WorldWideScience

Sample records for underlying neural substrate

  1. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  2. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    Science.gov (United States)

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  3. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  4. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  5. Neural substrates of cognitive control under the belief of getting neurofeedback training.

    Science.gov (United States)

    Ninaus, Manuel; Kober, Silvia E; Witte, Matthias; Koschutnig, Karl; Stangl, Matthias; Neuper, Christa; Wood, Guilherme

    2013-01-01

    Learning to modulate one's own brain activity is the fundament of neurofeedback (NF) applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI) illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female) performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal areas were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  6. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  7. Neural substrates underlying reconcentration for the preparation of an appropriate cognitive state to prevent future mistakes: a functional magnetic resonance imaging study

    Science.gov (United States)

    Miura, Naoki; Nozawa, Takayuki; Takahashi, Makoto; Yokoyama, Ryoichi; Sasaki, Yukako; Sakaki, Kohei; Kawashima, Ryuta

    2015-01-01

    The ability to reconcentrate on the present situation by recognizing one’s own recent errors is a cognitive mechanism that is crucial for safe and appropriate behavior in a particular situation. However, an individual may not be able to adequately perform a subsequent task even if he/she recognize his/her own error; thus, it is hypothesized that the neural mechanisms underlying the reconcentration process are different from the neural substrates supporting error recognition. The present study performed a functional magnetic resonance imaging (fMRI) analysis to explore the neural substrates associated with reconcentration related to achieving an appropriate cognitive state, and to dissociate these brain regions from the neural substrates involved in recognizing one’s own mistake. This study included 44 healthy volunteers who completed an experimental procedure that was based on the Eriksen flanker task and included feedback regarding the results of the current trial. The hemodynamic response induced by each instance of feedback was modeled using a combination of the successes and failures of the current and subsequent trials in order to identify the neural substrates underlying the ability to reconcentrate for the next situation and to dissociate them from those involved in recognizing current errors. The fMRI findings revealed significant and specific activation in the dorsal aspect of the medial prefrontal cortex (MFC) when participants successfully reconcentrated on the task after recognizing their own error based on feedback. Additionally, this specific activation was clearly dissociated from the activation foci that occurred during error recognition. These findings indicate that the dorsal aspect of the MFC may be a distinct functional region that specifically supports the reconcentration process and that is associated with the prevention of successive errors when a human subject recognizes his/her own mistake. Furthermore, it is likely that this

  8. Neural substrates of opiate withdrawal.

    Science.gov (United States)

    Koob, G F; Maldonado, R; Stinus, L

    1992-05-01

    Drug withdrawal is an integral part of most types of dependence and, to a large extent, opiate withdrawal has been considered the prototypic, classic measure of opiate dependence. The opiate withdrawal syndrome is characterized by multiple behavioral and physiological signs such as behavioral activation, ptosis, diarrhea, 'wet dog' shakes and motivational dysfunction, which may be represented in the CNS at multiple sites. It seems that the activating effects associated with the opiate withdrawal syndrome may be mediated by the nucleus locus coeruleus. Other signs such as wet dog shakes may involve sites in the hypothalamus important for temperature regulation. Certain other signs such as diarrhea and lacrimation may be dependent on peripheral opiate receptors. The motivational aspects of opiate withdrawal as demonstrated by the aversive stimulus effects or negative reinforcing effects (e.g. disrupted lever-pressing for food and place aversions) may involve those elements of the nucleus accumbens that are known to be important for the acute reinforcing effects of opiates in nondependent rats. Evidence exists at the cellular and molecular level for both 'within-system' and 'between-system' adaptations to dependence. Elucidation of the neural networks, cellular mechanisms and molecular elements involved in opiate withdrawal may provide not only a model for our understanding of the adaptive processes associated with drug dependence but also of those associated with other chronic insults to CNS function.

  9. Neural plasticity: the biological substrate for neurorehabilitation.

    Science.gov (United States)

    Warraich, Zuha; Kleim, Jeffrey A

    2010-12-01

    Decades of basic science have clearly demonstrated the capacity of the central nervous system (CNS) to structurally and functionally adapt in response to experience. The field of neurorehabilitation has begun to use this body of work to develop neurobiologically informed therapies that harness the key behavioral and neural signals that drive neural plasticity. The present review describes how neural plasticity supports both learning in the intact CNS and functional improvement in the damaged or diseased CNS. A pragmatic, interdisciplinary definition of neural plasticity is presented that may be used by both clinical and basic scientists studying neurorehabilitation. Furthermore, a description of how neural plasticity may act to drive different neural strategies underlying functional improvement after CNS injury or disease is provided. The understanding of the relationship between these different neural strategies, mechanisms of neural plasticity, and changes in behavior may facilitate the development of novel, more effective rehabilitation interventions. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  10. Neural substrates of sublexical processing for spelling.

    Science.gov (United States)

    DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M

    2017-01-01

    We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Neural substrates of decision-making.

    Science.gov (United States)

    Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E

    2016-06-01

    Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  12. The structural neural substrate of subjective happiness.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi

    2015-11-20

    Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness.

  13. Computing Generalized Matrix Inverse on Spiking Neural Substrate

    Directory of Open Access Journals (Sweden)

    Rohit Shukla

    2018-03-01

    Full Text Available Emerging neural hardware substrates, such as IBM's TrueNorth Neurosynaptic System, can provide an appealing platform for deploying numerical algorithms. For example, a recurrent Hopfield neural network can be used to find the Moore-Penrose generalized inverse of a matrix, thus enabling a broad class of linear optimizations to be solved efficiently, at low energy cost. However, deploying numerical algorithms on hardware platforms that severely limit the range and precision of representation for numeric quantities can be quite challenging. This paper discusses these challenges and proposes a rigorous mathematical framework for reasoning about range and precision on such substrates. The paper derives techniques for normalizing inputs and properly quantizing synaptic weights originating from arbitrary systems of linear equations, so that solvers for those systems can be implemented in a provably correct manner on hardware-constrained neural substrates. The analytical model is empirically validated on the IBM TrueNorth platform, and results show that the guarantees provided by the framework for range and precision hold under experimental conditions. Experiments with optical flow demonstrate the energy benefits of deploying a reduced-precision and energy-efficient generalized matrix inverse engine on the IBM TrueNorth platform, reflecting 10× to 100× improvement over FPGA and ARM core baselines.

  14. Shared neural substrates of apraxia and aphasia.

    Science.gov (United States)

    Goldenberg, Georg; Randerath, Jennifer

    2015-08-01

    Apraxia is regularly associated with aphasia, but there is controversy whether their co-occurrence is the expression of a common basic deficit or results from anatomical proximity of their neural substrates. However, neither aphasia nor apraxia is an indivisible entity. Both diagnoses embrace diverse manifestations that may occur more or less independently from each other. Thus, the question whether apraxia is always accompanied by aphasia may lead to conflicting answers depending on which of their manifestations are considered. We used voxel based lesion symptom mapping (VLSM) for exploring communalities between lesion sites associated with aphasia and with apraxia. Linguistic impairment was assessed by the Aachen Aphasia Test (AAT) subtests naming, comprehension, repetition, written language, and Token Test. Apraxia was examined for imitation of meaningless hand and finger postures and for pantomime of tool use. There were two areas of overlap between aphasia and apraxia. Lesions in the anterior temporal lobe interfered with pantomime of tool use and with all linguistic tests. In the left inferior parietal lobe there was a large area where lesions were associated with defective imitation of hand postures and with poor scores on written language and the Token Test. Within this large area there were also two spots in supramarginal and angular gyrus where lesions were also associated with defective pantomime. We speculate that the coincidence of language impairment and defective pantomime after anterior temporal lesions is due to impaired access to semantic memory. The combination of defective imitation of hand postures with poor scores on Token Test and written language is not easily compatible with a crucial role of parietal regions for the conversion of concepts of intended actions into motor commands. It accords better with a role of left inferior parietal lobe regions for the categorical perception of spatial relationships. Copyright © 2015 Elsevier Ltd. All

  15. The neural substrates of infant sleep in rats.

    Directory of Open Access Journals (Sweden)

    Karl A E Karlsson

    2005-05-01

    Full Text Available Sleep is a poorly understood behavior that predominates during infancy but is studied almost exclusively in adults. One perceived impediment to investigations of sleep early in ontogeny is the absence of state-dependent neocortical activity. Nonetheless, in infant rats, sleep is reliably characterized by the presence of tonic (i.e., muscle atonia and phasic (i.e., myoclonic twitching components; the neural circuitry underlying these components, however, is unknown. Recently, we described a medullary inhibitory area (MIA in week-old rats that is necessary but not sufficient for the normal expression of atonia. Here we report that the infant MIA receives projections from areas containing neurons that exhibit state-dependent activity. Specifically, neurons within these areas, including the subcoeruleus (SubLC, pontis oralis (PO, and dorsolateral pontine tegmentum (DLPT, exhibit discharge profiles that suggest causal roles in the modulation of muscle tone and the production of myoclonic twitches. Indeed, lesions in the SubLC and PO decreased the expression of muscle atonia without affecting twitching (resulting in "REM sleep without atonia", whereas lesions of the DLPT increased the expression of atonia while decreasing the amount of twitching. Thus, the neural substrates of infant sleep are strikingly similar to those of adults, a surprising finding in light of theories that discount the contribution of supraspinal neural elements to sleep before the onset of state-dependent neocortical activity.

  16. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    Transformation kinetics of mixed polymeric substrates under transitory conditions by Aspergillus niger. ... Abstract. A mixture of polymeric substrates (simulating a complex wastewater) was transformed under sewer conditions and aerobiosis by Aspergillus niger in a tanks-in-series reactor at a hydraulic retention time of 14 h.

  17. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    bglucosidase and a-mannosidase were abundantly secreted in the growth medium. This research is the first report on mixed polymeric substrate biodegradation under sewer condition by A. niger, and could be considered as an open window on ...

  18. Neural substrates of reading and writing

    International Nuclear Information System (INIS)

    Sakurai, Yasuhisa

    2008-01-01

    Functional MRI has made a great advance in the neurological field because of its low invasion, easiness to collect data to be analyzed by such a globally standardizable software as SPM (statistical parametric mapping), and appearance of academic journals specified for neuroimaging. This chapter of the review describes the activating regions and functions in reading and writing, the essential ability of language belonging to the cerebral highest function, as evidenced by the fMRI and positron emission tomography (PET) images including those under disease states (alexia and agraphia), in the following order; Correspondence of Japanese kanji/kana-words to English ones for studies on activation, Cognitive psychological model of reading, Studies on the activation of reading words, and Studies on the activation of writing words. In this paper, regions are mainly documented in accordance with the coordinate of Montreal Neurological Institute. The third section above mentions the concerned regions in the fusiform gyrus and posterior inferior temporal cortex; lateral occipital gyrus subcortex; temporal plane, superior temporal gyrus and middle temporal gyrus; posterior middle temporal, angular and supramarginal gyri; and inferior frontal gyrus, insular gyri, and supplementary motor area. The fourth section for writing words says the regions in the fusiform gyrus, posterior inferior temporal gyrus and posterior inferior temporal cortex; intraparietal sulcus pericortex, superior parietal lobule and lateral occipital gyrus; and sensorimotor area, posterior middle temporal gyrus and posterior inferior frontal gyrus. (R.T.)

  19. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  20. Control of neural stem cell survival by electroactive polymer substrates.

    Directory of Open Access Journals (Sweden)

    Vanessa Lundin

    Full Text Available Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy, a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs. NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS, tosylate (TsO, perchlorate (ClO(4 and chloride (Cl, showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS but low on PPy containing TsO, ClO(4 and Cl. On PPy(DBS, NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs.

  1. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  2. Neural correlates underlying musical semantic memory.

    Science.gov (United States)

    Groussard, M; Viader, F; Landeau, B; Desgranges, B; Eustache, F; Platel, H

    2009-07-01

    Numerous functional imaging studies have examined the neural basis of semantic memory mainly using verbal and visuospatial materials. Musical material also allows an original way to explore semantic memory processes. We used PET imaging to determine the neural substrates that underlie musical semantic memory using different tasks and stimuli. The results of three PET studies revealed a greater involvement of the anterior part of the temporal lobe. Concerning clinical observations and our neuroimaging data, the musical lexicon (and most widely musical semantic memory) appears to be sustained by a temporo-prefrontal cerebral network involving right and left cerebral regions.

  3. Age-related neural correlates of cognitive task performance under increased postural load

    NARCIS (Netherlands)

    Van Impe, A; Bruijn, S M; Coxon, J P; Wenderoth, N; Sunaert, S; Duysens, J; Swinnen, S P

    2013-01-01

    Behavioral studies suggest that postural control requires increased cognitive control and visuospatial processing with aging. Consequently, performance can decline when concurrently performing a postural and a demanding cognitive task. We aimed to identify the neural substrate underlying this

  4. Neural Substrate for Metacognitive Accuracy of Tactile Working Memory.

    Science.gov (United States)

    Gogulski, Juha; Zetter, Rasmus; Nyrhinen, Mikko; Pertovaara, Antti; Carlson, Synnöve

    2017-11-01

    The human prefrontal cortex (PFC) has been shown to be important for metacognition, the capacity to monitor and control one's own cognitive processes. Here we dissected the neural architecture of somatosensory metacognition using navigated single-pulse transcranial magnetic stimulation (TMS) to modulate tactile working memory (WM) processing. We asked subjects to perform tactile WM tasks and to give a confidence rating for their performance after each trial. We circumvented the challenge of interindividual variability in functional brain anatomy by applying TMS to two PFC areas that, according to tractography, were neurally connected with the primary somatosensory cortex (S1): one area in the superior frontal gyrus (SFG), another in the middle frontal gyrus (MFG). These two PFC locations and a control cortical area were stimulated during both spatial and temporal tactile WM tasks. We found that tractography-guided TMS of the SFG area selectively enhanced metacognitive accuracy of tactile temporal, but not spatial WM. Stimulation of the MFG area that was also neurally connected with the S1 had no such effect on metacognitive accuracy of either the temporal or spatial tactile WM. Our findings provide causal evidence that the PFC contains distinct neuroanatomical substrates for introspective accuracy of tactile WM. © The Author 2017. Published by Oxford University Press.

  5. Structural neural substrates of reading the mind in the eyes

    Directory of Open Access Journals (Sweden)

    Wataru eSato

    2016-04-01

    Full Text Available The ability to read the minds of others in their eyes plays an important role in human adaptation to social environments. Behavioral studies have resulted in the development of a test to measure this ability (Reading the Mind in the Eyes Test, revised version; Eyes Test, and have demonstrated that this ability is consistent over time. Although functional neuroimaging studies revealed brain activation while performing the Eyes Test, the structural neural substrates supporting consistent performance on the Eyes Test remain unclear. In this study we assessed the Eyes Test and analyzed structural magnetic resonance images using voxel-based morphometry in healthy participants. Test performance was positively associated with the gray matter volumes of the dorsomedial prefrontal cortex, inferior parietal lobule (temporoparietal junction, and precuneus in the left hemisphere. These results suggest that the fronto-temporoparietal network structures support the consistent ability to read the mind in the eyes.

  6. Neural dynamics underlying emotional transmissions between individuals.

    Science.gov (United States)

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-08-01

    Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social-emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social-emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. © The Author (2017). Published by Oxford University Press.

  7. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neural substrates and social consequences of interpersonal gratitude: Intention matters.

    Science.gov (United States)

    Yu, Hongbo; Cai, Qiang; Shen, Bo; Gao, Xiaoxue; Zhou, Xiaolin

    2017-06-01

    Voluntary help during a time of need fosters interpersonal gratitude, which has positive social and personal consequences such as improved social relationships, increased reciprocity, and decreased distress. In a behavioral and a functional magnetic resonance imaging (fMRI) experiment, participants played a multiround interactive game where they received pain stimulation. An anonymous partner interacted with the participants and either intentionally or unintentionally (i.e., determined by a computer program) bore part of the participants' pain. In each round, participants either evaluated their perceived pain intensity (behavioral experiment) or transferred an amount of money to the partner (fMRI experiment). Intentional (relative to unintentional) help led to lower experience of pain, higher reciprocity (money allocation), and increased interpersonal closeness toward the partner. fMRI revealed that for the most grateful condition (i.e., intentional help), value-related structures such as the ventromedial prefrontal cortex (vmPFC) showed the highest activation in response to the partner's decision, whereas the primary sensory area and the anterior insula exhibited the lowest activation at the pain delivery stage. Moreover, the vmPFC activation was predictive of the individual differences in reciprocal behavior, and the posterior cingulate cortex (PCC) activation was predictive of self-reported gratitude. Furthermore, using multivariate pattern analysis (MVPA), we showed that the neural activation pattern in the septum/hypothalamus, an area associated with affiliative affect and social bonding, and value-related structures specifically and sensitively dissociated intentional help from unintentional help conditions. These findings contribute to our understanding of the psychological and neural substrates of the experience of interpersonal gratitude and the social consequences of this emotion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Science.gov (United States)

    Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier

    2016-01-01

    The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of

  10. Neural Substrates of Semantic Prospection – Evidence from the Dementias

    Directory of Open Access Journals (Sweden)

    Muireann eIrish

    2016-05-01

    Full Text Available The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15 and disease-matched behavioral-variant frontotemporal dementia (n = 15, neurodegenerative disorders characterized by significant medial temporal lobe and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic and non-personal (semantic domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1 weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between grey matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of

  11. The neural substrate for working memory of tactile surface texture.

    Science.gov (United States)

    Kaas, Amanda L; van Mier, Hanneke; Visser, Maya; Goebel, Rainer

    2013-05-01

    Fine surface texture is best discriminated by touch, in contrast to macro geometric features like shape. We used functional magnetic resonance imaging and a delayed match-to-sample task to investigate the neural substrate for working memory of tactile surface texture. Blindfolded right-handed males encoded the texture or location of up to four sandpaper stimuli using the dominant or non-dominant hand. They maintained the information for 10-12 s and then answered whether a probe stimulus matched the memory array. Analyses of variance with the factors Hand, Task, and Load were performed on the estimated percent signal change for the encoding and delay phase. During encoding, contralateral effects of Hand were found in sensorimotor regions, whereas Load effects were observed in bilateral postcentral sulcus (BA2), secondary somatosensory cortex (S2), pre-SMA, dorsolateral prefrontal cortex (dlPFC), and superior parietal lobule (SPL). During encoding and delay, Task effects (texture > location) were found in central sulcus, S2, pre-SMA, dlPFC, and SPL. The Task and Load effects found in hand- and modality-specific regions BA2 and S2 indicate involvement of these regions in the tactile encoding and maintenance of fine surface textures. Similar effects in hand- and modality-unspecific areas dlPFC, pre-SMA and SPL suggest that these regions contribute to the cognitive monitoring required to encode and maintain multiple items. Our findings stress both the particular importance of S2 for the encoding and maintenance of tactile surface texture, as well as the supramodal nature of parieto-frontal networks involved in cognitive control. Copyright © 2012 Wiley Periodicals, Inc.

  12. Neural dynamics underlying emotional transmissions between individuals

    OpenAIRE

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional...

  13. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Science.gov (United States)

    Liddell, Belinda J.; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635

  14. Games in the Brain: Neural Substrates of Gambling Addiction.

    Science.gov (United States)

    Murch, W Spencer; Clark, Luke

    2016-10-01

    As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder. © The Author(s) 2015.

  15. A novel neural substrate for the transformation of olfactory inputs into motor output.

    Directory of Open Access Journals (Sweden)

    Dominique Derjean

    2010-12-01

    Full Text Available It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.

  16. Identifying the neural substrates of intrinsic motivation during task performance.

    Science.gov (United States)

    Lee, Woogul; Reeve, Johnmarshall

    2017-10-01

    Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.

  17. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder.

    Science.gov (United States)

    Liddell, Belinda J; Jobson, Laura

    2016-01-01

    A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.

  18. The impact of cultural differences in self-representation on the neural substrates of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Belinda J. Liddell

    2016-06-01

    Full Text Available A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD. However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1 fear dysregulation; (2 attentional biases to threat; (3 emotion and autobiographical memory; (4 self-referential processing; and (5 attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article:

  19. A potential neural substrate for processing functional classes of complex acoustic signals.

    Directory of Open Access Journals (Sweden)

    Isabelle George

    Full Text Available Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech.

  20. Neural Substrates Associated with Weather-Induced Mood Variability: An Exploratory Study Using ASL Perfusion fMRI

    OpenAIRE

    Gillihan, Seth J.; Detre, John A.; Farah, Martha J.; Rao, Hengyi

    2011-01-01

    Daily variations in weather are known to be associated with variations in mood. However, little is known about the specific brain regions that instantiate weather-related mood changes. We used a data-driven approach and ASL perfusion fMRI to assess the neural substrates associated with weather-induced mood variability. The data-driven approach was conducted with mood ratings under various weather conditions (N = 464). Forward stepwise regression was conducted to develop a statistical model of...

  1. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory

    Directory of Open Access Journals (Sweden)

    Kara J Blacker

    2016-11-01

    Full Text Available Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM: spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations versus relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations versus relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load.

  2. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Transformation kinetics of mixed polymeric substrates under ...

    African Journals Online (AJOL)

    Admin

    The residual biomasses of fungi used in industries to produce enzymes are stocked in landfill nowadays, but they could serve as inoculums for pretreatment. The aims of this study were (i) to determine the kinetics of the pretreatment under transitory conditions of a synthetic wastewater containing a mixture of starch and.

  4. Religious beliefs influence neural substrates of self-reflection in Tibetans.

    Science.gov (United States)

    Wu, Yanhong; Wang, Cheng; He, Xi; Mao, Lihua; Zhang, Li

    2010-06-01

    Previous transcultural neuroimaging studies have shown that the neural substrates of self-reflection can be shaped by different cultures. There are few studies, however, on the neural activity of self-reflection where religion is viewed as a form of cultural expression. The present study examined the self-processing of two Chinese ethnic groups (Han and Tibetan) to investigate the significant role of religion on the functional anatomy of self-representation. We replicated the previous results in Han participants with the ventral medial prefrontal cortex and left anterior cingulate cortex showing stronger activation in self-processing when compared with other-processing conditions. However, no typical self-reference pattern was identified in Tibetan participants on behavioral or neural levels. This could be explained by the minimal subjective sense of 'I-ness' in Tibetan Buddhists. Our findings lend support to the presumed role of culture and religion in shaping the neural substrate of self.

  5. Design of culture substrates for large-scale expansion of neural stem cells.

    Science.gov (United States)

    Konagaya, Shuhei; Kato, Koichi; Nakaji-Hirabayashi, Tadashi; Iwata, Hiroo

    2011-02-01

    Neural stem cells (NSCs) have been frequently used to investigate in vitro the molecular and cellular mechanisms underlying the development of the central nervous system (CNS). In addition, NSCs are regarded as one of the potential sources for the cell replacement therapy of CNS disorders. Most of these studies have utilized NSCs prepared by neurosphere culture. However, this method normally yields a heterogeneous population containing differentiated neural cells as well as NSCs. In addition, the rate of cell expansion is not high enough for obtaining a large quantity of NSCs in a short period. Here we report the design of culture substrates that allow highly selective and rapid expansion of NSCs. We synthesize epidermal growth factor fused with a hexahistidine sequence (EGF-His) and a polystyrene-binding peptide (EGF-PSt), and these engineered growth factors were surface-anchored to a nickel-chelated glass plate and a polystyrene dish, respectively. The EGF-His-chelated glass substrate was further used to assemble a culture module. Neurosphere-forming cells prepared from the fetal rat striatum were used to examine the selective expansion of NSCs using the EGF-His-chelated module and the EGF-PSt-bound polystyrene dish. Our results show that the culture module enables to selectively expand NSCs in a closed system more efficiently than the standard neurosphere culture. The EGF-PSt-bound polystyrene dish also permits efficient expansion of NSCs, providing a straightforward means to acquire a large quantity of pure NSCs in standard laboratories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Neural correlates underlying micrographia in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  8. Common neural substrates for inhibition of spoken and manual responses.

    Science.gov (United States)

    Xue, Gui; Aron, Adam R; Poldrack, Russell A

    2008-08-01

    The inhibition of speech acts is a critical aspect of human executive control over thought and action, but its neural underpinnings are poorly understood. Using functional magnetic resonance imaging and the stop-signal paradigm, we examined the neural correlates of speech control in comparison to manual motor control. Initiation of a verbal response activated left inferior frontal cortex (IFC: Broca's area). Successful inhibition of speech (naming of letters or pseudowords) engaged a region of right IFC (including pars opercularis and anterior insular cortex) as well as presupplementary motor area (pre-SMA); these regions were also activated by successful inhibition of a hand response (i.e., a button press). Moreover, the speed with which subjects inhibited their responses, stop-signal reaction time, was significantly correlated between speech and manual inhibition tasks. These findings suggest a functional dissociation of left and right IFC in initiating versus inhibiting vocal responses, and that manual responses and speech acts share a common inhibitory mechanism localized in the right IFC and pre-SMA.

  9. Metacognition in Early Phase Psychosis: Toward Understanding Neural Substrates.

    Science.gov (United States)

    Vohs, Jenifer L; Hummer, Tom A; Yung, Matthew G; Francis, Michael M; Lysaker, Paul H; Breier, Alan

    2015-06-29

    Individuals in the early phases of psychotic illness have disturbed metacognitive capacity, which has been linked to a number of poor outcomes. Little is known, however, about the neural systems associated with metacognition in this population. The purpose of this study was to elucidate the neuroanatomical correlates of metacognition. We anticipated that higher levels of metacognition may be dependent upon gray matter density (GMD) of regions within the prefrontal cortex. Examining whole-brain structure in 25 individuals with early phase psychosis, we found positive correlations between increased medial prefrontal cortex and ventral striatum GMD and higher metacognition. These findings represent an important step in understanding the path through which the biological correlates of psychotic illness may culminate into poor metacognition and, ultimately, disrupted functioning. Such a path will serve to validate and promote metacognition as a viable treatment target in early phase psychosis.

  10. Neural Substrates of the Topology Test to Measure Fluid Reasoning: An fMRI Study

    Science.gov (United States)

    Masunaga, Hiromi; Kawashima, Ryuta; Horn, John L.; Sassa, Yuko; Sekiguchi, Atsushi

    2008-01-01

    In our prior study the negative correlation between Topology, a behavioral measure of fluid reasoning, and adult age diminished with the increase in the level of expertise in a cognitively-demanding domain of expertise in the game of GO. The present fMRI study was designed to investigate neural substrates of Topology. The modified topology…

  11. Critical Neural Substrates for Correcting Unexpected Trajectory Errors and Learning from Them

    Science.gov (United States)

    Mutha, Pratik K.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2011-01-01

    Our proficiency at any skill is critically dependent on the ability to monitor our performance, correct errors and adapt subsequent movements so that errors are avoided in the future. In this study, we aimed to dissociate the neural substrates critical for correcting unexpected trajectory errors and learning to adapt future movements based on…

  12. Neural substrates of spontaneous narrative production in focal neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Thorne, Avril; Veldhuisen, Lisa D; Felix, Cordula M; Hankinson, Sarah; Pham, Julie; Shany-Ur, Tal; Schauer, Guido P; Stanley, Christine M; Glenn, Shenly; Miller, Bruce L; Rankin, Katherine P

    2015-12-01

    Conversational storytelling integrates diverse cognitive and socio-emotional abilities that critically differ across neurodegenerative disease groups. Storytelling patterns may have diagnostic relevance and predict anatomic changes. The present study employed mixed methods discourse and quantitative analyses to delineate patterns of storytelling across focal neurodegenerative disease groups, and to clarify the neuroanatomical contributions to common storytelling characteristics. Transcripts of spontaneous social interactions of 46 participants (15 behavioral variant frontotemporal dementia (bvFTD), 7 semantic variant primary progressive aphasia (svPPA), 12 Alzheimer's disease (AD), and 12 healthy older normal controls (NC)) were analyzed for storytelling frequency and characteristics, and videos of the interactions were rated for patients' level of social attentiveness. Compared to controls, svPPAs told more stories and autobiographical stories, and perseverated on aspects of self during the interaction, whereas ADs told fewer autobiographical stories than NCs. svPPAs and bvFTDs were rated as less attentive to social cues. Aspects of storytelling were related to diverse cognitive and socio-emotional functions, and voxel-based anatomic analysis of structural magnetic resonance imaging revealed that temporal organization, narrative evaluations patterns, and social attentiveness correlated with atrophy corresponding to known intrinsic connectivity networks, including the default mode, limbic, salience, and stable task control networks. Differences in spontaneous storytelling among neurodegenerative groups elucidated diverse cognitive, socio-emotional, and neural contributions to narrative production, with implications for diagnostic screening and therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Neural substrates of cue reactivity and craving in gambling disorder

    Science.gov (United States)

    Limbrick-Oldfield, E H; Mick, I; Cocks, R E; McGonigle, J; Sharman, S P; Goldstone, A P; Stokes, P R A; Waldman, A; Erritzoe, D; Bowden-Jones, H; Nutt, D; Lingford-Hughes, A; Clark, L

    2017-01-01

    Cue reactivity is an established procedure in addictions research for examining the subjective experience and neural basis of craving. This experiment sought to quantify cue-related brain responses in gambling disorder using personally tailored cues in conjunction with subjective craving, as well as a comparison with appetitive non-gambling stimuli. Participants with gambling disorder (n=19) attending treatment and 19 controls viewed personally tailored blocks of gambling-related cues, as well as neutral cues and highly appetitive (food) images during a functional magnetic resonance imaging (fMRI) scan performed ~2–3 h after a usual meal. fMRI analysis examined cue-related brain activity, cue-related changes in connectivity and associations with block-by-block craving ratings. Craving ratings in the participants with gambling disorder increased following gambling cues compared with non-gambling cues. fMRI analysis revealed group differences in left insula and anterior cingulate cortex, with the gambling disorder group showing greater reactivity to the gambling cues, but no differences to the food cues. In participants with gambling disorder, craving to gamble correlated positively with gambling cue-related activity in the bilateral insula and ventral striatum, and negatively with functional connectivity between the ventral striatum and the medial prefrontal cortex. Gambling cues, but not food cues, elicit increased brain responses in reward-related circuitry in individuals with gambling disorder (compared with controls), providing support for the incentive sensitization theory of addiction. Activity in the insula co-varied with craving intensity, and may be a target for interventions. PMID:28045460

  14. Banana peel: A novel substrate for cellulase production under solid ...

    African Journals Online (AJOL)

    These results indicated that banana peel provided necessary nutrients for cell growth and cellulase synthesis. It can be used as a potential substrate for cellulase production by T. viride GIM 3.0010 under solid-state fermentation. To the best of our knowledge, this is the first report on cellulase production using banana peel.

  15. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.

    2004-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...... kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...

  16. Exploring the Neural Substrates of Phonological Recovery for Symposium: Neural Correlates of Recovery and Rehabilitation

    Directory of Open Access Journals (Sweden)

    Pelagie M Beeson

    2015-10-01

    All participants improved written language abilities in response to treatment, but one subgroup was limited in their ability to regain phonological skills. Both anterior and posterior components of the perisylvian phonological network were damaged in that group. These findings are consistent with fMRI activation when healthy adults write nonwords, and provide insight regarding neural support necessary for phonological rehabilitation.

  17. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    OpenAIRE

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2)...

  18. Culture-sensitive neural substrates of human cognition: a transcultural neuroimaging approach.

    Science.gov (United States)

    Han, Shihui; Northoff, Georg

    2008-08-01

    Our brains and minds are shaped by our experiences, which mainly occur in the context of the culture in which we develop and live. Although psychologists have provided abundant evidence for diversity of human cognition and behaviour across cultures, the question of whether the neural correlates of human cognition are also culture-dependent is often not considered by neuroscientists. However, recent transcultural neuroimaging studies have demonstrated that one's cultural background can influence the neural activity that underlies both high- and low-level cognitive functions. The findings provide a novel approach by which to distinguish culture-sensitive from culture-invariant neural mechanisms of human cognition.

  19. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  20. Neural mechanisms and models underlying joint action.

    Science.gov (United States)

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  1. Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation

    Directory of Open Access Journals (Sweden)

    Kikuro eFukushima

    2013-03-01

    Full Text Available Smooth-pursuit eye movements allow primates to track moving objects. Efficient pursuit requires appropriate target selection and predictive compensation for inherent processing delays. Prediction depends on expectation of future object motion, storage of motion information and use of extra-retinal mechanisms in addition to visual feedback. We present behavioural evidence of how cognitive processes are involved in predictive pursuit in normal humans and then describe neuronal responses in monkeys and behavioural responses in patients using a new technique to test these cognitive controls. The new technique examines the neural substrate of working memory and movement preparation for predictive pursuit by using a memory-based task in macaque monkeys trained to pursue (go or not pursue (no-go according to a go/no-go cue, in a direction based on memory of a previously presented visual motion display. Single-unit task-related neuronal activity was examined in medial superior temporal cortex (MST, supplementary eye fields (SEF, caudal frontal eye fields (FEF, cerebellar dorsal vermis lobules VI-VII, caudal fastigial nuclei (cFN, and floccular region. Neuronal activity reflecting working memory of visual motion direction and go/no-go selection was found predominantly in SEF, cerebellar dorsal vermis and cFN, whereas movement preparation related signals were found predominantly in caudal FEF and the same cerebellar areas. Chemical inactivation produced effects consistent with differences in signals represented in each area. When applied to patients with Parkinson's disease, the task revealed deficits in movement preparation but not working memory. In contrast, patients with frontal cortical or cerebellar dysfunction had high error rates, suggesting impaired working memory. We show how neuronal activity may be explained by models of retinal and extra-retinal interaction in target selection and predictive control and thus aid understanding of underlying

  2. The neural substrate of gait and executive function relationship in elderly women: A PET study.

    Science.gov (United States)

    Sakurai, Ryota; Ishii, Kenji; Yasunaga, Masashi; Takeuchi, Rumi; Murayama, Yoh; Sakuma, Naoko; Sakata, Muneyuki; Oda, Keiichi; Ishibashi, Kenji; Ishiwata, Kiichi; Fujiwara, Yoshinori; Montero-Odasso, Manuel

    2017-11-01

    Understanding the relationship between age-related gait impairment, such as slow gait, and executive functioning in seniors may help identify individuals at higher risk of mobility decline, falls, and progression to dementia at earlier stages. We aim to identify brain regions concomitantly associated with poor gait and executive functioning in a cohort of well-functioning elderly women. In total, 149 well-functioning women aged 70.1 ± 6.2 years underwent FDG-PET to evaluate regional cerebral metabolic rates of glucose normalized in reference to cerebellar glucose metabolic value (normalized-rCMRglc) in 16 brain areas. We assessed gait speed, step length and cadence under usual and fast conditions. Executive function was assessed using Trail-Making-Tests (TMT) A and B. Adjusted multiple regression analyses for potential covariates showed that TMT-B and ΔTMT (TMT B-A) were associated with gait speed and cadence at fast condition. Lower normalized-rCMRglc in the posterior cingulate and primary sensorimotor cortices were associated with longer TMT-B and ΔTMT times (i.e., lower executive function) as well as with slower gait speed and lower cadence at fast condition. Slower gait speed and lower cadence at fast condition were also associated with lower normalized-rCMRglc in the occipital and parietal cortices. There were no other significant associations. In healthy elderly women without impending disability or cognitive impairment, reduced glucose metabolism in the posterior cingulate and primary sensorimotor cortices were associated with both lower gait performance and executive functioning. Our results suggest that gait control and executive functions might share the same neural substrate. Geriatr Gerontol Int 2017; 17: 1873-1880. © 2017 Japan Geriatrics Society.

  3. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  4. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  5. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  6. Rebalancing the Addicted Brain: Oxytocin Interference with the Neural Substrates of Addiction.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-12-01

    Drugs that act on the brain oxytocin (OXT) system may provide a much-needed treatment breakthrough for substance-use disorders. Targeting the brain OXT system has the potential to treat addiction to all major classes of addictive substance and to intervene across all stages of the addiction cycle. Emerging evidence suggests that OXT is able to interfere with such a wide range of addictive behaviours for such a wide range of addictive substances by rebalancing core neural systems that become dysregulated over the course of addiction. By improving our understanding of these interactions between OXT and the neural substrates of addiction, we will not only improve our understanding of addiction, but also our ability to effectively treat these devastating disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Science.gov (United States)

    Saito, Yoko; Ishii, Kenji; Sakuma, Naoko; Kawasaki, Keiichi; Oda, Keiichi; Mizusawa, Hidehiro

    2012-01-01

    Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET). We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song), sung lyrics on a single pitch (lyrics), and the sung syllable 'la' on original pitches (melody). The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control) that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control) showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  8. Neural substrates for semantic memory of familiar songs: is there an interface between lyrics and melodies?

