WorldWideScience

Sample records for underlying neural correlates

  1. Neural correlates underlying micrographia in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Neural correlates underlying musical semantic memory.

    Science.gov (United States)

    Groussard, M; Viader, F; Landeau, B; Desgranges, B; Eustache, F; Platel, H

    2009-07-01

    Numerous functional imaging studies have examined the neural basis of semantic memory mainly using verbal and visuospatial materials. Musical material also allows an original way to explore semantic memory processes. We used PET imaging to determine the neural substrates that underlie musical semantic memory using different tasks and stimuli. The results of three PET studies revealed a greater involvement of the anterior part of the temporal lobe. Concerning clinical observations and our neuroimaging data, the musical lexicon (and most widely musical semantic memory) appears to be sustained by a temporo-prefrontal cerebral network involving right and left cerebral regions.

  3. Neural correlates underlying micrographia in Parkinson’s disease

    Science.gov (United States)

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  4. Neural correlates underlying change in state self-esteem.

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Kitada, Ryo; Nakagawa, Eri; Kochiyama, Takanori; Sadato, Norihiro

    2018-01-29

    State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in maintenance of interpersonal relations. How others' appraisal is subjectively interpreted to change state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others' appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self-esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem.

  5. Identifying the Neural Correlates Underlying Social Pain: Implications for Developmental Processes

    Science.gov (United States)

    Eisenberger, Naomi I.

    2006-01-01

    Although the need for social connection is critical for early social development as well as for psychological well-being throughout the lifespan, relatively little is known about the neural processes involved in maintaining social connections. The following review summarizes what is known regarding the neural correlates underlying feeling of…

  6. Neural correlates underlying true and false associative memories.

    Science.gov (United States)

    Dennis, Nancy A; Johnson, Christina E; Peterson, Kristina M

    2014-07-01

    Despite the fact that associative memory studies produce a large number of false memories, neuroimaging analyses utilizing this paradigm typically focus only on neural activity mediating successful retrieval. The current study sought to expand on this prior research by examining the neural basis of both true and false associative memories. Though associative false memories are substantially different than those found in semantic or perceptual false memory paradigms, results suggest that associative false memories are mediated by similar neural mechanisms. Specifically, we found increased frontal activity that likely represents enhanced monitoring and evaluation compared to that needed for true memories and correct rejections. Results also indicated that true, and not false associative memories, are mediated by neural activity in the MTL, specifically the hippocampus. Finally, while activity in early visual cortex distinguished true from false memories, a lack of neural differences between hits and correct rejections failed to support previous findings suggesting that activity in early visual cortex represents sensory reactivation of encoding-related processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  8. Anger under control: neural correlates of frustration as a function of trait aggression.

    Science.gov (United States)

    Pawliczek, Christina M; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  9. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  10. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    Science.gov (United States)

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression. PMID:24205247

  11. The impact of abacus training on working memory and underlying neural correlates in young adults.

    Science.gov (United States)

    Dong, Shanshan; Wang, Chunjie; Xie, Ye; Hu, Yuzheng; Weng, Jian; Chen, Feiyan

    2016-09-22

    Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates. Copyright © 2016 IBRO. All rights reserved.

  12. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  13. Age-related neural correlates of cognitive task performance under increased postural load

    NARCIS (Netherlands)

    Van Impe, A; Bruijn, S M; Coxon, J P; Wenderoth, N; Sunaert, S; Duysens, J; Swinnen, S P

    2013-01-01

    Behavioral studies suggest that postural control requires increased cognitive control and visuospatial processing with aging. Consequently, performance can decline when concurrently performing a postural and a demanding cognitive task. We aimed to identify the neural substrate underlying this

  14. Neural correlates of erotic stimulation under different levels of female sexual hormones.

    Directory of Open Access Journals (Sweden)

    Birgit Abler

    Full Text Available Previous studies have demonstrated variable influences of sexual hormonal states on female brain activation and the necessity to control for these in neuroimaging studies. However, systematic investigations of these influences, particularly those of hormonal contraceptives as compared to the physiological menstrual cycle are scarce. In the present study, we investigated the hormonal modulation of neural correlates of erotic processing in a group of females under hormonal contraceptives (C group; N = 12, and a different group of females (nC group; N = 12 not taking contraceptives during their mid-follicular and mid-luteal phases of the cycle. We used functional magnetic resonance imaging to measure hemodynamic responses as an estimate of brain activation during three different experimental conditions of visual erotic stimulation: dynamic videos, static erotic pictures, and expectation of erotic pictures. Plasma estrogen and progesterone levels were assessed in all subjects. No strong hormonally modulating effect was detected upon more direct and explicit stimulation (viewing of videos or pictures with significant activations in cortical and subcortical brain regions previously linked to erotic stimulation consistent across hormonal levels and stimulation type. Upon less direct and less explicit stimulation (expectation, activation patterns varied between the different hormonal conditions with various, predominantly frontal brain regions showing significant within- or between-group differences. Activation in the precentral gyrus during the follicular phase in the nC group was found elevated compared to the C group and positively correlated with estrogen levels. From the results we conclude that effects of hormonal influences on brain activation during erotic stimulation are weak if stimulation is direct and explicit but that female sexual hormones may modulate more subtle aspects of sexual arousal and behaviour as involved in sexual

  15. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    OpenAIRE

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed tw...

  16. Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children.

    Science.gov (United States)

    Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod

    2013-10-01

    Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of abacus training on executive function development and underlying neural correlates in Chinese children.

    Science.gov (United States)

    Wang, Chunjie; Weng, Jian; Yao, Yuan; Dong, Shanshan; Liu, Yuqiu; Chen, Feiyan

    2017-10-01

    Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4 th and 6 th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6 th grade. From the 4 th to the 6 th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. The manipulative skill: Cognitive devices and their neural correlates underlying Machiavellian's decision making.

    Science.gov (United States)

    Bereczkei, Tamas

    2015-10-01

    Until now, Machiavellianism has mainly been studied in personality and social psychological framework, and little attention has been paid to the underlying cognitive and neural equipment. In light of recent findings, Machiavellian social skills are not limited to emotion regulation and "cold-mindedness" as many authors have recently stated, but linked to specific cognitive abilities. Although Machiavellians appear to have a relatively poor mindreading ability and emotional intelligence, they can efficiently exploit others which is likely to come from their flexible problem solving processes in changing environmental circumstances. The author proposed that Machiavellians have specialized cognitive domains of decision making, such as monitoring others' behavior, task orientation, reward seeking, inhibition of cooperative feelings, and choosing victims. He related the relevant aspects of cognitive functions to their neurological substrates, and argued why they make Machiavellians so successful in interpersonal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  20. Neural correlates of hate.

    Directory of Open Access Journals (Sweden)

    Semir Zeki

    Full Text Available In this work, we address an important but unexplored topic, namely the neural correlates of hate. In a block-design fMRI study, we scanned 17 normal human subjects while they viewed the face of a person they hated and also faces of acquaintances for whom they had neutral feelings. A hate score was obtained for the object of hate for each subject and this was used as a covariate in a between-subject random effects analysis. Viewing a hated face resulted in increased activity in the medial frontal gyrus, right putamen, bilaterally in premotor cortex, in the frontal pole and bilaterally in the medial insula. We also found three areas where activation correlated linearly with the declared level of hatred, the right insula, right premotor cortex and the right fronto-medial gyrus. One area of deactivation was found in the right superior frontal gyrus. The study thus shows that there is a unique pattern of activity in the brain in the context of hate. Though distinct from the pattern of activity that correlates with romantic love, this pattern nevertheless shares two areas with the latter, namely the putamen and the insula.

  1. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  2. The neural correlates of subjective utility of monetary outcome and probability weight in economic and in motor decision under risk

    Science.gov (United States)

    Wu, Shih-Wei; Delgado, Mauricio R.; Maloney, Laurence T.

    2011-01-01

    In decision under risk, people choose between lotteries that contain a list of potential outcomes paired with their probabilities of occurrence. We previously developed a method for translating such lotteries to mathematically equivalent motor lotteries. The probability of each outcome in a motor lottery is determined by the subject’s noise in executing a movement. In this study, we used functional magnetic resonance imaging in humans to compare the neural correlates of monetary outcome and probability in classical lottery tasks where information about probability was explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks where probability was implicit in the subjects’ own motor noise. We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) quantitatively represent the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC significantly tracked the distortion of such information in both tasks. Specifically, activity in mPFC represents probability information but not the physical properties of the stimuli correlated with this information. Together, the results demonstrate that mPFC represents probability from two distinct forms of decision under risk. PMID:21677166

  3. Neural correlates of exemplar novelty processing under different spatial attention conditions.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens Max; Düzel, Emrah; Schoenfeld, Mircea Ariel

    2009-11-01

    The detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli. Never-before-seen Mandelbrot-fractals absent of semantic content were employed as stimulus material. Consistent with current theories, novelty activated a widespread network of brain areas including the hippocampus. No activity, however, could be observed in reward-related areas with the novel stimuli absent of a semantic meaning employed here. In the perceptual part of the novelty-processing network a region in the lingual gyrus was found to specifically process novel events when they occurred outside the focus of spatial attention. These findings indicate that the initial detection of unexpected novel events generally occurs in specialized perceptual areas within the ventral visual stream, whereas activation of reward-related areas appears to be restricted to events that do possess a semantic content indicative of the biological relevance of the stimulus.

  4. What's the gist? The influence of schemas on the neural correlates underlying true and false memories.

    Science.gov (United States)

    Webb, Christina E; Turney, Indira C; Dennis, Nancy A

    2016-12-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an

  5. Neural and psychophysiological correlates of human performance under stress and high mental workload.

    Science.gov (United States)

    Mandrick, Kevin; Peysakhovich, Vsevolod; Rémy, Florence; Lepron, Evelyne; Causse, Mickaël

    2016-12-01

    In our anxiogenic and stressful world, the maintenance of an optimal cognitive performance is a constant challenge. It is particularly true in complex working environments (e.g. flight deck, air traffic control tower), where individuals have sometimes to cope with a high mental workload and stressful situations. Several models (i.e. processing efficiency theory, cognitive-energetical framework) have attempted to provide a conceptual basis on how human performance is modulated by high workload and stress/anxiety. These models predict that stress can reduce human cognitive efficiency, even in the absence of a visible impact on the task performance. Performance may be protected under stress thanks to compensatory effort, but only at the expense of a cognitive cost. Yet, the psychophysiological cost of this regulation remains unclear. We designed two experiments involving pupil diameter, cardiovascular and prefrontal oxygenation measurements. Participants performed the Toulouse N-back Task that intensively engaged both working memory and mental calculation processes under the threat (or not) of unpredictable aversive sounds. The results revealed that higher task difficulty (higher n level) degraded the performance and induced an increased tonic pupil diameter, heart rate and activity in the lateral prefrontal cortex, and a decreased phasic pupil response and heart rate variability. Importantly, the condition of stress did not impact the performance, but at the expense of a psychophysiological cost as demonstrated by lower phasic pupil response, and greater heart rate and prefrontal activity. Prefrontal cortex seems to be a central region for mitigating the influence of stress because it subserves crucial functions (e.g. inhibition, working memory) that can promote the engagement of coping strategies. Overall, findings confirmed the psychophysiological cost of both mental effort and stress. Stress likely triggered increased motivation and the recruitment of additional

  6. Neural correlates of viewing paintings

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Skov, Martin

    2014-01-01

    Many studies involving functional magnetic resonance imaging (fMRI) have exposed participants to paintings under varying task demands. To isolate neural systems that are activated reliably across fMRI studies in response to viewing paintings regardless of variation in task demands, a quantitative...... meta-analysis of fifteen experiments using the activation likelihood estimation (ALE) method was conducted. As predicted, viewing paintings was correlated with activation in a distributed system including the occipital lobes, temporal lobe structures in the ventral stream involved in object (fusiform...... gyrus) and scene (parahippocampal gyrus) perception, and the anterior insula-a key structure in experience of emotion. In addition, we also observed activation in the posterior cingulate cortex bilaterally-part of the brain's default network. These results suggest that viewing paintings engages not only...

  7. Neural Correlates of Gratitude

    Directory of Open Access Journals (Sweden)

    Glenn Ryan Fox

    2015-09-01

    Full Text Available Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  8. Neural correlates of gratitude.

    Science.gov (United States)

    Fox, Glenn R; Kaplan, Jonas; Damasio, Hanna; Damasio, Antonio

    2015-01-01

    Gratitude is an important aspect of human sociality, and is valued by religions and moral philosophies. It has been established that gratitude leads to benefits for both mental health and interpersonal relationships. It is thus important to elucidate the neurobiological correlates of gratitude, which are only now beginning to be investigated. To this end, we conducted an experiment during which we induced gratitude in participants while they underwent functional magnetic resonance imaging. We hypothesized that gratitude ratings would correlate with activity in brain regions associated with moral cognition, value judgment and theory of mind. The stimuli used to elicit gratitude were drawn from stories of survivors of the Holocaust, as many survivors report being sheltered by strangers or receiving lifesaving food and clothing, and having strong feelings of gratitude for such gifts. The participants were asked to place themselves in the context of the Holocaust and imagine what their own experience would feel like if they received such gifts. For each gift, they rated how grateful they felt. The results revealed that ratings of gratitude correlated with brain activity in the anterior cingulate cortex and medial prefrontal cortex, in support of our hypotheses. The results provide a window into the brain circuitry for moral cognition and positive emotion that accompanies the experience of benefitting from the goodwill of others.

  9. Neural correlates of personality: an integrative review.

    Science.gov (United States)

    Kennis, Mitzy; Rademaker, Arthur R; Geuze, Elbert

    2013-01-01

    This review examines the neural correlates of Gray's model (Gray and McNaughton, 2000; McNaughton and Corr, 2004), supplemented by a fourth dimension: constraint (Carver, 2005). The purpose of this review is to summarize findings from fMRI studies that tap on neural correlates of personality aspects in healthy subjects, in order to provide insight into the neural activity underlying human temperament. BAS-related personality traits were consistently reported to correlate positively to activity of the ventral and dorsal striatum and ventral PFC in response to positive stimuli. FFFS and BIS-related personality traits are positively correlated to activity in the amygdala in response to negative stimuli. There is limited evidence that constraint is associated with PFC and ACC activity. In conclusion, functional MRI research sheds some light on the specific neural networks underlying personality. It is clear that more sophisticated task paradigms are required, as well as personality questionnaires that effectively differentiate between BAS, FFFS, BIS, and constraint. Further research is proposed to potentially reveal new insight in the neural subsystems governing basic human behavior. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Neural Correlates of Choking Under Pressure: Athletes High in Sports Anxiety Monitor Errors More When Performance Is Being Evaluated.

    Science.gov (United States)

    Masaki, Hiroaki; Maruo, Yuya; Meyer, Alexandria; Hajcak, Greg

    2017-01-01

    We investigated the relationship between performance-related anxiety and the neural response to errors. Using the sport anxiety scale, we selected university athletes high in sports anxiety and low in sports anxiety. The two groups performed a spatial Stroop task while their performance was being evaluated by an experimenter and also during a control (i.e., no evaluation) condition. The error-related negativity was significantly larger during the evaluation than control condition among athletes who reported high performance-related anxiety. These results suggest that performance evaluation may make errors particularly aversive or salient for individuals who fail to perform well under pressure.

  11. The neural correlates of dreaming.

    Science.gov (United States)

    Siclari, Francesca; Baird, Benjamin; Perogamvros, Lampros; Bernardi, Giulio; LaRocque, Joshua J; Riedner, Brady; Boly, Melanie; Postle, Bradley R; Tononi, Giulio

    2017-06-01

    Consciousness never fades during waking. However, when awakened from sleep, we sometimes recall dreams and sometimes recall no experiences. Traditionally, dreaming has been identified with rapid eye-movement (REM) sleep, characterized by wake-like, globally 'activated', high-frequency electroencephalographic activity. However, dreaming also occurs in non-REM (NREM) sleep, characterized by prominent low-frequency activity. This challenges our understanding of the neural correlates of conscious experiences in sleep. Using high-density electroencephalography, we contrasted the presence and absence of dreaming in NREM and REM sleep. In both NREM and REM sleep, reports of dream experience were associated with local decreases in low-frequency activity in posterior cortical regions. High-frequency activity in these regions correlated with specific dream contents. Monitoring this posterior 'hot zone' in real time predicted whether an individual reported dreaming or the absence of dream experiences during NREM sleep, suggesting that it may constitute a core correlate of conscious experiences in sleep.

  12. Neural correlates of experimental trauma memory retrieval.

    Science.gov (United States)

    Gvozdanovic, Geraldine A; Stämpfli, Philipp; Seifritz, Erich; Rasch, Björn

    2017-04-17

    Traumatic memories such as intrusions and flashbacks play a major role in the development and maintenance of post-traumatic stress disorder (PTSD). A thorough understanding of the neural mechanisms underlying traumatic memories is indispensable for precise diagnosis, for personalized treatment and prevention. In particular, the identification of early neural predictor variables for intrusion development shortly after trauma exposure requires detailed investigation. Here, we examined the neural correlates of early experimental trauma memory retrieval in a traumatic film paradigm in 42 young healthy females, using both implicit and explicit retrieval tasks. We show that implicit experimental trauma retrieval specifically involved the retrosplenial cortex and the anterior cingulate cortex (ACC), while both retrieval tasks resulted in trauma-related activity in the posterior cingulate cortex (PCC) and the precuneus. Importantly, neural activity early after experimental trauma exposure predicted later intrusion development, with independent contributions from activity in the retrosplenial cortex (implicit retrieval) and the PCC (explicit retrieval). Additional analyses revealed a stronger connectivity between the bilateral amygdala and the supplementary motor area, precentral and paracentral lobule for the control group compared to the experimental trauma group. Our study gives new insights in the neural correlates of experimental trauma memory retrieval and their predictive value for subsequent symptom development. Our results could provide the basis for personalized early treatment and prevention of PTSD. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Neural Correlates of Intolerance of Uncertainty in Clinical Disorders.

