RBCs float through a stenotic structure, was established to investigate the effect of alcohol on cell motion and deformability under various flow conditions. Results show that the deformed cells inside the stenosis increase flow resistance and increase plasma velocity gradient in the pre and post stenotic regions. Moreover, the effect of the initial RBC position is important describing the RBC deformation pattern. The structural properties of RBCs may be significantly affected when the stenosis path is filled by cells that increase flow resistance.
Newell, N; Salzar, R; Bull, AMJ; Masouros, SD
2016-01-01
Under-vehicle explosions often result in injury of occupants?? lower extremities. The majority of these injuries are associated with poor outcomes. The protective ability of vehicles against explosions is assessed with Anthropometric Test Devices (ATDs) such as the MIL-Lx, which is designed to behave in a similar way to the human lower extremity when subjected to axial loading. It incorporates tibia load cells, the response of which can provide an indication of the risk of injury to the lower...
International Nuclear Information System (INIS)
Höhne, Thomas; Grahn, Alexander; Kliem, Sören; Rohde, Ulrich; Weiss, Frank-Peter
2013-01-01
Highlights: ► Detailed results of a numerical simulation of the insulation material transport to a PWR core are shown. ► The spacer grid is modeled as a strainer which completely retains the insulation material carried by coolant. ► The CFD calculations showed that the fibers at the upper spacer grid plane are not uniformly distributed. ► Furthermore the pressure loss does not exceed a critical limit. ► The PWR core coolablity can be guaranteed all the time during the transient. -- Abstract: In 1992, strainers on the suction side of the ECCS pumps in Barsebäck NPP Unit 2 became partially clogged with mineral wool because after a safety valve opened the steam impinged on thermally insulated equipment and released mineral wool. This event pointed out that strainer clogging is an issue in the course of a loss-of-coolant accident. Modifications of the insulation material, the strainer area and mesh size were carried out in most of the German NPPs. Moreover, back flushing procedures to remove the mineral wool from the strainers and differential pressure measurements were implemented to assure the performance of emergency core cooling during the containment sump recirculation mode. Nevertheless, it cannot be completely ruled out, that a limited amount of small fractions of the insulation material is transported into the RPV. During a postulated cold leg LOCA with hot leg ECC injection, the fibers enter the upper plenum and can accumulate at the fuel element spacer grids, preferably at the uppermost grid level. This effect might affect the ECC flow into the core and could result in degradation of core cooling. It was the aim of the numerical simulations presented to study where and how many mineral wool fibers are deposited at the upper spacer grid. The 3D, time dependent, multi-phase flow problem was modeled applying the CFD code ANSYS CFX. The CFD calculation does not yet include steam production in the core and also does not include re-suspension of the
Numerical simulation experiments on the long-term evolution of a CO2 plume under a sloping caprock
Energy Technology Data Exchange (ETDEWEB)
Pruess, Karsten
2009-08-15
We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the water column to collapse at the plume tip. Gas saturations and updip CO{sub 2} fluxes are nearly constant, independent of time and position, in the upper, mobile portions of the plume. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulation includes dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-)horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was implemented to represent convective enhancement of CO{sub 2} dissolution. This process is found to greatly reduce the thickness of the CO{sub 2} plume, but does not affect the speed of plume advancement.
Numerical methods using Matlab
Lindfield, George
2012-01-01
Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems that have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of use
Mohan, Balaji
2018-04-03
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.
Directory of Open Access Journals (Sweden)
Suguru Arimoto
2011-01-01
Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.
Directory of Open Access Journals (Sweden)
Zhifa Zhan
2017-07-01
Full Text Available Several post-earthquake investigations have indicated that the slope structure plays a leading role in the stability of rock slopes under dynamic loads. In this paper, the dynamic response of a horizontal layered-structure rock slope under harmonic Sv wave is studied by making use of the Fast Lagrangian Analysis of Continua method (FLAC. The suitability of FLAC for studying wave transmission across rock joints is validated through comparison with analytical solutions. After parametric studies on Sv wave transmission across the horizontal layered-structure rock slope, it is found that the acceleration amplification coefficient η, which is defined as the ratio of the acceleration at the monitoring point to the value at the toe, wavily increases with an increase of the height along the slope surface. Meanwhile, the fluctuation weakens with normalized joint stiffness K increasing and enhances with normalized joint spacing ξ increasing. The acceleration amplification coefficient of the slope crest ηcrest does not monotonously increase with the increase of ξ, but decreases with the increase of K. Additionally, ηcrest is more sensitive to ξ compared to K. From the contour figures, it can also be found that the contour figures of η take on rhythm, and the effects of ξ on the acceleration amplification coefficient are more obvious compared to the effects on K.
International Nuclear Information System (INIS)
Vay, J.-L.; Vay, J.-L.
2007-01-01
We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems
Gharaie, Saleh Hassanzadeh; Mosadegh, Bobak; Morsi, Yosry
2018-03-01
This paper describes a computational method to simulate the non-linear structural deformation of a polymeric aortic valve under physiological conditions. Arbitrary Lagrangian-Eulerian method is incorporated in the fluid-structure interaction simulation, and then validated by comparing the predicted kinematics of the valve's leaflets to in vitro measurements on a custom-made polymeric aortic valve. The predicted kinematics of the valve's leaflets was in good agreement with the experimental results with a maximum error of 15% in a single cardiac cycle. The fluid-structure interaction model presented in this study can simulate structural behaviour of a stented valve with flexible leaflets, providing insight into the haemodynamic performance of a polymeric aortic valve.