    Directory of Open Access Journals (Sweden)

    Yoko Saito

    Full Text Available Findings on song perception and song production have increasingly suggested that common but partially distinct neural networks exist for processing lyrics and melody. However, the neural substrates of song recognition remain to be investigated. The purpose of this study was to examine the neural substrates involved in the accessing "song lexicon" as corresponding to a representational system that might provide links between the musical and phonological lexicons using positron emission tomography (PET. We exposed participants to auditory stimuli consisting of familiar and unfamiliar songs presented in three ways: sung lyrics (song, sung lyrics on a single pitch (lyrics, and the sung syllable 'la' on original pitches (melody. The auditory stimuli were designed to have equivalent familiarity to participants, and they were recorded at exactly the same tempo. Eleven right-handed nonmusicians participated in four conditions: three familiarity decision tasks using song, lyrics, and melody and a sound type decision task (control that was designed to engage perceptual and prelexical processing but not lexical processing. The contrasts (familiarity decision tasks versus control showed no common areas of activation between lyrics and melody. This result indicates that essentially separate neural networks exist in semantic memory for the verbal and melodic processing of familiar songs. Verbal lexical processing recruited the left fusiform gyrus and the left inferior occipital gyrus, whereas melodic lexical processing engaged the right middle temporal sulcus and the bilateral temporo-occipital cortices. Moreover, we found that song specifically activated the left posterior inferior temporal cortex, which may serve as an interface between verbal and musical representations in order to facilitate song recognition.

  9. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, M.; Stensballe, A.; Rasmussen, T.E.

    2004-01-01

    kinase A (PKA) phosphorylation sites. The neural network was trained with a positive set of 258 experimentally verified PKA phosphorylation sites. The predictions by NetPhosK were! validated using four novel PKA substrates: Necdin, RFX5, En-2, and Wee 1. The four proteins were phosphorylated by PKA...... in vitro and 13 PKA phosphorylation sites were identified by mass spectrometry. NetPhosK was 100% sensitive and 41% specific in predicting PKA sites in the four proteins. These results demonstrate the potential of using integrated computational and experimental methods for detailed investigations...

  10. The neural substrates of person perception: spontaneous use of financial and moral status knowledge.

    Science.gov (United States)

    Cloutier, J; Ambady, N; Meagher, T; Gabrieli, J D E

    2012-07-01

    The current study examines the effect of status information on the neural substrates of person perception. In an event-related fMRI experiment, participants were presented with photographs of faces preceded with information denoting either: low or high financial status (e.g., "earns $25,000" or "earns $350,000"), or low or high moral status (e.g., "is a tobacco executive" or "does cancer research"). Participants were asked to form an impression of the targets, but were not instructed to explicitly evaluate their social status. Building on previous brain-imaging investigations, regions of interest analyses were performed for brain regions expected to support either cognitive (i.e., intraparietal sulcus) or emotional (i.e., ventromedial prefrontal cortex) components of social status perception. Activation of the intraparietal sulcus was found to be sensitive to the financial status of individuals while activation of the ventromedial prefrontal cortex was sensitive to the moral status of individuals. The implications of these results towards uncovering the neural substrates of status perception and, more broadly, the extended network of brain regions involved in person perception are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  12. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.

    2014-01-01

    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  13. Sleep modulates the neural substrates of both spatial and contextual memory consolidation.

    Directory of Open Access Journals (Sweden)

    Géraldine Rauchs

    Full Text Available It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post

  14. Survival of heterotrophic bacteria in water environment under substrate deficiency

    International Nuclear Information System (INIS)

    Toth, D.

    1989-01-01

    The relationship between metabolic changes and survival of bacteria in the water environment under substrate deficiency was studied. The main factors supporting cell survival were cryptic growth, utilization of endogenous reserve substances and reorganization of metabolic activities. Based on the utilization of cell-free extract or lysates from dead bacteria, an Enterobacter aerogenes cell suspension yielded 50% more colonies. Metabolic processes of starved heterotrophic bacteria changed markedly and became stabilized at a lower level depending on species involved. The rate of utilization of endogenous reserve substances as indicated by endogenous respiration was related to the rate of cell mortality. Of the test bacteria, Pseudomonas fluorescens showed the lowest rates of endogenous respiration and mortality while in Enterobacter aerogenes these two rates were the highest. (author). 3 figs., 2 tabs.., 16 refs

  15. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  16. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  17. Distinct neural substrates of affective and cognitive theory of mind impairment in semantic dementia.

    Science.gov (United States)

    Bejanin, Alexandre; Chételat, Gaël; Laisney, Mickael; Pélerin, Alice; Landeau, Brigitte; Merck, Catherine; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Desgranges, Béatrice

    2017-06-01

    Using structural MRI, we investigated the brain substrates of both affective and cognitive theory of mind (ToM) in 19 patients with semantic dementia. We also ran intrinsic connectivity analyses to identify the networks to which the substrates belong and whether they are functionally disturbed in semantic dementia. In line with previous studies, we observed a ToM impairment in patients with semantic dementia even when semantic memory was regressed out. Our results also highlighted different neural bases according to the nature (affective or cognitive) of the representations being inferred. The affective ToM deficit was associated with atrophy in the amygdala, suggesting the involvement of emotion-processing deficits in this impairment. By contrast, cognitive ToM performances were correlated with the volume of medial prefrontal and parietal regions, as well as the right frontal operculum. Intrinsic connectivity analyses revealed decreased functional connectivity, mainly between midline cortical regions and temporal regions. They also showed that left medial temporal regions were functionally isolated, a further possible hindrance to normal social cognitive functioning in semantic dementia. Overall, this study addressed for the first time the neuroanatomical substrates of both cognitive and affective ToM disruption in semantic dementia, highlighting disturbed connectivity within the networks that sustain these abilities.

  18. The Racer's Brain - How Domain Expertise is Reflected in the Neural Substrates of Driving.

    Science.gov (United States)

    Lappi, Otto

    2015-01-01

    A fundamental question in human brain plasticity is how sensory, motor, and cognitive functions adapt in the process of skill acquisition extended over a period of many years. Recently, there has emerged a growing interest in cognitive neuroscience on studying the functional and structural differences in the brains of elite athletes. Elite performance in sports, music, or the arts, allows us to observe sensorimotor and cognitive performance at the limits of human capability. In this mini-review, we look at driving expertise. The emerging brain imaging literature on the neural substrates of real and simulated driving is reviewed (for the first time), and used as the context for interpreting recent findings on the differences between racing drivers and non-athlete controls. Also the cognitive psychology and cognitive neuroscience of expertise are discussed.

  19. The neural substrate of naming events: effects of processing demands but not of grammatical class.

    Science.gov (United States)

    Siri, Simona; Tettamanti, Marco; Cappa, Stefano F; Della Rosa, Pasquale; Saccuman, Cristina; Scifo, Paola; Vigliocco, Gabriella

    2008-01-01

    Grammatical class is a fundamental property of language, and all natural languages distinguish between nouns and verbs. Brain activation studies have provided conflicting evidence concerning the neural substrates of noun and verb processing. A major limitation of many previous imaging studies is that they did not disentangle the impact of grammatical class from the differences in semantic correlates. In order to tease apart the role of semantic and grammatical factors, we performed a functional magnetic resonance imaging study presenting Italian speakers with pictures of events and asked them to name them as 1) Infinitive Verb (e.g., mangiare [to eat]); 2) Inflected Verb (e.g., mangia [she/he eats]); and 3) Action Noun (e.g., mangiata [the eating]). We did not find any verb-specific activation. However, reliable left inferior frontal gyrus (IFG) activations were found when contrasting the Action Noun with the Infinitive Verb condition. A second-level analysis indicated then that activation in left IFG was greatest for Action Nouns, intermediate for Inflected Verbs, and least for Infinitive Verbs. We conclude that, when all other factors are controlled, nouns and verbs are processed by a common neural system. In the present case, differences in left IFG activation emerge as a consequence of increasing linguistic and/or general processing demands.

  20. Shared neural substrates for song discrimination in parental and parasitic songbirds.

    Science.gov (United States)

    Louder, Matthew I M; Voss, Henning U; Manna, Thomas J; Carryl, Sophia S; London, Sarah E; Balakrishnan, Christopher N; Hauber, Mark E

    2016-05-27

    In many social animals, early exposure to conspecific stimuli is critical for the development of accurate species recognition. Obligate brood parasitic songbirds, however, forego parental care and young are raised by heterospecific hosts in the absence of conspecific stimuli. Having evolved from non-parasitic, parental ancestors, how brood parasites recognize their own species remains unclear. In parental songbirds (e.g. zebra finch Taeniopygia guttata), the primary and secondary auditory forebrain areas are known to be critical in the differential processing of conspecific vs. heterospecific songs. Here we demonstrate that the same auditory brain regions underlie song discrimination in adult brood parasitic pin-tailed whydahs (Vidua macroura), a close relative of the zebra finch lineage. Similar to zebra finches, whydahs showed stronger behavioral responses during conspecific vs. heterospecific song and tone pips as well as increased neural responses within the auditory forebrain, as measured by both functional magnetic resonance imaging (fMRI) and immediate early gene (IEG) expression. Given parallel behavioral and neuroanatomical patterns of song discrimination, our results suggest that the evolutionary transition to brood parasitism from parental songbirds likely involved an "evolutionary tinkering" of existing proximate mechanisms, rather than the wholesale reworking of the neural substrates of species recognition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    Science.gov (United States)

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  2. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation.

    Science.gov (United States)

    Limb, Charles J; Braun, Allen R

    2008-02-27

    To investigate the neural substrates that underlie spontaneous musical performance, we examined improvisation in professional jazz pianists using functional MRI. By employing two paradigms that differed widely in musical complexity, we found that improvisation (compared to production of over-learned musical sequences) was consistently characterized by a dissociated pattern of activity in the prefrontal cortex: extensive deactivation of dorsolateral prefrontal and lateral orbital regions with focal activation of the medial prefrontal (frontal polar) cortex. Such a pattern may reflect a combination of psychological processes required for spontaneous improvisation, in which internally motivated, stimulus-independent behaviors unfold in the absence of central processes that typically mediate self-monitoring and conscious volitional control of ongoing performance. Changes in prefrontal activity during improvisation were accompanied by widespread activation of neocortical sensorimotor areas (that mediate the organization and execution of musical performance) as well as deactivation of limbic structures (that regulate motivation and emotional tone). This distributed neural pattern may provide a cognitive context that enables the emergence of spontaneous creative activity.

  3. Differential neural substrates of working memory and cognitive skill learning in healthy young volunteers

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    It is known that different neural circuits are involved in working memory and cognitive skill learning that represent explicit and implicit memory functions, respectively. In the present study, we investigated the metabolic correlates of working memory and cognitive skill learning with correlation analysis of FDG PET images. Fourteen right-handed healthy subjects (age, 24 ± 2 yr; 5 males and 9 females) underwent brain FDG PET and neuropsychological testing. Two-back task and weather prediction task were used for the evaluation of working memory and cognitive skill learning, respectively, Correlation between regional glucose metabolism and cognitive task performance was examined using SPM99. A significant positive correlation between 2-back task performance and regional glucose metabolism was found in the prefrontal regions and superior temporal gyri bilaterally. In the first term of weather prediction task the task performance correlated positively with glucose metabolism in the bilateral prefrontal areas, left middle temporal and posterior cingulate gyri, and left thalamus. In the second and third terms of the task, the correlation found in the prefrontal areas, superior temporal and anterior cingulate gyri bilaterally, right insula, left parahippocampal gyrus, and right caudate nucleus. We identified the neural substrates that are related with performance of working memory and cognitive skill learning. These results indicate that brain regions associated with the explicit memory system are recruited in early periods of cognitive skill learning, but additional brain regions including caudate nucleus are involved in late periods of cognitive skill learning

  4. Functional alterations in neural substrates of geometric reasoning in adults with high-functioning autism.

    Directory of Open Access Journals (Sweden)

    Takashi Yamada

    Full Text Available Individuals with autism spectrum condition (ASC are known to excel in some perceptual cognitive tasks, but such developed functions have been often regarded as "islets of abilities" that do not significantly contribute to broader intellectual capacities. However, recent behavioral studies have reported that individuals with ASC have advantages for performing Raven's (Standard Progressive Matrices (RPM/RSPM, a standard neuropsychological test for general fluid intelligence, raising the possibility that ASC's cognitive strength can be utilized for more general purposes like novel problem solving. Here, the brain activity of 25 adults with high-functioning ASC and 26 matched normal controls (NC was measured using functional magnetic resonance imaging (fMRI to examine neural substrates of geometric reasoning during the engagement of a modified version of the RSPM test. Among the frontal and parietal brain regions involved in fluid intelligence, ASC showed larger activation in the left lateral occipitotemporal cortex (LOTC during an analytic condition with moderate difficulty than NC. Activation in the left LOTC and ventrolateral prefrontal cortex (VLPFC increased with task difficulty in NC, whereas such modulation of activity was absent in ASC. Furthermore, functional connectivity analysis revealed a significant reduction of activation coupling between the left inferior parietal cortex and the right anterior prefrontal cortex during both figural and analytic conditions in ASC. These results indicate altered pattern of functional specialization and integration in the neural system for geometric reasoning in ASC, which may explain its atypical cognitive pattern, including performance on the Raven's Matrices test.

  5. The neural substrates of procrastination: A voxel-based morphometry study.

    Science.gov (United States)

    Hu, Yue; Liu, Peiwei; Guo, Yiqun; Feng, Tingyong

    2018-03-01

    Procrastination is a pervasive phenomenon across different cultures and brings about lots of serious consequences, including performance, subjective well-being, and even public policy. However, little is known about the neural substrates of procrastination. In order to shed light upon this question, we investigated the neuroanatomical substrates of procrastination across two independent samples using voxel-based morphometry (VBM) method. The whole-brain analysis showed procrastination was positively correlated with the graymatter (GM) volume of clusters in the parahippocampal gyrus (PHG) and the orbital frontal cortex (OFC), while negatively correlated with the GM volume of clusters in the inferior frontal gyrus (IFG) and the middle frontal gyrus (MFG) in sample one (151 participants). We further conducted a verification procedure on another sample (108 participants) using region-of-interest analysis to examine the reliability of these results. Results showed procrastination can be predicted by the GM volume of the OFC and the MFG. The present findings suggest that the MFG and OFC, which are the key regions of self-control and emotion regulation, may play an important role in procrastination. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  7. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  8. Parallel and interrelated neural systems underlying adaptive navigation.

    Science.gov (United States)

    Mizumori, Sheri J Y; Canfield, James G; Yeshenko, Oksana

    2005-06-01

    The ability to process in parallel multiple forms of sensory information, and link sensory-sensory associations to behavior, presumably allows for the opportunistic use of the most reliable and predictive sensory modalities in diverse behavioral contexts. Evolutionary considerations indicate that such processing may represent a fundamental operating principle underlying complex sensory associations and sensory-motor integration. Here, we suggest that animal navigation is a particularly useful model of such opportunistic use of sensory and motor information because it is possible to study directly the effects of memory on neural system functions. First, comparative evidence for parallel processing across multiple brain structures during navigation is provided from the literatures on fish and rodent navigation. Then, based on neurophysiological evidence of coordinated, multiregional processing, we provide a neurobiological explanation of learning and memory effects on neural circuitry mediating navigation.

  9. Acclimatization and growth of ornamental pineapple seedlings under organic substrates

    Directory of Open Access Journals (Sweden)

    Ronan Carlos Colombo

    2017-09-01

    Full Text Available The in vitro propagation techniques are commonly used to produce ornamental pineapple seedlings in commercial scale, aiming to attend the growers with genetic and sanitary quality seedlings. However, the choice of the ideal substrate is essential for the acclimatization and growth stage of the seedlings propagated by this technique, since some substrates can increase the seedling mortality and/or limit the seedling growth due to its physical and chemical characteristics. Thus, the aim of this study was to evaluate the acclimatization of ornamental pineapple [Ananas comosus (L. Merr. var. ananassoides (Baker Coppens & Leal] on different substrates. Seedlings with approximately seven centimeters, obtained from in vitro culture, were transplanted into styrofoam trays filled with the following substrates: sphagnum; semi-composed pine bark; carbonized rice husk; sphagnum + semicomposed pine bark; sphagnum + carbonized rice husk; and semi-composed pine bark + carbonized rice husk. Each treatment was replicated five times using 10 plants. At 180 days, there were evaluated the following variables: survival percentage, plant height, number of leaves, leaf area, largest root length, and shoot and root dry matter. The substrate semi-composed pine bark + carbonized rice husk presented the lowest mean (62% for survival percentage. The semi-composed pine bark and semi-composed pine bark + carbonized rice husk treatments presented significant increments in some evaluated biometric characteristics. The semi-composed pine bark is the most favorable substrate for the A. comosus var. ananassoids acclimatization.

  10. Neural substrates of sexual desire in individuals with problematic hypersexual behavior

    Directory of Open Access Journals (Sweden)

    Ji-Woo eSeok

    2015-11-01

    Full Text Available Studies on the characteristics of individuals with hypersexual disorder have been accumulating due to increasing concerns about problematic hypersexual behavior (PHB. Currently, relatively little is known about the underlying behavioral and neural mechanisms of sexual desire. Our study aimed to investigate the neural correlates of sexual desire with event-related functional magnetic resonance imaging (fMRI. Twenty-three individuals with PHB and 22 age-matched healthy controls were scanned while they passively viewed sexual and nonsexual stimuli. The subjects’ levels of sexual desire were assessed in response to each sexual stimulus. Relative to controls, individuals with PHB experienced more frequent and enhanced sexual desire during exposure to sexual stimuli. Greater activation was observed in the caudate nucleus, inferior parietal lobe, dorsal anterior cingulate gyrus, thalamus, and dorsolateral prefrontal cortex in the PHB group than in the control group. In addition, the hemodynamic patterns in the activated areas differed between the groups. Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions. In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

  11. Neural changes underlying early stages of L2 vocabulary acquisition.

    Science.gov (United States)

    Pu, He; Holcomb, Phillip J; Midgley, Katherine J

    2016-11-01

    Research has shown neural changes following second language (L2) acquisition after weeks or months of instruction. But are such changes detectable even earlier than previously shown? The present study examines the electrophysiological changes underlying the earliest stages of second language vocabulary acquisition by recording event-related potentials (ERPs) within the first week of learning. Adult native English speakers with no previous Spanish experience completed less than four hours of Spanish vocabulary training, with pre- and post-training ERPs recorded to a backward translation task. Results indicate that beginning L2 learners show rapid neural changes following learning, manifested in changes to the N400 - an ERP component sensitive to lexicosemantic processing and degree of L2 proficiency. Specifically, learners in early stages of L2 acquisition show growth in N400 amplitude to L2 words following learning as well as a backward translation N400 priming effect that was absent pre-training. These results were shown within days of minimal L2 training, suggesting that the neural changes captured during adult second language acquisition are more rapid than previously shown. Such findings are consistent with models of early stages of bilingualism in adult learners of L2 ( e.g. Kroll and Stewart's RHM) and reinforce the use of ERP measures to assess L2 learning.

  12. Neural Substrates Associated with Weather-Induced Mood Variability: An Exploratory Study Using ASL Perfusion fMRI.

    Science.gov (United States)

    Gillihan, Seth J; Detre, John A; Farah, Martha J; Rao, Hengyi

    2011-04-01

    Daily variations in weather are known to be associated with variations in mood. However, little is known about the specific brain regions that instantiate weather-related mood changes. We used a data-driven approach and ASL perfusion fMRI to assess the neural substrates associated with weather-induced mood variability. The data-driven approach was conducted with mood ratings under various weather conditions (N = 464). Forward stepwise regression was conducted to develop a statistical model of mood as a function of weather conditions. The model results were used to calculate the mood-relevant weather index which served as the covariate in the regression analysis of the resting CBF (N = 42) measured by ASL perfusion fMRI under various weather conditions. The resting CBF activities in the left insula-prefrontal cortex and left superior parietal lobe were negatively correlated (corrected p<0.05) with the weather index, indicating that better mood-relevant weather conditions were associated with lower CBF in these regions within the brain's emotional network. The present study represents a first step toward the investigation of the effect of natural environment on baseline human brain function, and suggests the feasibility of ASL perfusion fMRI for such study.

  13. The neural substrates of impaired prosodic detection in schizophrenia and its sensorial antecedents.

    Science.gov (United States)

    Leitman, David I; Hoptman, Matthew J; Foxe, John J; Saccente, Erica; Wylie, Glenn R; Nierenberg, Jay; Jalbrzikowski, Maria; Lim, Kelvin O; Javitt, Daniel C

    2007-03-01

    Individuals with schizophrenia show severe deficits in their ability to decode emotions based upon vocal inflection (affective prosody). This study examined neural substrates of prosodic dysfunction in schizophrenia with voxelwise analysis of diffusion tensor magnetic resonance imaging (MRI). Affective prosodic performance was assessed in 19 patients with schizophrenia and 19 comparison subjects with the Voice Emotion Identification Task (VOICEID), along with measures of basic pitch perception and executive processing (Wisconsin Card Sorting Test). Diffusion tensor MRI fractional anisotropy valves were used for voxelwise correlation analyses. In a follow-up experiment, performance on a nonaffective prosodic perception task was assessed in an additional cohort of 24 patients and 17 comparison subjects. Patients showed significant deficits in VOICEID and Distorted Tunes Task performance. Impaired VOICEID performance correlated significantly with lower fractional anisotropy values within primary and secondary auditory pathways, orbitofrontal cortex, corpus callosum, and peri-amygdala white matter. Impaired Distorted Tunes Task performance also correlated with lower fractional anisotropy in auditory and amygdalar pathways but not prefrontal cortex. Wisconsin Card Sorting Test performance in schizophrenia correlated primarily with prefrontal fractional anisotropy. In the follow-up study, significant deficits were observed as well in nonaffective prosodic performance, along with significant intercorrelations among sensory, affective prosodic, and nonaffective measures. Schizophrenia is associated with both structural and functional disturbances at the level of primary auditory cortex. Such deficits contribute significantly to patients' inability to decode both emotional and semantic aspects of speech, highlighting the importance of sensorial abnormalities in social communicatory dysfunction in schizophrenia.

  14. Distinct and Shared Endophenotypes of Neural Substrates in Bipolar and Major Depressive Disorders.

    Directory of Open Access Journals (Sweden)

    Toshio Matsubara

    Full Text Available Little is known about disorder-specific biomarkers of bipolar disorder (BD and major depressive disorder (MDD. Our aim was to determine a neural substrate that could be used to distinguish BD from MDD. Our study included a BD group (10 patients with BD, 10 first-degree relatives (FDRs of individuals with BD, MDD group (17 patients with MDD, 17 FDRs of individuals with MDD, and 27 healthy individuals. Structural and functional brain abnormalities were evaluated by voxel-based morphometry and a trail making test (TMT, respectively. The BD group showed a significant main effect of diagnosis in the gray matter (GM volume of the anterior cingulate cortex (ACC; p = 0.01 and left insula (p < 0.01. FDRs of individuals with BD showed significantly smaller left ACC GM volume than healthy subjects (p < 0.01, and patients with BD showed significantly smaller ACC (p < 0.01 and left insular GM volume (p < 0.01 than healthy subjects. The MDD group showed a tendency toward a main effect of diagnosis in the right and left insular GM volume. The BD group showed a significantly inverse correlation between the left insular GM volume and TMT-A scores (p < 0.05. Our results suggest that the ACC volume could be a distinct endophenotype of BD, while the insular volume could be a shared BD and MDD endophenotype. Moreover, the insula could be associated with cognitive decline and poor outcome in BD.

  15. Common neural substrates support speech and non-speech vocal tract gestures.

    Science.gov (United States)

    Chang, Soo-Eun; Kenney, Mary Kay; Loucks, Torrey M J; Poletto, Christopher J; Ludlow, Christy L

    2009-08-01

    The issue of whether speech is supported by the same neural substrates as non-speech vocal tract gestures has been contentious. In this fMRI study we tested whether producing non-speech vocal tract gestures in humans shares the same functional neuroanatomy as non-sense speech syllables. Production of non-speech vocal tract gestures, devoid of phonological content but similar to speech in that they had familiar acoustic and somatosensory targets, was compared to the production of speech syllables without meaning. Brain activation related to overt production was captured with BOLD fMRI using a sparse sampling design for both conditions. Speech and non-speech were compared using voxel-wise whole brain analyses, and ROI analyses focused on frontal and temporoparietal structures previously reported to support speech production. Results showed substantial activation overlap between speech and non-speech function in regions. Although non-speech gesture production showed greater extent and amplitude of activation in the regions examined, both speech and non-speech showed comparable left laterality in activation for both target perception and production. These findings posit a more general role of the previously proposed "auditory dorsal stream" in the left hemisphere--to support the production of vocal tract gestures that are not limited to speech processing.

  16. Introduction to the special section on the neural substrate of analogical reasoning and metaphor comprehension.

    Science.gov (United States)

    Bassok, Miriam; Dunbar, Kevin N; Holyoak, Keith J

    2012-03-01

    The special section on the neural substrate of relational reasoning includes 4 articles that address the processes and brain regions involved in analogical reasoning (Green, Kraemer, Fugelsang, Gray, & Dunbar, 2011; Maguire, McClelland, Donovan, Tillman, & Krawczyk, 2011) and in metaphor comprehension (Chettih, Durgin, & Grodner, 2011; Prat, Mason, & Just, 2011). We see this work as an example of how neuroscience approaches to cognition can lead to increased understanding of cognitive processes. In this brief introduction, we first situate the 4 articles in the context of prior cognitive neuroscience work on relational reasoning. We then highlight the main issues explored in these articles: different sources of complexity and difficulty in relational processing, potential differences between the roles of the 2 hemispheres, and the impact of individual differences in various cognitive abilities. The 4 articles illustrate a range of methodologies, including functional magnetic resonance imaging (fMRI; Green et al., 2011; Prat et al., 2011), event-related potentials (ERPs; Maguire et al., 2011), and different types of semantic priming (Chettih et al., 2011; Prat et al., 2011). They highlight the connections between research on analogy and on metaphor comprehension and suggest, collectively, that a cognitive neuroscience approach to relational reasoning can lead to converging conclusions. 2012 APA, all rights reserved

  17. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  18. The impact of abacus training on working memory and underlying neural correlates in young adults.

    Science.gov (United States)

    Dong, Shanshan; Wang, Chunjie; Xie, Ye; Hu, Yuzheng; Weng, Jian; Chen, Feiyan

    2016-09-22

    Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates. Copyright © 2016 IBRO. All rights reserved.

  19. Money talks: neural substrate of modulation of fairness by monetary incentives.

    Science.gov (United States)

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Yang, Liu-Qing; Li, Shu

    2014-01-01

    A unique feature of the human species is compliance with social norms, e.g., fairness, even though this normative decision means curbing self-interest. However, sometimes people prefer to pursue wealth at the expense of moral goodness. Specifically, deviations from a fairness-related normative choice have been observed in the presence of a high monetary incentive. The neural mechanism underlying this deviation from the fairness-related normative choice has yet to be determined. In order to address this issue, using functional magnetic resonance imaging we employed an ultimatum game (UG) paradigm in which fairness and a proposed monetary amount were orthogonally varied. We found evidence for a significant modulation by the proposed amount on fairness in the right lateral prefrontal cortex (PFC) and the bilateral insular cortices. Additionally, the insular subregions showed dissociable modulation patterns. Inter-individual differences in the modulation effects in the left inferior frontal gyrus (IFG) accounted for inter-individual differences in the behavioral modulation effect as measured by the rejection rate, supporting the concept that the PFC plays a critical role in making fairness-related normative decisions in a social interaction condition. Our findings provide neural evidence for the modulation of fairness by monetary incentives as well as accounting for inter-individual differences.

  20. Money talks: Neural substrate of modulation of fairness by monetary incentives

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-05-01

    Full Text Available A unique feature of the human species is compliance with social norms, e.g., fairness, even though this normative decision means curbing self-interest. However, sometimes people prefer to pursue wealth at the expense of moral goodness. Specifically, deviations from a fairness-related normative choice have been observed in the presence of a high monetary incentive. The neural mechanism underlying this deviation from the fairness-related normative choice has yet to be determined. In order to address this issue, using functional magnetic resonance imaging we employed an ultimatum game paradigm in which fairness and a proposed monetary amount were orthogonally varied. We found evidence for a significant modulation by the proposed amount on fairness in the right lateral prefrontal cortex and the bilateral insular cortices. Additionally, the insular subregions showed dissociable modulation patterns. Inter-individual differences in the modulation effects in the left inferior frontal gyrus accounted for inter-individual differences in the behavioral modulation effect as measured by the rejection rate, supporting the concept that the prefrontal cortex plays a critical role in making fairness-related normative decisions in a social interaction condition. Our findings provide neural evidence for the modulation of fairness by monetary incentives as well as accounting for inter-individual differences.

  1. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  2. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    Directory of Open Access Journals (Sweden)

    Eline Borch Petersen

    2015-02-01

    Full Text Available Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory. One neural signature of working memory load is enhanced power of alpha oscillations (6 ‒ 12 Hz. However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of working memory when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram (EEG was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62 – 86 years, with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss, behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level and hearing loss; while alpha power increased with hearing loss during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe hearing loss under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of hearing loss, even when adequate hearing aid amplification is in place.

  3. Neural substrate of body size: illusory feeling of shrinking of the waist.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The perception of the size and shape of one's body (body image is a fundamental aspect of how we experience ourselves. We studied the neural correlates underlying perceived changes in the relative size of body parts by using a perceptual illusion in which participants felt that their waist was shrinking. We scanned the brains of the participants using functional magnetic resonance imaging. We found that activity in the cortices lining the left postcentral sulcus and the anterior part of the intraparietal sulcus reflected the illusion of waist shrinking, and that this activity was correlated with the reported degree of shrinking. These results suggest that the perceived changes in the size and shape of body parts are mediated by hierarchically higher-order somatosensory areas in the parietal cortex. Based on this finding we suggest that relative size of body parts is computed by the integration of more elementary somatic signals from different body segments.

  4. Commonalities and differences in the neural substrates of threat predictability in panic disorder and specific phobia

    Directory of Open Access Journals (Sweden)

    Anna Luisa Klahn

    2017-01-01

    Group independent neural activity in the right dlPFC increased with decreasing threat predictability. PD patients showed a sustained hyperactivation of the vmPFC under threat and safety conditions. The magnitude of hyperactivation was inversely correlated with PDs subjective arousal and anxiety sensitivity. Both PD and SP patients revealed decreased parietal processing of affective stimuli. Findings indicate overgeneralization between threat and safety conditions and increased need for emotion regulation via the vmPFC in PD, but not SP patients. Both anxiety disorders showed decreased activation in parietal networks possibly indicating attentional avoidance of affective stimuli. Present results complement findings from fear conditioning studies and underline overgeneralization of fear, particularly in PD.

  5. Attention and hypnosis: neural substrates and genetic associations of two converging processes.

    Science.gov (United States)

    Raz, Amir

    2005-07-01

    Although attention is a central theme in psychological science, hypnosis researchers rarely incorporate attentional findings into their work. As with other biological systems, attention has a distinct anatomy that carries out basic psychological functions. Specific brain injuries, states, and drugs can all influence attentional networks. Investigation into these networks using modern neuroimaging techniques has revealed important mechanisms involved in attention. In this age of genomics, genetic approaches can supplement these neuroimaging techniques. As genotyping becomes an affordable and technologically viable complement to phenotyping, exploratory genetic assays offer insights into the genetic bases of both attention and hypnotizability. This paper discusses relevant aspects of attentional mechanisms and their underlying neuroanatomy as they relate to hypnosis. Underlining data from attentional networks, neuroimaging, and genetics, these findings should help to explain individual differences in hypnotizability and the neural systems subserving hypnosis.

  6. Neuronal Substrates Underlying Performance Variability in Well-Trained Skillful Motor Task in Humans

    Directory of Open Access Journals (Sweden)

    Nobuaki Mizuguchi

    2016-01-01

    Full Text Available Motor performance fluctuates trial by trial even in a well-trained motor skill. Here we show neural substrates underlying such behavioral fluctuation in humans. We first scanned brain activity with functional magnetic resonance imaging while healthy participants repeatedly performed a 10 s skillful sequential finger-tapping task. Before starting the experiment, the participants had completed intensive training. We evaluated task performance per trial (number of correct sequences in 10 s and depicted brain regions where the activity changes in association with the fluctuation of the task performance across trials. We found that the activity in a broader range of frontoparietocerebellar network, including the bilateral dorsolateral prefrontal cortex (DLPFC, anterior cingulate and anterior insular cortices, and left cerebellar hemisphere, was negatively correlated with the task performance. We further showed in another transcranial direct current stimulation (tDCS experiment that task performance deteriorated, when we applied anodal tDCS to the right DLPFC. These results indicate that fluctuation of brain activity in the nonmotor frontoparietocerebellar network may underlie trial-by-trial performance variability even in a well-trained motor skill, and its neuromodulation with tDCS may affect the task performance.

  7. Do Political and Economic Choices Rely on Common Neural Substrates? A Systematic Review of the Emerging Neuropolitics Literature

    Science.gov (United States)

    Krastev, Sekoul; McGuire, Joseph T.; McNeney, Denver; Kable, Joseph W.; Stolle, Dietlind; Gidengil, Elisabeth; Fellows, Lesley K.

    2016-01-01

    The methods of cognitive neuroscience are beginning to be applied to the study of political behavior. The neural substrates of value-based decision-making have been extensively examined in economic contexts; this might provide a powerful starting point for understanding political decision-making. Here, we asked to what extent the neuropolitics literature to date has used conceptual frameworks and experimental designs that make contact with the reward-related approaches that have dominated decision neuroscience. We then asked whether the studies of political behavior that can be considered in this light implicate the brain regions that have been associated with subjective value related to “economic” reward. We performed a systematic literature review to identify papers addressing the neural substrates of political behavior and extracted the fMRI studies reporting behavioral measures of subjective value as defined in decision neuroscience studies of reward. A minority of neuropolitics studies met these criteria and relatively few brain activation foci from these studies overlapped with regions where activity has been related to subjective value. These findings show modest influence of reward-focused decision neuroscience on neuropolitics research to date. Whether the neural substrates of subjective value identified in economic choice paradigms generalize to political choice thus remains an open question. We argue that systematically addressing the commonalities and differences in these two classes of value-based choice will be important in developing a more comprehensive model of the brain basis of human decision-making. PMID:26941703

  8. Do political and economic choices rely on common neural substrates? A systematic review of the emerging neuropolitics literature

    Directory of Open Access Journals (Sweden)

    Sekoul eKrastev

    2016-02-01

    Full Text Available The methods of cognitive neuroscience are beginning to be applied to the study of political behavior. The neural substrates of value-based decision-making have been extensively examined in economic contexts; this might provide a powerful starting point for understanding political decision-making. Here, we asked to what extent the neuropolitics literature to date has used conceptual frameworks and experimental designs that make contact with the reward-related approaches that have dominated decision neuroscience. We then asked whether the studies of political behavior that can be considered in this light implicate the brain regions that have been associated with subjective value related to economic rewards. We performed a systematic literature review to identify papers addressing the neural substrates of political behavior and extracted the fMRI studies reporting behavioral measures of subjective value as defined in decision neuroscience studies of reward. A minority of neuropolitics studies met these criteria and relatively few brain activation foci from these studies overlapped with regions where activity has been related to subjective value. These findings show modest influence of reward-focused decision neuroscience on neuropolitics research to date. Whether the neural substrates of subjective value identified in economic choice paradigms generalize to political choice thus remains an open question. We argue that systematically addressing the commonalities and differences in these two classes of value-based choice will be important in developing a more comprehensive model of the brain basis of human decision-making.

  9. Neural correlates underlying micrographia in Parkinson’s disease

    Science.gov (United States)

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  10. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  11. Neural basis of increased costly norm enforcement under adversity.

    Science.gov (United States)

    Wu, Yan; Yu, Hongbo; Shen, Bo; Yu, Rongjun; Zhou, Zhiheng; Zhang, Guoping; Jiang, Yushi; Zhou, Xiaolin

    2014-12-01

    Humans are willing to punish norm violations even at a substantial personal cost. Using fMRI and a variant of the ultimatum game and functional magnetic resonance imaging, we investigated how the brain differentially responds to fairness in loss and gain domains. Participants (responders) received offers from anonymous partners indicating a division of an amount of monetary gain or loss. If they accept, both get their shares according to the division; if they reject, both get nothing or lose the entire stake. We used a computational model to derive perceived fairness of offers and participant-specific inequity aversion. Behaviorally, participants were more likely to reject unfair offers in the loss (vs gain) domain. Neurally, the positive correlation between fairness and activation in ventral striatum was reduced, whereas the negative correlations between fairness and activations in dorsolateral prefrontal cortex were enhanced in the loss domain. Moreover, rejection-related dorsal striatum activation was higher in the loss domain. Furthermore, the gain-loss domain modulates costly punishment only when unfair behavior was directed toward the participants and not when it was directed toward others. These findings provide neural and computational accounts of increased costly norm enforcement under adversity and advanced our understanding of the context-dependent nature of fairness preference. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Slow Breathing and Hypoxic Challenge: Cardiorespiratory Consequences and Their Central Neural Substrates

    Science.gov (United States)

    Critchley, Hugo D.; Nicotra, Alessia; Chiesa, Patrizia A.; Nagai, Yoko; Gray, Marcus A.; Minati, Ludovico; Bernardi, Luciano

    2015-01-01

    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge. PMID:25973923

  13. The manipulative skill: Cognitive devices and their neural correlates underlying Machiavellian's decision making.

    Science.gov (United States)

    Bereczkei, Tamas

    2015-10-01

    Until now, Machiavellianism has mainly been studied in personality and social psychological framework, and little attention has been paid to the underlying cognitive and neural equipment. In light of recent findings, Machiavellian social skills are not limited to emotion regulation and "cold-mindedness" as many authors have recently stated, but linked to specific cognitive abilities. Although Machiavellians appear to have a relatively poor mindreading ability and emotional intelligence, they can efficiently exploit others which is likely to come from their flexible problem solving processes in changing environmental circumstances. The author proposed that Machiavellians have specialized cognitive domains of decision making, such as monitoring others' behavior, task orientation, reward seeking, inhibition of cooperative feelings, and choosing victims. He related the relevant aspects of cognitive functions to their neurological substrates, and argued why they make Machiavellians so successful in interpersonal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neural substrates of impulsive decision making modulated by modafinil in alcohol-dependent patients.