    Science.gov (United States)

    Wever, Mirjam; Smeets, Paul; Sternheim, Lot

    2015-01-01

    Intolerance of uncertainty is a key contributor to anxiety-related disorders. Recent studies highlight its importance in other clinical disorders. The link between its clinical presentation and the underlying neural correlates remains unclear. This review summarizes the emerging literature on the neural correlates of intolerance of uncertainty. In conclusion, studies focusing on the neural correlates of this construct are sparse, and findings are inconsistent across disorders. Future research should identify neural correlates of intolerance of uncertainty in more detail. This may unravel the neurobiology of a wide variety of clinical disorders and pave the way for novel therapeutic targets.

  14. Echoes in correlated neural systems

    International Nuclear Information System (INIS)

    Helias, M; Tetzlaff, T; Diesmann, M

    2013-01-01

    Correlations are employed in modern physics to explain microscopic and macroscopic phenomena, like the fractional quantum Hall effect and the Mott insulator state in high temperature superconductors and ultracold atoms. Simultaneously probed neurons in the intact brain reveal correlations between their activity, an important measure to study information processing in the brain that also influences the macroscopic signals of neural activity, like the electroencephalogram (EEG). Networks of spiking neurons differ from most physical systems: the interaction between elements is directed, time delayed, mediated by short pulses and each neuron receives events from thousands of neurons. Even the stationary state of the network cannot be described by equilibrium statistical mechanics. Here we develop a quantitative theory of pairwise correlations in finite-sized random networks of spiking neurons. We derive explicit analytic expressions for the population-averaged cross correlation functions. Our theory explains why the intuitive mean field description fails, how the echo of single action potentials causes an apparent lag of inhibition with respect to excitation and how the size of the network can be scaled while maintaining its dynamical state. Finally, we derive a new criterion for the emergence of collective oscillations from the spectrum of the time-evolution propagator. (paper)

  15. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  16. Using Brain Stimulation to Disentangle Neural Correlates of Conscious Vision

    Directory of Open Access Journals (Sweden)

    Tom Alexander de Graaf

    2014-09-01

    Full Text Available Research into the neural correlates of consciousness (NCCs has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as fMRI or EEG do not always afford inference on the role these brain processes play in conscious vision. Such empirical neural correlates of consciousness could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical neural correlates of consciousness.

  17. Neural correlates of consciousness: progress and problems.

    Science.gov (United States)

    Koch, Christof; Massimini, Marcello; Boly, Melanie; Tononi, Giulio

    2016-05-01

    There have been a number of advances in the search for the neural correlates of consciousness--the minimum neural mechanisms sufficient for any one specific conscious percept. In this Review, we describe recent findings showing that the anatomical neural correlates of consciousness are primarily localized to a posterior cortical hot zone that includes sensory areas, rather than to a fronto-parietal network involved in task monitoring and reporting. We also discuss some candidate neurophysiological markers of consciousness that have proved illusory, and measures of differentiation and integration of neural activity that offer more promising quantitative indices of consciousness.

  18. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).

    Science.gov (United States)

    Justen, C; Herbert, C; Werner, K; Raab, M

    2014-02-14

    Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. Participants (N=14) performed an auditory self-other identification task with EEG. Data was then subjected to a subsequent standardized low-resolution brain electromagnetic tomography (sLORETA) analysis (source localization analysis). Differences between conditions were assessed using t-statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. What’s the Gist? The influence of schemas on the neural correlates underlying true and false memories

    Science.gov (United States)

    Webb, Christina E.; Turney, Indira C.; Dennis, Nancy A.

    2017-01-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an

  20. Neural Correlates of Craving in Methamphetamine Abuse

    Directory of Open Access Journals (Sweden)

    Fanak Shahmohammadi

    2016-07-01

    Conclusion: This study presented a novel and noninvasive method based on neural correlates to discriminate healthy individuals from methamphetamine drug abusers. This method can be employed in treatment and monitoring of the methamphetamine abuse.

  1. The neural correlates of beauty comparison.

    Science.gov (United States)

    Kedia, Gayannée; Mussweiler, Thomas; Mullins, Paul; Linden, David E J

    2014-05-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes.

  2. Neural correlates of cue-unique outcome expectations under differential outcomes training: an fMRI study.

    Science.gov (United States)

    Mok, Leh Woon; Thomas, Kathleen M; Lungu, Ovidiu V; Overmier, J Bruce

    2009-04-10

    In conditional discriminative choice learning, one learns the relations between discriminative/cue stimuli, associated choices, and their outcomes. When each correct cue-choice occurrence is followed by a cue-unique trial outcome (differential outcomes, DO, procedure), learning is faster and more accurate than when all correct cue-choice occurrences are followed by a common outcome (CO procedure)--differential outcomes effect (DOE). Superior DO performance is theorized to be mediated by the additional learning of cue-unique outcome expectations that "enrich" the prospective code available over the delay between cue and choice. We anticipated that such learned expectations comprise representations of expected outcomes. Here, we conducted an event-related functional MR imaging (fMRI) analysis of healthy adults who trained concurrently in two difficult but similar perceptual discrimination tasks under DO and CO procedures, respectively, and displayed the DOE. Control participants performed related tasks that differentially biased them towards delay-period retrospection versus prospection. Indeed, when differential outcomes were sensory-perceptual events (visual vs. auditory), delay-period expectations were experienced as sensory-specific imagery of the respectively expected outcome content, generated by sensory-specific cortices. Visual-specific imagery additionally activated stimulus-specific representations in prefrontal, lateral and medial frontal, fusiform and cerebellar regions, whereas auditory-specific imagery recruited claustrum/insula. Posterior parietal cortex (PPC), BA 39, was non-modality specific in mediating delay-period cue-unique outcome expectations. Greater hippocampal involvement in retrospection than prospection contrasted against the PPC's role in prospection. Time course analyses of hippocampal versus PPC responses suggest the DOE derives from an earlier transition from retrospection to prospection, which taps into long-term associative memory

  3. Neural correlates of pediatric obesity.

    Science.gov (United States)

    Bruce, Amanda S; Martin, Laura E; Savage, Cary R

    2011-06-01

    Childhood obesity rates have increased over the last 40 years and have a detrimental impact on public health. While the causes of the obesity epidemic are complex, obesity ultimately arises from chronic imbalances between energy intake and expenditure. An emerging area of research in obesity has focused on the role of the brain in evaluating the rewarding properties of food and making decisions about what and how much to eat. This article reviews recent scientific literature regarding the brain's role in pediatric food motivation and childhood obesity. The article will begin by reviewing some of the recent literature discussing challenges associated with neuroimaging in children and the relevant developmental brain changes that occur in childhood and adolescence. The article will then review studies regarding neural mechanisms of food motivation and the ability to delay gratification in children and how these responses differ in obese compared to healthy weight children. Increasing our understanding about how brain function and behavior may differ in children will inform future research, obesity prevention, and interventions targeting childhood obesity. Copyright © 2011. Published by Elsevier Inc.

  4. Neural correlates of rhythmic expectancy

    Directory of Open Access Journals (Sweden)

    Theodore P. Zanto

    2006-01-01

    Full Text Available Temporal expectancy is thought to play a fundamental role in the perception of rhythm. This review summarizes recent studies that investigated rhythmic expectancy by recording neuroelectric activity with high temporal resolution during the presentation of rhythmic patterns. Prior event-related brain potential (ERP studies have uncovered auditory evoked responses that reflect detection of onsets, offsets, sustains,and abrupt changes in acoustic properties such as frequency, intensity, and spectrum, in addition to indexing higher-order processes such as auditory sensory memory and the violation of expectancy. In our studies of rhythmic expectancy, we measured emitted responses - a type of ERP that occurs when an expected event is omitted from a regular series of stimulus events - in simple rhythms with temporal structures typical of music. Our observations suggest that middle-latency gamma band (20-60 Hz activity (GBA plays an essential role in auditory rhythm processing. Evoked (phase-locked GBA occurs in the presence of physically presented auditory events and reflects the degree of accent. Induced (non-phase-locked GBA reflects temporally precise expectancies for strongly and weakly accented events in sound patterns. Thus far, these findings support theories of rhythm perception that posit temporal expectancies generated by active neural processes.

  5. Neural correlates of viewing paintings

    DEFF Research Database (Denmark)

    Vartanian, Oshin; Skov, Martin

    2014-01-01

    meta-analysis of fifteen experiments using the activation likelihood estimation (ALE) method was conducted. As predicted, viewing paintings was correlated with activation in a distributed system including the occipital lobes, temporal lobe structures in the ventral stream involved in object (fusiform...... gyrus) and scene (parahippocampal gyrus) perception, and the anterior insula-a key structure in experience of emotion. In addition, we also observed activation in the posterior cingulate cortex bilaterally-part of the brain's default network. These results suggest that viewing paintings engages not only...

  6. Neural Correlates of Intolerance of Uncertainty in Clinical Disorders

    NARCIS (Netherlands)

    Wever, M.; Smeets, P.A.M.; Sternheim, L.

    2015-01-01

    Intolerance of uncertainty is a key contributor to anxiety-related disorders. Recent studies highlight its importance in other clinical disorders. The link between its clinical presentation and the underlying neural correlates remains unclear. This review summarizes the emerging literature on the

  7. Using brain stimulation to disentangle neural correlates of conscious vision.

    Science.gov (United States)

    de Graaf, Tom A; Sack, Alexander T

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.

  8. Using brain stimulation to disentangle neural correlates of conscious vision

    Science.gov (United States)

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  9. Isolating neural correlates of conscious perception from neural correlates of reporting one’s perception

    Directory of Open Access Journals (Sweden)

    Michael A Pitts

    2014-10-01

    Full Text Available To isolate neural correlates of conscious perception (NCCs, a standard approach has been to contrast neural activity elicited by identical stimuli of which subjects are aware versus unaware. Because conscious experience is private, determining whether a stimulus was consciously perceived requires subjective report: e.g., button-presses indicating detection, visibility ratings, verbal reports, etc. This reporting requirement introduces a methodological confound when attempting to isolate NCCs: The neural processes responsible for accessing and reporting one’s percept are difficult to distinguish from those underlying the conscious percept itself. Here, we review recent attempts to circumvent this issue via a modified inattentional blindness paradigm (Pitts, Martinez, & Hillyard, 2012 and present new data from a backward masking experiment in which task-relevance and visual awareness were manipulated in a 2x2 crossed design. In agreement with our previous inattentional blindness results, stimuli that were consciously perceived yet not immediately accessed for report (aware, task-irrelevant condition elicited a mid-latency posterior ERP negativity (~200-240ms, while stimuli that were accessed for report (aware, task-relevant condition elicited additional components including a robust P3b (~380-480ms subsequent to the mid-latency negativity. Overall, these results suggest that some of the NCCs identified in previous studies may be more closely linked with accessing and maintaining perceptual information for reporting purposes than with encoding the conscious percept itself. An open question is whether the remaining NCC candidate (the ERP negativity at 200-240ms reflects visual awareness or object-based attention.

  10. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  11. The Neural Correlates of Intelligence Comparison.

    Science.gov (United States)

    Wen, Xue; Cant, Jonathan S; Xiang, Yanhui; Huang, Ruiwang; Mo, Lei

    2017-11-28

    Social comparison plays an important role in our daily life. Several studies have investigated the neural mechanism of social comparison; however, their conclusions remain controversial. The present study explored the neural correlates of intelligence comparison and nonsocial size comparison using functional magnetic resonance imaging and a distance effect paradigm. We found that both intelligence and size comparisons obeyed the behavioral distance effect-longer response times for near than far distances and this effect involved an overlapping frontal network including the dorsomedial prefrontal cortex and insula. In addition, compared with size comparisons, intelligence comparisons elicited increased activity in the precuneus and angular gyrus, but decreased activity in the inferior parietal lobe. Furthermore, the analysis of seed-based functional connectivity complemented these neural commonalities and differences. Our findings suggest that social and nonsocial comparisons may rely on a common core mechanism, but this mechanism may be supplemented by different domain-specific cognitive components. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Simulating the neural correlates of stuttering.

    Science.gov (United States)

    den Ouden, Dirk-Bart; Montgomery, Allen; Adams, Charley

    2014-08-01

    For functional neuroimaging studies of stuttering, two challenges are (1) the elicitation of naturally stuttered versus fluent speech and (2) the separation of activation associated with abnormal motor execution from activation that reflects the cognitive substrates of stuttering. This paper reports on a proof-of-concept study, in which a single-subject approach was applied to address these two issues. A stuttering speaker used his insight into his own stuttering behavior to create a list of stutter-prone words versus a list of "fluent" words. He was then matched to a non-stuttering speaker, who imitated the specific articulatory and orofacial motor pattern of the stuttering speaker. Both study participants performed a functional MRI experiment of single word reading, each being presented with the same lexical items. Results suggest that the generally observed right-hemisphere lateralization appears to reflect a true neural correlate of stuttering. Some of the classically reported activation associated with stuttering appears to be driven more by nonspecific motor patterns than by cognitive substrates of stuttering, while anterior cingulate activation may reflect awareness of (upcoming) dysfluencies. This study shows that it is feasible to match stuttering speakers' utterances more closely to simulated stutters for the investigation of neural correlates of real stuttering. Significant main effects and contrast effects were obtained for the differences between fluent and stuttered speech, and right-hemisphere lateralization associated with real stuttered speech was shown in a single subject.

  13. Neural correlates of merging number words.

    Science.gov (United States)

    Hung, Yi-Hui; Pallier, Christophe; Dehaene, Stanislas; Lin, Yi-Chen; Chang, Acer; Tzeng, Ovid J-L; Wu, Denise H

    2015-11-15

    Complex number words (e.g., "twenty two") are formed by merging together several simple number words (e.g., "twenty" and "two"). In the present study, we explored the neural correlates of this operation and investigated to what extent it engages brain areas involved processing numerical quantity and linguistic syntactic structure. Participants speaking two typologically distinct languages, French and Chinese, were required to read aloud sequences of simple number words while their cerebral activity was recorded by functional magnetic resonance imaging. Each number word could either be merged with the previous ones (e.g., 'twenty three') or not (e.g., 'three twenty'), thus forming four levels ranging from lists of number words to complex numerals. When a number word could be merged with the preceding ones, it was named faster than when it could not. Neuroimaging results showed that the number of merges correlated with activation in the left inferior frontal gyrus and in the left inferior parietal lobule. Consistent findings across Chinese and French participants suggest that these regions serve as the neural bases for forming complex number words in different languages. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Neural dynamics underlying emotional transmissions between individuals.

    Science.gov (United States)

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-08-01

    Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social-emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social-emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. © The Author (2017). Published by Oxford University Press.

  15. Neural correlates of adaptation to voice identity.

    Science.gov (United States)

    Schweinberger, Stefan R; Walther, Christian; Zäske, Romi; Kovács, Gyula

    2011-11-01

    Apart from speech content, the human voice also carries paralinguistic information about speaker identity. Voice identification and its neural correlates have received little scientific attention up to now. Here we use event-related potentials (ERPs) in an adaptation paradigm, in order to investigate the neural representation and the time course of vocal identity processing. Participants adapted to repeated utterances of vowel-consonant-vowel (VCV) of one personally familiar speaker (either A or B), before classifying a subsequent test voice varying on an identity continuum between these two speakers. Following adaptation to speaker A, test voices were more likely perceived as speaker B and vice versa, and these contrastive voice identity aftereffects (VIAEs) were much more pronounced when the same syllable, rather than a different syllable, was used as adaptor. Adaptation induced amplitude reductions of the frontocentral N1-P2 complex and a prominent reduction of the parietal P3 component, for test voices preceded by identity-corresponding adaptors. Importantly, only the P3 modulation remained clear for across-syllable combinations of adaptor and test stimuli. Our results suggest that voice identity is contrastively processed by specialized neurons in auditory cortex within ∼250 ms after stimulus onset, with identity processing becoming less dependent on speech content after ∼300 ms. ©2011 The British Psychological Society.

  16. Neural correlates of admiration and compassion.

    Science.gov (United States)

    Immordino-Yang, Mary Helen; McColl, Andrea; Damasio, Hanna; Damasio, Antonio

    2009-05-12

    In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousness-related neural systems during the processing of pain-related (compassion) and non-pain-related (admiration) social emotions along 2 dimensions: emotions about other peoples' social/psychological conditions (AV, CSP) and emotions about others' physical conditions (AS, CPP). Consistent with theoretical accounts, the experience of all 4 emotions engaged brain regions involved in interoceptive representation and homeostatic regulation, including anterior insula, anterior cingulate, hypothalamus, and mesencephalon. However, the study also revealed a previously undescribed pattern within the posteromedial cortices (the ensemble of precuneus, posterior cingulate cortex, and retrosplenial region), an intriguing territory currently known for its involvement in the default mode of brain operation and in self-related/consciousness processes: emotions pertaining to social/psychological and physical situations engaged different networks aligned, respectively, with interoceptive and exteroceptive neural systems. Finally, within the anterior insula, activity correlated with AV and CSP peaked later and was more sustained than that associated with CPP. Our findings contribute insights on the functions of the posteromedial cortices and on the recruitment of the anterior insula in social emotions concerned with physical versus psychological pain.

