WorldWideScience

Sample records for underlying neuronal plasticity

  1. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  2. Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment

    Directory of Open Access Journals (Sweden)

    Watson Shawn N

    2012-08-01

    learning and memory impairment in Lymnaea and buttress the hypothesis that lipid peroxidation-dependent depression of intrinsic excitability is a hallmark of normal neuronal aging. The data implicate both lipid peroxidation-dependent non-synaptic as well as apparently lipid peroxidation-independent synaptic mechanisms in the age-dependent decline in behavioural plasticity in this model system.

  3. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  4. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  6. Microglia in neuronal plasticity: Influence of stress.

    Science.gov (United States)

    Delpech, Jean-Christophe; Madore, Charlotte; Nadjar, Agnes; Joffre, Corinne; Wohleb, Eric S; Layé, Sophie

    2015-09-01

    The central nervous system (CNS) has previously been regarded as an immune-privileged site with the absence of immune cell responses but this dogma was not entirely true. Microglia are the brain innate immune cells and recent findings indicate that they participate both in CNS disease and infection as well as facilitate normal CNS function. Microglia are highly plastic and play integral roles in sculpting the structure of the CNS, refining neuronal circuitry and connectivity, and contribute actively to neuronal plasticity in the healthy brain. Interestingly, psychological stress can perturb the function of microglia in association with an impaired neuronal plasticity and the development of emotional behavior alterations. As a result it seemed important to describe in this review some findings indicating that the stress-induced microglia dysfunction may underlie neuroplasticity deficits associated to many mood disorders. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  8. Neuron-glia metabolic coupling and plasticity

    OpenAIRE

    Magistretti PJ

    2011-01-01

    Abstract The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron glia coupling. Our hypothesis is that behavioural conditions such as for example learning or the sleep wake cycle in which synaptic plasticity is well documented or during specific pathological conditions are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified...

  9. Cellular and molecular neuronal plasticity.

    Science.gov (United States)

    Griesbach, Grace S; Hovda, David A

    2015-01-01

    The brain has the capability to adapt to function when tissue is compromised. This capability of adaptation paves the road to recovery and allows for rehabilitation after a traumatic brain injury (TBI). This chapter addresses neuroplasticity within the context of TBI. Here neuroplasticity is defined as changes in neuronal structure and function, including synaptic changes as well as modifications in neural pathways. First, the influence of TBI pathology on neuroplasticity is addressed. Here, proteins that are important in neuroplasticity are introduced and a description given of how these are affected in a temporal and severity-dependent manner. Secondly, given that we are becoming increasingly aware that the brain's response to injury is highly influenced by the environmental milieu, the manner in which behavioral manipulations have an effect on TBI-associated neuroplasticity is addressed. A description is given of how specific environmental qualities may facilitate or hinder neuroplasticity. Finally, the long-term effects of neuroplasticity and the relevance it has to rehabilitation are described. © 2015 Elsevier B.V. All rights reserved.

  10. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2011-04-01

    The focus of the current research projects in my laboratory revolves around the question of metabolic plasticity of neuron-glia coupling. Our hypothesis is that behavioural conditions, such as for example learning or the sleep-wake cycle, in which synaptic plasticity is well documented, or during specific pathological conditions, are accompanied by changes in the regulation of energy metabolism of astrocytes. We have indeed observed that the 'metabolic profile' of astrocytes is modified during the sleep-wake cycle and during conditions mimicking neuroinflammation in the presence or absence of amyloid-β. The effect of amyloid-β on energy metabolism is dependent on its state of aggregation and on internalization of the peptide by astrocytes. Distinct patterns of metabolic activity could be observed during the learning and recall phases in a spatial learning task. Gene expression analysis in activated areas, notably hippocampous and retrosplenial cortex, demonstrated that the expression levels of several genes implicated in astrocyte-neuron metabolic coupling are enhanced by learning. Regarding metabolic plasticity during the sleep-wake cycle, we have observed that the level of expression of a panel of selected genes, which we know are key for neuron-glia metabolic coupling, is modulated by sleep deprivation.

  11. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons.

    Science.gov (United States)

    Guo, Rui; Ge, Rongjing; Zhao, Shidi; Liu, Yulong; Zhao, Xin; Huang, Li; Guan, Sodong; Lu, Wei; Cui, Shan; Wang, Shirlene; Wang, Jin-Hui

    2017-01-01

    Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II-III of the barrel cortex and layers IV-V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.

  12. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    Science.gov (United States)

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT + neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT + neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning. Published by Elsevier Inc.

  13. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  14. Sensory cortex lesion triggers compensatory neuronal plasticity.

    Science.gov (United States)

    Depner, Manfred; Tziridis, Konstantin; Hess, Andreas; Schulze, Holger

    2014-05-01

    Lesions to the human brain often cause dramatic impairments in the life of patients because of the very limited capacity of the mammalian nervous system to regenerate. On the other hand, neuronal tissue has a high capacity to reorganize itself so that loss of function due to brain damage may be compensated through neuroplastic reorganization of undamaged tissue in brain regions adjacent or contralateral to the lesion site. In this study we investigated the effect of serial lesions of the auditory cortices (AC) in both hemispheres of Mongolian gerbils on discrimination performance for fast amplitude modulated tones (AM). Healthy animals were trained to discriminate two fast AM, an ability that has previously been shown to critically depend on cortical processing. Their ability to maintain significant discrimination performance was retested after unilateral AC lesion, and again after lesion of the contralateral AC, with 15 days of continuing training in between the two lesions. After bilateral cortical ablation of both AC and 45 days of training the animals show no change in pure tone detection threshold as measured with modulation of the acoustic startle reflex which has been shown to rely on subcortical structures. In contrast to simultaneous bilateral ablation of AC that results in complete loss of AM discrimination ability in this paradigm we found compensatory plasticity that seems to be triggered by unilateral cortical ablation with subsequent training and that is able to almost fully compensate for the lost cortical functions. Our results demonstrate that AM discrimination ability that normally depends on AC may be transferred to other brain regions when the brain has time to activate compensatory plasticity between the lesions of the two AC hemispheres. For this process to take place obviously one intact AC hemisphere is needed. This finding may open perspectives for new therapeutic strategies that may alleviate the impairments after multiple ischemic strokes.

  15. Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease

    Science.gov (United States)

    Mattson, Mark P.

    2008-01-01

    Glutamate’s role as a neurotransmitter at synapses has been known for 40 years, but glutamate has since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis and neuron survival in the developing and adult mammalian nervous system. Cell surface glutamate receptors are coupled to Ca2+ influx and release from endoplasmic reticulum stores which causes rapid (kinase- and protease-mediated) and delayed (transcription-dependent) responses that change the structure and function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic factor (BDNF) which, in turn, modifies neuronal glutamate sensitivity, Ca2+ homeostasis and plasticity. Neurotrophic factors may modify glutamate signalling directly, by changing the expression of glutamate receptor subunits and Ca2+-regulating proteins, and also indirectly by inducing the production of antioxidant enzymes, energy-regulating proteins and anti-apoptotic Bcl2 family members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and Alzheimer’s disease to psychiatric disorders. By enhancing neurotrophic factor signalling, environmental factors such as exercise and dietary energy restriction, and chemicals such as antidepressants may optimize glutamatergic signalling and protect against neurological disorders. PMID:19076369

  16. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  17. The plastic brain: neoliberalism and the neuronal self.

    Science.gov (United States)

    Pitts-Taylor, Victoria

    2010-11-01

    Neuroscience-based representations and practices of the brain aimed at lay populations present the brain in ways that both affirm biological determinism and also celebrate plasticity, or the brain's ability to change structure and function. Popular uses of neuroscientific theories of brain plasticity are saturated with a neoliberal vision of the subject. Against more optimistic readings of plasticity, I view the popular deployment of plasticity through the framework of governmentality. I describe how popular brain discourse on plasticity opens up the brain to personal techniques of enhancement and risk avoidance, and how it promotes a neuronal self. I situate brain plasticity in a context of biomedical neoliberalism, where the engineering and modification of biological life is positioned as essential to selfhood and citizenship.

  18. The neuronal identity bias behind neocortical GABAergic plasticity.

    Science.gov (United States)

    Allene, Camille; Lourenço, Joana; Bacci, Alberto

    2015-09-01

    In the neocortex, different types of excitatory and inhibitory neurons connect to one another following a detailed blueprint, defining functionally-distinct subnetworks, whose activity and modulation underlie complex cognitive functions. We review the cell-autonomous plasticity of perisomatic inhibition onto principal excitatory neurons. We propose that the tendency of different cortical layers to exhibit depression or potentiation of perisomatic inhibition is dictated by the specific identities of principal neurons (PNs). These are mainly defined by their projection targets and by their preference to be innervated by specific perisomatic-targeting basket cell types. Therefore, principal neurons responsible for relaying information to subcortical nuclei are differentially inhibited and show specific forms of plasticity compared to other PNs that are specialized in more associative functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit.

    Directory of Open Access Journals (Sweden)

    Hong Ni

    Full Text Available BACKGROUND: Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented. METHODOLOGY/PRINCIPAL FINDINGS: Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells. CONCLUSION/SIGNIFICANCE: The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.

  20. Synaptic Plasticity and Spike Synchronisation in Neuronal Networks

    Science.gov (United States)

    Borges, Rafael R.; Borges, Fernando S.; Lameu, Ewandson L.; Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Viana, Ricardo L.; Macau, Elbert E. N.; Baptista, Murilo S.; Grebogi, Celso; Batista, Antonio M.

    2017-12-01

    Brain plasticity, also known as neuroplasticity, is a fundamental mechanism of neuronal adaptation in response to changes in the environment or due to brain injury. In this review, we show our results about the effects of synaptic plasticity on neuronal networks composed by Hodgkin-Huxley neurons. We show that the final topology of the evolved network depends crucially on the ratio between the strengths of the inhibitory and excitatory synapses. Excitation of the same order of inhibition revels an evolved network that presents the rich-club phenomenon, well known to exist in the brain. For initial networks with considerably larger inhibitory strengths, we observe the emergence of a complex evolved topology, where neurons sparsely connected to other neurons, also a typical topology of the brain. The presence of noise enhances the strength of both types of synapses, but if the initial network has synapses of both natures with similar strengths. Finally, we show how the synchronous behaviour of the evolved network will reflect its evolved topology.

  1. Neuron-glia metabolic coupling: Role in plasticity and neuroprotection

    KAUST Repository

    Magistretti, Pierre J.

    2017-12-02

    A tight metabolic coupling between astrocytes and neurons is a key feature of brain energy metabolism (Magistretti and Allaman, Neuron, 2015). Over the years we have described two basic mechanisms of neurometabolic coupling. First the glycogenolytic effect of VIP and of noradrenaline indicating a regulation of brain homeostasis by neurotransmitters acting on astrocytes, as glycogen is exclusively localized in these cells. Second, the glutamate-stimulated aerobic glycolysis in astrocytes. Both the VIP-and noradrenaline-induced glycogenolysis and the glutamate-stimulated aerobic glycolysis result in the release of lactate from astrocytes as an energy substrate for neurons (Magistretti and Allaman, Neuron, 2015). We have recently shown that lactate is necessary not only as an energy substrate but is also a signaling molecule for long-term memory consolidation and for maintenance of LTP (Suzuki et al, Cell, 2011). At the molecular level we have found that L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, Zif268 and BDNF through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2 (Yang et al, PNAS, 2014). L-lactate potentiates NMDA receptor-mediated currents and the ensuing increases in intracellular calcium. These results reveal a novel action of L-lactate as a signaling molecule for neuronal plasticity. We have also recently shown that peripheral administration of lactate exerts antidepressant-like effects in three animal models of depression (Carrard et al, Mol.Psy., 2016).

  2. Key Metabolic Enzymes Underlying Astrocytic Upregulation of GABAergic Plasticity

    Directory of Open Access Journals (Sweden)

    Przemysław T. Kaczor

    2017-05-01

    Full Text Available GABAergic plasticity is recognized as a key mechanism of shaping the activity of the neuronal networks. However, its description is challenging because of numerous neuron-specific mechanisms. In particular, while essential role of glial cells in the excitatory plasticity is well established, their involvement in GABAergic plasticity only starts to emerge. To address this problem, we used two models: neuronal cell culture (NC and astrocyte-neuronal co-culture (ANCC, where we chemically induced long-term potentiation at inhibitory synapses (iLTP. iLTP could be induced both in NC and ANCC but in ANCC its extent was larger. Importantly, this functional iLTP manifestation was accompanied by an increase in gephyrin puncta size. Furthermore, blocking astrocyte Krebs cycle with fluoroacetate (FA in ANCC prevented enhancement of both mIPSC amplitude and gephyrin puncta size but this effect was not observed in NC, indicating a key role in neuron-astrocyte cross-talk. Blockade of monocarboxylate transport with α-Cyano-4-hydroxycinnamic acid (4CIN abolished iLTP both in NC and ANCC and in the latter model prevented also enlargement of gephyrin puncta. Similarly, blockade of glycogen phosphorylase with BAYU6751 prevented enlargement of gephyrin puncta upon iLTP induction. Finally, block of glutamine synthetase with methionine sulfoxide (MSO nearly abolished mIPSC increase in both NMDA stimulated cell groups but did not prevent enlargement of gephyrin puncta. In conclusion, we provide further evidence that GABAergic plasticity is strongly regulated by astrocytes and the underlying mechanisms involve key metabolic enzymes. Considering the strategic role of GABAergic interneurons, the plasticity described here indicates possible mechanism whereby metabolism regulates the network activity.

  3. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

    Science.gov (United States)

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo . Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  4. Plasticity under rough surface contact and friction

    NARCIS (Netherlands)

    Sun, F.

    2016-01-01

    The ultimate objective of this work is to gain a better understanding of the plastic behavior of rough metal surfaces under contact loading. Attention in this thesis focuses on the study of single and multiple asperities with micrometer scale dimensions, a scale at which plasticity is known to be

  5. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons

    KAUST Repository

    Yang, Jiangyan

    2014-07-28

    L-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. L-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, L-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of L-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of L-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived L-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of L-lactate as a signaling molecule for neuronal plasticity.

  6. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches

    Science.gov (United States)

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.

    2016-08-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  7. Phasic Dopamine Modifies Sensory-Driven Output of Striatal Neurons through Synaptic Plasticity.

    Science.gov (United States)

    Wieland, Sebastian; Schindler, Sebastian; Huber, Cathrin; Köhr, Georg; Oswald, Manfred J; Kelsch, Wolfgang

    2015-07-08

    Animals are facing a complex sensory world in which only few stimuli are relevant to guide behavior. Value has to be assigned to relevant stimuli such as odors to select them over concurring information. Phasic dopamine is involved in the value assignment to stimuli in the ventral striatum. The underlying cellular mechanisms are incompletely understood. In striatal projection neurons of the ventral striatum in adult mice, we therefore examined the features and dynamics of phasic dopamine-induced synaptic plasticity and how this plasticity may modify the striatal output. Phasic dopamine is predicted to tag inputs that occur in temporal proximity. Indeed, we observed D1 receptor-dependent synaptic potentiation only when odor-like bursts and optogenetically evoked phasic dopamine release were paired within a time window of synaptic potentiation persisted after the phasic dopamine signal had ceased, but gradually reversed when odor-like bursts continued to be presented. The synaptic plasticity depended on the sensory input rate and was input specific. Importantly, synaptic plasticity amplified the firing response to a given olfactory input as the dendritic integration and the firing threshold remained unchanged during synaptic potentiation. Thus, phasic dopamine-induced synaptic plasticity can change information transfer through dynamic increases of the output of striatal projection neurons to specific sensory inputs. This plasticity may provide a neural substrate for dynamic value assignment in the striatum. Copyright © 2015 the authors 0270-6474/15/359946-11$15.00/0.

  8. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  9. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.

    Directory of Open Access Journals (Sweden)

    Wyatt B Potter

    Full Text Available Long Term Potentiation (LTP is a leading candidate mechanism for learning and memory and is also thought to play a role in the progression of seizures to intractable epilepsy. Maintenance of LTP requires RNA transcription, protein translation and signaling through the mammalian Target of Rapamycin (mTOR pathway. In peripheral tissue, the energy sensor AMP-activated Protein Kinase (AMPK negatively regulates the mTOR cascade upon glycolytic inhibition and cellular energy stress. We recently demonstrated that the glycolytic inhibitor 2-deoxy-D-glucose (2DG alters plasticity to retard epileptogenesis in the kindling model of epilepsy. Reduced kindling progression was associated with increased recruitment of the nuclear metabolic sensor CtBP to NRSF at the BDNF promoter. Given that energy metabolism controls mTOR through AMPK in peripheral tissue and the role of mTOR in LTP in neurons, we asked whether energy metabolism and AMPK control LTP. Using a combination of biochemical approaches and field-recordings in mouse hippocampal slices, we show that the master regulator of energy homeostasis, AMPK couples energy metabolism to LTP expression. Administration of the glycolytic inhibitor 2-deoxy-D-glucose (2DG or the mitochondrial toxin and anti-Type II Diabetes drug, metformin, or AMP mimetic AICAR results in activation of AMPK, repression of the mTOR pathway and prevents maintenance of Late-Phase LTP (L-LTP. Inhibition of AMPK by either compound-C or the ATP mimetic ara-A rescues the suppression of L-LTP by energy stress. We also show that enhanced LTP via AMPK inhibition requires mTOR signaling. These results directly link energy metabolism to plasticity in the mammalian brain and demonstrate that AMPK is a modulator of LTP. Our work opens up the possibility of using modulators of energy metabolism to control neuronal plasticity in diseases and conditions of aberrant plasticity such as epilepsy.

  10. MGL-1 on AIY neurons translates starvation to reproductive plasticity via neuropeptide signaling in Caenorhabditis elegans.

    Science.gov (United States)

    Jeong, Haelim; Paik, Young-Ki

    2017-10-01

    Reproductive plasticity is the ability of an animal to modulate its reproductive functions in response to environmental changes. For example, Caenorhabditis elegans, a free-living nematode, can adjust the onsets of oogenesis and embryogenesis under harsh environmental conditions, including starvation. However, the molecular mechanisms used to perceive and translate environmental signals into reproductive functional adjustments remain largely uncharacterized. We discovered that in C. elegans, the glutamate receptor homolog MGL-1 initiated reproductive plasticity in response to starvation. A genetic analysis of the mutant gene, mgl-1(tm1811), suggested that starvation delayed the onsets of oogenesis and embryogenesis via MGL-1. Cell-specific rescues of mgl-1 deletion mutants, which used transgenic lines designed to express MGL-1 in different neurons (e.g., RMD, AIA, AIY, and NSM), suggested that only AIY-rescued animals exhibited normal delays in oogenesis and embryogenesis equivalent to those of wild-type animals, suggesting recovery. Furthermore, in AIY neurons, MGL-1 appears to use neuropeptide signaling, rather than glutamate, to translate starvation stimuli into delayed oogenesis and embryogenesis. Our findings, which reveal molecular linkages between starvation signals and reproductive alterations, may provide a basis for understanding energy reallocation mechanisms, as the mgl-1 deletion mutant exhibited more severe reductions in lifespan and fat accumulation than did wild-type animals under starvation conditions. Taken together, MGL-1 is the molecular driver underlying the translation of starvation signals to reproduction plasticity in an AIY neuron-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons.

    Science.gov (United States)

    Ji, Xincai; Martin, Gilles E

    2012-12-01

    The nucleus accumbens is a forebrain region responsible for drug reward and goal-directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of T.V. Bliss & T. Lømo [(1973) Journal of Physiology, 232, 331-356]. We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely the in vivo firing patterns of mouse core nucleus accumbens medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. The magnitude of spike-timing-dependent long-term potentiation (tLTP) changed with the delay between action potentials and excitatory post-synaptic potentials, and frequency, whereas that of spike-timing-dependent long-term depression (tLTD) remained unchanged. We showed that tLTP depended on N-methyl-d-aspartate receptors, whereas tLTD relied on action potentials. Importantly, the intracellular calcium signaling pathways mobilised during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of medium spiny neurons was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of medium spiny neurons with distinct properties, each displaying unique abilities to undergo synaptic plasticity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  12. Simulating pancreatic neuroplasticity: in vitro dual-neuron plasticity assay.

    Science.gov (United States)

    Demir, Ihsan Ekin; Tieftrunk, Elke; Schäfer, Karl-Herbert; Friess, Helmut; Ceyhan, Güralp O

    2014-04-14

    Neuroplasticity is an inherent feature of the enteric nervous system and gastrointestinal (GI) innervation under pathological conditions. However, the pathophysiological role of neuroplasticity in GI disorders remains unknown. Novel experimental models which allow simulation and modulation of GI neuroplasticity may enable enhanced appreciation of the contribution of neuroplasticity in particular GI diseases such as pancreatic cancer (PCa) and chronic pancreatitis (CP). Here, we present a protocol for simulation of pancreatic neuroplasticity under in vitro conditions using newborn rat dorsal root ganglia (DRG) and myenteric plexus (MP) neurons. This dual-neuron approach not only permits monitoring of both organ-intrinsic and -extrinsic neuroplasticity, but also represents a valuable tool to assess neuronal and glial morphology and electrophysiology. Moreover, it allows functional modulation of supplied microenvironmental contents for studying their impact on neuroplasticity. Once established, the present neuroplasticity assay bears the potential of being applicable to the study of neuroplasticity in any GI organ.

  13. Plasticity of Fear and Safety Neurons of the Amygdala in Response to Fear Extinction

    Science.gov (United States)

    Sangha, Susan

    2015-01-01

    Fear inhibition learning induces plasticity and remodeling of circuits within the amygdala. Most studies examine these changes in nondiscriminative fear conditioning paradigms. Using a discriminative fear, safety, and reward conditioning task, Sangha et al. (2013) have previously reported several neural microcircuits within the basal amygdala (BA) which discriminate among these cues, including a subpopulation of neurons responding selectively to a safety cue and not a fear cue. Here, the hypothesis that these “safety” neurons isolated during discriminative conditioning are biased to become fear cue responsive as a result of extinction, when fear behavior diminishes, was tested. Although 41% of “safety” neurons became fear cue responsive as a result of extinction, the data revealed that there was no bias for these neurons to become preferentially responsive during fear extinction compared to the other identified subgroups. In addition to the plasticity seen in the “safety” neurons, 44% of neurons unresponsive to either the fear cue or safety cue during discriminative conditioning became fear cue responsive during extinction. Together these emergent responses to the fear cue as a result of extinction support the hypothesis that new learning underlies extinction. In contrast, 47% of neurons responsive to the fear cue during discriminative conditioning became unresponsive to the fear cue during extinction. These findings are consistent with a suppression of neural responding mediated by inhibitory learning, or, potentially, by direct unlearning. Together, the data support extinction as an active process involving both gains and losses of responses to the fear cue and suggests the final output of the integrated BA circuit in influencing fear behavior is a balance of excitation and inhibition, and perhaps reversal of learning-induced changes. PMID:26733838

  14. Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Cyril Eleftheriou

    2017-04-01

    Full Text Available Several fields in neuroscience have been revolutionized by the advent of optogenetics, a technique that offers the possibility to modulate neuronal physiology in response to light stimulation. This innovative and far-reaching tool provided unprecedented spatial and temporal resolution to explore the activity of neural circuits underlying cognition and behaviour. With an exponential growth in the discovery and synthesis of new photosensitive actuators capable of modulating neuronal networks function, other fields in biology are experiencing a similar re-evolution. Here, we review the various optogenetic toolboxes developed to influence cellular physiology as well as the diverse ways in which these can be engineered to precisely modulate intracellular signalling and transcription. We also explore the processes required to successfully express and stimulate these photo-actuators in vivo before discussing how such tools can enlighten our understanding of neuronal plasticity at the systems level.

  15. MIRNAS in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

    Directory of Open Access Journals (Sweden)

    Carlos Lafourcade

    2016-01-01

    Full Text Available Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA species, proteins, and lipids, is in part cell type and cell state specific. Among the RNA species transported by exosomes, microRNAs (miRNAs are able to modify gene expression in recipient cells. Several miRNAs present in astrocytes are regulated under pathological conditions, and this may have far-reaching consequences if they are loaded in exosomes. We propose that astrocyte-derived miRNA-loaded exosomes, such as miR-26a, are dysregulated in several central nervous system diseases; thus potentially controlling neuronal morphology and synaptic transmission through validated and predicted targets. Unraveling the contribution of this new signaling mechanism to the maintenance and plasticity of neuronal networks will impact our understanding on the physiology and pathophysiology of the central nervous system.

  16. A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons.

    Science.gov (United States)

    Kong, Dong; Dagon, Yossi; Campbell, John N; Guo, Yikun; Yang, Zongfang; Yi, Xinchi; Aryal, Pratik; Wellenstein, Kerry; Kahn, Barbara B; Sabatini, Bernardo L; Lowell, Bradford B

    2016-07-06

    AMP-activated protein kinase (AMPK) plays an important role in regulating food intake. The downstream AMPK substrates and neurobiological mechanisms responsible for this, however, are ill defined. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus regulate hunger. Their firing increases with fasting, and once engaged they cause feeding. AgRP neuron activity is regulated by state-dependent synaptic plasticity: fasting increases dendritic spines and excitatory synaptic activity; feeding does the opposite. The signaling mechanisms underlying this, however, are also unknown. Using neuron-specific approaches to measure and manipulate kinase activity specifically within AgRP neurons, we establish that fasting increases AMPK activity in AgRP neurons, that increased AMPK activity in AgRP neurons is both necessary and sufficient for fasting-induced spinogenesis and excitatory synaptic activity, and that the AMPK phosphorylation target mediating this plasticity is p21-activated kinase. This provides a signaling and neurobiological basis for both AMPK regulation of energy balance and AgRP neuron state-dependent plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin.

    Science.gov (United States)

    Gao, Xiao-Bing

    2012-01-01

    The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the

  18. Palatable Hyper-Caloric Foods Impact on Neuronal Plasticity.

    Science.gov (United States)

    Morin, Jean-Pascal; Rodríguez-Durán, Luis F; Guzmán-Ramos, Kioko; Perez-Cruz, Claudia; Ferreira, Guillaume; Diaz-Cintra, Sofia; Pacheco-López, Gustavo

    2017-01-01

    Neural plasticity is an intrinsic and essential characteristic of the nervous system that allows animals "self-tuning" to adapt to their environment over their lifetime. Activity-dependent synaptic plasticity in the central nervous system is a form of neural plasticity that underlies learning and memory formation, as well as long-lasting, environmentally-induced maladaptive behaviors, such as drug addiction and overeating of palatable hyper-caloric (PHc) food. In western societies, the abundance of PHc foods has caused a dramatic increase in the incidence of overweight/obesity and related disorders. To this regard, it has been suggested that increased adiposity may be caused at least in part by behavioral changes in the affected individuals that are induced by the chronic consumption of PHc foods; some authors have even drawn attention to the similarity that exists between over-indulgent eating and drug addiction. Long-term misuse of certain dietary components has also been linked to chronic neuroimmune maladaptation that may predispose individuals to neurodegenerative conditions such as Alzheimer's disease. In this review article, we discuss recent evidence that shows how consumption of PHc food can cause maladaptive neural plasticity that converts short-term ingestive drives into compulsive behaviors. We also discuss the neural mechanisms of how chronic consumption of PHc foods may alter brain function and lead to cognitive impairments, focusing on prenatal, childhood and adolescence as vulnerable neurodevelopmental stages to dietary environmental insults. Finally, we outline a societal agenda for harnessing permissive obesogenic environments.

  19. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Science.gov (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  20. The Emergence of Synaesthesia in a Neuronal Network Model via Changes in Perceptual Sensitivity and Plasticity.

    Directory of Open Access Journals (Sweden)

    Oren Shriki

    2016-07-01

    Full Text Available Synaesthesia is an unusual perceptual experience in which an inducer stimulus triggers a percept in a different domain in addition to its own. To explore the conditions under which synaesthesia evolves, we studied a neuronal network model that represents two recurrently connected neural systems. The interactions in the network evolve according to learning rules that optimize sensory sensitivity. We demonstrate several scenarios, such as sensory deprivation or heightened plasticity, under which synaesthesia can evolve even though the inputs to the two systems are statistically independent and the initial cross-talk interactions are zero. Sensory deprivation is the known causal mechanism for acquired synaesthesia and increased plasticity is implicated in developmental synaesthesia. The model unifies different causes of synaesthesia within a single theoretical framework and repositions synaesthesia not as some quirk of aberrant connectivity, but rather as a functional brain state that can emerge as a consequence of optimising sensory information processing.

  1. Neuronal plasticity of trigeminal ganglia in mice following nerve injury

    Directory of Open Access Journals (Sweden)

    Lynds R

    2017-02-01

    Full Text Available Randi Lynds,1,2,* Chuang Lyu,3,* Gong-Wei Lyu,4 Xie-Qi Shi,1,2 Annika Rosén,5,6 Kamal Mustafa,6 Tie-Jun Sten Shi7 1Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden; 2Division of Oral and Maxillofacial Radiology, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway; 3State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, 4Department of Neurology, The First Hospital of Harbin Medical University, Harbin, People’s Republic of China; 5Division for Oral and Maxillofacial Surgery, 6Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine and Dentistry, 7Department of Biomedicine, University of Bergen, Bergen, Norway *These authors contributed equally to this work Background: Nerve injury may induce neuropathic pain. In studying the mechanisms of orofacial neuropathic pain, attention has been paid to the plastic changes that occur in the trigeminal ganglia (TGs and nucleus in response to an injury of the trigeminal nerve branches. Previous studies have explored the impact of sciatic nerve injury on dorsal root ganglia (DRGs and it has shown dramatic changes in the expression of multiple biomarkers. In large, the changes in biomarker expression in TGs after trigeminal nerve injury are similar to that in DRGs after sciatic nerve injury. However, important differences exist. Therefore, there is a need to study the plasticity of biomarkers in TGs after nerve injury in the context of the development of neuropathic pain-like behaviors. Aim: The aim of this study was to investigate the plasticity of biomarkers associated with chronic persistent pain in TGs after trigeminal nerve injury. Materials and methods: To mimic the chronic nature of the disorder, we used an intraoral procedure to access the infraorbital nerve (ION and induced a nerve injury in mice. Immunohistochemistry and

  2. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function.

    Science.gov (United States)

    Kreutzmann, J C; Havekes, R; Abel, T; Meerlo, P

    2015-11-19

    Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Application of FRET probes in the analysis of neuronal plasticity

    Directory of Open Access Journals (Sweden)

    Yoshibumi eUeda

    2013-10-01

    Full Text Available Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since GFP was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET, which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  4. EXERCISE-INDUCED NEURONAL PLASTICITY IN CENTRAL AUTONOMIC NETWORKS: ROLE IN CARDIOVASCULAR CONTROL

    Science.gov (United States)

    Michelini, Lisete C.; Stern, Javier E.

    2010-01-01

    It is now well established that brain plasticity is an inherent property not only of the developing, but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that likely underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors), but also projections arising from central command neurons (in particular peptidergic hypothalamic preautonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to coordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feed-forward and feed-back cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g., remodeling of afferent inputs, structural and functional neuronal plasticity, and changes in neurotransmitter content), will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and trained individuals. We hope this review will stimulate more

  5. Sleep deprivation and hippocampal vulnerability : Changes in neuronal plasticity, neurogenesis and cognitive function

    NARCIS (Netherlands)

    Kreutzmann, J C; Havekes, R; Abel, T; Meerlo, P

    2015-01-01

    Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results

  6. Neuronal plasticity after a human spinal cord injury: positive and negative effects.

    Science.gov (United States)

    Dietz, Volker

    2012-05-01

    In patients suffering an incomplete spinal cord injury (SCI) an improvement in walking function can be achieved by providing a functional training with an appropriate afferent input. In contrast, in immobilized incomplete and complete subjects a negative neuroplasticity leads to a neuronal dysfunction. After an SCI, neuronal centers below the level of lesion exhibit plasticity that either can be exploited by specific training paradigms or undergo a degradation of function due to the loss of appropriate input. Load- and hip-joint-related afferent inputs seem to be of crucial importance for the generation of a locomotor pattern and, consequently, the effectiveness of the locomotor training. In severely affected SCI subjects rehabilitation robots allow for a longer and more intensive training and can provide feedback information. Conversely, in severely affected chronic SCI individuals without functional training the locomotor activity in the leg muscles exhausts rapidly during assisted locomotion. This is accompanied by a shift from early to dominant late spinal reflex components. The exhaustion of locomotor activity is also observed in non-ambulatory patients with an incomplete SCI. It is assumed that in chronic SCI the patient's immobility results in a reduced input from supraspinal and peripheral sources and leads to a dominance of inhibitory drive within spinal neuronal circuitries underlying locomotor pattern and spinal reflex generation. A training with an enhancement of an appropriate proprioceptive input early after an SCI might serve as an intervention to prevent neuronal dysfunction. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution.

    Directory of Open Access Journals (Sweden)

    Suzana Herculano-Houzel

    Full Text Available It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans. The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum. These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.

  8. Neurons under viral attack: victims or warriors?

    Science.gov (United States)

    Chakraborty, Swarupa; Nazmi, Arshed; Dutta, Kallol; Basu, Anirban

    2010-01-01

    When the central nervous system (CNS) is under viral attack, defensive antiviral responses must necessarily arise from the CNS itself to rapidly and efficiently curb infections with minimal collateral damage to the sensitive, specialized and non-regenerating neural tissue. This presents a unique challenge because an intact blood-brain barrier (BBB) and lack of proper lymphatic drainage keeps the CNS virtually outside the radar of circulating immune cells that are at constant vigilance for antigens in peripheral tissues. Limited antigen presentation skills of CNS cells in comparison to peripheral tissues is because of a total lack of dendritic cells and feeble expression of major histocompatibility complex (MHC) proteins in neurons and glia. However, research over the past two decades has identified immune effector mechanisms intrinsic to the CNS for immediate tackling, attenuating and clearing of viral infections, with assistance pouring in from peripheral circulation in the form of neutralizing antibodies and cytotoxic T cells at a later stage. Specialized CNS cells, microglia and astrocytes, were regarded as sole sentinels of the brain for containing a viral onslaught but neurons held little recognition as a potential candidate for protecting itself from the proliferation and pathogenesis of neurotropic viruses. Accumulating evidence however indicates that extracellular insult causes neurons to express immune factors characteristic of lymphoid tissues. This article aims to comprehensively analyze current research on this conditional alteration in the protein expression repertoire of neurons and the role it plays in CNS innate immune response to counter viral infections. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays

    Directory of Open Access Journals (Sweden)

    Paolo Massobrio

    2015-01-01

    Full Text Available Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments.

  10. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis

    Science.gov (United States)

    Cattaneo, Annamaria; Macchi, Flavia; Plazzotta, Giona; Veronica, Begni; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine Maria

    2015-01-01

    During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression. PMID:25873859

  11. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Directory of Open Access Journals (Sweden)

    Wayne Croft

    2015-01-01

    Full Text Available The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.

  12. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall.

    Science.gov (United States)

    Liu, Yahui; Gao, Zilong; Chen, Changfeng; Wen, Bo; Huang, Li; Ge, Rongjing; Zhao, Shidi; Fan, Ruichen; Feng, Jing; Lu, Wei; Wang, Liping; Wang, Jin-Hui

    2017-11-10

    Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.

  13. Ototrauma induces sodium channel plasticity in auditory afferent neurons

    OpenAIRE

    Fryatt, Alistair G.; Mulheran, Mike; Egerton, Julie; Gunthorpe, Martin J.; Grubb, Blair D.

    2011-01-01

    Exposure to intense sound can cause damage to the delicate sensory and neuronal components of the cochlea leading to hearing loss. Such damage often causes the dendrites of the spiral ganglion neurons (SGN), the neurons that provide the afferent innervation of the hair cells, to swell and degenerate thus damaging the synapse. In models of neuropathic pain, axotomy, another form of afferent nerve damage, is accompanied by altered voltage-gated sodium channel (VGSC) expression, leading to neuro...

  14. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    Science.gov (United States)

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  15. Remote memory and cortical synaptic plasticity require neuronal CCCTC-binding factor (CTCF).

    Science.gov (United States)

    Kim, Somi; Yu, Nam-Kyung; Shim, Kyu-Won; Kim, Ji-Il; Kim, Hyopil; Han, Dae Hee; Choi, Ja Eun; Lee, Seung-Woo; Choi, Dong Il; Kim, Myung Won; Lee, Dong-Sung; Lee, Kyungmin; Galjart, Niels; Lee, Yong-Seok; Lee, Jae-Hyung; Kaang, Bong-Kiun

    2018-04-30

    The molecular mechanism of long-term memory has been extensively studied in the context of the hippocampus-dependent recent memory examined within several days. However, months-old remote memory maintained in the cortex for long-term has not been investigated much at the molecular level yet. Various epigenetic mechanisms are known to be important for long-term memory, but how the three-dimensional (3D) chromatin architecture and its regulator molecules contribute to neuronal plasticity and systems consolidation are still largely unknown. CCCTC-binding factor (CTCF) is an eleven-zinc finger protein well known for its role as a genome architecture molecule. Male conditional knockout (cKO) mice in which CTCF is lost in excitatory neurons during adulthood showed normal recent memory in the contextual fear conditioning and spatial water maze tasks. However, they showed remarkable impairments in remote memory in both tasks. Underlying the remote memory-specific phenotypes, we observed that female CTCF cKO mice exhibit disrupted cortical long-term potentiation (LTP), but not hippocampal LTP. Similarly, we observed that CTCF deletion in inhibitory neurons caused partial impairment of remote memory. Through RNA-sequencing, we observed that CTCF knockdown in cortical neuron culture caused altered expression of genes that are highly involved in cell adhesion, synaptic plasticity, and memory. These results suggest that remote memory storage in the cortex requires CTCF-mediated gene regulation in neurons while recent memory formation in the hippocampus does not. SIGNIFICANCE STATEMENT CTCF is a well-known 3D genome architectural protein that regulates gene expression. Here, we use two different CTCF conditional knockout mouse lines and reveal for the first time that CTCF is critically involved in the regulation of remote memory. We also show that CTCF is necessary for appropriate expression of genes, many of which we found to be involved in the learning and memory related

  16. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    Science.gov (United States)

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852

  17. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.

    Science.gov (United States)

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.

  18. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na + channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABA A R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  19. Mirror neurons in the tree of life: mosaic evolution, plasticity and exaptation of sensorimotor matching responses.

    Science.gov (United States)

    Tramacere, Antonella; Pievani, Telmo; Ferrari, Pier F

    2017-08-01

    Considering the properties of mirror neurons (MNs) in terms of development and phylogeny, we offer a novel, unifying, and testable account of their evolution according to the available data and try to unify apparently discordant research, including the plasticity of MNs during development, their adaptive value and their phylogenetic relationships and continuity. We hypothesize that the MN system reflects a set of interrelated traits, each with an independent natural history due to unique selective pressures, and propose that there are at least three evolutionarily significant trends that gave raise to three subtypes: hand visuomotor, mouth visuomotor, and audio-vocal. Specifically, we put forward a mosaic evolution hypothesis, which posits that different types of MNs may have evolved at different rates within and among species. This evolutionary hypothesis represents an alternative to both adaptationist and associative models. Finally, the review offers a strong heuristic potential in predicting the circumstances under which specific variations and properties of MNs are expected. Such predictive value is critical to test new hypotheses about MN activity and its plastic changes, depending on the species, the neuroanatomical substrates, and the ecological niche. © 2016 Cambridge Philosophical Society.

  20. Plasticity-induced characteristic changes of pattern dynamics and the related phase transitions in small-world neuronal networks

    International Nuclear Information System (INIS)

    Huang Xu-Hui; Hu Gang

    2014-01-01

    Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics. (interdisciplinary physics and related areas of science and technology)

  1. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons

    Science.gov (United States)

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose

    2009-01-01

    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  2. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-04-01

    Full Text Available Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively as words with length equal to three. Then the frequency of each word (here eight words is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.

  3. MRI of neuronal network structure, function, and plasticity.

    Science.gov (United States)

    Voss, Henning U; Schiff, Nicholas D

    2009-01-01

    We review two complementary MRI imaging modalities to characterize structure and function of neuronal networks in the human brain, and their application to subjects with severe brain injury. The structural imaging modality, diffusion tensor imaging, is based on imaging the diffusion of water protons in the brain parenchyma. From the diffusion tensor, several quantities characterizing fiber structure in the brain can be derived. The principal direction of the diffusion tensor has been found to depend on the fiber direction of myelinated axons. It can be used for white matter fiber tracking. The anisotropy (or directional dependence) of diffusion has been shown to be sensitive to developmental as well as white matter changes during training and recovery from brain injury. The functional MRI imaging modality, resting state fMRI, concerns the functional connectivity of neuronal networks rather than their anatomical structure. Subjects undergo a conventional fMRI imaging protocol without performing specific tasks. Various resting state network patterns can be computed by algorithms that reveal correlations in the fMRI signal. Often, thalamic structures are involved, suggesting that resting state fMRI could reflect global brain network functionality. Clinical applications of resting state fMRI have been reported, in particular relating signal abnormalities to neurodegenerative processes. To better understand to which degree resting state patterns reflect neuronal network function, we are comparing network patterns of normal subjects with those having severe brain lesions in a small pilot study.