Energy Technology Data Exchange (ETDEWEB)
Maglevanny, I.I., E-mail: sianko@list.ru [Volgograd State Social Pedagogical University, 27 Lenin Avenue, Volgograd 400131 (Russian Federation); Smolar, V.A. [Volgograd State Technical University, 28 Lenin Avenue, Volgograd 400131 (Russian Federation)
2016-01-15
We introduce a new technique of interpolation of the energy-loss function (ELF) in solids sampled by empirical optical spectra. Finding appropriate interpolation methods for ELFs poses several challenges. The sampled ELFs are usually very heterogeneous, can originate from various sources thus so called “data gaps” can appear, and significant discontinuities and multiple high outliers can be present. As a result an interpolation based on those data may not perform well at predicting reasonable physical results. Reliable interpolation tools, suitable for ELF applications, should therefore satisfy several important demands: accuracy and predictive power, robustness and computational efficiency, and ease of use. We examined the effect on the fitting quality due to different interpolation schemes with emphasis on ELF mesh optimization procedures and we argue that the optimal fitting should be based on preliminary log–log scaling data transforms by which the non-uniformity of sampled data distribution may be considerably reduced. The transformed data are then interpolated by local monotonicity preserving Steffen spline. The result is a piece-wise smooth fitting curve with continuous first-order derivatives that passes through all data points without spurious oscillations. Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points. It is found that proposed technique gives the most accurate results and also that its computational time is short. Thus, it is feasible using this simple method to address practical problems associated with interaction between a bulk material and a moving electron. A compact C++ implementation of our algorithm is also presented.
Directory of Open Access Journals (Sweden)
Baoping Zou
2015-01-01
Full Text Available Prediction of tunneling induced soil deformation is an important issue in the design of tunnels constructed in the densely populated urban areas. In this paper, commercial FEM software 3D ABAQUS is adopted to simulate the behavior of soil caused by tunneling under vehicle loads in the coastal reclamation area. A field case study was also carried out to verify the accuracy of the proposed model. A good agreement was achieved. It is also found from the studies that the areas affected by soil deformation can be classified into four zones: the key disturbed zone, the secondary disturbed zone, the general disturbed zone, and minor-disturbed zone. The maximum soil deformation occurs on side of the longitudinal medial axis of the tunnel. The shape of the settlement curve is almost the same as that of the normal distribution curve. The soil deformation in the action zone of vehicle load is greater than that of the nonaction zone of vehicle load.
Directory of Open Access Journals (Sweden)
S. Sree Sabari
2016-08-01
Full Text Available Friction stir welding (FSW is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However, the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone (TMAZ and heat affected zone (HAZ. Under water friction stir welding (UWFSW is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.
Algorithmic Principles of Mathematical Programming
Faigle, Ulrich; Kern, Walter; Still, Georg
2002-01-01
Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear
Directory of Open Access Journals (Sweden)
Lidia Dzierzbicka-Głowacka
2011-11-01
Full Text Available This paper discusses predictions of particulate organic carbon (POC concentrations in the southern Baltic Sea. The study is based on the one-dimensional Particulate Organic Carbon Model (1D POC, described in detail by Dzierzbicka-Głowacka et al. (2010a. The POC concentration is determined as the sum of phytoplankton, zooplankton and dead organic matter (detritus concentrations. Temporal changes in the phytoplankton biomass are caused by primary production, mortality, grazing by zooplankton and sinking. The zooplankton biomass is affected by ingestion, excretion, faecal production, mortality and carnivorous grazing. The changes in the pelagic detritus concentration are determined by the input of dead phytoplankton and zooplankton, the natural mortality of predators, faecal pellets, and sinks - sedimentation, zooplankton grazing and biochemical decomposition. The model simulations were done for selected locations in the southern Baltic Sea (Gdańsk Deep, Bornholm Deep and Gotland Deep under predicted conditions characterized by changes of temperature, nutrient concentrations and light availability. The results cover the daily, monthly, seasonal and annual POC concentration patterns in the upper water layer. If the assumed trends in light, nutrients and temperature in the southern Baltic correctly predict the conditions in 2050, our calculations indicate that we can expect a two- to three-fold increase in POC concentration in late spring and a shift towards postponed maximum POC concentration. It can also be anticipated that, as a result of the increase in POC, oxygenation of the water layer beneath the halocline will decrease, while the supply of food to organisms at higher trophic levels will increase.