  17. The Neural Correlates of Humor Creativity

    Science.gov (United States)

    Amir, Ori; Biederman, Irving

    2016-01-01

    Unlike passive humor appreciation, the neural correlates of real-time humor creation have been unexplored. As a case study for creativity, humor generation uniquely affords a reliable assessment of a creative product’s quality with a clear and relatively rapid beginning and end, rendering it amenable to neuroimaging that has the potential for reflecting individual differences in expertise. Professional and amateur “improv” comedians and controls viewed New Yorker cartoon drawings while being scanned. For each drawing, they were instructed to generate either a humorous or a mundane caption. Greater comedic experience was associated with decreased activation in the striatum and medial prefrontal cortex (mPFC), but increased activation in temporal association regions (TMP). Less experienced comedians manifested greater activation of mPFC, reflecting their deliberate search through TMP association space. Professionals, by contrast, tend to reap the fruits of their spontaneous associations with reduced reliance on top-down guided search. PMID:27932965

  18. AutoCorrel: a neural network event correlation approach

    Science.gov (United States)

    Dondo, Maxwell G.; Japkowicz, Nathalie; Smith, Reuben

    2006-04-01

    Intrusion detection analysts are often swamped by multitudes of alerts originating from installed intrusion detection systems (IDS) as well as logs from routers and firewalls on the networks. Properly managing these alerts and correlating them to previously seen threats is critical in the ability to effectively protect a network from attacks. Manually correlating events can be a slow tedious task prone to human error. We present a two-stage alert correlation approach involving an artificial neural network (ANN) autoassociator and a single parameter decision threshold-setting unit. By clustering closely matched alerts together, this approach would be beneficial to the analyst. In this approach, alert attributes are extracted from each alert content and used to train an autoassociator. Based on the reconstruction error determined by the autoassociator, closely matched alerts are grouped together. Whenever a new alert is received, it is automatically categorised into one of the alert clusters which identify the type of attack and its severity level as previously known by the analyst. If the attack is entirely new and there is no match to the existing clusters, this would be appropriately reflected to the analyst. There are several advantages to using an ANN based approach. First, ANNs acquire knowledge straight from the data without the need for a human expert to build sets of domain rules and facts. Second, once trained, ANNs can be very fast, accurate and have high precision for near real-time applications. Finally, while learning, ANNs perform a type of dimensionality reduction allowing a user to input large amounts of information without fearing an effciency bottleneck. Thus, rather than storing the data in TCP Quad format (which stores only seven event attributes) and performing a multi-stage query on reduced information, the user can input all the relevant information available and instead allow the neural network to organise and reduce this knowledge in an

  19. A neural network for noise correlation classification

    Science.gov (United States)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  20. Neural correlates of imagined and synaesthetic colours.

    Science.gov (United States)

    Rich, Anina N; Williams, Mark A; Puce, Aina; Syngeniotis, Ari; Howard, Matthew A; McGlone, Francis; Mattingley, Jason B

    2006-01-01

    The experience of colour is a core element of human vision. Colours provide important symbolic and contextual information not conveyed by form alone. Moreover, the experience of colour can arise without external stimulation. For many people, visual memories are rich with colour imagery. In the unusual phenomenon of grapheme-colour synaesthesia, achromatic forms such as letters, words and numbers elicit vivid experiences of colour. Few studies, however, have examined the neural correlates of such internally generated colour experiences. We used functional magnetic resonance imaging (fMRI) to compare patterns of cortical activity for the perception of external coloured stimuli and internally generated colours in a group of grapheme-colour synaesthetes and matched non-synaesthetic controls. In a voluntary colour imagery task, both synaesthetes and non-synaesthetes made colour judgements on objects presented as grey scale photographs. In a synaesthetic colour task, we presented letters that elicited synaesthetic colours, and asked participants to perform a localisation task. We assessed the neural activity underpinning these two different forms of colour experience that occur in the absence of chromatic sensory input. In both synaesthetes and non-synaesthetes, voluntary colour imagery activated the colour-selective area, V4, in the right hemisphere. In contrast, the synaesthetic colour task resulted in unique activity for synaesthetes in the left medial lingual gyrus, an area previously implicated in tasks involving colour knowledge. Our data suggest that internally generated colour experiences recruit brain regions specialised for colour perception, with striking differences between voluntary colour imagery and synaesthetically induced colours.

  1. Functional neural correlates of social approval in schizophrenia.

    Science.gov (United States)

    Makowski, Carolina S; Lepage, Martin; Harvey, Philippe-Olivier

    2016-03-01

    Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Neural correlates of face gender discrimination learning.

    Science.gov (United States)

    Su, Junzhu; Tan, Qingleng; Fang, Fang

    2013-04-01

    Using combined psychophysics and event-related potentials (ERPs), we investigated the effect of perceptual learning on face gender discrimination and probe the neural correlates of the learning effect. Human subjects were trained to perform a gender discrimination task with male or female faces. Before and after training, they were tested with the trained faces and other faces with the same and opposite genders. ERPs responding to these faces were recorded. Psychophysical results showed that training significantly improved subjects' discrimination performance and the improvement was specific to the trained gender, as well as to the trained identities. The training effect indicates that learning occurs at two levels-the category level (gender) and the exemplar level (identity). ERP analyses showed that the gender and identity learning was associated with the N170 latency reduction at the left occipital-temporal area and the N170 amplitude reduction at the right occipital-temporal area, respectively. These findings provide evidence for the facilitation model and the sharpening model on neuronal plasticity from visual experience, suggesting a faster processing speed and a sparser representation of face induced by perceptual learning.

  3. Neural correlates of amusia in williams syndrome.

    Science.gov (United States)

    Lense, Miriam D; Dankner, Nathan; Pryweller, Jennifer R; Thornton-Wells, Tricia A; Dykens, Elisabeth M

    2014-11-21

    Congenital amusia is defined by marked deficits in pitch perception and production. Though historically examined only in otherwise typically developing (TD) populations, amusia has recently been documented in Williams syndrome (WS), a genetic, neurodevelopmental disorder with a unique auditory phenotype including auditory sensitivities and increased emotional responsiveness to music but variable musical skill. The current study used structural T1-weighted magnetic resonance imaging and diffusion tensor imaging to examine neural correlates of amusia in 17 individuals with WS (4 of whom met criteria for amusia). Consistent with findings from TD amusics, amusia in WS was associated with decreased fractional anisotropy (FA) in the right superior longitudinal fasciculus (SLF). The relationship between amusia and FA in the inferior component of the SLF was particularly robust, withstanding corrections for cognitive functioning, auditory sensitivities, or musical training. Though the number of individuals with amusia in the study is small, results add to evidence for the role of fronto-temporal disconnectivity in congenital amusia and suggest that novel populations with developmental differences can provide a window into understanding gene-brain-behavior relationships that underlie musical behaviors.

  4. Neural Correlates of Amusia in Williams Syndrome

    Directory of Open Access Journals (Sweden)

    Miriam D. Lense

    2014-11-01

    Full Text Available Congenital amusia is defined by marked deficits in pitch perception and production. Though historically examined only in otherwise typically developing (TD populations, amusia has recently been documented in Williams syndrome (WS, a genetic, neurodevelopmental disorder with a unique auditory phenotype including auditory sensitivities and increased emotional responsiveness to music but variable musical skill. The current study used structural T1-weighted magnetic resonance imaging and diffusion tensor imaging to examine neural correlates of amusia in 17 individuals with WS (4 of whom met criteria for amusia. Consistent with findings from TD amusics, amusia in WS was associated with decreased fractional anisotropy (FA in the right superior longitudinal fasciculus (SLF. The relationship between amusia and FA in the inferior component of the SLF was particularly robust, withstanding corrections for cognitive functioning, auditory sensitivities, or musical training. Though the number of individuals with amusia in the study is small, results add to evidence for the role of fronto-temporal disconnectivity in congenital amusia and suggest that novel populations with developmental differences can provide a window into understanding gene-brain-behavior relationships that underlie musical behaviors.

  5. Neural Correlates of Abstract Rule Learning: An Event-Related Potential Study

    Science.gov (United States)

    Sun, Fang; Hoshi-Shiba, Reiko; Abla, Dilshat; Okanoya, Kazuo

    2012-01-01

    Abstract rule learning is a fundamental aspect of human cognition, and is essential for language acquisition. However, despite its importance, the neural mechanisms underlying abstract rule learning are still largely unclear. In this study, we investigated the neural correlates of abstract rule learning by recording auditory event-related…

  6. Neural correlates of abnormal sensory discrimination in laryngeal dystonia

    Directory of Open Access Journals (Sweden)

    Pichet Termsarasab

    2016-01-01

    Full Text Available Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD, who exhibited different clinical phenotypes (adductor vs. abductor forms and potentially different genotypes (sporadic vs. familial forms. We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  7. Neural correlates of sad feelings in healthy girls.

    Science.gov (United States)

    Lévesque, J; Joanette, Y; Mensour, B; Beaudoin, G; Leroux, J-M; Bourgouin, P; Beauregard, M

    2003-01-01

    Emotional development is indisputably one of the cornerstones of personality development during infancy. According to the differential emotions theory (DET), primary emotions are constituted of three distinct components: the neural-evaluative, the expressive, and the experiential. The DET further assumes that these three components are biologically based and functional nearly from birth. Such a view entails that the neural substrate of primary emotions must be similar in children and adults. Guided by this assumption of the DET, the present functional magnetic resonance imaging study was conducted to identify the neural correlates of sad feelings in healthy children. Fourteen healthy girls (aged 8-10) were scanned while they watched sad film excerpts aimed at externally inducing a transient state of sadness (activation task). Emotionally neutral film excerpts were also presented to the subjects (reference task). The subtraction of the brain activity measured during the viewing of the emotionally neutral film excerpts from that noted during the viewing of the sad film excerpts revealed that sad feelings were associated with significant bilateral activations of the midbrain, the medial prefrontal cortex (Brodmann area [BA] 10), and the anterior temporal pole (BA 21). A significant locus of activation was also noted in the right ventrolateral prefrontal cortex (BA 47). These results are compatible with those of previous functional neuroimaging studies of sadness in adults. They suggest that the neural substrate underlying the subjective experience of sadness is comparable in children and adults. Such a similitude provides empirical support to the DET assumption that the neural substrate of primary emotions is biologically based.

  8. Distinct neural correlates of episodic memory among apolipoprotein E alleles in cognitively normal elderly.

    Science.gov (United States)

    Shu, Hao; Shi, Yongmei; Chen, Gang; Wang, Zan; Liu, Duan; Yue, Chunxian; Ward, B Douglas; Li, Wenjun; Xu, Zhan; Chen, Guangyu; Guo, Qi-Hao; Xu, Jun; Li, Shi-Jiang; Zhang, Zhijun

    2018-02-02

    The apolipoprotein E (APOE) ε4 and ε2 alleles are acknowledged genetic factors modulating Alzheimer's disease (AD) risk and episodic memory (EM) deterioration in an opposite manner. Mounting neuroimaging studies describe EM-related brain activity differences among APOE alleles but remain limited in elucidating the underlying mechanism. Here, we hypothesized that the APOE ε2, ε3, and ε4 alleles have distinct EM neural substrates, as a manifestation of degeneracy, underlying their modulations on EM-related brain activity and AD susceptibility. To test the hypothesis, we identified neural correlates of EM function by correlating intrinsic hippocampal functional connectivity networks with neuropsychological EM performances in a voxelwise manner, with 129 cognitively normal elderly subjects (36 ε2 carriers, 44 ε3 homozygotes, and 49 ε4 carriers). We demonstrated significantly different EM neural correlates among the three APOE allele groups. Specifically, in the ε3 homozygotes, positive EM neural correlates were characterized in the Papez circuit regions; in the ε4 carriers, positive EM neural correlates involved the lateral temporal cortex, premotor cortex/sensorimotor cortex/superior parietal lobule, and cuneus; and in the ε2 carriers, negative EM neural correlates appeared in the bilateral frontopolar, posteromedial, and sensorimotor cortex. Further, in the ε4 carriers, the interaction between age and EM function occurred in the temporoparietal junction and prefrontal cortex. Our findings suggest that the underlying mechanism of APOE polymorphism modulations on EM function and AD susceptibility is genetically related to the neural degeneracy of EM function across APOE alleles.

  9. Neural dynamics underlying emotional transmissions between individuals

    OpenAIRE

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional...

  10. Automated identification of neural correlates of continuous variables.

    Science.gov (United States)

    Daly, Ian; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2015-03-15

    The electroencephalogram (EEG) may be described by a large number of different feature types and automated feature selection methods are needed in order to reliably identify features which correlate with continuous independent variables. A method is presented for the automated identification of features that differentiate two or more groups in neurological datasets based upon a spectral decomposition of the feature set. Furthermore, the method is able to identify features that relate to continuous independent variables. The proposed method is first evaluated on synthetic EEG datasets and observed to reliably identify the correct features. The method is then applied to EEG recorded during a music listening task and is observed to automatically identify neural correlates of music tempo changes similar to neural correlates identified in a previous study. Finally, the method is applied to identify neural correlates of music-induced affective states. The identified neural correlates reside primarily over the frontal cortex and are consistent with widely reported neural correlates of emotions. The proposed method is compared to the state-of-the-art methods of canonical correlation analysis and common spatial patterns, in order to identify features differentiating synthetic event-related potentials of different amplitudes and is observed to exhibit greater performance as the number of unique groups in the dataset increases. The proposed method is able to identify neural correlates of continuous variables in EEG datasets and is shown to outperform canonical correlation analysis and common spatial patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Neural correlates of math anxiety - an overview and implications.

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet.

  12. Neural correlates of math anxiety – an overview and implications

    Science.gov (United States)

    Artemenko, Christina; Daroczy, Gabriella; Nuerk, Hans-Christoph

    2015-01-01

    Math anxiety is a common phenomenon which can have a negative impact on numerical and arithmetic performance. However, so far little is known about the underlying neurocognitive mechanisms. This mini review provides an overview of studies investigating the neural correlates of math anxiety which provide several hints regarding its influence on math performance: while behavioral studies mostly observe an influence of math anxiety on difficult math tasks, neurophysiological studies show that processing efficiency is already affected in basic number processing. Overall, the neurocognitive literature suggests that (i) math anxiety elicits emotion- and pain-related activation during and before math activities, (ii) that the negative emotional response to math anxiety impairs processing efficiency, and (iii) that math deficits triggered by math anxiety may be compensated for by modulating the cognitive control or emotional regulation network. However, activation differs strongly between studies, depending on tasks, paradigms, and samples. We conclude that neural correlates can help to understand and explore the processes underlying math anxiety, but the data are not very consistent yet. PMID:26388824

  13. Neural correlates of processing "self-conscious" vs. "basic" emotions.

    Science.gov (United States)

    Gilead, Michael; Katzir, Maayan; Eyal, Tal; Liberman, Nira

    2016-01-29

    Self-conscious emotions are prevalent in our daily lives and play an important role in both normal and pathological behavior. Despite their immense significance, the neural substrates that are involved in the processing of such emotions are surprisingly under-studied. In light of this, we conducted an fMRI study in which participants thought of various personal events which elicited feelings of negative and positive self-conscious (i.e., guilt, pride) or basic (i.e., anger, joy) emotions. We performed a conjunction analysis to investigate the neural correlates associated with processing events that are related to self-conscious vs. basic emotions, irrespective of valence. The results show that processing self-conscious emotions resulted in activation within frontal areas associated with self-processing and self-control, namely, the mPFC extending to the dACC, and within the lateral-dorsal prefrontal cortex. Processing basic emotions resulted in activation throughout relatively phylogenetically-ancient regions of the cortex, namely in visual and tactile processing areas and in the insular cortex. Furthermore, self-conscious emotions differentially activated the mPFC such that the negative self-conscious emotion (guilt) was associated with a more dorsal activation, and the positive self-conscious emotion (pride) was associated with a more ventral activation. We discuss how these results shed light on the nature of mental representations and neural systems involved in self-reflective and affective processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Neural correlates of human somatosensory integration in tinnitus

    NARCIS (Netherlands)

    Lanting, C. P.; de Kleine, E.; Eppinga, R. N.; van Dijk, P.

    2010-01-01

    Possible neural correlates of somatosensory modulation of tinnitus were assessed. Functional magnetic resonance imaging (fMRI) was used to investigate differences in neural activity between subjects that can modulate their tinnitus by jaw protrusion and normal hearing controls. We measured responses

  15. Neural Correlates of Social Influence Among Cannabis Users.

    Science.gov (United States)

    Gilman, Jodi M

    2017-06-01

    Although peer influence is an important factor in the initiation and maintenance of cannabis use, few studies have investigated the neural correlates of peer influence among cannabis users. The current review summarizes research on the neuroscience of social influence in cannabis users, with the goal of highlighting gaps in the literature and the need for future research. Brain regions underlying peer influence may function differently in cannabis users. Compared to non-using controls, regions of the brain underlying reward, such as the striatum, show greater connectivity with frontal regions, and also show hyperactivity when participants are presented with peer information. Other subcortical regions, such as the insula, show hypoactivation during social exclusion in cannabis users, indicating that neural responses to peer interactions may be altered in cannabis users. Although neuroscience is increasingly being used to study social behavior, few studies have specifically focused on cannabis use, and therefore it is difficult to draw conclusions about social mechanisms that may differentiate cannabis users and controls. This area of research may be a promising avenue in which to explore a critical factor underlying cannabis use and addiction.