    Science.gov (United States)

    Schmaal, L; Goudriaan, A E; Joos, L; Dom, G; Pattij, T; van den Brink, W; Veltman, D J

    2014-10-01

    Impulsive decision making is a hallmark of frequently occurring addiction disorders including alcohol dependence (AD). Therefore, ameliorating impulsive decision making is a promising target for the treatment of AD. Previous studies have shown that modafinil enhances cognitive control functions in various psychiatric disorders. However, the effects of modafinil on delay discounting and its underlying neural correlates have not been investigated as yet. The aim of the current study was to investigate the effects of modafinil on neural correlates of impulsive decision making in abstinent AD patients and healthy control (HC) subjects. A randomized, double-blind, placebo-controlled, within-subjects cross-over study using functional magnetic resonance imaging (fMRI) was conducted in 14 AD patients and 16 HC subjects. All subjects participated in two fMRI sessions in which they either received a single dose of placebo or 200 mg of modafinil 2 h before the session. During fMRI, subjects completed a delay-discounting task to measure impulsive decision making. Modafinil improved impulsive decision making in AD pateints, which was accompanied by enhanced recruitment of frontoparietal regions and reduced activation of the ventromedial prefrontal cortex. Moreover, modafinil-induced enhancement of functional connectivity between the superior frontal gyrus and ventral striatum was specifically associated with improvement in impulsive decision making. These findings indicate that modafinil can improve impulsive decision making in AD patients through an enhanced coupling of prefrontal control regions and brain regions coding the subjective value of rewards. Therefore, the current study supports the implementation of modafinil in future clinical trials for AD.

  15. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  16. Conductive stability of graphene on PET and glass substrates under blue light irradiation

    Science.gov (United States)

    Cao, Xueying; Liu, Xianming; Li, Xiangdi; Lei, Xiaohua; Chen, Weimin

    2018-01-01

    Electrical properties of graphene transparent conductive film under visible light irradiation are investigated. The CVD-grown graphene on Polyethylene Terephthalate (PET) and glass substrates for flexible and rigid touch screen display application are chosen for research. The resistances of graphene with and without gold trichloride (AuCl3) doping are measured in vacuum and atmosphere environment under blue light irradiation. Results show that the conductivities of all samples change slowly under light irradiation. The change rate and degree are related to the substrate material, doping, environment and lighting power. Graphene on flexible PET substrate is more stable than that on rigid glass substrate. Doping can improve the electrical conductivity but induce instability under light irradiation. Finally, the main reason resulting in the graphene resistance slowly increasing under blue light irradiation is analyzed.

  17. Hydrolysis of particulate substrate by activated sludge under aerobic, anoxic and anaerobic conditions

    DEFF Research Database (Denmark)

    Henze, Mogens; Mladenovski, C.

    1991-01-01

    An investigation of hydrolysis of particulate organic substrate by activated sludge has been made. Raw municipal wastewater was used as substrate. It was mixed with activated sludge from a high loaded activated sludge plant with pure oxygen aeration. During 4 days batch experiments under aerobic......, anoxic and anaerobic conditions, the hydrolysis was following through the production of ammonia. The hydrolysis rate of nitrogeneous compounds is significantly affected by the electron donor available. The rate is high under aerobic conditions, medium under anaerobic conditions and low under anoxic...... conditions. The ratio between the hydrolysis rates under aerobic and under anoxic conditions are very similar to the respiration rates measured as electron equivalents....

  18. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    Science.gov (United States)

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the

  19. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease.

    Science.gov (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno

    2016-12-01

    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Neural processes underlying the orienting of attention without awareness.

    Science.gov (United States)

    Giattino, Charles M; Alam, Zaynah M; Woldorff, Marty G

    2017-07-22

    Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome

    Science.gov (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.

    2006-01-01

    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  2. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.

    Science.gov (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R

    2006-06-01

    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  3. Evaluation of organic Substrates for wheat production under rainfed conditions

    International Nuclear Information System (INIS)

    Muhammad, S.; Tanveer, S.K.; Anjum, A.S.; Javed, A.; Ullah, M.A.

    2013-01-01

    A study was carried out to evaluate the effect of different organic amendments and bio-fertilisers on organic wheat crop at National Agricultural Research Center (NARC), Islamabad during the year 2008-2009. Randomised Complete Block Design (RCBD) with four replications was used. The soil at NARC is slightly alkaline. Organic matter ranges from 0.31-2.50 % in the surface soils and 0.15-2.50 % in sub-soils. Most soils at NARC have low soil organic matter content. The treatments included (a) organic fertilizers 3: 16:1.5 (N:P:K), 15kg N, 85kg P/sub 2/O/sub 5/and 7kg K per acre),(b) organic fertilizers (NPK),15kg N, 85kg P/sub 2/O/sub 5/and 7gK+ Humic acid (8/acre as basel dose and foliar spray), (c) compost (well decomposed and fermented with yeast mixed with molasses) 1000kg/acre (1.5% N,1.2% P/sub 2/ O/sub 5/ and 0.8% K), (d) a control. Different organic products including bio-trace, humic acid (granulated form, i.e. lignatic coal treated with 10% potassium hydroxide) and humic acid alkaline solution in water were applied in the form of foliar spray on the crop (treatments 1 and 3) at six leaves stage, after 1.5 months and at spike emergence stage. The use of organic fertiliser with compost alone or in combination increased growth parameters as well as wheat yield, with maximum biomass (5,788kg/ha). Minimum biomass was recorded in the control treatment. The soil chemical, physical and biological properties were improved with addition of all types of organic substrates. The soil quality relates with its characteristics and microbial dynamism. (author)

  4. Neural substrates of the emotion-word and emotional counting Stroop tasks in healthy and clinical populations: A meta-analysis of functional brain imaging studies.

    Science.gov (United States)

    Feng, Chunliang; Becker, Benjamin; Huang, Wenhao; Wu, Xia; Eickhoff, Simon B; Chen, Taolin

    2018-02-26

    The emotional Stroop task (EST) is among the most influential paradigms used to probe attention-related or cognitive control-related emotional processing in healthy subjects and clinical populations. The neuropsychological mechanism underlying the emotional Stroop effect has attracted extensive and long-lasting attention in both cognitive and clinical psychology and neuroscience; however, a precise characterization of the neural substrates underlying the EST in healthy and clinical populations remains elusive. Here, we implemented a coordinate-based meta-analysis covering functional imaging studies that employed the emotion-word or emotional counting Stroop paradigms to determine the underlying neural networks in healthy subjects and the trans-diagnostic alterations across clinical populations. Forty-six publications were identified that reported relevant contrasts (negative > neutral; positive > neutral) for healthy or clinical populations as well as for hyper- or hypo-activation of patients compared to controls. We demonstrate consistent involvement of the vlPFC and dmPFC in healthy subjects and consistent involvement of the vlPFC in patients. We further identify a trans-diagnostic pattern of hyper-activation in the prefrontal and parietal regions. These findings underscore the critical roles of cognitive control processes in the EST and implicate trans-diagnostic cognitive control deficits. Unlike the current models that emphasize the roles of the amygdala and rACC, our findings implicate novel mechanisms underlying the EST for both healthy and clinical populations. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The impact of iconic gestures on foreign language word learning and its neural substrate.

    Science.gov (United States)

    Macedonia, Manuela; Müller, Karsten; Friederici, Angela D

    2011-06-01

    Vocabulary acquisition represents a major challenge in foreign language learning. Research has demonstrated that gestures accompanying speech have an impact on memory for verbal information in the speakers' mother tongue and, as recently shown, also in foreign language learning. However, the neural basis of this effect remains unclear. In a within-subjects design, we compared learning of novel words coupled with iconic and meaningless gestures. Iconic gestures helped learners to significantly better retain the verbal material over time. After the training, participants' brain activity was registered by means of fMRI while performing a word recognition task. Brain activations to words learned with iconic and with meaningless gestures were contrasted. We found activity in the premotor cortices for words encoded with iconic gestures. In contrast, words encoded with meaningless gestures elicited a network associated with cognitive control. These findings suggest that memory performance for newly learned words is not driven by the motor component as such, but by the motor image that matches an underlying representation of the word's semantics. Copyright © 2010 Wiley-Liss, Inc.

  6. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Alessandro Gozzi

    Full Text Available Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R and orexin-2 (OX2R. Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.

  7. Functional Magnetic Resonance Imaging Reveals Different Neural Substrates for the Effects of Orexin-1 and Orexin-2 Receptor Antagonists

    Science.gov (United States)

    Gozzi, Alessandro; Turrini, Giuliano; Piccoli, Laura; Massagrande, Mario; Amantini, David; Antolini, Marinella; Martinelli, Prisca; Cesari, Nicola; Montanari, Dino; Tessari, Michela; Corsi, Mauro; Bifone, Angelo

    2011-01-01

    Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI) in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat. PMID:21307957

  8. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  9. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  10. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar M.

    2018-04-12

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  11. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    OpenAIRE

    Petersen, Eline B.; Wöstmann, Malte; Obleser, Jonas; Stenfelt, Stefan; Lunner, Thomas

    2015-01-01

    Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory (WM). One neural signature of WM load is enhanced power of alpha oscillations (6–12 Hz). However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of WM when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and backgrou...

  12. Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children.

    Science.gov (United States)

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M

    2014-03-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis to investigate the neural substrates for symbolic number processing in young children. We hypothesized that, as children solidify the mapping between symbols and underlying magnitudes, important developmental changes occur in the neural communication between the right parietal region, important for the representation of non-symbolic numerical magnitudes, and other brain regions known to be critical for processing numerical symbols. To test this hypothesis, we scanned children between 4 and 6 years of age while they performed a magnitude comparison task with Arabic numerals (numerical, symbolic), dot arrays (numerical, non-symbolic), and lines (non-numerical). We then identified the right parietal seed region that showed greater blood-oxygen-level-dependent signal in the numerical versus the non-numerical conditions. A psychophysiological interaction method was used to find patterns of effective connectivity arising from this parietal seed region specific to symbolic compared to non-symbolic number processing. Two brain regions, the left supramarginal gyrus and the right precentral gyrus, showed significant effective connectivity from the right parietal cortex. Moreover, the degree of this effective connectivity to the left supramarginal gyrus was correlated with age, and the degree of the connectivity to the right precentral gyrus predicted performance on a standardized symbolic math test. These findings suggest that effective connectivity underlying symbolic number processing may be critical as children master the associations between numerical symbols and magnitudes, and that these connectivity patterns may serve as an

  13. Tai Chi and meditation-plus-exercise benefit neural substrates of executive function: a cross-sectional, controlled study.

    Science.gov (United States)

    Hawkes, Teresa D; Manselle, Wayne; Woollacott, Marjorie H

    2014-12-01

    We report the first controlled study of Tai Chi effects on the P300 event-related potential, a neuroelectric index of human executive function. Tai Chi is a form of exercise and moving meditation. Exercise and meditation have been associated with enhanced executive function. This cross-sectional, controlled study utilized the P300 event-related potential (ERP) to compare executive network neural function between self-selected long-term Tai Chi, meditation, aerobic fitness, and sedentary groups. We hypothesized that because Tai Chi requires moderate aerobic and mental exertion, this group would show similar or better executive neural function compared to meditation and aerobic exercise groups. We predicted all health training groups would outperform sedentary controls. Fifty-four volunteers (Tai Chi, n=10; meditation, n=16; aerobic exercise, n=16; sedentary, n=12) were tested with the Rockport 1-mile walk (estimated VO2 Max), a well-validated measure of aerobic capacity, and an ecologically valid visuo-spatial, randomized, alternating runs Task Switch test during dense-array electroencephalographic (EEG) recording. Only Tai Chi and meditation plus exercise groups demonstrated larger P3b ERP switch trial amplitudes compared to sedentary controls. Our results suggest long-term Tai Chi practice, and meditation plus exercise may benefit the neural substrates of executive function.

  14. Surface-Micromachined Neural Sensors with Integrated Double Side Recordings on Dry-Etch Benzocyclobutene(BCB) Substrate.

    Science.gov (United States)

    Zhu, Haixin; He, Jiping; Kim, Bruce

    2005-01-01

    a neural sensor with novel structure and capable of double side recordings has been designed and fabricated using surface micromachining technique. Dry-etch Benzocyclobutene (BCB) was selected as the substrate and packaging material for its excellent electrical, mechanical and thermal properties. Positive photoresist (AZ4620) was used as the sacrificial layer during the formation of backside recording sites, and the lift-off process combined with BCB dry etch technique was developed to open the recording sites on the backside. The finished device has intracortical recording sites on both sides, and also epidural recording sites on the front side. The total channel number doubled compared to that of single side electrode structure. Three dry-etch BCB layers were applied to insulate the front side conduction traces from the backside trace layer, and package the entire devices. The developed process shows reliable and high fabrication yield, and results suggest that this newly developed neural sensor could improve the performance and efficiency of neural recording.

  15. Neural correlates underlying true and false associative memories.

    Science.gov (United States)

    Dennis, Nancy A; Johnson, Christina E; Peterson, Kristina M

    2014-07-01

    Despite the fact that associative memory studies produce a large number of false memories, neuroimaging analyses utilizing this paradigm typically focus only on neural activity mediating successful retrieval. The current study sought to expand on this prior research by examining the neural basis of both true and false associative memories. Though associative false memories are substantially different than those found in semantic or perceptual false memory paradigms, results suggest that associative false memories are mediated by similar neural mechanisms. Specifically, we found increased frontal activity that likely represents enhanced monitoring and evaluation compared to that needed for true memories and correct rejections. Results also indicated that true, and not false associative memories, are mediated by neural activity in the MTL, specifically the hippocampus. Finally, while activity in early visual cortex distinguished true from false memories, a lack of neural differences between hits and correct rejections failed to support previous findings suggesting that activity in early visual cortex represents sensory reactivation of encoding-related processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Rasmussen, Thomas E

    2011-01-01

    Protein phosphorylation plays a key role in cell regulation and identification of phosphorylation sites is important for understanding their functional significance. Here, we present an artificial neural network algorithm: NetPhosK (http://www.cbs.dtu.dk/services/NetPhosK/) that predicts protein...

  17. Identifying the Neural Correlates Underlying Social Pain: Implications for Developmental Processes

    Science.gov (United States)

    Eisenberger, Naomi I.

    2006-01-01

    Although the need for social connection is critical for early social development as well as for psychological well-being throughout the lifespan, relatively little is known about the neural processes involved in maintaining social connections. The following review summarizes what is known regarding the neural correlates underlying feeling of…

  18. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate

    Science.gov (United States)

    Goldberger, Jeffrey J.; Arora, Rishi; Green, David; Greenland, Philip; Lee, Daniel C.; Lloyd-Jones, Donald M.; Markl, Michael; Ng, Jason; Shah, Sanjiv J.

    2015-01-01

    Atrial disease or myopathy forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. Current diagnostic approaches in patients with AF focus on identifying clinical predictors with evaluation of left atrial size by echocardiography serving as the sole measure specifically evaluating the atrium. Although the atrial substrate underlying AF is likely developing for years prior to the onset of AF, there is no current evaluation to identify the pre-clinical atrial myopathy. Atrial fibrosis is one component of the atrial substrate that has garnered recent attention based on newer MRI techniques that have been applied to visualize atrial fibrosis in humans with prognostic implications regarding success of treatment. Advanced ECG signal processing, echocardiographic techniques, and MRI imaging of fibrosis and flow provide up-to-date approaches to evaluate the atrial myopathy underlying AF. While thromboembolic risk is currently defined by clinical scores, their predictive value is mediocre. Evaluation of stasis via imaging and biomarkers associated with thrombogenesis may provide enhanced approaches to assess risk for stroke in patients with AF. Better delineation of the atrial myopathy that serves as the substrate for AF and thromboembolic complications might improve treatment outcomes. Furthermore, better delineation of the pathophysiologic mechanisms underlying the development of the atrial substrate for AF, particularly in its earlier stages, could help identify blood and imaging biomarkers that could be useful to assess risk for developing new onset AF and suggest specific pathways that could be targeted for prevention. PMID:26216085

  19. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion.

    Science.gov (United States)

    Bitterlich, Michael; Franken, Philipp; Graefe, Jan

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT) plants and mycorrhiza resistant (RMC) mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6-1500 kPa) was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  20. Arbuscular Mycorrhiza Improves Substrate Hydraulic Conductivity in the Plant Available Moisture Range Under Root Growth Exclusion

    Directory of Open Access Journals (Sweden)

    Michael Bitterlich

    2018-03-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF proliferate in soils and are known to affect soil structure. Although their contribution to structure is extensively investigated, the consequences of those processes for soil water extractability and transport has, so far, gained surprisingly little attention. Therefore we asked, whether AMF can affect water retention and unsaturated hydraulic conductivity under exclusion of root ingrowth, in order to minimize plant driven effects. We carried out experiments with tomato inoculated with Rhizoglomus irregulare in a soil substrate with sand and vermiculite that created variation in colonization by mixed pots with wild type (WT plants and mycorrhiza resistant (RMC mutants. Sampling cores were introduced and used to assess substrate moisture retention dynamics and modeling of substrate water retention and hydraulic conductivity. AMF reduced the saturated water content and total porosity, but maintained air filled porosity in soil spheres that excluded root ingrowth. The water content between field capacity and the permanent wilting point (6–1500 kPa was only reduced in mycorrhizal substrates that contained at least one RMC mutant. Plant available water contents correlated positively with soil protein contents. Soil protein contents were highest in pots that possessed the strongest hyphal colonization, but not significantly affected. Substrate conductivity increased up to 50% in colonized substrates in the physiologically important water potential range between 6 and 10 kPa. The improvements in hydraulic conductivity are restricted to substrates where at least one WT plant was available for the fungus, indicating a necessity of a functional symbiosis for this effect. We conclude that functional mycorrhiza alleviates the resistance to water movement through the substrate in substrate areas outside of the root zone.

  1. Neural mechanisms underlying probalistic category learning in normal aging.

    NARCIS (Netherlands)

    Fera, F.; Weickert, T.W.; Goldberg, T.E.; Tessitore, A.; Hariri, A.; Das, S.; Lee, S.; Zoltick, B.; Meeter, M.; Gluck, M.A.; Weinberger, D.A.; Matta, V.S.

    2005-01-01

    Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been

  2. Neural suppression of irrelevant information underlies optimal working memory performance.

    Science.gov (United States)

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  3. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Neural substrates of defensive reactivity in two subtypes of specific phobia.

    Science.gov (United States)

    Lueken, Ulrike; Hilbert, Kevin; Stolyar, Veronika; Maslowski, Nina I; Beesdo-Baum, Katja; Wittchen, Hans-Ulrich

    2014-11-01

    Depending on threat proximity, different defensive behaviours are mediated by a descending neural network involving forebrain (distal threat) vs midbrain areas (proximal threat). Compared to healthy subjects, it can be assumed that phobics are characterized by shortened defensive distances on a behavioural and neural level. This study aimed at characterizing defensive reactivity in two subtypes of specific phobia [snake (SP) and dental phobics (DP)]. Using functional magnetic resonance imaging (fMRI), n = 39 subjects (13 healthy controls, HC; 13 SP; 13 DP) underwent an event-related fMRI task employing an anticipation (5-10 s) and immediate perception phase (phobic pictures and matched neutral stimuli; 1250 ms) to modulate defensive distance. Although no differential brain activity in any comparisons was observed in DP, areas associated with defensive behaviours (e.g. amygdala, hippocampus, midbrain) were activated in SP. Decreasing defensive distance in SP was characterized by a shift to midbrain activity. Present findings substantiate differences between phobia types in their physiological and neural organization that can be expanded to early stages of defensive behaviours. Findings may contribute to a better understanding of the dynamic organization of defensive reactivity in different types of phobic fear. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM

    2012-01-01

    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  6. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    Science.gov (United States)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  7. The Racer’s Brain – How Domain Expertise is Reflected in the Neural Substrates of Driving

    Directory of Open Access Journals (Sweden)

    Otto eLappi

    2015-11-01

    Full Text Available A fundamental question in human brain plasticity is how sensory, motor, and cognitive functions adapt in the process of skill acquisition extended over a period of many years. Recently, there has emerged a growing interest in cognitive neuroscience on studying the functional and structural differences in the brains of elite athletes. Elite performance in sports, music or the arts, allows us to observe sensorimotor and cognitive performance at the limits of human capability. In this mini-review we look at driving expertise. The emerging brain imaging literature on the neural substrates of real and simulated driving is reviewed (for the first time, and used as the context for interpreting recent findings on the differences between racing drivers and non-athlete controls. Also the cognitive psychology and cognitive neuroscience of expertise are discussed.

  8. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  9. The neural substrates of cognitive flexibility are related to individual differences in preschool irritability: A fNIRS investigation

    Directory of Open Access Journals (Sweden)

    Yanwei Li

    2017-06-01

    Full Text Available Preschool (age 3–5 is a phase of rapid development in both cognition and emotion, making this a period in which the neurodevelopment of each domain is particularly sensitive to that of the other. During this period, children rapidly learn how to flexibly shift their attention between competing demands and, at the same time, acquire critical emotion regulation skills to respond to negative affective challenges. The integration of cognitive flexibility and individual differences in irritability may be an important developmental process of early childhood maturation. However, at present it is unclear if they share common neural substrates in early childhood. Our main goal was to examine the neural correlates of cognitive flexibility in preschool children and test for associations with irritability. Forty-six preschool aged children completed a novel, child-appropriate, Stroop task while dorsolateral prefrontal cortex (DLPFC activation was recorded using functional Near Infrared Spectroscopy (fNIRS. Parents rated their child’s irritability. Results indicated that left DLPFC activation was associated with cognitive flexibility and positively correlated with irritability. Right DLPFC activation was also positively correlated with irritability. Results suggest the entwined nature of cognitive and emotional neurodevelopment during a developmental period of rapid and mutual acceleration.

  10. Neural substrates of risky decision making in individuals with Internet addiction.

    Science.gov (United States)

    Seok, Ji-Woo; Lee, Kyung Hwa; Sohn, Sunju; Sohn, Jin-Hun

    2015-10-01

    With the wide and rapid expansion of computers and smartphones, Internet use has become an essential part of life and an important tool that serves various purposes. Despite the advantages of Internet use, psychological and behavioral problems, including Internet addiction, have been reported. In response to growing concern, researchers have focused on the characteristics of Internet addicts. However, relatively little is known about the behavioral and neural mechanisms that underlie Internet addiction, especially with respect to risky decision making, which is an important domain frequently reported in other types of addictions. To examine the neural characteristics of decision making in Internet addicts, Internet addicts and healthy controls were scanned while they performed a financial decision-making task. Relative to healthy controls, Internet addicts showed (1) more frequent risky decision making; (2) greater activation in the dorsal anterior cingulate cortex and the left caudate nucleus, which are brain regions involved in conflict monitoring and reward, respectively; and (3) less activation in the ventrolateral prefrontal cortex, an area associated with cognitive control/regulation. These findings suggest that risky decision making may be an important behavioral characteristic of Internet addiction and that altered brain function in regions associated with conflict monitoring, reward and cognitive control/regulation might be critical biological risk factors for Internet addiction. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  11. Neural substrates of reliability-weighted visual-tactile multisensory integration

    Directory of Open Access Journals (Sweden)

    Michael S Beauchamp

    2010-06-01

    Full Text Available As sensory systems deteriorate in aging or disease, the brain must relearn the appropriate weights to assign each modality during multisensory integration. Using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI of human subjects, we tested a model for the neural mechanisms of sensory weighting, termed “weighted connections”. This model holds that the connection weights between early and late areas vary depending on the reliability of the modality, independent of the level of early sensory cortex activity. When subjects detected viewed and felt touches to the hand, a network of brain areas was active, including visual areas in lateral occipital cortex, somatosensory areas in inferior parietal lobe, and multisensory areas in the intraparietal sulcus (IPS. In agreement with the weighted connection model, the connection weight measured with structural equation modeling between somatosensory cortex and IPS increased for somatosensory-reliable stimuli, and the connection weight between visual cortex and IPS increased for visual-reliable stimuli. This double dissociation of connection strengths was similar to the pattern of behavioral responses during incongruent multisensory stimulation, suggesting that weighted connections may be a neural mechanism for behavioral reliability weighting.for behavioral reliability weighting.

  12. Neural Substrate of Group Mental Health: Insights from Multi-Brain Reference Frame in Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Dipanjan Ray

    2017-09-01

    Full Text Available Contemporary mental health practice primarily centers around the neurobiological and psychological processes at the individual level. However, a more careful consideration of interpersonal and other group-level attributes (e.g., interpersonal relationship, mutual trust/hostility, interdependence, and cooperation and a better grasp of their pathology can add a crucial dimension to our understanding of mental health problems. A few recent studies have delved into the interpersonal behavioral processes in the context of different psychiatric abnormalities. Neuroimaging can supplement these approaches by providing insight into the neurobiology of interpersonal functioning. Keeping this view in mind, we discuss a recently developed approach in functional neuroimaging that calls for a shift from a focus on neural information contained within brain space to a multi-brain framework exploring degree of similarity/dissimilarity of neural signals between multiple interacting brains. We hypothesize novel applications of quantitative neuroimaging markers like inter-subject correlation that might be able to evaluate the role of interpersonal attributes affecting an individual or a group. Empirical evidences of the usage of these markers in understanding the neurobiology of social interactions are provided to argue for their application in future mental health research.

  13. An investigation of the neural substrates of mind wandering induced by viewing traditional Chinese landscape paintings

    Science.gov (United States)

    Wang, Tingting; Mo, Lei; Vartanian, Oshin; Cant, Jonathan S.; Cupchik, Gerald

    2015-01-01

    The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging to explore the behavioral and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task)—administered immediately following exposure to paintings. Contrary to our prediction, the behavioral data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex and the superior frontal gyrus on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain’s attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings. PMID:25610386

  14. An investigation of the neural substrates of mind wandering induced by viewing traditional Chinese landscape paintings.

    Science.gov (United States)

    Wang, Tingting; Mo, Lei; Vartanian, Oshin; Cant, Jonathan S; Cupchik, Gerald

    2014-01-01

    The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging to explore the behavioral and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task)-administered immediately following exposure to paintings. Contrary to our prediction, the behavioral data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex and the superior frontal gyrus on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain's attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings.

  15. The motivation and pleasure dimension of negative symptoms: neural substrates and behavioral outputs.

    Science.gov (United States)

    Kring, Ann M; Barch, Deanna M

    2014-05-01

    A range of emotional and motivation impairments have long been clinically documented in people with schizophrenia, and there has been a resurgence of interest in understanding the psychological and neural mechanisms of the so-called "negative symptoms" in schizophrenia, given their lack of treatment responsiveness and their role in constraining function and life satisfaction in this illness. Negative symptoms comprise two domains, with the first covering diminished motivation and pleasure across a range of life domains and the second covering diminished verbal and non-verbal expression and communicative output. In this review, we focus on four aspects of the motivation/pleasure domain, providing a brief review of the behavioral and neural underpinnings of this domain. First, we cover liking or in-the-moment pleasure: immediate responses to pleasurable stimuli. Second, we cover anticipatory pleasure or wanting, which involves prediction of a forthcoming enjoyable outcome (reward) and feeling pleasure in anticipation of that outcome. Third, we address motivation, which comprises effort computation, which involves figuring out how much effort is needed to achieve a desired outcome, planning, and behavioral response. Finally, we cover the maintenance emotional states and behavioral responses. Throughout, we consider the behavioral manifestations and brain representations of these four aspects of motivation/pleasure deficits in schizophrenia. We conclude with directions for future research as well as implications for treatment. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  16. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians.

    Science.gov (United States)

    McPherson, Malinda J; Barrett, Frederick S; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2016-01-04

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state.

  17. The neural bases underlying social risk perception in purchase decisions.

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta

    2014-05-01

    Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental

  18. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  19. Anything you can do, you can do better: neural substrates of incentive-based performance enhancement.

    Directory of Open Access Journals (Sweden)

    Mimi Liljeholm

    2012-02-01

    Full Text Available Performance-based pay schemes in many organizations share the fundamental assumption that the performance level for a given task will increase as a function of the amount of incentive provided. Consistent with this notion, psychological studies have demonstrated that expectations of reward can improve performance on a plethora of different cognitive and physical tasks, ranging from problem solving to the voluntary regulation of heart rate. However, much less is understood about the neural mechanisms of incentivized performance enhancement. In particular, it is still an open question how brain areas that encode expectations about reward are able to translate incentives into improved performance across fundamentally different cognitive and physical task requirements.

  20. Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.

    Science.gov (United States)

    Donnay, Gabriel F; Rankin, Summer K; Lopez-Gonzalez, Monica; Jiradejvong, Patpong; Limb, Charles J

    2014-01-01

    Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.

  1. Neural substrates of interactive musical improvisation: an FMRI study of 'trading fours' in jazz.

    Directory of Open Access Journals (Sweden)

    Gabriel F Donnay

    Full Text Available Interactive generative musical performance provides a suitable model for communication because, like natural linguistic discourse, it involves an exchange of ideas that is unpredictable, collaborative, and emergent. Here we show that interactive improvisation between two musicians is characterized by activation of perisylvian language areas linked to processing of syntactic elements in music, including inferior frontal gyrus and posterior superior temporal gyrus, and deactivation of angular gyrus and supramarginal gyrus, brain structures directly implicated in semantic processing of language. These findings support the hypothesis that musical discourse engages language areas of the brain specialized for processing of syntax but in a manner that is not contingent upon semantic processing. Therefore, we argue that neural regions for syntactic processing are not domain-specific for language but instead may be domain-general for communication.

  2. Language aptitude for pronunciation in advanced second language (L2) learners: behavioural predictors and neural substrates.

    Science.gov (United States)

    Hu, Xiaochen; Ackermann, Hermann; Martin, Jason A; Erb, Michael; Winkler, Susanne; Reiterer, Susanne M

    2013-12-01

    Individual differences in second language (L2) aptitude have been assumed to depend upon a variety of cognitive and personality factors. Especially, the cognitive factor phonological working memory has been conceptualised as language learning device. However, strong associations between phonological working memory and L2 aptitude have been previously found in early-stage learners only, not in advanced learners. The current study aimed at investigating the behavioural and neurobiological predictors of advanced L2 learning. Our behavioural results showed that phonetic coding ability and empathy, but not phonological working memory, predict L2 pronunciation aptitude in advanced learners. Second, functional neuroimaging revealed this behavioural trait to be correlated with hemodynamic responses of the cerebral network of speech motor control and auditory-perceptual areas. We suggest that the acquisition of L2 pronunciation aptitude is a dynamic process, requiring a variety of neural resources at different processing stages over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An investigation of the neural substrates of mind wandering induced by viewing traditional Chinese landscape paintings

    Directory of Open Access Journals (Sweden)

    Tingting eWang

    2015-01-01

    Full Text Available The present study was conducted to investigate whether the calming effect induced by viewing traditional Chinese landscape paintings would make disengagement from that mental state more difficult, as measured by performance on a cognitive control task. In Experiment 1 we examined the subjective experience of viewing traditional Chinese landscape paintings vs. realistic oil landscape paintings in a behavioral study. Our results confirmed that, as predicted, traditional Chinese landscape paintings induce greater levels of relaxation and mind wandering and lower levels of object-oriented absorption and recognition, compared to realistic oil landscape paintings. In Experiment 2 we used functional Magnetic Resonance Imaging (fMRI to explore the behavioural and neural effects of viewing traditional Chinese landscape paintings on a task requiring cognitive control (i.e., the flanker task—administered immediately following exposure to paintings. Contrary to our prediction, the behavioural data demonstrated that compared to realistic oil landscape paintings, exposure to traditional Chinese landscape paintings had no effect on performance on the flanker task. However, the neural data demonstrated an interaction effect such that there was greater activation in the inferior parietal cortex (IPC and the superior frontal gyrus (SFG on incongruent compared with congruent flanker trials when participants switched from viewing traditional Chinese landscape paintings to the flanker task than when they switched from realistic oil landscape paintings. These results suggest that switching from traditional Chinese landscape paintings placed greater demands on the brain’s attention and working memory networks during the flanker task than did switching from realistic oil landscape paintings.

  4. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  5. The behavioral and neural mechanisms underlying the tracking of expertise.

    Science.gov (United States)

    Boorman, Erie D; O'Doherty, John P; Adolphs, Ralph; Rangel, Antonio

    2013-12-18

    Evaluating the abilities of others is fundamental for successful economic and social behavior. We investigated the computational and neurobiological basis of ability tracking by designing an fMRI task that required participants to use and update estimates of both people and algorithms' expertise through observation of their predictions. Behaviorally, we find a model-based algorithm characterized subject predictions better than several alternative models. Notably, when the agent's prediction was concordant rather than discordant with the subject's own likely prediction, participants credited people more than algorithms for correct predictions and penalized them less for incorrect predictions. Neurally, many components of the mentalizing network-medial prefrontal cortex, anterior cingulate gyrus, temporoparietal junction, and precuneus-represented or updated expertise beliefs about both people and algorithms. Moreover, activity in lateral orbitofrontal and medial prefrontal cortex reflected behavioral differences in learning about people and algorithms. These findings provide basic insights into the neural basis of social learning. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The neural substrate of analogical reasoning: an fMRI study.

    Science.gov (United States)

    Luo, Qian; Perry, Conrad; Peng, Danling; Jin, Zhen; Xu, Duo; Ding, Guosheng; Xu, Shiyong

    2003-10-01

    This study investigated the anatomical substrate of analogical reasoning using functional magnetic resonance imaging. In the study, subjects performed a verbal analogy task (e.g., soldier is to army as drummer is to band) and, to control for activation caused by purely semantic access, a semantic judgment task. Significant activation differences between the verbal analogy and the semantic judgment task were found bilaterally in the prefrontal cortex (right BA 11/BA 47 and left BA45), the fusiform gyrus, and the basal ganglia; left lateralized in the postero-superior temporal gyrus (BA 22) and the (para) hippocampal region; and right lateralized in the anterior cingulate. The role of these areas in analogical reasoning is discussed.

  7. Neural mechanisms underlying subsequent memory for personal beliefs:An fMRI study.

    Science.gov (United States)

    Wing, Erik A; Iyengar, Vijeth; Hess, Thomas M; LaBar, Kevin S; Huettel, Scott A; Cabeza, Roberto

    2018-04-01

    Many fMRI studies have examined the neural mechanisms supporting emotional memory for stimuli that generate emotion rather automatically (e.g., a picture of a dangerous animal or of appetizing food). However, far fewer studies have examined how memory is influenced by emotion related to social and political issues (e.g., a proposal for large changes in taxation policy), which clearly vary across individuals. In order to investigate the neural substrates of affective and mnemonic processes associated with personal opinions, we employed an fMRI task wherein participants rated the intensity of agreement/disagreement to sociopolitical belief statements paired with neural face pictures. Following the rating phase, participants performed an associative recognition test in which they distinguished identical versus recombined face-statement pairs. The study yielded three main findings: behaviorally, the intensity of agreement ratings was linked to greater subjective emotional arousal as well as enhanced high-confidence subsequent memory. Neurally, statements that elicited strong (vs. weak) agreement or disagreement were associated with greater activation of the amygdala. Finally, a subsequent memory analysis showed that the behavioral memory advantage for statements generating stronger ratings was dependent on the medial prefrontal cortex (mPFC). Together, these results both underscore consistencies in neural systems supporting emotional arousal and suggest a modulation of arousal-related encoding mechanisms when emotion is contingent on referencing personal beliefs.

  8. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment.

    Science.gov (United States)

    Morese, Rosalba; Rabellino, Daniela; Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G; Bosco, Francesca M

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members' behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions.

  9. Using a Large-scale Neural Model of Cortical Object Processing to Investigate the Neural Substrate for Managing Multiple Items in Short-term Memory.

    Science.gov (United States)

    Liu, Qin; Ulloa, Antonio; Horwitz, Barry

    2017-11-01

    Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).

  10. Neural substrates of emotion as revealed by functional magnetic resonance imaging.

    Science.gov (United States)

    Lee, Gregory P; Meador, Kimford J; Loring, David W; Allison, Jerry D; Brown, Warren S; Paul, Lynn K; Pillai, Jay J; Lavin, Thomas B

    2004-03-01

    To examine the brain circuitry involved in emotional experience and determine whether the cerebral hemispheres are specialized for positive and negative emotional experience. Recent research has provided a preliminary sketch of the neurologic underpinnings of emotional processing involving specialized contributions of limbic and cortical brain regions. Electrophysiologic, functional imaging, and Wada test data have suggested positive, approach-related emotions are associated with left cerebral hemisphere regions, whereas negative, withdrawal-related emotions appear to be more aligned with right hemisphere mechanisms. These emotional-neural associations were investigated using functional magnetic resonance imaging in 10 healthy controls with 20 positively and 20 negatively valenced pictures from the International Affective Picture System in a counterbalanced order. Pictures were viewed within a 1.5 Telsa scanner through computerized video goggles. Emotional pictures resulted in significantly increased blood flow bilaterally in the mesial frontal lobe/anterior cingulate gyrus, dorsolateral frontal lobe, amygdala/anterior temporal regions, and cerebellum. Negative emotional pictures resulted in greater activation of the right hemisphere, and positive pictures caused greater activation of the left hemisphere. Results are consistent with theories emphasizing the importance of circuitry linking subcortical structures with mesial temporal, anterior cingulate, and frontal lobe regions in emotion and with the valence model of emotion that posits lateralized cerebral specialization for positive and negative emotional experience.