Naseri, Arash; Shaghaghian, Sana; Abouali, Omid; Ahmadi, Goodarz
2017-10-01
In the present study, unsteady airflow patterns and particle deposition in healthy human upper airways were simulated. A realistic 3-D computational model of the upper airways including the vestibule to the end of the trachea was developed using a series of CT scan images of a healthy human. Unsteady simulations of the inhaled and exhaled airflow fields in the upper airway passages were performed by solving the Navier-Stokes and continuity equations for low breathing rates corresponding to low and moderate activities. The Lagrangian trajectory analysis approach was utilized to investigate the transient particle transport and deposition under cyclic breathing condition. Particles were released uniformly at the nostrils' entrance during the inhalation phase, and the total and regional depositions for various micro-particle sizes were evaluated. The transient particle deposition fractions for various regions of the human upper airways were compared with those obtained from the equivalent steady flow condition. The presented results revealed that the equivalent constant airflow simulation can approximately predict the total particle deposition during cyclic breathing in human upper airways. While the trends of steady and unsteady model predictions for local deposition were similar, there were noticeable differences in the predicted amount of deposition. In addition, it was shown that a steady simulation cannot properly predict some critical parameters, such as the penetration fraction. Finally, the presented results showed that using a detached nasal cavity (commonly used in earlier studies) for evaluation of total deposition fraction of particles in the nasal cavity was reasonably accurate for the steady flow simulations. However, in transient simulation for predicting the deposition fraction in a specific region, such as the nasal cavity, using the full airway system geometry becomes necessary. Copyright © 2017 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Lindstedt Lukasz
2016-12-01
Full Text Available The main aim of the presented research was to check mechanical response of human body model under loads that can occur during airplane accidents and compare results of analysis with some results of experimental tests described in literature. In simulations, new multi-purpose human body model, the VIRTHUMAN, was used. The whole model, as well as its particular segments, was earlier validated based on experimental data, which proved its accuracy to simulate human body dynamic response under condition typical for car crashes, but it was not validated for loads with predominant vertical component (loads acting along spinal column, typical for airplane crashes. Due to limitation of available experimental data, the authors focused on conducting calculations for the case introduced in 14 CFR: Parts 23.562 and 25.562, paragraph (b(1, knowing as the 60° pitch test. The analysis consists in comparison of compression load measured in lumbar section of spine of the FAA HIII Dummy (experimental model and in the Virthuman (numerical model. The performed analyses show numerical stability of the model and satisfactory agreement between experimental data and simulated Virthuman responses. In that sense, the Virthuman model, although originally developed for automotive analyses, shows also great potential to become valuable tool for applications in aviation crashworthiness and safety analyses, as well.
Directory of Open Access Journals (Sweden)
Jiekun Song
2016-01-01
Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.
International Nuclear Information System (INIS)
Wollschlaeger, U.
1992-07-01
The aim of this thesis consisted in the development of a procedure for the analysis of the data of the transition-radiation detector at ZEUS. For this a neural network was applied and first studied, which results concerning the separation power between electron an pions can be reached by this procedure. It was shown that neural nets yield within the error limits as well results as standard algorithms (total charge, cluster analysis). At an electron efficiency of 90% pion contaminations in the range 1%-2% were reached. Furthermore it could be confirmed that neural networks can be considered for the here present application field as robust in relatively insensitive against external perturbations. For the application in the experiment beside the separation power also the time-behaviour is of importance. The requirement to keep dead-times small didn't allow the application of standard method. By a simulation the time availabel for the signal analysis was estimated. For the testing of the processing time in a neural network subsequently the corresponding algorithm was implemented into an assembler code for the digital signal processor DSP56001. (orig./HSI) [de
International Nuclear Information System (INIS)
Yamamoto, Akio; Hashimoto, Hiroshi
2002-01-01
The distributed genetic algorithm (DGA) is applied for loading pattern optimization problems of the pressurized water reactors. A basic concept of DGA follows that of the conventional genetic algorithm (GA). However, DGA equally distributes candidates of solutions (i.e. loading patterns) to several independent ''islands'' and evolves them in each island. Communications between islands, i.e. migrations of some candidates between islands are performed with a certain period. Since candidates of solutions independently evolve in each island while accepting different genes of migrants, premature convergence in the conventional GA can be prevented. Because many candidate loading patterns should be evaluated in GA or DGA, the parallelization is efficient to reduce turn around time. Parallel efficiency of DGA was measured using our optimization code and good efficiency was attained even in a heterogeneous cluster environment due to dynamic distribution of the calculation load. The optimization code is based on the client/server architecture with the TCP/IP native socket and a client (optimization) module and calculation server modules communicate the objects of loading patterns each other. Throughout the sensitivity study on optimization parameters of DGA, a suitable set of the parameters for a test problem was identified. Finally, optimization capability of DGA and the conventional GA was compared in the test problem and DGA provided better optimization results than the conventional GA. (author)
DEFF Research Database (Denmark)
Mahnke, Martina; Uprichard, Emma
2014-01-01
changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...
Numerical computations with GPUs
Kindratenko, Volodymyr
2014-01-01
This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to
International Nuclear Information System (INIS)
Morais, Sebastien
2016-01-01
In many scientific areas, the size and the complexity of numerical simulations lead to make intensive use of massively parallel runs on High Performance Computing (HPC) architectures. Such computers consist in a set of processing units (PU) where memory is distributed. Distribution of simulation data is therefore crucial: it has to minimize the computation time of the simulation while ensuring that the data allocated to every PU can be locally stored in memory. For most of the numerical simulations, the physical and numerical data are based on a mesh. The computations are then performed at the cell level (for example within triangles and quadrilaterals in 2D, or within tetrahedrons and hexahedrons in 3D). More specifically, computing and memory cost can be associated to each cell. In our context, where the mathematical methods used are finite elements or finite volumes, the realization of the computations associated with a cell may require information carried by neighboring cells. The standard implementation relies to locally store useful data of this neighborhood on the PU, even if cells of this neighborhood are not locally computed. Such non computed but stored cells are called ghost cells, and can have a significant impact on the memory consumption of a PU. The problem to solve is thus not only to partition a mesh on several parts by affecting each cell to one and only one part while minimizing the computational load assigned to each part. It is also necessary to keep into account that the memory load of both the cells where the computations are performed and their neighbors has to fit into PU memory. This leads to partition the computations while the mesh is distributed with overlaps. Explicitly taking these data overlaps into account is the problem that we propose to study. (author) [fr
International Nuclear Information System (INIS)
Lonchampt, J.; Fessart, K.