  16. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  17. Neural network post-processing of grayscale optical correlator

    Science.gov (United States)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  18. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making.

    Science.gov (United States)

    Huk, Alexander C; Meister, Miriam L R

    2012-01-01

    A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP). In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1) empirical questions not yet answered by existing data; (2) implementation issues related to how neural circuits could actually implement the mechanisms suggested by both extracellular neurophysiology and psychophysics; and (3) ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general "encoding-decoding framework" that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions.

  19. Neural correlates of admiration and compassion

    OpenAIRE

    Immordino-Yang, Mary Helen; McColl, Andrea; Damasio, Hanna; Damasio, Antonio

    2009-01-01

    In an fMRI experiment, participants were exposed to narratives based on true stories designed to evoke admiration and compassion in 4 distinct categories: admiration for virtue (AV), admiration for skill (AS), compassion for social/psychological pain (CSP), and compassion for physical pain (CPP). The goal was to test hypotheses about recruitment of homeostatic, somatosensory, and consciousness-related neural systems during the processing of pain-related (compassion) and non-pain-related (admi...

  20. Are the neural correlates of conscious contents stable or plastic?

    DEFF Research Database (Denmark)

    Sandberg, Kristian; Overgaard, Morten; Rees, Geraint

    2012-01-01

    of the same recording session. Very similar accuracies were obtained when the data used to train and test the classifier were gathered on different days within a week. However, when training/testing data were separated by 2.5 years, prediction accuracy was reduced drastically, to a level comparable to when...... the classifier was trained on a different participant. We discuss whether this drop in accuracy can best be explained by changes in the predictive signal in terms of timing, topography or underlying sources. Our results thus show that the neural correlates of conscious perception of a particular stimulus...... are stable within a time frame of days, but not across years. This may be taken as an indication that our experience of the same visual stimulus changes slowly across long periods of time, or alternatively the results may be understood in terms of multiple realizability....

  1. The neural correlates of speech motor sequence learning.

    Science.gov (United States)

    Segawa, Jennifer A; Tourville, Jason A; Beal, Deryk S; Guenther, Frank H

    2015-04-01

    Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.

  2. Modulation of financial deprivation on deception and its neural correlates.

    Science.gov (United States)

    Sun, Peng; Ling, Xiaoli; Zheng, Li; Chen, Jia; Li, Lin; Liu, Zhiyuan; Cheng, Xuemei; Guo, Xiuyan

    2017-11-01

    Deception is a universal phenomenon in human society and plays an important role in everyday life. Previous studies have revealed that people might have an internalized moral norm of keeping honest and the deceptive behavior was reliably correlated with activation in executive brain regions of prefrontal cortices to over-ride intuitive honest responses. Using functional magnetic resonance imaging, this study sought to investigate how financial position modulated the neural responses during deceptive decision. Twenty-one participants were scanned when they played a series of adapted Dictator Game with different partners after a ball-guess game. Specifically, participants gained or lost money in the ball-guess game, and had opportunities to get more financial gains through cheating in the following adapted Dictator Game. Behavioral results indicated that participants did not cheat to the full extent; instead they were more likely to lie after losing money compared with gaining money. At the neural level, weaker activities in the dorsolateral prefrontal cortices were observed when participants lied after losing money than gaining money. Together, our data indicated that, people really had an internalized norm of keeping honest, but it would be lenient when people feel financial deprivation. And suppressing the truthful response originating from moral norm of keeping honest was associated with increased level of activation in the dorsolateral prefrontal cortices, but this association became weaker when people were under financial deprivation.

  3. Exploring the neural correlates of visual creativity

    Science.gov (United States)

    Liew, Sook-Lei; Dandekar, Francesco

    2013-01-01

    Although creativity has been called the most important of all human resources, its neural basis is still unclear. In the current study, we used fMRI to measure neural activity in participants solving a visuospatial creativity problem that involves divergent thinking and has been considered a canonical right hemisphere task. As hypothesized, both the visual creativity task and the control task as compared to rest activated a variety of areas including the posterior parietal cortex bilaterally and motor regions, which are known to be involved in visuospatial rotation of objects. However, directly comparing the two tasks indicated that the creative task more strongly activated left hemisphere regions including the posterior parietal cortex, the premotor cortex, dorsolateral prefrontal cortex (DLPFC) and the medial PFC. These results demonstrate that even in a task that is specialized to the right hemisphere, robust parallel activity in the left hemisphere supports creative processing. Furthermore, the results support the notion that higher motor planning may be a general component of creative improvisation and that such goal-directed planning of novel solutions may be organized top-down by the left DLPFC and by working memory processing in the medial prefrontal cortex. PMID:22349801

  4. Neural correlates of eating disorders: translational potential

    Directory of Open Access Journals (Sweden)

    McAdams CJ

    2015-09-01

    Full Text Available Carrie J McAdams,1,2 Whitney Smith1 1University of Texas at Southwestern Medical Center, 2Department of Psychiatry, Texas Health Presbyterian Hospital of Dallas, Dallas, TX, USA Abstract: Eating disorders are complex and serious psychiatric illnesses whose etiology includes psychological, biological, and social factors. Treatment of eating disorders is challenging as there are few evidence-based treatments and limited understanding of the mechanisms that result in sustained recovery. In the last 20 years, we have begun to identify neural pathways that are altered in eating disorders. Consideration of how these pathways may contribute to an eating disorder can provide an understanding of expected responses to treatments. Eating disorder behaviors include restrictive eating, compulsive overeating, and purging behaviors after eating. Eating disorders are associated with changes in many neural systems. In this targeted review, we focus on three cognitive processes associated with neurocircuitry differences in subjects with eating disorders such as reward, decision-making, and social behavior. We briefly examine how each of these systems function in healthy people, using Neurosynth meta-analysis to identify key regions commonly implicated in these circuits. We review the evidence for disruptions of these regions and systems in eating disorders. Finally, we describe psychiatric and psychological treatments that are likely to function by impacting these regions. Keywords: anorexia nervosa, bulimia nervosa, social cognition, reward processing, decision-making

  5. The Neural Correlates of Moral Thinking: A Meta-Analysis

    OpenAIRE

    Douglas J. Bryant; Wang F; Kelley Deardeuff; Emily Zoccoli; Chang S. Nam

    2016-01-01

    We conducted a meta-analysis to evaluate current research that aims to map the neural correlates of two typical conditions of moral judgment: right-wrong moral judgments and decision-making in moral dilemmas. Utilizing the activation likelihood estimation (ALE) method, we conducted a meta-analysis using neuroimaging data obtained from twenty-one previous studies that measured responses in one or the other of these conditions. We found that across the studies (n = 400), distinct neural circuit...

  6. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Can binocular rivalry reveal neural correlates of consciousness?

    Science.gov (United States)

    Blake, Randolph; Brascamp, Jan; Heeger, David J

    2014-05-05

    This essay critically examines the extent to which binocular rivalry can provide important clues about the neural correlates of conscious visual perception. Our ideas are presented within the framework of four questions about the use of rivalry for this purpose: (i) what constitutes an adequate comparison condition for gauging rivalry's impact on awareness, (ii) how can one distinguish abolished awareness from inattention, (iii) when one obtains unequivocal evidence for a causal link between a fluctuating measure of neural activity and fluctuating perceptual states during rivalry, will it generalize to other stimulus conditions and perceptual phenomena and (iv) does such evidence necessarily indicate that this neural activity constitutes a neural correlate of consciousness? While arriving at sceptical answers to these four questions, the essay nonetheless offers some ideas about how a more nuanced utilization of binocular rivalry may still provide fundamental insights about neural dynamics, and glimpses of at least some of the ingredients comprising neural correlates of consciousness, including those involved in perceptual decision-making.

  8. A frontal but not parietal neural correlate of auditory consciousness.

    Science.gov (United States)

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  9. Neural correlates of recognition and naming of musical instruments.

    Science.gov (United States)

    Belfi, Amy M; Bruss, Joel; Karlan, Brett; Abel, Taylor J; Tranel, Daniel

    2016-10-01

    Retrieval of lexical (names) and conceptual (semantic) information is frequently impaired in individuals with neurological damage. One category of items that is often affected is musical instruments. However, distinct neuroanatomical correlates underlying lexical and conceptual knowledge for musical instruments have not been identified. We used a neuropsychological approach to explore the neural correlates of knowledge retrieval for musical instruments. A large sample of individuals with focal brain damage (N = 298), viewed pictures of 16 musical instruments and were asked to name and identify each instrument. Neuroanatomical data were analyzed with a proportional MAP-3 method to create voxelwise lesion proportion difference maps. Impaired naming (lexical retrieval) of musical instruments was associated with damage to the left temporal pole and inferior pre- and postcentral gyri. Impaired recognition (conceptual knowledge retrieval) of musical instruments was associated with a more broadly and bilaterally distributed network of regions, including ventromedial prefrontal cortices, occipital cortices, and superior temporal gyrus. The findings extend our understanding of how musical instruments are processed at neural system level, and elucidate factors that may explain why brain damage may or may not produce anomia or agnosia for musical instruments. Our findings also help inform broader understanding of category-related knowledge mapping in the brain, as musical instruments possess several characteristics that are similar to various other categories of items: They are inanimate and highly manipulable (similar to tools), produce characteristic sounds (similar to animals), and require fine-grained visual differentiation between each other (similar to people). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Neural correlates of emotional responses to music: an EEG study.

    Science.gov (United States)

    Daly, Ian; Malik, Asad; Hwang, Faustina; Roesch, Etienne; Weaver, James; Kirke, Alexis; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-06-24

    This paper presents an EEG study into the neural correlates of music-induced emotions. We presented participants with a large dataset containing musical pieces in different styles, and asked them to report on their induced emotional responses. We found neural correlates of music-induced emotion in a number of frequencies over the pre-frontal cortex. Additionally, we found a set of patterns of functional connectivity, defined by inter-channel coherence measures, to be significantly different between groups of music-induced emotional responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Bootstrap testing for cross-correlation under low firing activity.

    Science.gov (United States)

    González-Montoro, Aldana M; Cao, Ricardo; Espinosa, Nelson; Cudeiro, Javier; Mariño, Jorge

    2015-06-01

    A new cross-correlation synchrony index for neural activity is proposed. The index is based on the integration of the kernel estimation of the cross-correlation function. It is used to test for the dynamic synchronization levels of spontaneous neural activity under two induced brain states: sleep-like and awake-like. Two bootstrap resampling plans are proposed to approximate the distribution of the test statistics. The results of the first bootstrap method indicate that it is useful to discern significant differences in the synchronization dynamics of brain states characterized by a neural activity with low firing rate. The second bootstrap method is useful to unveil subtle differences in the synchronization levels of the awake-like state, depending on the activation pathway.

  12. Neural correlates of internal-model loading.

    Science.gov (United States)

    Bursztyn, Lulu L C D; Ganesh, G; Imamizu, Hiroshi; Kawato, Mitsuo; Flanagan, J Randall

    2006-12-19

    Skilled object manipulation requires knowledge, or internal models, of object dynamics relating applied force to motion , and our ability to handle myriad objects indicates that the brain maintains multiple models . Recent behavioral studies have shown that once learned, an internal model of an object with novel dynamics can be rapidly recruited and derecruited as the object is grasped and released . We used event-related fMRI to investigate neural activity linked to grasping an object with recently learned dynamics in preparation for moving it after a delay. Subjects also performed two control tasks in which they either moved without the object in hand or applied isometric forces to the object. In all trials, subjects received a cue indicating which task to perform in response to a go signal delivered 5-10 s later. We examined BOLD responses during the interval between the cue and go and assessed the conjunction of the two contrasts formed by comparing the primary task to each control. The analysis revealed significant activity in the ipsilateral cerebellum and the contralateral and supplementary motor areas. We propose that these regions are involved in internal-model recruitment in preparation for movement execution.

  13. Neural correlates of learning to attend

    Directory of Open Access Journals (Sweden)

    Todd A Kelley

    2010-11-01

    Full Text Available Recent work has shown that training can improve attentional focus. Little is known, however, about how training in attention and multitasking affects the brain. We used functional magnetic resonance imaging (fMRI to measure changes in cortical responses to distracting stimuli during training on a visual categorization task. Training led to a reduction in behavioural distraction effects, and these improvements in performance generalized to untrained conditions. Although large regions of early visual and posterior parietal cortices responded to the presence of distractors, these regions did not exhibit significant changes in their response following training. In contrast, middle frontal gyrus did exhibit decreased distractor-related responses with practice, showing the same trend as behaviour for previously observed distractor locations. However, the neural response in this region diverged from behaviour for novel distractor locations, showing greater activity. We conclude that training did not change the robustness of the initial sensory response, but led to increased efficiency in late-stage filtering in the trained conditions.

  14. Neural correlates of sublexical processing in phonological working memory.

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E; Eisner, Frank; Marshall, Chloe R; Shanmugalingam, Pradheep; Scott, Sophie K

    2011-04-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural responses to these manipulations under conditions of covert rehearsal (Experiment 1). A left-dominant network of temporal and motor cortex showed increased activity for longer items, with motor cortex only showing greater activity concomitant with adding consonant clusters. An individual-differences analysis revealed a significant positive relationship between activity in the angular gyrus and the hippocampus, and accuracy on pseudoword repetition. As models of pWM stipulate that its neural correlates should be activated during both perception and production/rehearsal [Buchsbaum, B. R., & D'Esposito, M. The search for the phonological store: From loop to convolution. Journal of Cognitive Neuroscience, 20, 762-778, 2008; Jacquemot, C., & Scott, S. K. What is the relationship between phonological short-term memory and speech processing? Trends in Cognitive Sciences, 10, 480-486, 2006; Baddeley, A. D., & Hitch, G. Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47-89). New York: Academic Press, 1974], we further assessed the effects of the two factors in a separate passive listening experiment (Experiment 2). In this experiment, the effect of the number of syllables was concentrated in posterior-medial regions of the supratemporal plane bilaterally, although there was no evidence of a significant response to added clusters. Taken together, the results identify the planum temporale as a key region in pWM; within this region, representations are likely to take the form of auditory or audiomotor "templates" or "chunks" at the level of the syllable

  15. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  16. Neural correlates of fear: insights from neuroimaging

    Directory of Open Access Journals (Sweden)

    Garfinkel SN

    2014-12-01

    Full Text Available Sarah N Garfinkel,1,2 Hugo D Critchley1,2 1Sackler Centre for Consciousness Science, 2Department of Psychiatry, Brighton and Sussex Medical School, University of Sussex, Brighton, UK Abstract: Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions, and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of

  17. Neural Correlates of Unconsciousness in Large-Scale Brain Networks.

    Science.gov (United States)

    Mashour, George A; Hudetz, Anthony G

    2018-03-01

    The biological basis of consciousness is one of the most challenging and fundamental questions in 21st century science. A related pursuit aims to identify the neural correlates and causes of unconsciousness. We review current trends in the investigation of physiological, pharmacological, and pathological states of unconsciousness at the level of large-scale functional brain networks. We focus on the roles of brain connectivity, repertoire, graph-theoretical techniques, and neural dynamics in understanding the functional brain disconnections and reduced complexity that appear to characterize these states. Persistent questions in the field, such as distinguishing true correlates, linking neural scales, and understanding differential recovery patterns, are also addressed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Probing the Neural Correlates of Anticipated Peer Evaluation in Adolescence

    Science.gov (United States)

    Guyer, Amanda E.; McClure-Tone, Erin B.; Shiffrin, Nina D.; Pine, Daniel S.; Nelson, Eric E.

    2009-01-01

    Neural correlates of social-cognition were assessed in 9- to- 17-year-olds (N = 34) using functional magnetic resonance imaging. Participants appraised how unfamiliar peers they had previously identified as being of high or low interest would evaluate them for an anticipated online chat session. Differential age- and sex-related activation…

  19. Neural Correlates of Bridging Inferences and Coherence Processing

    Science.gov (United States)

    Kim, Sung-il; Yoon, Misun; Kim, Wonsik; Lee, Sunyoung; Kang, Eunjoo

    2012-01-01

    We explored the neural correlates of bridging inferences and coherence processing during story comprehension using Positron Emission Tomography (PET). Ten healthy right-handed volunteers were visually presented three types of stories (Strong Coherence, Weak Coherence, and Control) consisted of three sentences. The causal connectedness among…

  20. Neural Correlates of Semantic Competition during Processing of Ambiguous Words

    Science.gov (United States)

    Bilenko, Natalia Y.; Grindrod, Christopher M.; Myers, Emily B.; Blumstein, Sheila E.

    2009-01-01

    The current study investigated the neural correlates that underlie the processing of ambiguous words and the potential effects of semantic competition on that processing. Participants performed speeded lexical decisions on semantically related and unrelated prime-target pairs presented in the auditory modality. The primes were either ambiguous…

  1. Finding neural correlates of drift diffusion processes in EEG oscillations

    NARCIS (Netherlands)

    van Vugt, M. K.; Simen, P.; Cohen, J. D.; Carlson, L.; Hölscher, C.; Shipley, T.