  4. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  5. Hippocampal insulin resistance links maternal obesity with impaired neuronal plasticity in adult offspring.

    Science.gov (United States)

    Schmitz, Lisa; Kuglin, Rebecca; Bae-Gartz, Inga; Janoschek, Ruth; Appel, Sarah; Mesaros, Andrea; Jakovcevski, Igor; Vohlen, Christina; Handwerk, Marion; Ensenauer, Regina; Dötsch, Jörg; Hucklenbruch-Rother, Eva

    2017-12-28

    Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events. In a mouse model of maternal diet-induced obesity and perinatal hyperinsulinemia, we assessed adult offspring's hippocampal insulin signaling as well as concurrent effects on markers of hippocampal neurogenesis, synaptic plasticity and function using western blotting and immunohistochemistry. In search for a potential link between neuronal insulin resistance and hippocampal plasticity, we additionally quantified protein expression of key molecules of synaptic plasticity in an in vitro model of acute neuronal insulin resistance. Maternal obesity and perinatal hyperinsulinemia result in adult hippocampal insulin resistance with subsequently reduced hippocampal mTor signaling and altered expression of markers of neurogenesis (doublecortin), synaptic plasticity (FoxO1, pSynapsin) and function (vGlut, vGAT) in the offspring. The observed effects are independent of the offspring's adult metabolic phenotype and can be associated with multiple previously reported behavioral abnormalities. Additionally, we demonstrate that induction of insulin resistance in cultured hippocampal neurons reduces mTor signaling, doublecortin and vGAT protein expression. Hippocampal insulin resistance might play a key role in mediating the long-term effects of maternal obesity and perinatal hyperinsulinemia on hippocampal plasticity and the offspring's neurocognitive outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evidence for cell autonomous AP1 function in regulation of Drosophila motor-neuron plasticity

    Directory of Open Access Journals (Sweden)

    Consoulas Christos

    2003-09-01

    Full Text Available Abstract Background The transcription factor AP1 mediates long-term plasticity in vertebrate and invertebrate central nervous systems. Recent studies of activity-induced synaptic change indicate that AP1 can function upstream of CREB to regulate both CREB-dependent enhancement of synaptic strength as well as CREB-independent increase in bouton number at the Drosophila neuromuscular junction (NMJ. However, it is not clear from this study if AP1 functions autonomously in motor neurons to directly modulate plasticity. Results Here, we show that Fos and Jun, the two components of AP1, are abundantly expressed in motor neurons. We further combine immunohistochemical and electrophysiological analyses with use of a collection of enhancers that tightly restrict AP1 transgene expression within the nervous system to show that AP1 induction or inhibition in, but not outside of, motor neurons is necessary and sufficient for its modulation of NMJ size and strength. Conclusion By arguing against the possibility that AP1 effects at the NMJ occur via a polysynaptic mechanism, these observations support a model in which AP1 directly modulates NMJ plasticity processes through a cell autonomous pathway in the motor neuron. The approach described here may serve as a useful experimental paradigm for analyzing cell autonomy of genes found to influence structure and function of Drosophila motor neurons.

  7. Histone Deacetylase (HDAC) Inhibitors - emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Ramadoss, Mahalakshmi; Mahadevan, Vijayalakshmi

    2016-01-01

    Epigenetic regulation of neuronal signalling through histone acetylation dictates transcription programs that govern neuronal memory, plasticity and learning paradigms. Histone Acetyl Transferases (HATs) and Histone Deacetylases (HDACs) are antagonistic enzymes that regulate gene expression through acetylation and deacetylation of histone proteins around which DNA is wrapped inside a eukaryotic cell nucleus. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and have been implicated in muscular dystrophy, loss of memory, neurodegeneration and autistic disorders. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique in therapy. This review presents evolving applications of HDAC inhibitors as potential drugs in neurological research and therapy. Mechanisms that govern their expression profiles in neuronal signalling, plasticity and learning will be covered. Promising and exciting possibilities of HDAC inhibitors in memory formation, fear conditioning, ischemic stroke and neural regeneration have been detailed.

  8. Two aspects of ASIC function: Synaptic plasticity and neuronal injury.

    Science.gov (United States)

    Huang, Yan; Jiang, Nan; Li, Jun; Ji, Yong-Hua; Xiong, Zhi-Gang; Zha, Xiang-ming

    2015-07-01

    Extracellular brain pH fluctuates in both physiological and disease conditions. The main postsynaptic proton receptor is the acid-sensing ion channels (ASICs). During the past decade, much progress has been made on protons, ASICs, and neurological disease. This review summarizes the recent progress on synaptic role of protons and our current understanding of how ASICs contribute to various types of neuronal injury in the brain. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity.

    Science.gov (United States)

    Fernández-Montoya, Julia; Avendaño, Carlos; Negredo, Pilar

    2017-12-27

    Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.

  10. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.

    Science.gov (United States)

    Jędrzejewska-Szmek, Joanna; Damodaran, Sriraman; Dorman, Daniel B; Blackwell, Kim T

    2017-04-01

    The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Molecular and Neuronal Plasticity Mechanisms in the Amygdala-Prefrontal Cortical Circuit: Implications for Opiate Addiction Memory Formation

    Directory of Open Access Journals (Sweden)

    Laura G Rosen

    2015-11-01

    Full Text Available The persistence of associative memories linked to the rewarding properties of drugs of abuse is a core underlying feature of the addiction process. Opiate class drugs in particular, possess potent euphorigenic effects which, when linked to environmental cues, can produce drug-related ‘trigger’ memories that may persist for lengthy periods of time, even during abstinence, in both humans and other animals. Furthermore, the transitional switch from the drug-naïve, non-dependent state to states of dependence and withdrawal, represents a critical boundary between distinct neuronal and molecular substrates associated with opiate-reward memory formation. Identifying the functional molecular and neuronal mechanisms related to the acquisition, consolidation, recall and extinction phases of opiate-related reward memories is critical for understanding, and potentially reversing, addiction-related memory plasticity characteristic of compulsive drug-seeking behaviors. The mammalian prefrontal cortex (PFC and basolateral nucleus of the amygdala (BLA share important functional and anatomical connections that are involved importantly in the processing of associative memories linked to drug reward. In addition, both regions share interconnections with the mesolimbic pathway’s ventral tegmental area (VTA and nucleus accumbens (NAc and can modulate dopamine (DA transmission and neuronal activity associated with drug-related DAergic signaling dynamics. In this review, we will summarize research from both human and animal modelling studies highlighting the importance of neuronal and molecular plasticity mechanisms within this circuitry during critical phases of opiate addiction-related learning and memory processing. Specifically, we will focus on two molecular signaling pathways known to be involved in both drug-related neuroadaptations and in memory-related plasticity mechanisms; the extracellular-signal-regulated kinase system (ERK and the Ca2+/calmodulin

  12. Effects of Synaptic Plasticity on Phase and Period Locking in a Network of Two Oscillatory Neurons

    Science.gov (United States)

    2014-01-01

    We study the effects of synaptic plasticity on the determination of firing period and relative phases in a network of two oscillatory neurons coupled with reciprocal inhibition. We combine the phase response curves of the neurons with the short-term synaptic plasticity properties of the synapses to define Poincaré maps for the activity of an oscillatory network. Fixed points of these maps correspond to the phase-locked modes of the network. These maps allow us to analyze the dependence of the resulting network activity on the properties of network components. Using a combination of analysis and simulations, we show how various parameters of the model affect the existence and stability of phase-locked solutions. We find conditions on the synaptic plasticity profiles and the phase response curves of the neurons for the network to be able to maintain a constant firing period, while varying the phase of locking between the neurons or vice versa. A generalization to cobwebbing for two-dimensional maps is also discussed. PMID:24791223

  13. The maternal brain under stress: Consequences for adaptive peripartum plasticity and its potential functional implications.

    Science.gov (United States)

    Slattery, David A; Hillerer, Katharina M

    2016-04-01

    The peripartum period represents a time during which all mammalian species undergo substantial physiological and behavioural changes, which prepare the female for the demands of motherhood. In addition to behavioural and physiological alterations, numerous brain regions, such as the medial prefrontal cortex, olfactory bulb, medial amygdala and hippocampus are subject to substantial peripartum-associated neuronal, dendritic and synaptic plasticity. These changes, which are temporally- and spatially-distinct, are strongly influenced by gonadal and adrenal hormones, such as estrogen and cortisol/corticosterone, which undergo dramatic fluctuations across this period. In this review, we describe our current knowledge regarding these plasticity changes and describe how stress affects such normal adaptations. Finally, we discuss the mechanisms potentially underlying these neuronal, dendritic and synaptic changes and their functional relevance for the mother and her offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation.

    Directory of Open Access Journals (Sweden)

    John R W Menzies

    Full Text Available BACKGROUND: Vestibulo-ocular reflex (VOR gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD at vestibular synapses. METHODOLOGY/PRINCIPAL FINDINGS: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular and inhibitory (floccular inputs converging on medial vestibular nucleus (MVN neurons (input-spike-timing dependent plasticity, iSTDP. To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarization, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning. CONCLUSIONS: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR

  15. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons.

    Science.gov (United States)

    Rao, Yan; Liu, Zhong-Wu; Borok, Erzsebet; Rabenstein, Rebecca L; Shanabrough, Marya; Lu, Min; Picciotto, Marina R; Horvath, Tamas L; Gao, Xiao-Bing

    2007-12-01

    Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.

  16. Mirror Neurons Modeled Through Spike-Timing-Dependent Plasticity are Affected by Channelopathies Associated with Autism Spectrum Disorder.

    Science.gov (United States)

    Antunes, Gabriela; da Silva, Samuel F Faria; de Souza, Fabio M Simoes

    2017-11-28

    Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.

  17. Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity.

    Science.gov (United States)

    Ocker, Gabriel Koch; Doiron, Brent

    2018-02-03

    The synaptic connectivity of cortex is plastic, with experience shaping the ongoing interactions between neurons. Theoretical studies of spike timing-dependent plasticity (STDP) have focused on either just pairs of neurons or large-scale simulations. A simple analytic account for how fast spike time correlations affect both microscopic and macroscopic network structure is lacking. We develop a low-dimensional mean field theory for STDP in recurrent networks and show the emergence of assemblies of strongly coupled neurons with shared stimulus preferences. After training, this connectivity is actively reinforced by spike train correlations during the spontaneous dynamics. Furthermore, the stimulus coding by cell assemblies is actively maintained by these internally generated spiking correlations, suggesting a new role for noise correlations in neural coding. Assembly formation has often been associated with firing rate-based plasticity schemes; our theory provides an alternative and complementary framework, where fine temporal correlations and STDP form and actively maintain learned structure in cortical networks. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Role of the visual experience-dependent nascent proteome in neuronal plasticity.

    Science.gov (United States)

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R; Cline, Hollis T

    2018-02-07

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. © 2018, Liu et al.

  19. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  20. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Morphometric Plasticity of Nitric Oxide Containing Neurons in the Barrel Cortex of De-whiskered Rats

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Afarinesh

    2015-04-01

    Full Text Available Background: The rodent somatosensory barrel cortex is an ideal model to examine the effect of experience-dependent plasticity on developing brain circuitry. Sensory deprivation such as whisker deprivation may affect neuroanatomical aspects of the brain during developmental processes. The present study designed to investigate the possible effects of whisker deprivation on the morphometric characteristics of NADPH-d positive neurons in the barrel field cortex of adolescent rats.Materials and Methods: Pups were divided into the intact (n=4 and whisker-deprived groups (n=4. In whisker-deprived group, the total whiskers of subjects were trimmed every other day from postnatal day (PND 0 to PND 60. NADPH-d histochemistry reaction was processed to quantitatively analyze the feature of NADPH-d containing neurons of barrel cortex.Results: Our results showed that the number of NADPH-d positive neurons remained unchanged in whisker-deprived group compared to controls. The mean soma diameter, dendritic length and the number of 3rd order processes were significantly decreased in the whisker-deprived rats (p<0.05.Conclusion: Our results indicate that postnatal whisker deprivation possibly alter NADPH-d/NOS neuronal features in the barrel cortex. The functional implications of these data may relate the plasticity of synaptic receptive field and developmental brain circuits.

  2. Proteolytic Remodeling of Perineuronal Nets: Effects on Synaptic Plasticity and Neuronal Population Dynamics

    Directory of Open Access Journals (Sweden)

    P. Lorenzo Bozzelli

    2018-01-01

    Full Text Available The perineuronal net (PNN represents a lattice-like structure that is prominently expressed along the soma and proximal dendrites of parvalbumin- (PV- positive interneurons in varied brain regions including the cortex and hippocampus. It is thus apposed to sites at which PV neurons receive synaptic input. Emerging evidence suggests that changes in PNN integrity may affect glutamatergic input to PV interneurons, a population that is critical for the expression of synchronous neuronal population discharges that occur with gamma oscillations and sharp-wave ripples. The present review is focused on the composition of PNNs, posttranslation modulation of PNN components by sulfation and proteolysis, PNN alterations in disease, and potential effects of PNN remodeling on neuronal plasticity at the single-cell and population level.

  3. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.

    Science.gov (United States)

    Bhuiyan, Mohammad Maqueshudul Haque; Haque, Md Nazmul; Mohibbullah, Md; Kim, Yung Kyu; Moon, Il Soo

    2017-09-14

    Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of

  4. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  5. Trace Conditioning in Drosophila Induces Associative Plasticity in Mushroom Body Kenyon Cells and Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Kristina V. Dylla

    2017-06-01

    Full Text Available Dopaminergic neurons (DANs signal punishment and reward during associative learning. In mammals, DANs show associative plasticity that correlates with the discrepancy between predicted and actual reinforcement (prediction error during classical conditioning. Also in insects, such as Drosophila, DANs show associative plasticity that is, however, less understood. Here, we study associative plasticity in DANs and their synaptic partners, the Kenyon cells (KCs in the mushroom bodies (MBs, while training Drosophila to associate an odorant with a temporally separated electric shock (trace conditioning. In most MB compartments DANs strengthened their responses to the conditioned odorant relative to untrained animals. This response plasticity preserved the initial degree of similarity between the odorant- and the shock-induced spatial response patterns, which decreased in untrained animals. Contrary to DANs, KCs (α'/β'-type decreased their responses to the conditioned odorant relative to untrained animals. We found no evidence for prediction error coding by DANs during conditioning. Rather, our data supports the hypothesis that DAN plasticity encodes conditioning-induced changes in the odorant's predictive power.

  6. Long-Term Plasticity of Astrocytic Metabotropic Neurotransmitter Receptors Driven by Changes in Neuronal Activity in Hippocampal Slices

    OpenAIRE

    Xie, Xiaoqiao

    2011-01-01

    In addition to synaptic communication between neurons, there is now strong evidence for neuron-to-astrocyte receptor signaling in the brain. During trains of action potentials or repetitive stimulation, neurotransmitter spills out of the synapse to activate astrocytic Gq protein-coupled receptors (Gq GPCRs). To date, very little is known about the ability of astrocytic receptors to exhibit plasticity as a result of long-term changes in neuronal firing rates. Here we describe for the first tim...

  7. GABAA receptor drugs and neuronal plasticity in reward and aversion: focus on the ventral tegmental area

    Directory of Open Access Journals (Sweden)

    Elena eVashchinkina

    2014-11-01

    Full Text Available GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids have been found to induce plasticity in the ventral tegmental area (VTA dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of

  8. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice.

    Science.gov (United States)

    Yang, Liya; Zou, Bende; Xiong, Xiaoxing; Pascual, Conrado; Xie, James; Malik, Adam; Xie, Julian; Sakurai, Takeshi; Xie, Xinmin Simon

    2013-03-20

    Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated "two-enclosure homecage test" devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. A conventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation.

  9. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment.

    Science.gov (United States)

    Arango-Lievano, Margarita; Lambert, W Marcus; Bath, Kevin G; Garabedian, Michael J; Chao, Moses V; Jeanneteau, Freddy

    2015-12-22

    Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.

  10. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  11. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity

    Directory of Open Access Journals (Sweden)

    Stephanie eWallner

    2015-08-01

    Full Text Available Granulocyte-colony stimulating factor (G-CSF is a growth factor that has originally been identified several decades ago as a hematopoietic factor required mainly for the generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has been discovered that G-CSF also plays a role in the brain as a growth factor for neurons and neural stem cells, and as a factor involved in the plasticity of the vasculature. We review and discuss these dual properties in view of the neuroregenerative potential of this growth factor.

  12. DCC Expression by Neurons Regulates Synaptic Plasticity in the Adult Brain

    Directory of Open Access Journals (Sweden)

    Katherine E. Horn

    2013-01-01

    Full Text Available The transmembrane protein deleted in colorectal cancer (DCC and its ligand, netrin-1, regulate synaptogenesis during development, but their function in the mature central nervous system is unknown. Given that DCC promotes cell-cell adhesion, is expressed by neurons, and activates proteins that signal at synapses, we hypothesized that DCC expression by neurons regulates synaptic function and plasticity in the adult brain. We report that DCC is enriched in dendritic spines of pyramidal neurons in wild-type mice, and we demonstrate that selective deletion of DCC from neurons in the adult forebrain results in the loss of long-term potentiation (LTP, intact long-term depression, shorter dendritic spines, and impaired spatial and recognition memory. LTP induction requires Src activation of NMDA receptor (NMDAR function. DCC deletion severely reduced Src activation. We demonstrate that enhancing NMDAR function or activating Src rescues LTP in the absence of DCC. We conclude that DCC activation of Src is required for NMDAR-dependent LTP and certain forms of learning and memory.

  13. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms.

    Science.gov (United States)

    Mattson, Mark P; Duan, Wenzhen; Guo, Zhihong

    2003-02-01

    Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and

  14. Migration of DEHP from plastic to food simulants under microwave heating

    Science.gov (United States)

    Zhu, X.; Li, F.; Qiu, Z. Z.; Huang, J. W.

    2017-05-01

    The migration of plasticizer DEHP from the plastic products (4 kinds of commonly used plastic food containers under microwave heating: plastic wrap, food bags, ordinary plastic boxes, microwave special plastic boxes) through food contact materials to food simulants (isooctane, 10% ethanol-water solution (v/v), 3% acetic acid-water solution (w/w) and distilled water) was studied under microwave heating (power levels of 400 W). The results shows that the DEHP mobility increases with the increase of microwave heating time, DEHP mobility in isooctane and 3% acetic acid-water solution (w/w) is significantly greater than in 10% ethanol-water solution (v/v) and distilled water; the order of DEHP mobility in isooctane is plastic wrap>food bag>common plastic box>microwave-safe plastic box, while in 3% acetic acid (w/w), the order is food bag>common plastic box>microwave-safe plastic box>plastic wrap.

  15. Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines

    Directory of Open Access Journals (Sweden)

    Michelle Tjia

    2017-06-01

    Full Text Available The mammalian cerebral cortex is typically organized in six layers containing multiple types of neurons, with pyramidal neurons (PNs being the most abundant. PNs in different cortical layers have distinct morphology, physiology and functional roles in neural circuits. Therefore, their development and synaptic plasticity may also differ. Using in vivo transcranial two-photon microscopy, we followed the structural dynamics of dendritic spines on apical dendrites of layer (L 2/3 and L5 PNs at different developmental stages. We show that the density and dynamics of spines are significantly higher in L2/3 PNs than L5 PNs in both adolescent (1 month old and adult (4 months old mice. While spine density of L5 PNs decreases during adolescent development due to a higher rate of spine elimination than formation, there is no net change in the spine density along apical dendrites of L2/3 PNs over this period. In addition, experiences exert differential impact on the dynamics of apical dendritic spines of PNs resided in different cortical layers. While motor skill learning promotes spine turnover on L5 PNs in the motor cortex, it does not change the spine dynamics on L2/3 PNs. In addition, neonatal sensory deprivation decreases the spine density of both L2/3 and L5 PNs, but leads to opposite changes in spine dynamics among these two populations of neurons in adolescence. In summary, our data reveal distinct dynamics and plasticity of apical dendritic spines on PNs in different layers in the living mouse cortex, which may arise from their distinct functional roles in cortical circuits.

  16. Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain.

    Science.gov (United States)

    Johansson, Barbro B; Belichenko, Pavel V

    2002-01-01

    The authors compared the influence of environmental enrichment on intact and lesioned brain, and tested the hypothesis that postischemic exposure to an enriched environment can alter dendritic spine density in pyramidal neurons contralateral to a cortical infarct. The middle cerebral artery was occluded distal to the striatal branches in spontaneously hypertensive rats postoperatively housed either in a standard or in an enriched environment. Intact rats were housed in the same environment. Three weeks later the brains were perfused in situ. The dendritic and spine morphology was studied with three-dimensional confocal laser scanning microscopy after microinjection of Lucifer yellow in pyramidal neurons in layers II/III and V/VI in the somatosensory cortex. In intact rats, the number of dendritic spines was significantly higher in the enriched group than in the standard group in all layers ( P < 0.05). Contralateral to the infarct, pyramidal neurons in layers II/III, which have extensive intracortical connections that may play a role in cortical plasticity, had significantly more spines in the enriched group than in the standard group ( P < 0.05). No difference was observed in layers V/VI. They conclude that housing rats in an enriched environment significantly increases spine density in superficial cortical layers in intact and lesioned brain, but in deeper layers of intact brain.

  17. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity

    Directory of Open Access Journals (Sweden)

    Rocha-Sanchez Sonia M

    2010-10-01

    Full Text Available Abstract Background The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental. Results Here we report that a point mutation at the phospholipase Cγ (PLCγ docking site in the mouse neurotrophin tyrosine kinase receptor TrkB (Ntrk2 specifically impairs fiber guidance inside the vestibular sensory epithelia, but has limited effects on the survival of vestibular sensory neurons and growth of afferent processes toward the sensory epithelia. We also show that expression of the TRPC3 cation calcium channel, whose activity is known to be required for nerve-growth cone guidance induced by brain-derived neurotrophic factor (BDNF, is altered in these animals. In addition, we find that absence of the PLCγ mediated TrkB signalling interferes with the transformation of bouton type afferent terminals of vestibular dendrites into calyces (the largest synaptic contact of dendrites known in the mammalian nervous system on type I vestibular hair cells; the latter are normally distributed in these mutants as revealed by an unaltered expression pattern of the potassium channel KCNQ4 in these cells. Conclusions These results demonstrate a crucial involvement of the TrkB/PLCγ-mediated intracellular signalling in structural aspects of sensory neuron plasticity.

  18. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  19. Dual nitrergic/cholinergic control of short-term plasticity of corticostriatal inputs to striatal projection neurons

    Directory of Open Access Journals (Sweden)

    Craig Peter Blomeley

    2015-11-01

    Full Text Available The ability of nitric oxide and acetylcholine to modulate the short-term plasticity of corticostriatal inputs was investigated using current-clamp recordings in BAC mouse brain slices. Glutamatergic responses were evoked by stimulation of corpus callosum in D1 and D2 dopamine receptor-expressing medium spiny neurons (D1-MSNs and D2-MSN, respectively. Paired-pulse stimulation (50 ms intervals evoked depressing or facilitating responses in subgroups of both D1-MSNs and D2 MSNs. In both neuronal types, glutamatergic responses of cells that displayed paired-pulse depression were not significantly affected by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP; 100 µM. Conversely, in D1-MSNs and D2-MSNs that displayed paired-pulse facilitation, SNAP did not affect the first evoked response, but significantly reduced the amplitude of the second evoked EPSP, converting paired-pulse facilitation into paired-pulse depression. SNAP also strongly excited cholinergic interneurons and increased their cortical glutamatergic responses acting through a presynaptic mechanism. The effects of SNAP on glutamatergic response of D1-MSNs and D2-MSN were mediated by acetylcholine. The broad-spectrum muscarinic receptor antagonist atropine (25 µM did not affect paired-pulse ratios and did not prevent the effects of SNAP. Conversely, the broad-spectrum nicotinic receptor antagonist tubocurarine (10 µM fully mimicked and occluded the effects of SNAP. We concluded that phasic acetylcholine release mediates feedforward facilitation in MSNs through activation of nicotinic receptors on glutamatergic terminals and that nitric oxide, while increasing cholinergic interneurons’ firing, functionally impairs their ability to modulate glutamatergic inputs of MSNs. These results show that nitrergic and cholinergic transmission control the short-term plasticity of glutamatergic inputs in the striatum and reveal a novel cellular mechanism underlying paired

  20. Myenteric neuronal plasticity induced by Toxoplasma gondii (genotype III on the duodenum of rats

    Directory of Open Access Journals (Sweden)

    Rodrigo M. Papazian-Cabanas

    2012-09-01

    Full Text Available The effects of acute and chronic infection caused by Toxoplasma gondii on duodenal myenteric neurons were analyzed. Eighteen rats were assigned into four groups: Acute Control Group (ACG, n=4; Acute Experimental Group (AEG, n=4; Chronic Control Group (CCG, n=5; and Chronic Experimental Group (CEG, n=5. Rats from the AEG and CEG were inoculated orally with 105 genotype III (BTU-II strain tachyzoites of T. gondii isolated from a dog with neurological signs. Acute groups were killed after 24 hours after the inoculation and the chronic groups after 30 days. Whole-mount from the duodenum were stained with Giemsa. The population density of myenteric neurons, as well the body cell, nuclear and cytoplasmic area were analyzed. Both acute and chronic toxoplasmic infection did not provoke neuronal loss. On the other hand, plastic alterations were observed: decreasing of the nuclear and cytoplasmic area during the acute phase and neuronal hypertrophy during the chronic phase.Foram analisados os efeitos da infecção aguda e crônica provocada pelo Toxoplasma gondii sobre os neurônios mientéricos do duodeno. Dezoito ratos foram divididos em quatro grupos: Grupo Controle Agudo (GCA, n= 4, Grupo Experimental Agudo (GEA, n=4, Grupo Controle Crônico (GCC, n=5 e Grupo Experimental Crônico (GEC, n=5. Os animais do GEA e GEC receberam por via oral 10 5 taquizoítos de Toxoplasma gondii da cepa BTUII (genótipo III isolada de um cão com sintomatologia neurológica. Os grupos agudos foram submetidos à eutanásia após 24 horas e os crônicos após 30 dias da inoculação. Preparados totais do duodeno foram corados com Giemsa. A densidade populacional dos neurônios mientéricos, bem como a área do corpo celular, núcleo e citoplasma foram analisados. Ambas, as infecções toxoplásmicas aguda e crônica não provocaram a perda neuronal. Por outro lado, alterações plásticas foram observadas: diminuição da área nuclear e citoplasmática durante a fase

  1. Elasto-plastic frame under horizontal and vertical Gaussian excitation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.

    1999-01-01

    Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...

  2. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    Energy Technology Data Exchange (ETDEWEB)

    Akane, Hirotoshi [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Saito, Fumiyo [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Shiraki, Ayako [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Takeyoshi, Masahiro; Imatanaka, Nobuya [Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004 (Japan); Itahashi, Megu [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Murakami, Tomoaki [Laboratory of Veterinary Toxicology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan); Shibutani, Makoto, E-mail: mshibuta@cc.tuat.ac.jp [Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509 (Japan)

    2014-09-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc{sup +} neurons at 1000 ppm and Fos{sup +} neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues

  3. Downregulation of immediate-early genes linking to suppression of neuronal plasticity in rats after 28-day exposure to glycidol

    International Nuclear Information System (INIS)

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Takeyoshi, Masahiro; Imatanaka, Nobuya; Itahashi, Megu; Murakami, Tomoaki; Shibutani, Makoto

    2014-01-01

    We previously found that the 28-day oral toxicity study of glycidol at 200 mg/kg/day in rats resulted in axonopathy in both the central and peripheral nervous systems and aberrations in the late-stage of hippocampal neurogenesis targeting the process of neurite extension. To capture the neuronal parameters in response to glycidol toxicity, these animals were subjected to region-specific global gene expression profiling in four regions of cerebral and cerebellar architectures, followed by immunohistochemical analysis of selected gene products. Expression changes of genes related to axonogenesis and synaptic transmission were observed in the hippocampal dentate gyrus, cingulate cortex and cerebellar vermis at 200 mg/kg showing downregulation in most genes. In the corpus callosum, genes related to growth, survival and functions of glial cells fluctuated their expression. Immunohistochemically, neurons expressing gene products of immediate-early genes, i.e., Arc, Fos and Jun, decreased in their number in the dentate granule cell layer, cingulate cortex and cerebellar vermis. We also applied immunohistochemical analysis in rat offspring after developmental exposure to glycidol through maternal drinking water. The results revealed increases of Arc + neurons at 1000 ppm and Fos + neurons at ≥ 300 ppm in the dentate granule cell layer of offspring only at the adult stage. These results suggest that glycidol suppressed neuronal plasticity in the brain after 28-day exposure to young adult animals, in contrast to the operation of restoration mechanism to increase neuronal plasticity at the adult stage in response to aberrations in neurogenesis after developmental exposure. - Highlights: • Neuronal toxicity parameters after 28-day glycidol treatment were examined in rats. • Region-specific global gene expression profiling was conducted in brain regions. • Cortical tissues downregulated genes on axonogenesis and synaptic transmission. • Cortical tissues decreased

  4. The malleability of emotional perception: Short-term plasticity in retinotopic neurons accompanies the formation of perceptual biases to threat.

    Science.gov (United States)

    Thigpen, Nina N; Bartsch, Felix; Keil, Andreas

    2017-04-01

    Emotional experience changes visual perception, leading to the prioritization of sensory information associated with threats and opportunities. These emotional biases have been extensively studied by basic and clinical scientists, but their underlying mechanism is not known. The present study combined measures of brain-electric activity and autonomic physiology to establish how threat biases emerge in human observers. Participants viewed stimuli designed to differentially challenge known properties of different neuronal populations along the visual pathway: location, eye, and orientation specificity. Biases were induced using aversive conditioning with only 1 combination of eye, orientation, and location predicting a noxious loud noise and replicated in a separate group of participants. Selective heart rate-orienting responses for the conditioned threat stimulus indicated bias formation. Retinotopic visual brain responses were persistently and selectively enhanced after massive aversive learning for only the threat stimulus and dissipated after extinction training. These changes were location-, eye-, and orientation-specific, supporting the hypothesis that short-term plasticity in primary visual neurons mediates the formation of perceptual biases to threat. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Steady-state dynamics and experience-dependent plasticity of dendritic spines of layer 4/5a pyramidal neurons in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Amaya Miquelajauregui

    2014-04-01

    Full Text Available The steady state dynamics and experience-dependent plasticity of dendritic spines of layer (L 2/3 and L5B cortical pyramidal neurons have recently been assessed using in vivo two-photon microscopy (Trachtenberg et al., 2002; Zuo et al., 2005; Holtmaat et al., 2006. In contrast, not much is known about spine dynamics in L4/5a neurons, regarded as direct recipients of thalamocortical input (Constantinople and Bruno, 2013. In the adult mouse somatosensory cortex (SCx, the transcription factor Ebf2 is enriched in excitatory neurons of L4/5a, including pyramidal neurons. We assessed the molecular and electrophysiological properties of these neurons as well as the morphology of their apical tufts (Scholl analysis and cortical outputs (optogenetics within the SCx. To test the hypothesis that L4/5a pyramidal neurons play an important role in sensory processing (given their key laminar position; soma depth ~450-480 µm, we successfully labeled them in Ebf2-Cre mice with EGFP by expressing recombinant rAAV vectors in utero. Using longitudinal in vivo two-photon microscopy through a craniotomy (Mostany and Portera-Cailliau, 2008, we repeatedly imaged spines in apical dendritic tufts of L4/5a neurons under basal conditions and after sensory deprivation. Under steady-state conditions in adults, the morphology of the apical tufts and the mean spine density were stable at 0.39 ± 0.05 spines/μm (comparable to L5B, Mostany et al., 2011. Interestingly, spine elimination increases 4-8 days after sensory deprivation, probably due to input loss. This suggests that Ebf2+ L4/5a neurons could be involved in early steps of processing of thalamocortical information.

  6. The potential role of exercise in chronic stress-related changes in AMPA receptor phenotype underlying synaptic plasticity.

    Science.gov (United States)

    Leem, Yea-Hyun

    2017-12-31

    Chronic stress can cause disturbances in synaptic plasticity, such as longterm potentiation, along with behavioral defects including memory deficits. One major mechanism sustaining synaptic plasticity involves the dynamics and contents of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the central nervous system. In particular, chronic stress-induced disruption of AMPARs includes it abnormal expression, trafficking, and calcium conductance at glutamatergic synapses, which contributes to synaptic plasticity at excitatory synapses. Exercise has the effect of promoting synaptic plasticity in neurons. However, the contribution of exercise to AMPAR behavior under chronic stressful maladaptation remains unclear. The present article reviews the information about the chronic stress-related synaptic plasticity and the role of exercise from the previous-published articles. AMPAR-mediated synaptic transmission is an important for chronic stress-related changes of synaptic plasticity, and exercise may at least partly contribute to these episodes. The present article discusses the relationship between AMPARs and synaptic plasticity in chronic stress, as well as the potential role of exercise.

  7. Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity

    Science.gov (United States)

    Hinz, FI; Dieterich, DC; Schuman, EM

    2016-01-01

    The non-canonical amino acid labeling techniques BONCAT (bioorthogonal non-canonical amino acid tagging) and FUNCAT (fluorescent non-canonical amino acid tagging) enable the specific identification and visualization of newly synthesized proteins. Recently, these techniques have been applied to neuronal systems to elucidate protein synthesis dynamics during plasticity, identify stimulation-induced proteomes and subproteomes and to investigate local protein synthesis in specific subcellular compartments. The next generation of tools and applications, reviewed here, includes the development of new tags, the quantitative identification of newly synthesized proteins, the application of NCAT to whole animals, and the ability to genetically restrict NCAT labeling. These techniques will enable not only improved detection but also allow new scientific questions to be tackled. PMID:23938204

  8. Seven neurons memorizing sequences of alphabetical images via spike-timing dependent plasticity.

    Science.gov (United States)

    Osogami, Takayuki; Otsuka, Makoto

    2015-09-16

    An artificial neural network, such as a Boltzmann machine, can be trained with the Hebb rule so that it stores static patterns and retrieves a particular pattern when an associated cue is presented to it. Such a network, however, cannot effectively deal with dynamic patterns in the manner of living creatures. Here, we design a dynamic Boltzmann machine (DyBM) and a learning rule that has some of the properties of spike-timing dependent plasticity (STDP), which has been postulated for biological neural networks. We train a DyBM consisting of only seven neurons in a way that it memorizes the sequence of the bitmap patterns in an alphabetical image "SCIENCE" and its reverse sequence and retrieves either sequence when a partial sequence is presented as a cue. The DyBM is to STDP as the Boltzmann machine is to the Hebb rule.

  9. Peripheral chemoreceptors mediate training-induced plasticity in paraventricular nucleus pre-autonomic oxytocinergic neurons.

    Science.gov (United States)

    Cruz, Josiane C; Cavalleri, Marina T; Ceroni, Alexandre; Michelini, Lisete C

    2013-02-01

    We showed previously that sino-aortic denervation prevented training-induced plasticity in pre-autonomic oxytocinergic neurons and blocked the beneficial effects of training. In this study, we investigate the combined effect of training and removal of specific chemoreceptor afferents on both cardiovascular parameters and oxytocin (OT) gene and protein expression within the hypothalamic paraventricular nucleus (PVN). Wistar rats and spontaneously hypertensive rats (SHRs) underwent carotid body denervation or sham surgery and were trained or kept sedentary for 3 months. After haemodynamic measurements at rest, rats were anaesthetized for brain perfusion. Fresh (perfused with PBS) and fixed brains (perfused with 4% paraformaldehyde) were processed for PVN OT mRNA (real-time PCR) and OT immunoreactivity within PVN subnuclei. In sham-operated rats, training improved treadmill performance and reduced resting heart rate (Wistar, -8%; SHRs, -10%), with a reduction in blood pressure only in SHRs (-8%). Training was accompanied by increased PVN OT mRNA expression (twofold increase in sham-operated SHRs) and peptide density in the posterior, ventromedial and dorsal cap PVN subnuclei (on average 70% increase in both strains), with significant correlations between OT content and training-induced resting bradycardia in sham-operated groups. Carotid body denervation did not interfere with the performance gain, abolished chemoreflex activation (without changing baroreflex control) and blocked training-induced cardiovascular adaptations and training-induced changes in PVN OT content in both strains. After carotid body denervation, there was no correlation between OT mRNA or OT immunoractivity and resting heart rate. The chronic absence of chemoreceptor inputs uncovers an unknown role of chemoreceptor signalling in driving the plasticity/activity of PVN oxytocinergic pre-autonomic neurons, thus mediating training-induced cardiovascular adaptive responses.

  10. Vineyard microclimate and yield under different plastic covers

    Science.gov (United States)

    Holcman, Ester; Sentelhas, Paulo Cesar; Conceição, Marco Antônio Fonseca; Couto, Hilton Thadeu Zarate

    2017-12-01

    The use of plastic cover in vineyards minimizes effects of adverse weather conditions. The northwest of São Paulo State is one of the largest grape producing regions in Brazil; however, few studies investigate the effects of different plastic covers on vineyards in this region. This study compared the effect of black shading screen (BSS) and braided polypropylene film (BPF) on BRS Morena vineyard microclimate, grown on an overhead trellis system in the northwestern São Paulo. The experiments were carried out during three growing seasons (2012-2014). BSS allowed superior incoming solar radiation (SR) transmissivity, resulting in higher net radiation (Rn), and higher ratio between photosynthetically active (PAR) and SR. No differences were observed between the average air temperatures (T) and relative humidity (RH) of covered environments (BPF and BSS) and outside condition (automatic weather station-AWS), due to high air circulation, despite wind speed (WS) reduction caused by plastic covers. BPF provided better conditions for vineyard growth with higher fruit yield than vineyard under BSS regarding the number of shoots with bunches per plant, bunch and stem weights, longitudinal diameter of berries, quantity of fertile buds per shoot, and yield per shoot and per plant. BPF covers also influenced leaf size and growth speed of plants in vineyards.

  11. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine.

    Directory of Open Access Journals (Sweden)

    Ginetta eCollo

    2014-11-01

    Full Text Available Mesencephalic dopaminergic neurons were suggested to be a critical physiopathology substrate for addiction disorders. Among neuroadaptive processes to addictive drugs, structural plasticity has attracted attention. While structural plasticity occurs at both pre- and post-synaptic levels in the mesolimbic dopaminergic system, the present review focuses only on dopaminergic neurons. Exposures to addictive drugs determine two opposite structural responses, hypothrophic plasticity produced by opioids and cannabinoids (in particular during the early withdrawal phase and hypertrophic plasticity, mostly driven by psychostimulants and nicotine. In vitro and in vivo studies indentified BDNF and extracellular dopamine as two critical factors in determining structural plasticity, the two molecules sharing similar intracellular pathways involved in cell soma and dendrite growth, the MEK-ERK1/2 and the PI3K-Akt-mTOR, via preferential activation of TrkB and dopamine D3 receptors, respectively. At present information regarding specific structural changes associated to the various stages of the addiction cycle is incomplete. Encouraging neuroimaging data in humans indirectly support the preclinical evidence of hypotrophic and hypertrophic effects, suggesting a possible differential engagement of dopamine neurons in parallel and partially converging circuits controlling motivation, stress and emotions.