2013-01-01
The purpose of this paper is to describe the method and tool dedicated to optimize investments planning for industrial assets. These investments may either be preventive maintenance tasks, asset enhancements or logistic investments such as spare parts purchases. The two methodological points to investigate in such an issue are: 1. The measure of the profitability of a portfolio of investments 2. The selection and planning of an optimal set of investments 3. The measure of the risk of a portfolio of investments The measure of the profitability of a set of investments in the IPOP tool is synthesised in the Net Present Value indicator. The NPV is the sum of the differences of discounted cash flows (direct costs, forced outages...) between the situations with and without a given investment. These cash flows are calculated through a pseudo-Markov reliability model representing independently the components of the industrial asset and the spare parts inventories. The component model has been widely discussed over the years but the spare part model is a new one based on some approximations that will be discussed. This model, referred as the NPV function, takes for input an investments portfolio and gives its NPV. The second issue is to optimize the NPV. If all investments were independent, this optimization would be an easy calculation, unfortunately there are two sources of dependency. The first one is introduced by the spare part model, as if components are indeed independent in their reliability model, the fact that several components use the same inventory induces a dependency. The second dependency comes from economic, technical or logistic constraints, such as a global maintenance budget limit or a safety requirement limiting the residual risk of failure of a component or group of component, making the aggregation of individual optimum not necessary feasible. The algorithm used to solve such a difficult optimization problem is a genetic algorithm. After a description
Accuracy verification methods theory and algorithms
Mali, Olli; Repin, Sergey
2014-01-01
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
DEFF Research Database (Denmark)
Kouchaki, Alireza; Iman-Eini, H.; Asaei, B.
2012-01-01
This paper presents a new algorithm based on characteristic equation of solar cells to determine the Maximum Power Point (MPP) of PV modules under partially shaded conditions (PSC). To achieve this goal, an analytic condition is introduced to determine uniform or non-uniform atmospheric conditions...... quickly. This paper also proposes an effective and quick response technique to find the MPP of PV array among Global Peak (GP) and local peaks when PSC occurs based on the analytic condition. It also can perform in a manner like conventional MPPT method when the insolation conditions are uniform. In order...
Glowworm swarm optimization theory, algorithms, and applications
Kaipa, Krishnanand N
2017-01-01
This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...
Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai
2011-01-01
The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...
Directory of Open Access Journals (Sweden)
Olaf Andersen
2016-05-01
Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Directory of Open Access Journals (Sweden)
Anna Bourmistrova
2011-02-01
Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.
Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin
2014-03-01
Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.
Almehmadi, F. S.; Chatterjee, M. R.
2014-04-01
In standard weak interaction theory, acousto-optic Bragg analysis typically assumes that the incident light and sound beams are uniform plane waves. Acousto-optic Bragg diffraction with nonuniform profiled input beams is numerically examined under open loop via a transfer function formalism. Unexpected deviations in the first-order diffracted beam from the standard theory are observed for high Q values. These deviations are significant because the corresponding closed-loop system is sensitive to input amplitudes and initial conditions, and the overall impact on the dynamical behavior has not been studied previously in standard analyses. To explore the effect of such nonuniform output profiles on the feedback system, the numerically generated scattered output is fed back to the acoustic driver, and the resulting nonlinear dynamics are manipulated to create novel monostable, bistable, multistable, and chaotic regimes. The effects of the nonuniform input on these regimes are examined using the techniques of Lyapunov exponents and bifurcation maps. The orbital behavior is characterized with quadratic maps, which are an intuitive method of predicting the parametric behavior of the system. The latter trajectory-based approach offers yet a third arm in the process of developing a fuller understanding of the profiled output beam under feedback. The results of this work indicate that the nonlinear dynamical thresholds of the hybrid cell are significantly different for the profiled propagation problem than for the uniform case. The mono and bistable regimes do not coincide with the well-known uniform plane wave results, and the chaotic thresholds, which are critical to understanding encryption applications, are altered noticeably.
Recent results on howard's algorithm
DEFF Research Database (Denmark)
Miltersen, P.B.
2012-01-01
Howard’s algorithm is a fifty-year old generally applicable algorithm for sequential decision making in face of uncertainty. It is routinely used in practice in numerous application areas that are so important that they usually go by their acronyms, e.g., OR, AI, and CAV. While Howard’s algorithm...
Directory of Open Access Journals (Sweden)
Kewalee Suebyat
2018-01-01
Full Text Available Air pollutant levels in Bangkok are generally high in street tunnels. They are particularly elevated in almost closed street tunnels such as an area under the Bangkok sky train platform with high traffic volume where dispersion is limited. There are no air quality measurement stations in the vicinity, while the human population is high. In this research, the numerical simulation is used to measure the air pollutant levels. The three-dimensional air pollution measurement model in a heavy traffic area under the Bangkok sky train platform is proposed. The finite difference techniques are employed to approximate the modelled solutions. The vehicle air pollutant emission due to the high traffic volume is mathematically assumed by the pollutant sources term. The simulation is also considered in averaged and moving pollutant sources due to manner vehicle emission. The proposed approximated air pollutant concentration indicators can be replaced by user required gaseous pollutants indices such as NOx, SO2, CO, and PM2.5.