    2011-01-01

    Recent studies have begun to elucidate the neural correlates of evidence accumulation in perceptual decision making. Few of them have used a combined modeling-electrophysiological approach to studying evidence accumulation. We introduce a novel multivariate approach to EEG analysis with which we can

  2. Neural Correlates of Sublexical Processing in Phonological Working Memory

    Science.gov (United States)

    McGettigan, Carolyn; Warren, Jane E.; Eisner, Frank; Marshall, Chloe R.; Shanmugalingam, Pradheep; Scott, Sophie K.

    2011-01-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural…

  3. Neural Correlates of Familiarity-Based Associative Retrieval

    Science.gov (United States)

    Ford, Jaclyn Hennessey; Verfaellie, Mieke; Giovanello, Kelly S.

    2010-01-01

    The current study compared the neural correlates of associative retrieval of compound (unitized) stimuli and unrelated (non-unitized) stimuli. Although associative recognition was nearly identical for compounds and unrelated pairs, accurate recognition of these different pair types was associated with activation in distinct regions within the…

  4. Psychophysical and Neural Correlates of Auditory Attraction and Aversion

    Science.gov (United States)

    Patten, Kristopher Jakob

    This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids

  5. Neural perspectives of cerebral correlates of giftedness.

    Science.gov (United States)

    Chen, A C; Buckley, K C

    1988-07-01

    Giftedness is defined as some special endowment or propensity for creativity, skill, and eminent achievement, found in relatively few individuals among the population. A high order of mental power (IQ), creativity, and motivation (task commitment) appear to be the most universally recognized attributes of the gifted. This report summarizes current knowledge of the cerebral correlates of intelligence and creativity, including physiological measures of EEG, cortical power spectrum, brain evoked potentials, and positron emission tomography. Controversy, debates, contentions, formal hypotheses, and research issues are considered. We are especially interested in the formulation of the deterministic function of EEG-brain dynamics. A CHAOS modeling on hierarchy of cognitive organization and cerebral processing in the gifted is suggested.

  6. Neural Correlates of Causal Power Judgments

    Directory of Open Access Journals (Sweden)

    Denise Dellarosa Cummins

    2014-12-01

    Full Text Available Causal inference is a fundamental component of cognition and perception. Probabilistic theories of causal judgment (most notably causal Bayes networks derive causal judgments using metrics that integrate contingency information. But human estimates typically diverge from these normative predictions. This is because human causal power judgments are typically strongly influenced by beliefs concerning underlying causal mechanisms, and because of the way knowledge is retrieved from human memory during the judgment process. Neuroimaging studies indicate that the brain distinguishes causal events from mere covariation, and between perceived and inferred causality. Areas involved in error prediction are also activated, implying automatic activation of possible exception cases during causal decision-making.

  7. The neural correlates of visual and verbal cognitive styles.

    Science.gov (United States)

    Kraemer, David J M; Rosenberg, Lauren M; Thompson-Schill, Sharon L

    2009-03-25

    It has long been thought that propensities for visual or verbal learning styles influence how children acquire knowledge successfully and how adults reason in everyday life. There is no direct evidence to date, however, linking these cognitive styles to specific neural systems. In the present study, visual and verbal cognitive styles are measured by self-report survey, and cognitive abilities are measured by scored tests of visual and verbal skills. Specifically, we administered the Verbalizer-Visualizer Questionnaire (VVQ) and modality-specific subtests of the Wechsler Adult Intelligence Scale (WAIS) to 18 subjects who subsequently participated in a functional magnetic resonance imaging experiment. During the imaging session, participants performed a novel psychological task involving both word-based and picture-based feature matching conditions that was designed to permit the use of either a visual or a verbal processing style during all conditions of the task. Results demonstrated a pattern of activity in modality-specific cortex that distinguished visual from verbal cognitive styles. During the word-based condition, activity in a functionally defined brain region that responded to viewing pictorial stimuli (fusiform gyrus) correlated with self-reported visualizer ratings on the VVQ. In contrast, activity in a phonologically related brain region (supramarginal gyrus) correlated with the verbalizer dimension of the VVQ during the picture-based condition. Scores from the WAIS subtests did not reliably correlate with brain activity in either of these regions. These findings suggest that modality-specific cortical activity underlies processing in visual and verbal cognitive styles.

  8. Speaking in Multiple Languages: Neural Correlates of Language Proficiency in Multilingual Word Production

    Science.gov (United States)

    Videsott, Gerda; Herrnberger, Barbel; Hoenig, Klaus; Schilly, Edgar; Grothe, Jo; Wiater, Werner; Spitzer, Manfred; Kiefer, Markus

    2010-01-01

    The human brain has the fascinating ability to represent and to process several languages. Although the first and further languages activate partially different brain networks, the linguistic factors underlying these differences in language processing have to be further specified. We investigated the neural correlates of language proficiency in a…

  9. Neural Correlates of Working Memory Performance in Adolescents and Young Adults with Dyslexia

    Science.gov (United States)

    Vasic, Nenad; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Wolf, Robert Christian

    2008-01-01

    Behavioral studies indicate deficits in phonological working memory (WM) and executive functioning in dyslexics. However, little is known about the underlying functional neuroanatomy. In the present study, neural correlates of WM in adolescents and young adults with dyslexia were investigated using event-related functional magnetic resonance…

  10. Neural correlates of the food/non-food visual distinction.

    Science.gov (United States)

    Tsourides, Kleovoulos; Shariat, Shahriar; Nejati, Hossein; Gandhi, Tapan K; Cardinaux, Annie; Simons, Christopher T; Cheung, Ngai-Man; Pavlovic, Vladimir; Sinha, Pawan

    2016-03-01

    An evolutionarily ancient skill we possess is the ability to distinguish between food and non-food. Our goal here is to identify the neural correlates of visually driven 'edible-inedible' perceptual distinction. We also investigate correlates of the finer-grained likability assessment. Our stimuli depicted food or non-food items with sub-classes of appealing or unappealing exemplars. Using data-classification techniques drawn from machine-learning, as well as evoked-response analyses, we sought to determine whether these four classes of stimuli could be distinguished based on the patterns of brain activity they elicited. Subjects viewed 200 images while in a MEG scanner. Our analyses yielded two successes and a surprising failure. The food/non-food distinction had a robust neural counterpart and emerged as early as 85 ms post-stimulus onset. The likable/non-likable distinction too was evident in the neural signals when food and non-food stimuli were grouped together, or when only the non-food stimuli were included in the analyses. However, we were unable to identify any neural correlates of this distinction when limiting the analyses only to food stimuli. Taken together, these positive and negative results further our understanding of the substrates of a set of ecologically important judgments and have clinical implications for conditions like eating-disorders and anhedonia. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Investigating the neural correlates of a streaming percept in an informational-masking paradigm.

    Science.gov (United States)

    Akram, Sahar; Englitz, Bernhard; Elhilali, Mounya; Simon, Jonathan Z; Shamma, Shihab A

    2014-01-01

    Humans routinely segregate a complex acoustic scene into different auditory streams, through the extraction of bottom-up perceptual cues and the use of top-down selective attention. To determine the neural mechanisms underlying this process, neural responses obtained through magnetoencephalography (MEG) were correlated with behavioral performance in the context of an informational masking paradigm. In half the trials, subjects were asked to detect frequency deviants in a target stream, consisting of a rhythmic tone sequence, embedded in a separate masker stream composed of a random cloud of tones. In the other half of the trials, subjects were exposed to identical stimuli but asked to perform a different task—to detect tone-length changes in the random cloud of tones. In order to verify that the normalized neural response to the target sequence served as an indicator of streaming, we correlated neural responses with behavioral performance under a variety of stimulus parameters (target tone rate, target tone frequency, and the "protection zone", that is, the spectral area with no tones around the target frequency) and attentional states (changing task objective while maintaining the same stimuli). In all conditions that facilitated target/masker streaming behaviorally, MEG normalized neural responses also changed in a manner consistent with the behavior. Thus, attending to the target stream caused a significant increase in power and phase coherence of the responses in recording channels correlated with an increase in the behavioral performance of the listeners. Normalized neural target responses also increased as the protection zone widened and as the frequency of the target tones increased. Finally, when the target sequence rate increased, the buildup of the normalized neural responses was significantly faster, mirroring the accelerated buildup of the streaming percepts. Our data thus support close links between the perceptual and neural consequences of the

  12. Neural correlates of emotional intelligence in adolescent children.

    Science.gov (United States)

    Killgore, William D S; Yurgelun-Todd, Deborah A

    2007-06-01

    The somatic marker hypothesis posits a key role for the ventromedial prefrontal cortex, amygdala, and insula in the ability to utilize emotions to guide decision making and behavior. However, the relationship between activity in these brain regions and emotional intelligence (EQ) during adolescence, a time of particular importance for emotional and social development, has not been studied. Using functional magnetic resonance imaging (fMRI), we correlated scores from the Bar-On Emotional Quotient Inventory, Youth Version (EQ-i:YV) with brain activity during perception of fearful faces in 16 healthy children and adolescents. Consistent with the neural efficiency hypothesis, higher EQ correlated negatively with activity in the somatic marker circuitry and other paralimbic regions. Positive correlations were observed between EQ and activity in the cerebellum and visual association cortex. The findings suggest that the construct of self-reported EQ in adolescents is inversely related to the efficiency of neural processing within the somatic marker circuitry during emotional provocation.

  13. Neural basis of increased costly norm enforcement under adversity.

    Science.gov (United States)

    Wu, Yan; Yu, Hongbo; Shen, Bo; Yu, Rongjun; Zhou, Zhiheng; Zhang, Guoping; Jiang, Yushi; Zhou, Xiaolin

    2014-12-01

    Humans are willing to punish norm violations even at a substantial personal cost. Using fMRI and a variant of the ultimatum game and functional magnetic resonance imaging, we investigated how the brain differentially responds to fairness in loss and gain domains. Participants (responders) received offers from anonymous partners indicating a division of an amount of monetary gain or loss. If they accept, both get their shares according to the division; if they reject, both get nothing or lose the entire stake. We used a computational model to derive perceived fairness of offers and participant-specific inequity aversion. Behaviorally, participants were more likely to reject unfair offers in the loss (vs gain) domain. Neurally, the positive correlation between fairness and activation in ventral striatum was reduced, whereas the negative correlations between fairness and activations in dorsolateral prefrontal cortex were enhanced in the loss domain. Moreover, rejection-related dorsal striatum activation was higher in the loss domain. Furthermore, the gain-loss domain modulates costly punishment only when unfair behavior was directed toward the participants and not when it was directed toward others. These findings provide neural and computational accounts of increased costly norm enforcement under adversity and advanced our understanding of the context-dependent nature of fairness preference. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Neural correlates of proactive and reactive aggression in adolescent twins.

    Science.gov (United States)

    Yang, Yaling; Joshi, Shantanu H; Jahanshad, Neda; Thompson, Paul M; Baker, Laura A

    2017-05-01

    Verbal and physical aggression begin early in life and steadily decline thereafter in normal development. As a result, elevated aggressive behavior in adolescence may signal atypical development and greater vulnerability for negative mental and health outcomes. Converging evidence suggests that brain disturbances in regions involved in impulse control, emotional regulation, and sensation seeking may contribute to heightened aggression. However, little is known regarding the neural mechanisms underlying subtypes of aggression (i.e., proactive and reactive aggression) and whether they differ between males and females. Using a sample of 106 14-year-old adolescent twins, this study found that striatal enlargement was associated with both proactive and reactive aggression. We also found that volumetric alterations in several frontal regions including smaller middle frontal and larger orbitofrontal cortex were correlated with higher levels of aggression in adolescent twins. In addition, cortical thickness analysis showed that thickness alterations in many overlapping regions including middle frontal, superior frontal, and anterior cingulate cortex and temporal regions were associated with aggression in adolescent twins. Results support the involvement of fronto-limbic-striatal circuit in the etiology of aggression during adolescence. Aggr. Behav. 43:230-240, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. An initial fMRI study on neural correlates of prayer in members of Alcoholics Anonymous.

    Science.gov (United States)

    Galanter, Marc; Josipovic, Zoran; Dermatis, Helen; Weber, Jochen; Millard, Mary Alice

    2017-01-01

    Many individuals with alcohol-use disorders who had experienced alcohol craving before joining Alcoholics Anonymous (AA) report little or no craving after becoming long-term members. Their use of AA prayers may contribute to this. Neural mechanisms underlying this process have not been delineated. To define experiential and neural correlates of diminished alcohol craving following AA prayers among members with long-term abstinence. Twenty AA members with long-term abstinence participated. Self-report measures and functional magnetic resonance imaging of differential neural response to alcohol-craving-inducing images were obtained in three conditions: after reading of AA prayers, after reading irrelevant news, and with passive viewing. Random-effects robust regressions were computed for the main effect (prayer > passive + news) and for estimating the correlations between the main effect and the self-report measures. Compared to the other two conditions, the prayer condition was characterized by: less self-reported craving; increased activation in left-anterior middle frontal gyrus, left superior parietal lobule, bilateral precuneus, and bilateral posterior middle temporal gyrus. Craving following prayer was inversely correlated with activation in brain areas associated with self-referential processing and the default mode network, and with characteristics reflecting AA program involvement. AA members' prayer was associated with a relative reduction in self-reported craving and with concomitant engagement of neural mechanisms that reflect control of attention and emotion. These findings suggest neural processes underlying the apparent effectiveness of AA prayer.

  16. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  17. Neural correlates of auditory temporal predictions during sensorimotor synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Engel, Annerose; Keller, Peter E

    2013-01-01

    Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events) and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS) and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons). Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1) a distributed network of cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex) and (2) medial cortical areas (medial prefrontal cortex, posterior cingulate cortex). While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  18. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  19. Neural correlates of rate-dependent finger-tapping in Parkinson's disease.

    Science.gov (United States)

    Wurster, Claudia Diana; Graf, Heiko; Ackermann, Hermann; Groth, Katharina; Kassubek, Jan; Riecker, Axel

    2015-01-01

    Functional imaging demonstrated hemodynamic activation within specific brain areas that contribute to frequency-dependent movement control. Previous investigations demonstrated a linear relationship between movement and hemodynamic response rates within cortical regions, whereas the basal ganglia displayed an inverse neural activation pattern. We now investigated neural correlates of frequency-related finger movements in patients with Parkinson's disease (PD) to further elucidate the neurofunctional alterations in cortico-subcortical networks in that disorder. We studied ten PD patients (under dopaminergic medication) and ten healthy subjects using a finger-tapping task at three different frequencies (1-4 Hz), implemented in an event-related, sparse sampling fMRI design. FMRI data were analyzed by means of a parametric approach to relate movement rates and regional BOLD signal alteration. Compared to healthy controls, PD patients showed higher tapping response rates only during the lower 1 Hz condition. FMRI analysis revealed a rate-dependent neural activity within the supplemental motor area, primary sensorimotor cortex, thalamus and the cerebellum with higher neural activity at higher frequency conditions in both groups. Within the putamen/pallidum, an inverse neural activity and frequency response correlation could be observed in healthy subjects with higher BOLD signal responses in slow frequencies, whereas this relationship was not evident in PD patients. We could demonstrate similar behavioral responses and neural activation patterns at the level both of frontal and cerebellar areas in PD compared to healthy controls, whereas regions like the putamen/pallidum appear to be still dysfunctional under medication regarding frequency-related neural activation. These findings may, potentially, serve as a neural signature of basal ganglia dysfunctions in frequency-related task requirements.

  20. The neural correlates of consciousness: new experimental approaches needed?

    Science.gov (United States)

    Hohwy, Jakob

    2009-06-01

    It appears that consciousness science is progressing soundly, in particular in its search for the neural correlates of consciousness. There are two main approaches to this search, one is content-based (focusing on the contrast between conscious perception of, e.g., faces vs. houses), the other is state-based (focusing on overall conscious states, e.g., the contrast between dreamless sleep vs. the awake state). Methodological and conceptual considerations of a number of concrete studies show that both approaches are problematic: the content-based approach seems to set aside crucial aspects of consciousness; and the state-based approach seems over-inclusive in a way that is hard to rectify without losing sight of the crucial conscious-unconscious contrast. Consequently, the search for the neural correlates of consciousness is in need of new experimental paradigms.

  1. Neural correlates of long-term intense romantic love.

    Science.gov (United States)

    Acevedo, Bianca P; Aron, Arthur; Fisher, Helen E; Brown, Lucy L

    2012-02-01

    The present study examined the neural correlates of long-term intense romantic love using functional magnetic resonance imaging (fMRI). Ten women and 7 men married an average of 21.4 years underwent fMRI while viewing facial images of their partner. Control images included a highly familiar acquaintance; a close, long-term friend; and a low-familiar person. Effects specific to the intensely loved, long-term partner were found in: (i) areas of the dopamine-rich reward and basal ganglia system, such as the ventral tegmental area (VTA) and dorsal striatum, consistent with results from early-stage romantic love studies; and (ii) several regions implicated in maternal attachment, such as the globus pallidus (GP), substantia nigra, Raphe nucleus, thalamus, insular cortex, anterior cingulate and posterior cingulate. Correlations of neural activity in regions of interest with widely used questionnaires showed: (i) VTA and caudate responses correlated with romantic love scores and inclusion of other in the self; (ii) GP responses correlated with friendship-based love scores; (iii) hypothalamus and posterior hippocampus responses correlated with sexual frequency; and (iv) caudate, septum/fornix, posterior cingulate and posterior hippocampus responses correlated with obsession. Overall, results suggest that for some individuals the reward-value associated with a long-term partner may be sustained, similar to new love, but also involves brain systems implicated in attachment and pair-bonding.