  12. PKMζ is essential for spinal plasticity underlying the maintenance of persistent pain

    Directory of Open Access Journals (Sweden)

    Laferrière Andre

    2011-12-01

    Full Text Available Abstract Background Chronic pain occurs when normally protective acute pain becomes pathologically persistent. We examined here whether an isoform of protein kinase C (PKC, PKMζ, that underlies long-term memory storage in various brain regions, also sustains nociceptive plasticity in spinal cord dorsal horn (SCDH mediating persistent pain. Results Cutaneous injury or spinal stimulation produced persistent increases of PKMζ, but not other atypical PKCs in SCDH. Inhibiting spinal PKMζ, but not full-length PKCs, reversed plasticity-dependent persistent painful responses to hind paw formalin and secondary mechanical hypersensitivity and SCDH neuron sensitization after hind paw capsaicin, without affecting peripheral sensitization-dependent primary heat hypersensitivity after hind paw capsaicin. Inhibiting spinal PKMζ, but not full-length PKCs, also reversed mechanical hypersensitivity in the rat hind paw induced by spinal stimulation with intrathecal dihydroxyphenylglycine. Spinal PKMζ inhibition also alleviated allodynia 3 weeks after ischemic injury in rats with chronic post-ischemia pain (CPIP, at a point when allodynia depends on spinal changes. In contrast, spinal PKMζ inhibition did not affect allodynia in rats with chronic contriction injury (CCI of the sciatic nerve, or CPIP rats early after ischemic injury, when allodynia depends on ongoing peripheral inputs. Conclusions These results suggest spinal PKMζ is essential for the maintenance of persistent pain by sustaining spinal nociceptive plasticity.

  13. Diffraction analysis of materials under strong plastic deformation

    International Nuclear Information System (INIS)

    Pyzalla, A.

    2001-01-01

    The applicability of X-ray diffraction in analyses of the microstructure texture and intrinsic stresses of materials under strong plastic deformation is illustrated by examples and discussed. The experimental methods and findings are supplemented by numeric calculations. It is shown how the microstructure, texture and intrinsic stresses can thus be optimized already in the production process. Analyses of changes in materials during operation of a component provide information on loads and material response to loads which can then be used for optimization of the component, e.g. by constructional modifications or selective heat treatment [de

  14. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  15. Activity of gypsy moth dorsolateral neurosecretory neurons under increased rearing density

    Directory of Open Access Journals (Sweden)

    Mrdaković Marija

    2012-01-01

    Full Text Available Lymantria dispar caterpillars were reared under two different rearing densities for the first three days of the 4th larval instar: 5 larvae that were kept in a Petri dish (V = 80 ml belonged to the intense stress (D1 group; 5 larvae that were kept in a plastic cup (V = 300ml belonged to the group exposed to less intense stress (D2 group. In the control group, single larvae were reared in a Petri dish. Morphometric changes in L1, L2 and L2’ dorsolateral neurosecretory neurons (nsn were analyzed. After keeping 5 larvae in a Petri dish, the size of L2 neurosecretory neurons (nsn significantly increased. Rearing 5 larvae in a plastic cup significantly increased the size of L1 nsn nuclei and the number of L2’nsn. A decrease in relative band densities in the region of molecular masses (11-15 kD that correspond to prothoracicotropic hormones in the gypsy moth was observed in the electrophoretic profiles that were obtained after both treatments in comparison to the control group. [Acknowledgments. This study was supported by the Serbian Ministry of Education and Science (Grant No. 173027.

  16. Obesity-induced structural and neuronal plasticity in the lateral orbitofrontal cortex

    Science.gov (United States)

    Thompson, Jennifer L.; Drysdale, Michael; Baimel, Corey; Kaur, Manpreet; MacGowan, Taigan; Pitman, Kimberley A.; Borgland, Stephanie L.

    2016-01-01

    The orbitofrontal cortex (OFC) integrates sensory information with the current value of foods and updates actions based on this information. Obese humans and rats fed a cafeteria diet have impaired devaluation of food rewards, implicating a potential obesity-induced dysfunction of the OFC. We hypothesized that obesity alters OFC pyramidal neuronal structure and function and reduces conditioned suppression of feeding. Rats were given restricted (1 h/day), extended (23 h/day) or no (chow only) access to a cafeteria diet and tested for a conditioned suppression of feeding. Golgi-cox impregnation and whole-cell patch clamp experiments were performed in lateral OFC pyramidal neurons of rats from the 3 feeding groups. Rats with 40 days of extended, but not restricted, access to a cafeteria diet became obese and continued to feed during foot shock-predicting cues. Access to a cafeteria diet induced morphological changes in basilar dendrites of lateral OFC pyramidal neurons. While there were no alterations in excitatory synaptic transmission underlying altered spine density, we observed a more depolarized resting membrane potential. This was accompanied by decreased inhibitory synaptic transmission onto lateral OFC pyramidal neurons due to decreased release probability at GABAergic inputs. These changes could underlie the inability of the OFC to encode changes in the motivation value of food that is observed in obese rodents and humans. PMID:28042870

  17. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Neuronal Nicotinic Acetylcholine Receptors: Neuroplastic Changes underlying Alcohol and Nicotine Addictions

    Directory of Open Access Journals (Sweden)

    Allison Anne Feduccia

    2012-08-01

    Full Text Available Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug’s reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs. The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine’s effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

  19. Building a brain under nutritional restriction: insights on sparing and plasticity from Drosophila studies

    Directory of Open Access Journals (Sweden)

    Cédric eMaurange

    2014-03-01

    Full Text Available While the growth of the developing brain is known to be well protected compared to other organs in the face of nutrient restriction, careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient deprivation.For over twenty years, Drosophila has proved to be a useful model for investigating how a functional nervous system develops from a restricted number of neural stem cells. Recently, a few studies have started to uncover molecular mechanisms as well as region-specific adaptive strategies that preserve brain functionality and neuronal repertoire under nutrient restriction, while modulating neuron numbers. Here, we review the developmental constraints that condition the response of the developing brain to nutrient restriction. We then analyze the recent Drosophila work to highlight key principles that drive sparing and plasticity in different regions of the central nervous system. As simple animal models start to build a more integrated picture, understanding how the developing brain copes with nutrient restriction could help in defining strategies to limit damage and improve brain recovery after birth.

  20. Oxytocin Neurons Exhibit Extensive Functional Plasticity Due To Offspring Age in Mothers and Fathers.

    Science.gov (United States)

    Kelly, Aubrey M; Hiura, Lisa C; Saunders, Alexander G; Ophir, Alexander G

    2017-09-01

    The needs of offspring change as they develop. Thus, parents should concomitantly change their investment based on the age-related needs of the offspring as they mature. Due to the high costs of parental care, it is optimal for parents to exhibit a shift from intense caregiving of young offspring to promoting independence in older offspring. Yet, the neural mechanisms that underlie shifts in parental behavior are poorly understood, and little is known about how the parental brain responds to offspring of different ages. To elucidate mechanisms that relate to shifts in parental behavior as offspring develop, we examined behavioral and neural responses of male and female prairie voles (Microtus ochrogaster), a biparental rodent, to interactions with offspring at different stages of development (ranging from neonatal to weaning age). Importantly, in biparental species, males and females may adjust their behavior differentially as offspring develop. Because the nonapeptides, vasopressin (VP) and oxytocin (OT), are well known for modulating aspects of parental care, we focused on functional activity of distinct VP and OT cell groups within the maternal and paternal brain in response to separation from, reunion (after a brief period of separation) with, or no separation from offspring of different ages. We found several differences in the neural responses of individual VP and OT cell groups that varied based on the age of pups and sex of the parent. Hypothalamic VP neurons exhibit similar functional responses in both mothers and fathers. However, hypothalamic and amygdalar OT neurons exhibit differential functional responses to being separated from pups based on the sex of the parent. Our results also reveal that the developmental stage of offspring significantly impacts neural function within OT, but not VP, cell groups of both mothers and fathers. These findings provide insight into the functional plastic capabilities of the nonapeptide system, specifically in relation

  1. Vegetative and reproductive evaluation of hot peppers under different plastic mulches in poly/plastic tunnel

    International Nuclear Information System (INIS)

    Iqbal, Q.; Amjad, M.; Ahmad, R.

    2009-01-01

    Since the beginning of civilization, the man has developed technologies to increase the efficiency of food production. The use of plastic mulch in commercial vegetable production is one of these traditional techniques that have been used for centuries. Studies were conducted to assess the efficacy of plastic mulch on growth and yield of two hot pepper hybrids, viz. Sky Red and Maha in poly/plastic tunnel. The treatments were black plastic mulch, clear plastic mulch and bare soil as control. Both hot pepper hybrids mulched with black plastic showed significantly better vegetative growth (plant height, leaf area etc) and fruit yield. Clear plastic mulch significantly increased soil temperature and reduced the number of days to first flower than black plastic mulch and bare soil. However, fruit yield was higher by 39.56 and 36.49% respectively in both hybrids when they were grown on black and clear plastic mulch as compared to bare soil. Overall results indicated that the use of plastic mulch is an ideal option to maximize hot pepper productivity as well as to extend their production season in poly/plastic tunnels. (author)

  2. Plastic Behavior of Metallic Damping Materials under Cyclical Shear Loading

    Directory of Open Access Journals (Sweden)

    Chaofeng Zhang

    2016-06-01

    Full Text Available Metallic shear panel dampers (SPDs have been widely adopted in seismic engineering. In this study, axial and torsional specimens of four types of metallic damping materials, including three conventional metallic steels as well as low yield strength steel 160 (LYS160, were tested in order to investigate the material response under repeated large plastic strain and low cycle fatigue between 10 and 30 cycles. The present study demonstrated that both the deformation capacity and fatigue performance of LYS160 were underestimated by the conversion from the traditional uniaxial tensile test. The main difference in the failure mechanism between LYS160 and the three conventional materials was determined from the scanning electron microscopy data. The dominant failure mode in LYS160 is stable interlaminate slip and not bucking. Our results provide physical insights into the origin of the large deformation capacity, which is an important foundation for the lightweight design of SPDs.

  3. Supervised spike-timing-dependent plasticity: a spatiotemporal neuronal learning rule for function approximation and decisions.

    Science.gov (United States)

    Franosch, Jan-Moritz P; Urban, Sebastian; van Hemmen, J Leo

    2013-12-01

    How can an animal learn from experience? How can it train sensors, such as the auditory or tactile system, based on other sensory input such as the visual system? Supervised spike-timing-dependent plasticity (supervised STDP) is a possible answer. Supervised STDP trains one modality using input from another one as "supervisor." Quite complex time-dependent relationships between the senses can be learned. Here we prove that under very general conditions, supervised STDP converges to a stable configuration of synaptic weights leading to a reconstruction of primary sensory input.

  4. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit.

    Directory of Open Access Journals (Sweden)

    Simon Kidd

    2015-05-01

    Full Text Available Olfactory receptor neurons (ORNs convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs. We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.

  5. Foxp1 in Forebrain Pyramidal Neurons Controls Gene Expression Required for Spatial Learning and Synaptic Plasticity.

    Science.gov (United States)

    Araujo, Daniel J; Toriumi, Kazuya; Escamilla, Christine O; Kulkarni, Ashwinikumar; Anderson, Ashley G; Harper, Matthew; Usui, Noriyoshi; Ellegood, Jacob; Lerch, Jason P; Birnbaum, Shari G; Tucker, Haley O; Powell, Craig M; Konopka, Genevieve

    2017-11-08

    Genetic perturbations of the transcription factor Forkhead Box P1 ( FOXP1 ) are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be determined fully. Here, we describe Foxp1 conditional knock-out ( Foxp1 cKO ) male and female mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus. Foxp1 cKO mice exhibit behavioral phenotypes that are of potential relevance to autism spectrum disorder, including hyperactivity, increased anxiety, communication impairments, and decreased sociability. In addition, Foxp1 cKO mice have gross deficits in learning and memory tasks of relevance to intellectual disability. Using a genome-wide approach, we identified differentially expressed genes in the hippocampus of Foxp1 cKO mice associated with synaptic function and development. Furthermore, using magnetic resonance imaging, we uncovered a significant reduction in the volumes of both the entire hippocampus as well as individual hippocampal subfields of Foxp1 cKO mice. Finally, we observed reduced maintenance of LTP in area CA1 of the hippocampus in these mutant mice. Together, these data suggest that proper expression of Foxp1 in the pyramidal neurons of the forebrain is important for regulating gene expression pathways that contribute to specific behaviors reminiscent of those seen in autism and intellectual disability. In particular, Foxp1 regulation of gene expression appears to be crucial for normal hippocampal development, CA1 plasticity, and spatial learning. SIGNIFICANCE STATEMENT Loss-of-function mutations in the transcription factor Forkhead Box P1 ( FOXP1 ) lead to autism spectrum disorder and intellectual disability. Understanding the potential brain

  6. Vorinostat positively regulates synaptic plasticity genes expression and spine density in HIV infected neurons: role of nicotine in progression of HIV-associated neurocognitive disorder

    Science.gov (United States)

    2014-01-01

    Background HIV-associated neurocognitive disorder (HAND) is characterized by development of cognitive, behavioral and motor abnormalities, and occurs in approximately 50% of HIV infected individuals. In the United States, the prevalence of cigarette smoking ranges from 35-70% in HIV-infected individuals compared to 20% in general population. Cognitive impairment in heavy cigarette smokers has been well reported. However, the synergistic effects of nicotine and HIV infection and the underlying mechanisms in the development of HAND are unknown. Results In this study, we explored the role of nicotine in the progression of HAND using SK-N-MC, a neuronal cell line. SK-N-MC cells were infected with HIV-1 in the presence or absence of nicotine for 7 days. We observed significant increase in HIV infectivity in SK-N-MC treated with nicotine compared to untreated HIV-infected neuronal cells. HIV and nicotine synergize to significantly dysregulate the expression of synaptic plasticity genes and spine density; with a concomitant increase of HDAC2 levels in SK-N-MC cells. In addition, inhibition of HDAC2 up-regulation with the use of vorinostat resulted in HIV latency breakdown and recovery of synaptic plasticity genes expression and spine density in nicotine/HIV alone and in co-treated SK-N-MC cells. Furthermore, increased eIF2 alpha phosphorylation, which negatively regulates eukaryotic translational process, was observed in HIV alone and in co-treatment with nicotine compared to untreated control and nicotine alone treated SK-N-MC cells. Conclusions These results suggest that nicotine and HIV synergize to negatively regulate the synaptic plasticity gene expression and spine density and this may contribute to the increased risk of HAND in HIV infected smokers. Apart from disrupting latency, vorinostat may be a useful therapeutic to inhibit the negative regulatory effects on synaptic plasticity in HIV infected nicotine abusers. PMID:24886748

  7. Plastics

    OpenAIRE

    Cassou, Emilie

    2018-01-01

    Although the agricultural sector is not the largest user of plastics, their rapid appearance on farms the world over is quietly turning into a substantial pollution concern. Versatile and economical as they are, plastics are found all over farms. From machines to mulches, they are the stuff of bags and tubs, of tubes and tools, of tags and trays, and of pots and twine. Plastic films are us...

  8. Response of tomato to radiation intensity and air temperature under plastic-house ultraviolet protection

    International Nuclear Information System (INIS)

    Syakur, A.

    2002-01-01

    Enhance of ultraviolet radiation intensity on the earth surface affected by ozon depletion on stratospheric layer cause changing on the response of plant to radiation quality. One technique for reducing photo destructive UV radiation is micro climate modification by using mulch and plastic-cover UV protection. So that, growth and yield of plant can be optimalized. This research designed an experiment to find out the effect of two kinds of plastic-cover, UV plastic and conventional plastic, on microclimate condition and tomato performance under plastic-house. The result of this research described that mulch and plastic cover can modify radiation and air temperature under plastics-house, but it can not improve growth and yield of the tomato [in

  9. Neuronal Plasticity Associated with Burn Injury and Its Relevance for Perception and Management of Pain in Burn Patients

    Directory of Open Access Journals (Sweden)

    Terence J Coderre

    2000-01-01

    Full Text Available Through the introduction of the gate control theory and various subsequent works, Ronald Melzack has inspired many investigators worldwide to realize two important facts about pain. First, incoming pain messages are subject to both negative and positive modulation, which significantly affect its perception. Second, the progression of knowledge about the basic mechanisms underlying persistent and chronic pain is critically dependent on the increased understanding of the complexity of the symptoms experienced by pain patients. The present paper examines these two very important issues in an effort to understand better the mechanisms that underlie the pain suffered by burn patients. The physiological responses to burn injury involve many different mediators and mechanisms, all of which contribute to pain perception and development of neuronal plasticity underlying short and long term changes in pain sensitivity. While experimental burn injuries in humans and animals are typically well controlled and mild, in burn victims, the severity is much more variable, and clinical care involves repeated traumas and manipulations of the injured sites. Recurrent inputs from damaged and redamaged tissue impinge on a nervous system that becomes an active participant in the initiation of changes in sensory perception and maintenance of long term sensory disturbances. Recently acquired experimental evidence on postburn hyperalgesia, central hyperexcitability and changes in opioid sensitivity provides strong support that burn patients need an analgesic approach aimed at preventing or reducing the 'neural' memory of pain, including the use of more than one treatment modality. Burn injuries offer a unique opportunity to combine experimental and clinical research to understand pain mechanisms better. Over the years, Ronald Melzack has insisted that one of the most laudable enterprises in research is to span the gap between these two often separate worlds.

  10. Plasticity and response to action observation: a longitudinal FMRI study of potential mirror neurons in patients with subacute stroke.

    Science.gov (United States)

    Brunner, Iris C; Skouen, Jan Sture; Ersland, Lars; Grüner, Renate

    2014-01-01

    Action observation has been suggested as a possible gateway to retraining arm motor function post stroke. However, it is unclear if the neuronal response to action observation is affected by stroke and if it changes during the course of recovery. To examine longitudinal changes in neuronal activity in a group of patients with subacute stroke when observing and executing a bimanual movement task. Eighteen patients were examined twice using 3-T functional magnetic resonance imaging; 1 to 2 weeks and 3 months post stroke symptom onset. Eighteen control participants were examined once. Image time series were analyzed (SPM8) and correlated with clinical motor function scores. During action observation and execution, an overlap of neuronal activation was observed in the superior and inferior parietal lobe, precentral gyrus, insula, and inferior temporal gyrus in both control participants and patients (P < .05; false discovery rate corrected). The neuronal response in the observation task increased from 1 to 2 weeks to 3 months after stroke. Most activated clusters were observed in the inferior temporal gyrus, the thalamus and movement-related areas, such as the premotor, supplementary and motor cortex (BA4, BA6). Increased activation of cerebellum and premotor area correlated with improved arm motor function. Most patients had regained full movement ability. Plastic changes in neurons responding to action observation and action execution occurred in accordance with clinical recovery. The involvement of motor areas when observing actions early and later after stroke may constitute a possible access to the motor system. © The Author(s) 2014.

  11. Boron effect on stainless steel plasticity under hot deformation

    International Nuclear Information System (INIS)

    Bulat, S.I.; Kardonov, B.A.; Sorokina, N.A.

    1978-01-01

    The effect of boron on plasticity of stainless steels at temperatures of hot deformation has been studied at three levels of alloying, i.e. 0-0.01% (micro-alloying or modifying), 0.01-0.02% (low alloying) and 0.02-2.0% (high alloying). Introduction of 0.001-0.005% of boron increases hot plasticity of both low and high carbon stainless steels due to decrease in grain size and strengthening of grain boundaries. Microalloying by boron has a positive effect at temperatures below 1200-1220 deg C. At higher temperatures, particularly when its content exceeds 0.008%, boron deteriorates plasticity by increasing the size of grains and weakening their boundaries. 0.1-2% boron strengthen the stainless steel and dectease its plasticity

  12. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  13. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Science.gov (United States)

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  14. Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome

    Science.gov (United States)

    Pastuzyn, Elissa D.; Shepherd, Jason D.

    2017-01-01

    Angelman syndrome (AS) is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am−/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am−/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am−/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am−/p+ mice, which may underlie the cognitive deficits observed in AS. PMID:28804447

  15. Activity-Dependent Arc Expression and Homeostatic Synaptic Plasticity Are Altered in Neurons from a Mouse Model of Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    Elissa D. Pastuzyn

    2017-07-01

    Full Text Available Angelman syndrome (AS is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the UBE3A gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate. Using multiple approaches, we found no evidence for a physical interaction between Arc and Ube3A in vivo. Nonetheless, activity-induced subcellular distribution of Arc is altered in brains from Ube3am−/p+ mice, with abnormal concentration of Arc at synapses. Furthermore, although activation of Arc transcription is normal, the stability of Arc protein is enhanced in dendrites of hippocampal neurons cultured from Ube3am−/p+ mice. Finally, homeostatic synaptic scaling of surface AMPA receptors does not occur in Ube3am−/p+ hippocampal neurons, reminiscent of neurons that lack Arc protein. Although Ube3A does not seem to bind Arc in a canonical E3 ligase-substrate interaction, Arc-dependent synaptic plasticity is still altered in Ube3am−/p+ mice, which may underlie the cognitive deficits observed in AS.

  16. Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area Dopamine Neurons.

    Science.gov (United States)

    Hausknecht, Kathryn; Shen, Ying-Ling; Wang, Rui-Xiang; Haj-Dahmane, Samir; Shen, Roh-Yu

    2017-06-14

    Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old.We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingly, eCB-LTD in PE animals was rescued by metabotropic glutamate receptor I activation, suggesting that PE did not impair the synthesis/release of eCBs. In contrast, eCB-LTD in PE animals was not rescued by increasing presynaptic activity, which actually led to LTP in PE animals, whereas LTD was still observed in controls. This result shows that the regulation of excitatory synaptic plasticity is fundamentally altered in PE animals. Together, PE leads to impaired eCB-LTD at the excitatory synapses of VTA DA neurons primarily due to CB1 receptor downregulation. This effect could contribute to enhanced LTP and the maintenance of augmented excitatory synaptic strength in VTA DA neurons and increased addiction risk after PE. SIGNIFICANCE STATEMENT Prenatal ethanol exposure (PE) is among many adverse developmental factors known to increase drug addiction risk. Increased excitatory synaptic strength in VTA DA neurons is a critical cellular mechanism for addiction risk. Our

  17. Spike-timing-dependent plasticity enhanced synchronization transitions induced by autapses in adaptive Newman-Watts neuronal networks.

    Science.gov (United States)

    Gong, Yubing; Wang, Baoying; Xie, Huijuan

    2016-12-01

    In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate A p of STDP and become strongest at a certain A p value, and the A p value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when A p increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Artificial neuron operations and spike-timing-dependent plasticity using memristive devices for brain-inspired computing

    Science.gov (United States)

    Marukame, Takao; Nishi, Yoshifumi; Yasuda, Shin-ichi; Tanamoto, Tetsufumi

    2018-04-01

    The use of memristive devices for creating artificial neurons is promising for brain-inspired computing from the viewpoints of computation architecture and learning protocol. We present an energy-efficient multiplier accumulator based on a memristive array architecture incorporating both analog and digital circuitries. The analog circuitry is used to full advantage for neural networks, as demonstrated by the spike-timing-dependent plasticity (STDP) in fabricated AlO x /TiO x -based metal-oxide memristive devices. STDP protocols for controlling periodic analog resistance with long-range stability were experimentally verified using a variety of voltage amplitudes and spike timings.

  19. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang; Deng, Bin; Wei, Xile

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  20. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn; Deng, Bin; Wei, Xile [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient for the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.

  1. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Science.gov (United States)

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  2. Structural organization of procerebrums of terrestrial molluscs : Characteristics of neuronal pattern, plasticity, and age peculiarities

    NARCIS (Netherlands)

    Zaitseva, OV

    2000-01-01

    In terrestrial snails and slugs, the presence of five types of neurons has been shown: typical granular, horizontal, stellate, apical, and basal cells. A peculiarity of procerebrum neurons is a loop-like segment of the basal process. Granular cells have been established to spread both as cell

  3. Regulation of neuromodulator receptor efficacy--implications for whole-neuron and synaptic plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2004-04-01

    Membrane receptors for neuromodulators (NM) are highly regulated in their distribution and efficacy-a phenomenon which influences the individual cell's response to central signals of NM release. Even though NM receptor regulation is implicated in the pharmacological action of many drugs, and is also known to be influenced by various environmental factors, its functional consequences and modes of action are not well understood. In this paper we summarize relevant experimental evidence on NM receptor regulation (specifically dopamine D1 and D2 receptors) in order to explore its significance for neural and synaptic plasticity. We identify the relevant components of NM receptor regulation (receptor phosphorylation, receptor trafficking and sensitization of second-messenger pathways) gained from studies on cultured cells. Key principles in the regulation and control of short-term plasticity (sensitization) are identified, and a model is presented which employs direct and indirect feedback regulation of receptor efficacy. We also discuss long-term plasticity which involves shifts in receptor sensitivity and loss of responsivity to NM signals. Finally, we discuss the implications of NM receptor regulation for models of brain plasticity and memorization. We emphasize that a realistic model of brain plasticity will have to go beyond Hebbian models of long-term potentiation and depression. Plasticity in the distribution and efficacy of NM receptors may provide another important source of functional plasticity with implications for learning and memory.

  4. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    Science.gov (United States)

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  5. A role of TARPs in the expression and plasticity of calcium-permeable AMPARs: evidence from cerebellar neurons and glia.

    Science.gov (United States)

    Bats, Cécile; Farrant, Mark; Cull-Candy, Stuart G

    2013-11-01

    The inclusion of GluA2 subunits has a profound impact on the channel properties of AMPA receptors (AMPARs), in particular rendering them impermeable to calcium. While GluA2-containing AMPARs are the most abundant in the central nervous system, GluA2-lacking calcium-permeable AMPARs are also expressed in wide variety of neurons and glia. Accumulating evidence suggests that the dynamic control of the GluA2 content of AMPARs plays a critical role in development, synaptic plasticity, and diverse neurological conditions ranging from ischemia-induced brain damage to drug addiction. It is thus important to understand the molecular mechanisms involved in regulating the balance of AMPAR subtypes, particularly the role of their co-assembled auxiliary subunits. The discovery of transmembrane AMPAR regulatory proteins (TARPs), initially within the cerebellum, has transformed the field of AMPAR research. It is now clear that these auxiliary subunits play a key role in multiple aspects of AMPAR trafficking and function in the brain. Yet, their precise role in AMPAR subtype-specific regulation has only recently received particular attention. Here we review recent findings on the differential regulation of calcium-permeable (CP-) and -impermeable (CI-) AMPARs in cerebellar neurons and glial cells, and discuss the critical involvement of TARPs in this process. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Spike timing rigidity is maintained in bursting neurons under pentobarbital-induced anesthetic conditions

    Directory of Open Access Journals (Sweden)

    Risako Kato

    2016-11-01

    Full Text Available Pentobarbital potentiates γ-aminobutyric acid (GABA-mediated inhibitory synaptic transmission by prolonging the open time of GABAA receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo. To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT, which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (> 5 Hz and bursting were classified as HFB neurons (n = 10, and those with low spontaneous firing frequency (< 10 Hz and without bursting were classified as non-HFB neurons (n = 48. Pentobarbital injection (30 mg/kg reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval. Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABAA receptor-mediated regulation of cortical activities. Whole-cell patch

  7. Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.

    Science.gov (United States)

    Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu; Dietrich, Marcelo O; Yada, Toshihiko; Simonds, Stephanie E; Cowley, Michael A; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L

    2017-08-01

    POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.

  8. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    Science.gov (United States)

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  9. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons.

    Science.gov (United States)

    Yamakawa, Hidekuni; Cheng, Jemmie; Penney, Jay; Gao, Fan; Rueda, Richard; Wang, Jun; Yamakawa, Satoko; Kritskiy, Oleg; Gjoneska, Elizabeta; Tsai, Li-Huei

    2017-08-08

    The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Apteronotus leptorhynchus.

    Science.gov (United States)

    Zupanc, Günther K H

    2017-01-01

    The involvement of glial cells in the regulation of physiological functions is being increasingly recognized, yet their role in plasticity of neural oscillators has remained largely elusive. An excellent model system to address the latter function is the pacemaker nucleus of the weakly electric fish, Apteronotus leptorhynchus . This brainstem oscillator drives the fish's electric organ discharge in a one-to-one fashion, with median frequencies of 880 Hz in males and 740 Hz in females. Morphometric analysis of the pacemaker nucleus has shown that astrocytes outnumber mature neurons seven-fold, and oscillator neurons even 200-fold. A similar dominance of astrocytes occurs among the adult-born cells that differentiate into glia and neurons. The astrocytes form a dense meshwork of cells interconnected by gap junctions. The degree of association of astrocytic fibers with the neural oscillator cells, and the gap-junction coupling between individual astrocytes, exhibit a sexual dimorphism, which parallels the sexual dimorphisms in the output frequency of the pacemaker nucleus, and ultimately in the electric organ discharge of the fish. It is hypothesized that the dynamics in astroglial structure mediate differences in the capacity to buffer potassium, which increases during the generation of action potentials. These differences, in turn, affect the excitability of the neural oscillator cells, and thus the output frequency of the pacemaker nucleus. Comparison of the pacemaker nucleus with other brain oscillators suggests that modulation of the output activity is one of the chief functions of the interaction of glia with the neural oscillator cells.

  11. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    Science.gov (United States)

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  12. Spike Timing Rigidity Is Maintained in Bursting Neurons under Pentobarbital-Induced Anesthetic Conditions.

    Science.gov (United States)

    Kato, Risako; Yamanaka, Masanori; Yokota, Eiko; Koshikawa, Noriaki; Kobayashi, Masayuki

    2016-01-01

    Pentobarbital potentiates γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission by prolonging the open time of GABA A receptors. However, it is unknown how pentobarbital regulates cortical neuronal activities via local circuits in vivo . To examine this question, we performed extracellular unit recording in rat insular cortex under awake and anesthetic conditions. Not a few studies apply time-rescaling theorem to detect the features of repetitive spike firing. Similar to these methods, we define an average spike interval locally in time using random matrix theory (RMT), which enables us to compare different activity states on a universal scale. Neurons with high spontaneous firing frequency (>5 Hz) and bursting were classified as HFB neurons ( n = 10), and those with low spontaneous firing frequency (Pentobarbital injection (30 mg/kg) reduced firing frequency in all HFB neurons and in 78% of non-HFB neurons. RMT analysis demonstrated that pentobarbital increased in the number of neurons with repulsion in both HFB and non-HFB neurons, suggesting that there is a correlation between spikes within a short interspike interval (ISI). Under awake conditions, in 50% of HFB and 40% of non-HFB neurons, the decay phase of normalized histograms of spontaneous firing were fitted to an exponential function, which indicated that the first spike had no correlation with subsequent spikes. In contrast, under pentobarbital-induced anesthesia conditions, the number of non-HFB neurons that were fitted to an exponential function increased to 80%, but almost no change in HFB neurons was observed. These results suggest that under both awake and pentobarbital-induced anesthetized conditions, spike firing in HFB neurons is more robustly regulated by preceding spikes than by non-HFB neurons, which may reflect the GABA A receptor-mediated regulation of cortical activities. Whole-cell patch-clamp recording in the IC slice preparation was performed to compare the regularity of

  13. Network architecture underlying maximal separation of neuronal representations

    Directory of Open Access Journals (Sweden)

    Ron A Jortner

    2013-01-01

    Full Text Available One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism’s surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe–mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon-cells, and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network-parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a way to easily construct ecologically meaningful representations from this code.

  14. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  15. EXPERIMETAL MICRONEUROSURGERY OF THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM IN THE STUDY OF THE NEURONAL AND GLIAL TROPHISM AND PLASTICITY

    Directory of Open Access Journals (Sweden)

    Gerson Chadi

    1998-01-01

    Full Text Available Trauma and neurodegenerative diseases commit the nervous system. After an axotomy or nerve injury in the peripheral nervous system the regeneration of the nerve fibers and reinervation of the target are seen. In central nervous system these events are restrictive, however their occurrence are related to the state of glial reaction and the synthesis of neurotrophic factors. Basic fibroblast growth factor (bFGF has been considered an important trophic factor for neurons and astrocytes of many central nervous system regions. In this study rats were submitted to one of following neurosurgery procedures: callosotomy, pyramidectomy or complete transection of hypoglossal nerve (XII. Sham operations were made in control animals. Seven days later animals were sacrificed and their brains processed for immunohistochemistry. Coronal sections were taken from the central nervous system and incubated with antisera against the glial fibrillary acidic protein (GFAP or neurofilament (NF, markers for astrocyte and neuronal cell body and fibers, respectively, as well as with the antiserum against the bFGF. The degree of the labelling was quantified with computer assisted stereological methods. The analysis of the NF immunoreactivity revealed a disappearance of fibers in the white matter distal to the pyramidectomy and callosotomy, however no disappearance of NF immunoreactive neurons was found in the XII nucleus following axotomy. These changes was accompanied by a massive astrocytic reaction. The reactive astrocytes synthesized increased amounts of bFGF. These findings suggest that glial reaction synthesizing neurotrophic factors may influence the wound and repair after mechanical lesions of central nervous and subsequent neuronal trophism and plasticity which may be relevant to the regenerative process of the nervous tissue

  16. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    Science.gov (United States)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  17. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    Science.gov (United States)

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  18. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance

    NARCIS (Netherlands)

    Boess, F.G.; Hendrix, M.; Staay, van der F.J.; Erb, C.; Schreiber, R.; Staveren, W.C.G.; Vente, de J.; Prikaerts, J.; Blokland, A.; Koenig, G.

    2004-01-01

    An essential element of the signalling cascade leading to synaptic plasticity is the intracellular second messenger molecule guanosine 3¿,5¿-cyclic monophosphate (cGMP). Using the novel, potent, and selective inhibitor Bay 60-7550, we show that the enzyme 3¿,5¿-cyclic nucleotide phosphodiesterase

  19. Loss of GPRC5B impairs synapse formation of Purkinje cells with cerebellar nuclear neurons and disrupts cerebellar synaptic plasticity and motor learning.

    Science.gov (United States)

    Sano, Takamitsu; Kohyama-Koganeya, Ayako; Kinoshita, Masami O; Tatsukawa, Tetsuya; Shimizu, Chika; Oshima, Eriko; Yamada, Kazuyuki; Le, Tung Dinh; Akagi, Takumi; Tohyama, Koujiro; Nagao, Soichi; Hirabayashi, Yoshio

    2018-02-23

    GPRC5B is a membrane glycoprotein robustly expressed in mouse cerebellar Purkinje cells (PCs). Its function is unknown. In Gprc5b -/- mice that lack GPRC5B, PCs develop distal axonal swellings in deep cerebellar nuclei (DCN). Numerous misshapen mitochondria, which generated excessive amounts of reactive oxygen species (ROS), accumulated in these distal axonal swellings. In primary cell cultures of Gprc5b -/- PCs, pharmacological reduction of ROS prevented the appearance of such swellings. To examine the physiological role of GPRC5B in PCs, we analyzed cerebellar synaptic transmission and cerebellum-dependent motor learning in Gprc5b -/- mice. Patch-clamp recordings in cerebellum slices in vitro revealed that the induction of long-term depression (LTD) at parallel fiber-PC synapses was normal in adult Gprc5b -/- mice, whereas the induction of long-term potentiation (LTP) at mossy fiber-DCN neuron synapses was attenuated in juvenile Gprc5b -/- mice. In Gprc5b -/- mice, long-term motor learning was impaired in both the rotarod test and the horizontal optokinetic response eye movement (HOKR) test. These observations suggest that GPRC5B plays not only an important role in the development of distal axons of PCs and formation of synapses with DCN neurons, but also in the synaptic plasticity that underlies long-term motor learning. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.

  20. Clay behaviour under thermal gradients elastic and plastic strains

    International Nuclear Information System (INIS)

    Pintado, Xavier; Autio, Jorma; Punkkinen, Olli

    2010-01-01

    Document available in extended abstract form only. The nuclear waste repositories will generate strong temperature gradients at the clay barrier. The heat and water transport generate volume change in the clay. An experimental work is proposed here. The clay reference is the MX-80. The test device imposes a fixed heat flow in one side of the sample and maintains constant the temperature on the other side. Two samples are tested for symmetry. The samples are unconfined and the total mass of water remains constant. This situation creates a strong thermal gradient in the samples. The final radial strains in some places of the sample, the total vertical strain and the water content distribution will be measured just at the end of the test and some weeks later in order to distinguish the elastic strains from the plastic strains. The test period mustn't be longer than two weeks because a large quantity of water loses through the rubber membrane and the heads of the sample. The maximum temperature reached in the cooper is 90 degrees because with higher temperature, the rubber membrane is damaged. This test is already simulated by a numerical code. Thermal, thermo-hydraulic and thermo-hydro-mechanical analyses are being done. These analyses allow studying the different fluxes inside the sample and its quantification. Water content distribution is compared with the water content calculated from the reference parameters in the clay. The water distribution and the change of diameter after the test will also be studied. This experimental work will allow to know what is the percentage of the strains elastic or plastic and check the mechanical model. The experimental diameter change is compared with the diameter change calculated from the reference parameters of the clay. (authors)

  1. Oligo cyclic plastic fatigue of Zircaloy-4 under vacuum and in iodinated methanol

    International Nuclear Information System (INIS)

    Beloucif, A.

    1995-01-01

    Our study was bound to the Zircaloy-4 fuel can damage in PWR type reactors. The topic was the damage mechanisms of Zircaloy-4 by oligo-cyclic plastic fatigue in inert atmosphere and in iodinated methanol. The oligo-cyclic plastic fatigue tests, under vacuum, were performed with steady plastic deformation and deformation speed. The corrosion fatigue tests in iodinated methanol put to the fore one obvious harmful part of iodine on Zircaloy-4 resistance to cyclic solicitations. The observations proved the existence of a very strong synergic effect between cyclic mechanical damage and corrosion. (MML). 84 refs., 117 figs., 3 tabs

  2. Modulation of neuronal plasticity following chronic concomitant administration of the novel antipsychotic lurasidone with the mood stabilizer valproic acid.

    Science.gov (United States)

    Calabrese, F; Luoni, A; Guidotti, G; Racagni, G; Fumagalli, F; Riva, M A

    2013-03-01

    Combinatory therapy is widely used in psychiatry owing to the possibility that drugs with different mechanisms of action may synergize to improve functions deteriorated in schizophrenia, bipolar disorders, and major depression. While combinatory strategies rely on receptor and synaptic mechanisms, it should also be considered that two drugs may also "interact" on the long-term to determine more robust changes in neuronal plasticity, which represents a downstream target important for functional recovery. The aim of the study is to investigate neuroadaptive changes set in motion by chronic concomitant administration of the novel antipsychotic lurasidone and the mood stabilizer valproate. Animals were chronically treated with lurasidone, valproate, or the combination of the two drugs and killed 24 h after the last injection to evaluate alterations of different measures of neuronal plasticity such as the neurotrophin brain-derived neurotrophic factor (BDNF), the immediate early gene Activity-regulated cytoskeletal associated protein, and the epigenetic regulators HDAC 1, 2, and 5 in dorsal and ventral hippocampus. The results suggest that coadministration of lurasidone and valproate produces, when compared to the single drugs, a larger increase in the expression of BDNF in the ventral hippocampus, through the regulation of specific neurotrophin transcripts. We also found that the histone deacetylases were regulated by the drug combination, suggesting that some of the transcriptional changes may be sustained by epigenetic mechanisms. Our results suggest that the beneficial effects associated with combinatory treatment between a second-generation antipsychotic and a mood stabilizer could result from the ability to modulate neuroplastic molecules, whose expression and function is deteriorated in different psychiatric conditions.

  3. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    International Nuclear Information System (INIS)

    Moral, A. del; Azanza, María J.

    2015-01-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca 2+ Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B 0 ≅0.2–15 mT) AC-MF of frequency f M =50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca 2+ Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons

  4. A model explaining synchronization of neuron bioelectric frequency under weak alternating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moral, A. del, E-mail: delmoral@unizar.es [Laboratorio de Magnetismo, Departamento de Física de Materia Condensada and Instituto de Ciencia de Materiales, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain); Azanza, María J., E-mail: mjazanza@unizar.es [Laboratorio de Magnetobiología, Departamento de Anatomía e Histología, Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza (Spain); Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Madrid (Spain)

    2015-03-01

    A biomagnetic-electrical model is presented that explains rather well the experimentally observed synchronization of the bioelectric potential firing rate (“frequency”), f, of single unit neurons of Helix aspersa mollusc under the application of extremely low frequency (ELF) weak alternating (AC) magnetic fields (MF). The proposed model incorporates to our widely experimentally tested model of superdiamagnetism (SD) and Ca{sup 2+} Coulomb explosion (CE) from lipid (LP) bilayer membrane (SD–CE model), the electrical quadrupolar long range interaction between the bilayer LP membranes of synchronized neuron pairs, not considered before. The quadrupolar interaction is capable of explaining well the observed synchronization. Actual extension of our SD–CE-model shows that the neuron firing frequency field, B, dependence becomes not modified, but the bioelectric frequency is decreased and its spontaneous temperature, T, dependence is modified. A comparison of the model with synchronization experimental results of pair of neurons under weak (B{sub 0}≅0.2–15 mT) AC-MF of frequency f{sub M}=50 Hz is reported. From the deduced size of synchronized LP clusters under B, is suggested the formation of small neuron networks via the membrane lipid correlation. - Highlights: • Neuron pair synchronization under low frequency alternating (AC) magnetic field (MF). • Superdiamagnetism and Ca{sup 2+} Coulomb explosion for AC MF effect in synchronized frequency. • Membrane lipid electrical quadrupolar pair interaction as synchronization mechamism. • Good agreement of model with electrophysiological experiments on mollusc Helix neurons.