  11. Trust as commodity: social value orientation affects the neural substrates of learning to cooperate.

    Science.gov (United States)

    Lambert, Bruno; Declerck, Carolyn H; Emonds, Griet; Boone, Christophe

    2017-04-01

    Individuals differ in their motives and strategies to cooperate in social dilemmas. These differences are reflected by an individual's social value orientation: proselfs are strategic and motivated to maximize self-interest, while prosocials are more trusting and value fairness. We hypothesize that when deciding whether or not to cooperate with a random member of a defined group, proselfs, more than prosocials, adapt their decisions based on past experiences: they 'learn' instrumentally to form a base-line expectation of reciprocity. We conducted an fMRI experiment where participants (19 proselfs and 19 prosocials) played 120 sequential prisoner's dilemmas against randomly selected, anonymous and returning partners who cooperated 60% of the time. Results indicate that cooperation levels increased over time, but that the rate of learning was steeper for proselfs than for prosocials. At the neural level, caudate and precuneus activation were more pronounced for proselfs relative to prosocials, indicating a stronger reliance on instrumental learning and self-referencing to update their trust in the cooperative strategy. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Using motor imagery to study the neural substrates of dynamic balance.

    Directory of Open Access Journals (Sweden)

    Murielle Ursulla Ferraye

    Full Text Available This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of different sizes (small, large. We used a matched visual imagery (VI control task and recorded imagery durations during scanning. MI and VI durations were differentially influenced by the sway accuracy requirement, indicating that MI of balance is sensitive to the increased motor control necessary to point at a smaller target. Compared to VI, MI of dynamic balance recruited additional cortical and subcortical portions of the motor system, including frontal cortex, basal ganglia, cerebellum and mesencephalic locomotor region, the latter showing increased effective connectivity with the supplementary motor area. The regions involved in MI of dynamic balance were spatially distinct but contiguous to those involved in MI of gait (Bakker et al., 2008; Snijders et al., 2011; Crémers et al., 2012, in a pattern consistent with existing somatotopic maps of the trunk (for balance and legs (for gait. These findings validate a novel, quantitative approach for studying the neural control of balance in humans. This approach extends previous reports on MI of static stance (Jahn et al., 2004, 2008, and opens the way for studying gait and balance impairments in patients with neurodegenerative disorders.

  13. Neural substrates for sexual and thermoregulatory behavior in the male leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Edwards, Nora; Kriegsfeld, Lance; Crews, David

    2004-12-10

    The preoptic area-anterior hypothalamus (POAH) continuum is critical for the integration of environmental, physiological, and behavioral cues associated with reproduction in vertebrates. In the present study, radiofrequency lesions in the POAH abolished sexual behavior in the leopard gecko (Eublepharis macularius). Furthermore, results suggest a differential effect of POAH lesions on those behaviors regarded as appetitive (tail vibration and grip) and those regarded as consummatory (mounting and copulation), with consummatory behaviors being affected to a greater extent. E. macularius is an ectothermic vertebrate that modulates body temperature behaviorally relative to ambient temperature. In vertebrates, the POAH is also an important integrator of thermoregulation. Thus, the present study investigated whether lesions that disrupt reproductive behavior also disrupt body temperature regulation. While virtually all males displayed diurnal rhythms in thermoregulatory behavior prior to surgery, this pattern was abolished in a small proportion of animals bearing POAH lesions. Lesions that abolished thermoregulatory rhythms involved the suprachiasmatic nucleus (SCN), whereas lesions confined to the POAH, while dramatically influencing sexual behavior, did not affect thermoregulatory rhythms or temperature set point. Together, these findings identify the POAH as an important neural locus regulating sexual behavior but not thermoregulation and suggest that the SCN acts as a pacemaker controlling daily behavioral temperature regulation in this species.

  14. Neural substrates of contingency learning and executive control: dissociating physical, valuative, and behavioral changes

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    2009-09-01

    Full Text Available Contingency learning is fundamental to cognition. Knowledge about environmental contingencies allows behavioral flexibility, as executive control processes accommodate the demands of novel or changing environments. Studies of experiential learning have focused on the relationship between actions and the values of associated outcomes. However, outcome values have often been confounded with the physical changes in the outcomes themselves. Here, we dissociated contingency learning into valuative and non-valuative forms, using a novel version of the two-alternative choice task, while measuring the neural effects of contingency changes using functional magnetic resonance imaging (fMRI. Changes in value-relevant contingencies evoked activation in the lateral prefrontal cortex (LPFC, posterior parietal cortex (PPC, and dorsomedial prefrontal cortex (DMPFC consistent with prior results (e.g., reversal-learning paradigms. Changes in physical contingencies unrelated to value or to action produced similar activations within the LPFC, indicating that LPFC may engage in generalized contingency learning that is not specific to valuation. In contrast, contingency changes that required behavioral shifts evoked activation localized to the DMPFC, supplementary motor, and precentral cortices, suggesting that these regions play more specific roles within the executive control of behavior.

  15. Cortical thickness of neural substrates supporting cognitive empathy in individuals with schizophrenia.

    Science.gov (United States)

    Massey, Suena H; Stern, Daniel; Alden, Eva C; Petersen, Julie E; Cobia, Derin J; Wang, Lei; Csernansky, John G; Smith, Matthew J

    2017-01-01

    Cognitive empathy is supported by the medial prefrontal cortex (mPFC), inferior frontal gyrus (IFG), anterior mid-cingulate cortex (aMCC), insula (INS), supplementary motor area (SMA), right temporo-parietal junction (TPJ), and precuneus (PREC). In healthy controls, cortical thickness in these regions has been linked to cognitive empathy. As cognitive empathy is impaired in schizophrenia, we examined whether reduced cortical thickness in these regions was associated with poorer cognitive empathy in this population. 41 clinically-stable community-dwelling individuals with schizophrenia and 46 healthy controls group-matched on demographic variables completed self-report empathy questionnaires, a cognitive empathy task, and structural magnetic resonance imaging. We examined between-group differences in study variables using t-tests and analyses of variance. Next, we used Pearson correlations to evaluate the relationship between cognitive empathy and cortical thickness in the mPFC, IFG, aMCC, INS, SMA, TPJ, and PREC in both groups. Individuals with schizophrenia demonstrated cortical thinning in the IFG, INS, SMA, TPJ, and PREC (all pempathy across all measures (all pempathy in controls, we did not observe these relationships in individuals with schizophrenia (all p>0.10). Individuals with schizophrenia have reduced cortical thickness in empathy-related neural regions and significant impairments in cognitive empathy. Interestingly, cortical thickness was related to cognitive empathy in controls but not in the schizophrenia group. We discuss other mechanisms that may account for cognitive empathy impairment in schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Neural substrates of attentive listening assessed with a novel auditory Stroop task

    Directory of Open Access Journals (Sweden)

    Thomas A Christensen

    2011-01-01

    Full Text Available A common explanation for the interference effect in the classic visual Stroop test is that reading a word (the more automatic semantic response must be suppressed in favor of naming the text color (the slower sensory response. Neuroimaging studies also consistently report anterior cingulate/medial frontal, lateral prefrontal, and anterior insular structures as key components of a network for Stroop-conflict processing. It remains unclear, however, whether automatic processing of semantic information can explain the interference effect in other variants of the Stroop test. It also is not known if these frontal regions serve a specific role in visual Stroop conflict, or instead play a more universal role as components of a more generalized, supramodal executive-control network for conflict processing. To address these questions, we developed a novel auditory Stroop test in which the relative dominance of semantic and sensory feature processing is reversed. Listeners were asked to focus either on voice gender (a more automatic sensory discrimination task or on the gender meaning of the word (a less automatic semantic task while ignoring the conflicting stimulus feature. An auditory Stroop effect was observed when voice features replaced semantic content as the "to-be-ignored" component of the incongruent stimulus. Also, in sharp contrast to previous Stroop studies, neural responses to incongruent stimuli studied with functional magnetic resonance imaging revealed greater recruitment of conflict loci when selective attention was focused on gender meaning (semantic task over voice gender (sensory task. Furthermore, in contrast to earlier Stroop studies that implicated dorsomedial cortex in visual conflict processing, interference-related activation in both of our auditory tasks was localized ventrally in medial frontal areas, suggesting a dorsal-to-ventral separation of function in medial frontal cortex that is sensitive to stimulus context.

  17. The neural underpinnings of music listening under different attention conditions.

    Science.gov (United States)

    Jäncke, Lutz; Leipold, Simon; Burkhard, Anja

    2018-05-02

    Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.

  18. Neural correlates underlying change in state self-esteem.

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Kitada, Ryo; Nakagawa, Eri; Kochiyama, Takanori; Sadato, Norihiro

    2018-01-29

    State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in maintenance of interpersonal relations. How others' appraisal is subjectively interpreted to change state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others' appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self-esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem.

  19. Human Brain Basis of Musical Rhythm Perception: Common and Distinct Neural Substrates for Meter, Tempo, and Pattern

    Directory of Open Access Journals (Sweden)

    Michael H. Thaut

    2014-06-01

    Full Text Available Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET as they made covert same-different discriminations of (a pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus. Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas. These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  20. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  1. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering.

    Science.gov (United States)

    Pires, Filipa; Ferreira, Quirina; Rodrigues, Carlos A V; Morgado, Jorge; Ferreira, Frederico Castelo

    2015-06-01

    The use of conjugated polymers allows versatile interactions between cells and flexible processable materials, while providing a platform for electrical stimulation, which is particularly relevant when targeting differentiation of neural stem cells and further application for therapy or drug screening. Materials were tested for cytotoxicity following the ISO10993-5. PSS was cross-linked. ReNcellVM neural stem cells (NSC) were seeded in laminin coated surfaces, cultured for 4 days in the presence of EGF (20 ng/mL), FGF-2 (20 ng/mL) and B27 (20 μg/mL) and differentiated over eight additional days in the absence of those factors under 100Hz pulsed DC electrical stimulation, 1V with 10 ms pulses. NSC and neuron elongation aspect ratio as well as neurite length were assessed using ImageJ. Cells were immune-stained for Tuj1 and GFAP. F8T2, MEH-PPV, P3HT and cross-linked PSS (x PSS) were assessed as non-cytotoxic. L929 fibroblast population was 1.3 higher for x PSS than for glass control, while F8T2 presents moderate proliferation. The population of neurons (Tuj1) was 1.6 times higher with longer neurites (73 vs 108 μm) for cells cultured under electrical stimulus, with cultured NSC. Such stimulus led also to longer neurons. x PSS was, for the first time, used to elongate human NSC through the application of pulsed current, impacting on their differentiation towards neurons and contributing to longer neurites. The range of conductive conjugated polymers known as non-cytotoxic was expanded. x PSS was introduced as a stable material, easily processed from solution, to interface with biological systems, in particular NSC, without the need of in-situ polymerization. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Neurite development in PC12 cells on flexible micro-textured substrates under cyclic stretch.

    Science.gov (United States)

    Haq, Furqan; Keith, Charles; Zhang, Guigen

    2006-01-01

    We investigated the combined effect of micro-texture and mechanical strain on neuronal cell development such as neurite length and neurite density in a rat pheochromocytoma cell line (PC12 cells). Cells were seeded on flexible silicone substrates with micro-texture or no texture (smooth) and cultured under static and dynamic conditions. In the static condition substrates were not stretched and in the dynamic conditions substrates were subjected to cyclic uniaxial stretching at three different strain levels of 4%, 8%, and 16% with each at three different strain rates at 0.1, 0.5, and 1.0 Hz. Results showed that of all cell cultures there was no significant difference in neurite development between cells on smooth and textured substrates, except in the static and 4% at 0.1 Hz conditions, where micro-texture induced significantly longer neurites. With both types of substrates, a lower mechanical condition (4% at 1.0 Hz or 16% at 0.1 Hz) resulted in more and longer neurites and lower cell density, and a higher mechanical condition (16% at 1.0 Hz) resulted in fewer and shorter neurites and lower cell density as compared to the static condition. These findings suggest that the effect of the micro-texture on neurite development is more prominent in low mechanical conditions than in high mechanical conditions and that the strain level and strain rate have an interrelated effect on neurite development: a higher strain level at a lower strain rate has a similar effect as a lower strain level at a higher strain rate in terms of promoting neurite development.

  3. Greatly Enhancing Catalytic Activity of Graphene by Doping the Underlying Metal Substrate.

    Science.gov (United States)

    Guo, Na; Xi, Yongjie; Liu, Shuanglong; Zhang, Chun

    2015-07-09

    Graphene-based solid-state catalysis represents a new direction in applications of graphene and has attracted a lot of interests recently. However, the difficulty in fine control and large-scale production of previously proposed graphene catalysts greatly limits their industrial applications. Here we present a novel way to enhance the catalytic activity of graphene, which is highly efficient yet easy to fabricate and control. By first-principles calculations, we show that when the underlying metal substrate is doped with impurities, the catalytic activity of the supported graphene can be drastically enhanced. Graphene supported on a Fe/Ni(111) surface is chosen as a model catalyst, and the chemical reaction of CO oxidation is used to probe the catalytic activity of graphene. When the underlying Fe/Ni(111) substrate is impurity free, the graphene is catalytically inactive. When a Zn atom is doped into the substrate, the catalytic activity of the supported graphene is greatly enhanced, and the reaction barrier of the catalyzed CO oxidation is reduced to less than 0.5 eV. Intriguing reaction mechanism of catalyzed CO oxidation is revealed. These studies suggest a new class of graphene-based catalysts and pave the way for future applications of graphene in solid-state catalysis.

  4. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  5. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  6. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  7. Common neural substrate for processing depth and direction signals for reaching in the monkey medial posterior parietal cortex.

    Science.gov (United States)

    Hadjidimitrakis, K; Bertozzi, F; Breveglieri, R; Bosco, A; Galletti, C; Fattori, P

    2014-06-01

    Many psychophysical studies suggest that target depth and direction during reaches are processed independently, but the neurophysiological support to this view is so far limited. Here, we investigated the representation of reach depth and direction by single neurons in area V6A of the medial posterior parietal cortex (PPC) of macaques, while a fixation-to-reach task in 3-dimensional (3D) space was performed. We found that, in a substantial percentage of V6A neurons, depth and direction signals jointly influenced fixation, planning, and arm movement-related activity. While target depth and direction were equally encoded during fixation, depth tuning became stronger during arm movement planning, execution, and target holding. The spatial tuning of fixation activity was often maintained across epochs, and depth tuning persisted more than directional tuning across epochs. These findings support for the first time the existence of a common neural substrate for the encoding of target depth and direction during reaches in the PPC. Present results also highlight the presence of several types of V6A cells that process independently or jointly signals about eye position and arm movement planning and execution in order to control reaches in 3D space. A conceptual framework for the processing of depth and direction for reaching is proposed.

  8. The neural substrates of semantic memory deficits in early Alzheimer's disease: Clues from semantic priming effects and FDG-PET

    International Nuclear Information System (INIS)

    Giffard, B.; Laisney, M.; Mezenge, F.; De la Sayette, V.; Eustache, F.; Desgranges, B.

    2008-01-01

    The neural substrates responsible for semantic dysfunction during the early stages of AD have yet to be clearly identified. After a brief overview of the literature on normal and pathological semantic memory, we describe a new approach, designed to provide fresh insights into semantic deficits in AD. We mapped the correlations between resting-state brain glucose utilisation measured by FDG-PET and semantic priming scores in a group of 17 AD patients. The priming task, which yields a particularly pure measurement of semantic memory, was composed of related pairs of words sharing an attribute relationship (e.g. tiger-stripe). The priming scores correlated positively with the metabolism of the superior temporal areas on both sides, especially the right side, and this correlation was shown to be specific to the semantic priming effect.This pattern of results is discussed in the light of recent theoretical models of semantic memory, and suggests that a dysfunction of the right superior temporal cortex may contribute to early semantic deficits, characterised by the loss of specific features of concepts in AD. (authors)

  9. Neural substrates of framing effects in social contexts: A meta-analytical approach.

    Science.gov (United States)

    Wang, X T; Rao, Li-Lin; Zheng, Hongming

    2017-06-01

    We hypothesize that framing effects (risk-averse in the positive frame and risk-seeking in the negative frame) are likely to occur when ambiguous social contexts result in ambiguous or ambivalent risk preferences, leading the decision-maker to search for more subtle cues, such as verbal framing. In a functional magnetic resonance imaging (fMRI) study, we examined framing effects in both unambiguous homogeneous group and more ambiguous heterogeneous group contexts. We began by conducting a meta-analysis and identified three regions of interest: the right inferior frontal gyrus, the left anterior cingulate (ACC)/ventromedial prefrontal cortex (vmPFC), and the left amygdala. Our own fMRI data were collected while the participants made choices between a sure option and a gamble framed in terms of the number of lives to either save or die. The framing effect was evident in a heterogeneous context with a mixture of kin and strangers, but disappeared in a homogeneous group of either all kin-members or all strangers. The fMRI results revealed a greater activation in the right middle/inferior frontal gyrus under the negative than the positive framing, and less ACC/vmPFC deactivation under positive framing in the heterogamous/ambiguous context. The activation of the amygdala was correlated with greater risk-seeking preference in homogeneous kinship contexts.

  10. Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations.

    Science.gov (United States)

    Devaud, Jean-Marc; Papouin, Thomas; Carcaud, Julie; Sandoz, Jean-Christophe; Grünewald, Bernd; Giurfa, Martin

    2015-10-27

    Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.

  11. Substrate Wetting Under the Conditions of Drop Free Falling on a Heated Surface

    Directory of Open Access Journals (Sweden)

    Batischeva Ksenia A.

    2015-01-01

    Full Text Available We conducted an experimental study of a heated substrate wetting by drops of distilled water under the conditions of their free-falling. The studies were conducted using a shadow system, which consists of a light source, lens and high-speed video camera. It was found that the maximum wetted area of drop is directly proportional to its volume. The main ranges of evolution of distilled water drop behavior on the heated surface (change of geometry at contact with the surface have been conditionally divided.

  12. Ultrafast dynamics of ligand and substrate interaction in endothelial nitric oxide synthase under Soret excitation.

    Science.gov (United States)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S

    2016-01-01

    Ultrafast transient absorption spectroscopy of endothelial NOS oxygenase domain (eNOS-oxy) was performed to study dynamics of ligand or substrate interaction under Soret band excitation. Photo-excitation dissociates imidazole ligand in 4ps. The eNOS-oxy without additive is partially bound with water molecule, thus its photoexcited dynamics also shows ligand dissociation in <800fs. Then it followed by vibrational cooling coupled with charge transfer in 4.8ps, and recombination of ligand to distal side of heme in 12ps. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Memory of occasional events in rats: individual episodic memory profiles, flexibility, and neural substrate.

    Science.gov (United States)

    Veyrac, Alexandra; Allerborn, Marina; Gros, Alexandra; Michon, Frederic; Raguet, Louise; Kenney, Jana; Godinot, Florette; Thevenet, Marc; Garcia, Samuel; Messaoudi, Belkacem; Laroche, Serge; Ravel, Nadine

    2015-05-13

    In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places. By analyzing licking behavior on each drinking port, we characterized quantitatively individual recollection profiles and showed that rats are able to incidentally form and recollect an accurate, long-term integrated episodic-like memory that can last ≥ 24 d after limited exposure to the episodes. Placing rats in a contextually challenging recollection situation at recall reveals the ability for flexible use of episodic memory as described in humans. We further report that reversible inactivation of the dorsal hippocampus during recall disrupts the animal's capacity to recollect the complete episodic memory. Cellular imaging of c-Fos and Zif268 brain activation reveals that episodic memory recollection recruits a specific, distributed network of hippocampal-prefrontal cortex structures that correlates with the accuracy of the integrated recollection performance. Copyright © 2015 the authors 0270-6474/15/337575-12$15.00/0.

  14. Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders

    Science.gov (United States)

    Bukalo, Olena; Pinard, Courtney R; Holmes, Andrew

    2014-01-01

    The burden of anxiety disorders is growing, but the efficacy of available anxiolytic treatments remains inadequate. Cognitive behavioural therapy for anxiety disorders focuses on identifying and modifying maladaptive patterns of thinking and behaving, and has a testable analogue in rodents in the form of fear extinction. A large preclinical literature has amassed in recent years describing the neural and molecular basis of fear extinction in rodents. In this review, we discuss how this work is being harnessed to foster translational research on anxiety disorders and facilitate the search for new anxiolytic treatments. We begin by summarizing the anatomical and functional connectivity of a medial prefrontal cortex (mPFC)–amygdala circuit that subserves fear extinction, including new insights from optogenetics. We then cover some of the approaches that have been taken to model impaired fear extinction and associated impairments with mPFC–amygdala dysfunction. The principal goal of the review is to evaluate evidence that various neurotransmitter and neuromodulator systems mediate fear extinction by modulating the mPFC–amygdala circuitry. To that end, we describe studies that have tested how fear extinction is impaired or facilitated by pharmacological manipulations of dopamine, noradrenaline, 5-HT, GABA, glutamate, neuropeptides, endocannabinoids and various other systems, which either directly target the mPFC–amygdala circuit, or produce behavioural effects that are coincident with functional changes in the circuit. We conclude that there are good grounds to be optimistic that the progress in defining the molecular substrates of mPFC–amygdala circuit function can be effectively leveraged to identify plausible candidates for extinction-promoting therapies for anxiety disorders. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  15. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder

    Science.gov (United States)

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine

    2014-01-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  16. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  17. Neural network model for evaluation of seedling vigour under clinostated conditions

    Science.gov (United States)

    Zaidi, M.; Murase, H.

    A hierarchical neural net can be applied to simulate nonlinear phenomena found in biological systems. The learning process of the hierarchical neural net can be used as an algorithm for nonlinear multivariate analysis. The non- invasive technique for monitoring the plant's growth stage is one part of the required technology of the bio-response feedback control system. The stage of a plant's growth can be identified or quantified by measuring physical indices. Automated monitoring is also necessary in the clinostat experiment and neural networks are used for the calibration of lettuce plant growth. A back propagation neural network was trained to evaluate the plant growth in terms of plant growth characteristics, with a network consisting of 4, 8 and 1 processing units in the input, hidden and output layers, respectively. Sixteen sets of training data were used. The training was terminated after 800 times of iterative calculations at the RMS error value equal to 3.35x10-3 . Four sets of validation data were used to calculate the prediction error. The ability of the neural network models to predict the required information is very accurate. As a result, there is potential for the present technique to be applied to seedling vigour evaluating system under the clinostated conditions.

  18. The effect of the adsorbate layer on the work function reduction of gold substrates under external electric fields

    Science.gov (United States)

    He, Xiang; Cheng, Feng; Chen, Zhao-Xu

    2017-12-01

    The interface interaction between the dimethyl sulfide (DMS) molecule and the gold substrate under external electric fields is investigated by density functional theory method. The polarized DMS adsorbate reduces the work function of the gold substrate while the induced substrate dipole upon the adsorption slightly increases the work function. The DMS layer partially shields the Au(111) substrate from the electric fields and the vacuum level of DMS/Au(111) shifts less than of Au(111) in consequence. Under electric fields pointing outward from the Au(111) surface, both the reduction of work function and the adsorption of DMS molecule are enhanced on the surface. We also suggest the possible application of the field-effect transistor (FET) sensor with gold gate for detecting DMS molecule by utilizing the reduction of substrate work function upon adsorption. The effects of coverage and electric field on the theoretical sensitivity of the sensor are also discussed.

  19. Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity

    OpenAIRE

    Horner, Richard L.

    2009-01-01

    Respiratory muscles with dual respiratory and non-respiratory functions (e.g. the pharyngeal and intercostal muscles) show greater suppression of activity in sleep than the diaphragm, a muscle almost entirely devoted to respiratory function. This sleep-related suppression of activity is most apparent in the tonic component of motor activity, which has functional implications of a more collapsible upper airspace in the case of pharyngeal muscles, and decreased functional residual capacity in t...

  20. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  1. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    Science.gov (United States)

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cellulase Production by Native Bacteria Using Water Hyacinth as Substrate under Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Suresh Chandra Kurup, R.

    2005-01-01

    Full Text Available Most of the freshwater systems in tropical countries are infested with one kind of aquatic weed or the other causing serious environmental problems. All efforts to control the growth and spread of these weeds have failed miserably and hence the concept of eradication through utilization is being adopted by many researchers. Solid state fermentation, the culturing of microorganisms on moist solid substrates in the absence or near absence of free water, has generatedgreat deal of interest among researchers because of its various advantages over the submerged fermentation technique. Cellulase enzyme is used extensively in various industries, especially in textile, food and in the bioconversion of lignocellulosic wastes to alcohol. The extensive use of cellulase in industries depends on the cost of the enzyme and hence considerable research is being carried out to isolate better microbial strains and also to develop new fermentationprocesses with the aim to reduce the product cost. The objective of the present study is to determine whether water hyacinth, one of the commonly found aquatic weeds, can be used as a substrate for cellulase production, by three native bacterial isolates named WHB 3, WHB 4 and SMB 3, under the process of solid state fermentation. Results indicatethat all the three isolates produced cellulase enzyme by using water hyacinth as the solid support. Under optimized conditions of moisture, pH, temperature, incubation time and inoculum concentration, the enzyme yield increased from 16.8 to 94.8 units for SMB 3, from 25.2 to 110.4 units for WHB 3 and from 18.0 to 127.2 units for WHB 4. The addition of nitrogen and carbon sources resulted in a significant increase in cellulase yield and WHB 3 produced the maximum amount of 216 units followed by SMB 3 and WHB 4.

  3. Neural substrates of conversion deafness in a cochlear implant patient: a molecular imaging study using H₂¹⁵O-PET.

    Science.gov (United States)

    Song, Jae-Jin; Mertens, Griet; Deleye, Steven; Staelens, Steven; Ceyssens, Sarah; Gilles, Annick; de Bodt, Marc; Vanneste, Sven; De Ridder, Dirk; Kim, Euitae; Park, Sung Joon; Van de Heyning, Paul

    2014-12-01

    Conversion deafness is characterized by sudden hearing loss without any identifiable cause. In the current study, we investigated presumed conversion deafness in a cochlear implant user using H₂¹⁵O-positron emission tomography (PET) scan with speech and noise stimuli in conjunction with audiologic tests such as impedance test and auditory response telemetry. Also, by performing a follow-up PET scan after recovery and comparing prerecovery and postrecovery scans, we attempted to find possible neural substrates of conversion deafness. A 51-year-old man with conversion deafness after 4 years of successful cochlear implant use. Supportive psychotherapy. Prerecovery and postrecovery H₂¹⁵O-PET scans The prerecovery H₂¹⁵O-PET scan revealed auditory cortex activation by sound stimuli, which verified normal stimulation of the central auditory pathway. Notably, compared with the prerecovery state, the postrecovery state showed relative activation in the right auditory cortex both under the speech and noise stimulus conditions. Moreover, the bilateral prefrontal and parietal areas were activated more in the postrecovery state than in the prerecovery state. In other words, relative deactivation of the prefronto-parieto-temporal network, a network responsible for conscious sensory perception, or relative dysfunction of top-down and bottom-up attention shifting mediated by the ventral and the dorsal parietal cortices, may have resulted in conversion deafness in the patient. Relative deactivation of the prefronto-parieto-temporal network or dysfunction in the ventral and the dorsal parietal cortices may be related to the development of conversion deafness.

  4. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  5. Anger under control: neural correlates of frustration as a function of trait aggression.

    Science.gov (United States)

    Pawliczek, Christina M; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  6. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  7. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    Science.gov (United States)

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression. PMID:24205247

  8. Neural substrates of levodopa-responsive gait disorders and freezing in advanced Parkinson's disease: a kinesthetic imagery approach

    NARCIS (Netherlands)

    Maillet, A.; Thobois, S.; Fraix, V.; Redoute, J.; Bars, D. Le; Lavenne, F.; Derost, P.; Durif, F.; Bloem, B.R.; Krack, P.; Pollak, P.; Debu, B.

    2015-01-01

    Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown.

  9. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning.

    Science.gov (United States)

    Sheridan, Margaret A; Peverill, Matthew; Finn, Amy S; McLaughlin, Katie A

    2017-12-01

    Childhood adversity is associated with increased risk for psychopathology. Neurodevelopmental pathways underlying this risk remain poorly understood. A recent conceptual model posits that childhood adversity can be deconstructed into at least two underlying dimensions, deprivation and threat, that are associated with distinct neurocognitive consequences. This model argues that deprivation (i.e., a lack of cognitive stimulation and learning opportunities) is associated with poor executive function (EF), whereas threat is not. We examine this hypothesis in two studies measuring EF at multiple levels: performance on EF tasks, neural recruitment during EF, and problems with EF in daily life. In Study 1, deprivation (low parental education and child neglect) was associated with greater parent-reported problems with EF in adolescents (N = 169; 13-17 years) after adjustment for levels of threat (community violence and abuse), which were unrelated to EF. In Study 2, low parental education was associated with poor working memory (WM) performance and inefficient neural recruitment in the parietal and prefrontal cortex during high WM load among adolescents (N = 51, 13-20 years) after adjusting for abuse, which was unrelated to WM task performance and neural recruitment during WM. These findings constitute strong preliminary evidence for a novel model of the neurodevelopmental consequences of childhood adversity.

  10. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  11. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  12. Influence of dormancy on microbial competition under intermittent substrate supply: insights from model simulations.

    Science.gov (United States)

    Stolpovsky, Konstantin; Fetzer, Ingo; Van Cappellen, Philippe; Thullner, Martin

    2016-06-01

    Most natural environments are characterized by frequent changes of their abiotic conditions. Microorganisms can respond to such changes by switching their physiological state between activity and dormancy allowing them to endure periods of unfavorable abiotic conditions. As a consequence, the competitiveness of microbial species is not simply determined by their growth performance under favorable conditions but also by their ability and readiness to respond to periods of unfavorable environmental conditions. The present study investigates the relevance of factors controlling the abundance and activity of individual bacterial species competing for an intermittently supplied substrate. For this purpose, numerical experiments were performed addressing the response of microbial systems to regularly applied feeding pulses. Simulation results show that community dynamics may exhibit a non-trivial link to the frequency of the external constraints and that for a certain combination of these environmental conditions coexistence of species is possible. The ecological implication of our results is that even non-dominant, neglected species can have a strong influence on realized species composition of dominant key species, due to their invisible presence enable the coexistence between important key species and by this affecting provided function of the system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Silver endotaxy in silicon under various ambient conditions and their use as surface enhanced Raman spectroscopy substrates

    International Nuclear Information System (INIS)

    Juluri, R.R.; Ghosh, A.; Bhukta, A.; Sathyavathi, R.; Satyam, P.V.

    2015-01-01

    Search for reliable, robust and efficient substrates for surface enhanced Raman spectroscopy (SERS) leads to the growth of various shapes and nanostructures of noble metals, and in particular, Ag nanostructures for this purpose. Coherently embedded (also known as endotaxial) Ag nanostructures in silicon substrates can be made robust and reusable SERS substrates. In this paper, we show the possibility of the growth of Ag endotaxial structures in Si crystal during Ar and low-vacuum annealing conditions while this is absent in O 2 and ultra high vacuum (UHV) annealing conditions and along with their respective use as SERS substrates. Systems annealed under air-annealing and low-vacuum conditions were found to show larger enhancement factors (typically ≈ 5 × 10 5 in SERS measurement for 0.5 nM Crystal Violet (CV) molecule) while the systems prepared under UHV-annealing conditions (where no endotaxial Ag structures were formed) were found to be not effective as SERS substrates. Extensive electron microscopy, synchrotron X-ray diffraction and Rutherford backscattering spectrometry techniques were used to understand the structural aspects. - Highlights: • Various aspects on the growth of endotaxial Ag nanostructures are presented. • Optimum amount of oxygen is necessary for the growth of endotaxial structures. • Reaction of oxygen with GeOx and SiOx plays a crucial role. • Ag nanostructures prepared under UHV conditions show low SERS activity • SERS enhancement is better for low-vacuum and argon annealing conditions

  14. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  15. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  16. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.

    Science.gov (United States)

    Okabe, Naohiko; Shiromoto, Takashi; Himi, Naoyuki; Lu, Feng; Maruyama-Nakamura, Emi; Narita, Kazuhiko; Iwachidou, Nobuhisa; Yagita, Yoshiki; Miyamoto, Osamu

    2016-12-17

    Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. The Neural Substrates of Recognition Memory for Verbal Information: Spanning the Divide between Short- and Long-Term Memory

    Science.gov (United States)

    Buchsbaum, Bradley R.; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-01-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research…

  18. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    Science.gov (United States)

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  19. At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists.

    Science.gov (United States)

    Abler, Birgit; Hahlbrock, Roman; Unrath, Alexander; Grön, Georg; Kassubek, Jan

    2009-09-01

    Treatment with dopamine receptor agonists has been associated with impulse control disorders and pathological gambling (PG) secondary to medication in previously unaffected patients with Parkinson's disease or restless legs syndrome (RLS). In a within-subjects design, we investigated the underlying neurobiology in RLS patients using functional magnetic resonance imaging. We scanned 12 female RLS patients without a history of PG. All patients were scanned twice: once whilst taking their regular medication with low dose dopamine receptor agonists and once after a washout phase interval. They performed an established gambling game task involving expectation and receipt or omission of monetary rewards at different levels of probabilities. Upon expectation of rewards, reliable ventral striatal activation was detected only when patients were on, but not when patients were off medication. Upon receipt or omission of rewards, the observed ventral striatal signal under medication differed markedly from its predicted pattern which by contrast was apparent when patients were off medication. Orbitofrontal activation was not affected by medication. Chronic dopamine receptor agonist medication changed the neural signalling of reward expectation predisposing the dopaminergic reward system to mediate an increased appetitive drive. Even without manifest PG, chronic medication with dopamine receptor agonists led to markedly changed neural processing of negative consequences probably mediating dysfunctional learning of contingencies. Intact orbitofrontal functioning, potentially moderating impulse control, may explain why none of the patients actually developed PG. Our results support the notion of a general medication effect in patients under dopamine receptor agonists in terms of a sensitization towards impulse control disorders.

  20. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  1. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    Science.gov (United States)

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  2. Substrate induced denitrification over or under estimates shifts in soil N₂/N₂O ratios.

    Directory of Open Access Journals (Sweden)

    Nicholas J Morley

    Full Text Available The increase in atmospheric nitrous oxide (N₂O, a potent greenhouse and ozone depleting gas, is of serious global concern. Soils are large contributors to this increase through microbial processes that are enhanced in agricultural land due to nitrogenous fertilizer applications. Denitrification, a respiratory process using nitrogen oxides as electron acceptors in the absence of oxygen, is the main source of N₂O. The end product of denitrification is benign dinitrogen (N₂ and understanding what regulates the shift in ratio of N₂O and N₂ emission is crucial for mitigation strategies. The role of organic carbon in controlling N₂O reduction is poorly understood, and mostly based on application of glucose. Here we investigated how a range of carbon compounds (succinate, butyrate, malic acid, acetate, glucose, sucrose and cysteine affect denitrifier N₂/N₂O production stoichiometry under laboratory conditions. The results show that a soil's capability in efficiently reducing N₂O to N₂ is C substrate dependent and most compounds tested were different in regards to this efficiency compared to glucose. We challenge the concept of using glucose as a model soil C compound in furthering our understanding of denitrification and specifically the efficiency in the N₂O reductase enzyme. Organic acids, commonly exuded by roots, increased N₂/N₂O ratios compared to glucose, and therefore mitigated net N₂O release and we suggest provides better insights into soil regulatory aspects of N₂O reduction. The widespread use of glucose in soil laboratory studies could lead to misleading knowledge on the functioning of denitrification in soils with regards to N₂O reduction.

  3. Emotional Intent Modulates The Neural Substrates Of Creativity: An fMRI Study of Emotionally Targeted Improvisation in Jazz Musicians

    OpenAIRE

    Malinda J. McPherson; Frederick S. Barrett; Monica Lopez-Gonzalez; Patpong Jiradejvong; Charles J. Limb

    2016-01-01

    Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvise...

  4. Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus.

    Science.gov (United States)

    Bravo, Fernando; Cross, Ian; Hawkins, Sarah; Gonzalez, Nadia; Docampo, Jorge; Bruno, Claudio; Stamatakis, Emmanuel Andreas

    2017-07-28

    We frequently infer others' intentions based on non-verbal auditory cues. Although the brain underpinnings of social cognition have been extensively studied, no empirical work has yet examined the impact of musical structure manipulation on the neural processing of emotional valence during mental state inferences. We used a novel sound-based theory-of-mind paradigm in which participants categorized stimuli of different sensory dissonance level in terms of positive/negative valence. Whilst consistent with previous studies which propose facilitated encoding of consonances, our results demonstrated that distinct levels of consonance/dissonance elicited differential influences on the right angular gyrus, an area implicated in mental state attribution and attention reorienting processes. Functional and effective connectivity analyses further showed that consonances modulated a specific inhibitory interaction from associative memory to mental state attribution substrates. Following evidence suggesting that individuals with autism may process social affective cues differently, we assessed the relationship between participants' task performance and self-reported autistic traits in clinically typical adults. Higher scores on the social cognition scales of the AQ were associated with deficits in recognising positive valence in consonant sound cues. These findings are discussed with respect to Bayesian perspectives on autistic perception, which highlight a functional failure to optimize precision in relation to prior beliefs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Complete abolition of reading and writing ability with a third ventricle colloid cyst: implications for surgical intervention and proposed neural substrates of visual recognition and visual imaging ability.