Numerical Evaluation of Harmonic Polylogarithms
Gehrmann, T
2001-01-01
Harmonic polylogarithms $\\H(\\vec{a};x)$, a generalization of Nielsen's polylogarithms ${S}_{n,p}(x)$, appear frequently in analytic calculations of radiative corrections in quantum field theory. We present an algorithm for the numerical evaluation of harmonic polylogarithms of arbitrary real argument. This algorithm is implemented into a FORTRAN subroutine hplog to compute harmonic polylogarithms up to weight 4.
Huang, Xiaolin; Zhao, Qi; Qi, Shengwen; Xia, Kaiwen; Grasselli, Giovanni; Chen, Xuguang
2016-12-27
This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.
Directory of Open Access Journals (Sweden)
Xiaolin Huang
2016-12-01
Full Text Available This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM. A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i initial compaction stage; (ii crushing stage; and (iii crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV, of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.
Directory of Open Access Journals (Sweden)
Xuelian Meng
2017-11-01
Full Text Available Photogrammetric UAV sees a surge in use for high-resolution mapping, but its use to map terrain under dense vegetation cover remains challenging due to a lack of exposed ground surfaces. This paper presents a novel object-oriented classification ensemble algorithm to leverage height, texture and contextual information of UAV data to improve landscape classification and terrain estimation. Its implementation incorporates multiple heuristics, such as multi-input machine learning-based classification, object-oriented ensemble, and integration of UAV and GPS surveys for terrain correction. Experiments based on a densely vegetated wetland restoration site showed classification improvement from 83.98% to 96.12% in overall accuracy and from 0.7806 to 0.947 in kappa value. Use of standard and existing UAV terrain mapping algorithms and software produced reliable digital terrain model only over exposed bare grounds (mean error = −0.019 m and RMSE = 0.035 m but severely overestimated the terrain by ~80% of mean vegetation height in vegetated areas. The terrain correction method successfully reduced the mean error from 0.302 m to −0.002 m (RMSE from 0.342 m to 0.177 m in low vegetation and from 1.305 m to 0.057 m (RMSE from 1.399 m to 0.550 m in tall vegetation. Overall, this research validated a feasible solution to integrate UAV and RTK GPS for terrain mapping in densely vegetated environments.
Directory of Open Access Journals (Sweden)
Huan Ren
2013-01-01
Full Text Available We propose a timing-driven discrete cell-sizing algorithm that can address total cell size and/or leakage power constraints. We model cell sizing as a “discretized” mincost network flow problem, wherein available sizes of each cell are modeled as nodes. Flow passing through a node indicates the choice of the corresponding cell size, and the total flow cost reflects the timing objective function value corresponding to these choices. Compared to other discrete optimization methods for cell sizing, our method can obtain near-optimal solutions in a time-efficient manner. We tested our algorithm on ISCAS’85 benchmarks, and compared our results to those produced by an optimal dynamic programming- (DP- based method. The results show that compared to the optimal method, the improvements to an initial sizing solution obtained by our method is only 1% (3% worse when using a 180 nm (90 nm library, while being 40–60 times faster. We also obtained results for ISPD’12 cell-sizing benchmarks, under leakage power constraint, and compared them to those of a state-of-the-art approximate DP method (optimal DP runs out of memory for the smallest of these circuits. Our results show that we are only 0.9% worse than the approximate DP method, while being more than twice as fast.
International Nuclear Information System (INIS)
Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch
2011-01-01
Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E(σ 2 x + σ 2 y ) - ν/E(σ x σy)]dV (1). From equation (1) a mathematical deduction to solve in terms of θ of this case was developed employing Genetic Algorithms, where θ is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.
Shibata, Masaru
2016-01-01
This book is composed of two parts: First part describes basics in numerical relativity, that is, the formulations and methods for a solution of Einstein's equation and general relativistic matter field equations. This part will be helpful for beginners of numerical relativity who would like to understand the content of numerical relativity and its background. The second part focuses on the application of numerical relativity. A wide variety of scientific numerical results are introduced focusing in particular on the merger of binary neutron stars and black holes.
International Nuclear Information System (INIS)
Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo
2012-01-01
Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream–aquifer relationship under these future scenarios. The Arbúcies River basin (116 km 2 ) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins
Unsupervised learning algorithms
Aydin, Kemal
2016-01-01
This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...
Watson, Richard A; Mills, Rob; Buckley, C L; Kouvaris, Kostas; Jackson, Adam; Powers, Simon T; Cox, Chris; Tudge, Simon; Davies, Adam; Kounios, Loizos; Power, Daniel
2016-01-01
The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term "evolutionary connectionism" to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary
International Nuclear Information System (INIS)
Takase, Kazuyuki; Akino, Norio
1996-06-01
Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations κ-ε turbulence model was applied to the present turbulent analysis. In particular, the κ-ε turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)
Bozkurt, Selim; Safak, Koray K
2013-01-01
Dilated cardiomyopathy is the most common type of the heart failure which can be characterized by impaired ventricular contractility. Mechanical circulatory support devices were introduced into practice for the heart failure patients to bridge the time between the decision to transplant and the actual transplantation which is not sufficient due to the state of donor organ supply. In this study, the hemodynamic response of a cardiovascular system that includes a dilated cardiomyopathic heart under support of a newly developed continuous flow left ventricular assist device--Heart Turcica Axial--was evaluated employing computer simulations. For the evaluation, a numerical model which describes the pressure-flow rate relations of Heart Turcica Axial, a cardiovascular system model describing the healthy and pathological hemodynamics, and a baroreflex model regulating the heart rate were used. Heart Turcica Axial was operated between 8000 rpm and 11,000 rpm speeds with 1000 rpm increments for assessing the pump performance and response of the cardiovascular system. The results also give an insight about the range of the possible operating speeds of Heart Turcica Axial in a clinical application. Based on the findings, operating speed of Heart Turcica Axial should be between 10,000 rpm and 11,000 rpm.