  2. Neural correlates of long-term intense romantic love

    Science.gov (United States)

    Aron, Arthur; Fisher, Helen E.; Brown, Lucy L.

    2012-01-01

    The present study examined the neural correlates of long-term intense romantic love using functional magnetic resonance imaging (fMRI). Ten women and 7 men married an average of 21.4 years underwent fMRI while viewing facial images of their partner. Control images included a highly familiar acquaintance; a close, long-term friend; and a low-familiar person. Effects specific to the intensely loved, long-term partner were found in: (i) areas of the dopamine-rich reward and basal ganglia system, such as the ventral tegmental area (VTA) and dorsal striatum, consistent with results from early-stage romantic love studies; and (ii) several regions implicated in maternal attachment, such as the globus pallidus (GP), substantia nigra, Raphe nucleus, thalamus, insular cortex, anterior cingulate and posterior cingulate. Correlations of neural activity in regions of interest with widely used questionnaires showed: (i) VTA and caudate responses correlated with romantic love scores and inclusion of other in the self; (ii) GP responses correlated with friendship-based love scores; (iii) hypothalamus and posterior hippocampus responses correlated with sexual frequency; and (iv) caudate, septum/fornix, posterior cingulate and posterior hippocampus responses correlated with obsession. Overall, results suggest that for some individuals the reward-value associated with a long-term partner may be sustained, similar to new love, but also involves brain systems implicated in attachment and pair-bonding. PMID:21208991

  3. Neural correlates of single-vessel haemodynamic responses in vivo.

    Science.gov (United States)

    O'Herron, Philip; Chhatbar, Pratik Y; Levy, Manuel; Shen, Zhiming; Schramm, Adrien E; Lu, Zhongyang; Kara, Prakash

    2016-06-16

    Neural activation increases blood flow locally. This vascular signal is used by functional imaging techniques to infer the location and strength of neural activity. However, the precise spatial scale over which neural and vascular signals are correlated is unknown. Furthermore, the relative role of synaptic and spiking activity in driving haemodynamic signals is controversial. Previous studies recorded local field potentials as a measure of synaptic activity together with spiking activity and low-resolution haemodynamic imaging. Here we used two-photon microscopy to measure sensory-evoked responses of individual blood vessels (dilation, blood velocity) while imaging synaptic and spiking activity in the surrounding tissue using fluorescent glutamate and calcium sensors. In cat primary visual cortex, where neurons are clustered by their preference for stimulus orientation, we discovered new maps for excitatory synaptic activity, which were organized similarly to those for spiking activity but were less selective for stimulus orientation and direction. We generated tuning curves for individual vessel responses for the first time and found that parenchymal vessels in cortical layer 2/3 were orientation selective. Neighbouring penetrating arterioles had different orientation preferences. Pial surface arteries in cats, as well as surface arteries and penetrating arterioles in rat visual cortex (where orientation maps do not exist), responded to visual stimuli but had no orientation selectivity. We integrated synaptic or spiking responses around individual parenchymal vessels in cats and established that the vascular and neural responses had the same orientation preference. However, synaptic and spiking responses were more selective than vascular responses--vessels frequently responded robustly to stimuli that evoked little to no neural activity in the surrounding tissue. Thus, local neural and haemodynamic signals were partly decoupled. Together, these results indicate

  4. Modeling the BOLD correlates of competitive neural dynamics.

    Science.gov (United States)

    Bonaiuto, James; Arbib, Michael A

    2014-01-01

    Winner-take-all models are commonly used to model decision-making tasks where one outcome must be selected from several competing options. Related random walk and diffusion models have been used to explain such processes and apply them to psychometric and neurophysiological data. Recent model-based fMRI studies have sought to find the neural correlates of decision-making processes. However, due to the fact that hemodynamic responses likely reflect synaptic rather than spiking activity, the expected BOLD signature of winner-take-all circuits is not clear. A powerful way to integrate data from neurophysiology and brain imaging is by developing biologically plausible neural network models constrained and testable by neural and behavioral data, and then using Synthetic Brain Imaging - transforming the output of simulations with the model to make predictions testable against neuroimaging data. We developed a biologically realistic spiking winner-take-all model comprised of coupled excitatory and inhibitory neural populations. We varied the difficulty of a decision-making task by adjusting the contrast, or relative strength of inputs representing two response options. Synthetic brain imaging was used to estimate the BOLD response of the model and analyze its peak as a function of input contrast. We performed a parameter space analysis to determine values for which the model performs the task accurately, and given accurate performance, the distribution of the input contrast-BOLD response relationship. This underscores the need for models grounded in neurophysiological data for brain imaging analyses which attempt to localize the neural correlates of cognitive processes based on predicted BOLD responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Neural Correlates of Emotion Regulation and Adolescent Suicidal Ideation.

    Science.gov (United States)

    Miller, Adam Bryant; McLaughlin, Katie A; Busso, Daniel S; Brueck, Stephanie; Peverill, Matthew; Sheridan, Margaret A

    2018-02-01

    Research on the neural correlates associated with risk for suicidal ideation (SI) has been limited, particularly in one increasingly at-risk group-adolescents. Previous research with adolescents indicates that poor emotion regulation skills are linked with SI, but these studies have not previously examined neural activation in service of emotion regulation between those with and without SI histories. Here we examine whether SI is associated with neural responses during an emotion regulation functional magnetic resonance imaging task in a group of adolescents (N = 49) 13 to 20 years of age (mean = 16.95). While there were no differences between youths with and without SI in self-reported emotional responses to negative pictures, youths with SI activated the dorsolateral prefrontal cortex more than youths without SI on trials in which they attempted to regulate their emotional responses compared with trials in which they passively viewed negative pictures. In contrast, during passive viewing of negative stimuli, youths with SI activated the dorsolateral prefrontal cortex, temporoparietal junction, and cerebellum less than same-age control subjects. These findings were robust to control subjects for depression and adversity exposure and are consistent with the idea that youths with SI have disrupted emotion regulation, potentially related to differences in recruitment of top-down control regions. In contrast, youths without SI activated regions implicated in emotion regulation even when not directed to effortfully control their emotional response. This is the first study to examine neural function during emotion regulation as a potential neural correlate of risk for SI in adolescents. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Pay What You Want! A Pilot Study on Neural Correlates of Voluntary Payments for Music.

    Science.gov (United States)

    Waskow, Simon; Markett, Sebastian; Montag, Christian; Weber, Bernd; Trautner, Peter; Kramarz, Volkmar; Reuter, Martin

    2016-01-01

    Pay-what-you-want (PWYW) is an alternative pricing mechanism for consumer goods. It describes an exchange situation in which the price for a given good is not set by the seller but freely chosen by the buyer. In recent years, many enterprises have made use of PWYW auctions. The somewhat contra-intuitive success of PWYW has sparked a great deal of behavioral work on economical decision making in PWYW contexts in the past. Empirical studies on the neural basis of PWYW decisions, however, are scarce. In the present paper, we present an experimental protocol to study PWYW decision making while simultaneously acquiring functional magnetic resonance imaging data. Participants have the possibility to buy music either under a traditional "fixed-price" (FP) condition or in a condition that allows them to freely decide on the price. The behavioral data from our experiment replicate previous results on the general feasibility of the PWYW mechanism. On the neural level, we observe distinct differences between the two conditions: In the FP-condition, neural activity in frontal areas during decision-making correlates positively with the participants' willingness to pay. No such relationship was observed under PWYW conditions in any neural structure. Directly comparing neural activity during PWYW and the FP-condition we observed stronger activity of the lingual gyrus during PWYW decisions. Results demonstrate the usability of our experimental paradigm for future investigations into PWYW decision-making and provides first insights into neural mechanisms during self-determined pricing decisions.

  7. Pay What You Want! A Pilot Study on Neural Correlates of Voluntary Payments for Music

    Science.gov (United States)

    Waskow, Simon; Markett, Sebastian; Montag, Christian; Weber, Bernd; Trautner, Peter; Kramarz, Volkmar; Reuter, Martin

    2016-01-01

    Pay-what-you-want (PWYW) is an alternative pricing mechanism for consumer goods. It describes an exchange situation in which the price for a given good is not set by the seller but freely chosen by the buyer. In recent years, many enterprises have made use of PWYW auctions. The somewhat contra-intuitive success of PWYW has sparked a great deal of behavioral work on economical decision making in PWYW contexts in the past. Empirical studies on the neural basis of PWYW decisions, however, are scarce. In the present paper, we present an experimental protocol to study PWYW decision making while simultaneously acquiring functional magnetic resonance imaging data. Participants have the possibility to buy music either under a traditional “fixed-price” (FP) condition or in a condition that allows them to freely decide on the price. The behavioral data from our experiment replicate previous results on the general feasibility of the PWYW mechanism. On the neural level, we observe distinct differences between the two conditions: In the FP-condition, neural activity in frontal areas during decision-making correlates positively with the participants’ willingness to pay. No such relationship was observed under PWYW conditions in any neural structure. Directly comparing neural activity during PWYW and the FP-condition we observed stronger activity of the lingual gyrus during PWYW decisions. Results demonstrate the usability of our experimental paradigm for future investigations into PWYW decision-making and provides first insights into neural mechanisms during self-determined pricing decisions. PMID:27458416

  8. Neural correlates of deception in social contexts in normally developing children

    Directory of Open Access Journals (Sweden)

    Susumu eYokota

    2013-05-01

    Full Text Available Deception is related to the ability to inhibit prepotent responses and to engage in mental tasks such as anticipating responses and inferring what another person knows, especially in social contexts. However, the neural correlates of deception processing, which requires mentalizing, remain unclear. Using functional magnetic resonance imaging (fMRI, we examined the neural correlates of deception, including mentalization, in social contexts in normally developing children. Healthy right-handed children (aged 8–9 years were scanned while performing interactive games involving deception. The games varied along two dimensions: the type of reply (deception and truth and the type of context (social and less social. Participants were instructed to deceive a witch and to tell the truth to a girl. Under the social-context conditions, participants were asked to consider what they inferred about protagonists’ preferences from their facial expressions when responding to questions. Under the less-social-context conditions, participants did not need to consider others’ preferences. We found a significantly greater response in the right precuneus under the social-context than under less-social-context conditions. Additionally, we found substantially greater activation in the right inferior parietal lobule (IPL under the deception than under the truth condition. These results suggest that deception in a social context requires not only inhibition of prepotent responses but also engagement in mentalizing processes. This study provides the first evidence of the neural correlates of the mentalizing processes involved in deception in normally developing children.

  9. Structural and functional neural correlates of music perception.

    Science.gov (United States)

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  10. Common neural correlates of intertemporal choices and intelligence in adolescents.

    Science.gov (United States)

    Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N

    2015-02-01

    Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.

  11. The neural and behavioral correlates of social evaluation in childhood.

    Science.gov (United States)

    Achterberg, Michelle; van Duijvenvoorde, Anna C K; van der Meulen, Mara; Euser, Saskia; Bakermans-Kranenburg, Marian J; Crone, Eveline A

    2017-04-01

    Being accepted or rejected by peers is highly salient for developing social relations in childhood. We investigated the behavioral and neural correlates of social feedback and subsequent aggression in 7-10-year-old children, using the Social Network Aggression Task (SNAT). Participants viewed pictures of peers that gave positive, neutral or negative feedback to the participant's profile. Next, participants could blast a loud noise towards the peer, as an index of aggression. We included three groups (N=19, N=28 and N=27) and combined the results meta-analytically. Negative social feedback resulted in the most behavioral aggression, with large combined effect-sizes. Whole brain condition effects for each separate sample failed to show robust effects, possibly due to the small samples. Exploratory analyses over the combined test and replication samples confirmed heightened activation in the medial prefrontal cortex (mPFC) after negative social feedback. Moreover, meta-analyses of activity in predefined regions of interest showed that negative social feedback resulted in more neural activation in the amygdala, anterior insula and the mPFC/anterior cingulate cortex. Together, the results show that social motivation is already highly salient in middle childhood, and indicate that the SNAT is a valid paradigm for assessing the neural and behavioral correlates of social evaluation in children. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The neural and behavioral correlates of social evaluation in childhood

    Directory of Open Access Journals (Sweden)

    Michelle Achterberg

    2017-04-01

    Full Text Available Being accepted or rejected by peers is highly salient for developing social relations in childhood. We investigated the behavioral and neural correlates of social feedback and subsequent aggression in 7–10-year-old children, using the Social Network Aggression Task (SNAT. Participants viewed pictures of peers that gave positive, neutral or negative feedback to the participant’s profile. Next, participants could blast a loud noise towards the peer, as an index of aggression. We included three groups (N = 19, N = 28 and N = 27 and combined the results meta-analytically. Negative social feedback resulted in the most behavioral aggression, with large combined effect-sizes. Whole brain condition effects for each separate sample failed to show robust effects, possibly due to the small samples. Exploratory analyses over the combined test and replication samples confirmed heightened activation in the medial prefrontal cortex (mPFC after negative social feedback. Moreover, meta-analyses of activity in predefined regions of interest showed that negative social feedback resulted in more neural activation in the amygdala, anterior insula and the mPFC/anterior cingulate cortex. Together, the results show that social motivation is already highly salient in middle childhood, and indicate that the SNAT is a valid paradigm for assessing the neural and behavioral correlates of social evaluation in children.

  13. Neural correlates of reward and loss sensitivity in psychopathy.

    Science.gov (United States)

    Pujara, Maia; Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2014-06-01

    Psychopathy is a personality disorder associated with callous and impulsive behavior and criminal recidivism. It has long been theorized that psychopaths have deficits in processing reward and punishment. Here, we use structural and functional magnetic resonance imaging to examine the neural correlates of reward and loss sensitivity in a group of criminal psychopaths. Forty-one adult male prison inmates (n = 18 psychopaths and n = 23 non-psychopaths) completed a functional magnetic resonance imaging task involving the gain or loss of money. Across the entire sample of participants, monetary gains elicited robust activation within the ventral striatum (VS). Although psychopaths and non-psychopaths did not significantly differ with respect to overall levels of VS response to reward vs loss, we observed significantly different correlations between VS responses and psychopathy severity within each group. Volumetric analyses of striatal subregions revealed a similar pattern of correlations, specifically for the right accumbens area within VS. In a separate sample of inmates (n = 93 psychopaths and n = 117 non-psychopaths) who completed a self-report measure of appetitive motivation, we again found that the correlation with psychopathy severity differed between groups. These convergent results offer novel insight into the neural substrates of reward and loss processing in psychopathy. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  15. SPIDER OR NO SPIDER? NEURAL CORRELATES OF SUSTAINED AND PHASIC FEAR IN SPIDER PHOBIA.

    Science.gov (United States)

    Münsterkötter, Anna Luisa; Notzon, Swantje; Redlich, Ronny; Grotegerd, Dominik; Dohm, Katharina; Arolt, Volker; Kugel, Harald; Zwanzger, Peter; Dannlowski, Udo

    2015-09-01

    Processes of phasic fear responses to threatening stimuli are thought to be distinct from sustained, anticipatory anxiety toward an unpredicted, potential threat. There is evidence for dissociable neural correlates of phasic fear and sustained anxiety. Whereas increased amygdala activity has been associated with phasic fear, sustained anxiety has been linked with activation of the bed nucleus of stria terminalis (BNST), anterior cingulate cortex (ACC), and the insula. So far, only a few studies have focused on the dissociation of neural processes related to both phasic and sustained fear in specific phobia. We suggested that first, conditions of phasic and sustained fear would involve different neural networks and, second, that overall neural activity would be enhanced in a sample of phobic compared to nonphobic participants. Pictures of spiders and neutral stimuli under conditions of either predicted (phasic) or unpredicted (sustained) fear were presented to 28 subjects with spider phobia and 28 nonphobic control subjects during functional magnetic resonance imaging (fMRI) scanning. Phobic patients revealed significantly higher amygdala activation than controls under conditions of phasic fear. Sustained fear processing was significantly related to activation in the insula and ACC, and phobic patients showed a stronger activation than controls of the BNST and the right ACC under conditions of sustained fear. Functional connectivity analysis revealed enhanced connectivity of the BNST and the amygdala in phobic subjects. Our findings support the idea of distinct neural correlates of phasic and sustained fear processes. Increased neural activity and functional connectivity in these networks might be crucial for the development and maintenance of anxiety disorders. © 2015 Wiley Periodicals, Inc.

  16. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  17. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability

    Science.gov (United States)

    Barnett, Michael A.; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-01-01

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5–12 years) and adults (ages, 19–34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in

  18. Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability.