  5. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes

    OpenAIRE

    Vincent, Grégoire

    2006-01-01

    Background and Aims The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Methods Seedlings of four tropical tree species with contrasting light requirements (...

  6. Plane strain bending under tension as an ideal flow process in pressure – dependent plasticity

    Directory of Open Access Journals (Sweden)

    Alexandrov Sergei

    2017-01-01

    Full Text Available Ideal plastic flows are those for which all material elements follow minimum work paths. Ideal flow solutions are widely used as the basis for inverse methods for the preliminary design of metalworking processes. The present paper provides the first ideal flow solution in pressure-dependent plasticity. In particular, the process of bending under tension is considered and it is shown that there are relations between the bending moment and tensile force that result in ideal flow paths.

  7. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    International Nuclear Information System (INIS)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide

    1998-01-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10 -3 to 10 -5 s -1 . Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  8. Is the human mirror neuron system plastic? Evidence from a transcranial magnetic stimulation study.

    Science.gov (United States)

    Mehta, Urvakhsh Meherwan; Waghmare, Avinash V; Thirthalli, Jagadisha; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N

    2015-10-01

    Virtual lesions in the mirror neuron network using inhibitory low-frequency (1Hz) transcranial magnetic stimulation (TMS) have been employed to understand its spatio-functional properties. However, no studies have examined the influence of neuro-enhancement by using excitatory high-frequency (20Hz) repetitive transcranial magnetic stimulation (HF-rTMS) on these networks. We used three forms of TMS stimulation (HF-rTMS, single and paired pulse) to investigate whether the mirror neuron system facilitates the motor system during goal-directed action observation relative to inanimate motion (motor resonance), a marker of putative mirror neuron activity. 31 healthy individuals were randomized to receive single-sessions of true or sham HF-rTMS delivered to the left inferior frontal gyrus - a component of the human mirror system. Motor resonance was assessed before and after HF-rTMS using three TMS cortical reactivity paradigms: (a) 120% of resting motor threshold (RMT), (b) stimulus intensity set to evoke motor evoked potential of 1-millivolt amplitude (SI1mV) and (c) a short latency paired pulse paradigm. Two-way RMANOVA showed a significant group (true versus sham) X occasion (pre- and post-HF-rTMS motor resonance) interaction effect for SI1mV [F(df)=6.26 (1, 29), p=0.018] and 120% RMT stimuli [F(df)=7.01 (1, 29), p=0.013] indicating greater enhancement of motor resonance in the true HF-rTMS group than the sham-group. This suggests that HF-rTMS could adaptively modulate properties of the mirror neuron system. This neuro-enhancement effect is a preliminary step that can open translational avenues for novel brain stimulation therapeutics targeting social-cognition deficits in schizophrenia and autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bi-directionally protective communication between neurons and astrocytes under ischemia.

    Science.gov (United States)

    Wu, Xiao-Mei; Qian, Christopher; Zhou, Yu-Fu; Yan, Yick-Chun; Luo, Qian-Qian; Yung, Wing-Ho; Zhang, Fa-Li; Jiang, Li-Rong; Qian, Zhong Ming; Ke, Ya

    2017-10-01

    The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Bi-directionally protective communication between neurons and astrocytes under ischemia

    Directory of Open Access Journals (Sweden)

    Xiao-Mei Wu

    2017-10-01

    Full Text Available The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.

  11. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  12. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change.

    Science.gov (United States)

    Aspinwall, Michael J; Loik, Michael E; Resco de Dios, Victor; Tjoelker, Mark G; Payton, Paxton R; Tissue, David T

    2015-09-01

    Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions. © 2014 John Wiley & Sons Ltd.

  13. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish, Apteronotus leptorhynchus

    Directory of Open Access Journals (Sweden)

    Günther K. H. Zupanc

    2017-12-01

    Full Text Available The involvement of glial cells in the regulation of physiological functions is being increasingly recognized, yet their role in plasticity of neural oscillators has remained largely elusive. An excellent model system to address the latter function is the pacemaker nucleus of the weakly electric fish, Apteronotus leptorhynchus. This brainstem oscillator drives the fish's electric organ discharge in a one-to-one fashion, with median frequencies of 880 Hz in males and 740 Hz in females. Morphometric analysis of the pacemaker nucleus has shown that astrocytes outnumber mature neurons seven-fold, and oscillator neurons even 200-fold. A similar dominance of astrocytes occurs among the adult-born cells that differentiate into glia and neurons. The astrocytes form a dense meshwork of cells interconnected by gap junctions. The degree of association of astrocytic fibers with the neural oscillator cells, and the gap-junction coupling between individual astrocytes, exhibit a sexual dimorphism, which parallels the sexual dimorphisms in the output frequency of the pacemaker nucleus, and ultimately in the electric organ discharge of the fish. It is hypothesized that the dynamics in astroglial structure mediate differences in the capacity to buffer potassium, which increases during the generation of action potentials. These differences, in turn, affect the excitability of the neural oscillator cells, and thus the output frequency of the pacemaker nucleus. Comparison of the pacemaker nucleus with other brain oscillators suggests that modulation of the output activity is one of the chief functions of the interaction of glia with the neural oscillator cells.

  14. Rapid loss of behavioral plasticity and immunocompetence under intense sexual selection.

    Science.gov (United States)

    van Lieshout, Emile; McNamara, Kathryn B; Simmons, Leigh W

    2014-09-01

    Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male- and female-biased experimental evolution lines to male- and female-biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female-biased lines kicked sooner after exposure to male-biased sociosexual contexts, in male-biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male-biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and an Experimental Ensemble Approach.

    Science.gov (United States)

    1983-06-01

    in pamp/cm has been computed by Agin (1964) from the equations of Hodgkin and Huxley (1952) to give the response frequency (pulses/sec) of an axon...J.- Y . (1981) lumunocytochem- ical localization of glutamic acid decarboxylase in monkey striate cortex. Nature2i2.: 605-607. Hodgkin . A. L. and...used to express the output y of a neuron to its inputs zi (1). The coefficients ei i_____i___i __ i_______’____’_____,________’__’___"___i 10 are the

  16. Neuronal plasticity and astrocytic reaction in Down syndrome and Alzheimer disease

    DEFF Research Database (Denmark)

    Jørgensen, Ole Steen; Brooksbank, B W; Balázs, R

    1990-01-01

    Proteins relatively enriched in neurons (neural cell adhesion molecule (NCAM) and D3-protein) or in glia (glutamine synthetase, glial fibrillary acidic protein (GFAP) and S100) were measured by quantitative immunochemical methods in autopsy samples of the cerebral cortex of subjects with Alzheimer...... disease (AD) and adults with Down syndrome (DS), the latter also presenting manifest signs of Alzheimer type of neuropathology. The trend of changes was similar in AD and DS, but more marked in the latter. The biochemical make-up of astrocytes was differentially affected: in both the frontal and DS...

  17. Activity-Dependent NPAS4 Expression and the Regulation of Gene Programs Underlying Plasticity in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    José Fernando Maya-Vetencourt

    2013-01-01

    Full Text Available The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.

  18. Research on Transient Liquid Phase Diffusion Bonding of Steel Sandwich Panels Under Small Plastic Deformation

    Science.gov (United States)

    Li, H.; Li, Z. X.

    2008-12-01

    Plastic deformation was newly introduced in transient liquid phase (TLP) diffusion bonding of steel sandwich panels. The effect of plastic deformation on bonding strength was investigated through lab experiments. It was assumed that three factors, including newly generated metal surface area, deformation heat, and lattice distortion, contribute to the acceleration of interface atoms diffusion and increase of diffusion coefficients. A numerical model of isothermal solidification time was developed for TLP bonding process under plastic deformation and applied to carbon steel sandwich panels bonding with copper interlayer. A reasonable isothermal solidification time was obtained when an effective diffusion coefficient was used. Based on lab experiments, the effects of plastic deformation on interlayer film thickness and isothermal solidification time were studied through theoretical calculation with the new model. The evolution of interlayer film thickness indicates a good agreement between the calculation and experimental measurement. The results show that the isothermal solidification time is obviously reduced due to the effect of plastic deformation. Furthermore, a new steel sandwich cooling panel for heat exchanger was fabricated by TLP diffusion bonding under 13.1% plastic deformation. The test results suggest that a steel sandwich panel of inequidistant fin structure can provide enhanced heat transfer efficiency.

  19. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    Directory of Open Access Journals (Sweden)

    Paulo E. R. Marchiori

    2017-12-01

    Full Text Available The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa; intermediate (Ψm reached -65 and -90 kPa at the end of experimental period and low (Ψm reached values lower than -150 kPa. Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants.

  20. Layer-Dependent Short-Term Synaptic Plasticity Between Excitatory Neurons in the C2 Barrel Column of Mouse Primary Somatosensory Cortex.

    Science.gov (United States)

    Lefort, Sandrine; Petersen, Carl C H

    2017-07-01

    Neurons process information through spatiotemporal integration of synaptic input. Synaptic transmission between any given pair of neurons is typically a dynamic process with presynaptic action potentials (APs) evoking depressing or facilitating postsynaptic potentials when presynaptic APs occur within hundreds of milliseconds of each other. In order to understand neocortical function, it is therefore important to investigate such short-term synaptic plasticity at synapses between different types of neocortical neurons. Here, we examine short-term synaptic dynamics between excitatory neurons in different layers of the mouse C2 barrel column through in vitro whole-cell recordings. We find layer-dependent short-term plasticity, with depression being dominant at many synaptic connections. Interestingly, however, presynaptic layer 2 neurons predominantly give rise to facilitating excitatory synaptic output at short interspike intervals of 10 and 30 ms. Previous studies have found prominent burst firing of excitatory neurons in supragranular layers of awake mice. The facilitation we observed in the synaptic output of layer 2 may, therefore, be functionally relevant, possibly serving to enhance the postsynaptic impact of burst firing. © The Author 2017. Published by Oxford University Press.

  1. Neuronal substrates underlying stress resilience and susceptibility in rats

    DEFF Research Database (Denmark)

    Febbraro, Fabia; Svenningsen, Katrine; Tran, Thao Phuong

    2017-01-01

    are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. OBJECTIVES: Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little...... attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c...... ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic...

  2. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel

    2014-05-01

    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  3. Adult Hippocampal Neurogenesis in Parkinson’s Disease: Impact on Neuronal Survival and Plasticity

    Directory of Open Access Journals (Sweden)

    Martin Regensburger

    2014-01-01

    Full Text Available In Parkinson’s disease (PD and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.

  4. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit.

    Science.gov (United States)

    Guegan, Thomas; Cutando, Laura; Ayuso, Eduard; Santini, Emanuela; Fisone, Gilberto; Bosch, Fatima; Martinez, Albert; Valjent, Emmanuel; Maldonado, Rafael; Martin, Miquel

    2013-02-01

    Palatability enhances food intake by hedonic mechanisms that prevail over caloric necessities. Different studies have demonstrated the role of endogenous cannabinoids in the mesocorticolimbic system in controlling food hedonic value and consumption. We hypothesize that the endogenous cannabinoid system could also be involved in the development of food-induced behavioral alterations, such as food-seeking and binge-eating, by a mechanism that requires neuroplastic changes in the brain reward pathway. For this purpose, we evaluated the role of the CB1 cannabinoid receptor (CB1-R) in the behavioral and neuroplastic changes induced by operant training for standard, highly caloric or highly palatable isocaloric food using different genetics, viral and pharmacological approaches. Neuroplasticity was evaluated by measuring changes in dendritic spine density in neurons previously labeled with the dye DiI. Only operant training to obtain highly palatable isocaloric food induced neuroplastic changes in neurons of the nucleus accumbens shell and prefrontal cortex that were associated to changes in food-seeking behavior. These behavioral and neuroplastic modifications induced by highly palatable isocaloric food were dependent on the activity of the CB1-R. Neuroplastic changes induced by highly palatable isocaloric food are similar to those produced by some drugs of abuse and may be crucial in the alteration of food-seeking behavior leading to overweight and obesity. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  5. Digest: Plants adapt under attack: genotypic selection and phenotypic plasticity under herbivore pressure.

    Science.gov (United States)

    Hawkins, Nichola J

    2018-03-31

    Plant species adapt to changing environmental conditions through phenotypic plasticity and natural selection. Agrawal et al. (2018) found that dandelions responded to the presence of insect pests by producing higher levels of defensive compounds. This defensive response resulted both from phenotypic plasticity, with individual plants' defenses triggered by insect attack, and from evolution by natural selection acting on genetic variation in the plant population. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  6. Triatominae as a model of morphological plasticity under ecological pressure

    OpenAIRE

    Dujardin, Jean-Pierre; Panzera, P.; Schofield, C.J.

    1999-01-01

    The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of #Triatominae$, i.e. their monophyletic or polyphyletic origin, two important questions arise (i) to what extent is the morphologically-based classification valid for assessing phylogenetic relationships ? and (ii) what are the main mechanisms underlying speciation in #Triatominae...

  7. Role of DOR in neuronal plasticity changes promoted by food-seeking behaviour.

    Science.gov (United States)

    Mancino, Samantha; Mendonça-Netto, Sueli; Martín-García, Elena; Maldonado, Rafael

    2017-09-01

    Several lines of evidence support that food overconsumption may be related to the role of the endogenous opioid system in the control of food palatability. The opioid system, and particularly the delta opioid receptor (DOR), plays a crucial role in the regulation of food rewarding properties. In our study, we used operant conditioning maintained by chocolate-flavoured pellets to investigate the role of DOR in the motivation for palatable food and the structural plasticity changes promoted by this behaviour. For this purpose, we evaluated the specific role of this receptor in the behavioural and neuroplastic changes induced by palatable food in the prefrontal cortex (PFC), hippocampus (HCP) and nucleus accumbens (NAc) in constitutive knockout (KO) mice deficient in DOR. Mutant mice and their wild-type littermates were trained to obtain chocolate-flavoured pellets on fixed ratio 1 (FR1), FR5 and progressive ratio (PR) schedule of reinforcement. No significant differences between genotypes were revealed on operant behaviour acquisition in FR1. DOR knockout mice displayed lower number of active lever-presses than wild-type mice on FR5, and a similar decrease was revealed in DOR KO mice in the breaking point during the PR. This operant training to obtain palatable food increased dendritic spine density in the PFC, HCP and NAc shell of wild-type, but these plasticity changes were abolished in DOR KO mice. Our results support the hypothesis that DOR regulates the reinforcing effects and motivation for palatable food through neuroplastic changes in specific brain reward areas. © 2016 Society for the Study of Addiction.

  8. Triatominae as a model of morphological plasticity under ecological pressure

    Directory of Open Access Journals (Sweden)

    Dujardin JP

    1999-01-01

    Full Text Available The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of Triatominae, i.e. their monophyletic or polyphyletic origin, two important questions arise (i to what extent is the morphologically-based classification valid for assessing phylogenetic relationships? and (ii what are the main mechanisms underlying speciation in Triatominae? Phenetic and genetic studies so far developed suggest that speciation in Triatominae may be a rapid process mainly driven by ecological factors.

  9. Role of nitric oxide in neuronal plasticity in the mammal central and peripheral nervous systems

    OpenAIRE

    Rodríguez Sunico, Cármen

    2009-01-01

    La lesión de un nervio periférico induce la sobre-expresión de la enzima óxido nítrico sintasa (Nos) en el nervio afectado. Este tipo de lesión, así como ciertas enfermedades neurodegenerativas, cursan con una disminución de la densidad sínáptica central junto con la expresión de novo y/o sobre-expresión de NOS neuronal (nNOS) en las motoneuronas. Dado que el óxido nítrico (NO) participa en numerosos fenómenos de plasticidad sináptica, se podría sugerir un papel del NO en procesos de El princ...

  10. Neuronal plasticity and astrocytic reaction in Down syndrome and Alzheimer disease

    DEFF Research Database (Denmark)

    Jørgensen, Ole Steen; Brooksbank, B W; Balázs, R

    1990-01-01

    disease (AD) and adults with Down syndrome (DS), the latter also presenting manifest signs of Alzheimer type of neuropathology. The trend of changes was similar in AD and DS, but more marked in the latter. The biochemical make-up of astrocytes was differentially affected: in both the frontal and DS...... were about 180% and 230% of control. The observations (normal GS and elevated levels of the other markers) might suggest that the pathological changes involve a differentiated astrocytic reaction and that the astrocytic reaction is more marked in DS than in AD. In DS the increase in S100 could...... be explained, in part, by a gene dosage effect and in part by reactive gliosis. The neuronal markers were also differentially affected. In comparison with appropriate controls, the concentration of D3-protein in frontal cortex was decreased by 24% in DS and by 14% in AD, whereas NCAM levels were...

  11. Neuronal plasticity in chronic pancreatitis is mediated via the neurturin/GFRα2 axis.

    Science.gov (United States)

    Demir, Ihsan Ekin; Wang, Kun; Tieftrunk, Elke; Giese, Nathalia A; Xing, Baocai; Friess, Helmut; Kehl, Timo; Ceyhan, Güralp O

    2012-11-01

    The glial cell line-derived neurotrophic factor (GDNF) family member neurturin (NRTN) and its receptor GFRα2 play a deciding role in the normal development of pancreatic parasympathetic innervation. In this study, we aimed at investigating the role of NRTN/GFRα2 axis in pancreatic neuropathy in human chronic pancreatitis (CP). Expression of NRTN/GFRα2 was compared between normal human pancreas (NP) and CP tissues via immunohistochemistry, immunoblotting, and quantitative RT-PCR and correlated to abdominal pain sensation. To elucidate the impact of NRTN in pancreatic neuroplasticity, neuronal phenotype and glial density were quantified via an in vitro neuroplasticity assay in dissociated newborn rat dorsal root ganglia (DRG) cultured 1) in CP tissue extracts depleted from NRTN, 2) in NP, 3) in untreated CP tissue extracts, and 4) CP extracts in which nerve growth factor, glial cell derived-neurotrophic factor, or TGF-β(1) was depleted. NRTN and GFRα2 were highly upregulated in CP, especially in intrapancreatic nerves and the extracellular matrix. CP tissue demonstrated increased amounts of mature multimeric NRTN and elevated levels of GFRα2. The noticeable neurotrophic effect of CP tissue extracts on DRG neurons was diminished upon blockade of NRTN from these extracts. However, blockade of NRTN from CP extracts did not influence the density of DRG glia cells. In conclusion, the NRTN/GFRα2 axis is activated during the course of CP and represents a major key player in the reactive neural alterations in CP. This is the first study to provide functional evidence for the contribution of neurotrophic factors to neuroplasticity in CP.

  12. Modeling Approach for Determining Equivalent Optical Constants of Plastic Shading Nets under Solar Radiation Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2012-01-01

    Full Text Available The radiative properties of several plastic shading nets were measured under natural solar radiation conditions. We found that the plastic nets behave as homogeneous translucent materials (e.g., plastic film, plastic sheets, and glass. Based on this behavior, we suggest that it is possible to treat plastic nets as translucent materials and to characterize them with equivalent optical constants (i.e., equivalent refractive indexes, neq, and equivalent extinction coefficients, σeq. Here a physical model to determine neq and σeq of plastic nets was described in analogy to homogeneous translucent materials. We examined three groups of nets based on their color (black, black-green, and beige. Each group consisted of nets with four or five different porosities. Nets of each group had almost the same texture structure. For each group, we derived an equation for neq as a function of the net porosity and determined an average value for σeq. Once values of neq and σeq were determined, the solar radiative properties of a net could then be calculated from neq and σeq for any incident angle of solar beam radiation without the need of measurements. The present model was validated by comparing the calculated with the measured radiative properties of three nets at different incident angle of solar beam radiation. The calculated radiative properties reasonably agreed with measured values.

  13. Gene Expression Patterns Underlying the Reinstatement of Plasticity in the Adult Visual System

    Directory of Open Access Journals (Sweden)

    Ettore Tiraboschi

    2013-01-01

    Full Text Available The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.

  14. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate

    Science.gov (United States)

    Liu, Minjie; Huang, Gaoshan; Feng, Ping; Guo, Qinglei; Shao, Feng; Tian, Ziao; Li, Gongjin; Wan, Qing; Mei, Yongfeng

    2017-06-01

    Silicon nanomembrane (SiNM) transistors gated by chitosan membrane were fabricated on plastic substrate to mimic synapse behaviors. The device has both a bottom proton gate (BG) and multiple side gates (SG). Electrical transfer properties of BG show hysteresis curves different from those of typical SiO2 gate dielectric. Synaptic behaviors and functions by linear accumulation and release of protons have been mimicked on this device: excitatory post-synaptic current (EPSC) and paired pulse facilitation behavior of biological synapses were mimicked and the paired-pulse facilitation index could be effectively tuned by the spike interval applied on the BG. Synaptic behaviors and functions, including short-term memory and long-term memory, were also experimentally demonstrated in BG mode. Meanwhile, spiking logic operation and logic modulation were realized in SG mode. Project supported by the National Natural Science Foundation of China (No. 51322201), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120071110025), and Science and Technology Commission of Shanghai Municipality (No. 14JC1400200).

  16. Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Thirunavukkarasu Velusamy

    2017-01-01

    Full Text Available Huntington’s disease (HD is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD.

  17. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins.

    Science.gov (United States)

    Wegner, Waja; Ilgen, Peter; Gregor, Carola; van Dort, Joris; Mott, Alexander C; Steffens, Heinz; Willig, Katrin I

    2017-09-18

    The study of proteins in dendritic processes within the living brain is mainly hampered by the diffraction limit of light. STED microscopy is so far the only far-field light microscopy technique to overcome the diffraction limit and resolve dendritic spine plasticity at superresolution (nanoscopy) in the living mouse. After having tested several far-red fluorescent proteins in cell culture we report here STED microscopy of the far-red fluorescent protein mNeptune2, which showed best results for our application to superresolve actin filaments at a resolution of ~80 nm, and to observe morphological changes of actin in the cortex of a living mouse. We illustrate in vivo far-red neuronal actin imaging in the living mouse brain with superresolution for time periods of up to one hour. Actin was visualized by fusing mNeptune2 to the actin labels Lifeact or Actin-Chromobody. We evaluated the concentration dependent influence of both actin labels on the appearance of dendritic spines; spine number was significantly reduced at high expression levels whereas spine morphology was normal at low expression.

  18. Ratcheting deformation of advanced 316 steel under creep-plasticity condition

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering

    1998-11-01

    Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)

  19. Roles and Regulation of Ketogenesis in Cultured Astroglia and Neurons Under Hypoxia and Hypoglycemia

    Directory of Open Access Journals (Sweden)

    Shinichi Takahashi

    2014-09-01

    Full Text Available Exogenous ketone bodies (KBs, acetoacetate (AA, and β-hydroxybutyrate (BHB act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal energy metabolism. Cultured neurons and astroglia were prepared from Sprague-Dawley rats. Palmitic acid (PAL and l-carnitine (LC were added to the assay medium. The 4- to 24-hr production of AA and BHB was measured using the cyclic thio-NADH method. 14C-labeled acid-soluble products (KBs and 14CO2 produced from [1-14C]PAL were also measured. l-[U-14C]lactic acid ([14C]LAC, [1-14C]pyruvic acid ([14C]PYR, or β-[1-14C]hydroxybutyric acid ([14C]BHB was used to compare the oxidative metabolism of the glycolysis end products with that of the KBs. Some cells were placed in a hypoxic chamber (1% O2. PAL and LC induced a higher production of KBs in astroglia than in neurons, while the CO2 production from PAL was less than 5% of the KB production in both astroglia and neurons. KB production in astroglia was augmented by the AMP-activated protein kinase activators, AICAR and metformin, as well as hypoxia with/without glucose. Neuronal KB production increased under hypoxia in the absence of PAL and LC. In neurons, [14C]LAC and [14C]PYR oxidation decreased after 24 hr of hypoxia, while [14C]BHB oxidation was preserved. Astroglia responds to ischemia in vitro by enhancing KB production, and astroglia-produced KBs derived from fatty acid might serve as a neuronal energy substrate for the tricarboxylic acid cycle instead of lactate, as pyruvate dehydrogenase is susceptible to ischemia.

  20. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Muhammad Rehan

    2012-01-01

    Full Text Available Synchronization of chaotic neurons under external electrical stimulation (EES is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations.

  1. Robust Synchronization of Delayed Chaotic FitzHugh-Nagumo Neurons under External Electrical Stimulation

    Science.gov (United States)

    Rehan, Muhammad; Hong, Keum-Shik

    2012-01-01

    Synchronization of chaotic neurons under external electrical stimulation (EES) is studied in order to understand information processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN) neurons under EES for incorporated parametric variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional, and the L 2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees both robust stability and robust performance and provides the L 2 bound for uncertainty rejection in the synchronization error dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN systems are provided. The results of the proposed techniques are verified through numerical simulations. PMID:23197990

  2. Gustatory Habituation in "Drosophila" Relies on "Rutabaga" (Adenylate Cyclase)-Dependent Plasticity of GABAergic Inhibitory Neurons

    Science.gov (United States)

    Paranjpe, Pushkar; Rodrigues, Veronica; VijayRaghavan, K.; Ramaswami, Mani

    2012-01-01

    In some situations, animals seem to ignore stimuli which in other contexts elicit a robust response. This attenuation in behavior, which enables animals to ignore a familiar, unreinforced stimulus, is called habituation. Despite the ubiquity of this phenomenon, it is generally poorly understood in terms of the underlying neural circuitry. Hungry…

  3. Cdk7 Is Required for Activity-Dependent Neuronal Gene Expression, Long-Lasting Synaptic Plasticity and Long-Term Memory

    Directory of Open Access Journals (Sweden)

    Guiqin He

    2017-11-01

    Full Text Available In the brain, de novo gene expression driven by learning-associated neuronal activities is critical for the formation of long-term memories. However, the signaling machinery mediating neuronal activity-induced gene expression, especially the rapid transcription of immediate-early genes (IEGs remains unclear. Cyclin-dependent kinases (Cdks are a family of serine/threonine kinases that have been firmly established as key regulators of transcription processes underling coordinated cell cycle entry and sequential progression in nearly all types of proliferative cells. Cdk7 is a subunit of transcriptional initiation factor II-H (TFIIH and the only known Cdk-activating kinase (CAK in metazoans. Recent studies using a novel Cdk7 specific covalent inhibitor, THZ1, revealed important roles of Cdk7 in transcription regulation in cancer cells. However, whether Cdk7 plays a role in the regulation of transcription in neurons remains unknown. In this study, we present evidence demonstrating that, in post-mitotic neurons, Cdk7 activity is positively correlated with neuronal activities in cultured primary neurons, acute hippocampal slices and in the brain. Cdk7 inhibition by THZ1 significantly suppressed mRNA levels of IEGs, selectively impaired long-lasting synaptic plasticity induced by 4 trains of high frequency stimulation (HFS and prevented the formation of long-term memories.

  4. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  5. Rice performance and water use efficiency under plastic mulching with drip irrigation.

    Science.gov (United States)

    He, Haibing; Ma, Fuyu; Yang, Ru; Chen, Lin; Jia, Biao; Cui, Jing; Fan, Hua; Wang, Xin; Li, Li

    2013-01-01

    Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76-52.19% under the DI treatment, by 57.16-61.02% under the FIM treatment, by 74.40-75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52-2.12 times higher than with the CF treatment, 1.35-1.89 times higher than with the FIM treatment, and 2.37-3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65-62.47% for the CF treatment and 12.07-20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity.

  6. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.

    Science.gov (United States)

    Fiumara, F; Leitinger, G; Milanese, C; Montarolo, P G; Ghirardi, M

    2005-01-01

    Short-term activity-dependent synaptic plasticity has a fundamental role in short-term memory and information processing in the nervous system. Although the neuronal circuitry controlling different behaviors of land snails of the genus Helix has been characterized in some detail, little is known about the activity-dependent plasticity of synapses between identified neurons regulating specific behavioral acts. In order to study homosynaptic activity-dependent plasticity of behaviorally relevant Helix synapses independently of heterosynaptic influences, we sought to reconstruct them in cell culture. To this aim, we first investigated in culture the factors regulating synapse formation between Helix neurons, and then we studied the short-term plasticity of in vitro-reconstructed monosynaptic connections involved in the neural control of salivary secretion and whole-body withdrawal. We found that independently of extrinsic factors, cell-cell interactions are seemingly sufficient to trigger the formation of electrical and chemical synapses, although mostly inappropriate--in their type or association--with respect to the in vivo synaptic connectivity. The presence of ganglia-derived factors in the culture medium was required for the in vitro reestablishment of the appropriate in vivo-like connectivity, by reducing the occurrence of electrical connections and promoting the formation of chemical excitatory synapses, while apparently not influencing the formation of inhibitory connections. These heat-labile factors modulated electrical and chemical synaptogenesis through distinct protein tyrosine kinase signal transduction pathways. Taking advantage of in vitro-reconstructed synapses, we have found that feeding interneuron-efferent neuron synapses and mechanosensory neuron-withdrawal interneuron synapses display multiple forms of short-term enhancement-like facilitation, augmentation and posttetanic potentiation as well as homosynaptic depression. These forms of plasticity

  7. Microstructure formation features of the V-4Ti-4Cr alloy under severe plastic deformations

    International Nuclear Information System (INIS)

    Ditenberg, I.; Tyumentsev, A.; Pinzhin, Y.P.; Potapenko, M.M.; Korotaev, A.D.; Chernov, V.M.

    2007-01-01

    Full text of publication follows: Transmission electron microscopy was used to examine the microstructure formed under severe deformations (ε≥93%) in V-4Ti-4Cr alloys rolled at room temperature. Micro-band nano-structured states and high-energy defect substructures have been detected that feature a high curvature (up to x ij ≅ 20 deg. μm -1 ) of the crystal lattice, a high density (δΘ/δr ≥ 20 deg. μm -1 ) of partial disclinations at the micro-band boundaries, and local internal stresses reaching σ ≅ E/30 (E being Young's modulus). It has been shown that important features of the micro-band structure are the prevailing reorientation of the micro-bands around type directions and the high density of large angle boundaries with reorientation vectors Θ = (50-60) deg. . It has been supposed that these features result from the plastic deformation and reorientation of the crystal lattice through mechanisms of local martensitic type reversible transformations (direct plus reverse transformations accompanied by a change of the reverse transformation system) in fields of high local stresses. The most important factors involved in the new deformation mechanism and the prerequisites to its realization are discussed, namely, the degree of phase instability of the material, the intensity of local internal stresses, and the possibility of the relaxation of these stresses by ordinary plastic flow mechanisms. Theoretical analysis of the atomic mechanisms and distortions of the above transformations has shown that the most important features of the carriers of this deformation mode are the absence of any effective obstacles, under severe deformations included, and the possibility of the high-defect structural states formed under these conditions to intensely relax. It is supposed that the combined effect of these two factors underlies the phenomenon of ultrahigh technological plasticity of the alloys under investigation: very high (practically unlimited) plastic

  8. BDNF and Schizophrenia: from Neurodevelopment to Neuronal Plasticity, Learning and Memory.

    Directory of Open Access Journals (Sweden)

    Rodrigo eNieto

    2013-06-01

    Full Text Available Brain Derived Neurotrophic Factor (BDNF is a neurotrophin that has been related not only to neurodevelopment and neuroprotection, but also to synapse regulation, learning and memory. Research focused on the neurobiology of schizophrenia has emphasized the relevance of neurodevelompental and neurotoxicity-related elements in the pathogenesis of this disease. Research focused on the clinical features of schizophrenia in the past decades has emphasized the relevance of cognitive deficits of this illness, considered a core manifestation and an important predictor for functional outcome. Variations in neurotrophins such as BDNF may have a role as part of the molecular mechanisms underlying these processes, from the neurodevelopmental alterations to the molecular mechanisms of cognitive dysfunction in patients with schizophrenia.

  9. The yield condition strongly influences the formation of Dugdale plastic strips ahead of crack tips under tensile plane stress loading conditions

    Science.gov (United States)

    Unger, David J.

    2012-11-01

    A finite element analysis indicates a good correlation between the Dugdale plastic strip model and a linear elastic/perfectly plastic material under plane stress loading conditions for a flow theory of plasticity based on the Tresca yield condition. A similar analysis under the von Mises yield condition reveals no plastic strip formation.

  10. Chromium modulates expressions of neuronal plasticity markers and glial fibrillary acidic proteins in hypoglycemia-induced brain injury.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Ali, Shakir; Sahin, Nurhan; Gencoglu, Hasan; Ozkan, Yusuf; Hayirli, Armagan; Gozel, Nevzat; Komorowski, James R

    2013-12-18

    This experiment investigated if chromium (Cr) as Cr-histidinate (CrHis) and Cr29 picolinate (CrPic) have a protective role in rats with hypoglycemia-induced brain injury, assessed by neuronal plasticity and regeneration potential. Male Sprague-Dawley rats were prospectively divided into 2 groups: control and hypoglycemic (induced by insulin administration, 15U/kg, i.p., n=56). Hypoglycemic rats were then received randomly 1) none, 2) dextrose (on the day of sampling), 3) CrHis, or 4) CrPic. Cr-chelates were delivered via drinking water (providing 8μg elemental Cr per day) for one week prior to the hypoglycemia induction. The expressions of neuroplasticity markers [neural cell adhesion molecule (NCAM), growth-associated protein-43 (GAP-43), glial fibrillary acidic protein (GFAP)], glucose transporters (GLUT), and nuclear transcription proteins [nuclear factor-kappa (NF-κB), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and 4-hydroxyl nonenal (HNE)] were determined using Western blot. Hypoglycemia caused increases in the expressions of GLUT-1, GLUT-3, GFAP, NF-κB and HNE and decreases in the expression of NCAM's, GAP-43 and Nrf2 in the hippocampus, cerebellum, and cortex. Cr-chelates suppressed expressions of GLUTs, GFAP, NF-κB and HNE expressions and enhanced expressions of NCAM, GAP-43 and Nrf2, which were more notable for CrHis than for CrPic. In conclusion, hypoglycemia leads to cerebral injury and Cr-chelates, particularly CrHis have protective and regeneration potential in cerebral tissues through modulating neuroplasticity markers and nuclear transcription proteins as well as facilitating glucose transporters. © 2013.

  11. Investigating the molecular pathway through which L-Lactate interacts with synaptic NMDAR to modulate neuronal plasticity

    KAUST Repository

    Ibrahim, Engy

    2016-12-01

    In the brain, glycogen, the storage form of glucose, is exclusively localized in astrocytes (Magistretti and Allaman, 2015). Glycogenolysis leads to the production of L-lactate, which is shuttled to neurons for ATP production. Interestingly, L-lactate was recently shown to be not only a source of energy, but also a signaling molecule to neurons. This was demonstrated through the inhibition of L-lactate production or transport in an inhibitory avoidance paradigm, where the rodents developed amnesia. This inhibition of memory consolidation was rescued by L-lactate and not by equicaloric glucose emphasizing that L-lactate acts as a signaling molecule as well (Suzuki et al., 2011). A recent study in our laboratory suggests that the action of L-lactate takes place through a cascade of molecular events via the modulation of N-methyl-D-aspartate receptor (NMDAR) activity (Yang et al., 2014). Since NADH produced similar results to those seen with L-lactate, it was hypothesized that the action of the latter is based on altering the redox state of the cell, in particular in view of the fact that redox-sensitive sites are present on the NMDAR. However, the precise molecular mechanism underlying the apparent change in the NMDAR activity is not fully elucidated. The objective of this study is to explore those mechanisms.

  12. INFLAMMATION AND NEURONAL PLASTICITY: A LINK BETWEEN CHILDHOOD TRAUMA AND DEPRESSION PATHOGENESIS

    Directory of Open Access Journals (Sweden)

    Annamaria eCattaneo

    2015-03-01

    Full Text Available During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder. Several evidences linked inflammation to major depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation both in the blood and in the brain of depressed patients.However, whether depression itself acts in an immunomodulatory fashion or whether other factors related to depression result in these immunological effects remains an open question. Regardless, major depression is often the result of the exposure to stressful events early in life, which may also act through the modulation of inflammatory responses. Indeed, subjects with a history of childhood trauma show high levels of pro-inflammatory cytokines and an increased risk to develop psychopathologies later in life. Moreover, depressed patients with a history of childhood trauma are also less responsive to antidepressant therapies, suggesting that increased inflammation or altered activation of the immune system may also be relevant for the response to antidepressant therapies. This review will provide an overview on the potential role of the inflammatory/immune system and stress related biomarkers to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of major depression. We will also discuss the role of early life adverse events in increasing the vulnerability to depression development by acting on the inflammatory and stress-related system. Finally, we will discuss the putative biological mechanisms underlying the transmission, from one generation to the next, of the stress signatures and thus, of the increased vulnerability for psychopathologies induced by childhood trauma events.

  13. The free radical scavenger Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Oliwia Alicja Janc

    2014-02-01

    Full Text Available Rett syndrome (RS causes severe cognitive impairment, loss of speech, epilepsy, and breathing disturbances with intermittent hypoxia. Also mitochondria are affected; a subunit of respiratory complex III is dysregulated, the inner mitochondrial membrane is leaking protons, and brain ATP levels seem reduced. Our recent assessment of mitochondrial function in MeCP2-deficient mouse (Mecp2-/y hippocampus, confirmed early metabolic alterations, an increased oxidative burden, and a more vulnerable cellular redox balance. As these changes may contribute to the manifestation of symptoms and disease progression, we now evaluated whether free radical scavengers are capable of improving neuronal and mitochondrial function in RS. Acute hippocampal slices of adult mice were incubated with the vitamin E derivative Trolox for 3-5 h. In Mecp2-/y slices this treatment dampened neuronal hyperexcitability, improved short-term plasticity, and fully restored synaptic long-term potentiation. Furthermore, Trolox specifically attenuated the increased hypoxia susceptibility of Mecp2-/y slices. Also, the anticonvulsive effects of Trolox were assessed, but the severity of 4-aminopyridine provoked seizure-like discharges was not significantly affected. Adverse side effects of Trolox on mitochondria can be excluded, but clear indications for an improvement of mitochondrial function were not found. Since several ion-channels and neurotransmitter receptors are redox modulated, the mitochondrial alterations and the associated oxidative burden may contribute to the neuronal dysfunction in RS. We confirmed in Mecp2-/y hippocampus that Trolox dampens neuronal hyperexcitability, reinstates synaptic plasticity, and improves hypoxia tolerance. Therefore, radical scavengers are promising compounds for the treatment of neuronal dysfunction in RS and deserve further detailed evaluation.

  14. Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus) Phenotypic Plasticity under Environmental Selection

    Science.gov (United States)

    Qin, Xinghu; Hao, Kun; Ma, Jingchuan; Huang, Xunbing; Tu, Xiongbing; Ali, Md. Panna; Pittendrigh, Barry R.; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2017-01-01

    While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the

  15. Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus Phenotypic Plasticity under Environmental Selection

    Directory of Open Access Journals (Sweden)

    Xinghu Qin

    2017-10-01

    Full Text Available While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA of grasshopper phenotypic traits (ETAGPTs. ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP, negative elongation factor A (NELFA, and lactase-phlorizin hydrolase (LCT were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and

  16. Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Ginetta Collo

    2018-01-01

    Full Text Available The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R- preferring dopaminergic (DA agonists used as adjunctive therapeutics for the treatment resistant depression (TRD. While the exact antidepressant mechanism of action remains uncertain, a role for D3R in the restoration of impaired neuroplasticity occurring in TRD has been proposed. Since D3R agonists are highly expressed on DA neurons in humans, we studied the effect of ropinirole and pramipexole on structural plasticity using a translational model of human-inducible pluripotent stem cells (hiPSCs. Two hiPSC clones from healthy donors were differentiated into midbrain DA neurons. Ropinirole and pramipexole produced dose-dependent increases of dendritic arborization and soma size after 3 days of culture, effects antagonized by the selective D3R antagonists SB277011-A and S33084 and by the mTOR pathway kinase inhibitors LY294002 and rapamycin. All treatments were also effective in attenuating the D3R-dependent increase of p70S6-kinase phosphorylation. Immunoneutralisation of BDNF, inhibition of TrkB receptors, and blockade of MEK-ERK signaling likewise prevented ropinirole-induced structural plasticity, suggesting a critical interaction between BDNF and D3R signaling pathways. The highly similar profiles of data acquired with DA neurons derived from two hiPSC clones underpin their reliability for characterization of pharmacological agents acting via dopaminergic mechanisms.