Directory of Open Access Journals (Sweden)
Jinzhou Zhao
2016-06-01
Full Text Available Hydraulic fracturing is an essential technology in developing shale gas reservoirs, not to mention, accurate prediction of productivity in fractured shale gas wells is the foundation of an efficient development in shale gas reservoirs. This paper establishes a gas–water two-phase flow percolation mathematical model by a determined numerical simulation and calculation method under desorption and diffusion conditions. By means of simulating for a post-frac performance of the shale gas reservoir, this paper devotes to a quantitative analysis the impact of fracture parameters, physical parameters, and desorption–diffusion parameters. The outcome of this research indicates that hydraulic fracturing can improve single well production and it's an effective measure in the development of shale gas. The conductivity of hydraulic fractures and the permeability of natural fractures are the main influences on shale gas production. The higher these factors are, the higher the gas and water productions are. In comparison, the matrix permeability and diffusion coefficients have minimal influences on production.
Safak, Koray K.
2013-01-01
Dilated cardiomyopathy is the most common type of the heart failure which can be characterized by impaired ventricular contractility. Mechanical circulatory support devices were introduced into practice for the heart failure patients to bridge the time between the decision to transplant and the actual transplantation which is not sufficient due to the state of donor organ supply. In this study, the hemodynamic response of a cardiovascular system that includes a dilated cardiomyopathic heart under support of a newly developed continuous flow left ventricular assist device—Heart Turcica Axial—was evaluated employing computer simulations. For the evaluation, a numerical model which describes the pressure-flow rate relations of Heart Turcica Axial, a cardiovascular system model describing the healthy and pathological hemodynamics, and a baroreflex model regulating the heart rate were used. Heart Turcica Axial was operated between 8000 rpm and 11000 rpm speeds with 1000 rpm increments for assessing the pump performance and response of the cardiovascular system. The results also give an insight about the range of the possible operating speeds of Heart Turcica Axial in a clinical application. Based on the findings, operating speed of Heart Turcica Axial should be between 10000 rpm and 11000 rpm. PMID:24363780
Lorentz covariant canonical symplectic algorithms for dynamics of charged particles
Wang, Yulei; Liu, Jian; Qin, Hong
2016-12-01
In this paper, the Lorentz covariance of algorithms is introduced. Under Lorentz transformation, both the form and performance of a Lorentz covariant algorithm are invariant. To acquire the advantages of symplectic algorithms and Lorentz covariance, a general procedure for constructing Lorentz covariant canonical symplectic algorithms (LCCSAs) is provided, based on which an explicit LCCSA for dynamics of relativistic charged particles is built. LCCSA possesses Lorentz invariance as well as long-term numerical accuracy and stability, due to the preservation of a discrete symplectic structure and the Lorentz symmetry of the system. For situations with time-dependent electromagnetic fields, which are difficult to handle in traditional construction procedures of symplectic algorithms, LCCSA provides a perfect explicit canonical symplectic solution by implementing the discretization in 4-spacetime. We also show that LCCSA has built-in energy-based adaptive time steps, which can optimize the computation performance when the Lorentz factor varies.
Agus, Mirian; Peró-Cebollero, Maribel; Penna, Maria Pietronilla; Guàrdia-Olmos, Joan
2015-01-01
This study aims to investigate about the existence of a graphical facilitation effect on probabilistic reasoning. Measures of undergraduates' performances on problems presented in both verbal-numerical and graphical-pictorial formats have been related to visuo-spatial and numerical prerequisites, to statistical anxiety, to attitudes towards…
Directory of Open Access Journals (Sweden)
Francesca Musiani
2013-08-01
Full Text Available Algorithms are increasingly often cited as one of the fundamental shaping devices of our daily, immersed-in-information existence. Their importance is acknowledged, their performance scrutinised in numerous contexts. Yet, a lot of what constitutes 'algorithms' beyond their broad definition as “encoded procedures for transforming input data into a desired output, based on specified calculations” (Gillespie, 2013 is often taken for granted. This article seeks to contribute to the discussion about 'what algorithms do' and in which ways they are artefacts of governance, providing two examples drawing from the internet and ICT realm: search engine queries and e-commerce websites’ recommendations to customers. The question of the relationship between algorithms and rules is likely to occupy an increasingly central role in the study and the practice of internet governance, in terms of both institutions’ regulation of algorithms, and algorithms’ regulation of our society.
Siegler, Robert S.; Braithwaite, David W.