    Science.gov (United States)

    Barker, Lynne Ann; Morton, Nicholas; Romanowski, Charles A J; Gosden, Kevin

    2013-10-24

    We report a rare case of a patient unable to read (alexic) and write (agraphic) after a mild head injury. He had preserved speech and comprehension, could spell aloud, identify words spelt aloud and copy letter features. He was unable to visualise letters but showed no problems with digits. Neuropsychological testing revealed general visual memory, processing speed and imaging deficits. Imaging data revealed an 8 mm colloid cyst of the third ventricle that splayed the fornix. Little is known about functions mediated by fornical connectivity, but this region is thought to contribute to memory recall. Other regions thought to mediate letter recognition and letter imagery, visual word form area and visual pathways were intact. We remediated reading and writing by multimodal letter retraining. The study raises issues about the neural substrates of reading, role of fornical tracts to selective memory in the absence of other pathology, and effective remediation strategies for selective functional deficits.

  6. Goal-independent mechanisms for free response generation: creative and pseudo-random performance share neural substrates.

    Science.gov (United States)

    de Manzano, Örjan; Ullén, Fredrik

    2012-01-02

    To what extent free response generation in different tasks uses common and task-specific neurocognitive processes has remained unclear. Here, we investigated overlap and differences in neural activity during musical improvisation and pseudo-random response generation. Brain activity was measured using fMRI in a group of professional classical pianists, who performed musical improvisation of melodies, pseudo-random key-presses and a baseline condition (sight-reading), on either two, six or twelve keys on a piano keyboard. The results revealed an extensive overlap in neural activity between the two generative conditions. Active regions included the dorsolateral and dorsomedial prefrontal cortices, inferior frontal gyrus, anterior cingulate cortex and pre-SMA. No regions showed higher activity in improvisation than in pseudo-random generation. These findings suggest that the activated regions fulfill generic functions that are utilized in different types of free generation tasks, independent of overall goal. In contrast, pseudo-random generation was accompanied by higher activity than improvisation in several regions. This presumably reflects the participants' musical expertise as well as the pseudo-random generation task's high load on attention, working memory, and executive control. The results highlight the significance of using naturalistic tasks to study human behavior and cognition. No brain activity was related to the size of the response set. We discuss that this may reflect that the musicians were able to use specific strategies for improvisation, by which there was no simple relationship between response set size and neural activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. The Language, Tone and Prosody of Emotions: Neural Substrates and Dynamics of Spoken-Word Emotion Perception.

    Science.gov (United States)

    Liebenthal, Einat; Silbersweig, David A; Stern, Emily

    2016-01-01

    Rapid assessment of emotions is important for detecting and prioritizing salient input. Emotions are conveyed in spoken words via verbal and non-verbal channels that are mutually informative and unveil in parallel over time, but the neural dynamics and interactions of these processes are not well understood. In this paper, we review the literature on emotion perception in faces, written words, and voices, as a basis for understanding the functional organization of emotion perception in spoken words. The characteristics of visual and auditory routes to the amygdala-a subcortical center for emotion perception-are compared across these stimulus classes in terms of neural dynamics, hemispheric lateralization, and functionality. Converging results from neuroimaging, electrophysiological, and lesion studies suggest the existence of an afferent route to the amygdala and primary visual cortex for fast and subliminal processing of coarse emotional face cues. We suggest that a fast route to the amygdala may also function for brief non-verbal vocalizations (e.g., laugh, cry), in which emotional category is conveyed effectively by voice tone and intensity. However, emotional prosody which evolves on longer time scales and is conveyed by fine-grained spectral cues appears to be processed via a slower, indirect cortical route. For verbal emotional content, the bulk of current evidence, indicating predominant left lateralization of the amygdala response and timing of emotional effects attributable to speeded lexical access, is more consistent with an indirect cortical route to the amygdala. Top-down linguistic modulation may play an important role for prioritized perception of emotions in words. Understanding the neural dynamics and interactions of emotion and language perception is important for selecting potent stimuli and devising effective training and/or treatment approaches for the alleviation of emotional dysfunction across a range of neuropsychiatric states.

  8. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  9. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  10. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    Science.gov (United States)

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  12. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Human neural stem cell-derived cultures in three-dimensional substrates form spontaneously functional neuronal networks.

    Science.gov (United States)

    Smith, Imogen; Silveirinha, Vasco; Stein, Jason L; de la Torre-Ubieta, Luis; Farrimond, Jonathan A; Williamson, Elizabeth M; Whalley, Benjamin J

    2017-04-01

    Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion.

    Science.gov (United States)

    Chib, Vikram S; De Martino, Benedetto; Shimojo, Shinsuke; O'Doherty, John P

    2012-05-10

    Employers often make payment contingent on performance in order to motivate workers. We used fMRI with a novel incentivized skill task to examine the neural processes underlying behavioral responses to performance-based pay. We found that individuals' performance increased with increasing incentives; however, very high incentive levels led to the paradoxical consequence of worse performance. Between initial incentive presentation and task execution, striatal activity rapidly switched between activation and deactivation in response to increasing incentives. Critically, decrements in performance and striatal deactivations were directly predicted by an independent measure of behavioral loss aversion. These results suggest that incentives associated with successful task performance are initially encoded as a potential gain; however, when actually performing a task, individuals encode the potential loss that would arise from failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi

    2016-06-01

    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  16. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    Science.gov (United States)

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  17. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    International Nuclear Information System (INIS)

    Liu Xuezhang; Wei Qiuping; Yu Zhiming; Yang Taiming; Zhai Hao

    2013-01-01

    Highlights: ► Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. ► The nucleation density was increased to 10 11 cm −2 . ► Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. ► Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp 3 -bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10 11 cm −2 , and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  18. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuezhang [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Wei Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yu Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 (China); Yang Taiming; Zhai Hao [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Adherent polycrystalline diamond films were grown on copper substrate by carbon transport. Black-Right-Pointing-Pointer The nucleation density was increased to 10{sup 11} cm{sup -2}. Black-Right-Pointing-Pointer Diamond films were a composite structure of nano-crystalline diamond layer and micro-crystalline diamond layer. Black-Right-Pointing-Pointer Diamond nucleation was based by carbon dissolving from UDDs to Pt interlayer and formation of sp{sup 3}-bonded diamond clusters at the Pt surface. - Abstract: Diamond film deposited on Cu suffered from poor adhesion mainly due to the large mismatch of thermal expansion coefficients and the lack of affinity between carbon and Cu. Enhancing diamond nucleation by carbon transport from buried nanodiamond through a Pt ultrathin interlayer, adherent diamond film was then deposited on Cu substrate without distinctly metallic interlayer. This novel nucleation mechanism increased diamond nucleation density to 10{sup 11} cm{sup -2}, and developed diamond film with a composite structure of nano-crystalline diamond (NCD) layer and micro-crystalline diamond layer. Diamond film was characterized by the scanning electron microscope (SEM) and Raman spectroscope, respectively. The composition of diamond film/Cu substrate interface was examined by electron probe microanalysis (EPMA). The adhesion of diamond film was evaluated by indentation test. Those results show that a Pt ultrathin interlayer provides stronger chemically bonded interfaces and improve film adhesion.

  19. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    Energy Technology Data Exchange (ETDEWEB)

    Allard Jr, Lawrence Frederick [ORNL

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize the binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION

  20. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  1. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  2. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  3. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics.

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-12-17

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications.

  4. Substrate-Mediated Laser Ablation under Ambient Conditions for Spatially-Resolved Tissue Proteomics

    Science.gov (United States)

    Fatou, Benoit; Wisztorski, Maxence; Focsa, Cristian; Salzet, Michel; Ziskind, Michael; Fournier, Isabelle

    2015-01-01

    Numerous applications of ambient Mass Spectrometry (MS) have been demonstrated over the past decade. They promoted the emergence of various micro-sampling techniques such as Laser Ablation/Droplet Capture (LADC). LADC consists in the ablation of analytes from a surface and their subsequent capture in a solvent droplet which can then be analyzed by MS. LADC is thus generally performed in the UV or IR range, using a wavelength at which analytes or the matrix absorb. In this work, we explore the potential of visible range LADC (532 nm) as a micro-sampling technology for large-scale proteomics analyses. We demonstrate that biomolecule analyses using 532 nm LADC are possible, despite the low absorbance of biomolecules at this wavelength. This is due to the preponderance of an indirect substrate-mediated ablation mechanism at low laser energy which contrasts with the conventional direct ablation driven by sample absorption. Using our custom LADC system and taking advantage of this substrate-mediated ablation mechanism, we were able to perform large-scale proteomic analyses of micro-sampled tissue sections and demonstrated the possible identification of proteins with relevant biological functions. Consequently, the 532 nm LADC technique offers a new tool for biological and clinical applications. PMID:26674367

  5. Neural Substrates of Social Emotion Regulation: A fMRI Study on Imitation and Expressive Suppression to Dynamic Facial Signals

    Directory of Open Access Journals (Sweden)

    Pascal eVrticka

    2013-02-01

    Full Text Available Emotion regulation is crucial for successfully engaging in social interactions. Yet, little is known about the neural mechanisms controlling behavioral responses to emotional expressions perceived in the face of other people, which constitute a key element of interpersonal communication. Here, we investigated brain systems involved in social emotion perception and regulation, using functional magnetic resonance imaging (fMRI in 20 healthy participants who saw dynamic facial expressions of either happiness or sadness, and were asked to either imitate the expression or to suppress any expression on their own face (in addition to a gender judgment control task. fMRI results revealed higher activity in regions associated with emotion (e.g., the insula, motor function (e.g., motor cortex, and theory of mind during imitation. Activity in dorsal cingulate cortex was also increased during imitation, possibly reflecting greater action monitoring or conflict with own feeling states. In addition, premotor regions were more strongly activated during both imitation and suppression, suggesting a recruitment of motor control for both the production and inhibition of emotion expressions. Expressive suppression produced increases in dorsolateral and lateral prefrontal cortex typically related to cognitive control. These results suggest that voluntary imitation and expressive suppression modulate brain responses to emotional signals perceived from faces, by up- and down-regulating activity in distributed subcortical and cortical networks that are particularly involved in emotion, action monitoring, and cognitive control.

  6. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Directory of Open Access Journals (Sweden)

    Karin Petrini

    Full Text Available In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music, visual (musician's movements only, and auditory emotional (music only displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound than for emotionally matching music performances (combining the musician's movements with matching emotional sound as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  7. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Jin-Tao Zhang

    2016-01-01

    Full Text Available Internet gaming disorder (IGD is characterized by high levels of craving for online gaming and related cues. Since addiction-related cues can evoke increased activation in brain areas involved in motivational and reward processing and may engender gaming behaviors or trigger relapse, ameliorating cue-induced craving may be a promising target for interventions for IGD. This study compared neural activation between 40 IGD and 19 healthy control (HC subjects during an Internet-gaming cue-reactivity task and found that IGD subjects showed stronger activation in multiple brain areas, including the dorsal striatum, brainstem, substantia nigra, and anterior cingulate cortex, but lower activation in the posterior insula. Furthermore, twenty-three IGD subjects (CBI+ group participated in a craving behavioral intervention (CBI group therapy, whereas the remaining 17 IGD subjects (CBI− group did not receive any intervention, and all IGD subjects were scanned during similar time intervals. The CBI+ group showed decreased IGD severity and cue-induced craving, enhanced activation in the anterior insula and decreased insular connectivity with the lingual gyrus and precuneus after receiving CBI. These findings suggest that CBI is effective in reducing craving and severity in IGD, and it may exert its effects by altering insula activation and its connectivity with regions involved in visual processing and attention bias.

  8. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder.

    Science.gov (United States)

    Zhang, Jin-Tao; Yao, Yuan-Wei; Potenza, Marc N; Xia, Cui-Cui; Lan, Jing; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Ma, Shan-Shan; Fang, Xiao-Yi

    2016-01-01

    Internet gaming disorder (IGD) is characterized by high levels of craving for online gaming and related cues. Since addiction-related cues can evoke increased activation in brain areas involved in motivational and reward processing and may engender gaming behaviors or trigger relapse, ameliorating cue-induced craving may be a promising target for interventions for IGD. This study compared neural activation between 40 IGD and 19 healthy control (HC) subjects during an Internet-gaming cue-reactivity task and found that IGD subjects showed stronger activation in multiple brain areas, including the dorsal striatum, brainstem, substantia nigra, and anterior cingulate cortex, but lower activation in the posterior insula. Furthermore, twenty-three IGD subjects (CBI + group) participated in a craving behavioral intervention (CBI) group therapy, whereas the remaining 17 IGD subjects (CBI - group) did not receive any intervention, and all IGD subjects were scanned during similar time intervals. The CBI + group showed decreased IGD severity and cue-induced craving, enhanced activation in the anterior insula and decreased insular connectivity with the lingual gyrus and precuneus after receiving CBI. These findings suggest that CBI is effective in reducing craving and severity in IGD, and it may exert its effects by altering insula activation and its connectivity with regions involved in visual processing and attention bias.

  9. The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions.

    Science.gov (United States)

    Petrini, Karin; Crabbe, Frances; Sheridan, Carol; Pollick, Frank E

    2011-04-29

    In humans, emotions from music serve important communicative roles. Despite a growing interest in the neural basis of music perception, action and emotion, the majority of previous studies in this area have focused on the auditory aspects of music performances. Here we investigate how the brain processes the emotions elicited by audiovisual music performances. We used event-related functional magnetic resonance imaging, and in Experiment 1 we defined the areas responding to audiovisual (musician's movements with music), visual (musician's movements only), and auditory emotional (music only) displays. Subsequently a region of interest analysis was performed to examine if any of the areas detected in Experiment 1 showed greater activation for emotionally mismatching performances (combining the musician's movements with mismatching emotional sound) than for emotionally matching music performances (combining the musician's movements with matching emotional sound) as presented in Experiment 2 to the same participants. The insula and the left thalamus were found to respond consistently to visual, auditory and audiovisual emotional information and to have increased activation for emotionally mismatching displays in comparison with emotionally matching displays. In contrast, the right thalamus was found to respond to audiovisual emotional displays and to have similar activation for emotionally matching and mismatching displays. These results suggest that the insula and left thalamus have an active role in detecting emotional correspondence between auditory and visual information during music performances, whereas the right thalamus has a different role.

  10. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  12. Quantum Dots obtained by LPE from under-saturated In-As liquid phases on GaAs substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz F E; Mishurnyi V; Gorbatchev A; De Anda F [Universidad Autonoma de San Luis Potosi, Instituto de Investigacion en Comunicacion Optica, Av. Karacorum 1470, Col. Lomas 4a Sec., CP 78210San Luis PotosI (Mexico); Prutskij T, E-mail: fcoe_ov@prodigy.net.mx, E-mail: andre@cactus.iico.uaslp.mx [BUAP, Instituto de Ciencias, Apartado Postal 207, 72000, Puebla (Mexico)

    2011-01-01

    In this work we inform about quantum dots (QD) obtained by Liquid Phase Epitaxy (LPE) on GaAs substrates from under-saturated In-As liquid phases. In our processes, we have prepared saturated In-rich liquid phases by dissolving an InAs wafer at one of the temperatures interval from 450 to 414 C for 60 minutes. The contact between In-As liquid phase and the GaAs substrate was always done at a constant temperature of 444 C for 5 seconds. Thus, the growth temperature for most of the samples was higher than the liquidus temperature. We think that the growth driving force is related to a transient process that occurs when the system is trying to reach equilibrium. Under the atom force microscope (AFM) we have observed nano-islands on the surfaces of the samples obtained from under-saturated liquid phases prepared at 438, 432 and 426 C. The 25 K photoluminescence spectrum shows a peak at a 1.33 eV, in addition to the GaAs related line.

  13. Anaerobic digestion of spent mushroom substrate under thermophilic conditions: performance and microbial community analysis.

    Science.gov (United States)

    Xiao, Zheng; Lin, Manhong; Fan, Jinlin; Chen, Yixuan; Zhao, Chao; Liu, Bin

    2018-01-01

    Spent mushroom substrate (SMS) is the residue of edible mushroom production occurring in huge amounts. The SMS residue can be digested for biogas production in the mesophilic anaerobic digestion. In the present study, performance of batch thermophilic anaerobic digestion (TAD) of SMS was investigated as well as the interconnected microbial population structure changes. The analyzed batch TAD process lasted for 12 days with the cumulative methane yields of 177.69 mL/g volatile solid (VS). Hydrolytic activities of soluble sugar, crude protein, and crude fat in SMS were conducted mainly in the initial phase, accompanied by the excessive accumulation of volatile fatty acids and low methane yield. Biogas production increased dramatically from days 4 to 6. The degradation rates of cellulose and hemicellulose were 47.53 and 55.08%, respectively. The high-throughput sequencing of 16S rRNA gene amplicons revealed that Proteobacteria (56.7%-62.8%) was the dominant phylum in different fermentative stages, which was highly specific compared with other anaerobic processes of lignocellulosic materials reported in the literature. Crenarchaeota was abundant in the archaea. The most dominant genera of archaea were retrieved as Methanothermobacter and Methanobacterium, but the latter decreased sharply with time. This study shows that TAD is a feasible method to handle the waste SMS.

  14. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Inogamov, N. A.; Zhakhovskii, V. V.; Khokhlov, V. A.

    2015-01-01

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d f . An important gauge is metal heating depth d T at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d f < d T (thin film) and d f ≫ d T (bulk target). Radius R L of the spot of heating by an optical laser is the next (after d f ) important geometrical parameter. The morphology of film bulging in cases where d f < d T on the substrate (blistering) changes upon a change in radius R L in the range from diffraction limit R L ∼ λ to high values of R L ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d f < d T , R L ∼ λ, and F abs > F m , gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F abs and F m are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed

  15. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  16. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  17. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  18. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  19. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies.

    Science.gov (United States)

    Müller, E J; van Albada, S J; Kim, J W; Robinson, P A

    2017-09-07

    The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with

  20. Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert

    Science.gov (United States)

    Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.

    2016-12-01

    Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N

  1. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  2. Cellular, Molecular, and Genetic Substrates Underlying the Impact of Nicotine on Learning

    Science.gov (United States)

    Gould, Thomas J.; Leach, Prescott T.

    2013-01-01

    Addiction is a chronic disorder marked by long-lasting maladaptive changes in behavior and in reward system function. However, the factors that contribute to the behavioral and biological changes that occur with addiction are complex and go beyond reward. Addiction involves changes in cognitive control and the development of disruptive drug-stimuli associations that can drive behavior. A reason for the strong influence drugs of abuse can exert on cognition may be the striking overlap between the neurobiological substrates of addiction and of learning and memory, especially areas involved in declarative memory. Declarative memories are critically involved in the formation of autobiographical memories, and the ability of drugs of abuse to alter these memories could be particularly detrimental. A key structure in this memory system is the hippocampus, which is critically involved in binding multimodal stimuli together to form complex long-term memories. While all drugs of abuse can alter hippocampal function, this review focuses on nicotine. Addiction to tobacco products is insidious, with the majority of smokers wanting to quit; yet the majority of those that attempt to quit fail. Nicotine addiction is associated with the presence of drug-context and drug-cue associations that trigger drug seeking behavior and altered cognition during periods of abstinence, which contributes to relapse. This suggests that understanding the effects of nicotine on learning and memory will advance understanding and potentially facilitate treating nicotine addiction. The following sections examine: 1) how the effects of nicotine on hippocampus-dependent learning change as nicotine administration transitions from acute to chronic and then to withdrawal from chronic treatment and the potential impact of these changes on addiction, 2) how nicotine usurps the cellular mechanisms of synaptic plasticity, 3) the physiological changes in the hippocampus that may contribute to nicotine withdrawal

  3. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Inogamov, N. A., E-mail: nailinogamov@googlemail.com [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation); Zhakhovskii, V. V. [Dukhov All-Russia Research Institute of Automatics (Russian Federation); Khokhlov, V. A. [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2015-01-15

    It is well known that during ablation by an ultrashort laser pulse, the main contribution to ablation of the substance is determined not by evaporation, but by the thermomechanical spallation of the substance. For identical metals and pulse parameters, the type of spallation is determined by film thickness d{sub f}. An important gauge is metal heating depth d{sub T} at the two-temperature stage, at which electron temperature is higher than ion temperature. We compare cases with d{sub f} < d{sub T} (thin film) and d{sub f} ≫ d{sub T} (bulk target). Radius R{sub L} of the spot of heating by an optical laser is the next (after d{sub f}) important geometrical parameter. The morphology of film bulging in cases where d{sub f} < d{sub T} on the substrate (blistering) changes upon a change in radius R{sub L} in the range from diffraction limit R{sub L} ∼ λ to high values of R{sub L} ≫ λ, where λ ∼ 1 μm is the wavelength of optical laser radiation. When d{sub f} < d{sub T}, R{sub L} ∼ λ, and F{sub abs} > F{sub m}, gold film deposited on the glass target acquires a cupola-shaped blister with a miniature frozen nanojet in the form of a tip on the circular top of the cupola (F{sub abs} and F{sub m} are the absorbed energy and the melting threshold of the film per unit surface area of the film). A new physical mechanism leading to the formation of the nanojet is proposed.

  4. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate

    International Nuclear Information System (INIS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-01-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS TM scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented

  5. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  6. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum.

    Science.gov (United States)

    Seifert, Marietta; Rane, Gayatri K; Kirbus, Benjamin; Menzel, Siegfried B; Gemming, Thomas

    2015-12-19

    Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  7. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    Science.gov (United States)

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Neural mechanisms underlying migrating motor complex formation in mouse isolated colon

    Science.gov (United States)

    Brierley, Stuart M; Nichols, Kim; Grasby, Dallas J; Waterman, Sally A

    2001-01-01

    Little is known about the intrinsic enteric reflex pathways associated with migrating motor complex (MMC) formation. Acetylcholine (ACh) mediates the rapid component of the MMC, however a non-cholinergic component also exists. The present study investigated the possible role of endogenous tachykinins (TKs) in the formation of colonic MMCs and the relative roles of excitatory and inhibitory pathways.MMCs were recorded from the circular muscle at four sites (proximal, proximal-mid, mid-distal and distal) along the mouse colon using force transducers.The tachykinin (NK1 and NK2) receptor antagonists SR-140 333 (250 nM) and SR-48 968 (250 nM) reduced the amplitude of MMCs at all recording sites, preferentially abolishing the long duration contraction. Residual MMCs were abolished by the subsequent addition of atropine (1 μM).The neuronal nitric oxide synthase inhibitor, Nωnitro-L-arginine (L-NOARG, 100 μM), increased MMC amplitude in the distal region, whilst reducing the amplitude in the proximal region. In preparations where MMCs did not migrate to the distal colon, addition of L-NOARG resulted in the formation of MMCs. Subsequent addition of apamin (250 nM) or suramin (100 μM) further increased MMC amplitude in the distal region, whilst suramin increased MMC amplitude in the mid-distal region. Apamin but not suramin reduced MMC amplitude in the proximal region. Subsequent addition of SR-140 333 and SR-48 968 reduced MMC amplitude at all sites. Residual MMCs were abolished by atropine (1 μM).In conclusion, TKs, ACh, nitric oxide (NO) and ATP are involved in the neural mechanisms underlying the formation of MMCs in the mouse colon. Tachykinins mediate the long duration component of the MMC via NK1 and NK2 receptors. Inhibitory pathways may be involved in determining whether MMCs are formed. PMID:11159701

  9. Neural correlates of erotic stimulation under different levels of female sexual hormones.

    Directory of Open Access Journals (Sweden)

    Birgit Abler

    Full Text Available Previous studies have demonstrated variable influences of sexual hormonal states on female brain activation and the necessity to control for these in neuroimaging studies. However, systematic investigations of these influences, particularly those of hormonal contraceptives as compared to the physiological menstrual cycle are scarce. In the present study, we investigated the hormonal modulation of neural correlates of erotic processing in a group of females under hormonal contraceptives (C group; N = 12, and a different group of females (nC group; N = 12 not taking contraceptives during their mid-follicular and mid-luteal phases of the cycle. We used functional magnetic resonance imaging to measure hemodynamic responses as an estimate of brain activation during three different experimental conditions of visual erotic stimulation: dynamic videos, static erotic pictures, and expectation of erotic pictures. Plasma estrogen and progesterone levels were assessed in all subjects. No strong hormonally modulating effect was detected upon more direct and explicit stimulation (viewing of videos or pictures with significant activations in cortical and subcortical brain regions previously linked to erotic stimulation consistent across hormonal levels and stimulation type. Upon less direct and less explicit stimulation (expectation, activation patterns varied between the different hormonal conditions with various, predominantly frontal brain regions showing significant within- or between-group differences. Activation in the precentral gyrus during the follicular phase in the nC group was found elevated compared to the C group and positively correlated with estrogen levels. From the results we conclude that effects of hormonal influences on brain activation during erotic stimulation are weak if stimulation is direct and explicit but that female sexual hormones may modulate more subtle aspects of sexual arousal and behaviour as involved in sexual

  10. Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder.

    Science.gov (United States)

    Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen

    2017-05-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication subserves social language functions, we hypothesized that the tract integrity of the model for social communication may be reduced in ASD, and the reduction may be related to social communication deficits. Sixty-two right-handed boys with ASD and 55 typically developing (TD) boys received clinical evaluations, intelligence tests, the Social Communication Questionnaire (SCQ), and MRI scans. Generalized fractional anisotropy (GFA) was measured by diffusion spectrum imaging to indicate the microstructural integrity of the tracts for each level of the social communication model. Group difference in the tract integrity and its relationship with the SCQ subscales of social communication and social interaction were investigated. We found that the GFA values of the superior longitudinal fasciculus III (SLF III, level 1) and the frontal aslant tracts (FAT, level 2) were decreased in ASD compared to TD. Moreover, the GFA values of the SLF III and the FAT were associated with the social interaction subscale in ASD. The tract integrity of the model for social communication is reduced in ASD, and the reduction is associated with impaired social interaction. Our results support that reduced tract integrity of the model for social communication might be a neural substrate of social communication deficits in ASD. © 2016 Association for Child and Adolescent Mental Health.

  11. The neural basis of loss aversion in decision-making under risk.

    Science.gov (United States)

    Tom, Sabrina M; Fox, Craig R; Trepel, Christopher; Poldrack, Russell A

    2007-01-26

    People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.

  12. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2014-12-01

    Full Text Available An artificial neural network (ANN constitutive model is developed for high strength armor steel tempered at 500 °C, 600 °C and 650 °C based on high strain rate data generated from split Hopkinson pressure bar (SHPB experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500–650 °C, strains (0.05–0.2 and strain rates (1000–5500/s are employed to formulate J–C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R and average absolute relative error (AARE. R and AARE for the J–C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  13. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  14. Optogenetic dissection of neural circuit underlying locomotory decision-making in Caenorhabditis Elegans

    Science.gov (United States)

    Kocabas, Askin; Guo, Zengcai; Ramanathan, Sharad

    2011-03-01

    Despite the knowledge of the physical connectivity of the entire nervous system of C.elegans, we know little about how neuronal dynamics results in decision-making. Detailed understanding of functional and dynamic relations of the neural circuitry requires spatiotemporal control of the neuronal activity. Recent discoveries of light gated ion channels have allowed temporal optical control of neural activity. However, excitation of a specific neuron from among many expressing the channel has been a challenge. By combining optogenetic tools, micro mirror array technology and fast real time image processing, we have developed a technique to activate specific single or multiple neurons in an intact crawling animal while tracking its behavior. Using this setup we traced the neural pathway controlling the gradual turning of the animal during the locomotion. We found that the activity of a specific neuronal circuit that receives inputs from sensory neurons is coordinated with head movement. This coordination allows the animal to turn left or right based on the variation of sensory stimulus during head movement. By directly modulating the activity of the neural circuit, we can force the animal to turn in a specific direction independent of sensory stimuli. Human Frontier Science Program.

  15. Low dose of caffeine enhances the efficacy of antidepressants in major depressive disorder and the underlying neural substrates.

    Science.gov (United States)

    Liu, Qing-Shan; Deng, Ran; Fan, Yuyan; Li, Keqin; Meng, Fangang; Li, Xueli; Liu, Rui

    2017-08-01

    Caffeine is one of the most frequently used psychoactive substances ingested mainly via beverage or food products. Major depressive disorder is a serious and devastating psychiatric disorder. Emerging evidence indicates that caffeine enhances the antidepressant-like activity of common antidepressant drugs in rodents. However, whether joint administration of low dose of caffeine enhances the antidepressant actions in depressed patients remains unclear. A total of 95 male inpatients were assigned to three groups and were asked to take either caffeine (60, 120 mg) or placebo (soymilk powder) daily for 4 wk on the basis of their current antidepressant medications. Results showed that chronic supplementation with low dose of caffeine (60 mg) produced rapid antidepressant action by reduction of depressive scores. Furthermore, low dose of caffeine improved cognitive performance in depressed patients. However, caffeine did not affect sleep as measured by overnight polysomnography. Moreover, chronic caffeine consumption elicited inhibition of hypothalamic-pituitary-adrenal axis activation by normalization of salivary cortisol induced by Trier social stress test. These findings indicated the potential benefits of further implications of supplementary administration of caffeine to reverse the development of depression and enhance the outcome of antidepressants treatment in major depressive disorder. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

    Directory of Open Access Journals (Sweden)

    Ricardo eGómez-Nieto

    2014-07-01

    Full Text Available The acoustic startle reflex (ASR is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs, neurons in the caudal pontine reticular nucleus (PnC, and motoneurons in the medulla and spinal cord. It is well established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioural techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1. Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviourally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviours and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the

  17. Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex

    Science.gov (United States)

    Andermann, Mark L.; Keck, Tara; Xu, Ning-Long; Ziv, Yaniv

    2013-01-01

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents. PMID:24198355

  18. Ex situ protection of the European mudminnow (Umbra krameri Walbaum, 1792: Spawning substrate preference for larvae rearing under controlled conditions

    Directory of Open Access Journals (Sweden)

    Kucska Balázs

    2016-01-01

    Full Text Available Captive breeding programs of endangered fish species, such as the European mudminnow Umbra krameri, are essential for population restoration. To improve captive spawning and larvae rearing under controlled conditions, two experiments were carried out. In the first, the spawning substrate preference was tested in triplicate, where five different types of artificial surface were provided for mudminnow pairs:(isand, (iiartificial plants, (iiigravel, (ivsand + artificial plants and(vgravel + artificial plants. All fish preferred the gravel + artificial plant combination, which indicates that this type of surface could be the most appropriate for spawning in captivity. In the second trial, three feeding protocols were tested in triplicate under controlled conditions. In the first treatment fish were fed exclusively with Artemia nauplii; in the second treatment fish were fed with Artemiafor the first ten days then Artemia was gradually replaced with dry feed; for the third group the transition period started after 5 days of Artemia feeding. Although the survival rate of larvae could be maintained at a high level in some of the feeding protocols, a strong decrease in the growth rate was obvious in all diets containing dry food, which means that live food is essential for the first three weeks of mudminnow larvae rearing.

  19. Statistical assessment of dumpsite soil suitability to enhance methane bio-oxidation under interactive influence of substrates and temperature.

    Science.gov (United States)

    Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha

    2017-05-01

    Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate.

    Science.gov (United States)

    Canli, Ozden; Kurbanoglu, Esabi Basaran

    2012-11-01

    This study evaluates the application of low magnetic field (LMF) on inulinase enzyme production by Geotrichum candidum under solid state fermentation (SSF) using leek as potential carbon source. First, the fermentation conditions were optimized using normal magnetic field grown microorganism. Among eight G. candidum isolates, the most effective strain called G. candidum OC-7 was selected to use in further experiments. In the second part of the study, SSF was carried out under different LMFs (4 and 7 mT). The results showed that inulinase activity was strongly affected by LMF application. The highest enzyme activity was obtained as 535.2 U/g of dry substrate (gds) by 7 mT magnetic field grown G. candidum OC-7. On the contrary, the control had only 412.1 U/gds. Consequently, the use of leek presents a great potential as an alternative carbon source for inulinase production and magnetic field treatment could effectively be used in order to enhance the enzyme production.

  1. Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    Science.gov (United States)

    Li, Zhe; Ho Chiu, Kar; Shahid Ashraf, Raja; Fearn, Sarah; Dattani, Rajeev; Cheng Wong, Him; Tan, Ching-Hong; Wu, Jiaying; Cabral, João T.; Durrant, James R.

    2015-10-01

    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions.

  2. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    OpenAIRE

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Mill?n-Calenti, Jos? Carlos; Del Percio, Claudio; Buj?n, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expre...

  3. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    OpenAIRE

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed tw...

  4. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  5. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    OpenAIRE

    Aronov, Dmitriy; Tank, David W.

    2014-01-01

    Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any...

  6. Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens.

    Science.gov (United States)

    Myers, Emily B; Mesite, Laura M

    2014-10-01

    It has long been noted that listeners use top-down information from context to guide perception of speech sounds. A recent line of work employing a phenomenon termed 'perceptual learning for speech' shows that listeners use top-down information to not only resolve the identity of perceptually ambiguous speech sounds, but also to adjust perceptual boundaries in subsequent processing of speech from the same talker. Even so, the neural mechanisms that underlie this process are not well understood. Of particular interest is whether this type of adjustment comes about because of a retuning of sensitivities to phonetic category structure early in the neural processing stream or whether the boundary shift results from decision-related or attentional mechanisms further downstream. In the current study, neural activation was measured using fMRI as participants categorized speech sounds that were perceptually shifted as a result of exposure to these sounds in lexically-unambiguous contexts. Sensitivity to lexically-mediated shifts in phonetic categorization emerged in right hemisphere frontal and middle temporal regions, suggesting that the perceptual learning for speech phenomenon relies on the adjustment of perceptual criteria downstream from primary auditory cortex. By the end of the session, this same sensitivity was seen in left superior temporal areas, which suggests that a rapidly-adapting system may be accompanied by more slowly evolving shifts in regions of the brain related to phonetic processing.

  7. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children.

    Science.gov (United States)

    Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod

    2013-10-01

    Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks

  10. Neural Correlates of Choking Under Pressure: Athletes High in Sports Anxiety Monitor Errors More When Performance Is Being Evaluated.

    Science.gov (United States)

    Masaki, Hiroaki; Maruo, Yuya; Meyer, Alexandria; Hajcak, Greg

    2017-01-01

    We investigated the relationship between performance-related anxiety and the neural response to errors. Using the sport anxiety scale, we selected university athletes high in sports anxiety and low in sports anxiety. The two groups performed a spatial Stroop task while their performance was being evaluated by an experimenter and also during a control (i.e., no evaluation) condition. The error-related negativity was significantly larger during the evaluation than control condition among athletes who reported high performance-related anxiety. These results suggest that performance evaluation may make errors particularly aversive or salient for individuals who fail to perform well under pressure.

  11. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    Science.gov (United States)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  12. Robust Finite-Time Stabilization of Fractional-Order Neural Networks With Discontinuous and Continuous Activation Functions Under Uncertainty.

    Science.gov (United States)

    Ding, Zhixia; Zeng, Zhigang; Wang, Leimin

    2017-03-10

    This paper is concerned with robust finite-time stabilization for a class of fractional-order neural networks (FNNs) with two types of activation functions (i.e., discontinuous and continuous activation function) under uncertainty. It is worth noting that there exist few results about FNNs with discontinuous activation functions, which is mainly because classical solutions and theories of differential equations cannot be applied in this case. Especially, there is no relevant finite-time stabilization research for such system, and this paper makes up for the gap. The existence of global solution under the framework of Filippov for such system is guaranteed by limiting discontinuous activation functions. According to set-valued analysis and Kakutani's fixed point theorem, we obtain the existence of equilibrium point. In particular, based on differential inclusion theory and fractional Lyapunov stability theory, several new sufficient conditions are given to ensure finite-time stabilization via a novel discontinuous controller, and the upper bound of the settling time for stabilization is estimated. In addition, we analyze the finite-time stabilization of FNNs with Lipschitz-continuous activation functions under uncertainty. The results of this paper improve corresponding ones of integer-order neural networks with discontinuous and continuous activation functions. Finally, three numerical examples are given to show the effectiveness of the theoretical results.