  17. Singular solutions for the rigid plastic double slip and rotation model under plane strain

    Science.gov (United States)

    Alexandrov, S.; Lyamina, E.

    2018-02-01

    In the mechanics of granular and other materials the system of equations comprising the rigid plastic double slip and rotation model together with the stress equilibrium equations under plane strain conditions forms a hyperbolic system. Boundary value problems for this system of equations can involve a frictional interface. An envelope of characteristics may coincide with this interface. In this case, the solution is singular. In particular, some components of the strain rate tensor approach infinity in the vicinity of the frictional interface. Such behavior of solutions is in qualitative agreement with experimental data that show that a narrow layer of localized plastic deformation is often generated near frictional interfaces. The present paper deals with asymptotic analysis of the aforementioned system of equations in the vicinity of an envelope of characteristics. It is shown that the shear strain rate and the spin component in a local coordinate system connected to the envelope follow an inverse square root rule in its vicinity.

  18. Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia.

    Science.gov (United States)

    Takahashi, Shinichi; Iizumi, Takuya; Mashima, Kyoko; Abe, Takato; Suzuki, Norihiro

    2014-09-11

    Exogenous ketone bodies (KBs), acetoacetate (AA), and β-hydroxybutyrate (BHB) act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal energy metabolism. Cultured neurons and astroglia were prepared from Sprague-Dawley rats. Palmitic acid (PAL) and l-carnitine (LC) were added to the assay medium. The 4- to 24-hr production of AA and BHB was measured using the cyclic thio-NADH method. (14)C-labeled acid-soluble products (KBs) and (14)CO2 produced from [1-(14)C]PAL were also measured. l-[U-(14)C]lactic acid ([(14)C]LAC), [1-(14)C]pyruvic acid ([(14)C]PYR), or β-[1-(14)C]hydroxybutyric acid ([(14)C]BHB) was used to compare the oxidative metabolism of the glycolysis end products with that of the KBs. Some cells were placed in a hypoxic chamber (1% O2). PAL and LC induced a higher production of KBs in astroglia than in neurons, while the CO2 production from PAL was less than 5% of the KB production in both astroglia and neurons. KB production in astroglia was augmented by the AMP-activated protein kinase activators, AICAR and metformin, as well as hypoxia with/without glucose. Neuronal KB production increased under hypoxia in the absence of PAL and LC. In neurons, [(14)C]LAC and [(14)C]PYR oxidation decreased after 24 hr of hypoxia, while [(14)C]BHB oxidation was preserved. Astroglia responds to ischemia in vitro by enhancing KB production, and astroglia-produced KBs derived from fatty acid might serve as a neuronal energy substrate for the tricarboxylic acid cycle instead of lactate, as pyruvate dehydrogenase is susceptible to ischemia. © The Author(s) 2014 Reprints and permissions: sagepub.com/journalsPermissions.nav.

  19. Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition.

    Science.gov (United States)

    Song, Juhyun; Kim, Oh Yoen

    2017-06-10

    Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1 , and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1 . The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 ( p-ASK1 ) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.

  20. Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2017-06-01

    Full Text Available Insulin resistance (IR is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP, p53, and Bax and ER stress markers (phosphorylated eIF2α (p-eIF2α, ATF4, CHOP, p-IRE1, and spliced XBP1 (sXBP1 were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1. The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 (p-ASK1 was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.

  1. Adaptive, fast walking in a biped robot under neuronal control and learning.

    Science.gov (United States)

    Manoonpong, Poramate; Geng, Tao; Kulvicius, Tomas; Porr, Bernd; Wörgötter, Florentin

    2007-07-01

    Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical) arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s), self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.

  2. Adaptive, fast walking in a biped robot under neuronal control and learning.

    Directory of Open Access Journals (Sweden)

    Poramate Manoonpong

    2007-07-01

    Full Text Available Human walking is a dynamic, partly self-stabilizing process relying on the interaction of the biomechanical design with its neuronal control. The coordination of this process is a very difficult problem, and it has been suggested that it involves a hierarchy of levels, where the lower ones, e.g., interactions between muscles and the spinal cord, are largely autonomous, and where higher level control (e.g., cortical arises only pointwise, as needed. This requires an architecture of several nested, sensori-motor loops where the walking process provides feedback signals to the walker's sensory systems, which can be used to coordinate its movements. To complicate the situation, at a maximal walking speed of more than four leg-lengths per second, the cycle period available to coordinate all these loops is rather short. In this study we present a planar biped robot, which uses the design principle of nested loops to combine the self-stabilizing properties of its biomechanical design with several levels of neuronal control. Specifically, we show how to adapt control by including online learning mechanisms based on simulated synaptic plasticity. This robot can walk with a high speed (>3.0 leg length/s, self-adapting to minor disturbances, and reacting in a robust way to abruptly induced gait changes. At the same time, it can learn walking on different terrains, requiring only few learning experiences. This study shows that the tight coupling of physical with neuronal control, guided by sensory feedback from the walking pattern itself, combined with synaptic learning may be a way forward to better understand and solve coordination problems in other complex motor tasks.

  3. Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kanae Iijima-Ando

    2009-12-01

    Full Text Available The amyloid-beta 42 (Abeta42 is thought to play a central role in the pathogenesis of Alzheimer's disease (AD. However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.

  4. Pathological Plasticity in Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Brandon S. Martin

    2012-01-01

    Full Text Available Deficits in neuronal plasticity are common hallmarks of many neurodevelopmental disorders. In the case of fragile-X syndrome (FXS, disruption in the function of a single gene, FMR1, results in a variety of neurological consequences directly related to problems with the development, maintenance, and capacity of plastic neuronal networks. In this paper, we discuss current research illustrating the mechanisms underlying plasticity deficits in FXS. These processes include synaptic, cell intrinsic, and homeostatic mechanisms both dependent on and independent of abnormal metabotropic glutamate receptor transmission. We place particular emphasis on how identified deficits may play a role in developmental critical periods to produce neuronal networks with permanently decreased capacity to dynamically respond to changes in activity central to learning, memory, and cognition in patients with FXS. Characterizing early developmental deficits in plasticity is fundamental to develop therapies that not only treat symptoms but also minimize the developmental pathology of the disease.

  5. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision.

    Science.gov (United States)

    Pons, Carmen; Mazade, Reece; Jin, Jianzhong; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2017-12-01

    Artists and astronomers noticed centuries ago that humans perceive dark features in an image differently from light ones; however, the neuronal mechanisms underlying these dark/light asymmetries remained unknown. Based on computational modeling of neuronal responses, we have previously proposed that such perceptual dark/light asymmetries originate from a luminance/response saturation within the ON retinal pathway. Consistent with this prediction, here we show that stimulus conditions that increase ON luminance/response saturation (e.g., dark backgrounds) or its effect on light stimuli (e.g., optical blur) impair the perceptual discrimination and salience of light targets more than dark targets in human vision. We also show that, in cat visual cortex, the magnitude of the ON luminance/response saturation remains relatively constant under a wide range of luminance conditions that are common indoors, and only shifts away from the lowest luminance contrasts under low mesopic light. Finally, we show that the ON luminance/response saturation affects visual salience mostly when the high spatial frequencies of the image are reduced by poor illumination or optical blur. Because both low luminance and optical blur are risk factors in myopia, our results suggest a possible neuronal mechanism linking myopia progression with the function of the ON visual pathway.

  6. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  7. Post-cyclic behavior of low plasticity silt under full and limited liquefaction using triaxial compression testing.

    Science.gov (United States)

    2010-02-01

    During an earthquake, liquefaction does not happen all the time. It depends on the duration and magnitude of the earthquake and the properties (with relationship to resistance of liquefaction) of the low plasticity silt. Under low duration or magnitu...

  8. A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions

    Directory of Open Access Journals (Sweden)

    Marie eViolet

    2014-03-01

    Full Text Available Nucleic acid protection is a substantial challenge for neurons, which are continuously exposed to oxidative stress in the brain. Neurons require powerful mechanisms to protect DNA and RNA integrity and ensure their functionality and longevity. Beside its well known role in microtubule dynamics, we recently discovered that Tau is also a key nuclear player in the protection of neuronal genomic DNA integrity under reactive oxygen species (ROS-inducing heat stress (HS conditions in primary neuronal cultures. In this report, we analyzed the capacity of Tau to protect neuronal DNA integrity in vivo in adult mice under physiological and HS conditions. We designed an in vivo mouse model of hyperthermia/HS to induce a transient increase in ROS production in the brain. Comet and TUNEL assays demonstrated that Tau protected genomic DNA in adult cortical and hippocampal neurons in vivo under physiological conditions in wild-type and Tau-deficient (KO-Tau mice. HS increased DNA breaks in KO-Tau neurons. Notably, KO-Tau hippocampal neurons in the CA1 subfield restored DNA integrity after HS more weakly than the dentate gyrus neurons. The formation of phosphorylated histone H2AX foci, a double-strand break marker, was observed in KO-Tau neurons only after HS, indicating that Tau deletion did not trigger similar DNA damage under physiological or HS conditions. Moreover, genomic DNA and cytoplasmic and nuclear RNA integrity were altered under HS in hippocampal neurons exhibiting Tau deficiency, which suggests that Tau also modulates RNA metabolism. Our results suggest that Tau alterations lead to a loss of its nucleic acid safeguarding functions and participate in the accumulation of DNA and RNA oxidative damage observed in the Alzheimer’s disease brain.

  9. Conditional Lyapunov exponents and transfer entropy in coupled bursting neurons under excitation and coupling mismatch

    Science.gov (United States)

    Soriano, Diogo C.; Santos, Odair V. dos; Suyama, Ricardo; Fazanaro, Filipe I.; Attux, Romis

    2018-03-01

    This work has a twofold aim: (a) to analyze an alternative approach for computing the conditional Lyapunov exponent (λcmax) aiming to evaluate the synchronization stability between nonlinear oscillators without solving the classical variational equations for the synchronization error dynamical system. In this first framework, an analytic reference value for λcmax is also provided in the context of Duffing master-slave scenario and precisely evaluated by the proposed numerical approach; (b) to apply this technique to the study of synchronization stability in chaotic Hindmarsh-Rose (HR) neuronal models under uni- and bi-directional resistive coupling and different excitation bias, which also considered the root mean square synchronization error, information theoretic measures and asymmetric transfer entropy in order to offer a better insight of the synchronization phenomenon. In particular, statistical and information theoretical measures were able to capture similarity increase between the neuronal oscillators just after a critical coupling value in accordance to the largest conditional Lyapunov exponent behavior. On the other hand, transfer entropy was able to detect neuronal emitter influence even in a weak coupling condition, i.e. under the increase of conditional Lyapunov exponent and apparently desynchronization tendency. In the performed set of numerical simulations, the synchronization measures were also evaluated for a two-dimensional parameter space defined by the neuronal coupling (emitter to a receiver neuron) and the (receiver) excitation current. Such analysis is repeated for different feedback couplings as well for different (emitter) excitation currents, revealing interesting characteristics of the attained synchronization region and conditions that facilitate the emergence of the synchronous behavior. These results provide a more detailed numerical insight of the underlying behavior of a HR in the excitation and coupling space, being in accordance

  10. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  11. Fatigue Crack Propagation Under Variable Amplitude Loading Analyses Based on Plastic Energy Approach

    Directory of Open Access Journals (Sweden)

    Sofiane Maachou

    2014-04-01

    Full Text Available Plasticity effects at the crack tip had been recognized as “motor” of crack propagation, the growth of cracks is related to the existence of a crack tip plastic zone, whose formation and intensification is accompanied by energy dissipation. In the actual state of knowledge fatigue crack propagation is modeled using crack closure concept. The fatigue crack growth behavior under constant amplitude and variable amplitude loading of the aluminum alloy 2024 T351 are analyzed using in terms energy parameters. In the case of VAL (variable amplitude loading tests, the evolution of the hysteretic energy dissipated per block is shown similar with that observed under constant amplitude loading. A linear relationship between the crack growth rate and the hysteretic energy dissipated per block is obtained at high growth rates. For lower growth rates values, the relationship between crack growth rate and hysteretic energy dissipated per block can represented by a power law. In this paper, an analysis of fatigue crack propagation under variable amplitude loading based on energetic approach is proposed.

  12. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  13. Evaluation of the AZ31 cyclic elastic-plastic behaviour under multiaxial loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2014-10-01

    Full Text Available Components and structures are designed based in their material’s mechanical properties such as Young's modulus or yield stress among others. Often those properties are obtained under monotonic mechanical tests but rarely under cyclic ones. It is assumed that those properties are maintained during the material fatigue life. However, under cyclic loadings, materials tend to change their mechanical properties, which can improve their strength (material hardening or degrade their mechanical capabilities (material softening or even a mix of both. This type of material behaviour is the so-called cyclic plasticity that is dependent of several factors such as the load type, load level, and microstructure. This subject is of most importance in design of structures and components against fatigue failures in particular in the case of magnesium alloys. Magnesium alloys due to their hexagonal compact microstructure have only 3 slip planes plus 1 twining plane which results in a peculiar mechanical behaviour under cyclic loading conditions especially under multiaxial loadings. Therefore, it is necessary to have a cyclic elastic-plastic model that allows estimating the material mechanical properties for a certain stress level and loading type. In this paper it is discussed several aspects of the magnesium alloys cyclic properties under uniaxial and multiaxial loading conditions at several stress levels taking into account experimental data. A series of fatigue tests under strain control were performed in hour glass specimens test made of a magnesium alloy, AZ31BF. The strain/stress relation for uniaxial loadings, axial and shear was experimentally obtained and compared with the estimations obtained from the theoretical elastic-plastic models found in the state-of-the-art. Results show that the AZ31BF magnesium alloy has a peculiar mechanical behaviour, which is quite different from the steel one. Moreover, the state of the art cyclic models do not capture in

  14. Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles

    Directory of Open Access Journals (Sweden)

    Chaitanya Medini

    2012-01-01

    Full Text Available The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked local field potentials (LFP and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

  15. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Science.gov (United States)

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  16. Leaching of plasticizers from polyvinylchloride perfusion lines by different lipid emulsions for premature infants under clinical conditions.

    Science.gov (United States)

    Faessler, David; McCombie, Gregor; Biedermann, Maurus; Felder, Florian; Subotic, Ulrike

    2017-03-30

    Plasticizers migrate from polyvinylchloride (PVC) infusion systems into lipid emulsions. The aim of this study was to investigate the leaching of different plasticizers from PVC perfusion lines by a selection of lipid emulsions under clinical conditions. Seven PVC perfusion lines with an equal length of 150cm and three internal diameters were perfused with three lipid emulsions: Intralipid ® 20%, ClinOleic ® 20% and SMOFlipid ® 20%, mimicking clinical conditions. The concentrations of the plasticizers were measured directly in the emulsions by gas chromatography - mass spectrometry. Of the four plasticizers examined in this study, di (2-ethylhexyl) phthalate (DEHP) leached the most and was found, on average, at 46.5μg/ml in the emulsions - around one order of magnitude higher than the other plasticizers. This study demonstrates that the leaching of DEHP by lipid emulsions in conditions of total parenteral nutrition is many times higher than should be accepted and higher when compared to the other plasticizers. There was no significant difference in leaching of plasticizers in relation to the type of lipid emulsion. The influence of tube diameter on the leaching rate of plasticizers should be taken into account especially in particular exposed patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Emily K. Stephens

    2018-01-01

    Full Text Available Serotonin (5-HT selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current, or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs. However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%, rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third

  18. Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs.

    Science.gov (United States)

    Orefice, Lauren L; Zimmerman, Amanda L; Chirila, Anda M; Sleboda, Steven J; Head, Joshua P; Ginty, David D

    2016-07-14

    Patients with autism spectrum disorders (ASDs) commonly experience aberrant tactile sensitivity, yet the neural alterations underlying somatosensory dysfunction and the extent to which tactile deficits contribute to ASD characteristics are unknown. We report that mice harboring mutations in Mecp2, Gabrb3, Shank3, and Fmr1 genes associated with ASDs in humans exhibit altered tactile discrimination and hypersensitivity to gentle touch. Deletion of Mecp2 or Gabrb3 in peripheral somatosensory neurons causes mechanosensory dysfunction through loss of GABAA receptor-mediated presynaptic inhibition of inputs to the CNS. Remarkably, tactile defects resulting from Mecp2 or Gabrb3 deletion in somatosensory neurons during development, but not in adulthood, cause social interaction deficits and anxiety-like behavior. Restoring Mecp2 expression exclusively in the somatosensory neurons of Mecp2-null mice rescues tactile sensitivity, anxiety-like behavior, and social interaction deficits, but not lethality, memory, or motor deficits. Thus, mechanosensory processing defects contribute to anxiety-like behavior and social interaction deficits in ASD mouse models. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease Development

    Directory of Open Access Journals (Sweden)

    Irene Faravelli

    2014-10-01

    Full Text Available Motor neuron diseases (MNDs are neuromuscular disorders affecting rather exclusively upper motor neurons (UMNs and/or lower motor neurons (LMNs. The clinical phenotype is characterized by muscular weakness and atrophy leading to paralysis and almost invariably death due to respiratory failure. Adult MNDs include sporadic and familial amyotrophic lateral sclerosis (sALS-fALS, while the most common infantile MND is represented by spinal muscular atrophy (SMA. No effective treatment is ccurrently available for MNDs, as for the vast majority of neurodegenerative disorders, and cures are limited to supportive care and symptom relief. The lack of a deep understanding of MND pathogenesis accounts for the difficulties in finding a cure, together with the scarcity of reliable in vitro models. Recent progresses in stem cell field, in particular in the generation of induced Pluripotent Stem Cells (iPSCs has made possible for the first time obtaining substantial amounts of human cells to recapitulate in vitro some of the key pathogenetic processes underlying MNDs. In the present review, recently published studies involving the use of iPSCs to unravel aspects of ALS and SMA pathogenesis are discussed with an overview of their implications in the process of finding a cure for these still orphan disorders.

  20. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    Science.gov (United States)

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K + concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  1. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+Channel Dysfunction in DRG Neurons.

    Science.gov (United States)

    Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel

    2017-08-23

    Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have

  2. Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation.

    Science.gov (United States)

    Wiegert, J Simon; Bading, Hilmar

    2011-05-01

    Activity-dependent gene expression is important for the formation and maturation of neuronal networks, neuronal survival and for plastic modifications within mature networks. At the level of individual neurons, expression of new protein is required for dendritic branching, synapse formation and elimination. Experience-driven synaptic activity induces membrane depolarization, which in turn evokes intracellular calcium transients that are decoded according to their source and strength by intracellular calcium sensing proteins. In order to activate the gene transcription machinery of the cell, calcium signals have to be conveyed from the site of their generation in the cytoplasm to the cell nucleus. This can occur via a variety of mechanisms and with different kinetics depending on the source and amplitude of calcium influx. One mechanism involves the propagation of calcium itself, leading to nuclear calcium transients that subsequently activate transcription. The mitogen-activated protein kinase (MAPK) cascade represents a second central signaling module that transduces information from the site of calcium signal generation at the plasma membrane to the nucleus. Nuclear signaling of the MAPK cascades catalyzes the phosphorylation of transcription factors but also regulates gene transcription more globally at the level of chromatin remodeling as well as through its recently identified role in the modulation of nuclear shape. Here we discuss the possible mechanisms by which the MAPKs ERK1 and ERK2, activated by synaptically evoked calcium influx, can signal to the nucleus and regulate gene transcription. Moreover, we describe how MAPK-dependent structural plasticity of the nuclear envelope enhances nuclear calcium signaling and suggest possible implications for the regulation of gene transcription in the context of nuclear geometry. 2010 Elsevier Ltd. All rights reserved.

  3. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  4. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Directory of Open Access Journals (Sweden)

    Suraj Honnuraiah

    Full Text Available Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific

  5. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  6. Astrocytic water channel aquaporin-4 modulates brain plasticity in both mice and humans: a potential gliogenetic mechanism underlying language-associated learning.

    Science.gov (United States)

    Woo, J; Kim, J E; Im, J J; Lee, J; Jeong, H S; Park, S; Jung, S-Y; An, H; Yoon, S; Lim, S M; Lee, S; Ma, J; Shin, E Y; Han, Y-E; Kim, B; Lee, E H; Feng, L; Chun, H; Yoon, B-E; Kang, I; Dager, S R; Lyoo, I K; Lee, C J

    2018-04-01

    The role of astrocytes in brain plasticity has not been extensively studied compared with that of neurons. Here we adopted integrative translational and reverse-translational approaches to explore the role of an astrocyte-specific major water channel in the brain, aquaporin-4 (AQP4), in brain plasticity and learning. We initially identified the most prevalent genetic variant of AQP4 (single nucleotide polymorphism of rs162008 with C or T variation, which has a minor allele frequency of 0.21) from a human database (n=60 706) and examined its functionality in modulating the expression level of AQP4 in an in vitro luciferase reporter assay. In the following experiments, AQP4 knock-down in mice not only impaired hippocampal volumetric plasticity after exposure to enriched environment but also caused loss of long-term potentiation after theta-burst stimulation. In humans, there was a cross-sectional association of rs162008 with gray matter (GM) volume variation in cortices, including the vicinity of the Perisylvian heteromodal language area (Sample 1, n=650). GM volume variation in these brain regions was positively associated with the semantic verbal fluency. In a prospective follow-up study (Sample 2, n=45), the effects of an intensive 5-week foreign language (English) learning experience on regional GM volume increase were modulated by this AQP4 variant, which was also associated with verbal learning capacity change. We then delineated in mice mechanisms that included AQP4-dependent transient astrocytic volume changes and astrocytic structural elaboration. We believe our study provides the first integrative evidence for a gliogenetic basis that involves AQP4, underlying language-associated brain plasticity.

  7. α6-Containing nicotinic acetylcholine receptors in midbrain dopamine neurons are poised to govern dopamine-mediated behaviors and synaptic plasticity.

    Science.gov (United States)

    Berry, J N; Engle, S E; McIntosh, J M; Drenan, R M

    2015-09-24

    Acetylcholine (ACh) acts through nicotinic and muscarinic ACh receptors in the ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson's disease, and schizophrenia. α6-Containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs ("α6L9S" mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6(∗) nAChR agonists to activate α6(∗) nAChRs in vivo. Using local infusions of both agonists and antagonists into the brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6(∗) nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch-clamp electrophysiology, we show that activating α6(∗) nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in ventral tegmental area (VTA) DA neurons. Together, these results from in vivo studies strongly suggest that α6(∗) nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the

  8. The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer.

    Science.gov (United States)

    Wang, Kun; Demir, Ihsan Ekin; D'Haese, Jan G; Tieftrunk, Elke; Kujundzic, Kristina; Schorn, Stephan; Xing, Baocai; Kehl, Timo; Friess, Helmut; Ceyhan, Güralp O

    2014-01-01

    Neurotrophic factors possess an emerging role in the pathophysiology of several gastrointestinal disorders, regulating innervation, pain sensation and disease-associated neuroplasticity. Here, we aimed at characterizing the role of the neurotrophic factor neurturin (NRTN) and its receptor glial-cell-line-derived neurotrophic factor receptor alpha-2 (GFRα-2) in pancreatic cancer (PCa) and pancreatic neuropathy. For this purpose, NRTN and GFRα-2 were studied in normal human pancreas and PCa tissues via immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, immunoblotting and correlated to abdominal pain. The impact of NRTN/GFRα-2 on PCa cell (PCC) biology was investigated via exposure to hypoxia, 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide viability and matrigel invasion assays in native and specific small interfering RNA-silenced PCCs. To assess the influence of NRTN on pancreatic neuroplasticity and neural invasion (NI), its impact was explored via an in vitro 'neuroplasticity assay' and a 3D neural migration assay. NRTN and GFRα-2 demonstrated a site-specific upregulation in PCa, predominantly in nerves, PCCs and extracellular matrix. Patients with severe pain demonstrated higher intraneural GFRα-2 immunoreactivity than patients with no pain. PCa tissue and PCCs contained increased amounts of NRTN, which was suppressed under hypoxia. NRTN promoted PCC invasiveness, and silencing of NRTN limited both PCC proliferation and invasion. Depletion of NRTN from PCa tissue extracts and PCC supernatants decreased axonal sprouting in neuronal cultures but did not influence glial density. Silencing of NRTN in PCCs boosted NI. We conclude that increased NRTN/GFRα-2 in PCa seems to promote an aggressive PCC phenotype and neuroplasticity in PCa. Accelerated NI following NRTN suppression constitutes a novel explanation for the attraction of PCC to nerves in the hypoxic PCa tumor microenvironment. PCa is characterized by

  9. On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection

    NARCIS (Netherlands)

    Oostra, V.; Brakefield, P.M.; Hiltemann, Y.; Zwaan, B.J.; Brattström, O.

    2014-01-01

    Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life-history traits that together contribute to the adaptive phenotypes in the alternative environments. While

  10. Robust synchronization control of coupled chaotic neurons under external electrical stimulation

    International Nuclear Information System (INIS)

    Che Yanqiu; Wang Jiang; Zhou Sisi; Deng Bin

    2009-01-01

    In this paper, a robust adaptive neural network (NN) controller is proposed to realize the synchronization of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons under external electrical stimulation. Based on the Lyapunov stability theory, we derive the update laws of NN for approximating the nonlinear uncertain functions of the error dynamical system. The control scheme is robust to the uncertainties such as approximate error, ionic channel noise and external disturbances. Chaos synchronization is obtained by proper choice of the control parameters. The simulation results demonstrate the effectiveness of the proposed control method.

  11. Mathematical modelling of phenotypic plasticity and conversion to a stem-cell state under hypoxia

    Science.gov (United States)

    Dhawan, Andrew; Madani Tonekaboni, Seyed Ali; Taube, Joseph H.; Hu, Stephen; Sphyris, Nathalie; Mani, Sendurai A.; Kohandel, Mohammad

    2016-02-01

    Hypoxia, or oxygen deficiency, is known to be associated with breast tumour progression, resistance to conventional therapies and poor clinical prognosis. The epithelial-mesenchymal transition (EMT) is a process that confers invasive and migratory capabilities as well as stem cell properties to carcinoma cells thus promoting metastatic progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem cell (CSC) properties, by culturing transformed human mammary epithelial cells under normoxic and hypoxic conditions, and applying in silico mathematical modelling to simulate the impact of hypoxia on the acquisition of CSC attributes and the transitions between differentiated and stem-like states. Our results indicate that both the heterogeneity and the plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in a shift towards a more stem-like population with increased EMT features. Our findings are further reinforced by gene expression analyses demonstrating the upregulation of EMT-related genes, as well as genes associated with therapy resistance, in hypoxic cells compared to normoxic counterparts. In conclusion, we demonstrate that mathematical modelling can be used to simulate the role of hypoxia as a key contributor to the plasticity and heterogeneity of transformed human mammary epithelial cells.

  12. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors.

    Science.gov (United States)

    Spielmann, Kerstin; Durand, Edith; Marcotte, Karine; Ansaldo, Ana Inés

    2016-01-01

    Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming) in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

  13. Maladaptive Plasticity in Aphasia: Brain Activation Maps Underlying Verb Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Kerstin Spielmann

    2016-01-01

    Full Text Available Anomia, or impaired word retrieval, is the most widespread symptom of aphasia, an acquired language impairment secondary to brain damage. In the last decades, functional neuroimaging techniques have enabled studying the neural basis underlying anomia and its recovery. The present study aimed to explore maladaptive plasticity in persistent verb anomia, in three male participants with chronic nonfluent aphasia. Brain activation maps associated with semantic verb paraphasia occurring within an oral picture-naming task were identified with an event-related fMRI paradigm. These maps were compared with those obtained in our previous study examining adaptive plasticity (i.e., successful verb naming in the same participants. The results show that activation patterns related to semantic verb paraphasia and successful verb naming comprise a number of common areas, contributing to both maladaptive and adaptive neuroplasticity mechanisms. This finding suggests that the segregation of brain areas provides only a partial view of the neural basis of verb anomia and successful verb naming. Therefore, it indicates the importance of network approaches which may better capture the complexity of maladaptive and adaptive neuroplasticity mechanisms in anomia recovery.

  14. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats

    Science.gov (United States)

    Zhang, Xiao-Yang; Yu, Lei; Zhuang, Qian-Xing; Peng, Shi-Yu; Zhu, Jing-Ning; Wang, Jian-Jun

    2013-01-01

    Background and Purpose Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. Experimental Approach Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H1, H2 and H4 receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H1, H2 and H4 receptors and for subtypes of Na+–Ca2+ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. Key Results A marked postsynaptic excitatory effect, co-mediated by histamine H1 and H2 receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H1 and H2 rather than H4 receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H1 receptors, whereas HCN channels were responsible for excitation induced by activation of H2 receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. Conclusion and Implications NCXs coupled to H1 receptors and HCN channels linked to H2 receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23713466

  15. Parameter Identification of Piecewise Linear Plasticity Metal Models Used in Numerical Modeling of Structures Under Plastic Deformation and Failure

    Directory of Open Access Journals (Sweden)

    A. V. Shmeliov

    2016-01-01

    Full Text Available The article describes the models of metallic materials used in the calculation of deformation and destruction of engineering structures. The reliability of material models can adequately assess the strength characteristics of the designs of new technology in its designing and certification.The article deals with contingencies and true mechanical properties of materials and presents equations of their relationship. It notes that in the software systems mechanical characteristics of materials are given in the true sense.The paper considers the linear and exponential models of materials, their characteristics, and methods to implement them. It considers the models of Johnson-Cook Steinberg-Guinan, Zerilli-Armstrong, Cowper-Symonds, Gurson-Tvergaard that take into account the strain rate and temperature of the material. Describes their applications, advantages and disadvantages. Considers single- and multi-parameter criteria of materials fracture, the prospects for their use. Gives a rational justification for using a piecewise linear plasticity material model *MAT_PIECEWISE_LINEAR_PLASTICITY (024, LS-DYNA software package for the engineering industry, and presents its main parameters.A technique to identify parameters of piecewise linear plasticity metal material models has been developed. The technique consists of the stages, based on the equations of transition from the conventional stress and strain values to the true ones. Taking into consideration the stressstrain state in the neck of the sample is a distinctive feature of the technique.Tensile tests of the round material samples have been conducted. To test the developed technique in the software package ANSYS LS-DYNA PC have been made tensile sample modeling and results comparison to show high convergence.Further improvement of the technique can be achieved through the development of a statistical approach to the analysis of the results of a series of tests. This will allow a kind of

  16. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  17. Prolonged high fat diet ingestion, obesity, and type 2 diabetes symptoms correlate with phenotypic plasticity in myenteric neurons and nerve damage in the mouse duodenum.

    Science.gov (United States)

    Stenkamp-Strahm, Chloe M; Nyavor, Yvonne E A; Kappmeyer, Adam J; Horton, Sarah; Gericke, Martin; Balemba, Onesmo B

    2015-08-01

    Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus. Ganglionic and neuronal size, number of neurons per ganglionic area, density indices of neuronal phenotypes (immunoreactive nerve cell bodies and varicosities per ganglion or tissue area) and nerve injury were measured. Findings were compared with results previously seen in mice fed the same diet for 8 weeks. Compared to mice fed standard chow, those on a prolonged high fat diet had smaller ganglionic and cell soma areas. Myenteric VIP- and ChAT-immunoreactive density indices were also reduced. Myenteric nerve fibers were markedly swollen and cytoskeletal protein networks were disrupted. The number of nNOS nerve cell bodies per ganglia was increased, contrary to the reduction previously seen after 8 weeks, but the density index of nNOS varicosities was reduced. Mice fed high fat and standard chow diets experienced an age-related reduction in total neurons, with bias towards neurons of sensory phenotype. Meanwhile, ageing was associated with an increase in excitatory neuronal markers. Collectively, these results support a notion that nerve damage underlies diabetic symptoms of dysmotility, and reveals adaptive ENS responses to the prolonged ingestion of a high fat diet. This highlights a need to mechanistically study long-term diet-induced nerve damage and age-related impacts on the ENS.

  18. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    Science.gov (United States)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  19. Northeast Under/graduate Research Organization for Neuroscience (NEURON): Our Thirteenth Conference for Neuroscience Trainees and Educators

    OpenAIRE

    McLaughlin, Jay P.; Gomes, Stacey; Seliga, Angela; Goyette, Sharon Ramos; Morrison, Amy; Reich, Christian G.; Frye, Cheryl A.

    2009-01-01

    The Northeast Under/Graduate Research Organization for Neuroscience (NEURON) was established 12 years ago in order to foster the training, education, and research of both undergraduate and graduate neuroscience students. NEURON hosts two annual conferences (Boston in the fall; New York City in the spring) to promote and support neuroscience training, education, and research. For 12 years, the organization has promoted neuroscience by exposing neuroscience trainees to research and educational ...

  20. [Astrocytes and microglia: active players in synaptic plasticity].

    Science.gov (United States)

    Ronzano, Rémi

    2017-12-01

    Synaptic plasticity consists in a change in structure and composition of presynaptic and postsynaptic compartments. For a long time, synaptic plasticity had been thought as a neuronal mechanism only under the control of neural network activity. However, recently, with the growing knowledge about glial physiology, plasticity has been reviewed as a mechanism influenced by the synaptic environment. Thus, it appears that astrocytes and microglia modulate these mechanisms modifying neural environment by clearance of neurotransmitters, releasing essential factors and modulating inflammation. Moreover, glia can change its own activity and the expression pattern of many factors that modulate synaptic plasticity according to the environment. Hence, these populations of "non-neuronal" cells in the central nervous system seem to be active players in synaptic plasticity. This review discusses how glia modulates synaptic plasticity focusing on long-term potentiation and depression, and questions the role of the signaling processes between astrocytes and microglia in these mechanisms. © 2017 médecine/sciences – Inserm.

  1. Procedure to predict the storey where plastic drift dominates in two-storey building under strong ground motion

    DEFF Research Database (Denmark)

    Hibino, Y.; Ichinose, T.; Costa, J.L.D.

    2009-01-01

    A procedure is presented to predict the storey where plastic drift dominates in two-storey buildings under strong ground motion. The procedure utilizes the yield strength and the mass of each storey as well as the peak ground acceleration. The procedure is based on two different assumptions: (1......) the seismic force distribution is of inverted triangular form and (2) the rigid-plastic model represents the system. The first and the second assumptions, respectively, lead to lower and upper estimates of the base shear coefficient under which the drift of the first storey exceeds that of the second storey...

  2. The aqueous photodegradation of fenitrothion under various agricultural plastics: implications for pesticide longevity in agricultural 'micro-environments'.

    Science.gov (United States)

    Weber, Jan; Halsall, Crispin J; Wargent, Jason J; Paul, Nigel D

    2009-06-01

    Plastic cladding is increasingly used in agriculture to create micro-environments to improve crop yield/growth. Many of these plastics can alter the solar light spectrum by inhibiting or reducing the transmittance of certain parts of the solar spectrum. In this study, we investigated the aqueous photolysis of fenitrothion, under a selection of different plastic films commonly used in agriculture. Three different grades of polyethylene film were used: 'standard', 'transparent' and 'opaque'. The transmittance of light wavelengths in the UV region (290-400 nm), measured with a spectroradiometer, was found to decrease in the order of transparent>standard>opaque. Fenitrothion, an organophosphorothioate insecticide possesses molar absorptivity in the solar wavelength range of 290-400 nm. Aqueous first order degradation rate constants for fenitrothion determined over a 12 h period were found to be considerably less for those experiments conducted under the standard and opaque plastic films, compared to the transparent film and no-film control. The experiments were conducted in an Atlas Suntest solar simulator using a UV-filtered Xenon arc lamp to simulate sunlight. The first order half-life for fenitrothion was 100 and 250 h under the standard and opaque films, respectively, compared to approximately 10 h for the transparent film and no-film experiments. Our results suggest that pesticide longevity could be greatly extended within these plastic micro-environments, especially for those chemicals which may degrade/transform via photolytic or photochemical pathways.

  3. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  4. Microscopic Approaches to Decomposition and Burning Processes of a Micro Plastic Resin Particle under Abrupt Heating

    Science.gov (United States)

    Ohiwa, Norio; Ishino, Yojiro; Yamamoto, Atsunori; Yamakita, Ryuji

    To elucidate the possibility and availability of thermal recycling of waste plastic resin from a basic and microscopic viewpoint, a series of abrupt heating processes of a spherical micro plastic particle having a diameter of about 200 μm is observed, when it is abruptly exposed to hot oxidizing combustion gas. Three ingenious devices are introduced and two typical plastic resins of polyethylene terephthalate and polyethylene are used. In this paper the dependency of internal and external appearances of residual plastic embers on the heating time and the ingredients of plastic resins is optically analyzed, along with appearances of internal micro bubbling, multiple micro explosions and jets, and micro diffusion flames during abrupt heating. Based on temporal variations of the surface area of a micro plastic particle, the apparent burning rate constant is also evaluated and compared with those of well-known volatile liquid fuels.

  5. Investment-Cost Optimization of Plastic Recycling System under Reliability Constraints

    Directory of Open Access Journals (Sweden)

    Abdelkader ZEBLAH

    2008-06-01

    Full Text Available This paper describes and uses an ant colony meta-heuristic optimization method to solve the redundancy optimization problem in plastic recycling industry. This problem is known as total investment-cost minimization of series-parallel plastic recycling system. Redundant components are included to achieve a desired level of availability. System availability is represented by a multi-state availability function. The plastic machines are characterized by their capacity, availability and cost. These machines are chosen among a list of products available on the market. The proposed meta-heuristic seeks to find the best minimal cost plastic recycling system configuration with desired availability. To estimate the series-parallel plastic machines availability, a fast method based on universal moment generating function (UMGF is suggested. The ant colony approach is used as an optimization technique. An example of plastic recycling system is presented.

  6. Plasticity in Meristem Allocation as an Adaptive Strategy of a Desert Shrub under Contrasting Environments

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2017-11-01

    Full Text Available The pattern of resource allocation to reproduction vs. vegetative growth is a core component of a plant’s life-history strategy. Plants can modify their biomass allocation patterns to adapt to contrasting environments. Meristems can have alternative fates to commit to vegetative growth, reproduction, or remaining inactive (dormant or senescent/dead. However, knowledge about whether meristem fates can interpret adaptive changes in biomass allocation remains largely unknown. We measured aboveground plant biomass (a proxy of plant size and meristem number of a dominant shrub Artemisia ordosica in three populations occupying different habitats in the Mu Us Desert of northern China. Size-dependent biomass allocation and meristem allocation among habitats were compared. The size-dependent biomass allocation and meristem allocation of A. ordosica strongly varied across habitats. There were significant positive linear relationships between meristem allocation and biomass allocation in all habitats, indicating that meristem allocation is an indicator of the estimated resource allocation to reproductive and vegetative organs in this species. Plasticity in meristem allocation was more likely caused by larger individuals having less active meristems due to environmental stress. Vegetative meristems (VM were likely more vulnerable to environmental limitation than reproductive ones, resulting in the ratio of resource investment between vegetative and reproductive functions exhibiting plasticity in different habitats. A. ordosica invested a higher fraction of its resource to reproduction in the adverse habitat, while more resource to vegetative growth in the favorable habitat. A. ordosica adopts different resource allocation patterns to adapt to contrasting habitat conditions through altering its meristem fates. Our results suggest that the arid-adapted shrub A. ordosica deactivates more VM than reproductive ones to hedge against environmental stress

  7. Robust Adaptive Synchronization of Ring Configured Uncertain Chaotic FitzHugh–Nagumo Neurons under Direction-Dependent Coupling

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2018-02-01

    Full Text Available This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided.

  8. Robust Adaptive Synchronization of Ring Configured Uncertain Chaotic FitzHugh–Nagumo Neurons under Direction-Dependent Coupling

    Science.gov (United States)

    Iqbal, Muhammad; Rehan, Muhammad; Hong, Keum-Shik

    2018-01-01

    This paper exploits the dynamical modeling, behavior analysis, and synchronization of a network of four different FitzHugh–Nagumo (FHN) neurons with unknown parameters linked in a ring configuration under direction-dependent coupling. The main purpose is to investigate a robust adaptive control law for the synchronization of uncertain and perturbed neurons, communicating in a medium of bidirectional coupling. The neurons are assumed to be different and interconnected in a ring structure. The strength of the gap junctions is taken to be different for each link in the network, owing to the inter-neuronal coupling medium properties. Robust adaptive control mechanism based on Lyapunov stability analysis is employed and theoretical criteria are derived to realize the synchronization of the network of four FHN neurons in a ring form with unknown parameters under direction-dependent coupling and disturbances. The proposed scheme for synchronization of dissimilar neurons, under external electrical stimuli, coupled in a ring communication topology, having all parameters unknown, and subject to directional coupling medium and perturbations, is addressed for the first time as per our knowledge. To demonstrate the efficacy of the proposed strategy, simulation results are provided. PMID:29535622

  9. Leaching and Transformation of Flame Retardants and Plasticizers under Simulated Landfill Conditions

    OpenAIRE

    Hörsing, Maritha

    2008-01-01

    Many products used in our everyday life contain chemicals added to give them specific properties. Flame retardants (FRs) are added to prevent or retard fires in textiles, plastics etc., while plasticizers are supplied to make plastics more flexible. Through their widespread applications chemicals from both groups are emitted and spread in the environment during usage and disposal. For a long time these products were mainly disposed of in landfills, and in many areas they still are. Thus, sinc...