2016-01-01
In this review, we attempt to integrate two crucial aspects of numerical development: learning the magnitudes of individual numbers and learning arithmetic. Numerical magnitude development involves gaining increasingly precise knowledge of increasing ranges and types of numbers: from non-symbolic to small symbolic numbers, from smaller to larger…
Bright, William
In most languages encountered by linguists, the numerals, considered as a paradigmatic set, constitute a morpho-syntactic problem of only moderate complexity. The Indo-Aryan language family of North India, however, presents a curious contrast. The relatively regular numeral system of Sanskrit, as it has developed historically into the modern…
Rao, G Shanker
2006-01-01
About the Book: This book provides an introduction to Numerical Analysis for the students of Mathematics and Engineering. The book is designed in accordance with the common core syllabus of Numerical Analysis of Universities of Andhra Pradesh and also the syllabus prescribed in most of the Indian Universities. Salient features: Approximate and Numerical Solutions of Algebraic and Transcendental Equation Interpolation of Functions Numerical Differentiation and Integration and Numerical Solution of Ordinary Differential Equations The last three chapters deal with Curve Fitting, Eigen Values and Eigen Vectors of a Matrix and Regression Analysis. Each chapter is supplemented with a number of worked-out examples as well as number of problems to be solved by the students. This would help in the better understanding of the subject. Contents: Errors Solution of Algebraic and Transcendental Equations Finite Differences Interpolation with Equal Intervals Interpolation with Unequal Int...
Fenocchi, Andrea; Rogora, Michela; Sibilla, Stefano; Ciampittiello, Marzia; Dresti, Claudia
2018-01-01
The impact of air temperature rise is eminent for the large deep lakes in the Italian subalpine district, climate change being caused there by both natural phenomena and anthropogenic greenhouse-gases (GHG) emissions. These oligomictic lakes are experiencing a decrease in the frequency of winter full turnover and an intensification of stability. As a result, hypolimnetic oxygen concentrations are decreasing and nutrients are accumulating in bottom water, with effects on the whole ecosystem functioning. Forecasting the future evolution of the mixing pattern is relevant to assess if a reduction in GHG releases would be able to revert such processes. The study focuses on Lake Maggiore, for which the thermal structure evolution under climate change in the 2016-2085 period was assessed through numerical simulations, performed with the General Lake Model (GLM). Different prospects of regional air temperature rise were considered, given by the Swiss Climate Change Scenarios CH2011. Multiple realisations were performed for each scenario to obtain robust statistical predictions, adopting random series of meteorological data produced with the Vector-Autoregressive Weather Generator (VG). Results show that a reversion in the increasing thermal stability would be possible only if global GHG emissions started to be reduced by 2020, allowing an equilibrium mixing regime to be restored by the end of the twenty-first century. Otherwise, persistent lack of complete-mixing, severe water warming and extensive effects on water quality are to be expected for the centuries to come. These projections can be extended to the other lakes in the subalpine district.
Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.
Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo
2016-01-01
In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.
2009-10-01
This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...
Chan, Ming-Chung; Liu, Chun-Ho
2013-04-01
Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the
Joux, Antoine
2009-01-01
Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic
Explaining algorithms using metaphors
Forišek, Michal
2013-01-01
There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by using suitable metaphors. This work provides a set of novel metaphors identified and developed as suitable tools for teaching many of the 'classic textbook' algorithms taught in undergraduate courses worldwide. Each chapter provides exercises and didactic notes fo
Genetic Algorithm for Solving Simple Mathematical Equality Problem
Hermawanto, Denny
2013-01-01
This paper explains genetic algorithm for novice in this field. Basic philosophy of genetic algorithm and its flowchart are described. Step by step numerical computation of genetic algorithm for solving simple mathematical equality problem will be briefly explained
Model order reduction using eigen algorithm | Singh | International ...
African Journals Online (AJOL)
-scale dynamic systems where denominator polynomial determined through Eigen algorithm and numerator polynomial via factor division algorithm. In Eigen algorithm, the most dominant Eigen value of both original and reduced order ...
International Nuclear Information System (INIS)
Nebuloni, S.
2010-03-01
A theoretical and numerical model to predict film condensation heat transfer in mini, micro and ultra micro-channels of different internal shapes is presented in this thesis. The model is based on a finite volume formulation of the Navier-Stokes and energy equations and it includes the contributions of the unsteady terms, surface tension, axial shear stresses, gravitational forces and wall thermal conduction. Notably, interphase mass transfer and near-to-wall effects (disjoining pressure) are also included. This model has been validated versus various benchmark cases and versus published experimental results from three different laboratories, predicting micro-channel heat transfer data with an average error of 20 % or better. The conjugate heat transfer problem arising from the coupling between the thin film fluid dynamics, the heat transfer in the condensing fluid and the heat conduction in the channel wall has been studied and analyzed. The work has focused on the effects of three external wall boundary conditions: a uniform wall temperature, a non uniform wall heat flux and single-phase convective cooling. The thermal axial and peripheral conduction occurring in the wall of the channel can affect the behavior of the condensate film, not only because it redistributes the heat, but also because the annular laminar film condensation process is dependent on the local saturation to wall temperature difference. When moving from mini to micro and ultra-micro channels, the results shows that the axial conduction effects can become very important in the prediction of the wall temperature profile and they can not be ignored. Under these conditions, the overall performances of the heat exchanger become dependent not only on the fluid properties and the operative conditions but also on the geometry and wall material. Results obtained for steady state conditions are presented for circular, elliptical and flattened shape cross sections for R-134a and ammonia, for hydraulic
National Research Council Canada - National Science Library
Quarteroni, Alfio; Sacco, Riccardo; Saleri, Fausto
2000-01-01
... for their qualitative and quantitative analysis. This role is also emphasized by the continual development of computers and algorithms, which make it possible nowadays, using scientiﬁc computing, to tackle problems of such a large size that real-life phenomena can be simulated providing accurate responses at aﬀordable computational cost. The corresp...