  13. Temporal neural mechanisms underlying conscious access to different levels of facial stimulus contents.

    Science.gov (United States)

    Hsu, Shen-Mou; Yang, Yu-Fang

    2018-04-01

    An important issue facing the empirical study of consciousness concerns how the contents of incoming stimuli gain access to conscious processing. According to classic theories, facial stimuli are processed in a hierarchical manner. However, it remains unclear how the brain determines which level of stimulus content is consciously accessible when facing an incoming facial stimulus. Accordingly, with a magnetoencephalography technique, this study aims to investigate the temporal dynamics of the neural mechanism mediating which level of stimulus content is consciously accessible. Participants were instructed to view masked target faces at threshold so that, according to behavioral responses, their perceptual awareness alternated from consciously accessing facial identity in some trials to being able to consciously access facial configuration features but not facial identity in other trials. Conscious access at these two levels of facial contents were associated with a series of differential neural events. Before target presentation, different patterns of phase angle adjustment were observed between the two types of conscious access. This effect was followed by stronger phase clustering for awareness of facial identity immediately during stimulus presentation. After target onset, conscious access to facial identity, as opposed to facial configural features, was able to elicit more robust late positivity. In conclusion, we suggest that the stages of neural events, ranging from prestimulus to stimulus-related activities, may operate in combination to determine which level of stimulus contents is consciously accessed. Conscious access may thus be better construed as comprising various forms that depend on the level of stimulus contents accessed. NEW & NOTEWORTHY The present study investigates how the brain determines which level of stimulus contents is consciously accessible when facing an incoming facial stimulus. Using magnetoencephalography, we show that prestimulus

  14. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  15. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  16. Effect of abacus training on executive function development and underlying neural correlates in Chinese children.

    Science.gov (United States)

    Wang, Chunjie; Weng, Jian; Yao, Yuan; Dong, Shanshan; Liu, Yuqiu; Chen, Feiyan

    2017-10-01

    Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4 th and 6 th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6 th grade. From the 4 th to the 6 th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  18. Comparison of hydrogen and acetate as substrates for the reductive immobilization of uranium under in-situ pressure

    Science.gov (United States)

    Heuston, Daniel Jon

    Complete baseline restoration at in-situ recovery (ISR) uranium (U) mining sites has proven difficult through conventional methods. Bioremediation by means of reductive immobilization of soluble U(VI) to insoluble U(IV) is currently being investigated as a secondary restoration method. Various organic substrates have been used in many U bioremediation studies and applications. However, the oxidation of organic substrates increases total inorganic carbon concentrations (TIC) due to the respiration of heterotrophic bacteria. It is widely accepted that U forms stable complexes with carbonate that in turn lower the thermodynamic redox potential at which the U(VI)/U(IV) couple takes place. In this study, it was hypothesized that greater U reductive immobilization would be achieved with hydrogen (H2) as an electron donor compared to that with acetate (Ac) because H2 would select for autotrophic bacteria that would decrease TIC. The hypothesis was tested by supplying H 2 and Ac at the same reductive capacity to continuous-flow sediment-columns. Unlike previous studies, the columns were operated at pressures representative of the in-situ conditions at ISR mining sites. The experimental results indicated that effluent TIC and U concentrations were both significantly lower for the H2-supplied column than for the Ac-supplied column. Comparison of the experimental data to theoretical speciation indicated by a pE-versus-pH diagram revealed that the benefit of U solubility decreasing at lower TIC is only gained when the pH is held constant. However, a lower TIC and a constant pH were not realized in the H2 column due to the dynamics of the pH/alkalinity/total carbonate/CaCO 3 system. Nevertheless, based on prevailing theory, it was speculated that the superior U removal in the H2-supplied column may have been attributed to the presence of kinetically-limited Fe(OH)3 under the prevailing pE and pH conditions of the respective H2 and Ac columns. However, in the absence of sediment

  19. Violence exposure and neural systems underlying working memory for emotional stimuli in youth.

    Science.gov (United States)

    Jenness, Jessica L; Rosen, Maya L; Sambrook, Kelly A; Dennison, Meg J; Lambert, Hilary K; Sheridan, Margaret A; McLaughlin, Katie A

    2017-11-16

    Violence exposure during childhood is common and associated with poor cognitive and academic functioning. However, little is known about how violence exposure influences cognitive processes that might contribute to these disparities, such as working memory, or their neural underpinnings, particularly for cognitive processes that occur in emotionally salient contexts. We address this gap in a sample of 54 participants aged 8 to 19 years (50% female), half with exposure to interpersonal violence. Participants completed a delayed match to sample task for emotional faces while undergoing functional magnetic resonance imaging scanning. Violence-exposed youth performed worse than controls on happy and neutral, but not angry, trials. In whole-brain analysis, violence-exposed youth had reduced activation in the left middle frontal gyrus and right intraparietal sulcus during encoding and the left superior temporal sulcus and temporal-parietal junction during retrieval compared to control youth. Reduced activation in the left middle frontal gyrus during encoding and the left superior temporal sulcus during retrieval mediated the association between violence exposure and task performance. Violence exposure influences the frontoparietal network that supports working memory as well as regions involved in facial processing during working memory for emotional stimuli. Reduced neural recruitment in these regions may explain atypical patterns of cognitive processing seen among violence-exposed youth, particularly within emotional contexts.

  20. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  1. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    Science.gov (United States)

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-04

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. Copyright © 2015 the authors 0270-6474/15/352308-13$15.00/0.

  2. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.

    Science.gov (United States)

    Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

    2014-02-01

    Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Anything goes? Regulation of the neural processes underlying response inhibition in TBI patients.

    Science.gov (United States)

    Moreno-López, Laura; Manktelow, Anne E; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A

    2017-02-01

    Despite evidence for beneficial use of methylphenidate in response inhibition, no studies so far have investigated the effects of this drug in the neurobiology of inhibitory control in traumatic brain injury (TBI), even though impulsive behaviours are frequently reported in this patient group. We investigated the neural basis of response inhibition in a group of TBI patients using functional magnetic resonance imaging and a stop-signal paradigm. In a randomised double-blinded crossover study, the patients received either a single 30mg dose of methylphenidate or placebo and performed the stop-signal task. Activation in the right inferior frontal gyrus (RIFG), an area associated with response inhibition, was significantly lower in patients compared to healthy controls. Poor response inhibition in this group was associated with greater connectivity between the RIFG and a set of regions considered to be part of the default mode network (DMN), a finding that suggests the interplay between DMN and frontal executive networks maybe compromised. A single dose of methylphenidate rendered activity and connectivity profiles of the patients RIFG near normal. The results of this study indicate that the neural circuitry involved in response inhibition in TBI patients may be partially restored with methylphenidate. Given the known mechanisms of action of methylphenidate, the effect we observed may be due to increased dopamine and noradrenaline levels. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  4. Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions.

    Science.gov (United States)

    Silvers, Jennifer A; Weber, Jochen; Wager, Tor D; Ochsner, Kevin N

    2015-02-01

    One of the most effective strategies for regulating emotional responses is cognitive reappraisal. While prior work has made great strides in characterizing reappraisal's neural mechanisms and behavioral outcomes, the key issue of how regulation varies as a function of emotional intensity remains unaddressed. We compared the behavioral and neural correlates of reappraisal of high- and low-intensity emotional responses using functional magnetic resonance imaging (fMRI). We found that successful reappraisal of both high- and low-intensity emotions depends upon recruitment of dorsomedial (dmPFC) as well as left dorsolateral (dlPFC) and ventrolateral (vlPFC) prefrontal cortex. However, reappraisal of high-intensity emotions more strongly activated left dlPFC, and in addition, activated right lateral and dorsomedial PFC regions not recruited by low-intensity reappraisal. No brain regions were more strongly recruited during reappraisal of low when compared with high-intensity emotions. Taken together, these results suggest that reappraisal of high-intensity emotion requires greater cognitive resources as evidenced by quantitative and qualitative differences in prefrontal recruitment. These data have implications for understanding how and when specific PFC systems are needed to regulate different types of emotional responses. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  6. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  7. Microstructure evolution of an EB-PVD NiAl coating and its underlying single crystal superalloy substrate

    International Nuclear Information System (INIS)

    Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo; Gong, Shengkai

    2016-01-01

    A NiAl coating was deposited onto a Ni-based single crystal superalloy with (001) crystal orientation by electron beam physical vapor deposition (EB-PVD). The as-deposited NiAl coating showed a columnar microstructure with (110) preferred orientation. The microstructure evolution behavior near interface between the NiAl coating and superalloy substrate at 1100 °C was investigated. Kirkendall voids were formed in the NiAl coating, indicating the different elements diffusion coefficients in the coating and substrate. Interdiffusion zone (IDZ) with rod-like and granular topological close-packed (TCP) phases and substrate diffusion zone (SDZ) with needle-like TCP phases were formed during diffusion annealing at elevated temperature. The equi-axed β-NiAl grains were developed in the IDZ after diffusion annealing at 1100 °C for 10 h, which showed different orientations from the coating and substrate. However, after 50 h diffusion annealing, the equi-axed β-NiAl phases in the IDZ were transformed into γ′-Ni 3 Al phases which had the same orientation as the substrate. Furthermore, oriented rafting of the substrate occurred during diffusion annealing and the rafts were parallel to the coating/substrate interface. - Highlights: • The as-deposited NiAl coating by EB-PVD showed a (110) preferred orientation. • Kirkendall voids were formed in the NiAl coating near the interface. • Equi-axed β grains in the IDZ were transformed into γ′ after 50 h annealing. • The secondary γ′ phases in the IDZ showed the same orientation as substrate. • Oriented rafting of the substrate occurred during diffusion annealing.

  8. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  9. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  10. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  11. Deconvolving temperature and substrate effects on soil heterotrophic respiration under multiple global change factors in mixed grass prairie

    Science.gov (United States)

    Tucker, C.; Nie, M.; Pendall, E. G.

    2013-12-01

    in temperature sensitivity of SOM decomposition. Overall, the temperature sensitivity of the fast pool was highly sensitive to global change factors and their interactions. On the other hand, there were no differences in temperature sensitivity of the slow pool in response to the global change factors. Similarly, the base rate of the fast pool was sensitive to the global change factors, while the slow pool base rate was not. However, the overall size of the slow pool was significantly affected by the global change factors. Vegetation removal reduced the slow pool by ~19% across all warming x CO2 treatments. This effect was greatest under elevated CO2 (both warmed and control), but non-significant under ambient CO2 and temperature. Importantly, effects mediated through the vegetation were the primary factor determining whether slow pool C was gained or lost under elevated CO2 and warming. Our data-model fusion approach allowed us to deconvolve the effect of reduced substrate availability from temperature sensitivity, and to demonstrate that global change may lead to strong positive C cycling feedbacks.

  12. The influence of emotional priming on the neural substrates of memory: a prospective fMRI study using portrait art stimuli.

    Science.gov (United States)

    Baeken, Chris; De Raedt, Rudi; Van Schuerbeek, Peter; De Mey, Johan; Bossuyt, Axel; Luypaert, Robert

    2012-07-16

    Events coupled with an emotional context seem to be better retained than non-emotional events. The aim of our study was to investigate whether an emotional context could influence the neural substrates of memory associations with novel portrait art stimuli. In the current prospective fMRI study, we have investigated for one specific visual art form (modern artistic portraits with a high degree of abstraction) whether memory is influenced by priming with emotional facial pictures. In total forty healthy female volunteers in the same age range were recruited for the study. Twenty of these women participated in a prospective brain imaging memory paradigm and were asked to memorize a series of similar looking, but different portraits. After randomization, for twelve participants (Group 1), a third of the portraits was emotionally primed with approach-related pictures (smiling baby faces), a third with withdrawal-related pictures (baby faces with severe dermatological conditions), and another third with neutral images. Group 2 consisted of eight participants and they were not primed. Then, during an fMRI session 2h later, these portraits were viewed in random order intermixed with a set of new (previously unseen) ones, and the participants had to decide for each portrait whether or not they had already been seen. In a separate experiment, a different sample of twenty healthy females (Group 3) rated their mood after being exposed to the same art stimuli, without priming. The portraits did not evoke significant mood changes by themselves, supporting their initial neutral emotional character (Group 3). The correct decision on whether the portraits were Familiar of Unfamiliar led to similar neuronal activations in brain areas implicated in visual and attention processing for both groups (Groups 1 and 2). In contrast, whereas primed participants showed significant higher neuronal activities in the left midline superior frontal cortex (Brodmann area (BA) 6), unprimed

  13. Using Brain Stimulation to Disentangle Neural Correlates of Conscious Vision

    Directory of Open Access Journals (Sweden)

    Tom Alexander de Graaf

    2014-09-01

    Full Text Available Research into the neural correlates of consciousness (NCCs has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as fMRI or EEG do not always afford inference on the role these brain processes play in conscious vision. Such empirical neural correlates of consciousness could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical neural correlates of consciousness.

  14. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  15. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  17. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  18. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  20. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. What ethologically based models have taught us about the neural systems underlying fear and anxiety

    Directory of Open Access Journals (Sweden)

    N.S. Canteras

    2012-04-01

    Full Text Available Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.

  2. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    Science.gov (United States)

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  3. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  4. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neural computations underlying arbitration between model-based and model-free learning

    Science.gov (United States)

    Lee, Sang Wan; Shimojo, Shinsuke; O’Doherty, John P.

    2014-01-01

    SUMMARY There is accumulating neural evidence to support the existence of two distinct systems for guiding action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior. PMID:24507199

  6. Neural correlates of exemplar novelty processing under different spatial attention conditions.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens Max; Düzel, Emrah; Schoenfeld, Mircea Ariel

    2009-11-01

    The detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli. Never-before-seen Mandelbrot-fractals absent of semantic content were employed as stimulus material. Consistent with current theories, novelty activated a widespread network of brain areas including the hippocampus. No activity, however, could be observed in reward-related areas with the novel stimuli absent of a semantic meaning employed here. In the perceptual part of the novelty-processing network a region in the lingual gyrus was found to specifically process novel events when they occurred outside the focus of spatial attention. These findings indicate that the initial detection of unexpected novel events generally occurs in specialized perceptual areas within the ventral visual stream, whereas activation of reward-related areas appears to be restricted to events that do possess a semantic content indicative of the biological relevance of the stimulus.

  7. Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging.

    Science.gov (United States)

    Zheng, Li; Gao, Zhiyao; Xiao, Xiaoqian; Ye, Zhifang; Chen, Chuansheng; Xue, Gui

    2017-06-07

    Emerging studies have emphasized the importance of the fidelity of cortical representation in forming enduring episodic memory. No study, however, has examined whether there are age-related reductions in representation fidelity that can explain memory declines in normal aging. Using functional MRI and multivariate pattern analysis, we found that older adults showed reduced representation fidelity in the visual cortex, which accounted for their decreased memory performance even after controlling for the contribution of reduced activation level. This reduced fidelity was specifically due to older adults' poorer item-specific representation, not due to their lower activation level and variance, greater variability in neuro-vascular coupling, or decreased selectivity of categorical representation (i.e., dedifferentiation). Older adults also showed an enhanced subsequent memory effect in the prefrontal cortex based on activation level, and their prefrontal activation was associated with greater fidelity of representation in the visual cortex and better memory performance. The fidelity of cortical representation thus may serve as a promising neural index for better mechanistic understanding of the memory declines and its compensation in normal aging. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Culture in the mind's mirror: how anthropology and neuroscience can inform a model of the neural substrate for cultural imitative learning.

    Science.gov (United States)

    Losin, Elizabeth A Reynolds; Dapretto, Mirella; Iacoboni, Marco

    2009-01-01

    Cultural neuroscience, the study of how cultural experience shapes the brain, is an emerging subdiscipline in the neurosciences. Yet, a foundational question to the study of culture and the brain remains neglected by neuroscientific inquiry: "How does cultural information get into the brain in the first place?" Fortunately, the tools needed to explore the neural architecture of cultural learning - anthropological theories and cognitive neuroscience methodologies - already exist; they are merely separated by disciplinary boundaries. Here we review anthropological theories of cultural learning derived from fieldwork and modeling; since cultural learning theory suggests that sophisticated imitation abilities are at the core of human cultural learning, we focus our review on cultural imitative learning. Accordingly we proceed to discuss the neural underpinnings of imitation and other mechanisms important for cultural learning: learning biases, mental state attribution, and reinforcement learning. Using cultural neuroscience theory and cognitive neuroscience research as our guides, we then propose a preliminary model of the neural architecture of cultural learning. Finally, we discuss future studies needed to test this model and fully explore and explain the neural underpinnings of cultural imitative learning.

  9. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three...... soil textures with different soil water status and soil densities. The objectives of the study were to test whether soil textural information, soil water status, and soil density might be used by ANN to simulate RLD at harvest. In the study 63 data pairs were divided into data sets of training (80......) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg...

  10. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Science.gov (United States)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  11. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Science.gov (United States)

    Sihvonen, Aleksi J.; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  12. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  13. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients ( N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  14. Experimental and Simulated Investigations of Thin Polymer Substrates with an Indium Tin Oxide Coating under Fatigue Bending Loadings

    Directory of Open Access Journals (Sweden)

    Jiong-Shiun Hsu

    2016-08-01

    Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.

  15. Development of a novel non-contact inspection technique to detect micro cracks under the surface of a glass substrate by thermal stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro

    2017-05-01

    Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.

  16. Exploring the Neural Basis of Cognitive Reserve in Aging

    Science.gov (United States)

    Steffener, Jason; Stern, Yaakov

    2011-01-01

    The concept of reserve arose from the mismatch between the extent of brain changes or pathology and the clinical manifestations of these brain changes. The cognitive reserve hypothesis posits that individual differences in the flexibility and adaptability of brain networks underlying cognitive function may allow some people to cope better with brain changes than others. Although there is ample epidemiologic evidence for cognitive reserve, the neural substrate of reserve is still a topic of ongoing research. Here we review some representative studies from our group that exemplify possibilities for the neural substrate of reserve including neural reserve, neural compensation, and generalized cognitive reserve networks. We also present a schematic overview of our ongoing research in this area. PMID:21982946

  17. Adaptation of continuous biogas reactors operating under wet fermentation conditions to dry conditions with corn stover as substrate.

    Science.gov (United States)

    Kakuk, Balázs; Kovács, Kornél L; Szuhaj, Márk; Rákhely, Gábor; Bagi, Zoltán

    2017-08-01

    Corn stover (CS) is the agricultural by-product of maize cultivation. Due to its high abundance and high energy content it is a promising substrate for the bioenergy sector. However, it is currently neglected in industrial scale biogas plants, because of its slow decomposition and hydrophobic character. To assess the maximum biomethane potential of CS, long-term batch fermentations were carried out with various substrate concentrations and particle sizes for 72 days. In separate experiments we adapted the biogas producing microbial community in wet fermentation arrangement first to the lignocellulosic substrate, in Continuous Stirred Tank Reactor (CSTR), then subsequently, by continuously elevating the feed-in concentration, to dry conditions in solid state fermenters (SS-AD). In the batch tests, the produce 90% of the total biomethane yield than the amount of substrate added to the fermentation lowered the specific methane yield. In the CSTR experiment, the daily substrate loading was gradually increased from 1 to 2 g vs /L/day until the system produced signs of overloading. Then the biomass was transferred to SS-AD reactors and the adaptation process was studied. Although the specific methane yields were lower in the SS-AD arrangement (177 mL CH 4 /g vs in CSTR vs. 105 mL in SS-AD), the benefits of process operational parameters, i.e. lower energy consumption, smaller reactor volume, digestate amount generated and simpler configuration, may compensate the somewhat lower yield. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. EFFECT OF DIFFERENT SUBSTRATES ON THE GROWTH AND YIELD OF TOMATO (Lycopersicum esculentum Mill UNDER GREENHOUSE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Luis Daniel Ortega-Martínez

    2010-09-01

    Full Text Available The tomato (Lycopersicum esculentum Mill is the world's second most important vegetable. In Mexico, the crop gains economic and social relevance by the generation of foreign exchange and jobs, the production systems of this vegetable have been diversified in order to increase performance, incorporating innovative technologies such as plastic covers, drop irrigation and hydroponics. One of the main factors determining the success of the crop is the substrate, being the medium in which roots were developed which have great influence on the growth and development. In thisstudy, we evaluated during the crop season 2008-2009, the effect of substrate: pine sawdust, compost of sheep manure, agricultural land and red volcanic rock, on growth and yield of tomato. The experimental design used was randomized complete block with four repetitions and ten treatments were evaluated results from a combination of substrates in a volume of 1:1, each experimental unit consisted of four plants, the studied variables were subjected to an analysis of variance (ANOVA using the statistical package Statistical Package for the Social Sciences (SPSS. The genotype used was Sun 7705. Significant differences between substrates, composting with sawdust mixing affected to a greater response for the variables height 4.61 m, 2.1 cm thick of stem, the fruits of greater weight 107.8 g, yield per plant and 4 kg and 25 kg/m-2. However, the number of flowers and clusters was higher in the sawdust substrate, so the composting with sawdust mixture may be a viable option for greenhouse tomato production.

  19. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm

    Directory of Open Access Journals (Sweden)

    Viet Tra

    2017-12-01

    Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.

  20. What's the gist? The influence of schemas on the neural correlates underlying true and false memories.

    Science.gov (United States)

    Webb, Christina E; Turney, Indira C; Dennis, Nancy A

    2016-12-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an

  1. Neural Specialization for Speech in the First Months of Life

    Science.gov (United States)

    Shultz, Sarah; Vouloumanos, Athena; Bennett, Randi H.; Pelphrey, Kevin

    2014-01-01

    How does the brain's response to speech change over the first months of life? Although behavioral findings indicate that neonates' listening biases are sharpened over the first months of life, with a species-specific preference for speech emerging by 3 months, the neural substrates underlying this developmental change are unknown. We…

  2. Neural Mechanisms Underlying Social Intelligence and Their Relationship with the Performance of Sales Managers

    NARCIS (Netherlands)

    R.C. Dietvorst (Roeland)

    2010-01-01

    textabstractIdentifying the drivers of salespeople’s performance, strategies and moral behavior have been under the scrutiny of marketing scholars for many years. The functioning of the drivers of salespeople’s behaviors rests on processes going on in the minds of salespeople. However, research to

  3. Functional overlap of top-down emotion regulation and generation: an fMRI study identifying common neural substrates between cognitive reappraisal and cognitively generated emotions.

    Science.gov (United States)

    Otto, Benjamin; Misra, Supriya; Prasad, Aditya; McRae, Kateri

    2014-09-01

    One factor that influences the success of emotion regulation is the manner in which the regulated emotion was generated. Recent research has suggested that reappraisal, a top-down emotion regulation strategy, is more effective in decreasing self-reported negative affect when emotions were generated from the top-down, versus the bottom-up. On the basis of a process overlap framework, we hypothesized that the neural regions active during reappraisal would overlap more with emotions that were generated from the top-down, rather than from the bottom-up. In addition, we hypothesized that increased neural overlap between reappraisal and the history effects of top-down emotion generation would be associated with increased reappraisal success. The results of several analyses suggested that reappraisal and emotions that were generated from the top-down share a core network of prefrontal, temporal, and cingulate regions. This overlap is specific; no such overlap was observed between reappraisal and emotions that were generated in a bottom-up fashion. This network consists of regions previously implicated in linguistic processing, cognitive control, and self-relevant appraisals, which are processes thought to be crucial to both reappraisal and top-down emotion generation. Furthermore, individuals with high reappraisal success demonstrated greater neural overlap between reappraisal and the history of top-down emotion generation than did those with low reappraisal success. The overlap of these key regions, reflecting overlapping processes, provides an initial insight into the mechanism by which generation history may facilitate emotion regulation.

  4. Resorcinol degradation by a Penicillium chrysogenum strain under osmotic stress: mono and binary substrate matrices with phenol.

    Science.gov (United States)

    Guedes, Sumaya Ferreira; Mendes, Benilde; Leitão, Ana Lúcia

    2011-04-01

    A phenol-degrading Penicillium chrysogenum strain previously isolated from a salt mine was able to grow at 1,000 mg l(-1) of resorcinol on solid medium. The aerobic degradation of resorcinol by P. chrysogenum CLONA2 was studied in batch cultures in minimal mineral medium with 58.5 g l(-1) of sodium chloride using resorcinol as the sole carbon source. The fungal strain showed the ability to degrade up to 250 mg l(-1) of resorcinol. Resorcinol and phenol efficiency degradation by P. chrysogenum CLONA2 was compared. This strain removes phenol faster than resorcinol. When phenol and resorcinol were in binary substrate matrices, phenol enhanced resorcinol degradation, and organic load decreased with respect to the mono substrate matrices. The acute toxicity of phenol and resorcinol, individually and in combination, to Artemia franciscana larvae has been verified before and after the bioremediation process with P. chrysogenum CLONA2. The remediation process was effective in mono and binary substrate systems.

  5. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight

    Directory of Open Access Journals (Sweden)

    Daniel Pedrosa Alves

    Full Text Available ABSTRACT: Artificial neural networks (ANN are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.

  6. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  7. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  8. The neural correlates of subjective utility of monetary outcome and probability weight in economic and in motor decision under risk

    Science.gov (United States)

    Wu, Shih-Wei; Delgado, Mauricio R.; Maloney, Laurence T.

    2011-01-01

    In decision under risk, people choose between lotteries that contain a list of potential outcomes paired with their probabilities of occurrence. We previously developed a method for translating such lotteries to mathematically equivalent motor lotteries. The probability of each outcome in a motor lottery is determined by the subject’s noise in executing a movement. In this study, we used functional magnetic resonance imaging in humans to compare the neural correlates of monetary outcome and probability in classical lottery tasks where information about probability was explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks where probability was implicit in the subjects’ own motor noise. We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) quantitatively represent the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC significantly tracked the distortion of such information in both tasks. Specifically, activity in mPFC represents probability information but not the physical properties of the stimuli correlated with this information. Together, the results demonstrate that mPFC represents probability from two distinct forms of decision under risk. PMID:21677166

  9. Neural substrates of normal and impaired preattentive sensory discrimination in large cohorts of nonpsychiatric subjects and schizophrenia patients as indexed by MMN and P3a change detection responses.

    Science.gov (United States)

    Takahashi, Hidetoshi; Rissling, Anthony J; Pascual-Marqui, Roberto; Kirihara, Kenji; Pela, Marlena; Sprock, Joyce; Braff, David L; Light, Gregory A

    2013-02-01

    Schizophrenia (SZ) patients have information processing deficits, spanning from low level sensory processing to higher-order cognitive functions. Mismatch negativity (MMN) and P3a are event-related potential (ERP) components that are automatically elicited in response to unattended changes in ongoing, repetitive stimuli that provide a window into abnormal information processing in SZ. MMN and P3a are among the most robust and consistently identified deficits in SZ, yet the neural substrates of these responses and their associated deficits in SZ are not fully understood. This study examined the neural sources of MMN and P3a components in a large cohort of SZ and nonpsychiatric control subjects (NCS) using Exact Low Resolution Electromagnetic Tomography Analyses (eLORETA) in order to identify the neural sources of MMN and P3a as well as the brain regions associated with deficits commonly observed among SZ patients. 410 SZ and 247 NCS underwent EEG testing using a duration-deviant auditory oddball paradigm (1-kHz tones, 500ms SOA; standard p=0.90, 50-ms duration; deviant tones P=0.10, 100-ms duration) while passively watching a silent video. Voxel-by-voxel within- (MMN vs. P3a) and between-group (SZ vs. NCS) comparisons were performed using eLORETA. SZ had robust deficits in MMN and P3a responses measured at scalp electrodes consistent with other studies. These components mapped onto neural sources broadly distributed across temporal, frontal, and parietal regions. MMN deficits in SZ were associated with reduced activations in discrete medial frontal brain regions, including the anterior-posterior cingulate and medial frontal gyri. These early sensory discriminatory MMN impairments were followed by P3a deficits associated with widespread reductions in the activation of attentional networks (frontal, temporal, parietal regions), reflecting impaired orienting or shifts of attention to the infrequent stimuli. MMN and P3a are dissociable responses associated with broadly

  10. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  11. Gallium arsenide (GaAs) island growth under SiO(2) nanodisks patterned on GaAs substrates.

    Science.gov (United States)

    Tjahjana, Liliana; Wang, Benzhong; Tanoto, Hendrix; Chua, Soo-Jin; Yoon, Soon Fatt

    2010-05-14

    We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

  12. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    Science.gov (United States)

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  13. Neural and psychophysiological correlates of human performance under stress and high mental workload.

    Science.gov (United States)

    Mandrick, Kevin; Peysakhovich, Vsevolod; Rémy, Florence; Lepron, Evelyne; Causse, Mickaël

    2016-12-01

    In our anxiogenic and stressful world, the maintenance of an optimal cognitive performance is a constant challenge. It is particularly true in complex working environments (e.g. flight deck, air traffic control tower), where individuals have sometimes to cope with a high mental workload and stressful situations. Several models (i.e. processing efficiency theory, cognitive-energetical framework) have attempted to provide a conceptual basis on how human performance is modulated by high workload and stress/anxiety. These models predict that stress can reduce human cognitive efficiency, even in the absence of a visible impact on the task performance. Performance may be protected under stress thanks to compensatory effort, but only at the expense of a cognitive cost. Yet, the psychophysiological cost of this regulation remains unclear. We designed two experiments involving pupil diameter, cardiovascular and prefrontal oxygenation measurements. Participants performed the Toulouse N-back Task that intensively engaged both working memory and mental calculation processes under the threat (or not) of unpredictable aversive sounds. The results revealed that higher task difficulty (higher n level) degraded the performance and induced an increased tonic pupil diameter, heart rate and activity in the lateral prefrontal cortex, and a decreased phasic pupil response and heart rate variability. Importantly, the condition of stress did not impact the performance, but at the expense of a psychophysiological cost as demonstrated by lower phasic pupil response, and greater heart rate and prefrontal activity. Prefrontal cortex seems to be a central region for mitigating the influence of stress because it subserves crucial functions (e.g. inhibition, working memory) that can promote the engagement of coping strategies. Overall, findings confirmed the psychophysiological cost of both mental effort and stress. Stress likely triggered increased motivation and the recruitment of additional

  14. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara

    2011-03-01

    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

  15. Revealing the Neural Mechanisms Underlying the Beneficial Effects of Tai Chi: A Neuroimaging Perspective.

    Science.gov (United States)

    Yu, Angus P; Tam, Bjorn T; Lai, Christopher W; Yu, Doris S; Woo, Jean; Chung, Ka-Fai; Hui, Stanley S; Liu, Justina Y; Wei, Gao X; Siu, Parco M

    2018-01-01

    Tai Chi Chuan (TCC), a traditional Chinese martial art, is well-documented to result in beneficial consequences in physical and mental health. TCC is regarded as a mind-body exercise that is comprised of physical exercise and meditation. Favorable effects of TCC on body balance, gait, bone mineral density, metabolic parameters, anxiety, depression, cognitive function, and sleep have been previously reported. However, the underlying mechanisms explaining the effects of TCC remain largely unclear. Recently, advances in neuroimaging technology have offered new investigative opportunities to reveal the effects of TCC on anatomical morphologies and neurological activities in different regions of the brain. These neuroimaging findings have provided new clues for revealing the mechanisms behind the observed effects of TCC. In this review paper, we discussed the possible effects of TCC-induced modulation of brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity on health. Moreover, we identified possible links between the alterations in brain and beneficial effects of TCC, such as improved motor functions, pain perception, metabolic profile, cognitive functions, mental health and sleep quality. This paper aimed to stimulate further mechanistic neuroimaging studies in TCC and its effects on brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity, which ultimately lead to a better understanding of the mechanisms responsible for the beneficial effects of TCC on human health.

  16. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  17. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    Science.gov (United States)

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  18. Modelling the release of volatile fission product cesium from CANDU fuel under severe accident conditions using artificial neural networks

    International Nuclear Information System (INIS)

    Andrews, W.S.; Lewis, B.J.; Cox, D.S.

    1997-01-01

    An artificial neural network (ANN) model has been developed to predict the release of volatile fission products from CANDU fuel under severe accident conditions. The model was based on data for the release Of 134 Cs measured during three annealing experiments (Hot Cell Experiments 1 and 2, or HCE- 1, HCE-2 and Metallurgical Cell Experiment 1, or MCE- 1) at Chalk River Laboratories. These experiments were comprised of a total of 30 separate tests. The ANN established a correlation among 14 separate input variables and predicted the cumulative fractional release for a set of 386 data points drawn from 29 tests to a normalized error, E n , of 0.104 and an average absolute error, E abs , of 0.064. Predictions for a blind validation set (test HCE2-CM6) had an E n of 0.064 and an E abs of 0.054. A methodology is presented for deploying the ANN model by providing the connection weights. Finally, the performance of an ANN model was compared to a fuel oxidation model developed by Lewis et al. and to the U.S. Nuclear Regulatory Commission's CORSOR-M. (author)

  19. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    Directory of Open Access Journals (Sweden)

    You Ning

    2013-01-01

    Full Text Available Adult neural stem cells (NSCs persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.

  20. The composition and depth of green roof substrates affect the growth of Silene vulgaris and Lagurus ovatus species and the C and N sequestration under two irrigation conditions.

    Science.gov (United States)

    Ondoño, S; Martínez-Sánchez, J J; Moreno, J L

    2016-01-15

    Extensive green roofs are used to increase the surface area covered by vegetation in big cities, thereby reducing the urban heat-island effect, promoting CO2 sequestration, and increasing biodiversity and urban-wildlife habitats. In Mediterranean semi-arid regions, the deficiency of water necessitates the use in these roofs of overall native plants which are more adapted to drought than other species. However, such endemic plants have been used scarcely in green roofs. For this purpose, we tested two different substrates with two depths (5 and 10 cm), in order to study their suitability with regard to adequate plant development under Mediterranean conditions. A compost-soil-bricks (CSB) (1:1:3; v:v:v) mixture and another made up of compost and bricks (CB) (1:4; v:v) were arranged in two depths (5 and 10 cm), in cultivation tables. Silene vulgaris (Moench) Garcke and Lagurus ovatus L. seeds were sown in each substrate. These experimental units were subjected, on the one hand, to irrigation at 40% of the registered evapotranspiration values (ET0) and, on the other, to drought conditions, during a nine-month trial. Physichochemical and microbiological substrate characteristics were studied, along with the physiological and nutritional status of the plants. We obtained significantly greater plant coverage in CSB at 10 cm, especially for L. ovatus (80-90%), as well as a better physiological status, especially in S. vulgaris (SPAD values of 50-60), under irrigation, whereas neither species could grow in the absence of water. The carbon and nitrogen fixation by the substrate and the aboveground biomass were also higher in CSB at 10 cm, especially under L. ovatus - in which 1.32 kg C m(-2) and 209 g N m(-2) were fixed throughout the experiment. Besides, the enzymatic and biochemical parameters assayed showed that microbial activity and nutrient cycling, which fulfill a key role for plant development, were higher in CSB. Therefore, irrigation of 40% can

  1. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  2. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms.

    Directory of Open Access Journals (Sweden)

    Jonas Kalderstam

    Full Text Available We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart, which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do.

  3. Closure of mass exchange under use of a vegetable conveyer cultivated on a neutral and soil-like substrates as applied to BLSS

    Science.gov (United States)

    Velitchko, Vladimir; Tikhomirov, Alexander; Ushakova, Sofya

    To increase a closure level of mass exchange processes in bioregenerative life support systems (BLSS) including a human a technology of plants cultivation on a soil-like substrate (SLS) consisting in a gradual decomposition of inedible plants biomass under its addition in the SLS was developed at the Institute of Biophysics SB RAS (Russia). In the given work the effect of periodical introduction of inedible plant biomass in the SLS on plants photosynthetic productivity and on the closure of mass exchange has been analyzed. Thereupon CO2 gas exchange and the certain vegetables' productivity under their cultivation in a conveyor regime on the SLS and on a neutral substrate with reference to the closure of mass exchange processes in BLSS have been studied in this work. The vegetables Raphanus sativus L., Brassica caulorapa L. Daucus carota L. and Beta vulgaris L. being prospective plantsrepresentatives of the BLSS phototrophic unit were taken as the research objects. The SLS was taken as an experiment substrate and an expanded clay aggregate as the control. The changeable Knop solution was used for the control, and an irrigation solution with the SLS extract was used for the experiment. Rapidity dynamics of CO2 consumption showed sharp distinctions of the ‘plants-SLS' system from the ‘plantsexpanded clay aggregate' system connected with the oxidation processes coursing in the SLS. The intensity of CO2 evolution from the SLS on average was 70% of the total plants conveyor's respiration. Thus a balance between the system's respiration and photosynthesis was often determined by the processes coursing in the SLS. Here the sharp CO2 evolution was recorded after introduction of the plants inedible biomass in the SLS. That peak was gradually coming down during 10-14 days after the beginning of every cycle of plants cultivation that was connected with intensification of plants photosynthesis and drop of decomposition intensity of the biomass introduced. Comparative

  4. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  5. Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ⁹-tetrahydrocannabinol administration.