  10. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

    Science.gov (United States)

    Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro; Gertner, Michael; Hwang, Jee-Yeon; Aromolaran, Kelly; Bennett, Michael V.L.; Zukin, R. Suzanne

    2015-01-01

    Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. PMID:25463028

  11. Changes in soil parameters under continuous plastic mulching in strawberry cultivation

    Science.gov (United States)

    Muñoz, Katherine; Diehl, Dörte; Scopchanova, Sirma; Schaumann, Gabriele E.

    2016-04-01

    Plastic mulching (PM) is a widely used practice in modern agriculture because they generate conditions for optimal yield rates and quality. However, information about long-term effects of PC on soil quality parameters is scarce. The aim of this study is to compare the effect of three different mulching managements on soil quality parameters. Sampling and methodology: Three different managements were studied: Organic mulching (OM), 2-years PM and 4-years PM. Soil samples were collected from irrigated fields in 0-5, 5-10 and 10-30 cm depths and analyzed for water content (WC), pH, dissolved organic carbon (DOC), total soil carbon (Ctot) and cation exchange capacity (CECeff). Results and discussion: Mulching management has an influence on soil parameters. The magnitude of the effects is influenced by the type (organic agriculture practice vs. plastic mulching practice) and duration of the mulching. PM modified the water distribution through the soil column. WC values at the root zone were in average 10% higher compared to those measured at the topsoil. Under OM, the WC was lower than under PM. The pH was mainly influenced by the duration of the managements with slightly higher values after 4 than after 2-years PM. Under PM, aqueous extracts of the topsoil (0-5 cm depth) contained in average with 8.5±1.8 mg/L higher DOC than in 10-30 cm depth with 5.6±0.5 mg/L, which may indicate a mobilization of organic components in the upper layers. After 4-years PM, Ctot values were slightly higher than after 2-years PM and after OM. Surprisingly, after 4-years PM, CECeff values were with 138 - 157 mmolc/kg almost 2-fold higher than after 2-years PM and OM which had with 74 - 102 mmolc/kg comparable CECeff values. Long-term PM resulted in changes of soil pH and slightly increased Ctot which probably enhanced the CECeff of the soil. However, further investigations of the effect of PM on stability of soil organic matter and microbial community structure are needed.

  12. Effects of age, experience and inter-alpha inhibitor proteins on working memory and neuronal plasticity after neonatal hypoxia-ischemia.

    Science.gov (United States)

    Gaudet, Cynthia M; Lim, Yow-Pin; Stonestreet, Barbara S; Threlkeld, Steven W

    2016-04-01

    cognitive task, beyond that of a single intervention strategy, and appears to facilitate neuronal plasticity following neonatal brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    Science.gov (United States)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  14. Using neuronal populations to study the mechanisms underlying spatial and feature attention

    Science.gov (United States)

    Cohen, Marlene R.; Maunsell, John H.R.

    2012-01-01

    Summary Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and non-spatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can co-modulate local neuronal populations, while feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, while spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons. PMID:21689604

  15. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    Science.gov (United States)

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  16. Modeling of plastic localization in aluminum and Al–Cu alloys under shock loading

    International Nuclear Information System (INIS)

    Krasnikov, V.S.; Mayer, A.E.

    2014-01-01

    This paper focuses on the modeling of plastic deformation localization in pure aluminum and aluminum–copper alloys during the propagation of a plane shock wave. Modeling is carried out with the use of continual dislocation plasticity model in 2-D geometry. It is shown that the formation of localization bands occurs at an angle of 45° to the direction of propagation of the shock front. Effective initiators for plastic localization in pure aluminum are the perturbations of the initial dislocation density, in the alloys – perturbations of the dislocation density and the concentration of copper atoms. Perturbations of temperature field in a range of tens of kelvins are not so effective for plastic localization. In the alloy plastic localization intensity decreases with an increase of strain rate due to the thermally activated nature of the dislocation motion

  17. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  18. Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation.

    Science.gov (United States)

    Hu, Juan; Wu, Jinggui; Qu, Xiaojing; Li, Jianming

    2018-02-22

    The objective of this work was to evaluate the variation in the amount and structure of humic acid (HA) after the application of organic wastes (OWs) in semiarid soil under plastic mulched drip irrigation, measured by elemental composition, excitation-emission matrix (EEM) fluorescence, and carbon 13 nuclear magnetic resonance ( 13 C CPMAS NMR). The experiment involved chemical fertilizer combined with chicken manure (CM), sheep manure (SM), maize straw (MS), fodder grass (FG), and tree leaves (TL), while chemical fertilizer only was used as control (CK). The highest cation exchange capacity (CEC), soil organic carbon (SOC), and HA contents (P plastic mulched drip irrigation conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity.

    Science.gov (United States)

    Havekes, Robbert; Vecsey, Christopher G; Abel, Ted

    2012-06-01

    Sleep deprivation is a common feature in modern society, and one of the consequences of sleep loss is the impairment of cognitive function. Although it has been widely accepted that sleep deprivation affects learning and memory, only recently has research begun to address which molecular signaling pathways are altered by sleep loss and, more importantly, which pathways can be targeted to reverse the memory impairments resulting from sleep deprivation. In this review, we discuss the different methods used to sleep deprive animals and the effects of different durations of sleep deprivation on learning and memory with an emphasis on hippocampus-dependent memory. We then review the molecular signaling pathways that are sensitive to sleep loss, with a focus on those thought to play a critical role in the memory and synaptic plasticity deficits observed after sleep deprivation. Finally, we highlight several recent attempts to reverse the effects of sleep deprivation on memory and synaptic plasticity. Future research building on these studies promises to contribute to the development of novel strategies to ameliorate the effects of sleep loss on cognition.

  20. The impact of sleep deprivation on neuronal and glial signalling pathways important for memory and synaptic plasticity

    Science.gov (United States)

    Havekes, Robbert; Vecsey, Christopher G.; Abel, Ted

    2012-01-01

    Sleep deprivation is a common feature in modern society, and one of the consequences of sleep loss is the impairment of cognitive function. Although it has been widely accepted that sleep deprivation affects learning and memory, only recently has research begun to address which molecular signalling pathways are altered by sleep loss and, more importantly, which pathways can be targeted to reverse the memory impairments resulting from sleep deprivation. In this review, we discuss the different methods used to sleep deprive animals and the effects of different durations of sleep deprivation on learning and memory with an emphasis on hippocampus-dependent memory. We then review the molecular signalling pathways that are sensitive to sleep loss, with a focus on those thought to play a critical role in the memory and synaptic plasticity deficits observed after sleep deprivation. Finally, we highlight several recent attempts to reverse the effects of sleep deprivation on memory and synaptic plasticity. Future research building on these studies promises to contribute to the development of novel strategies to ameliorate the effects of sleep loss on cognition. PMID:22570866

  1. Phenotypic plasticity of Neonotonia wightii and Pueraria phaseoloidesgrown under different light intensities

    Directory of Open Access Journals (Sweden)

    LEONARDO D.T. SANTOS

    2015-03-01

    Full Text Available Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii andPueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloidesplants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity ofN. wightiiand P. phaseoloides, no effects on biomass accumulation were observed in response to light.

  2. Evolution of Robustness and Plasticity under Environmental Fluctuation: Formulation in Terms of Phenotypic Variances

    Science.gov (United States)

    Kaneko, Kunihiko

    2012-09-01

    The characterization of plasticity, robustness, and evolvability, an important issue in biology, is studied in terms of phenotypic fluctuations. By numerically evolving gene regulatory networks, the proportionality between the phenotypic variances of epigenetic and genetic origins is confirmed. The former is given by the variance of the phenotypic fluctuation due to noise in the developmental process; and the latter, by the variance of the phenotypic fluctuation due to genetic mutation. The relationship suggests a link between robustness to noise and to mutation, since robustness can be defined by the sharpness of the distribution of the phenotype. Next, the proportionality between the variances is demonstrated to also hold over expressions of different genes (phenotypic traits) when the system acquires robustness through the evolution. Then, evolution under environmental variation is numerically investigated and it is found that both the adaptability to a novel environment and the robustness are made compatible when a certain degree of phenotypic fluctuations exists due to noise. The highest adaptability is achieved at a certain noise level at which the gene expression dynamics are near the critical state to lose the robustness. Based on our results, we revisit Waddington's canalization and genetic assimilation with regard to the two types of phenotypic fluctuations.

  3. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia.

    Science.gov (United States)

    Song, Seung; Park, Jong-Tae; Na, Joo Young; Park, Man-Seok; Lee, Jeong-Kil; Lee, Min-Cheol; Kim, Hyung-Seok

    2014-05-01

    endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone.

  4. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin.

    Science.gov (United States)

    Ho, S Shaun; Macdonald, Adam; Swain, James E

    2014-04-01

    Mirror neuron-based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent-infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  5. Ambient but not local lactate underlies neuronal tolerance to prolonged glucose deprivation

    Science.gov (United States)

    Sobieski, Courtney; Shu, Hong-Jin

    2018-01-01

    Neurons require a nearly constant supply of ATP. Glucose is the predominant source of brain ATP, but the direct effects of prolonged glucose deprivation on neuronal viability and function remain unclear. In sparse rat hippocampal microcultures, neurons were surprisingly resilient to 16 h glucose removal in the absence of secondary excitotoxicity. Neuronal survival and synaptic transmission were unaffected by prolonged removal of exogenous glucose. Inhibition of lactate transport decreased microculture neuronal survival during concurrent glucose deprivation, suggesting that endogenously released lactate is important for tolerance to glucose deprivation. Tandem depolarization and glucose deprivation also reduced neuronal survival, and trace glucose concentrations afforded neuroprotection. Mass cultures, in contrast to microcultures, were insensitive to depolarizing glucose deprivation, a difference attributable to increased extracellular lactate levels. Removal of local astrocyte support did not reduce survival in response to glucose deprivation or alter evoked excitatory transmission, suggesting that on-demand, local lactate shuttling is not necessary for neuronal tolerance to prolonged glucose removal. Taken together, these data suggest that endogenously produced lactate available globally in the extracellular milieu sustains neurons in the absence of glucose. A better understanding of resilience mechanisms in reduced preparations could lead to therapeutic strategies aimed to bolster these mechanisms in vulnerable neuronal populations. PMID:29617444

  6. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    Science.gov (United States)

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-01-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties. PMID:28195216

  7. Elasto/visco-plastic analysis of moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1987-01-01

    In the present paper the analytical formulation for the elasto/visco-plastic problems of general, moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformation. The equations of equilibrium and the relations between the strains and displacements are derived by extending the Reissner-Naghdi theory (1941, 1957) for elastic shells with given consideration to the effect of shear deformation. As the constitutive relation, Hooke's law is used in the liner elastic range, and the elasto/visco-plastic equations by Perzyna (1966) are employed in the plastic range. The fundamental equations on the elasto/visco-plastic problems derived for incremental values are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. (orig./GL)

  8. Elastic-plastic creep response of structures under composite time history

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This paper presents the theory, describes efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of the analysis method on a real three-dimensional structure. The new results of this work are the efficient handling of an arbitrary load history, introduction of the 'plastic stress' concept for inelastic computation, novel implementation of classical plasticity with recognition of incrementation conditions for the kinematic hardening, use of the load incrementation algorithm based on the 'plastic stress' concept, and development of a computer code capable of solving practical three-dimensional problems. (Auth.)

  9. CYCLIC PLASTIC BEHAVIOUR OF UFG COPPER UNDER CONTROLLED STRESS AND STRAIN LOADING

    Directory of Open Access Journals (Sweden)

    Lucie Navrátilová

    2012-01-01

    Full Text Available The influence of stress- and strain-controlled loading on microstructure and cyclic plastic behaviour of ultrafine-grained copper prepared by equal channel angular pressing was examined. The stability of microstructure is a characteristic feature for stress-controlled test whereas grain coarsening and development of bimodal structure was observed after plastic strain-controlled tests. An attempt to explain the observed behaviour was made.

  10. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1989-01-01

    An analytical method for the elasto/visco-plastic problems of general, orthotropic moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformations. The Reissner-Naghdi theory for elastic moderately thick shells is extended in this analysis. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic region, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. The fundamental equations for the increment are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. In order to check the adequacy of the numerical analysis, experiments are performed on the elasto/visco-plastic deformation of a titanium cylindrical shell subjected to locally distributed loads. Good agreement is obtained between the experimental results and analytical solutions

  11. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats.

    Science.gov (United States)

    Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Ben, Juliana; Guaita, Gisele O; Pita, Inês R; Sequeira, Ana C; Pereira, Frederico C; Walz, Roger; Takahashi, Reinaldo N; Bertoglio, Leandro J; Da Cunha, Cláudio; Cunha, Rodrigo A; Prediger, Rui D

    2016-03-15

    Parkinson's disease (PD) is characterized by motor dysfunction associated with dopaminergic degeneration in the dorsolateral striatum (DLS). However, motor symptoms in PD are often preceded by short-term memory deficits, which have been argued to involve deregulation of medial prefrontal cortex (mPFC). We now used a 6-hydroxydopamine (6-OHDA) rat PD model to explore if alterations of synaptic plasticity in DLS and mPFC underlie short-term memory impairments in PD prodrome. The bilateral injection of 6-OHDA (20μg/hemisphere) in the DLS caused a marked loss of dopaminergic neurons in the substantia nigra (>80%) and decreased monoamine levels in the striatum and PFC, accompanied by motor deficits evaluated after 21 days in the open field and accelerated rotarod. A lower dose of 6-OHDA (10μg/hemisphere) only induced a partial degeneration (about 60%) of dopaminergic neurons in the substantia nigra with no gross motor impairments, thus mimicking an early premotor stage of PD. Notably, 6-OHDA (10μg)-lesioned rats displayed decreased monoamine levels in the PFC as well as short-term memory deficits evaluated in the novel object discrimination and in the modified Y-maze tasks; this was accompanied by a selective decrease in the amplitude of long-term potentiation in the mPFC, but not in DLS, without changes of synaptic transmission in either brain regions. These results indicate that the short-term memory dysfunction predating the motor alterations in the 6-OHDA model of PD is associated with selective changes of information processing in PFC circuits, typified by persistent changes of synaptic plasticity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Neural ECM molecules in axonal and synaptic homeostatic plasticity.

    Science.gov (United States)

    Frischknecht, Renato; Chang, Kae-Jiun; Rasband, Matthew N; Seidenbecher, Constanze I

    2014-01-01

    Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.

  13. Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure.

    Science.gov (United States)

    Renteria, Rafael; Maier, Esther Y; Buske, Tavanna R; Morrisett, Richard A

    2017-01-01

    A major mouse model widely adopted in recent years to induce pronounced ethanol intake is the ethanol vapor model known as "CIE" or "Chronic Intermittent Ethanol." One critical question concerning this model is whether the rapid induction of high blood ethanol levels for such short time periods is sufficient to induce alterations in N-methyl-d-aspartate receptor (NMDAR) function which may contribute to excessive ethanol intake. In this study, we determined whether such short term intermittent ethanol exposure modulates NMDAR function as well as other prominent electrophysiological properties and the expression of plasticity in both D1 (D1+) and D2 (D1-) dopamine receptor expressing medium spiny neurons (MSNs) in the nucleus accumbens (NAc) shell. To distinguish between the two subtypes of MSNs in the NAc we treated Drd1a-TdTomato transgenic mice with CIE vapor and electrophysiological recordings were conducted 24 h after the last vapor exposure. To investigate CIE induced alterations in plasticity, long-term depression (LTD) was induced by pairing low frequency stimulation (LFS) with post synaptic depolarization. In ethanol naïve mice, LFS induced synaptic depression (LTD) was apparent exclusively in D1+ MSNs. Whereas in slices prepared from CIE treated mice, LFS induced synaptic potentiation (LTP) in D1+ MSNs. Furthermore, following CIE exposure, LFS now produced LTD in D1- MSNs. We found that CIE exposure induced an increase in excitability in D1+ MSNs with no change in D1- MSNs. After CIE, we found a significant increase in spontaneous EPSCs (sEPSCs) frequency in D1+ but not D1- MSNs suggesting alterations in baseline α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) mediated signaling. CIE induced changes in NMDAR function were measured using the NMDA/AMPA ratio and input-output curves of isolated NMDAR currents. We observed a significant increase in NMDAR function in D1+ MSNs and a decrease in D1- MSNs after ethanol vapor exposure. The

  14. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  15. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases.

    Science.gov (United States)

    Tian, Li; Hui, Chin Wai; Bisht, Kanchan; Tan, Yunlong; Sharma, Kaushik; Chen, Song; Zhang, Xiangyang; Tremblay, Marie-Eve

    2017-10-03

    Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Evidence that OGG1 glycosylase protects neurons against oxidative DNA damage and cell death under ischemic conditions

    DEFF Research Database (Denmark)

    Liu, Dong; Croteau, Deborah L; Souza-Pinto, Nadja

    2011-01-01

    to ischemic and oxidative stress. After exposure of cultured neurons to oxidative and metabolic stress levels of OGG1 in the nucleus were elevated and mitochondria exhibited fragmentation and increased levels of the mitochondrial fission protein dynamin-related protein 1 (Drp1) and reduced membrane potential....... Cortical neurons isolated from OGG1(-/-) mice were more vulnerable to oxidative insults than were OGG1(+/+) neurons, and OGG1(-/-) mice developed larger cortical infarcts and behavioral deficits after permanent middle cerebral artery occlusion compared with OGG1(+/+) mice. Accumulations of oxidative DNA...... increased levels of a nuclear isoform OGG1, suggesting an adaptive response to oxidative nuclear DNA damage. Thus, OGG1 has a pivotal role in repairing oxidative damage to nuclear DNA under ischemic conditions, thereby reducing brain damage and improving functional outcome.Journal of Cerebral Blood Flow...

  17. On the number of neurons and time scale of integration underlying the formation of percepts in the brain.

    Science.gov (United States)

    Wohrer, Adrien; Machens, Christian K

    2015-03-01

    All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons' firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject's behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration.

  18. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate.

    Science.gov (United States)

    Henry, Vincent Jean; Lecointre, Maryline; Laudenbach, Vincent; Ali, Carine; Macrez, Richard; Jullienne, Amandine; Berezowski, Vincent; Carmeliet, Peter; Vivien, Denis; Marret, Stéphane; Gonzalez, Bruno José; Leroux, Philippe

    2013-02-01

    Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 μM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only

  19. An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains.

    Science.gov (United States)

    Hosseini, Hadi S; Horák, Martin; Zysset, Philippe K; Jirásek, Milan

    2015-11-01

    Investigation of trabecular bone strength and compaction is important for fracture risk prediction. At 1-2% compressive strain, trabecular bone undergoes strain softening, which may lead to numerical instabilities and mesh dependency in classical local damage-plastic models. The aim of this work is to improve our continuum damage-plastic model of bone by reducing the influence of finite element mesh size under large compression. This spurious numerical phenomenon may be circumvented by incorporating the nonlocal effect of cumulated plastic strain into the constitutive law. To this end, an over-nonlocal implicit gradient model of bone is developed and implemented into the finite element software ABAQUS using a user element subroutine. The ability of the model to detect the regions of bone failure is tested against experimental stepwise loading data of 16 human trabecular bone biopsies. The numerical outcomes of the nonlocal model revealed reduction of finite element mesh dependency compared with the local damage-plastic model. Furthermore, it helped reduce the computational costs of large-strain compression simulations. To the best of our knowledge, the proposed model is the first to predict the failure and densification of trabecular bone up to large compression independently of finite element mesh size. The current development enables the analysis of trabecular bone compaction as in osteoporotic fractures and implant migration, where large deformation of bone plays a key role. Copyright © 2015 John Wiley & Sons, Ltd.

  20. On Loosening Plastic Composite under Active Load and Its Influence on the Deformation and Strength Properties

    Directory of Open Access Journals (Sweden)

    K. F. Komkov

    2015-01-01

    Full Text Available Processing the test results of the composite, which is a mechanical mixture of metal particles with a plastic polymer binder, has shown that its deformation and strength properties are substantially different from those of stable plastic material. The specimen tests for tensile and compression with measuring transverse deformations, as well as torsion tests of tubular samples have revealed that the process of its deformation is accompanied by a change in the original structure.The composite instability is caused by the fact that during this process, it acquires considerable loosening that depends on the type of the stress-state. Hard metal particles are hardly deformed at any stress-state, but they form a layer of bonds that affect the mixture behavior under force action. The total deformation is the plastic flow of the binder on which deformation, caused both by sliding and by loss of the surface layer bonds, is superimposed.The analysis shows that with destruction at tensile test the non-linear part of the bulk deformation (dilatancy is 6 times more than "conditionally" elastic (3.5 times compressed. The objective of this work is to develop a technique for determining a dilatancy, define its influence on deformation and strength properties of the composite, and improve the mathematical model of the material. The proposed model based on the tensor-nonlinear equations describes loosening, as an additional component of the mean deformation and as a mean stress component, hereinafter referred to as: the first - by the deformation, the second – by the stress. A ratio value of the nonlinear part of deformation with the quadratic tensor argument to the linear part, which reaches 0.3, shows the need for such equations. It also shows the influence of deformation on the relationship between the deviators.To enhance capabilities of mathematical model is possible after including therein the equations for the spherical part of the tensor of deformation

  1. Closed-form dynamic stability criterion for elastic-plastic structures under near-fault ground motions

    Directory of Open Access Journals (Sweden)

    Kotaro eKojima

    2016-03-01

    Full Text Available A dynamic stability criterion for elastic-plastic structures under near-fault ground motions is derived in closed-form. A negative post-yield stiffness is treated in order to consider the P-delta effect. The double impulse is used as a substitute of the fling-step near-fault ground motion. Since only the free-vibration appears under such double impulse, the energy approach plays a critical role in the derivation of the closed-form solution of a complicated elastic-plastic response of structures with the P-delta effect. It is remarkable that no iteration is needed in the derivation of the closed-form dynamic stability criterion on the critical elastic-plastic response. It is shown via the closed-form expression that several patterns of unstable behaviors exist depending on the ratio of the input level of the double impulse to the structural strength and on the ratio of the negative post-yield stiffness to the initial elastic stiffness. The validity of the proposed dynamic stability criterion is investigated by the numerical response analysis for structures under double impulses with stable or unstable parameters. Furthermore the reliability of the proposed theory is tested through the comparison with the response analysis to the corresponding one-cycle sinusoidal input as a representative of the fling-step near-fault ground motion. The applicability of the proposed theory to actual recorded pulse-type ground motions is also discussed.

  2. Associative and sensorimotor learning for parenting involves mirror neurons under the influence of oxytocin

    OpenAIRE

    Ho, S. Shaun; MacDonald, Adam; Swain, James E.

    2014-01-01

    Mirror neuron–based associative learning may be understood according to associative learning theories, in addition to sensorimotor learning theories. This is important for a comprehensive understanding of the role of mirror neurons and related hormone modulators, such as oxytocin, in complex social interactions such as among parent–infant dyads and in examples of mirror neuron function that involve abnormal motor systems such as depression.

  3. Development of north sea coastal plankton communities in separate plastic bags under identical conditions

    NARCIS (Netherlands)

    Kuiper, J.

    1977-01-01

    In two experiments lasting 4 to 6 weeks, communities of North Sea coastal plankton kept in separate plastic bags (of about 1400 l) and exposed to the same environmental conditions showed very similar patterns of growth and decline. This result means that the method is suitable for the evaluation of

  4. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  5. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    International Nuclear Information System (INIS)

    Trinkaus, H.; Singh, B.N.

    2008-04-01

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized by other loops or

  6. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich (Germany); Singh, B.N. [Technical Univ. of Denmark, Risoe National Laboratory for Sustainable Energy, Materials Research Dept., Roskilde (Denmark)

    2008-04-15

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials 'remember' the impact of the pre-yield damage level. These features are modelled in terms of the decoration of dislocations with glissile dislocation loops. During pre-yield irradiation, dislocation decoration is due to the one-dimensional (1D) diffusion of cascade induced self-interstitial (SIA) clusters and their trapping in the stress field of the static grown-in dislocations. During post-yield irradiation and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other in a conceived 2D space of decoration. In this space, loop coalescence, alignment and mutual blocking reactions are characterised by appropriate reaction cross sections. In the kinetic equations for 'dynamic decoration' under deformation, the evolution of the dislocation density is taken into account. Simple solutions of the kinetic equations are discussed. The apparent memory of the system for the pre-yield dose is identified as the result of simultaneous and closely parallel transient evolutions of the cascade damage and the dislocations up to the end of the IRTs. The contributions of dislocation decoration to yield and flow stresses are attributed to the interaction of dislocations with aligned loops temporarily or permanently immobilized

  7. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    Directory of Open Access Journals (Sweden)

    Feibiao Zhan

    2017-11-01

    Full Text Available Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  8. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    Science.gov (United States)

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  9. Intra-subunit flexibility underlies activation and allosteric modulation of neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Chrisman, Paul A; Podair, Julie I; Jobe, Emily M; Levandoski, Mark M

    2014-04-01

    Allosteric modulation is a general feature of nicotinic acetylcholine receptors, yet the structural components and movements important for conversions among functional states are not well understood. In this study, we examine the communication between the binding sites for agonist and the modulator morantel (Mor) of neuronal α3β2 receptors, measuring evoked currents of receptors expressed in Xenopus oocytes with the two-electrode voltage-clamp method. We hypothesized that movement along an interface of β sheets connecting the agonist and modulator sites is necessary for allosteric modulation. To address this, we created pairs of substituted cysteines that span the cleft formed where the outer β sheet meets the β sheet constituting the (-)-face of the α3 subunit; the three pairs were L158C-A179C, L158C-G181C and L158C-K183C. Employing a disulfide trapping approach in which bonds are formed between neighboring cysteines under oxidation conditions, we found that oxidation treatments decreased the amplitude of currents evoked by either the agonist (ACh) or co-applied agonist and modulator (ACh + Mor), by as much as 51%, consistent with the introduced bond decreasing channel efficacy. Reduction treatment increased evoked currents up to 89%. The magnitude of the oxidation effects depended on whether agonists were present during oxidation and on the cysteine pair. Additionally, the cysteine mutations themselves decreased Mor potentiation, implicating these residues in modulation. Our findings suggest that these β sheets in the α3 subunit move with respect to each other during activation and modulation, and the residues studied highlight the contribution of this intramolecular allosteric pathway to receptor function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cooperative integration and representation underlying bilateral network of fly motion-sensitive neurons.

    Directory of Open Access Journals (Sweden)

    Yoshinori Suzuki

    Full Text Available How is binocular motion information integrated in the bilateral network of wide-field motion-sensitive neurons, called lobula plate tangential cells (LPTCs, in the visual system of flies? It is possible to construct an accurate model of this network because a complete picture of synaptic interactions has been experimentally identified. We investigated the cooperative behavior of the network of horizontal LPTCs underlying the integration of binocular motion information and the information representation in the bilateral LPTC network through numerical simulations on the network model. First, we qualitatively reproduced rotational motion-sensitive response of the H2 cell previously reported in vivo experiments and ascertained that it could be accounted for by the cooperative behavior of the bilateral network mainly via interhemispheric electrical coupling. We demonstrated that the response properties of single H1 and Hu cells, unlike H2 cells, are not influenced by motion stimuli in the contralateral visual hemi-field, but that the correlations between these cell activities are enhanced by the rotational motion stimulus. We next examined the whole population activity by performing principal component analysis (PCA on the population activities of simulated LPTCs. We showed that the two orthogonal patterns of correlated population activities given by the first two principal components represent the rotational and translational motions, respectively, and similar to the H2 cell, rotational motion produces a stronger response in the network than does translational motion. Furthermore, we found that these population-coding properties are strongly influenced by the interhemispheric electrical coupling. Finally, to test the generality of our conclusions, we used a more simplified model and verified that the numerical results are not specific to the network model we constructed.

  11. Plastic collapse of API 5L X65 pipe having dent defects under internal pressure and bending load

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Jong-hyun; Kim, Young-pyo; Kim, Cheol-man; Kim, Woo-sik [RandD Division, KOGAS, Ansan, (Korea, Republic of); Koo, Jae-mean; Seok, Chang-sung [Department of Mechanical Engineering, Sungkyunkwan University, Suwon, (Korea, Republic of)

    2010-07-01

    This paper studies the effect of the dent magnitude on the collapse of a dented pipe that is subjected to simultaneous internal pressure and in-plane bending. The evaluation was made with elastic-plastic finite element analyses. Dents of various depths were made on a pipe having a diameter of 762 mm and a wall thickness of 17.5 mm. The dented pipes were subjected to a closing or opening in-plane bending moment under various internal pressures. Results showed that the bending mode and the dent geometry had a strong influence on the plastic collapse behaviour. Moment-bending angle curves obtained from computer simulation were evaluated with a variety of factors. A dent whose depth was 5% of the outer diameter did not reduce the load-carrying capacity of a pipe. The load-carrying capacity was higher with an opening bending mode than with a closing bending mode regardless of dent depth.

  12. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  13. Elastic-plastic-creep response of structures under composite time history of loadings

    International Nuclear Information System (INIS)

    Zudans, Z.

    1975-01-01

    High temperature nuclear reactor components are subject to a complex history of thermal and mechanical loading cycles. To evaluate the adequacy of such components, detailed information on the accumulated inelastic strains and strain cycling is required. This work derives the theory, develops efficient numerical techniques accounting for plasticity, creep and overall equilibrium, describes the overall structure of the resulting computer program, and demonstrates the capability of this analysis on a real structure. (Auth.)

  14. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging

    Science.gov (United States)

    Henley, Jeremy M.; Wilkinson, Kevin A.

    2013-01-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  15. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

    Science.gov (United States)

    Riggio, Cristina; Calatayud, M Pilar; Giannaccini, Martina; Sanz, Beatriz; Torres, Teobaldo E; Fernández-Pacheco, Rodrigo; Ripoli, Andrea; Ibarra, Manuel Ricardo; Dente, Luciana; Cuschieri, Alfred; Goya, Gerardo F; Raffa, Vittoria

    2014-10-01

    There is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. Specifically, results from published experimental studies indicate that forces, when carefully controlled, can modulate neuronal regeneration. Here, we validate a non-invasive approach for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles (MNPs) and magnetic fields (Ms). The concept is that the application of a tensile force to a neuronal cell can stimulate neurite initiation or axon elongation in the desired direction, the MNPs being used to generate this tensile force under the effect of a static external magnetic field providing the required directional orientation. In a neuron-like cell line, we have confirmed that MNPs direct the neurite outgrowth preferentially along the direction imposed by an external magnetic field, by inducing a net angle displacement (about 30°) of neurite direction. From the clinical editor: This study validates that non-invasive approaches for physical guidance of nerve regeneration based on the synergic use of magnetic nanoparticles and magnetic fields are possible. The hypothesis was confirmed by observing preferential neurite outgrowth in a cell culture system along the direction imposed by an external magnetic field. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    stem cell center reprograms blood cells at expert facility... reprogramming of stem cells occurs at BU. ▪ Personnel exchanges - subject recruitment is done at BUSPH site with BUSPH research assistant. ▪ Other – none...Aim 1. Develop human neurons or glial cells derived from human induced pluripotent stem cells (hiPSCs), originating from

  17. Optimal decoding and information transmission in Hodgkin–Huxley neurons under metabolic cost constraints

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Kobayashi, R.

    2015-01-01

    Roč. 136, Oct 2015 (2015), s. 3-10 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GA15-08066S Institutional support: RVO:67985823 Keywords : neuronal coding * information transfer * optimal decoding Subject RIV: BD - Theory of Information Impact factor: 1.495, year: 2015

  18. Change of residual stresses during plastic deformation under uniaxial tension test

    International Nuclear Information System (INIS)

    Benito, J. A.; Jorba, J.; Roca, A.

    2001-01-01

    Hang of longitudinal and transverse residual stresses was studied by X Ray diffraction method as the applied plastic deformation, measured as A% was increased in a standard tension test. The starting material, hot rolling Armco iron, has values close to 0 MPa in longitudinal direction. But it reaches 600 MPa with only A=1,5%, this value remains constant until necking is produced. In transverse direction the stating values are 300 MPa, changes are small and residual stresses remain compressive until the end of tension test. In addition, studies of the changes of residual stresses with time and with misalignment between incident X Ray and drawing direction are presented. (Author) 5 refs

  19. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  20. Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic mulch conditions in arid environment

    DEFF Research Database (Denmark)

    Ai, Zhipin; Yang, Yonghui; Wang, Qinxue

    2017-01-01

    -mulched condition already published, the Kc of mulched cotton for the entire growth season decreased by 16 to 39%. The largest reductions in Kc due to plastic mulch were found in the initial and developmental growth stage. Kc could be calculated by a third-degree polynomial model in relation to RGD, which......Crop coefficient (Kc) is a very useful and widely used variable in evapotranspiration estimation in cropland. Traditional methods in calculating Kc are based on field water balance, which is limited by long measurement interval and small study area. In addition, there is the need for Kc under new...

  1. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    OpenAIRE

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-01-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300?cm depth and hence 300?cm is recommended as the minimu...

  2. Dislocation-Disclination Substructures Formed in FCC Polycrystals Under Large Plastic Deformations: Evolution and Association with Flow Stress

    Science.gov (United States)

    Kozlov, É. V.; Koneva, N. A.; Trishkina, L. I.

    2014-06-01

    The evolution of dislocation substructures formed in polycrystalline Cu-Al and Cu-Mn alloys undergoing large plastic deformations is studied, using transmission electron microscopy. Microband and fragmented substructures are examined. The Al and Mn alloying element concentrations for which the substructures are formed have been found. The mechanisms involved in the formation of the substructures during the substructural evolution in the alloys subjected to deformation have been revealed. Parameters describing the substructures under study have been measured. The dependence of the parameters on the flow stress has been established.

  3. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Ghoniem, N.M.; Trinkaus, H.

    2002-01-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved

  4. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Ghoniem, N.M.; Trinkaus, H

    2002-12-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved.

  5. Nitrogen utilization of vegetables grown under plastic greenhouse conditions in Ankara using 15N technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and eventually to identify the best N fertilizer rate greenhouse experiments were conducted for two years. Yazgi F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be the suitable varieties to grow in the plastic greenhouse conditions in Ankara. Five N treatments [N 0 =0, N 1 =150, N 2 =300, and N 3 =450 kg/ha; also, soil N application treatment (N soil ) equivalent to the fertigation treatment of 300 kg/ha was included for tomato and pepper, however N rates for cucumber was 131, 266 and 339 kg N/ha; N soil being 266 kg N/ha] were investigated using 15 N labeled urea fertilizer. Significantly higher marketable fresh fruit and total dry matter yields and N uptakes values were obtained from N 3 treatments for tomato and cucumber, but from N 2 treatment for pepper. Also, significantly higher yields, N uptakes and % NUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. (author)

  6. Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex

    Science.gov (United States)

    Andermann, Mark L.; Keck, Tara; Xu, Ning-Long; Ziv, Yaniv

    2013-01-01

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents. PMID:24198355

  7. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo

    NARCIS (Netherlands)

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, C.

    2015-01-01

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in

  8. Subcritical Hopf Bifurcation and Stochastic Resonance of Electrical Activities in Neuron under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Fu

    2018-02-01

    Full Text Available The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.

  9. [Pulse flows of populations of cortical neurons under low-intensity pulsed microwave: interspike intervals].

    Science.gov (United States)

    Chizhenkova, R A

    2014-01-01

    Pulse flows of populations of cortical neurons were investigated on unanesthetized nonimmobilized rabbits prior, during, and after 1-min microwave irradiation (wavelength 37.5 cm, power density 0.5-1.0 mW/cm2) in continuous and pulse-modulated modes with a frequency of 5, 20 and 100 Hz. The changes in the characteristics of interspike intervals resulted from these exposures. The peculiarity of rearrangements of pulse flows and their dynamics was determined by modes of irradiation.

  10. Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr

    2013-01-01

    Roč. 112, č. 3 (2013), s. 265-275 ISSN 0303-2647 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GPP103/12/ P558 Institutional support: RVO:67985823 Keywords : information capacity * metabolic cost * neuronal population Subject RIV: BD - Theory of Information Impact factor: 1.472, year: 2013

  11. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertilization system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm soil depth

  12. Water utilization of vegetables grown under plastic greenhouse conditions in Ankara using neutron probe technique

    International Nuclear Information System (INIS)

    Halitligil, M.B.; Kislal, H.; Sirin, H.; Sirin, C.; Kilicaslan, A.

    2004-01-01

    Full text: In order to find suitable varieties of tomato, pepper and cucumber for plastic greenhouse conditions in Ankara and ensure both higher yields and lower NO 3 leaching greenhouse experiments were conducted for three years. In the first year (2001) of the experiment four different varieties from each vegetable, namely, Tomato (Ecem F 1 , 9920 F 1 , 2116 F 1 and Yazg1 F 1 ), Cucumber (Hizir F 1 , Rapido, Hana, and Luna) and Pepper (1245 F 1 , 730 F 1 , Serademre 8 and 710 F 1 ) had been grown in the plastic greenhouse using drip irrigation-fertiligation system. Yazg1 F 1 variety for tomato, Hizir F 1 variety for cucumber and Serademre 8 variety for pepper were chosen to be suitable varieties to grow in the plastic greenhouse conditions in Ankara. One access tube in each N 3 and N 0 treatment plots of tomato, cucumber and pepper in 2002 and 2003 experiments were installed for the soil moisture determinations at 30, 60 and 90 cm depths. Readings with the neutron probe were taken before planting and after harvest for the water consumption calculations using the water balance approach and the WUE was calculated on the basis of the ratio of dry matter weight to the amount of water consumed. Tensiometer and suction cups were installed at 15, 30, 45 and 60 cm depths only to N 1 , N 2 and N 3 treatments plots of each vegetable in 2002 and 2003. Tensiometer readings were taken just before irrigation. Also, soil solution samples from suction cups were taken at final harvest and NO 3 determinations were done with RQFLEX nitrate test strips. Significantly higher yields and WUE values were obtained when the same amount of N fertilizer is applied through fertigation compared to the treatment where N fertilizer applied to the soil then drip irrigated. The nitrate concentrations of the soil solution increased as the N rates increased and no NO 3 had been found in the soil solution taken from 75 cm soil depth, indicating that no leaching of N fertilizer occurred beyond 75 cm

  13. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    Directory of Open Access Journals (Sweden)

    Juan Wu

    Full Text Available As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  14. How many neurons do you have? Some dogmas of quantitative neuroscience under revision.

    Science.gov (United States)

    Lent, Roberto; Azevedo, Frederico A C; Andrade-Moraes, Carlos H; Pinto, Ana V O

    2012-01-01

    Owing to methodological shortcomings and a certain conservatism that consolidates wrong assumptions in the literature, some dogmas have become established and reproduced in papers and textbooks, derived from quantitative features of the brain. The first dogma states that the cerebral cortex is the pinnacle of brain evolution - based on the observations that its volume is greater in more 'intelligent' species, and that cortical surface area grows more than any other brain region, to reach the largest proportion in higher primates and humans. The second dogma claims that the human brain contains 100 billion neurons, plus 10-fold more glial cells. These round numbers have become widely adopted, although data provided by different authors have led to a broad range of 75-125 billion neurons in the whole brain. The third dogma derives from the second, and states that our brain is structurally special, an outlier as compared with other primates. Being so large and convoluted, it is a special construct of nature, unrelated to evolutionary scaling. Finally, the fourth dogma appeared as a tentative explanation for the considerable growth of the brain throughout development and evolution - being modular in structure, the brain (and particularly the cerebral cortex) grows by tangential addition of modules that are uniform in neuronal composition. In this review, we sought to examine and challenge these four dogmas, and propose other interpretations or simply their replacement with alternative views. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    Science.gov (United States)

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  16. Elasto/visco-plastic deformation of moderately thick shells of revolution under thermal loading due to fluid

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.; Aoki, T.; Inamura, E.