Tel, G.
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of
Directory of Open Access Journals (Sweden)
Qu Hao
2017-11-01
Full Text Available To solve the problem of low precision of numerical simulation of the exposed reinforced anti-corrosion layer damage of the cross-sea bridge, we use the stress ratio between the double slash and the reinforced anti-corrosion layer to analyze the parameters and the damage rate in different qualities of reinforced anti-corrosion layers, use Ansys software to build reinforced finite element model, and analyze the damage degree when the inclination angle was 15 °, 45 ° and 60 °, respectively. The experimental results showed that the proposed method can improve the numerical simulation efficiency, the numerical simulation results, the experimental results, and the theoretical analysis results have good consistency and stability.
Numerical Solution of Diffusion Models in Biomedical Imaging on Multicore Processors
Directory of Open Access Journals (Sweden)
Luisa D'Amore
2011-01-01
Full Text Available In this paper, we consider nonlinear partial differential equations (PDEs of diffusion/advection type underlying most problems in image analysis. As case study, we address the segmentation of medical structures. We perform a comparative study of numerical algorithms arising from using the semi-implicit and the fully implicit discretization schemes. Comparison criteria take into account both the accuracy and the efficiency of the algorithms. As measure of accuracy, we consider the Hausdorff distance and the residuals of numerical solvers, while as measure of efficiency we consider convergence history, execution time, speedup, and parallel efficiency. This analysis is carried out in a multicore-based parallel computing environment.
Brezinski, C
2012-01-01
Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.html<
Sepman, Alexey; Abtahizadeh, Ebrahim; Mokhov, Anatoli; van Oijen, Jeroen; Levinsky, Howard; de Goey, Philip
2013-01-01
In this work we investigate the effects of hydrogen addition on the flame structure of MILD combustion both experimentally and numerically using a laminar-jet-in-hot-coflow (LJHC) geometry. The addition of hydrogen appreciably decreases the flame height (similar to 25%), however only modestly
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Directory of Open Access Journals (Sweden)
Bergues Cabrales Jesús M
2011-09-01
Full Text Available Abstract Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola. Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic. Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Directory of Open Access Journals (Sweden)
I. A. Kashtalyan
2006-01-01
Full Text Available The paper considers peculiar features concerning a microrelief formation of grooves, turnings and chutes while executing «in widening» machining at numerically and program controlled machine tools. Some results of the experimental research are presented in the paper.
Li, Yongxin; Hu, Yuzheng; Zhao, Ming; Wang, Yunqi; Huang, Jian; Chen, Feiyan
2013-11-20
Training can induce significant changes in brain functioning and behavioral performance. One consequence of training is changing the pattern of brain activation. Abacus training is of interest because abacus experts gain the ability to handle digits with unusual speed and accuracy. However, the neural correlates of numerical memory in abacus-trained children remain unknown. In the current study, we aimed to detect a training effect of abacus-based mental calculations on numerical working memory in children. We measured brain functional magnetic resonance imaging (fMRI) activation patterns in 17 abacus-trained children and 17 control children as they performed two numerical working memory tasks (digits and beads). Functional MRI results revealed higher activation in abacus-trained children than in the controls in the right posterior superior parietal lobule/superior occipital gyrus (PSPL/SOG) and the right supplementary motor area (SMA) in both tasks. When these regions were used as seeds in a functional connectivity analysis of the resting brain, the abacus-trained children showed significantly enhanced integration between the right SMA and the right inferior frontal gyrus (IFG). The IFG is considered to be the key region for the control of attention. These findings demonstrate that extensive engagement of the fronto-parietal network occurs during numerical memory tasks in the abacus-trained group. Furthermore, abacus training may increase the functional integration of visuospatial-attention circuitry, which and thus enhances high-level cognitive process. © 2013 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Yap Hoon
2017-02-01
Full Text Available In this paper, a refined reference current generation algorithm based on instantaneous power (pq theory is proposed, for operation of an indirect current controlled (ICC three-level neutral-point diode clamped (NPC inverter-based shunt active power filter (SAPF under non-sinusoidal source voltage conditions. SAPF is recognized as one of the most effective solutions to current harmonics due to its flexibility in dealing with various power system conditions. As for its controller, pq theory has widely been applied to generate the desired reference current due to its simple implementation features. However, the conventional dependency on self-tuning filter (STF in generating reference current has significantly limited mitigation performance of SAPF. Besides, the conventional STF-based pq theory algorithm is still considered to possess needless features which increase computational complexity. Furthermore, the conventional algorithm is mostly designed to suit operation of direct current controlled (DCC SAPF which is incapable of handling switching ripples problems, thereby leading to inefficient mitigation performance. Therefore, three main improvements are performed which include replacement of STF with mathematical-based fundamental real power identifier, removal of redundant features, and generation of sinusoidal reference current. To validate effectiveness and feasibility of the proposed algorithm, simulation work in MATLAB-Simulink and laboratory test utilizing a TMS320F28335 digital signal processor (DSP are performed. Both simulation and experimental findings demonstrate superiority of the proposed algorithm over the conventional algorithm.
Baker, John G.
2009-01-01
Recent advances in numerical relativity have fueled an explosion of progress in understanding the predictions of Einstein's theory of gravity, General Relativity, for the strong field dynamics, the gravitational radiation wave forms, and consequently the state of the remnant produced from the merger of compact binary objects. I will review recent results from the field, focusing on mergers of two black holes.