    Science.gov (United States)

    Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L; Deadwyler, Sam A; Hampson, Robert E; Kraft, Robert A

    2015-04-15

    Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain-computer interfaces and nonlinear neuronal models. Neurons involved in memory processing ("Functional Cell Types" or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid type-1 receptor (CB1R) partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain-computer interfaces. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2014-01-01

    Full Text Available The artificial neural network (ANN modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP, Incremental Back Propagation (IBP, Batch Back Propagation (BBP, and Levenberg-Marquardt (LM algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

  7. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  8. Produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos Production of yellow melon seedlings in different substrates under protected cultivation

    Directory of Open Access Journals (Sweden)

    Tânia Regina Pelizza

    2013-04-01

    Full Text Available Mudas mal formadas e debilitadas comprometem o desenvolvimento das culturas. O objetivo deste trabalho foi avaliar a produção de mudas de meloeiro amarelo, sob cultivo protegido, em diferentes substratos. Este trabalho foi conduzido em telado, na Universidade Federal de Pelotas (RS, nos meses de novembro e dezembro. Testaram-se os seguintes substratos: T1 (vermicomposto bovino puro; T2 (substrato comercial Plantmax®; T3 (substrato comercial Húmus Fértil®; T4 (vermicomposto bovino 75% + casca de arroz carbonizada 25% e T5 (solo 75% + vermicomposto bovino 25%. Foram avaliados o índice de velocidade e a percentagem de emergência do 6º ao 9º dia; a altura, o comprimento da raiz principal, a massa seca das raízes e da parte aérea das mudas de meloeiro, aos 27 dias. Os substratos que proporcionaram maior índice de velocidade de emergência das mudas de meloeiro amarelo foram Húmus Fértil®, vermicomposto bovino puro e vermicomposto bovino 75% mais casca de arroz carbonizada 25%. Maior altura da muda é obtida com o substrato Húmus Fértil®. O comprimento da raiz principal foi maior com o uso de vermicomposto bovino puro, Húmus Fértil®, vermicomposto bovino puro mais casca de arroz carbonizada (VB75+CAC25, em comparação com solo 75% mais vermicomposto bovino 25%. A massa seca de raiz foi maior quando utilizado Húmus Fértil®, em comparação com solo 75% mais vermicomposto bovino 25%. É possível utilizar substratos isolados ou em combinação para a produção de mudas de meloeiro amarelo sob cultivo protegido. Porém, deve-se evitar o uso de solo 75% em combinação com vermicomposto bovino 25%.Weak and malformed seedlings compromise the development of the crop. The objective of this study was to evaluate the production of yellow melon seedlings in different substrates under protected cultivation. The experiment was conducted in a greenhouse during November and December, at the Federal University of Pelotas (RS. The following

  9. Topographic changes in Ni-5at.%W substrate after annealing under conditions of buffer layer crystallization

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    twin boundaries. Average groove widths increased for all boundary types. Despite the observed changes in the extent of grain boundary grooving, the mean surface roughness was almost identical before and after the additional annealing. © 2012 Published by Elsevier B.V. Selection and/or peer-review under...... and that the average depth of grain boundary grooves increased considerably for certain boundary types. Grooves at general high angle boundaries and Σ3 boundaries with large deviations from the ideal twin relationship were found to be more sensitive to the additional heat-treatment than grooves at low angle and true...

  10. The neural basis of event simulation: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Yukihito Yomogida

    Full Text Available Event simulation (ES is the situational inference process in which perceived event features such as objects, agents, and actions are associated in the brain to represent the whole situation. ES provides a common basis for various cognitive processes, such as perceptual prediction, situational understanding/prediction, and social cognition (such as mentalizing/trait inference. Here, functional magnetic resonance imaging was used to elucidate the neural substrates underlying important subdivisions within ES. First, the study investigated whether ES depends on different neural substrates when it is conducted explicitly and implicitly. Second, the existence of neural substrates specific to the future-prediction component of ES was assessed. Subjects were shown contextually related object pictures implying a situation and performed several picture-word-matching tasks. By varying task goals, subjects were made to infer the implied situation implicitly/explicitly or predict the future consequence of that situation. The results indicate that, whereas implicit ES activated the lateral prefrontal cortex and medial/lateral parietal cortex, explicit ES activated the medial prefrontal cortex, posterior cingulate cortex, and medial/lateral temporal cortex. Additionally, the left temporoparietal junction plays an important role in the future-prediction component of ES. These findings enrich our understanding of the neural substrates of the implicit/explicit/predictive aspects of ES-related cognitive processes.

  11. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.

    Science.gov (United States)

    Mohan, S Venkata; Raghavulu, S Veer; Peri, Dinakar; Sarma, P N

    2009-03-15

    Function of microbial fuel cell (MFC) as bio-electrochemical treatment system in concurrence with power generation was evaluated with composite chemical wastewater at high loading conditions (18.6 gCOD/l; 56.8 gTDS/l). Two dual chambered MFCs [non-catalyzed graphite electrodes; mediatorless anode] were studied separately with aerated and potassium ferricyanide catholytes under similar anodic operating conditions [mixed consortia; pH 6]. Marked improvement in power output was observed at applied higher substrate loading rate for extended period of time without any process inhibition. Catholyte nature showed significant influence on power generation [ferricyanide-651 mV; 18.22 mA; 6230 mW/kg COD(R) (500 Omega); 2321.69 mA/m(2) (100 Omega); 11.80 mW/m(3) and aerated-578 mV; 10.23mA; 2450 mW/kg COD(R) (400 Omega); 1220.68 mA/m(2) (100 Omega); 5.64 mW/m(3)] but not on wastewater treatment efficiency. Along with enhanced substrate degradation, relatively good removal of color (31%) and TDS (51%) was also observed during MFC operation, which might be attributed to the diverse bio-electrochemical processes triggered due to substrate metabolism and subsequent in situ bio-potential (voltage) generation. Apart from power generation, various unit operations pertaining to wastewater treatment viz., biological (anaerobic) process, electrochemical decomposition and electrochemical oxidation were found to occur symbiotically in the anode chamber. Among them anaerobic metabolism is considered to be a crucial and important rate limiting step. In view of inherent advantages, function of MFC as integrated bio-electrochemical treatment system in the direction of various wastewater treatment operations can be exploited.

  12. Development of a signal-analysis algorithm for the ZEUS transition-radiation detector under application of a neural network

    International Nuclear Information System (INIS)

    Wollschlaeger, U.

    1992-07-01

    The aim of this thesis consisted in the development of a procedure for the analysis of the data of the transition-radiation detector at ZEUS. For this a neural network was applied and first studied, which results concerning the separation power between electron an pions can be reached by this procedure. It was shown that neural nets yield within the error limits as well results as standard algorithms (total charge, cluster analysis). At an electron efficiency of 90% pion contaminations in the range 1%-2% were reached. Furthermore it could be confirmed that neural networks can be considered for the here present application field as robust in relatively insensitive against external perturbations. For the application in the experiment beside the separation power also the time-behaviour is of importance. The requirement to keep dead-times small didn't allow the application of standard method. By a simulation the time availabel for the signal analysis was estimated. For the testing of the processing time in a neural network subsequently the corresponding algorithm was implemented into an assembler code for the digital signal processor DSP56001. (orig./HSI) [de

  13. Untangling the neurobiology of coping styles in rodents : Towards neural mechanisms underlying individual differences in disease susceptibility

    NARCIS (Netherlands)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M.

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding

  14. Normative data on development of neural and behavioral mechanisms underlying attention orienting toward social-emotional stimuli: an exploratory study.

    Science.gov (United States)

    Lindstrom, Kara M; Guyer, Amanda E; Mogg, Karin; Bradley, Brendan P; Fox, Nathan A; Ernst, Monique; Nelson, Eric E; Leibenluft, Ellen; Britton, Jennifer C; Monk, Christopher S; Pine, Daniel S; Bar-Haim, Yair

    2009-10-06

    The ability of positive and negative facial signals to influence attention orienting is crucial to social functioning. Given the dramatic developmental change in neural architecture supporting social function, positive and negative facial cues may influence attention orienting differently in relatively young or old individuals. However, virtually no research examines such age-related differences in the neural circuitry supporting attention orienting to emotional faces. We examined age-related correlations in attention-orienting biases to positive and negative face emotions in a healthy sample (N=37; 9-40 years old) using functional magnetic resonance imaging and a dot-probe task. The dot-probe task in an fMRI setting yields both behavioral and neural indices of attention biases towards or away from an emotional cue (happy or angry face). In the full sample, angry-face attention bias scores did not correlate with age, and age did not correlate with brain activation to angry faces. However, age did positively correlate with attention bias towards happy faces; age also negatively correlated with left cuneus and left caudate activation to a happy bias fMRI contrast. Secondary analyses suggested age-related changes in attention bias to happy faces. The tendency in younger children to direct attention away from happy faces (relative to neutral faces) was diminished in the older age groups, in tandem with increasing neural deactivation. Implications for future work on developmental changes in attention-emotion processing are discussed.

  15. Using brain stimulation to disentangle neural correlates of conscious vision.

    Science.gov (United States)

    de Graaf, Tom A; Sack, Alexander T

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.

  16. Using brain stimulation to disentangle neural correlates of conscious vision

    Science.gov (United States)

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  17. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays

    Science.gov (United States)

    Son, Yoojin; Jenny Lee, Hyunjoo; Kim, Jeongyeon; Shin, Hyogeun; Choi, Nakwon; Justin Lee, C.; Yoon, Eui-Sung; Yoon, Euisik; Wise, Kensall D.; Geun Kim, Tae; Cho, Il-Joo

    2015-10-01

    Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications.

  18. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  20. Offshore Substrate

    Data.gov (United States)

    California Department of Resources — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  1. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case ...... is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality....

  2. Phytoplankton communities from San Francisco Bay Delta respond differently to oxidized and reduced nitrogen substrates - even under conditions that would otherwise suggest nitrogen sufficiency

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-07-01

    Full Text Available The effect of equivalent additions of nitrogen (N, 30-40 μM-N in different forms (ammonium, NH4+, and nitrate, NO3- under conditions of different light exposure on phytoplankton community composition was studied in a series of four, 5-day enclosure experiments on water collected from the nutrient-rich San Francisco Bay Delta over two years. Overall, proportionately more chlorophyll a and fucoxanthin (generally indicative of diatoms was produced per unit N taken up in enclosures enriched with NO3- and incubated at reduced (~15% of ambient light intensity than in treatments with NO3- with high (~60% of ambient light exposure or with NH4+ under either light condition. In contrast, proportionately more chlorophyll b (generally indicative of chlorophytes and zeaxanthin (generally indicative of cyanobacteria was produced in enclosures enriched with NH4+ and incubated under high light intensity than in treatments with low light or with added NO3- at either light level. Rates of maximal velocities (Vmax of uptake of N substrates, measured using 15N tracer techniques, in all enclosures enriched with NO3- were higher than those enriched with NH4+. Directionality of trends in enclosures were similar to phytoplankton community shifts observed in transects of the Sacramento River to Suisun Bay, a region in which large changes in total N quantity and form occur. These data substantiate the growing body of experimental evidence that dichotomous microbial communities develop when enriched with the same absolute concentration of oxidized vs. reduced N forms, even when sufficient N nutrient was available to the community prior to the N inoculations.

  3. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  4. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.

    Science.gov (United States)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M

    2017-03-01

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Neural substrates linking balance control and anxiety

    Science.gov (United States)

    Balaban, Carey D.

    2002-01-01

    This communication provides an update of our understanding of the neurological bases for the close association between balance control and anxiety. New data suggest that a vestibulo-recipient region of the parabrachial nucleus (PBN) contains cells that respond to body rotation and position relative to gravity. The PBN, with its reciprocal relationships with the extended central amygdaloid nucleus, infralimbic cortex, and hypothalamus, appears to be an important node in a primary network that processes convergent vestibular, somatic, and visceral information processing to mediate avoidance conditioning, anxiety, and conditioned fear responses. Noradrenergic and serotonergic projections to the vestibular nuclei also have parallel connections with anxiety pathways. The coeruleo-vestibular pathway originates in caudal locus coeruleus (LC) and provides regionally specialized noradrenergic input to the vestibular nuclei, which likely mediate effects of alerting and vigilance on the sensitivity of vestibulo-motor circuits. Both serotonergic and nonserotonergic pathways from the dorsal raphe nucleus and the nucleus raphe obscurus also project differentially to the vestibular nuclei, and 5-HT(2A) receptors are expressed in amygdaloid and cortical targets of the PBN. It is proposed that the dorsal raphe nucleus pathway contributes to both (a) a tradeoff between motor and sensory (information gathering) aspects of responses to self-motion and (b) a calibration of the sensitivity of affective responses to aversive aspects of motion. This updated neurologic model continues to be a synthetic schema for investigating the neurological and neurochemical bases for comorbidity of balance disorders and anxiety disorders.

  6. The neural substrates of subjective time dilation

    OpenAIRE

    Marc Wittmann; Marc Wittmann; Marc Wittmann; Virginie Van Wassenhove; Bud Craig; Martin P Paulus; Martin P Paulus

    2010-01-01

    An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This 'time dilation effect' has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics). We performed an event-related functional magnetic resonance imaging (fMRI), while subjects viewed a stream of five visual events, all of which were static and of identical duration except the...

  7. The Neural Substrates of Subjective Time Dilation

    OpenAIRE

    Wittmann, Marc; van Wassenhove, Virginie; Craig, A. D. (Bud); Paulus, Martin P.

    2010-01-01

    An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This ”time dilation effect” has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics). We performed an event-related functional magnetic resonance imaging (fMRI) study, while subjects viewed a stream of five visual events, all of which were static and of identical duration exce...

  8. The neural substrates of subjective time dilation

    Directory of Open Access Journals (Sweden)

    Marc Wittmann

    2010-02-01

    Full Text Available An object moving towards an observer is subjectively perceived as longer in duration than the same object that is static or moving away. This 'time dilation effect' has been shown for a number of stimuli that differ from standard events along different feature dimensions (e.g. color, size, and dynamics. We performed an event-related functional magnetic resonance imaging (fMRI, while subjects viewed a stream of five visual events, all of which were static and of identical duration except the fourth one, which was a deviant target consisting of either a looming or a receding disc. The duration of the target was systematically varied and participants judged whether the target was shorter or longer than all other events. A time dilation effect was observed only for looming targets. Relative to the static standards, the looming as well as the receding targets induced increased activation of the anterior insula and anterior cingulate cortices (the “core control network”. The decisive contrast between looming and receding targets representing the time dilation effect showed strong asymmetric activation and, specifically, activation of cortical midline structures (the “default network”. These results provide the first evidence that the illusion of temporal dilation is due to activation of areas that are important for cognitive control and subjective awareness. The involvement of midline structures in the temporal dilation illusion is interpreted as evidence that time perception is related to self-referential processing.

  9. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Mañas, Mauro

    2012-08-01

    Full Text Available Prematurity is one of the most relevant health problems among children in the developed countries. Around 8 to 10% of children birth before the 37 week and/or with a very low birth weight (VLBW (1500 g. This causes 75% of the prenatal mortality and the 50% of the children disability. The aim of this study was to assess neuropsychological and emotional impairments in 7 year old children who were born VLBW. A clinical interview, the Children Neuropsychological Assessment Battery, and the Behavioral Assessment System for Children (BASC were administrated. VLBW children showed memory and executive function deficits, as well as, behavioral and attention problems. These results highlight the importance of long term follow up of the VLBW children and point out the necessity of developing adequate neuropsychological and emotional treatment program for these children.

  10. Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

    International Nuclear Information System (INIS)

    Ishiyama, Chiemi

    2012-01-01

    Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and 75 μm) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter

  11. Sputtering and crystalline structure modification of bismuth thin films deposited onto silicon substrates under the impact of 20-160 keV Ar+ ions

    International Nuclear Information System (INIS)

    Mammeri, S.; Ouichaoui, S.; Ammi, H.; Zemih, R.

    2010-01-01

    The sputtering of bismuth thin films induced by 20-160 keV Ar + ions has been studied using Rutherford backscattering spectrometry, scanning electron microscopy and X-ray energy dispersive and diffraction spectroscopy. These techniques revealed increasing modifications of the Bi film surfaces with increasing both ion beam energy and fluence up to their complete deterioration under irradiation conditions E = 160 keV and φ = 1.5 x 10 16 cm -2 , leaving isolated islands of preferred (0 1 2) orientation on the Si substrate. The observed surface morphology and crystalline structure evolutions are likely due to a complex interplay of interaction mechanisms involving both elastic nuclear collisions and inelastic electronic ones. The measured Bi sputtering yields versus Ar + ion fluence for a fixed ion energy exhibit a significant depression at very low φ-values followed by a steady state regime above ∼2.0 x 10 14 cm -2 . Measured sputtering yields versus Ar + ion energy with fixing ion fluence to 1.2 x 10 16 cm -2 in the upper part of the yield saturation regime are also reported. Their comparison to theoretical model and SRIM 2008 Monte Carlo simulation predictions is discussed.

  12. CELLULASES PRODUCTION UNDER SOLID STATE FERMENTATION USING AGRO WASTE AS A SUBSTRATE AND ITS APPLICATION IN SACCHARIFICATION BY TRAMETES HIRSUTA NCIM

    Directory of Open Access Journals (Sweden)

    Bhaumik R. Dave

    2014-12-01

    Full Text Available Food and energy crisis are the biggest constraint all over the world which has focused lights on need of utilizing renewable resources to meet the future demand. A promising strategy is efficient utilization of lignocellulosic waste and fermentation of the resulting sugars for production of desired metabolites or biofuel. Production of all the cellulase enzymes on wheat bran and different parameters regulating it like pH, moisture ratio (substrate: liquid, temperature and inoculum size has been optimized which found to be 4.5, 1:3, 30°C and 108 spores respectively. Salient feature of partially purified enzyme with stability in the range of 30-50°C under acidic pH range was found to be prominent for industrial applications, moreover in this study, Trametes hirsuta, an efficient cellulase producer, was observed to be an effective species for saccharification of wheat straw to enhance the sugar yield. Enzymatic hydrolysis of wheat straw with 15 FPU of cellulase from the species showed 73% yield in 20 hrs. It may prove to be a suitable choice for the industrial saccharification of lignocellulosic biomasses.

  13. 2-Nitrobenzoate 2-Nitroreductase (NbaA) Switches Its Substrate Specificity from 2-Nitrobenzoic Acid to 2,4-Dinitrobenzoic Acid under Oxidizing Conditions

    Science.gov (United States)

    Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C. K.

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions. PMID:23123905

  14. Cultured neural networks: Optimisation of patterned network adhesiveness and characterisation of their neural activity

    NARCIS (Netherlands)

    Rutten, Wim; Ruardij, T.G.; Marani, Enrico; Roelofsen, B.H.

    2006-01-01

    One type of future, improved neural interface is the "cultured probe"?. It is a hybrid type of neural information transducer or prosthesis, for stimulation and/or recording of neural activity. It would consist of a microelectrode array (MEA) on a planar substrate, each electrode being covered and

  15. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    Science.gov (United States)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  16. Diminished neural responses predict enhanced intrinsic motivation and sensitivity to external incentive.

    Science.gov (United States)

    Marsden, Karen E; Ma, Wei Ji; Deci, Edward L; Ryan, Richard M; Chiu, Pearl H

    2015-06-01

    The duration and quality of human performance depend on both intrinsic motivation and external incentives. However, little is known about the neuroscientific basis of this interplay between internal and external motivators. Here, we used functional magnetic resonance imaging to examine the neural substrates of intrinsic motivation, operationalized as the free-choice time spent on a task when this was not required, and tested the neural and behavioral effects of external reward on intrinsic motivation. We found that increased duration of free-choice time was predicted by generally diminished neural responses in regions associated with cognitive and affective regulation. By comparison, the possibility of additional reward improved task accuracy, and specifically increased neural and behavioral responses following errors. Those individuals with the smallest neural responses associated with intrinsic motivation exhibited the greatest error-related neural enhancement under the external contingency of possible reward. Together, these data suggest that human performance is guided by a "tonic" and "phasic" relationship between the neural substrates of intrinsic motivation (tonic) and the impact of external incentives (phasic).

  17. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors.

    Science.gov (United States)

    Swanson, Larry W

    2005-12-05

    Understanding the principles of cerebral hemisphere neural network organization is essential for understanding the biological foundations of cognition and affect-thinking and feeling. A tripartite model of cerebral structure-function organization is reviewed, with attention focused on a behavior control system differentiation that mediates voluntary influences on three fundamental classes of goal-oriented behavior common to all animals. The model postulates just three cerebral divisions, one cortical and two nuclear (lateral or striatal, and medial or pallidal), that together generate a triple descending projection to the brainstem/cord motor system. This minimal circuit element is topographically organized and regionally differentiated, with the map of cortical areas serving as a basic starting point. Virtually all of the cerebral hemisphere projects on the upper brainstem behavior control column, atop the motor system hierarchy. The latter's rostral segment helps control ingestive (eating and drinking), defensive (fight or flight), and reproductive (sexual and parental) motivated behaviors, whereas its caudal segment helps control foraging or exploratory behavior to obtain or avoid specific goal objects associated with all classes of motivated behavior. (c) 2005 Wiley-Liss, Inc.

  18. Risk-taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making

    Science.gov (United States)

    Peake, Shannon J.; Dishion, Thomas J.; Stormshak, Elizabeth A.; Moore, William E.; Pfeifer, Jennifer H.

    2013-01-01

    Social exclusion and risk-taking are both common experiences of concern in adolescence, yet little is known about how the two may be related at behavioral or neural levels. In this fMRI study, adolescents (N=27, 14 male, 14–17 years-old) completed a series of tasks in the scanner assessing risky decision-making before and after an episode of social exclusion. In this particular context, exclusion was associated with greater behavioral risk-taking among adolescents with low self-reported resistance to peer influence (RPI). When making risky decisions after social exclusion, adolescents who had lower RPI exhibited higher levels of activity in right temporoparietal junction (rTPJ), and this response in rTPJ was a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. Lower RPI was also associated with lower levels of activity in lPFC during crashes following social exclusion, but unlike rTPJ this response in lPFC was not a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. The results suggest that mentalizing and/or attentional mechanisms have a unique direct effect on adolescents’ vulnerability to peer influence on risk-taking. PMID:23707590

  19. Japanese studies on neural circuits and behavior of Caenorhabditis elegans

    Science.gov (United States)

    Sasakura, Hiroyuki; Tsukada, Yuki; Takagi, Shin; Mori, Ikue

    2013-01-01

    The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies. PMID:24348340

  20. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).

    Science.gov (United States)

    Justen, C; Herbert, C; Werner, K; Raab, M

    2014-02-14

    Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. Participants (N=14) performed an auditory self-other identification task with EEG. Data was then subjected to a subsequent standardized low-resolution brain electromagnetic tomography (sLORETA) analysis (source localization analysis). Differences between conditions were assessed using t-statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Distinct neural correlates of episodic memory among apolipoprotein E alleles in cognitively normal elderly.

    Science.gov (United States)

    Shu, Hao; Shi, Yongmei; Chen, Gang; Wang, Zan; Liu, Duan; Yue, Chunxian; Ward, B Douglas; Li, Wenjun; Xu, Zhan; Chen, Guangyu; Guo, Qi-Hao; Xu, Jun; Li, Shi-Jiang; Zhang, Zhijun

    2018-02-02

    The apolipoprotein E (APOE) ε4 and ε2 alleles are acknowledged genetic factors modulating Alzheimer's disease (AD) risk and episodic memory (EM) deterioration in an opposite manner. Mounting neuroimaging studies describe EM-related brain activity differences among APOE alleles but remain limited in elucidating the underlying mechanism. Here, we hypothesized that the APOE ε2, ε3, and ε4 alleles have distinct EM neural substrates, as a manifestation of degeneracy, underlying their modulations on EM-related brain activity and AD susceptibility. To test the hypothesis, we identified neural correlates of EM function by correlating intrinsic hippocampal functional connectivity networks with neuropsychological EM performances in a voxelwise manner, with 129 cognitively normal elderly subjects (36 ε2 carriers, 44 ε3 homozygotes, and 49 ε4 carriers). We demonstrated significantly different EM neural correlates among the three APOE allele groups. Specifically, in the ε3 homozygotes, positive EM neural correlates were characterized in the Papez circuit regions; in the ε4 carriers, positive EM neural correlates involved the lateral temporal cortex, premotor cortex/sensorimotor cortex/superior parietal lobule, and cuneus; and in the ε2 carriers, negative EM neural correlates appeared in the bilateral frontopolar, posteromedial, and sensorimotor cortex. Further, in the ε4 carriers, the interaction between age and EM function occurred in the temporoparietal junction and prefrontal cortex. Our findings suggest that the underlying mechanism of APOE polymorphism modulations on EM function and AD susceptibility is genetically related to the neural degeneracy of EM function across APOE alleles.

  2. What’s the Gist? The influence of schemas on the neural correlates underlying true and false memories

    Science.gov (United States)

    Webb, Christina E.; Turney, Indira C.; Dennis, Nancy A.

    2017-01-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an

  3. Germination and Growth of a Foreign Plant, Satureja sp.(Labiaceae Over Three Organic Substrates Under Controlled Conditions in the Sabana de Bogotá, Colombia

    Directory of Open Access Journals (Sweden)

    Jazmín Arias

    2003-07-01

    Bogotá, in order to determine which are the best conditions for its culture. The major germination percentage was found in the seeds sowed on control conditions (earth with a neutral and basic pH. The manure substrate showed notorious results concerning steam length, dry weight and leaf number. The third substrate, soil and trash, did not render results neither on germination or other parameters. In conclusion, if the commercial interest is to obtain a longer steams, greater leaf number and biomass, we recommend the manure treatment.

  4. Neural correlates of sad feelings in healthy girls.

    Science.gov (United States)

    Lévesque, J; Joanette, Y; Mensour, B; Beaudoin, G; Leroux, J-M; Bourgouin, P; Beauregard, M

    2003-01-01

    Emotional development is indisputably one of the cornerstones of personality development during infancy. According to the differential emotions theory (DET), primary emotions are constituted of three distinct components: the neural-evaluative, the expressive, and the experiential. The DET further assumes that these three components are biologically based and functional nearly from birth. Such a view entails that the neural substrate of primary emotions must be similar in children and adults. Guided by this assumption of the DET, the present functional magnetic resonance imaging study was conducted to identify the neural correlates of sad feelings in healthy children. Fourteen healthy girls (aged 8-10) were scanned while they watched sad film excerpts aimed at externally inducing a transient state of sadness (activation task). Emotionally neutral film excerpts were also presented to the subjects (reference task). The subtraction of the brain activity measured during the viewing of the emotionally neutral film excerpts from that noted during the viewing of the sad film excerpts revealed that sad feelings were associated with significant bilateral activations of the midbrain, the medial prefrontal cortex (Brodmann area [BA] 10), and the anterior temporal pole (BA 21). A significant locus of activation was also noted in the right ventrolateral prefrontal cortex (BA 47). These results are compatible with those of previous functional neuroimaging studies of sadness in adults. They suggest that the neural substrate underlying the subjective experience of sadness is comparable in children and adults. Such a similitude provides empirical support to the DET assumption that the neural substrate of primary emotions is biologically based.

  5. Performance of diamond-like carbon-protected rubber under cyclic friction. I. Influence of substrate viscoelasticity on the depth evolution

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Pal, J.P. van der; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    In this paper, the influence of the viscoelastic properties of rubber substrate on the tribological behavior of DLC film-coated alkyl acrylate rubber is studied. The mechanical behavior of the rubber was first characterized by creep experiments using spherical indentations. The results were adjusted

  6. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    Science.gov (United States)

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  8. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling.

    Science.gov (United States)

    Chen, Jiacong; Xie, Candie; Liu, Jingyong; He, Yao; Xie, Wuming; Zhang, Xiaochun; Chang, Kenlin; Kuo, Jiahong; Sun, Jian; Zheng, Li; Sun, Shuiyu; Buyukada, Musa; Evrendilek, Fatih

    2018-02-01

    (Co-)combustion characteristics of sewage sludge (SS), coffee grounds (CG) and their blends were quantified under increased O 2 /CO 2 atmosphere (21, 30, 40 and 60%) using a thermogravimetric analysis. Observed percentages of CG mass loss and its maximum were higher than those of SS. Under the same atmospheric O 2 concentration, both higher ignition and lower burnout temperatures occurred with the increased CG content. Results showed that ignition temperature and comprehensive combustion index for the blend of 60%SS-40%CG increased, whereas burnout temperature and co-combustion time decreased with the increased O 2 concentration. Artificial neural network was applied to predict mass loss percent as a function of gas mixing ratio, heating rate, and temperature, with a good agreement between the experimental and ANN-predicted values. Activation energy in response to the increased O 2 concentration was found to increase from 218.91 to 347.32 kJ·mol -1 and from 218.34 to 340.08 kJ·mol -1 according to the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of substrate temperature on epitaxial growth of YBa2Cu3O6.9 superconducting films under laser sputtering

    International Nuclear Information System (INIS)

    Gasparov, V.A.; Dite, A.F.; Ovchinnikov, I.M.; Sorokin, N.M.; Khasanov, S.S.; Yaremenko, V.G.

    1989-01-01

    Using ac resistivity measurements, X-ray diffraction and Auger spectroscopy we have investigated the influence of SrTiO 3 substrate temperature (T s ) on the epitaxial growth of superconducting YBaCu 3 O 6.9 films evaporated by a moderate energy (∼ c films and to investigate their surface properties (Auger spectra) in situ. The Y-Ba-Cu-O thin films were evaporated from a rotated cyylindrical target of YBa 2 Cu 3 O 6.9 superconducting ceramic onto a SrTiO 3 (100) single crystal substrate which also has been rotated.The films were subsequently annealed for one hour at different temperatures in an O 2 flow in the same chamber immediatly after evaporation and cooled down slowly (100 deg C/hour) to room temperature

  10. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load

    Science.gov (United States)

    Zhang, Wei; Li, Chuanhao; Peng, Gaoliang; Chen, Yuanhang; Zhang, Zhujun

    2018-02-01

    In recent years, intelligent fault diagnosis algorithms using machine learning technique have achieved much success. However, due to the fact that in real world industrial applications, the working load is changing all the time and noise from the working environment is inevitable, degradation of the performance of intelligent fault diagnosis methods is very serious. In this paper, a new model based on deep learning is proposed to address the problem. Our contributions of include: First, we proposed an end-to-end method that takes raw temporal signals as inputs and thus doesn't need any time consuming denoising preprocessing. The model can achieve pretty high accuracy under noisy environment. Second, the model does not rely on any domain adaptation algorithm or require information of the target domain. It can achieve high accuracy when working load is changed. To understand the proposed model, we will visualize the learned features, and try to analyze the reasons behind the high performance of the model.

  11. Neural correlates of cue-unique outcome expectations under differential outcomes training: an fMRI study.

    Science.gov (United States)

    Mok, Leh Woon; Thomas, Kathleen M; Lungu, Ovidiu V; Overmier, J Bruce

    2009-04-10

    In conditional discriminative choice learning, one learns the relations between discriminative/cue stimuli, associated choices, and their outcomes. When each correct cue-choice occurrence is followed by a cue-unique trial outcome (differential outcomes, DO, procedure), learning is faster and more accurate than when all correct cue-choice occurrences are followed by a common outcome (CO procedure)--differential outcomes effect (DOE). Superior DO performance is theorized to be mediated by the additional learning of cue-unique outcome expectations that "enrich" the prospective code available over the delay between cue and choice. We anticipated that such learned expectations comprise representations of expected outcomes. Here, we conducted an event-related functional MR imaging (fMRI) analysis of healthy adults who trained concurrently in two difficult but similar perceptual discrimination tasks under DO and CO procedures, respectively, and displayed the DOE. Control participants performed related tasks that differentially biased them towards delay-period retrospection versus prospection. Indeed, when differential outcomes were sensory-perceptual events (visual vs. auditory), delay-period expectations were experienced as sensory-specific imagery of the respectively expected outcome content, generated by sensory-specific cortices. Visual-specific imagery additionally activated stimulus-specific representations in prefrontal, lateral and medial frontal, fusiform and cerebellar regions, whereas auditory-specific imagery recruited claustrum/insula. Posterior parietal cortex (PPC), BA 39, was non-modality specific in mediating delay-period cue-unique outcome expectations. Greater hippocampal involvement in retrospection than prospection contrasted against the PPC's role in prospection. Time course analyses of hippocampal versus PPC responses suggest the DOE derives from an earlier transition from retrospection to prospection, which taps into long-term associative memory

  12. A Computational Analysis of Neural Mechanisms Underlying the Maturation of Multisensory Speech Integration in Neurotypical Children and Those on the Autism Spectrum

    Directory of Open Access Journals (Sweden)

    Cristiano Cuppini

    2017-10-01

    Full Text Available Failure to appropriately develop multisensory integration (MSI of audiovisual speech may affect a child's ability to attain optimal communication. Studies have shown protracted development of MSI into late-childhood and identified deficits in MSI in children with an autism spectrum disorder (ASD. Currently, the neural basis of acquisition of this ability is not well understood. Here, we developed a computational model informed by neurophysiology to analyze possible mechanisms underlying MSI maturation, and its delayed development in ASD. The model posits that strengthening of feedforward and cross-sensory connections, responsible for the alignment of auditory and visual speech sound representations in posterior superior temporal gyrus/sulcus, can explain behavioral data on the acquisition of MSI. This was simulated by a training phase during which the network was exposed to unisensory and multisensory stimuli, and projections were crafted by Hebbian rules of potentiation and depression. In its mature architecture, the network also reproduced the well-known multisensory McGurk speech effect. Deficits in audiovisual speech perception in ASD were well accounted for by fewer multisensory exposures, compatible with a lack of attention, but not by reduced synaptic connectivity or synaptic plasticity.

  13. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model

    Directory of Open Access Journals (Sweden)

    Jianzhu Ma

    2015-01-01

    Full Text Available Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.

  14. Germinação de sementes de urucu em diferentes temperaturas e substratos Germination of annatto seeds under different temperatures and substrates

    Directory of Open Access Journals (Sweden)

    Renata Vianna Lima

    2007-08-01

    Full Text Available Objetivou-se, neste trabalho, analisar o comportamento germinativo das sementes de urucu cultivar Casca Verde, com e sem escarificação, sob regime de diferentes temperaturas e substratos. O trabalho foi realizado no Laboratório de Tecnologia e Análise de Sementes do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES. O delineamento experimental utilizado foi o inteiramente casualizado, num esquema fatorial 2x6x4 (dois tratamentos físicos nas sementes, seis substratos e quatro temperaturas, totalizando 48 tratamentos, com quatro repetições de 50 sementes. Os tratamentos físicos foram: as sementes intactas e as sementes escarificadas; os substratos foram: a areia, a vermiculita, a fibra de coco, o pó de serra, o Plantmax e o rolo de papel Germitest ; e, as temperaturas testadas foram constantes de 20, 25 e 30ºC e alternada de 20-30ºC. Os dados foram submetidos à análise de variância e as médias comparadas pelo teste de Tukey. Os resultados obtidos evidenciaram maior porcentagem de germinação das sementes de urucu, semeadas nos substratos areia, vermiculita e rolo de papel; as temperaturas de 25, 30 e 20-30ºC foram mais adequadas para testes de germinação dessas sementes.This work was carried out with the objective to verify the effect of temperature and substrate on germinative capacity of annatto seeds. This study was developed in the Laboratories of Seed Analysis of Agrarian Science Center that belongs to the Universidade Federal do Espirito Santo (CCA-UFES, located in Alegre ES, Brazil. The experimental design was 2x6x4 factorial involving: (i two treatments in the seeds, (ii six substrates, and (iii four temperatures. Four replications were realized using 50 seeds at each experimental unit. Treatments refer to intact and scarified seeds. Substrates utilized were sand, vermiculite, coconut fiber, wood fiber, Plantmax and paper roll. Temperatures employed were 20, 25, 30 and 20-30ºC. Average

  15. Neural networks

    International Nuclear Information System (INIS)

    Denby, Bruce; Lindsey, Clark; Lyons, Louis

    1992-01-01

    The 1980s saw a tremendous renewal of interest in 'neural' information processing systems, or 'artificial neural networks', among computer scientists and computational biologists studying cognition. Since then, the growth of interest in neural networks in high energy physics, fueled by the need for new information processing technologies for the next generation of high energy proton colliders, can only be described as explosive

  16. Crambe seed germination under the influence of temperature and substrateGerminação de sementes de crambe em diferentes temperaturas e substratos

    Directory of Open Access Journals (Sweden)

    Felipe Gustavo Pilau

    2012-10-01

    Full Text Available Crambe, native from Mediterranean zone, belonging to the Brassicaceae family, is a rustic crop that e merges as a productive alternative, with a potential for the production of feedstock for biodiesel, with emphasis on its oil quality. This study aimed to evaluate the effects of temperature and substrate on seed germination crambe, FMS Brilhante cultivar. The experimental design was completely randomized in a factorial 2 x 7 (temperature x substrate with 4 replicates of 25 seeds. The seeds were placed on substrates Germitest® paper and clay soil + sand and subjected to temperatures of 9°C, 12°C, 15°C, 20°C, 25°C, 30°C and 35°C. Seed germination percentage and germination speed index were evaluated. The temperature of 25°C is ideal for testing the seed germination of crambe. Temperatures below of 12°C and above of 30°C are detrimental to the germination process. The substrates germitest® paper and sand + clay soil are suitable for testing germination, since observed temperature of execution. The use of paper substrate at temperatures lower than 20°C underestimate the seed germination.Pertencente a família das Brassicaceae, nativo da zona Mediterrânea, o crambe é uma planta rústica que surge como mais uma alternativa produtiva, com potencial para a produção de matéria-prima para biodiesel, com destaque na qualidade de seu óleo. O trabalho teve por objetivo avaliar os efeitos de diferentes temperaturas e substratos na germinação de sementes de crambe, cultivar FMS Brilhante. O delineamento experimental foi o inteiramente casualizado no esquema fatorial 7 x 2 (temperaturas x substratos com 4 repetições de 25 sementes. As sementes foram colocadas em substratos papel Germitest® e solo argiloso + areia e submetidas ao teste de germinação sob temperaturas de 9°C, 12°C, 15°C, 20°C, 25°C, 30°C e 35°C. Foram avaliados a porcentagem e o índice de velocidade de germinação. A temperatura de 25°C é a ideal para a realiza

  17. Role of neural modulation in the pathophysiology of atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Shailesh Male

    2014-01-01

    Full Text Available Atrial-fibrillation (AF is the most common clinically encountered arrhythmia affecting over 1 per cent of population in the United States and its prevalence seems to be moving only in forward direction. A recent systemic review estimates global prevalence of AF to be 596.2 and 373.1 per 100,000 population in males and females respectively. Multiple mechanisms have been put forward in the pathogenesis of AF, however; multiple wavelet hypothesis is the most accepted theory so far. Similar to the conduction system of the heart, a neural network exists which surrounds the heart and plays an important role in formation of the substrate of AF and when a trigger is originated, usually from pulmonary vein sleeves, AF occurs. This neural network includes ganglionated plexi (GP located adjacent to pulmonary vein ostia which are under control of higher centers in normal people. When these GP become hyperactive owing to loss of inhibition from higher centers e.g. in elderly, AF can occur. We can control these hyperactive GP either by stimulating higher centers and their connections, e.g. vagus nerve stimulation or simply by ablating these GP. This review provides detailed information about the different proposed mechanisms underlying AF, the exact role of autonomic neural tone in the pathogenesis of AF and the possible role of neural modulation in the treatment of AF.