    1993-01-01

    This paper is concerned with an analytical formulation and a numerical solution of the thermo-elasto/visco-plastic deformation of general, moderately thick shells of revolution subjected to thermal loads due to fluid. At first the temperature distribution through the thickness is supposed to be curves of second order, and the temperature field in the shell under the appropriate initial and boundary conditions is determined by using the equations of heat conduction and heat transfer. Secondly the stresses and deformations are derived from the thermal stress equations. The equations of equilibrium and the relations between the strains and displacements are developed by extending the Reissner-Naghdi theory for elastic shells. For the constitutive relations, the Perzyna elasto/visco-plastic equations including the temperature effect are employed. The fundamental equations derived are numerically solved by the finite difference method. As a numerical example, the simply supported cylindrical shell made of mild steel under thermal loading due to fluid is analyzed, and the results are compared with those from classical theory which neglects the effect of shear deformations. (author)

  17. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Babcock

    2017-01-01

    Full Text Available Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR and hypoxia inducible factor-1α (HIF-1α. The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D out of four potential HIF response elements of the hKOR gene (HIFA–D synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing, suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.

  18. Oligo cyclic plastic fatigue of Zircaloy-4 under vacuum and in iodinated methanol; Fatigue plastique oligocyclique du Zircaloy-4 sous vide et dans le methanol iode

    Energy Technology Data Exchange (ETDEWEB)

    Beloucif, A.

    1995-01-01

    Our study was bound to the Zircaloy-4 fuel can damage in PWR type reactors. The topic was the damage mechanisms of Zircaloy-4 by oligo-cyclic plastic fatigue in inert atmosphere and in iodinated methanol. The oligo-cyclic plastic fatigue tests, under vacuum, were performed with steady plastic deformation and deformation speed. The corrosion fatigue tests in iodinated methanol put to the fore one obvious harmful part of iodine on Zircaloy-4 resistance to cyclic solicitations. The observations proved the existence of a very strong synergic effect between cyclic mechanical damage and corrosion. (MML). 84 refs., 117 figs., 3 tabs.

  19. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  20. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  1. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  2. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    Science.gov (United States)

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  3. Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica.

    Directory of Open Access Journals (Sweden)

    Brad A Seibel

    Full Text Available Ocean acidification, caused by elevated seawater carbon dioxide levels, may have a deleterious impact on energetic processes in animals. Here we show that high PCO(2 can suppress metabolism, measured as oxygen consumption, in the pteropod, L. helicina forma antarctica, by ∼20%. The rates measured at 180-380 µatm (MO(2  =  1.25 M(-0.25, p  =  0.007 were significantly higher (ANCOVA, p  =  0.004 than those measured at elevated target CO(2 levels in 2007 (789-1000 µatm,  =  0.78 M(-0.32, p  =  0.0008; Fig. 1. However, we further demonstrate metabolic plasticity in response to regional phytoplankton concentration and that the response to CO(2 is dependent on the baseline level of metabolism. We hypothesize that reduced regional Chl a levels in 2008 suppressed metabolism and masked the effect of ocean acidification. This effect of food limitation was not, we postulate, merely a result of gut clearance and specific dynamic action, but rather represents a sustained metabolic response to regional conditions. Thus, pteropod populations may be compromised by climate change, both directly via CO(2-induced metabolic suppression, and indirectly via quantitative and qualitative changes to the phytoplankton community. Without the context provided by long-term observations (four seasons and a multi-faceted laboratory analysis of the parameters affecting energetics, the complex response of polar pteropods to ocean acidification may be masked or misinterpreted.

  4. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Lee, C.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Materials Research Center, Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Kim, T.W.; Lee, W.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Yim, H.I. [Department of Physics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2014-02-25

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe{sub 52}Co{sub 20−x}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub x} alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe{sub 52}Co{sub 17}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub 3} bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept.

  5. Neuronal oscillations reveal the processes underlying intentional compared to incidental learning in children and young adults.

    Directory of Open Access Journals (Sweden)

    Moritz Köster

    Full Text Available This EEG study investigated the neuronal processes during intentional compared to incidental learning in young adults and two groups of children aged 10 and 7 years. Theta (3-8 Hz and alpha (10-16 Hz neuronal oscillations were analyzed to compare encoding processes during an intentional and an incidental encoding task. In all three age groups, both encoding conditions were associated with an increase in event-related theta activity. Encoding-related alpha suppression increased with age. Memory performance was higher in the intentional compared to the incidental task in all age groups. Furthermore, intentional learning was associated with an improved encoding of perceptual features, which were relevant for the retrieval phase. Theta activity increased from incidental to intentional encoding. Specifically, frontal theta increased in all age groups, while parietal theta increased only in adults and older children. In younger children, parietal theta was similarly high in both encoding phases. While alpha suppression may reflect semantic processes during encoding, increased theta activity during intentional encoding may indicate perceptual binding processes, in accordance with the demands of the encoding task. Higher encoding-related alpha suppression in the older age groups, together with age differences in parietal theta activity during incidental learning in young children, is in line with recent theoretical accounts, emphasizing the role of perceptual processes in mnemonic processing in young children, whereas semantic encoding processes continue to mature throughout middle childhood.

  6. Spatial Attention and Temporal Expectation Under Timed Uncertainty Predictably Modulate Neuronal Responses in Monkey V1

    Science.gov (United States)

    Sharma, Jitendra; Sugihara, Hiroki; Katz, Yarden; Schummers, James; Tenenbaum, Joshua; Sur, Mriganka

    2015-01-01

    The brain uses attention and expectation as flexible devices for optimizing behavioral responses associated with expected but unpredictably timed events. The neural bases of attention and expectation are thought to engage higher cognitive loci; however, their influence at the level of primary visual cortex (V1) remains unknown. Here, we asked whether single-neuron responses in monkey V1 were influenced by an attention task of unpredictable duration. Monkeys covertly attended to a spot that remained unchanged for a fixed period and then abruptly disappeared at variable times, prompting a lever release for reward. We show that monkeys responded progressively faster and performed better as the trial duration increased. Neural responses also followed monkey's task engagement—there was an early, but short duration, response facilitation, followed by a late but sustained increase during the time monkeys expected the attention spot to disappear. This late attentional modulation was significantly and negatively correlated with the reaction time and was well explained by a modified hazard function. Such bimodal, time-dependent changes were, however, absent in a task that did not require explicit attentional engagement. Thus, V1 neurons carry reliable signals of attention and temporal expectation that correlate with predictable influences on monkeys' behavioral responses. PMID:24836689

  7. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Beng, Yeo Kiam; Tzeng, Woo Wen [Universiti Malaysia Sabah, Sabah (Malaysia)

    2017-02-15

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber.

  8. Plastic collapse and energy absorption of circular filled tubes under quasi-static loads by computational analysis

    International Nuclear Information System (INIS)

    Beng, Yeo Kiam; Tzeng, Woo Wen

    2017-01-01

    This study presents the finite element analysis of plastic collapse and energy absorption of polyurethane-filled aluminium circular tubes under quasi-static transverse loading. Increasing focuses were given to impact damage of structures where energy absorbed during impact could be controlled to avoid total structure collapse of energy absorbers and devices designed to dissipate energy. ABAQUS finite element analysis application was utilized for modelling and simulating the polyurethane-filled aluminium tubes, different set of diameterto- thickness ratios and span lengths, subjected to transverse three-point-bending load. Different sets of polyurethane-filled aluminium tubes subjected to the transverse loading were modelled and simulated. The failure modes and mechanisms of filled tubes and its capabilities as energy absorbers to further improve and strengthening of empty tube were also identified. The results showed that plastic deformation response was affected by the geometric constraints and parameters of the specimens. The diameter-to-thickness ratio and span lengths had shown to play crucial role in optimizing the PU-filled tube as energy absorber

  9. Fruit sphere microenvironments and berry phenolic content of Cabernet Sauvignon (Vitis vinifera L. cultivated under rain-shelter systems with coloured plastic film

    Directory of Open Access Journals (Sweden)

    Jiang-Fei MENG

    Full Text Available Abstract Rain-shelter cultivation has been proven an important cultivation method for grape-plantings in continental monsoon climate zones, of which white plastic films are the most common shelter material. However, while this method and material reduces the occurrence of the disease, it can also decrease the grape berry quality. Five colours (including red, yellow, blue, purple, and white of plastic films were covered above Cabernet Sauvignon (Vitis vinifera L. grapevine rows before veraison. Rain-shelter cultivation reduced air temperature, wind speed, and total solar radiation and enhanced relative humidity in the fruit sphere of grapevines. For each particular colour plastic film, the irradiance of its corresponding spectrum band in the canopy of vines was higher than with other colour plastic films. Meanwhile, the blue plastic film treatment significantly promoted the accumulation of total phenolics, anthocyanins, flavonoids, tannins, and phenolic acids more than the other colours of plastic films. Blue plastic films are more beneficial for berry quality promotion of wine grapes, especially Cabernet Sauvignon, under rain-shelter cultivation in continental monsoon climate zones.

  10. CB1 Receptor Activation on VgluT2-Expressing Glutamatergic Neurons Underlies Δ9-Tetrahydrocannabinol (Δ9-THC)-Induced Aversive Effects in Mice.

    Science.gov (United States)

    Han, Xiao; He, Yi; Bi, Guo-Hua; Zhang, Hai-Ying; Song, Rui; Liu, Qing-Rong; Egan, Josephine M; Gardner, Eliot L; Li, Jing; Xi, Zheng-Xiong

    2017-09-26

    Cannabis can be rewarding or aversive. Cannabis reward is believed to be mediated by activation of cannabinoid CB1 receptors (CB1Rs) on GABAergic neurons that disinhibit dopaminergic neurons in the ventral tegmental area (VTA). However, little is known about the mechanisms underlying cannabis aversion in rodents. In the present study, CB1Rs are found not only on VTA GABAergic neurons, but also on VTA glutamatergic neurons that express vesicular glutamate transporter 2 (VgluT2). We then used Cre-Loxp transgenic technology to selectively delete CB1Rs in VgluT2-expressing glutamatergic neurons (VgluT2-CB1 -/- ) and Cre-dependent viral vector to express light-sensitive channelrhodopsin-2 into VTA glutamatergic neurons. We found that photoactivation of VTA glutamatergic neurons produced robust intracranial self-stimulation (ICSS) behavior, which was dose-dependently blocked by DA receptor antagonists, but enhanced by cocaine. In contrast, Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the major psychoactive component of cannabis, produced dose-dependent conditioned place aversion and a reduction in the above optical ICSS in VgluT2-cre control mice, but not in VgluT2-CB1 -/- mice. These findings suggest that activation of CB1Rs in VgluT2-expressing glutamate neurons produces aversive effects that might explain why cannabinoid is not rewarding in rodents and might also account for individual differences in the hedonic effects of cannabis in humans.

  11. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    Science.gov (United States)

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  12. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  13. An evaluation on the effect of reversed plastic zone on the fatigue crack opening behavior under 2-D plane stress

    International Nuclear Information System (INIS)

    Choi, Hyeon Chang

    2005-01-01

    The relationship between fatigue crack opening behavior and the reversed plastic zone sizes is studied. An elastic-plastic Finite Element Analysis (FEA) is performed to examine the opening behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. The smaller element size than reversed plastic zone size is used for evaluating the distribution of reversed plastic zone. In the author's previous results the FEA could predict the crack opening level, which crack tip elements were in proportion to the theoretical reversed plastic zone size. It is found that the calculated reversed plastic zone size is related to the theoretical reversed plastic zone size and crack opening level. The calculated reversed plastic zone sizes are almost equal to the reversed plastic zone considering crack opening level obtained by experimental results. It can be possible to predict the crack opening level from the reversed plastic zone size calculated by finite element method. We find that the experimental crack opening levels correspond with the opening values of contact nodes on the calculated reversed plastic zone of finite element simulation

  14. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice

    Science.gov (United States)

    Rao, Yan; Mineur, Yann S; Gan, Geliang; Wang, Alex Hanxiang; Liu, Zhong-Wu; Wu, Xinyuan; Suyama, Shigetomo; de Lecea, Luis; Horvath, Tamas L; Picciotto, Marina R; Gao, Xiao-Bing

    2013-01-01

    Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans. PMID:23318871

  15. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice.

    Science.gov (United States)

    Rao, Yan; Mineur, Yann S; Gan, Geliang; Wang, Alex Hanxiang; Liu, Zhong-Wu; Wu, Xinyuan; Suyama, Shigetomo; de Lecea, Luis; Horvath, Tamas L; Picciotto, Marina R; Gao, Xiao-Bing

    2013-04-01

    Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.

  16. The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs.

    Directory of Open Access Journals (Sweden)

    Bing Ye

    Full Text Available Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity.In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity.An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.

  17. Ischemic long-term-potentiation (iLTP: perspectives to set the threshold of neural plasticity toward therapy

    Directory of Open Access Journals (Sweden)

    Maximilian Lenz

    2015-01-01

    Full Text Available The precise role of neural plasticity under pathological conditions remains not well understood. It appears to be well accepted, however, that changes in the ability of neurons to express plasticity accompany neurological diseases. Here, we discuss recent experimental evidence, which suggests that synaptic plasticity induced by a pathological stimulus, i.e., ischemic long-term-potentiation (iLTP of excitatory synapses, could play an important role for post-stroke recovery by influencing the post-lesional reorganization of surviving neuronal networks.

  18. Ischemic long-term-potentiation (iLTP): perspectives to set the threshold of neural plasticity toward therapy.

    Science.gov (United States)

    Lenz, Maximilian; Vlachos, Andreas; Maggio, Nicola

    2015-10-01

    The precise role of neural plasticity under pathological conditions remains not well understood. It appears to be well accepted, however, that changes in the ability of neurons to express plasticity accompany neurological diseases. Here, we discuss recent experimental evidence, which suggests that synaptic plasticity induced by a pathological stimulus, i.e., ischemic long-term-potentiation (iLTP) of excitatory synapses, could play an important role for post-stroke recovery by influencing the post-lesional reorganization of surviving neuronal networks.

  19. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes.

    Science.gov (United States)

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai

    2014-09-01

    The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Changes in Ionic Conductance Signature of Nociceptive Neurons Underlying Fabry Disease Phenotype

    Science.gov (United States)

    Namer, Barbara; Ørstavik, Kirstin; Schmidt, Roland; Mair, Norbert; Kleggetveit, Inge Petter; Zeidler, Maximillian; Martha, Theresa; Jorum, Ellen; Schmelz, Martin; Kalpachidou, Theodora; Kress, Michaela; Langeslag, Michiel

    2017-01-01

    The first symptom arising in many Fabry patients is neuropathic pain due to changes in small myelinated and unmyelinated fibers in the periphery, which is subsequently followed by a loss of sensory perception. Here we studied changes in the peripheral nervous system of Fabry patients and a Fabry mouse model induced by deletion of α-galactosidase A (Gla−/0). The skin innervation of Gla−/0 mice resembles that of the human Fabry patients. In Fabry diseased humans and Gla−/0 mice, we observed similar sensory abnormalities, which were also observed in nerve fiber recordings in both patients and mice. Electrophysiological recordings of cultured Gla−/0 nociceptors revealed that the conductance of voltage-gated Na+ and Ca2+ currents was decreased in Gla−/0 nociceptors, whereas the activation of voltage-gated K+ currents was at more depolarized potentials. Conclusively, we have observed that reduced sensory perception due to small-fiber degeneration coincides with altered electrophysiological properties of sensory neurons. PMID:28769867

  1. Changes in Ionic Conductance Signature of Nociceptive Neurons Underlying Fabry Disease Phenotype

    Directory of Open Access Journals (Sweden)

    Barbara Namer

    2017-07-01

    Full Text Available The first symptom arising in many Fabry patients is neuropathic pain due to changes in small myelinated and unmyelinated fibers in the periphery, which is subsequently followed by a loss of sensory perception. Here we studied changes in the peripheral nervous system of Fabry patients and a Fabry mouse model induced by deletion of α-galactosidase A (Gla−/0. The skin innervation of Gla−/0 mice resembles that of the human Fabry patients. In Fabry diseased humans and Gla−/0 mice, we observed similar sensory abnormalities, which were also observed in nerve fiber recordings in both patients and mice. Electrophysiological recordings of cultured Gla−/0 nociceptors revealed that the conductance of voltage-gated Na+ and Ca2+ currents was decreased in Gla−/0 nociceptors, whereas the activation of voltage-gated K+ currents was at more depolarized potentials. Conclusively, we have observed that reduced sensory perception due to small-fiber degeneration coincides with altered electrophysiological properties of sensory neurons.

  2. Decreased Power but Preserved Bursting Features of Subthalamic Neuronal Signals in Advanced Parkinson's Patients under Controlled Desflurane Inhalation Anesthesia

    Directory of Open Access Journals (Sweden)

    Sheng-Huang Lin

    2017-12-01

    Full Text Available Deep brain stimulation (DBS surgery of the subthalamic nucleus (STN under general anesthesia (GA had been used in Parkinson's disease (PD patients who are unable tolerate awake surgery. The effect of anesthetics on intraoperative microelectrode recording (MER remains unclear. Understanding the effect of anesthetics on MER is important in performing STN DBS surgery with general anesthesia. In this study, we retrospectively performed qualitive and quantitative analysis of STN MER in PD patients received STN DBS with controlled desflurane anesthesia or LA and compared their clinical outcome. From January 2005 to March 2006, 19 consecutive PD patients received bilateral STN DBS surgery in Hualien Tzu-Chi hospital under either desflurane GA (n = 10 or LA (n = 9. We used spike analysis (frequency and modified burst index [MBI] and the Hilbert transform to obtain signal power measurements for background and spikes, and compared the characterizations of intraoperative microelectrode signals between the two groups. Additionally, STN firing pattern characteristics were determined using a combined approach based on the autocorrelogram and power spectral analysis, which was employed to investigate differences in the oscillatory activities between the groups. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS before and after surgery. The results revealed burst firing was observed in both groups. The firing frequencies were greater in the LA group and MBI was comparable in both groups. Both the background and spikes were of significantly greater power in the LA group. The power spectra of the autocorrelograms were significantly higher in the GA group between 4 and 8 Hz. Clinical outcomes based on the UPDRS were comparable in both groups before and after DBS surgery. Under controlled light desflurane GA, burst features of the neuronal firing patterns are preserved in the STN, but power is reduced. Enhanced low

  3. Real time large scale in vivo observations reveal intrinsic synchrony, plasticity and growth cone dynamics of midline crossing axons during neuronal wiring of the zebrafish spinal cord.

    Science.gov (United States)

    Andersen, Søren S L

    2017-08-30

    How axons are wired in the vertebrate spinal cord has been studied mostly using fixed samples or looking at individually growing axons. Using light-sheet microscopy, early neural development is here followed in vivo in real time at high resolution along several hundred micrometers of the zebrafish spinal cord. The dynamics and time course of cellular development and axonal wiring of interneurons expressing GFP under control of the dmrt3 promotor are analyzed. Following neurulation, commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h and in a manner dependent on the Robo3 but not the EphA4 receptors. Ipsilateral axons extend concurrently, at three to six times higher growth rates and independently of said receptors. At guidance points, commissural axons are seen to decrease their growth rate and cones increase in size. Commissural filopodia appear on the floor plate to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of the neighboring commissural shafts. A 3D reconstruction of the 4 dpf spinal cord demonstrates variable dmrt3 cell body position and dimensions, confirmed by single cell FlowSight analysis, and also a minor second population of commissurals crossing later and more dorsally. The recordings show the strikingly stereotyped spatio-temporal control that governs axonal wiring of the zebrafish spinal cord. The live observations give renewed perspective on the mechanisms of axonal guidance in the spinal cord that provide for a discussion of the current distinction between diffusible long-range versus substrate-bound short-range guidance cues. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  4. Plasticity in stomatal size and density of potato leaves under different irrigation and phosphorus regimes

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Cui, Xiaoyong

    2014-01-01

    leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg-1 soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were...... unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination...

  5. Drought-induced root plasticity of two upland NERICA varieties under conditions with contrasting soil depth characteristics

    Directory of Open Access Journals (Sweden)

    Daniel Makori Menge

    2016-07-01

    Full Text Available To identify differences in root plasticity patterns of two upland New Rice for Africa (NERICA varieties, NERICA 1 and 4, in response to drought under conditions with contrasting soil profile characteristics, soil moisture gradients were imposed using a sloping bed system with depths ranging 30–65 cm and a line-source sprinkler system with a uniformly shallow soil layer of 20 cm depth. Varietal differences in shoot and root growths were identified only under moderate drought conditions, 11–18% v/v soil moisture content. Further, under moderate drought soil conditions where roots could penetrate into the deep soil layer, deep root development was greater in NERICA 4 than in NERICA 1, which contributed to maintaining dry matter production. However, under soil conditions with underground impediment to deep root development, higher shoot dry weight was noted for NERICA 1 than for NERICA 4 at 11–18% v/v soil moisture content, which was attributed to increased lateral root development in the shallow soil layer in NERICA 1. Enhanced lateral root development in the 0–20-cm soil layer was identified in NERICA 1 even under soil conditions without an impediment to deep root development; however, this did not contribute to maintaining dry matter production in upland rice. Thus, we show different root developmental traits associated with drought avoidance in the two NERICA varieties, and that desirable root traits for upland rice cultivation vary depending on the target soil environment, such as the distribution of soil moisture and root penetration resistance.

  6. Differences in Motor Evoked Potentials Induced in Rats by Transcranial Magnetic Stimulation under Two Separate Anesthetics: Implications for Plasticity Studies.

    Science.gov (United States)

    Sykes, Matthew; Matheson, Natalie A; Brownjohn, Philip W; Tang, Alexander D; Rodger, Jennifer; Shemmell, Jonathan B H; Reynolds, John N J

    2016-01-01

    Repetitive transcranial magnetic stimulation (rTMS) is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs) are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however, results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS), a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when selecting an

  7. Differences in motor evoked potentials induced in rats by transcranial magnetic stimulation under two separate anesthetics: implications for plasticity studies

    Directory of Open Access Journals (Sweden)

    Matthew Sykes

    2016-10-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is primarily used in humans to change the state of corticospinal excitability. To assess the efficacy of different rTMS stimulation protocols, motor evoked potentials (MEPs are used as a readout due to their non-invasive nature. Stimulation of the motor cortex produces a response in a targeted muscle, and the amplitude of this twitch provides an indirect measure of the current state of the cortex. When applied to the motor cortex, rTMS can alter MEP amplitude, however results are variable between participants and across studies. In addition, the mechanisms underlying any change and its locus are poorly understood. In order to better understand these effects, MEPs have been investigated in vivo in animal models, primarily in rats. One major difference in protocols between rats and humans is the use of general anesthesia in animal experiments. Anesthetics are known to affect plasticity-like mechanisms and so may contaminate the effects of an rTMS protocol. In the present study, we explored the effect of anesthetic on MEP amplitude, recorded before and after intermittent theta burst stimulation (iTBS, a patterned rTMS protocol with reported facilitatory effects. MEPs were assessed in the brachioradialis muscle of the upper forelimb under two anesthetics: a xylazine/zoletil combination and urethane. We found MEPs could be induced under both anesthetics, with no differences in the resting motor threshold or the average baseline amplitudes. However, MEPs were highly variable between animals under both anesthetics, with the xylazine/zoletil combination showing higher variability and most prominently a rise in amplitude across the baseline recording period. Interestingly, application of iTBS did not facilitate MEP amplitude under either anesthetic condition. Although it is important to underpin human application of TMS with mechanistic examination of effects in animals, caution must be taken when

  8. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    OpenAIRE

    Da-Lu Liu; Na Lu; Wen-Juan Han; Rong-Gui Chen; Rui Cong; Rou-Gang Xie; Yu-Fei Zhang; Wei-Wei Kong; San-Jue Hu; Ceng Luo

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron?s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensit...

  9. Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2014-07-01

    Full Text Available This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material.

  10. SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lucas Matt

    2018-02-01

    Full Text Available Altering AMPA receptor (AMPAR content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1 encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1 modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP, while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.

  11. A standardized approach for estimating the permeability of plastic films to soil fumigants under various field and environmental conditions.

    Science.gov (United States)

    Papiernik, Sharon K; Yates, Scott R; Chellemi, Daniel O

    2011-01-01

    Minimizing atmospheric emissions of soil fumigants is critical for protecting human and environmental health. Covering the soil surface with a plastic tarp is a common approach to restrict fumigant emissions. The mass transfer of the fumigant vapors through the tarp is often the rate-limiting factor in fumigant emissions. An approach for standardizing measurements of film permeability is proposed that is based on determining the resistance (R) of films to diffusion of fumigants. Using this approach, values were determined for more than 200 film-chemical combinations under a range of temperature, relative humidity, and film handling conditions. Resistance to diffusion was specific for each fumigant/film combination, with the largest range of values observed for the fumigant chloropicrin. For each fumigant, decreased with increasing temperature. Changes in film permeability due to increases in temperature or field installation were generally less than a factor of five. For one film, values determined under conditions of very high relative humidity (approximately 100%) were at least 100 times lower than when humidity was very low (approximately 2%). This approach simplifies the selection of appropriate films for soil fumigation by providing rapid, reproducible, and precise measurements of their permeability to specific fumigants and application conditions. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  13. Analytical functions used for description of the plastic deformation process in Zirconium alloys WWER type fuel rod cladding under designed accident conditions

    International Nuclear Information System (INIS)

    Fedotov, A.

    2003-01-01

    The aim of this work was to improve the RAPTA-5 code as applied to the analysis of the thermomechanical behavior of the fuel rod cladding under designed accident conditions. The irreversible process thermodynamics methods were proposed to be used for the description of the plastic deformation process in zirconium alloys under accident conditions. Functions, which describe yielding stress dependence on plastic strain, strain rate and temperature may be successfully used in calculations. On the basis of the experiments made and the existent experimental data the dependence of yielding stress on plastic strain, strain rate, temperature and heating rate for E110 alloy was determined. In future the following research work shall be made: research of dynamic strain ageing in E635 alloy under different strain rates; research of strain rate influence on plastic strain in E635 alloy under test temperature higher than 873 K; research of deformation strengthening of E635 alloy under high temperatures; research of heating rate influence n phase transformation in E110 and E635 alloys

  14. Effect of plastic film mulching on the grain filling and hormonal changes of maize under different irrigation conditions.

    Science.gov (United States)

    Liu, Yang; Han, Juan; Liu, Didi; Gu, Dandan; Wang, Yongping; Liao, Yuncheng; Wen, Xiaoxia

    2015-01-01

    Plastic film mulching (PM) is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN) under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling.

  15. Design rules for piping: plastic stability of straight parts under level d loadings

    International Nuclear Information System (INIS)

    Touboul, F.; Ben Jdidia, M.; Acker, D.

    1989-01-01

    For piping systems, design rules for straight parts, under static loads are based on limit analysis. We have studied the accuracy of such method when different geometries and combinations of loadings are concerned. Analysing theoretical computations, we have pointed out the hypothesis inherent to the formulation used in design codes (ASME, RCCM, RCC-MR). We have determined a formula closer to the theoretical results that we have compared to experiments. We have interpreted up to 170 tests from different laboratories with varied geometries (D/e from 10 to 115) and manifold type of loadings, with or without pressure: pure bending, pure torsion, bending with torsion, combined bending. We have applied the codes rules and we have noticed that for certain tests, experimental ultimate moments were fourty per cent lower than the coded one. As geometry is concerned, contrary to the limit analysis prediction, ultimate load does not depend only on the modulus of inertia (Z) but also on the D/e ratio by a (D/e) .33 coefficient. As level D service limits were considered, we have taken out the maximal load borne by the tubes. To ensure the conservatism of the rule, the allowable stress for austenitic steels, as defined by codes, must be taken at the value defined by ASME, Section III, Appendix F (criteria for component, F 1331)

  16. Developmental Plasticity of Rice Root System Grown under Mild Drought Stress Condition with Shallow Soil Depth; Comparison between Nodal and Lateral roots

    Directory of Open Access Journals (Sweden)

    Emi Kameoka

    2016-07-01

    Full Text Available The plasticity in root system development (RSD is a key trait for the adaptation of rice to mild drought. However, the enhanced RSD due to the plasticity may not be always a sole function of promoted lateral root (LR production, but also of the integrated responses of nodal root (NR development. In this study, we aimed to evaluate the effects of mild drought intensities on the development of the NR and LR, and their contribution to the entire RSD. We used six genotypes including KDML105 (indica, lowland adapted, a high lateral rooting ability genotype. The plants were grown up to heading or maturity stage for two years under soil with limited soil depth (20 cm assuming the presence of the hardpan and at different moisture gradients generated by the line source sprinkler system. The effects of drought intensities generally differed between the development of NR and LR. In both years, all genotypes showed highest LR development under mild drought stress intensities. However, in some genotypes including KDML105, NR development was maintained in a limited soil moisture range only, which was narrower and wetter than that in which LR plasticity was expressed. Furthermore, the entire RSD was maintained only when both the NR and LR were simultaneously promoted or maintained. These results suggest that the NR have less plasticity than the LR in response to drought and the contribution of the plasticity in LR development to the entire RSD is dependent on both the soil moisture and nodal rooting ability.

  17. Plasticity of mesenchymal stem cells under microgravity: from cytoskeletal reorganization to commitment shift

    Science.gov (United States)

    Buravkova, Ludmila

    Mesenchymal stem cells (MSCs) can be used to examine osteogenesis of uncommitted cells maintaining the bone differentiation potential such as osteogenic gene expression, osteogenic markers, matrix maturation and mineralization. MSCs are therefore a good model for studying osteogenesis in the space environment. Recent investigations have demonstrated that MSCs change in response to microgravity and, consequently, can be involved in the development of osteopenia detected in space travelers. This is a factor that can limit human space missions due to potential risks of osteoporosis and its aftereffects during and after flight. Simulated microgravity inhibited MSC differentiation towards osteoblasts and accelerated adipocyte development due to cytoskeleton modifications, including its structure and regulation associated with signal transduction cascades. We identified transient changes in the actin cytoskeleton of non-committed human bone marrow MSCs in short-term RPM experiments. In addition, we detected transient changes in the expression of genes encoding actin cytoskeleton proteins and associated elements (ACTA1, ACTG, RHOA, CFL1, VCL). When discussing the microgravity effects on MSC osteogenic differentiation, it should be mentioned the inhibition of Runx2 and ALPL and stimulation of PPARg2 in the MSCs induced for osteogenesis. It is probable that the reciprocal regulation of the two transcription factors is a molecular mechanism underlying progenitor cell response to microgravity. It is very likely that these genes are involved in the universal circuits within which mechanical (or gravity ) signals are sensed by MSCs. Recently, the list of osteogenic markers was extended to include several new proteins as microgravity targets (proteoglycans, osteomodulin, osteoglycin). It can be believed that exposure to microgravity produces similar effects on mature bone cells (osteoblasts) and non-committed osteogenic cells (MSCs). This finds a support in the fact that

  18. Experimental study and numerical modeling of the plastic behavior of zirconium alloys under and after irradiation

    International Nuclear Information System (INIS)

    Drouet, Julie

    2014-01-01

    , and the result of the simulation is consistent with the experimental observations considering both length scale and time scale. This reveals the ability of the DD codes to mimic in situ TEM experiments with a good agreement at time and space scale, when parameters are fitted on data extracted directly from TEM experiments. A preliminary study of microscopic mechanisms responsible for irradiation creep of zirconium alloys observed in reactor has also been carried out. Combined in situ and post mortem TEM observations of pre strained samples under irradiation at room temperature have not yet revealed evidence of climb of dislocations. This study has to be continued at higher temperatures in order to allow activation of diffusion mechanisms. (author) [fr

  19. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  20. Development of plastic deformations in 12Kh18N10T steel under cyclic symmetrical bending of specimens of various length

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Leonets, V.A.; Bega, N.D. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-08-01

    Effect of specimen length on intensity of plastic deformation development and cyclic strength is studied for annealed 12Kh18N10T steel under cyclic symmetrical bending. The intensity of microplastic deformations and cyclic strength of annealed 12Kh18N10T steel in the considered case is due to self-heating.

  1. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity.

    Science.gov (United States)

    Gancarz, Amy M; Wang, Zi-Jun; Schroeder, Gabrielle L; Damez-Werno, Diane; Braunscheidel, Kevin M; Mueller, Lauren E; Humby, Monica S; Caccamise, Aaron; Martin, Jennifer A; Dietz, Karen C; Neve, Rachael L; Dietz, David M

    2015-07-01

    Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

  2. Information processing by neuronal populations

    National Research Council Canada - National Science Library

    Hölscher, Christian; Munk, Matthias

    2009-01-01

    ... simultaneously recorded spike trains 120 Mark Laubach, Nandakumar S. Narayanan, and Eyal Y. Kimchi Part III Neuronal population information coding and plasticity in specific brain areas 149 7 F...

  3. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    Science.gov (United States)

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  4. Preparation and characterization of highly lead-loaded red plastic scintillators under low energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette Cedex (France); Turk, Gregory [LCPMR, UPMC, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 PARIS Cedex 5 (France); Rousseau, Adrien; Darbon, Stephane; Reverdin, Charles [CEA, DAM, DIF, F-91297 Arpajon (France); Normand, Stephane [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette Cedex (France)

    2011-12-21

    To the aim of development of a spatially resolved x-ray imaging system intended for Inertial Confinement Fusion (ICF) experiments at the Laser Mega Joule (LMJ) facility, new plastic scintillators have been designed. The main characteristics are the following: fast decay time, red emission and good x-rays photoelectric absorption in the range 10-40 keV. These scintillators are synthesized by copolymerization of different monomers with an organometallic compound. In this matrix two fluorescent compounds are embedded, allowing to shift the energy from the UV to the near IR spectrum. Several parameters were studied: fluorophores concentration, nature of the secondary fluorophore and lead concentration. An outstanding effective atomic number of 53 has been reached, for a loading of lead corresponding to 29 wt%. Thus, small cylinders were prepared and their performances under x-ray beam studied and compared with those of inorganic Cerium-doped Yttrium Aluminum Garnet reference scintillator (Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}). Eventually, such new scintillators or their next generation could replace expensive and brittle inorganic scintillators, inducing a strong industrial potential.

  5. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    Science.gov (United States)

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-12-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.

  6. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    N. Askarizadeh

    2017-12-01

    Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

  7. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

    Directory of Open Access Journals (Sweden)

    Ji-Su Kim

    2015-04-01

    Full Text Available This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1 a section average approach and (2 a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  8. Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D

    International Nuclear Information System (INIS)

    Kim, Ji Su; Lee, Han Sang; Kim, Yun Jae; Kim, Jong Sung; Kim, Jin Won

    2015-01-01

    This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the over conservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

  9. Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.

  10. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus

    Science.gov (United States)

    Li, Shuang; Kalappa, Bopanna I; Tzounopoulos, Thanos

    2015-01-01

    Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus. DOI: http://dx.doi.org/10.7554/eLife.07242.001 PMID:26312501

  11. The functional genome of CA1 and CA3 neurons under native conditions and in response to ischemia

    Directory of Open Access Journals (Sweden)

    Rossner Moritz

    2007-10-01

    Full Text Available Abstract Background The different physiological repertoire of CA3 and CA1 neurons in the hippocampus, as well as their differing behaviour after noxious stimuli are ultimately based upon differences in the expressed genome. We have compared CA3 and CA1 gene expression in the uninjured brain, and after cerebral ischemia using laser microdissection (LMD, RNA amplification, and array hybridization. Results Profiling in CA1 vs. CA3 under normoxic conditions detected more than 1000 differentially expressed genes that belong to different, physiologically relevant gene ontology groups in both cell types. The comparison of each region under normoxic and ischemic conditions revealed more than 5000 ischemia-regulated genes for each individual cell type. Surprisingly, there was a high co-regulation in both regions. In the ischemic state, only about 100 genes were found to be differentially expressed in CA3 and CA1. The majority of these genes were also different in the native state. A minority of interesting genes (e.g. inhibinbetaA displayed divergent expression preference under native and ischemic conditions with partially opposing directions of regulation in both cell types. Conclusion The differences found in two morphologically very similar cell types situated next to each other in the CNS are large providing a rational basis for physiological differences. Unexpectedly, the genomic response to ischemia is highly similar in these two neuron types, leading to a substantial attenuation of functional genomic differences in these two cell types. Also, the majority of changes that exist in the ischemic state are not generated de novo by the ischemic stimulus, but are preexistant from the genomic repertoire in the native situation. This unexpected influence of a strong noxious stimulus on cell-specific gene expression differences can be explained by the activation of a cell-type independent conserved gene-expression program. Our data generate both novel

  12. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network.

    Science.gov (United States)

    Ford, Lenzie; Crossley, Michael; Williams, Thomas; Thorpe, Julian R; Serpell, Louise C; Kemenes, György

    2015-05-29

    Amyloid beta (Aβ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer's disease (AD). Although Aβ-induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ-induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment.

  13. Plasticity in the Developing Brain: Implications for Rehabilitation

    Science.gov (United States)

    Johnston, Michael V.

    2009-01-01

    Neuronal plasticity allows the central nervous system to learn skills and remember information, to reorganize neuronal networks in response to environmental stimulation, and to recover from brain and spinal cord injuries. Neuronal plasticity is enhanced in the developing brain and it is usually adaptive and beneficial but can also be maladaptive…

  14. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans

    Directory of Open Access Journals (Sweden)

    Nobuaki Mizuguchi

    2016-01-01

    Full Text Available Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC, anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  15. Brain Plasticity and the Concept of Metaplasticity in Skilled Musicians.

    Science.gov (United States)

    Altenmüller, Eckart; Furuya, Shinichi

    2016-01-01

    Early and extensive musical training provides plastic adaptations of the nervous system and enhanced sensory, motor, and cognitive functions. Over decades, neuronal mechanism underlying the plastic adaptation through musical training has been investigated using neuroimaging and transcranial stimulation techniques. Recently, plastic changes in neuroplastic functions through musical training have gradually gained some interest, so-called metaplasticity. Metaplasticity enables faster and more stable skill acquisition for individuals with a history of prior musical training. This mechanism may also serve for prevention of developing maladaptive changes in the nervous system, being pathophysiology of focal dystonia in musicians. The present chapter introduces neurophysiological mechanisms and functional significances of brain plasticity and metaplasticity of the sensory and motor systems of musicians.

  16. Dynamic Strength and Accumulated Plastic Strain Development Laws and Models of the Remolded Red Clay under Long-Term Cyclic Loads: Laboratory Test Results

    Directory of Open Access Journals (Sweden)

    Li Jian

    2015-09-01

    Full Text Available The dynamic strength and accumulated plastic strain are two important parameters for evaluating the dynamic response of soil. As a special clay, the remolded red clay is often used as the high speed railway subgrade filling, but studies on its dynamic characteristics are few. For a thorough analysis of the suitability of the remolded red clay as the subgrade filling, a series of long-term cyclic load triaxial test under different load histories are carried out. Considering the influence of compactness, confining pressure, consolidation ratio, vibration frequency and dynamic load to the remolded red clay dynamic property, the tests obtain the development curves of the dynamic strength and accumulated plastic strain under different test conditions. Then, through curve fitting method, two different hyperbolic models respectively for the dynamic strength and accumulated plastic strain are built, which can match the test datum well. By applying the dynamic strength model, the critical dynamic strength of the remolded red clay are gained. Meanwhile, for providing basic datum and reference for relevant projects, all key parameters for the dynamic strength and accumulated plastic strain of the remolded red clay are given in the paper.

  17. Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi, E-mail: xli12@partners.org [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); Valencia, Antonio; McClory, Hollis; Sapp, Ellen; Kegel, Kimberly B. [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States); DiFiglia, Marian, E-mail: difiglia@helix.mgh.harvard.edu [Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 (United States)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Primary Huntington's disease neurons are impaired in taking up glucose. Black-Right-Pointing-Pointer Rab11 modulates glucose uptake in neurons. Black-Right-Pointing-Pointer Increasing Rab11 activity attenuates the glucose uptake defect in disease neurons. Black-Right-Pointing-Pointer We provide a novel mechanism for glucose hypometabolism in Huntington's disease. -- Abstract: Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. Positron emission tomography studies have revealed a decline in glucose metabolism in the brain of patients with HD by a mechanism that has not been established. We examined glucose utilization in embryonic primary cortical neurons of wild-type (WT) and HD knock-in mice, which have 140 CAG repeats inserted in the endogenous mouse huntingtin gene (HD{sup 140Q/140Q}). Primary HD{sup 140Q/140Q} cortical neurons took up significantly less glucose than did WT neurons. Expression of permanently inactive and permanently active forms of Rab11 correspondingly altered glucose uptake in WT neurons, suggesting that normal activity of Rab11 is needed for neuronal uptake of glucose. It is known that Rab11 activity is diminished in HD{sup 140Q/140Q} neurons. Expression of dominant active Rab11 to enhance the activity of Rab11 normalized glucose uptake in HD{sup 140Q/140Q} neurons. These results suggest that deficient activity of Rab11 is a novel mechanism for glucose hypometabolism in HD.