    Science.gov (United States)

    Natu, Vaidehi S; Barnett, Michael A; Hartley, Jake; Gomez, Jesse; Stigliani, Anthony; Grill-Spector, Kalanit

    2016-10-19

    Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved

  19. Neural mechanisms and models underlying joint action.

    Science.gov (United States)

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  20. Neural correlate of human reciprocity in social interactions

    Directory of Open Access Journals (Sweden)

    Shiro eSakaiya

    2013-12-01

    Full Text Available Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human and strategy (random, tit-for-tat in repeated prisoner’s dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate and theory of mind (ToM regions (i.e., ventromedial prefrontal cortex [VMPFC] and precuneus. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (deactivation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during

  1. Neural correlate of human reciprocity in social interactions.

    Science.gov (United States)

    Sakaiya, Shiro; Shiraito, Yuki; Kato, Junko; Ide, Hiroko; Okada, Kensuke; Takano, Kouji; Kansaku, Kenji

    2013-01-01

    Reciprocity plays a key role maintaining cooperation in society. However, little is known about the neural process that underpins human reciprocity during social interactions. Our neuroimaging study manipulated partner identity (computer, human) and strategy (random, tit-for-tat) in repeated prisoner's dilemma games and investigated the neural correlate of reciprocal interaction with humans. Reciprocal cooperation with humans but exploitation of computers by defection was associated with activation in the left amygdala. Amygdala activation was also positively and negatively correlated with a preference change for human partners following tit-for-tat and random strategies, respectively. The correlated activation represented the intensity of positive feeling toward reciprocal and negative feeling toward non-reciprocal partners, and so reflected reciprocity in social interaction. Reciprocity in social interaction, however, might plausibly be misinterpreted and so we also examined the neural coding of insight into the reciprocity of partners. Those with and without insight revealed differential brain activation across the reward-related circuitry (i.e., the right middle dorsolateral prefrontal cortex and dorsal caudate) and theory of mind (ToM) regions [i.e., ventromedial prefrontal cortex (VMPFC) and precuneus]. Among differential activations, activation in the precuneus, which accompanied deactivation of the VMPFC, was specific to those without insight into human partners who were engaged in a tit-for-tat strategy. This asymmetric (de)activation might involve specific contributions of ToM regions to the human search for reciprocity. Consequently, the intensity of emotion attached to human reciprocity was represented in the amygdala, whereas insight into the reciprocity of others was reflected in activation across the reward-related and ToM regions. This suggests the critical role of mentalizing, which was not equated with reward expectation during social interactions.

  2. Neural Correlates of Attentional Flexibility during Approach and Avoidance Motivation

    Science.gov (United States)

    Calcott, Rebecca D.; Berkman, Elliot T.

    2015-01-01

    Dynamic, momentary approach or avoidance motivational states have downstream effects on eventual goal success and overall well being, but there is still uncertainty about how those states affect the proximal neurocognitive processes (e.g., attention) that mediate the longer-term effects. Attentional flexibility, or the ability to switch between different attentional foci, is one such neurocognitive process that influences outcomes in the long run. The present study examined how approach and avoidance motivational states affect the neural processes involved in attentional flexibility using fMRI with the aim of determining whether flexibility operates via different neural mechanisms under these different states. Attentional flexibility was operationalized as subjects’ ability to switch between global and local stimulus features. In addition to subjects’ motivational state, the task context was manipulated by varying the ratio of global to local trials in a block in light of recent findings about the moderating role of context on motivation-related differences in attentional flexibility. The neural processes involved in attentional flexibility differ under approach versus avoidance states. First, differences in the preparatory activity in key brain regions suggested that subjects’ preparedness to switch was influenced by motivational state (anterior insula) and the interaction between motivation and context (superior temporal gyrus, inferior parietal lobule). Additionally, we observed motivation-related differences the anterior cingulate cortex during switching. These results provide initial evidence that motivation-induced behavioral changes may arise via different mechanisms in approach versus avoidance motivational states. PMID:26000735

  3. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    Science.gov (United States)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  4. Neural activations correlated with reading speed during reading novels.

    Science.gov (United States)

    Fujimaki, Norio; Munetsuna, Shinji; Sasaki, Toyofumi; Hayakawa, Tomoe; Ihara, Aya; Wei, Qiang; Terazono, Yasushi; Murata, Tsutomu

    2009-12-01

    Functional magnetic resonance imaging was used to measure neural activations in subjects instructed to silently read novels at ordinary and rapid speeds. Among the 19 subjects, 8 were experts in a rapid reading technique. Subjects pressed a button to turn pages during reading, and the interval between turning pages was recorded to evaluate the reading speed. For each subject, we evaluated activations in 14 areas and at 2 instructed reading speeds. Neural activations decreased with increasing reading speed in the left middle and posterior superior temporal area, left inferior frontal area, left precentral area, and the anterior temporal areas of both hemispheres, which have been reported to be active for linguistic processes, while neural activation increased with increasing reading speed in the right intraparietal sulcus, which is considered to reflect visuo-spatial processes. Despite the considerable reading speed differences, correlation analysis showed no significant difference in activation dependence on reading speed with respect to the subject groups and instructed reading speeds. The activation reduction with speed increase in language-related areas was opposite to the previous reports for low reading speeds. The present results suggest that subjects reduced linguistic processes with reading speed increase from ordinary to rapid speed.

  5. Neural correlates of focused attention during a brief mindfulness induction

    Science.gov (United States)

    Dickenson, Janna; Arch, Joanna; Lieberman, Matthew D.

    2013-01-01

    Mindfulness meditation—the practice of attending to present moment experience and allowing emotions and thoughts to pass without judgment—has shown to be beneficial in clinical populations across diverse outcomes. However, the basic neural mechanisms by which mindfulness operates and relates to everyday outcomes in novices remain unexplored. Focused attention is a common mindfulness induction where practitioners focus on specific physical sensations, typically the breath. The present study explores the neural mechanisms of this common mindfulness induction among novice practitioners. Healthy novice participants completed a brief task with both mindful attention [focused breathing (FB)] and control (unfocused attention) conditions during functional magnetic resonance imaging (fMRI). Relative to the control condition, FB recruited an attention network including parietal and prefrontal structures and trait-level mindfulness during this comparison also correlated with parietal activation. Results suggest that the neural mechanisms of a brief mindfulness induction are related to attention processes in novices and that trait mindfulness positively moderates this activation. PMID:22383804

  6. The neural correlates of dealing with social exclusion in childhood.

    Science.gov (United States)

    van der Meulen, Mara; Steinbeis, Nikolaus; Achterberg, Michelle; Bilo, Elisabeth; van den Bulk, Bianca G; van IJzendoorn, Marinus H; Crone, Eveline A

    2017-08-01

    Observing social exclusion can be a distressing experience for children that can be followed by concerns for self-inclusion (self-concerns), as well as prosocial behavior to help others in distress (other-concerns). Indeed, behavioral studies have shown that observed social exclusion elicits prosocial compensating behavior in children, but motivations for the compensation of social exclusion are not well understood. To distinguish between self-concerns and other-concerns when observing social exclusion in childhood, participants (aged 7-10) played a four-player Prosocial Cyberball Game in which they could toss a ball to three other players. When one player was excluded by the two other players, the participant could compensate for this exclusion by tossing the ball more often to the excluded player. Using a three-sample replication (N = 18, N = 27, and N = 26) and meta-analysis design, we demonstrated consistent prosocial compensating behavior in children in response to observing social exclusion. On a neural level, we found activity in reward and salience related areas (striatum and dorsal anterior cingulate cortex (dACC)) when participants experienced inclusion, and activity in social perception related areas (orbitofrontal cortex) when participants experienced exclusion. In contrast, no condition specific neural effects were observed for prosocial compensating behavior. These findings suggest that in childhood observed social exclusion is associated with stronger neural activity for self-concern. This study aims to overcome some of the issues of replicability in developmental psychology and neuroscience by using a replication and meta-analysis design, showing consistent prosocial compensating behavior to the excluded player, and replicable neural correlates of experiencing exclusion and inclusion during middle childhood. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The neural correlates of emotion regulation by implementation intentions.

    Science.gov (United States)

    Hallam, Glyn P; Webb, Thomas L; Sheeran, Paschal; Miles, Eleanor; Wilkinson, Iain D; Hunter, Michael D; Barker, Anthony T; Woodruff, Peter W R; Totterdell, Peter; Lindquist, Kristen A; Farrow, Tom F D

    2015-01-01

    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by 'implementation intentions'. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., "If I see something disgusting, then I will think these are just pixels on the screen!"), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency.

  8. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  9. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  10. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  11. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease.

    Science.gov (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno

    2016-12-01

    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Neural correlates of familial obesity risk and overweight in adolescence.

    Science.gov (United States)

    Carnell, Susan; Benson, Leora; Chang, Ku-Yu Virginia; Wang, Zhishun; Huo, Yuankai; Geliebter, Allan; Peterson, Bradley S

    2017-10-01

    Rates of adolescent obesity and overweight are high. The offspring of overweight parents are at increased risk of becoming obese later in life. Investigating neural correlates of familial obesity risk and current overweight status in adolescence could help identify biomarkers that predict future obesity and that may serve as novel targets for obesity interventions. Our primary aim was to use functional MRI to compare neural responses to words denoting high or low energy density (ED) foods and non-foods, in currently lean adolescents at higher compared with lower familial risk for obesity, and in overweight compared with lean adolescents. Secondary aims were to assess group differences in subjective appetite when viewing food and non-food words, and in objective ad libitum intake of high-ED foods in a laboratory setting. We recruited 36 adolescents (14-19y), of whom 10 were (obese/overweight "overweight"), 16 lean with obese/overweight mothers (lean high-risk, "lean-HR"), and 10 lean with lean mothers (lean low-risk, "lean-LR"). All underwent fMRI scanning while they viewed words representing high-ED foods, low-ED foods, or non-foods, and provided appetitive ratings in response to each word stimulus. They then consumed a multi-item ad libitum buffet meal. Food compared with non-food words activated a distributed emotion/reward system including insula and pregenual anterior cingulate cortex (ACC). Participants who were at increasing risk for obesity exhibited progressively weaker activation of an attentional/regulatory system including dorsolateral prefrontal cortex (PFC), dorsal ACC, and basal ganglia nuclei (activation was greatest in lean-LR, intermediate in lean-HR, and weakest in the overweight group). These group differences were most apparent for neural responses to high-compared with low-ED foods. Lean-HR (compared with lean-LR and overweight) adolescents reported greater desire for high-ED foods. Meal intake was greatest for the overweight, then lean

  13. Location Verification Systems Under Spatially Correlated Shadowing

    OpenAIRE

    Yan, Shihao; Nevat, Ido; Peters, Gareth W.; Malaney, Robert

    2014-01-01

    The verification of the location information utilized in wireless communication networks is a subject of growing importance. In this work we formally analyze, for the first time, the performance of a wireless Location Verification System (LVS) under the realistic setting of spatially correlated shadowing. Our analysis illustrates that anticipated levels of correlated shadowing can lead to a dramatic performance improvement of a Received Signal Strength (RSS)-based LVS. We also analyze the per...

  14. Neural correlates of gender differences in reputation building.

    Directory of Open Access Journals (Sweden)

    Francesca Garbarini

    Full Text Available Gender differences in cooperative choices and their neural correlates were investigated in a situation where reputation represented a crucial issue. Males and females were involved in an economic exchange (trust game where economic and reputational payoffs had to be balanced in order to increase personal welfare. At the behavioral level, females showed a stronger reaction to negative reputation judgments that led to higher cooperation than males, measured by back transfers in the game. The neuroanatomical counterpart of this gender difference was found within the reward network (engaged in producing expectations of positive results and reputation-related brain networks, such as the self-control network (engaged in strategically resisting the temptation to defect and the mentalizing network (engaged in thinking about how one is viewed by others, in which the dorsolateral prefrontal cortex (DLPFC and the medial (MPFC respectively play a crucial role. Furthermore, both DLPFC and MPFC activity correlated with the amount of back transfer, as well as with the personality dimensions assessed with the Big-Five Questionnaire (BFQ-2. Males, according to their greater DLPFC recruitment and their higher level of the BFQ-2 subscale of Dominance, were more focused on implementing a profit-maximizing strategy, pursuing this target irrespectively of others' judgments. On the contrary, females, according to their greater MPFC activity and their lower level of Dominance, were more focused on the reputation per se and not on the strategic component of reputation building. These findings shed light on the sexual dimorphism related to cooperative behavior and its neural correlates.

  15. Multiple mechanisms of consciousness: the neural correlates of emotional awareness.

    Science.gov (United States)

    Amting, Jayna M; Greening, Steven G; Mitchell, Derek G V

    2010-07-28

    Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann's area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness.

  16. Distinct neural correlates of attending speed vs. coherence of motion.

    Science.gov (United States)

    Kau, S; Strumpf, H; Merkel, C; Stoppel, C M; Heinze, H-J; Hopf, J-M; Schoenfeld, M A

    2013-01-01

    Attention to specific features of moving visual stimuli modulates the activity in human cortical motion sensitive areas. In this study we employed combined event-related electrophysiological, magnetencephalographic (EEG, MEG) and hemodynamic functional magnetic resonance imaging (fMRI) measures of brain activity to investigate the precise time course and the neural correlates of feature-based attention to speed and coherence. Subjects were presented with an aperture of dots randomly moving either slow or fast, at the same time displaying a high or low level of coherence. The task was to attend either the speed or the coherence and press a button upon the high speed or high coherence stimulus respectively. When attention was directed to the speed of motion enhanced neural activity was found in the dorsal visual area V3a and in the IPL, areas previously shown to be specialized for motion processing. In contrast, when attention was directed to the coherence of motion significant hemodynamic activity was observed in the parietal areas fIPS and SPL that are specialized for the processing of complex motion patterns. Concurrent recordings of the event-related electro- and magnetencephalographic responses revealed that the speed-related attentional modulations of activity occurred at an earlier time range (around 240-290 ms), while the coherence-related ones occurred later (around 320-370 ms) post-stimulus. The current results suggest that the attentional selection of motion features modulates neural processing in the lowest-tier regions required to perform the task-critical discrimination. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Neural correlates of working memory deficits and associations to response inhibition in obsessive compulsive disorder.

    Science.gov (United States)

    Heinzel, Stephan; Kaufmann, Christian; Grützmann, Rosa; Hummel, Robert; Klawohn, Julia; Riesel, Anja; Bey, Katharina; Lennertz, Leonhard; Wagner, Michael; Kathmann, Norbert

    2018-01-01

    Previous research in patients with obsessive-compulsive disorder (OCD) has indicated performance decrements in working memory (WM) and response inhibition. However, underlying neural mechanisms of WM deficits are not well understood to date, and empirical evidence for a proposed conceptual link to inhibition deficits is missing. We investigated WM performance in a numeric n-back task with four WM load conditions during functional Magnetic Resonance Imaging (fMRI) in 51 patients with OCD and 49 healthy control participants who were matched for age, sex, and education. Additionally, a stop signal task was performed outside the MRI scanner in a subsample. On the behavioral level, a significant WM load by group interaction was found for both accuracy (p neural correlates of a load-dependent WM decrement in OCD in the supplementary motor area (SMA) and the inferior parietal lobule (IPL). Within the OCD sample, SMA-activity as well as n-back performance were correlated with stop signal task performance. Results from behavioral and fMRI-analyses indicate a reduced WM load-dependent modulation of neural activity in OCD and suggest a common neural mechanism for inhibitory dysfunction and WM decrements in OCD.

  18. Neural correlates of explicit social judgments on vocal stimuli.

    Science.gov (United States)

    Hensel, Lukas; Bzdok, Danilo; Müller, Veronika I; Zilles, Karl; Eickhoff, Simon B

    2015-05-01

    Functional neuroimaging research on the neural basis of social evaluation has traditionally focused on face perception paradigms. Thus, little is known about the neurobiology of social evaluation processes based on auditory cues, such as voices. To investigate the top-down effects of social trait judgments on voices, hemodynamic responses of 44 healthy participants were measured during social trait (trustworthiness [TR] and attractiveness [AT]), emotional (happiness, HA), and cognitive (age, AG) voice judgments. Relative to HA and AG judgments, TR and AT judgments both engaged the bilateral inferior parietal cortex (IPC; area PGa) and the dorsomedial prefrontal cortex (dmPFC) extending into the perigenual anterior cingulate cortex. This dmPFC activation overlapped with previously reported areas specifically involved in social judgments on 'faces.' Moreover, social trait judgments were expected to share neural correlates with emotional HA and cognitive AG judgments. Comparison of effects pertaining to social, social-emotional, and social-cognitive appraisal processes revealed a dissociation of the left IPC into 3 functional subregions assigned to distinct cytoarchitectonic subdivisions. In total, the dmPFC is proposed to assume a central role in social attribution processes across sensory qualities. In social judgments on voices, IPC activity shifts from rostral processing of more emotional judgment facets to caudal processing of more cognitive judgment facets. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Neural Correlate of Anterograde Amnesia in Wernicke-Korsakoff Syndrome.

    Science.gov (United States)

    Nahum, Louis; Pignat, Jean-Michel; Bouzerda-Wahlen, Aurélie; Gabriel, Damien; Liverani, Maria Chiara; Lazeyras, François; Ptak, Radek; Richiardi, Jonas; Haller, Sven; Thorens, Gabriel; Zullino, Daniele F; Guggisberg, Adrian G; Schnider, Armin

    2015-09-01

    The neural correlate of anterograde amnesia in Wernicke-Korsakoff syndrome (WKS) is still debated. While the capacity to learn new information has been associated with integrity of the medial temporal lobe (MTL), previous studies indicated that the WKS is associated with diencephalic lesions, mainly in the mammillary bodies and anterior or dorsomedial thalamic nuclei. The present study tested the hypothesis that amnesia in WKS is associated with a disrupted neural circuit between diencephalic and hippocampal structures. High-density evoked potentials were recorded in four severely amnesic patients with chronic WKS, in five patients with chronic alcoholism without WKS, and in ten age matched controls. Participants performed a continuous recognition task of pictures previously shown to induce a left medial temporal lobe dependent positive potential between 250 and 350 ms. In addition, the integrity of the fornix was assessed using diffusion tensor imaging (DTI). WKS, but not alcoholic patients without WKS, showed absence of the early, left MTL dependent positive potential following immediate picture repetitions. DTI indicated disruption of the fornix, which connects diencephalic and hippocampal structures. The findings support an interpretation of anterograde amnesia in WKS as a consequence of a disconnection between diencephalic and MTL structures with deficient contribution of the MTL to rapid consolidation.