  18. Development of clonal matrices of australian red cedar in different substrates under fertilizer doses Desenvolvimento de matrizes clonais de cedro Australiano em diferentes substratos sob doses de fertilizantes

    Directory of Open Access Journals (Sweden)

    Bruno Peres Benatti

    2012-06-01

    Full Text Available In order to evaluate fertilizers doses in different substrates for growth and development of clonal matrices of Australian Red Cedar [Toona ciliata var. australis (F. Muell. Bahadur], an experiment was conducted in a greenhouse. Five substrates were evaluate, with proportions by volume, the first consisting of 100% of Multiplant florestal®, the second of 50% vermiculite, 20% carbonized rice hulls, 20% soil and 10% coconut fiber, the third with 50% soil and 50% sand, the fourth was composed by 50% Multiplant florestal®, 10% soil and 40% coconut fiber and the fifth with 65% of Multiplant florestal®, 25% vermiculite and 10% carbonized rice hulls. The fertilizers doses applied were 0.0; 0.3; 0.6; 1.2; 2.4 of fertilization suggested by Malavolta (1980 for vases. The characteristics evaluated were: collar diameter of the matrices, production of dry mater by shoots, root system and total and accumulation of nutrients by shoot at the end of the experimental period of 150 days. The Australian Red Cedar plants have high nutritional requirements, as showed by the better development obtained with higher fertilizer doses than those suggested by Malavolta (1980. The substrate three provided the worst development to clonal matrices while the substrates 1, 4 and 5 provided the best environment for the development considering all the fertilizer doses and all variables.Com o objetivo de avaliar diferentes substratos com taxas de fertilizantes para o crescimento e desenvolvimento de matrizes clonais de cedro australiano [Toona ciliata var. australis (F. Muell. Bahadur], foi realizado um experimento em casa de vegetação. Foram avaliados cinco substratos, com as proporções em volume, sendo o primeiro composto por 100% Multiplant florestal®, o segundo de 50% Vermiculita, 20% casca de arroz carbonizada, 20% terra e 10% fibra de coco, o terceiro com 50% terra e 50% areia, o quarto com proporção de 50% Multiplant florestal®, 10% terra e 40% de fibra de coco e

  19. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    Science.gov (United States)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  20. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Demultiplexer circuit for neural stimulation

    Science.gov (United States)

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  2. Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space--the roles of Brodmann areas 44 and 45.

    Science.gov (United States)

    Amunts, Katrin; Weiss, Peter H; Mohlberg, Hartmut; Pieperhoff, Peter; Eickhoff, Simon; Gurd, Jennifer M; Marshall, John C; Shah, Nadim J; Fink, Gereon R; Zilles, Karl

    2004-05-01

    We investigated neural activations underlying a verbal fluency task and cytoarchitectonic probabilistic maps of Broca's speech region (Brodmann's areas 44 and 45). To do so, we reanalyzed data from a previous functional magnetic resonance imaging (fMRI) [Brain 125 (2002) 1024] and from a cytoarchitectonic study [J. Comp. Neurol. 412 (1999) 319] and developed a method to combine both data sets. In the fMRI experiment, verbal fluency was investigated in 11 healthy volunteers, who covertly produced words from predefined categories. A factorial design was used with factors verbal class (semantic vs. overlearned fluency) and switching between categories (no vs. yes). fMRI data analysis employed SPM99 (Statistical Parametric Mapping). Cytoarchitectonic maps of areas 44 and 45 were derived from histologic sections of 10 postmortem brains. Both the in vivo fMRI and postmortem MR data were warped to a common reference brain using a new elastic warping tool. Cytoarchitectonic probability maps with stereotaxic information about intersubject variability were calculated for both areas and superimposed on the functional data, which showed the involvement of left hemisphere areas with verbal fluency relative to the baseline. Semantic relative to overlearned fluency showed greater involvement of left area 45 than of 44. Thus, although both areas participate in verbal fluency, they do so differentially. Left area 45 is more involved in semantic aspects of language processing, while area 44 is probably involved in high-level aspects of programming speech production per se. The combination of functional data analysis with a new elastic warping tool and cytoarchitectonic maps opens new perspectives for analyzing the cortical networks involved in language.

  3. Evidence for Substrate Influence on Artificial Substrate Invertebrate Communities.

    Science.gov (United States)

    Phillips, Iain D; Prestie, Kate S

    2017-08-01

    Cobble baskets are frequently used as a tool to measure differences in benthic macroinvertebrate communities between waterbodies; however, underlying differences in substrate type may influence the resultant colonization of baskets, misrepresenting communities. This study tests the hypothesis that cobble basket placement influences the resulting benthic macroinvertebrate community. Cobble basket arrays (n = 4) were deployed in Dog Lake, Saskatchewan, in 2011 (97 d) and 2012 (95 d) on cobble habitats and soft or sandy substrates ∼100 m apart. Baskets placed on cobble substrate had significantly higher Shannon-Weaver diversity relative to those placed on soft substrate in both years, and higher % EPT (Ephemeroptera Plecoptera Trichoptera) in 2011, but total density was not significantly different. Nonmetric multidimensional scaling revealed that the community was different between both treatments, characterized by higher densities of Gammarus lacustris Sars in baskets placed on soft sediment in both years, higher densities of Aeshna sp. and Mystacides sp. on cobble substrate in 2011, and higher densities of Helobdella stagnalis (L.) and Glossophinia complanata (L.) on cobble substrate in 2012. The results were consistent with the hypothesis that baskets placed on cobble substrate versus soft substrate will result in differing community colonization. The resulting recommendation for monitoring and assessment using cobble baskets in lakes is that baskets be placed on comparable substrate type when comparing between lakes, and that cobble beds be chosen as a more appropriate substrate for deployment, as the added habitat complexity of baskets on soft sediment may act as an attractant and not reflect the true community composition of that habitat. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  5. Functional neural correlates of social approval in schizophrenia.

    Science.gov (United States)

    Makowski, Carolina S; Lepage, Martin; Harvey, Philippe-Olivier

    2016-03-01

    Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.

    2016-01-01

    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial st...

  7. Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate.

    Science.gov (United States)

    Lazzara, Silvia; Militello, Marcello; Carrubba, Alessandra; Napoli, Edoardo; Saia, Sergio

    2017-05-01

    St. John's Wort (Hypericum perforatum) is a perennial herb able to produce water-soluble active ingredients (a.i.), mostly in flowers, with a wide range of medicinal and biotechnological uses. However, information about the ability of arbuscular mycorrhizal fungi (AMF) to affect its biomass accumulation, flower production, and concentration of a.i. under contrasting nutrient availability is still scarce. In the present experiment, we evaluated the role of AMF on growth, flower production, and concentration of bioactive secondary metabolites (hypericin, pseudohypericin, and hyperforin) of H. perforatum under contrasting P availability. AMF stimulated the production of aboveground biomass under low P conditions and increased the production of root biomass. AMF almost halved the number of flowers per plant by means of a reduction of the number of flower-bearing stems per plant under high P availability and through a lower number of flowers per stem in the low-P treatment. Flower hyperforin concentration was 17.5% lower in mycorrhizal than in non-mycorrhizal plants. On the contrary, pseudohypericin and hypericin concentrations increased by 166.8 and 279.2%, respectively, with AMF under low P availability, whereas no effect of AMF was found under high P availability. These results have implications for modulating the secondary metabolite production of H. perforatum. However, further studies are needed to evaluate the competition for photosynthates between AMF and flowers at different nutrient availabilities for both plant and AM fungus.

  8. Critical Analysis of Mottling and its Impact on Various Grades of Paper Substrates Printed under Conventional Sheet Fed Offset, Dry Toner & Liquid Toner Based Digital Print Engines

    Directory of Open Access Journals (Sweden)

    Rajendrakumar Anayath

    2016-03-01

    Full Text Available Mottle is one of the print quality factors which highly affect the final print in any printing system. Print mottle is without doubt one of the most important factors regarding visual impression of print quality in any printing system. It is usually the result of uneven ink layer or non-uniform ink absorption across the paper surface and it is more prominently visible in middle tone images or areas of uniform colour such as solids and continuous tone screen images. A mottled picture highly makes the picture smudgy and in most of the cases is not acceptable to the end user. It is required to print photographs with high sharpness and consistently from the very first print to the last print. Mottle pictures can also be observed visually and hence it needs utmost care and attention for enhancing the final print quality. Various types of mottles are generally resulted from the surface characteristics of the substrate, the setting and operation of the printing machines, and the behavior & characteristics of the printing ink.

  9. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  10. Magnetic domain-wall motion study under an electric field in a Finemet{sup ®} thin film on flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ngo Thi [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Mercone, Silvana, E-mail: silvana.mercone@univ-paris13.fr [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France); Moulin, Johan [Institut d' Electronique Fondamentale, UMR 8622 Université Paris Sud/CNRS, Orsay (France); Bahoui, Anouar El; Faurie, Damien; Zighem, Fatih; Belmeguenai, Mohamed; Haddadi, Halim [Laboratoire des Sciences des Procédés et des Matériaux, CNRS-Université Paris XIII, 93430 Villetaneuse (France)

    2015-01-01

    We study the influence of applied in-plane elastic strains on the static magnetic configuration of a 530 nm magnetostrictive FeCuNbSiB (Finemet{sup ®}) thin film. The in-plane strains are induced via the application of a voltage to a piezoelectric actuator on which the film/substrate system was glued. A quantitative characterization of the voltage dependence of the induced-strain at the surface of the film was performed using a digital image correlation technique. Magnetic Force Microscopy (MFM) images at remanence (H=0 Oe and U=0 V) clearly reveal the presence of weak stripe domains. The effect of the voltage-induced strain shows the existence of a voltage threshold value for the strike configuration break. For a maximum strain of ε{sub XX}∼0.5×10{sup −3} we succeed in destabilizing the stripes configuration helping the setting up of a complete homogeneous magnetic pattern. - Highlights: • Elastic strain effect on the magnetic domain structure of a Finemet/Kapton is investigated. • External loading is applied thanks to a piezo-actuator on which the sample is glued. • The amount of strains was measured by the Digital Image Correlation technique. • Magnetic Force Microscopy showed high mobility of magnetic stripes domains. • Bending, curving and branching of domains go into maze-like pattern.

  11. GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework.

    Science.gov (United States)

    Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi

    2018-04-01

    Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity

  12. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and roadmap for future research

    Science.gov (United States)

    Phillips, Mary L; Swartz, Holly A.

    2014-01-01

    Objective This critical review appraises neuroimaging findings in bipolar disorder in emotion processing, emotion regulation, and reward processing neural circuitry, to synthesize current knowledge of the neural underpinnings of bipolar disorder, and provide a neuroimaging research “roadmap” for future studies. Method We examined findings from all major studies in bipolar disorder that used fMRI, volumetric analyses, diffusion imaging, and resting state techniques, to inform current conceptual models of larger-scale neural circuitry abnormalities in bipolar disorder Results Bipolar disorder can be conceptualized in neural circuitry terms as parallel dysfunction in bilateral prefrontal cortical (especially ventrolateral prefrontal cortical)-hippocampal-amygdala emotion processing and emotion regulation neural circuitries, together with an “overactive” left-sided ventral striatal-ventrolateral and orbitofrontal cortical reward processing circuitry, that result in characteristic behavioral abnormalities associated with bipolar disorder: emotional lability, emotional dysregulation and heightened reward sensitivity. A potential structural basis for these functional abnormalities are gray matter decreases in prefrontal and temporal cortices, amygdala and hippocampus, and fractional anisotropy decreases in white matter tracts connecting prefrontal and subcortical regions. Conclusion Neuroimaging studies of bipolar disorder clearly demonstrate abnormalities in neural circuitries supporting emotion processing, emotion regulation and reward processing, although there are several limitations to these studies. Future neuroimaging research in bipolar disorder should include studies adopting dimensional approaches; larger studies examining neurodevelopmental trajectories in bipolar disorder and at-risk youth; multimodal neuroimaging studies using integrated systems approaches; and studies using pattern recognition approaches to provide clinically useful, individual

  13. Nitrogenated compounds' biofiltration under alternative bacterium fixation substrates Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos

    Directory of Open Access Journals (Sweden)

    Carlos Carroza

    2012-09-01

    Full Text Available This study compares the behavior of nitrification (NH4+, NO2- and NO3-, and performance, in terms of the surface TAN conversion rate (STR, volumetric TAN conversion rate (VTR and removal percentage of TAN (PTR among three fixation media of nitrifying bacteria (two alternatives (S1, S2 and one commercial (Co. The experiment was performed in two tests of 42 days each. Three isolated biofiltration systems were built for the experience, to which were added media colonized by bacteria as a "seed" to start the process of nitrification. Ammonium chloride (NH4Cl was attached as source of ammonium in reconditioned freshwater, also gradually adding inorganic carbon (HCO3- to maintain moderate water hardness. The average results for both tests indicate that the substrates S1 and S2 show a statistically similar behavior to the substrate Co (P > 0.05 during the first 33 days (until steady state. For the second test in terms of performance, STR values were 0.40, 0.39, 0.39 g TAN m-2 d-1 recorded for S2 and Co respectively; in terms of PRN, values were 92(3 9־/ and 93% for S1, S2 and Co, respectively. Regarding VTR, values of 72.31, 114.94, and 39.02 g TAN m-3 d-1 were recorded for S2 and Co respectively. Statistical analysis provided that for STR and PRN, no significant differences, were found. But for VTR, statistically significant differences between means were evaluated, registering for the S2 media the highest value of VTR.Se compara el comportamiento del proceso de nitrificación (NH4+, NO2- y NO3-, y el rendimiento, en términos de la tasa superficial de conversión de NAT, tasa volumétrica de conversión de NAT y porcentaje de remoción de NAT (PRN entre tres medios de fijación de bacterias nitrificantes, dos alternativos (S1, S2 y uno comercial (Co. La experiencia se realizó en dos pruebas de 42 días cada una. Se construyeron tres sistemas aislados para la experiencia, a los cuales se adicionaron medios colonizados por bacterias a modo de

  14. From UBE3A to Angelman syndrome: a substrate perspective

    Science.gov (United States)

    Sell, Gabrielle L.; Margolis, Seth S.

    2015-01-01

    Angelman syndrome (AS) is a debilitating neurodevelopmental disorder that is characterized by motor dysfunction, intellectual disability, speech impairment, seizures and common features of autism spectrum disorders (ASDs). Some of these AS related phenotypes can be seen in other neurodevelopmental disorders (Williams, 2011; Tan et al., 2014). AS patients commonly carry mutations that render the maternally inherited UBE3A gene non-functional. Duplication of the chromosomal region containing the UBE3A gene is associated with ASDs. Although the causative role for UBE3A gene mutations in AS is well established, a long-standing challenge in AS research has been to identify neural substrates of UBE3A, an E3 ubiquitin ligase. A prevailing hypothesis is that changes in UBE3A protein levels would alter the levels of a collection of protein substrates, giving rise to the unique phenotypic aspects of AS and possibly UBE3A associated ASDs. Interestingly, proteins altered in AS are linked to additional ASDs that are not previously associated with changes in UBE3A, indicating a possible molecular overlap underlying the broad-spectrum phenotypes of these neurogenetic disorders. This idea raises the possibility that there may exist a “one-size-fits-all” approach to the treatment of neurogenetic disorders with phenotypes overlapping AS. Furthermore, while a comprehensive list of UBE3A substrates and downstream affected pathways should be developed, this is only part of the story. The timing of when UBE3A protein functions, through either changes in UBE3A or possibly substrate expression patterns, appears to be critical for AS phenotype development. These data call for further investigation of UBE3A substrates and their timing of action relevant to AS phenotypes. PMID:26441497

  15. From UBE3A to Angelman syndrome: a substrate perspective

    Directory of Open Access Journals (Sweden)

    Gabrielle L Sell

    2015-09-01

    Full Text Available Angelman syndrome (AS is a debilitating neurodevelopmental disorder that is characterized by motor dysfunction, intellectual disability, speech impairment, seizures and common features of autism spectrum disorders (ASDs. Some of these AS related phenotypes can be seen in other neurodevelopmental disorders (Williams, 2011;Tan et al., 2014. AS patients commonly carry mutations that render the maternally inherited UBE3A gene nonfunctional. Duplication of the chromosomal region containing the UBE3A gene is associated with ASDs. Although the causative role for UBE3A gene mutations in AS is well established, a long-standing challenge in AS research has been to identify neural substrates of UBE3A, an E3 ubiquitin ligase. A prevailing hypothesis is that changes in UBE3A protein levels would alter the levels of a collection of protein substrates, giving rise to the unique phenotypic aspects of AS and possibly UBE3A associated ASDs. Interestingly, proteins altered in AS are linked to additional ASDs that are not previously associated with changes in UBE3A, indicating a possible molecular overlap underlying the broad-spectrum phenotypes of these neurogenetic disorders. This idea raises the possibility that there may exist a one-size-fits-all approach to the treatment of neurogenetic disorders with phenotypes overlapping AS. Furthermore, while a comprehensive list of UBE3A substrates and downstream affected pathways should be developed, this is only part of the story. The timing of when UBE3A protein functions, through either changes in UBE3A or possibly substrate expression patterns, appears to be critical for AS phenotype development. These data call for further investigation of UBE3A substrates and their timing of action relevant to AS phenotypes.

  16. Neural engineering

    CERN Document Server

    2013-01-01

    Neural Engineering, 2nd Edition, contains reviews and discussions of contemporary and relevant topics by leading investigators in the field. It is intended to serve as a textbook at the graduate and advanced undergraduate level in a bioengineering curriculum. This principles and applications approach to neural engineering is essential reading for all academics, biomedical engineers, neuroscientists, neurophysiologists, and industry professionals wishing to take advantage of the latest and greatest in this emerging field.

  17. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  18. Network-Based Substrate of Cognitive Reserve in Alzheimer's Disease.

    Science.gov (United States)

    Serra, Laura; Mancini, Matteo; Cercignani, Mara; Di Domenico, Carlotta; Spanò, Barbara; Giulietti, Giovanni; Koch, Giacomo; Marra, Camillo; Bozzali, Marco

    2017-01-01

    Cognitive reserve (CR) is known to modulate the clinical features of Alzheimer's disease (AD). This concept may be critical for the development of non-pharmacological interventions able to slow down patients' cognitive decline in the absence of disease-modifying treatments. We aimed at identifying the neurobiological substrates of CR (i.e., neural reserve) over the transition between normal aging and AD, by assessing the underlying brain networks and their topological properties. A cohort of 154 participants (n = 68 with AD, n = 61 with amnestic mild cognitive impairment (aMCI), and 25 healthy subjects) underwent resting-state functional MRI and neuropsychological testing. Within each group, participants were classified as having high or low CR, and functional connectivity measures were compared, within group, between high and low CR individuals. Network-based statistics and topological network properties derived from graph theory were explored. Connectivity differences between high and low CR were evident only for aMCI patients, with participants with high CR showing a significant increase of connectivity in a network involving mainly fronto-parietal nodes. Conversely, they showed significantly decreased connectivity in a network involving fronto-temporo-cerebellar nodes. Consistently, changes to topological measures were observed in either direction, and were associated with measures of global cognitive function. These findings support the hypothesis that CR impacts on neurodegenerative process in the early phase of AD only. In addition, they fit with the existence of a "neural reserve", characterized by specific neural networks and their efficiency. It remains to be demonstrated whether interventions later in life can modulate this "neural reserve".

  19. The neural basis of emotions varies over time: different regions go with onset- and offset-bound processes underlying emotion intensity.

    Science.gov (United States)

    Résibois, Maxime; Verduyn, Philippe; Delaveau, Pauline; Rotgé, Jean-Yves; Kuppens, Peter; Van Mechelen, Iven; Fossati, Philippe

    2017-08-01

    According to theories of emotion dynamics, emotions unfold across two phases in which different types of processes come to the fore: emotion onset and emotion offset. Differences in onset-bound processes are reflected by the degree of explosiveness or steepness of the response at onset, and differences in offset-bound processes by the degree of accumulation or intensification of the subsequent response. Whether onset- and offset-bound processes have distinctive neural correlates and, hence, whether the neural basis of emotions varies over time, still remains unknown. In the present fMRI study, we address this question using a recently developed paradigm that allows to disentangle explosiveness and accumulation. Thirty-one participants were exposed to neutral and negative social feedback, and asked to reflect on its contents. Emotional intensity while reading and thinking about the feedback was measured with an intensity profile tracking approach. Using non-negative matrix factorization, the resulting profile data were decomposed in explosiveness and accumulation components, which were subsequently entered as continuous regressors of the BOLD response. It was found that the neural basis of emotion intensity shifts as emotions unfold over time with emotion explosiveness and accumulation having distinctive neural correlates. © The Author (2017). Published by Oxford University Press.

  20. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20–160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S., E-mail: smammeri@yahoo.fr [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S. [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H.; Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria)

    2014-10-15

    Highlights: •Sputter yields were measured for gold thin films under keV Ar{sup +} ion bombardment. •RBS analysis was used to derive energy dependence of sputtering yield. •Surface effects under Ar{sup +} ion irradiation were studied by SEM and XRD analyses. -- Abstract: The induced sputtering and surface state modification of Au thin films bombarded by swift Ar{sup +} ions under normal incident angle have been studied over an energy range of (20–160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV {sup 4}He{sup +} ion beam were found to be consistent with previous data measured within the Ar{sup +} ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar{sup +} ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar{sup +} ion irradiation.

  1. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Quan Xiangchun, E-mail: xchquan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Tang Hua; Ma Jingyun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2011-01-30

    With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.

  2. A Neural Basis for the Acquired Capability for Suicide

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2016-08-01

    Full Text Available The high rate of fatal suicidal behavior in men is an urgent issue as highlighted in the public eye via news sources and media outlets. In this study, we have attempted to address this issue and understand the neural substrates underlying the gender differences in the rate of fatal suicidal behavior. The Interpersonal-Psychological Theory of Suicide (IPTS has proposed an explanation for the seemingly paradoxical relationship between gender and suicidal behavior, i.e. greater non-fatal suicide attempts by women but higher number of deaths by suicide in men. This theory states that possessing suicidal desire (due to conditions such as depression alone is not sufficient for a lethal suicide attempt. It is imperative for an individual to have acquired the capability for suicide (ACS along with suicidal desire in order to die by suicide. Therefore, higher levels of ACS in men may explain why men are more likely to die by suicide than women, despite being less likely to experience suicidal ideation or depression. In this study, we used activation likelihood estimation meta-analysis to investigate a potential ACS network that involves neural substrates underlying emotional stoicism, sensation seeking, pain tolerance, and fearlessness of death along with a potential depression network that involves neural substrates that underlie clinical depression. Brain regions commonly found in ACS and depression networks for males and females were further used as seeds to obtain regions functionally and structurally connected to them. We found that the male-specific networks were more widespread and diverse than the female-specific ones. Also, while the former involved motor regions such as the premotor cortex and cerebellum, the latter was dominated by limbic regions. This may support the fact that suicidal desire generally leads to fatal/decisive action in males while in females, it manifests as depression, ideation and generally non-fatal actions. The proposed

  3. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate.

    Science.gov (United States)

    Zhang, Hongcai; Yun, Sanyue; Song, Lingling; Zhang, Yiwen; Zhao, Yanyun

    2017-03-01

    The crustacean shells of crabs and shrimps produces quantities of by-products, leading to seriously environmental pollution and human health problems during industrial processing, yet they turned into high-value useful products, such as chitin and chitosan. To prepare them under large-scale submerged fermentation level, shrimp shell powders (SSPs) was fermented by successive three-step fermentation of Serratia marcescens B742, Lactobacillus plantarum ATCC 8014 and Rhizopus japonicus M193 to extract chitin and chitosan based on previously optimal conditions. Moreover, the key parameters was investigated to monitor the changes of resulted products during fermentation process. The results showed that the yield of prepared chitin and chitosan reached 21.35 and 13.11% with the recovery rate of 74.67 and 63.42%, respectively. The degree of deacetylation (DDA) and molecular mass (MM) of produced chitosan were 81.23% and 512.06kDa, respectively. The obtained chitin and chitosan was characterized using Fourier transform infrared spectrometer (FT-IR) and X-ray diffraction (XRD) analysis. The established microbial fermentation method can be applied for the industrial large-scale production of chitin and chitosan, while the use of chemical reagents was significantly reduced. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Substratos na aclimatização de Pfaffia glomerata (Spreng Pedersen produzida in vitro sob diferentes doses de sacarose Substrates in the acclimatization of Pfaffia glomerata (Spreng. Pedersen produced in vitro under different levels of sucrose

    Directory of Open Access Journals (Sweden)

    Etiane Caldeira Skrebsky

    2006-10-01

    Full Text Available Este trabalho teve como objetivo selecionar substratos para a aclimatização de plântulas de Pfaffia glomerata produzidas in vitro sob diferentes concentrações de sacarose. Os tratamentos consistiram de uma combinação bifatorial (5x3 entre cinco doses de sacarose (15, 30, 45, 60 e 75g L-1, presentes no meio de cultura in vitro, e três substratos [Plantmax® Hortaliças, Plantmax® + Solo (1:1 v/v e Vermiculita (granulometria média + Solo (ARGISSOLO VERMELHO Distrófico arênico (1:1 v/v] utilizados na aclimatização ex vitro. Foram realizadas determinações das características físicas e químicas dos substratos, bem como avaliações do crescimento e da sobrevivência das plantas tanto durante o cultivo in vitro como no ex vitro. Plantas provenientes do cultivo in vitro na presença de 45 a 60g L-1 de sacarose apresentaram melhor aclimatização ex vitro. As combinações dos substratos Vermiculita + solo (1:1 v/v e Plantmax® + solo (1:1 v/v proporcionaram maior crescimento às plantas durante a última fase de aclimatização (cultivo sob sombrite, provavelmente devido a possuírem maior porosidade total. Entretanto, o uso isolado de Plantmax® aumentou a sobrevivência das plantas cultivadas a campo, fato relacionado a esse substrato possuir os maiores valores de capacidade de retenção de água, de água facilmente disponível e de água disponível.This work was aimed at selecting substrates on the ex vitro acclimatization of Pfaffia glomerata produced in vitro under different sucrose levels. The treatments consisted of a bifactorial combination (5x3 between five sucrose levels (15, 30, 45, 60, and 75g L-1, present in the in vitro culture, and three substrates [Plantmax®; Plantmax® + soil (1:1 v/v, and vermiculite (middle size + soil (Paleudalf (1:1 v/v] used in the ex vitro acclimatization steps. Physical and chemical evaluations of the substrates were carried out as well as evaluations of plant growth and survival for both

  5. Advanced device for testing the electrical behavior of conductive coatings on flexible polymer substrates under oscillatory bending: comparison of coatings of sputtered indium-tin oxide and poly3,4ethylenedioxythiophene

    International Nuclear Information System (INIS)

    Königer, Tobias; Münstedt, Helmut

    2008-01-01

    A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles

  6. Neural components of altruistic punishment

    Directory of Open Access Journals (Sweden)

    Emily eDu

    2015-02-01

    Full Text Available Altruistic punishment, which occurs when an individual incurs a cost to punish in response to unfairness or a norm violation, may play a role in perpetuating cooperation. The neural correlates underlying costly punishment have only recently begun to be explored. Here we review the current state of research on the neural basis of altruism from the perspectives of costly punishment, emphasizing the importance of characterizing elementary neural processes underlying a decision to punish. In particular, we emphasize three cognitive processes that contribute to the decision to altruistically punish in most scenarios: inequity aversion, cost-benefit calculation, and social reference frame to distinguish self from others. Overall, we argue for the importance of understanding the neural correlates of altruistic punishment with respect to the core computations necessary to achieve a decision to punish.

  7. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  8. Neural recording and modulation technologies

    Science.gov (United States)

    Chen, Ritchie; Canales, Andres; Anikeeva, Polina

    2017-01-01

    In the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the capability of tools to probe the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not recapitulate the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices that are capable of simultaneously recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes and look at emergent directions inspired by the principles of neural transduction.

  9. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  10. Parâmetros fisiológicos de mudas de copaíba sob diferentes substratos e condições de sombreamento Physiological parameters in seedlings of copaiba under different shade conditions and substrates

    Directory of Open Access Journals (Sweden)

    Tiago Reis Dutra

    2012-07-01

    Full Text Available O presente trabalho teve como objetivo avaliar parâmetros fisiológicos de mudas de copaíba produzidas sob o efeito de diferentes níveis de sombreamento e tipos de substratos. O experimento teve a duração de 130 dias e foi conduzido em blocos casualizados no esquema fatorial 5x4, com cinco substratos: Bioplant®; 70% vermiculita + 30% casca de arroz carbonizada; 40% vermiculita + 30% casca de arroz carbonizada + 30% fibra de coco; 50% vermiculita + 30% casca de arroz carbonizada + 20% areia; 70% vermiculita + 15% casca de arroz carbonizada + 15% vermicomposto de resíduo de indústria têxtil; quatro níveis de sombreamento (100, 70, 50 e 30% do pleno sol e três repetições. O nível de sombreamento de 50% em relação ao pleno sol possibilitou a produção de mudas de copaíba com maiores teores de clorofila b e clorofila total, além de proporcionar os menores valores de transpiração diária e ao longo do dia das plantas. A área foliar, os teores de clorofila e a transpiração das mudas de copaíba independem do tipo de substrato, podendo ser produzidas em qualquer um dos meios de crescimento avaliados.This research aimed to evaluate physiological parameters of seedlings of copaiba produced under the effect of different shading levels and types of substrates. The experiment lasted 130 days and was conducted in randomized blocks in factorial scheme 5x4 with five substrates: Bioplant®, 70% vermiculite + 30% rice hulls, 40% vermiculite + 30% rice charred hulls + 30% fiber coconut, 50% vermiculite + 30% rice charred hulls + 20% sand, 70% vermiculite + 15% rice charred hulls + 15% vermicompost residue of textile industry; four shading levels (100, 70, 50 and 30% full sun and three replications. The shade level of 50% compared to full sun, enabled the production of seedlings of Copaiba with higher concentrations of chlorophyll b and total chlorophyll, and provided the lowest daily transpiration throughout the day and the plants. The leaf

  11. Neural Networks

    Directory of Open Access Journals (Sweden)

    Schwindling Jerome

    2010-04-01

    Full Text Available This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p. corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  12. The neural bases of key competencies of emotional intelligence.

    Science.gov (United States)

    Krueger, Frank; Barbey, Aron K; McCabe, Kevin; Strenziok, Maren; Zamboni, Giovanna; Solomon, Jeffrey; Raymont, Vanessa; Grafman, Jordan

    2009-12-29

    Emotional intelligence (EI) refers to a set of competencies that are essential features of human social life. Although the neural substrates of EI are virtually unknown, it is well established that the prefrontal cortex (PFC) plays a crucial role in human social-emotional behavior. We studied a unique sample of combat veterans from the Vietnam Head Injury Study, which is a prospective, long-term follow-up study of veterans with focal penetrating head injuries. We administered the Mayer-Salovey-Caruso Emotional Intelligence Test as a valid standardized psychometric measure of EI behavior to examine two key competencies of EI: (i) Strategic EI as the competency to understand emotional information and to apply it for the management of the self and of others and (ii) Experiential EI as the competency to perceive emotional information and to apply it for the integration into thinking. The results revealed that key competencies underlying EI depend on distinct neural PFC substrates. First, ventromedial PFC damage diminishes Strategic EI, and therefore, hinders the understanding and managing of emotional information. Second, dorsolateral PFC damage diminishes Experiential EI, and therefore, hinders the perception and integration of emotional information. In conclusion, EI should be viewed as complementary to cognitive intelligence and, when considered together, provide a more complete understanding of human intelligence.

  13. Imparting Icephobicity with Substrate Flexibility

    Science.gov (United States)

    Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos

    2017-11-01

    Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.

  14. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. FGF Signaling Transforms Non-neural Ectoderm into Neural Crest

    OpenAIRE

    Yardley, Nathan; García-Castro, Martín I.

    2012-01-01

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in respons...

  16. Mapping of the Underlying Neural Mechanisms of Maintenance and Manipulation in Visuo-Spatial Working Memory Using An n-back Mental Rotation Task: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G

    2016-01-01

    Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.

  17. The neural basis of bounded rational behavior

    Directory of Open Access Journals (Sweden)

    Coricelli, Giorgio

    2012-03-01

    Full Text Available Bounded rational behaviour is commonly observed in experimental games and in real life situations. Neuroeconomics can help to understand the mental processing underlying bounded rationality and out-of-equilibrium behaviour. Here we report results from recent studies on the neural basis of limited steps of reasoning in a competitive setting —the beauty contest game. We use functional magnetic resonance imaging (fMRI to study the neural correlates of human mental processes in strategic games. We apply a cognitive hierarchy model to classify subject’s choices in the experimental game according to the degree of strategic reasoning so that we can identify the neural substrates of different levels of strategizing. We found a correlation between levels of strategic reasoning and activity in a neural network related to mentalizing, i.e. the ability to think about other’s thoughts and mental states. Moreover, brain data showed how complex cognitive processes subserve the higher level of reasoning about others. We describe how a cognitive hierarchy model fits both behavioural and brain data.

    La racionalidad limitada es un fenómeno observado de manera frecuente tanto en juegos experimentales como en situaciones cotidianas. La Neuroeconomía puede mejorar la comprensión de los procesos mentales que caracterizan la racionalidad limitada; en paralelo nos puede ayudar a comprender comportamientos que violan el equilibrio. Nuestro trabajo presenta resultados recientes sobre la bases neuronales del razonamiento estratégico (y sus límite en juegos competitivos —como el juego del “beauty contest”. Estudiamos las bases neuronales del comportamiento estratégico en juegos con interacción entre sujetos usando resonancia magnética funcional (fMRI. Las decisiones de los participantes se clasifican acorde al grado de razonamiento estratégico: el llamado modelo de Jerarquías Cognitivas. Los resultados muestran una correlación entre niveles de

  18. Neural bases of accented speech perception

    Directory of Open Access Journals (Sweden)

    Patti eAdank

    2015-10-01

    Full Text Available The recognition of unfamiliar regional and foreign accents represents a challenging task for the speech perception system (Adank, Evans, Stuart-Smith, & Scott, 2009; Floccia, Goslin, Girard, & Konopczynski, 2006. Despite the frequency with which we encounter such accents, the neural mechanisms supporting successful perception of accented speech are poorly understood. Nonetheless, candidate neural substrates involved in processing speech in challenging listening conditions, including accented speech, are beginning to be identified. This review will outline neural bases associated with perception of accented speech in the light of current models of speech perception, and compare these data to brain areas associated with processing other speech distortions. We will subsequently evaluate competing models of speech processing with regards to neural processing of accented speech. See Cristia et al. (2012 for an in-depth overview of behavioural aspects of accent processing.

  19. An adaptive recurrent neural-network controller using a stabilization matrix and predictive inputs to solve a tracking problem under disturbances.

    Science.gov (United States)

    Fairbank, Michael; Li, Shuhui; Fu, Xingang; Alonso, Eduardo; Wunsch, Donald

    2014-01-01

    We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding gradients, and we propose a solution to this in the case of tracking problems, by introducing a stabilization matrix and by using carefully constrained context units. This solution allows us to achieve consistently lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing tracking targets. The case study we use is a renewable-energy generator application; that of producing an efficient controller for a three-phase grid-connected converter. The controller we produce can cope with the random variation of system parameters and fluctuating grid voltages. It produces tracking control with almost instantaneous response to changing reference states, and virtually zero oscillation. This compares very favorably to the classical proportional integrator (PI) controllers, which we show produce a much slower response and settling time. In addition, the RNN we propose exhibits better learning stability and convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic designs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The neural pathway underlying a numerical working memory task in abacus-trained children and associated functional connectivity in the resting brain.

    Science.gov (United States)

    Li, Yongxin; Hu, Yuzheng; Zhao, Ming; Wang, Yunqi; Huang, Jian; Chen, Feiyan

    2013-11-20

    Training can induce significant changes in brain functioning and behavioral performance. One consequence of training is changing the pattern of brain activation. Abacus traini