  18. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  19. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  20. A new plastic correction for the stress intensity factor of an under-clad defect in a PWR vessel subjected to a pressurised thermal shock

    International Nuclear Information System (INIS)

    Marie, S.; Nedelec, M.

    2007-01-01

    For the assessment of an under-clad defect in a vessel subjected to a cold pressurised thermal shock, plasticity is considered through the amplification β of the elastic stress intensity factor K I in the ferritic part of the vessel. An important effort has been made recently by CEA to improve the analytical tools in the frame of R and D activities funded by IRSN. The current solution in the French RSE-M code has been developed from fitted F.E. calculation results. A more physical solution is proposed in this paper. This takes into account two phenomena: the amplification of the elastic K I due to plasticity in the cladding and a plastic zone size correction in the ferritic part. The first correction has been established by representing the cladding plasticity by an imposed displacement on the crack faces at the interface between the cladding and the ferritic vessel. The corresponding elastic stress intensity factor is determined from the elastic plane strain asymptotic solution for the opening displacement. Plasticity in the ferritic steel is considered through a classical plastic zone size correction. The application of the solution to axisymmetric defects is first checked. The case of semi-elliptical defects is also investigated. For the correction determined at the interface between the cladding and the ferritic vessel, an amplification of the correction proposed for the deepest point is determined from a fitting of the 3D F.E. calculation results. It is also shown that the proposition of RSE-M, which consists in applying the same β correction at the deepest point and the interface point is not suitable. The applicability to a thermal shock, eventually combined with an internal pressure has been verified. For the deepest point, the proposed correction leads to similar results to the RSE-M method, but presents an extended domain of validity (no limits on the crack length are imposed)

  1. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions.

    Science.gov (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G

    2013-12-01

    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  2. Ablation of kappa-opioid receptors from brain dopamine neurons has anxiolytic-like effects and enhances cocaine-induced plasticity.

    Science.gov (United States)

    Van't Veer, Ashlee; Bechtholt, Anita J; Onvani, Sara; Potter, David; Wang, Yujun; Liu-Chen, Lee-Yuan; Schütz, Günther; Chartoff, Elena H; Rudolph, Uwe; Cohen, Bruce M; Carlezon, William A

    2013-07-01

    Brain kappa-opioid receptors (KORs) are implicated in states of motivation and emotion. Activation of KORs negatively regulates mesolimbic dopamine (DA) neurons, and KOR agonists produce depressive-like behavioral effects. To further evaluate how KOR function affects behavior, we developed mutant mice in which exon 3 of the KOR gene (Oprk1) was flanked with Cre-lox recombination (loxP) sites. By breeding these mice with lines that express Cre-recombinase (Cre) in early embryogenesis (EIIa-Cre) or only in DA neurons (dopamine transporter (DAT)-Cre), we developed constitutive KOR knockouts (KOR(-/-)) and conditional knockouts that lack KORs in DA-containing neurons (DAT-KOR(lox/lox)). Autoradiography demonstrated complete ablation of KOR binding in the KOR(-/-) mutants, and reduced binding in the DAT-KOR(lox/lox) mutants. Quantitative reverse transcription PCR (qPCR) studies confirmed that KOR mRNA is undetectable in the constitutive mutants and reduced in the midbrain DA systems of the conditional mutants. Behavioral characterization demonstrated that these mutant lines do not differ from controls in metrics, including hearing, vision, weight, and locomotor activity. Whereas KOR(-/-) mice appeared normal in the open field and light/dark box tests, DAT-KOR(lox/lox) mice showed reduced anxiety-like behavior, an effect that is broadly consistent with previously reported effects of KOR antagonists. Sensitization to the locomotor-stimulating effects of cocaine appeared normal in KOR(-/-) mutants, but was exaggerated in DAT-KOR(lox/lox) mutants. Increased sensitivity to cocaine in the DAT-KOR(lox/lox) mutants is consistent with a role for KORs in negative regulation of DA function, whereas the lack of differences in the KOR(-/-) mutants suggests compensatory adaptations after constitutive receptor ablation. These mouse lines may be useful in future studies of KOR function.

  3. Glassy metallic plastics

    Science.gov (United States)

    Li, Jianfu; Wang, Junqiang; Liu, Xiaofeng; Zhao, Kun; Zhang, Bo; Bai, Haiyang; Pan, Mingxiang; Wang, Weihua

    2010-03-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature ( T g ˜25°C to 150°C) and low Young’s modulus (˜20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  4. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Yin Hua Zhang

    2017-05-01

    Full Text Available Nitric oxide (NO is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1 NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS] and exogenous sources (entero-salivary NO pathway and the amount of NO from exogenous sources varies significantly; 2 NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3 NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S-nitrosylation, and transnitrosylation; 4 the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5 NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  5. Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein.

    Science.gov (United States)

    Kaneko, Kunihiko

    2009-10-01

    Questions on possible relationship between phenotypic plasticity and evolvability, and that between robustness and evolution have been addressed over decades in the field of evolution-development. Based on laboratory evolution experiments and numerical simulations of gene expression dynamics model with an evolving transcription network, we propose quantitative relationships on plasticity, phenotypic fluctuations, and evolvability. By introducing an evolutionary stability assumption on the distribution of phenotype and genotype, the proportionality among phenotypic plasticity against environmental change, variances of phenotype fluctuations of genetic and developmental origins, and evolution speed is obtained. The correlation between developmental robustness to noise and evolutionary robustness to mutation is analysed by simulations of the gene network model. These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of gene expression levels.

  6. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Lucia eCiranna

    2014-08-01

    Full Text Available Serotonin type 7 receptors (5-HT7 are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD, including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD.

  7. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons.

    Science.gov (United States)

    Bader, Rüdiger; Colomb, Julien; Pankratz, Bettina; Schröck, Anne; Stocker, Reinhard F; Pankratz, Michael J

    2007-06-10

    The hugin gene of Drosophila encodes a neuropeptide with homology to mammalian neuromedin U. The hugin-expressing neurons are localized exclusively to the subesophageal ganglion of the central nervous system and modulate feeding behavior in response to nutrient signals. These neurons send neurites to the protocerebrum, the ventral nerve cord, the ring gland, and the pharynx and may interact with the gustatory sense organs. In this study, we have investigated the morphology of the hugin neurons at a single-cell level by using clonal analysis. We show that single cells project to only one of the four major targets. In addition, the neurites of the different hugin cells overlap in a specific brain region lateral to the foramen of the esophagus, which could be a new site of neuropeptide release for feeding regulation. Our study reveals novel complexity in the morphology of individual hugin neurons, which has functional implication for how they coordinate feeding behavior and growth.

  8. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  9. Novel cell separation method for molecular analysis of neuron-astrocyte cocultures

    Directory of Open Access Journals (Sweden)

    Andrea eGoudriaan

    2014-01-01

    Full Text Available Over the last decade, the importance of astrocyte-neuron communication in neuronal development and synaptic plasticity has become increasingly clear. Since neuron-astrocyte interactions represent highly dynamic and reciprocal processes, we hypothesized that many astrocyte genes may be regulated as a consequence of their interactions with maturing neurons. In order to identify such neuron-responsive astrocyte genes in vitro, we sought to establish an expedite technique for separation of neurons from co-cultured astrocytes. Our newly established method makes use of cold jet, which exploits different adhesion characteristics of subpopulations of cells (Jirsova et al., 1997, and is rapid, performed under ice-cold conditions and avoids protease-mediated isolation of astrocytes or time-consuming centrifugation, yielding intact astrocyte mRNA with approximately 90% of neuronal RNA removed. Using this purification method, we executed genome-wide profiling in which RNA derived from astrocyte-only cultures was compared with astrocyte RNA derived from differentiating neuron-astrocyte co-cultures. Data analysis determined that many astrocytic mRNAs and biological processes are regulated by neuronal interaction. Our results validate the cold jet as an efficient method to separate astrocytes from neurons in co-culture, and reveals that neurons induce robust gene-expression changes in co-cultured astrocytes.

  10. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change

    NARCIS (Netherlands)

    Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araujo, M.; Balaguer, L.; Benito-Garzon, M.; Cornwell, W.K.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; Nicotra, A.B.; Poorter, H.; Zavala, M.A.

    2014-01-01

    Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic

  11. Flammability properties and radiant fraction of FRT wood plastic composites using mass loss calorimeter under HRR hood

    Science.gov (United States)

    Mark A. Dietenberger; Charles R. Boardman; Nicole Stark

    2017-01-01

    A special test arrangement was used to assess the flammability of 4 different wood plastic composites (WPC), most with fire retardants, all of which has a tendency to high smoke production leading to high radiant energy losses to the apparatus walls. The mass loss calorimeter (MLC) was modified to include a thermopile on the exhaust pipe stack to compensate for radiant...

  12. Evaluation of Spring Sweet Corn (Zea mays var saccharata Production in Different Planting Date under Plastic Cover in Gachsaran Province

    Directory of Open Access Journals (Sweden)

    H. Naraki,

    2012-08-01

    Full Text Available In order to evaluate the performance of spring sweet corn (Zea mays var saccharata at different planting dates under plastic cover, a split plot experiment based on RCBD with three replications was conducted in Gachsaran, in southwest of Iran, during 2009-2010 growing season. Four sweet corn hybrids (Merit, Challenger, Chase and Basin were used as main factor and five sowing date (15th and 25th Jan, 4th, 14th and 24th Feb as sub factor. The results showed that hybrid effect was significant on the days to tassel and ear emergence, days to harvest, ear harvest index, ear length, number of row per each ear, wet biological yield and 1000 grains weight, at 1%, and ear wet yield and grain yield harvest index at 5% probability levels. Also the effect of sowing date was significant on the days to tassel and ear emergence, days to harvest, ear wet yield, ear harvest index, ear diameter, ear length, biological yield, and 1000 grains weight at the 1% probability level. 'Basin' and 'Chase' hybrids were determined to have highest and lowest ear wet yield (17.09 and 15.13 t.ha-1 respectively. The highest and the lowest wet ear yield (16.81 and 15.06 t.ha-1 belonged to 15th Jan. and 24th Feb. respectively. 'Basin' hybrid and 'Challenger' with 8.39 and 7.59 t.ha-1 grain yield were found to be highest and lowest yields. The highest and the lowest grain yield (8.41 t.ha-1 7.45 t.ha-1 were recorded for 15th Jan. and 24th Feb. respectively.' Merit' and 'Chase' hybrids were determined to have longest and shortest days to ear harvest (94.3 and 86.2 days. Longest and shortest days to ear harvest (101.5 and 82 days were recorded in 4th Jan. and 24th Feb. Sowing date and hybrids interaction effects showed that the longest and shortest days to ear harvest (104.7 and 78.3 days were calculated in 4th Jan. of Merit and in 24th Feb. for Chase. Based on these results, it can be concluded that 'Basin' hybrid Feb. 24 is the most suitable cultivar to be produced in Gachsaran.

  13. β-Hydroxybutyrate Boosts Mitochondrial and Neuronal Metabolism but is not Preferred Over Glucose Under Activated Conditions.

    Science.gov (United States)

    Achanta, Lavanya B; Rowlands, Benjamin D; Thomas, Donald S; Housley, Gary D; Rae, Caroline D

    2017-06-01

    The ketone body, β-hydroxybutyrate (βOHB), is metabolised by the brain alongside the mandatory brain fuel glucose. To examine the extent and circumstances by which βOHB can supplement glucose metabolism, we studied guinea pig cortical brain slices using increasing concentrations of [U- 13 C]D-βOHB in conjunction with [1- 13 C]D-glucose under conditions of normo- and hypoglycaemia, as well as under high potassium (40 mmol/L K + ) depolarization in normo- and hypoglycaemic conditions. The contribution of βOHB to synthesis of GABA was also probed by inhibiting the synthesis of glutamine, a GABA precursor, with methionine sulfoximine (MSO). [U- 13 C]D-βOHB at lower concentrations (0.25 and 1.25 mmol/L) stimulated mitochondrial metabolism, producing greater total incorporation of label into glutamate and GABA but did not have a similar effect in the cytosolic compartment where labelling of glutamine was reduced at 1.25 mmol/L [U- 13 C]D-βOHB. At higher concentrations (2.5 mmol/L) [U- 13 C]D-βOHB inhibited metabolism of [1- 13 C]D-glucose, and reduced total label incorporation and total metabolite pools. When glucose levels were reduced, βOHB was able to partially restore the loss of glutamate and GABA caused by hypoglycaemia, but was not able to supplement levels of lactate, glutamine or alanine or to prevent the increase in aspartate. Under depolarizing conditions glucose was the preferred substrate over βOHB, even in hypoglycaemic conditions where comparatively less βOHB was incorporated except into aspartate isotopomers. Inhibition of glutamine synthesis with MSO had no significant effect on incorporation of label from [U- 13 C]D-βOHB into GABA C2,1 indicating that the majority of this GABA was synthesized in GABAergic neurons from [U- 13 C]D-βOHB rather than from Gln C4,5 imported from astrocytes.

  14. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    Science.gov (United States)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  15. Clinical disorders of brain plasticity.

    Science.gov (United States)

    Johnston, Michael V

    2004-03-01

    Clinical disorders of brain plasticity are common in the practice of child neurology. Children have an enhanced capacity for brain plasticity compared to adults as demonstrated by their superior ability to learn a second language or their capacity to recover from brain injuries or radical surgery such as hemispherectomy for epilepsy. Basic mechanisms that support plasticity during development include persistence of neurogenesis in some parts of the brain, elimination of neurons through apoptosis or programmed cell death, postnatal proliferation and pruning of synapses, and activity-dependent refinement of neuronal connections. Brain plasticity in children can be divided into four types: adaptive plasticity that enhances skill development or recovery from brain injury; impaired plasticity associated with cognitive impairment; excessive plasticity leading to maladaptive brain circuits; and plasticity that becomes the brain's 'Achilles' Heel' because makes it vulnerable to injury. A broad group of pediatric neurologic disorders can be understood in terms of their impact on fundamental mechanisms for brain plasticity. These include neurofibromatosis, tuberous sclerosis, Fragile X syndrome, other inherited forms of mental retardation, cretinism, Coffin-Lowry syndrome, lead poisoning, Rett syndrome, epilepsy, hypoxic-ischemic encephalopathy and cerebral palsy.

  16. Underlying mechanism of regulatory actions of diclofenac, a nonsteroidal anti-inflammatory agent, on neuronal potassium channels and firing: an experimental and theoretical study.

    Science.gov (United States)

    Huang, C W; Hung, T Y; Liao, Y K; Hsu, M C; Wu, S N

    2013-06-01

    Diclofenac (DIC), a nonsteroidal anti-inflammatory drug, is known to exert anti-nociceptive and anti-convulsant actions; however, its effects on ion currents, in neurons remain debatable. We aimed to investigate (1) potential effects of diclofenac on membrane potential and potassium currents in differentiated NSC-34 neuronal cells and dorsal root ganglion (DRG) neurons with whole-cell patch-clamp technology, and (2) firing of action potentials (APs), using a simulation model from hippocampal CA1 pyramidal neurons based on diclofenac's effects on potassium currents. In the NSC-34 cells, diclofenac exerted an inhibitory effect on delayed-rectifier K⁺ current (I(KDR)) with an IC₅₀ value of 73 μM. Diclofenac not merely inhibited the I(KDR) amplitude in response to membrane depolarization, but also accelerated the process of current inactivation. The inhibition by diclofenac of IK(DR) was not reversed by subsequent application of either naloxone. Importantly, diclofenac (300 μM) increased the amplitude of M-type K⁺ current (I)(KM)), while flupirtine (10 μM) or meclofenamic acid (10 μM) enhanced it effectively. Consistently, diclofenac (100 μM) increased the amplitude of I(KM) and diminished the I(KDR) amplitude, with a shortening of inactivation time constant in DRG neurons. Furthermore, by using the simulation modeling, we demonstrated the potential electrophysiological mechanisms underlying changes in AP firing caused by diclofenac. During the exposure to diclofenac, the actions on both I(KM) and I(KDR) could be potential mechanism through which it influences the excitability of fast-spiking neurons. Caution needs to be made in attributing the effects of diclofenac primarily to those produced by the activation of I(KM).

  17. TrpA1 activation in peripheral sensory neurons underlies the ionic basis of pain hypersensitivity in response to vinca alkaloids.

    Directory of Open Access Journals (Sweden)

    Nina Boiko

    Full Text Available Chemotherapy induced peripheral neuropathy (CIPN, a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1 channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN.

  18. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  19. Microstructural and superficial modification in a Cu-Al-Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions

    Science.gov (United States)

    Figueroa, C. G.; Garcia-Castillo, F. N.; Jacobo, V. H.; Cortés-Pérez, J.; Schouwenaars, R.

    2017-05-01

    Stress induced martensitic transformation in copper-based shape memory alloys has been studied mainly in monocrystals. This limits the use of such results for practical applications as most engineering applications use polycristals. In the present work, a coaxial tribometer developed by the authors was used to characterise the tribological behaviour of polycrystalline Cu-11.5%Al-0.5%Be shape memory alloy in contact with AISI 9840 steel under sliding wear conditions. The surface and microstructure characterization of the worn material was conducted by conventional scanning electron microscopy and atomic force microscopy, while the mechanical properties along the transversal section were measured by means of micro-hardness testing. The tribological behaviour of Cu-Al-Be showed to be optimal under sliding wear conditions since the surface only presented a slight damage consisting in some elongated flakes produced by strong plastic deformation. The combination of the plastically modified surface and the effects of mechanically induced martensitic transformation is well-suited for sliding wear conditions since the modified surface provides the necessary strength to avoid superficial damage while superelasticity associated to martensitic transformation is an additional mechanism which allows absorbing mechanical energy associated to wear phenomena as opposed to conventional ductile alloys where severe plastic deformation affects several tens of micrometres below the surface.

  20. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  1. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  2. Experimental study and simulation of transformation induced plasticity, and multiphase behaviour of the 16MND5 vessel steel under aniso-thermal multiaxial loading

    International Nuclear Information System (INIS)

    Coret, M.

    2001-01-01

    This work deals with the aniso-thermal multiphase behaviour of the French vessel steel and more specially about the transformation plasticity in the cases of multiaxial non-proportional loadings paths. The first part of this report is devoted to the presentation of a high temperature tension-torsion experimental device enable of obtaining a large range of cooling rate. This experimental set-up is used to explore the transformation plasticity under proportional or non-proportional loading paths, during austenitic, bainitic and martensitic transformations. The results of the tests are compared to the Leblond's model. In the last part, we propose a two-scale behaviour model in which the type of each phase behaviour can be different. This meso-model is finally used to simulate two real tests on structures. (author) [fr

  3. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Korkhov, V.P.; Pudnik, V.V.; Rodin, Yu.P.

    1993-01-01

    This article presents the results of studying the change in the structure and properties of carbon fiber-reinforced plastic with a thermoplastic matrix -- aromatic polysulfone -- as a function of the absorbed dose of gamma radiation. In view of the presence in the polysulfone macromolecules and in carbon fibers of a large number of aromatic rings and double bonds providing high radiation resistance of the composite, irradiation was carried out up to large values of absorbed doses (10 9 rad). Specimens of orthogonally reinforced composite KTMU-1 with a thickness of 1.3 mm made from aromatic polysulfone PSF-150 and carbon ribbon that absorbed various gamma radiation dosages were used. It was found that structural transformations under the effect of gamma radiation did not have a substantial effect on the mechanical properties of carbon fiber-reinforced plastic. 2 refs., 3 figs., 3 tabs

  4. Short-term synaptic plasticity and heterogeneity in neural systems

    Science.gov (United States)

    Mejias, J. F.; Kappen, H. J.; Longtin, A.; Torres, J. J.

    2013-01-01

    We review some recent results on neural dynamics and information processing which arise when considering several biophysical factors of interest, in particular, short-term synaptic plasticity and neural heterogeneity. The inclusion of short-term synaptic plasticity leads to enhanced long-term memory capacities, a higher robustness of memory to noise, and irregularity in the duration of the so-called up cortical states. On the other hand, considering some level of neural heterogeneity in neuron models allows neural systems to optimize information transmission in rate coding and temporal coding, two strategies commonly used by neurons to codify information in many brain areas. In all these studies, analytical approximations can be made to explain the underlying dynamics of these neural systems.

  5. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses...... representations of information in excitatory neuron populations falling under their control....

  6. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays

    OpenAIRE

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-01-01

    Background\\ud Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events ...

  7. CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Paradisi, Silvia; Di Nottia, Michela; Simone, Daiana; Travaglione, Sara; Falzano, Loredana; Guidotti, Marco; Frank, Claudio; Cutarelli, Alessandro; Fabbri, Alessia; Fiorentini, Carla

    2012-01-01

    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected

  8. CNF1 improves astrocytic ability to support neuronal growth and differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Fiorella Malchiodi-Albedi

    Full Text Available Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1 leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described

  9. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  10. Assessment of stability and plasticity of new hybrids of maize (Zea mays L. under the conditions of Polissia and Steppe zones of Ukraine

    Directory of Open Access Journals (Sweden)

    Л. М. Присяжнюк

    2016-05-01

    Full Text Available Purpose. To select promising high productive maize hyb­rids of middle-early maturity group in terms of stability and plasticity of main economic characters. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. 14 maize hybrids recorded in the State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2015 were studied for plasticity and stability of such traits as productivity, protein and starch content. Intensive highly-plastic hybrid ‘SI Tiptop’ was selected among the studied ones for productivity trait that can respond properly to changes of growing conditions. It was defined that for the starch content such hybrids as ‘SI Tiptop’, ‘SI Enigma’, ‘SI Arioso’, ‘Svich 38’, ‘Svich 35’, ‘HU 8653’, ‘Zdobutok’ and ‘SI Contrakt’ belonged to the intensive type and combined rather high values and the stability of the studied trait under variable conditions. The following hybrids as ‘NS 2642’, ‘DK S3016’, ‘Svich 38’, ‘NS 2632’ were qualified as intensive for protein content and appeared to be highly-plastic but stability values of this trait were low. ‘Svich 38’ hybrid was intensive simultaneously for two traits such as protein and starch content and showed rather high values of plasticity. ‘SI Tiptop’, ‘SI Enigma’ and ‘Svich 35’ were defined as hybrids of extensive type that provided stable protein content in adverse cultivation conditions. Conclusions. On the condition that intensive crop growing technologies should be used, for obtaining stable yields it is advisable to sow only highly-plastic hybrids that can adapt to unfavorable environmental factors, including ‘SI Tiptop’ – for productivity trait, ‘Zdobutok’ and ‘SI Kontrakt’ – for starch content, ‘MAC 24N‘, ‘NA 2642‘ and ‘Danubio’ – for protein content.

  11. Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia

    Directory of Open Access Journals (Sweden)

    Hyun-Jin Tae

    2017-01-01

    Full Text Available Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest (CA. In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet (CV and Fluore-Jade B (F-J B staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1 (Iba-1, glial fibrillary acidic protein (GFAP, and tumor necrosis factor-alpha (TNF-α immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA (about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA. Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day post-CA, and they were activated (enlarged cell bodies with short and thicken processes in all layers 2 days post-CA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.

  12. Molecular mechanisms underlying activity-dependent GABAergic synapse development and plasticity and its implications for neurodevelopmental disorders.

    Science.gov (United States)

    Chattopadhyaya, Bidisha

    2011-01-01

    GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  13. Molecular Mechanisms Underlying Activity-Dependent GABAergic Synapse Development and Plasticity and Its Implications for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Bidisha Chattopadhyaya

    2011-01-01

    Full Text Available GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  14. Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams

    Directory of Open Access Journals (Sweden)

    Munkhbaatar Batmunkh

    2015-10-01

    Full Text Available The exposure to heavy charged particles represents a significant risk to the central nervous system. In experiments with rodents, the irradiation with heavy ions induces a prolonged deficit in hippocampus-dependent learning and memory. The exact nature of these violations remains mostly unclear. In this regard, the estimation of radiation effects at the level of single neurons is of our special interest. The present study demonstrates the results of comparative calculations that are performed to clarify the early physical events in single neurons under the exposure to accelerated 12C and 56Fe ions with different parameters. Using the Geant4-based Monte Carlo simulations, the radiation effects are considered in terms of energy and dose deposition. The spatial patterns of energy and dose depositions within a single neural cell are produced. As additional characteristics, the spectra of the specific energy and energy imparted are estimated. Our results show that the cell morphology is an important factor determining the accumulation of radiation dose in neurons under the exposure to heavy ions. The data obtained suggest a possibility of radiation damage to synapses that are considered to play an important role in radiation-induced violations of hippocampus-dependent learning and memory.

  15. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring.

    Science.gov (United States)

    Miner, Daniel; Triesch, Jochen

    2016-02-01

    Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring.

  16. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling

    Science.gov (United States)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko

    2016-11-01

    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  17. Ca2+-permeable AMPA receptors in homeostatic synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Hey-Kyoung eLee

    2012-02-01

    Full Text Available Neurons possess diverse mechanisms of homeostatic adaptation to overall changes in neural and synaptic activity, which are critical for proper brain functions. Homeostatic regulation of excitatory synapses has been studied in the context of synaptic scaling, which allows neurons to adjust their excitatory synaptic gain to maintain their activity within a dynamic range. Recent evidence suggests that one of the main mechanisms underlying synaptic scaling is by altering the function of postsynaptic AMPA receptors (AMPARs, including synaptic expression of Ca2+-permeable (CP- AMPARs. CP-AMPARs endow synapses with unique properties, which may benefit adaptation of neurons to periods of inactivity as would occur when a major input is lost. This review will summarize how synaptic expression of CP-AMPARs is regulated during homeostatic synaptic plasticity in the context of synaptic scaling, and will address the potential functional consequences of altering synaptic CP-AMPAR content.

  18. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    Directory of Open Access Journals (Sweden)

    Segundo J. Guzman

    2016-01-01

    Full Text Available ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer’s disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.

  19. Physiology, anatomy, and plasticity of the cerebral cortex in relation to musical instrument performance

    Science.gov (United States)

    Tramo, Mark Jude

    2004-05-01

    The acquisition and maintenance of fine-motor skills underlying musical instrument performance rely on the development, integration, and plasticity of neural systems localized within specific subregions of the cerebral cortex. Cortical representations of a motor sequence, such as a sequence of finger movements along the keys of a saxophone, take shape before the figure sequence occurs. The temporal pattern and spatial coordinates are computed by networks of neurons before and during the movements. When a finger sequence is practiced over and over, performance gets faster and more accurate, probably because cortical neurons generating the sequence increase in spatial extent, their electrical discharges become more synchronous, or both. By combining experimental methods such as single- and multi-neuron recordings, focal stimulation, microanatomical tracers, gross morphometry, evoked potentials, and functional imaging in humans and nonhuman primates, neuroscientists are gaining insights into the cortical physiology, anatomy, and plasticity of musical instrument performance.

  20. Activation of neuron generator of luciola mingrelica luminescence flashes under the effect of pulse X-radiation

    International Nuclear Information System (INIS)

    Bol'shakov, V.Yu.; Drobchenko, E.A.; Landa, S.B.; Pejmer, S.I.

    1990-01-01

    The effect of low-level pulse X-radiation on spontaneous photoactivity and luminous communicative behaviour of Luciola mingrelica has been investigated. It was shown that X-radiation doses of as low as 5x10 -5 Gy increased endogenous flashing activity and disinhibited the reaction of insects to light flashes imitating signals of mating partners. Powerful radiation pulses may influence significantly an instinctive behaviour and its neuronal organization

  1. Network-timing-dependent plasticity

    Directory of Open Access Journals (Sweden)

    Vincent eDelattre

    2015-06-01

    Full Text Available Bursts of activity in networks of neurons are thought to convey salient information and drive synaptic plasticity. Here we report that network bursts also exert a profound effect on Spike-Timing-Dependent Plasticity (STDP. In acute slices of juvenile rat somatosensory cortex we paired a network burst, which alone induced long-term depression (LTD, with STDP-induced long-term potentiation and depression (LTP and LTD. We observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by the network burst, and that STDP-induced LTD was either saturated or flipped into LTP, depending on the relative timing of the network burst with respect to spike coincidences of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to LTD by depleting resources needed for LTP and therefore developed a resource-dependent STDP learning rule. In a model neural network under the influence of the proposed resource-dependent STDP rule, we found that excitatory synaptic coupling was homeostatically regulated to produce power law distributed burst amplitudes reflecting self-organized criticality, a state that ensures optimal information coding.

  2. Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity.

    Science.gov (United States)

    Ma, Jing; Chen, Huimin; Liu, Xiaoli; Zhang, Lingtao; Qiao, Decai

    2018-01-01

    Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitatory postsynaptic potential recording, we found that the corticostriatal long-term potentiation (LTP) and long-term depression (LTD) were both impaired in EF mice. To further investigate the cellular mechanisms underlying the impaired synaptic plasticity in corticostriatal pathway, whole-cell patch clamp recordings were carried out on striatal medium spiny neurons (MSNs). MSNs in EF mice exhibited increased spontaneous excitatory postsynaptic current (sEPSC) frequency and decreased paired-pulse ratio (PPR), while with normal basic electrophysiological properties and normal sEPSC amplitude. Furthermore, the N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) ratio of MSNs was reduced in EF mice. These results suggest that the enhanced presynaptic glutamate (Glu) release and downregulated postsynaptic NMDA receptor function lead to the impaired corticostriatal plasticity in EF mice. Taken together, our findings for the first time show that the bidirectional corticostriatal synaptic plasticity is impaired after EF, and suggest that the aberrant corticostriatal synaptic plasticity may be involved in the production and/or maintenance of EF.

  3. Potencial produtivo de videiras cultivadas sob cobertura de plástico Yield potential of grapevine cultivated under plastic cover

    Directory of Open Access Journals (Sweden)

    Geraldo Chavarria

    2009-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência do uso de cobertura de plástico sobre os componentes do rendimento da videira (Vitis vinifera L. cultivar Moscato Giallo. O experimento foi realizado nas safras 2005/2006 e 2006/2007, em Flores da Cunha, RS, em duas áreas de vinhedo, uma com cobertura de plástico impermeável e outra sem cobertura (controle. O microclima foi avaliado quanto à temperatura e umidade relativa do ar, radiação fotossinteticamente ativa e velocidade do vento próximo ao dossel vegetativo e a os cachos. A avaliação dos componentes de rendimento ocorreu em delineamento experimental inteiramente ao acaso, e foram identificadas dez plantas marcadas aleatoriamente em cada área. Avaliaram-se a produção por planta e por hectare, o número de cachos por planta e por metro quadrado, o número de sarmentos por metro quadrado, a massa e comprimento de cacho, a massa de engaço, o número de bagas por cacho, o diâmetro transversal de bagas e a relação entre massa de película e massa de polpa. Acobertura de plástico possibilita aumento na produtividade, não afeta a relação entre massa de casca e massa de polpa das bagas e favorece a estabilidade de produção, independentemente das condições meteorológicas no ciclo.The objective of this work was to evaluate the effect of plastic cover on the yield components of grapevine (Vitis vinifera L. cultivar Moscato Giallo. The experiment was carried out in 2005/2006 and 2006/2007 crop seasons, in Flores da Cunha, RS, Brazil, in two vineyard areas, one covered with an impermeable plastic film and other without covering (control. The microclimate was evaluated in terms of air temperature, air relative humidity, photosynthetically active radiation and wind speed above canopy and close to clusters. The yield components were evaluated in a completely randomized design, in ten plants randomly selected in each area. Measures were made for production per plant, yield per

  4. A Folded Excited State of Ligand-Free Nuclear Coactivator Binding Domain (NCBD) Underlies Plasticity in Ligand Recognition

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Andersen, Lisbeth; Nielsen, Lau Dalby

    2013-01-01

    Intrinsically disordered proteins are renowned for their structural plasticity when they undergo coupled folding and binding to partner proteins. The nuclear coactivator binding domain of CBP is a remarkable example of this adaptability as it folds into two different conformations depending...... experience conformational exchange. The dispersion data can be described by a global two-state exchange process between a ground state and an excited state populated to 8%. The three helices are still folded in the excited state but have a different packing from the ground state; the contact between helices...... with that of NCBD in complex with the ligand IRF-3. The energy landscape of this domain is thus proposed to resemble the fold-switching proteins that have two coexisting native states, which may serve as a starting point for binding via conformational selection....

  5. Evaluation of inelastic constitutive models under plasticity-creep interaction for 2 1/4 Cr-1Mo steel: Results of joint work (A)

    International Nuclear Information System (INIS)

    Inoue, T.; Ohno, N.; Suzuki, A.; Igari, T.

    1987-01-01

    In order to evaluate the validity of existing inelastic constitutive models under the condition of plasticity-creep interaction, ten kinds of constitutive models were applied to sixteen bench mark problems of four categories, and the calculated results were compared with the experiments of 2 1/4Cr-1Mo steel at 600 0 C. The present bench mark project provides the following remarks: (1) The strain rate effect on the stress-strain relation can be represented, in some degree, even by a simple superposition model of classical type, and some of unified models describe the saturation of increase in flow stress with higher strain rate. (2) The characteristics of the plasticity-creep interaction were predicted by the modified superposition model as well as by unified ones in the actual calculations for the propounded problems. (3) Although the sophisticated unified constitutive models tend to give qualitatively better results, the complicated procedures in determining material parameters from the data of conventional tests need some improvements. The subcommittee has been reorganized to focus her attention in applying thus developed results under uniaxial stress state to multiaxial one, and the out-put will be expected to report in a couple of years

  6. Neural plasticity across the lifespan.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L

    2017-01-01

    An essential feature of the brain is its capacity to change. Neuroscientists use the term 'plasticity' to describe the malleability of neuronal connectivity and circuitry. How does plasticity work? A review of current data suggests that plasticity encompasses many distinct phenomena, some of which operate across most or all of the lifespan, and others that operate exclusively in early development. This essay surveys some of the key concepts related to neural plasticity, beginning with how current patterns of neural activity (e.g., as you read this essay) come to impact future patterns of activity (e.g., your memory of this essay), and then extending this framework backward into more development-specific mechanisms of plasticity. WIREs Dev Biol 2017, 6:e216. doi: 10.1002/wdev.216 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  7. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  8. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  9. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  10. The developmental stages of synaptic plasticity

    NARCIS (Netherlands)

    Lohmann, Christian; Kessels, Helmut W.

    2014-01-01

    The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development

  11. Effect of Strain Hardening on Elastic-Plastic Contact of a Deformable Sphere against a Rigid Flat under Full Stick Contact Condition

    Directory of Open Access Journals (Sweden)

    Biplab Chatterjee

    2012-01-01

    Full Text Available The present study considers the effect of strain hardening on elastic-plastic contact of a deformable sphere with a rigid flat under full stick contact condition using commercial finite element software ANSYS. Different values of tangent modulus are considered to study the effect of strain hardening. It is found that under a full stick contact condition, strain hardening greatly influences the contact parameters. Comparison has also been made between perfect slip and full stick contact conditions. It is observed that the contact conditions have negligible effect on contact parameters. Studies on isotropic and kinematic hardening models reveal that the material with isotropic hardening has the higher load carrying capacity than that of kinematic hardening particularly for higher strain hardening.

  12. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William K. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in air or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.

  13. Experimental and Numerical Study of Texture Evolution and Anisotropic Plastic Deformation of Pure Magnesium under Various Strain Paths

    Directory of Open Access Journals (Sweden)

    Hamad F. Alharbi

    2018-01-01

    Full Text Available The deformation behavior and texture evolution of pure magnesium were investigated during plane strain compression, simple compression, and uniaxial tension at room temperature. The distinctive stages in the measured anisotropic stress-strain responses and numerically computed strain-hardening rates were correlated with texture and deformation mechanisms. More specifically, in plane strain compression and simple compression, the onset of tensile twins and the accompanying texture-hardening effect were associated with the initial high strain-hardening rates observed in specimens loaded in directions perpendicular to the crystallographic c-axis in most of the grains. The subsequent drop in strain-hardening rates in these samples was correlated with the exhaustion of tensile twins and the activation of pyramidal slip systems. The falling strain-hardening rates were observed in simple compression and plane strain compression with loading directions parallel to the c-axis where the second pyramidal slip systems were the only slip families that can accommodate deformation. For uniaxial tension with the basal plane parallel to the tensile axis, the prismatic and second pyramidal slips are the main deformation mechanisms. The predicted relative slip and twin activities from the crystal plasticity simulations clearly showed the effect of texture on the type of activated deformation mechanisms.

  14. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material.

    Science.gov (United States)

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-11-03

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  15. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    Directory of Open Access Journals (Sweden)

    Jan Valíček

    2015-11-01

    Full Text Available The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ, especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  16. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress.

    Science.gov (United States)

    Saha, Rinki; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal; Albrecht, Anne

    2018-02-05

    Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.

  17. A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural Populations.

    Science.gov (United States)

    Leugering, Johannes; Pipa, Gordon

    2018-01-17

    A neuronal population is a computational unit that receives a multivariate, time-varying input signal and creates a related multivariate output. These neural signals are modeled as stochastic processes that transmit information in real time, subject to stochastic noise. In a stationary environment, where the input signals can be characterized by constant statistical properties, the systematic relationship between its input and output processes determines the computation carried out by a population. When these statistical characteristics unexpectedly change, the population needs to adapt to its new environment if it is to maintain stable operation. Based on the general concept of homeostatic plasticity, we propose a simple compositional model of adaptive networks that achieve invariance with regard to undesired changes in the statistical properties of their input signals and maintain outputs with well-defined joint statistics. To achieve such invariance, the network model combines two functionally distinct types of plasticity. An abstract stochastic process neuron model implements a generalized form of intrinsic plasticity that adapts marginal statistics, relying only on mechanisms locally confined within each neuron and operating continuously in time, while a simple form of Hebbian synaptic plasticity operates on synaptic connections, thus shaping the interrelation between neurons as captured by a copula function. The combined effect of both mechanisms allows a neuron population to discover invariant representations of its inputs that remain stable under a wide range of transformations (e.g., shifting, scaling and (affine linear) mixing). The probabilistic model of homeostatic adaptation on a population level as presented here allows us to isolate and study the individual and the interaction dynamics of both mechanisms of plasticity and could guide the future search for computationally beneficial types of adaptation.

  18. NMDA-receptor inhibition restores Protease-Activated Receptor 1 (PAR1) mediated alterations in homeostatic synaptic plasticity of denervated mouse dentate granule cells.

    Science.gov (United States)

    Becker, Denise; Ikenberg, Benno; Schiener, Sabine; Maggio, Nicola; Vlachos, Andreas

    2014-11-01

    A common feature of neurological diseases is the loss of central neurons, which leads to deafferentation of connected brain regions. In turn, the remodeling of denervated neuronal networks is considered to play an important role for the postlesional recovery, but has also been linked to maladaptive plasticity resulting in disease-related complications such as memory dysfunction or epilepsy. Recent work has indicated that Protease-Activated Receptor 1 (PAR1), which can be activated by thrombin that enters the brain under pathological conditions, alters synaptic plasticity and neuronal excitability. However, the role of PAR1 in lesion-induced synaptic plasticity remains incompletely understood. Here, we used entorhinal denervation of organotypic hippocampal slice cultures to study the effects of PAR1 on denervation-induced homeostatic synaptic plasticity. Our results disclose that PAR1 activation counters the ability of denervated dentate granule cells to increase their excitatory synaptic strength in a compensatory, i.e., homeostatic manner. Furthermore, we demonstrate that this PAR1 effect is rescued by pharmacological inhibition of N-methyl-d-aspartate receptors (NMDA-R). Thus, NMDA-R inhibitors may restore the ability of denervated neurons to express homeostatic synaptic plasticity under conditions of increased PAR1-activity, which may contribute to their beneficial effects seen in the context of neurological diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Emergent spatial synaptic structure from diffusive plasticity.

    Science.gov (United States)

    Sweeney, Yann; Clopath, Claudia

    2017-04-01

    Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. The Effects of Medium Spiny Neuron Morphologcial Changes on Basal Ganglia Network under External Electric Field: A Computational Modeling Study

    Directory of Open Access Journals (Sweden)

    Xiaohan Zhang

    2017-10-01

    Full Text Available The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD. In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG signal regulation. Through the introduction of error index (EI, which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.