  20. Neural correlates of behavioral preference for culturally familiar drinks.

    Science.gov (United States)

    McClure, Samuel M; Li, Jian; Tomlin, Damon; Cypert, Kim S; Montague, Latané M; Montague, P Read

    2004-10-14

    Coca-Cola (Coke) and Pepsi are nearly identical in chemical composition, yet humans routinely display strong subjective preferences for one or the other. This simple observation raises the important question of how cultural messages combine with content to shape our perceptions; even to the point of modifying behavioral preferences for a primary reward like a sugared drink. We delivered Coke and Pepsi to human subjects in behavioral taste tests and also in passive experiments carried out during functional magnetic resonance imaging (fMRI). Two conditions were examined: (1) anonymous delivery of Coke and Pepsi and (2) brand-cued delivery of Coke and Pepsi. For the anonymous task, we report a consistent neural response in the ventromedial prefrontal cortex that correlated with subjects' behavioral preferences for these beverages. In the brand-cued experiment, brand knowledge for one of the drinks had a dramatic influence on expressed behavioral preferences and on the measured brain responses.

  1. The development of neural correlates for memory formation

    Science.gov (United States)

    Ofen, Noa

    2012-01-01

    A growing body of literature considers the development of episodic memory systems in the brain; the majority are neuroimaging studies conducted during memory encoding in order to explore developmental trajectories in memory formation. This review considers evidence from behavioral studies of memory development, neural correlates of memory formation in adults, and structural brain development, all of which form the foundation of a developmental cognitive neuroscience approach to memory development. I then aim to integrate the current evidence from developmental functional neuroimaging studies of memory formation with respect to three hypotheses. First, memory development reflects the development in the use of memory strategies, linked to prefrontal cortex. Second, developmental effects within the medial temporal lobes are more complex, and correspond to current notions about the nature in which the MTL support the formation of memory. Third, neurocognitive changes in content representation influence memory. Open issues and current directions are discussed. PMID:22414608

  2. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  3. Neural correlates of emotional interference in social anxiety disorder.

    Directory of Open Access Journals (Sweden)

    Stephanie Boehme

    Full Text Available Disorder-relevant but task-unrelated stimuli impair cognitive performance in social anxiety disorder (SAD; however, time course and neural correlates of emotional interference are unknown. The present study investigated time course and neural basis of emotional interference in SAD using event-related functional magnetic resonance imaging (fMRI. Patients with SAD and healthy controls performed an emotional stroop task which allowed examining interference effects on the current and the succeeding trial. Reaction time data showed an emotional interference effect in the current trial, but not the succeeding trial, specifically in SAD. FMRI data showed greater activation in the left amygdala, bilateral insula, medial prefrontal cortex (mPFC, dorsal anterior cingulate cortex (ACC, and left opercular part of the inferior frontal gyrus during emotional interference of the current trial in SAD patients. Furthermore, we found a positive correlation between patients' interference scores and activation in the mPFC, dorsal ACC and left angular/supramarginal gyrus. Taken together, results indicate a network of brain regions comprising amygdala, insula, mPFC, ACC, and areas strongly involved in language processing during the processing of task-unrelated threat in SAD. However, specifically the activation in mPFC, dorsal ACC, and left angular/supramarginal gyrus is associated with the strength of the interference effect, suggesting a cognitive network model of attentional bias in SAD. This probably comprises exceeded allocation of attentional resources to disorder-related information of the presented stimuli and increased self-referential and semantic processing of threat words in SAD.

  4. Attention bias modification reduces neural correlates of response monitoring.

    Science.gov (United States)

    Nelson, Brady D; Jackson, Felicia; Amir, Nader; Hajcak, Greg

    2017-10-01

    The error-related negativity (ERN) is an electrophysiological response to errors. Individual differences in the ERN have been posited to reflect sensitivity to threat and linked with risk for anxiety disorders. Attention bias modification is a promising computerized intervention that has been shown to decrease threat biases and anxiety symptoms. In the present study, we examined the impact of a single session of attention bias modification, relative to a control task, on the neural correlates of response monitoring, including the ERN, correct response negativity (CRN), and their difference (i.e., the ERN - CRN or ΔERN). The final sample included 60 participants who first completed a flanker task to elicit the ERN and CRN, and were then randomly assigned to attention bias modification (n=30) or a control task (n=30). After completing the attention bias modification or control task, participants completed the same flanker task to again elicit the ERN and CRN. Among participants who completed attention bias modification training, the ERN, CRN, and ΔERN decreased from the pre- to post-training assessment. In contrast, in participants who completed the control task, the CRN, ERN, and ΔERN did not differ between the pre- and post-training assessment. The presents study suggests that a single session of attention bias modification reduces neural correlates of response monitoring, including error-related brain activity. These results also support attention bias modification as a potential mechanistic-based intervention for the prevention and treatment of anxiety pathology. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Behavioral and neural correlates of communication via pointing.

    Directory of Open Access Journals (Sweden)

    Laurent Cleret de Langavant

    Full Text Available Communicative pointing is a human specific gesture which allows sharing information about a visual item with another person. It sets up a three-way relationship between a subject who points, an addressee and an object. Yet psychophysical and neuroimaging studies have focused on non-communicative pointing, which implies a two-way relationship between a subject and an object without the involvement of an addressee, and makes such gesture comparable to touching or grasping. Thus, experimental data on the communicating function of pointing remain scarce. Here, we examine whether the communicative value of pointing modifies both its behavioral and neural correlates by comparing pointing with or without communication. We found that when healthy participants pointed repeatedly at the same object, the communicative interaction with an addressee induced a spatial reshaping of both the pointing trajectories and the endpoint variability. Our finding supports the hypothesis that a change in reference frame occurs when pointing conveys a communicative intention. In addition, measurement of regional cerebral blood flow using H(2O(15 PET-scan showed that pointing when communicating with an addressee activated the right posterior superior temporal sulcus and the right medial prefrontal cortex, in contrast to pointing without communication. Such a right hemisphere network suggests that the communicative value of pointing is related to processes involved in taking another person's perspective. This study brings to light the need for future studies on communicative pointing and its neural correlates by unraveling the three-way relationship between subject, object and an addressee.

  6. Neural correlates of phonetic convergence and speech imitation

    Directory of Open Access Journals (Sweden)

    Maeva eGarnier

    2013-09-01

    Full Text Available Speakers unconsciously tend to mimic their interlocutor’s speech during communicative interaction. This study aims at examining the neural correlates of phonetic convergence and deliberate imitation, in order to explore whether imitation of phonetic features, deliberate or unconscious, might reflect a sensory-motor recalibration process.Sixteen participants listened to vowels with pitch varying around the average pitch of their own voice, and then produced the identified vowels, while their speech was recorded and their brain activity was imaged using fMRI. Three degrees and types of imitation were compared (unconscious, deliberate and inhibited using a go-nogo paradigm, which enabled the comparison of brain activations during the whole imitation process, its active perception step, and its production. Speakers followed the pitch of voices they were exposed to, even unconsciously, without being instructed to do so. After being informed about this phenomenon, fourteen participants were able to inhibit it, at least partially. The results of whole brain and ROI analyses support the fact that both deliberate and unconscious imitations are based on similar neural mechanisms and networks, involving regions of the dorsal stream, during both perception and production steps of the imitation process. While no significant difference in brain activation was found between unconscious and deliberate imitations, the degree of imitation however appears to be determined by processes occurring during the perception step. Four regions of the dorsal stream: bilateral auditory cortex, bilateral supramarginal gyrus, and left Wernicke’s area, indeed showed an activity that correlated significantly with the degree of imitation during the perception step.

  7. Neural correlates of effective and ineffective mood induction

    Science.gov (United States)

    Falkenberg, Irina; Kellermann, Thilo; Eickhoff, Simon B.; Gur, Ruben C.; Habel, Ute

    2014-01-01

    Emotional reactivity and the ability to modulate an emotional state, which are important factors for psychological well-being, are often dysregulated in psychiatric disorders. Neural correlates of emotional states have mostly been studied at the group level, thereby neglecting individual differences in the intensity of emotional experience. This study investigates the relationship between brain activity and interindividual variation in subjective affect ratings. A standardized mood induction (MI) procedure, using positive facial expression and autobiographical memories, was applied to 54 healthy participants (28 female), who rated their subjective affective state before and after the MI. We performed a regression analysis with brain activation during MI and changes in subjective affect ratings. An increase in positive affective ratings correlated with activity in the amygdala, hippocampus and the fusiform gyrus (FFG), whereas reduced positive affect correlated with activity of the subgenual anterior cingulate cortex. Activations in the amygdala, hippocampus and FFG are possibly linked to strategies adopted by the participants to achieve mood changes. Subgenual cingulate cortex activation has been previously shown to relate to rumination. This finding is in line with previous observations of the subgenual cingulate’s role in emotion regulation and its clinical relevance to therapy and prognosis of mood disorders. PMID:23576810

  8. Common neural correlates of emotion perception in humans.

    Science.gov (United States)

    Jastorff, Jan; Huang, Yun-An; Giese, Martin A; Vandenbulcke, Mathieu

    2015-10-01

    Whether neuroimaging findings support discriminable neural correlates of emotion categories is a longstanding controversy. Two recent meta-analyses arrived at opposite conclusions, with one supporting (Vytal and Hamann []: J Cogn Neurosci 22:2864-2885) and the other opposing this proposition (Lindquist et al. []: Behav Brain Sci 35:121-143). To obtain direct evidence regarding this issue, we compared activations for four emotions within a single fMRI design. Angry, happy, fearful, sad and neutral stimuli were presented as dynamic body expressions. In addition, observers categorized motion morphs between neutral and emotional stimuli in a behavioral experiment to determine their relative sensitivities. Brain-behavior correlations revealed a large brain network that was identical for all four tested emotions. This network consisted predominantly of regions located within the default mode network and the salience network. Despite showing brain-behavior correlations for all emotions, muli-voxel pattern analyses indicated that several nodes of this emotion general network contained information capable of discriminating between individual emotions. However, significant discrimination was not limited to the emotional network, but was also observed in several regions within the action observation network. Taken together, our results favor the position that one common emotional brain network supports the visual processing and discrimination of emotional stimuli. © 2015 Wiley Periodicals, Inc.

  9. Classic Hallucinogens and Mystical Experiences: Phenomenology and Neural Correlates.

    Science.gov (United States)

    Barrett, Frederick S; Griffiths, Roland R

    2018-01-01

    This chapter begins with a brief review of descriptions and definitions of mystical-type experiences and the historical connection between classic hallucinogens and mystical experiences. The chapter then explores the empirical literature on experiences with classic hallucinogens in which claims about mystical or religious experiences have been made. A psychometrically validated questionnaire is described for the reliable measurement of mystical-type experiences occasioned by classic hallucinogens. Controlled laboratory studies show that under double-blind conditions that provide significant controls for expectancy bias, psilocybin can occasion complete mystical experiences in the majority of people studied. These effects are dose-dependent, specific to psilocybin compared to placebo or a psychoactive control substance, and have enduring impact on the moods, attitudes, and behaviors of participants as assessed by self-report of participants and ratings by community observers. Other studies suggest that enduring personal meaning in healthy volunteers and therapeutic outcomes in patients, including reduction and cessation of substance abuse behaviors and reduction of anxiety and depression in patients with a life-threatening cancer diagnosis, are related to the occurrence of mystical experiences during drug sessions. The final sections of the chapter draw parallels in human neuroscience research between the neural bases of experiences with classic hallucinogens and the neural bases of meditative practices for which claims of mystical-type experience are sometimes made. From these parallels, a functional neural model of mystical experience is proposed, based on changes in the default mode network of the brain that have been observed after the administration of classic hallucinogens and during meditation practices for which mystical-type claims have been made.

  10. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  11. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.

    2014-01-01

    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  12. Investigating the neural correlates of the Stroop effect with magnetoencephalography.

    Science.gov (United States)

    Galer, Sophie; Op De Beeck, Marc; Urbain, Charline; Bourguignon, Mathieu; Ligot, Noémie; Wens, Vincent; Marty, Brice; Van Bogaert, Patrick; Peigneux, Philippe; De Tiège, Xavier

    2015-01-01

    Reporting the ink color of a written word when it is itself a color name incongruent with the ink color (e.g. "red" printed in blue) induces a robust interference known as the Stroop effect. Although this effect has been the subject of numerous functional neuroimaging studies, its neuronal substrate is still a matter of debate. Here, we investigated the spatiotemporal dynamics of interference-related neural events using magnetoencephalography (MEG) and voxel-based analyses (SPM8). Evoked magnetic fields (EMFs) were acquired in 12 right-handed healthy subjects performing a color-word Stroop task. Behavioral results disclosed a classic interference effect with longer mean reaction times for incongruent than congruent stimuli. At the group level, EMFs' differences between incongruent and congruent trials spanned from 380 to 700 ms post-stimulus onset. Underlying neural sources were identified in the left pre-supplementary motor area (pre-SMA) and in the left posterior parietal cortex (PPC) confirming the role of these regions in conflict processing.

  13. Spinning in the scanner: neural correlates of virtual reorientation.

    Science.gov (United States)

    Sutton, Jennifer E; Joanisse, Marc F; Newcombe, Nora S

    2010-09-01

    Recent studies have used spatial reorientation task paradigms to identify underlying cognitive mechanisms of navigation in children, adults, and a range of animal species. Despite broad interest in this task across disciplines, little is known about the brain bases of reorientation. We used functional magnetic resonance imaging to examine neural activity in adults during a virtual reality version of the reorientation task. Three environments that varied in the cues provided were studied: a rectangular room with 4 identical gray walls (Geometry), a square room with 3 gray walls and 1 red wall (Feature), and a rectangular room with 3 gray walls and 1 red wall (Feature + Geometry). Multiple areas within the medial temporal lobe (MTL) showed increased activation when a feature was present compared with when reorientation was based only on geometric cues. In contrast, reliance on geometric cues significantly activated a number of non-MTL structures, including the prefrontal cortex and inferior temporal gyrus. These results provide neural evidence for processing differences between the 2 types of cue as well as insight into developmental and comparative aspects of reorientation. (c) 2010 APA, all rights reserved).

  14. Neural correlates of attention and streaming in a perceptually multistable auditory illusion.

    Science.gov (United States)

    Mehta, Anahita H; Yasin, Ifat; Oxenham, Andrew J; Shamma, Shihab

    2016-10-01

    In a complex acoustic environment, acoustic cues and attention interact in the formation of streams within the auditory scene. In this study, a variant of the "octave illusion" [Deutsch (1974). Nature 251, 307-309] was used to investigate the neural correlates of auditory streaming, and to elucidate the effects of attention on the interaction between sequential and concurrent sound segregation in humans. By directing subjects' attention to different frequencies and ears, it was possible to elicit several different illusory percepts with the identical stimulus. The first experiment tested the hypothesis that the illusion depends on the ability of listeners to perceptually stream the target tones from within the alternating sound sequences. In the second experiment, concurrent psychophysical measures and electroencephalography recordings provided neural correlates of the various percepts elicited by the multistable stimulus. The results show that the perception and neural correlates of the auditory illusion can be manipulated robustly by attentional focus and that the illusion is constrained in much the same way as auditory stream segregation, suggesting common underlying mechanisms.

  15. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  16. Neural correlates of treatment outcome in major depression.

    LENUS (Irish Health Repository)

    Lisiecka, Danuta

    2012-02-01

    There is a need to identify clinically useful biomarkers in major depressive disorder (MDD). In this context the functional connectivity of the orbitofrontal cortex (OFC) to other areas of the affect regulation circuit is of interest. The aim of this study was to identify neural changes during antidepressant treatment and correlates associated with the treatment outcome. In an exploratory analysis it was investigated whether functional connectivity measures moderated a response to mirtazapine and venlafaxine. Twenty-three drug-free patients with MDD were recruited from the Department of Psychiatry and Psychotherapy of the Ludwig-Maximilians University in Munich. The patients were subjected to a 4-wk randomized clinical trial with two common antidepressants, venlafaxine or mirtazapine. Functional connectivity of the OFC, derived from functional magnetic resonance imaging with an emotional face-matching task, was measured before and after the trial. Higher OFC connectivity with the left motor areas and the OFC regions prior to the trial characterized responders (p<0.05, false discovery rate). The treatment non-responders were characterized by higher OFC-cerebellum connectivity. The strength of response was positively correlated with functional coupling between left OFC and the caudate nuclei and thalami. Differences in longitudinal changes were detected between venlafaxine and mirtazapine treatment in the motor areas, cerebellum, cingulate gyrus and angular gyrus. These results indicate that OFC functional connectivity might be useful as a marker for therapy response to mirtazapine and venlafaxine and to reconstruct the differences in their mechanism of action.

  17. Neural correlates of success and failure signals during neurofeedback learning.

    Science.gov (United States)

    Radua, Joaquim; Stoica, Teodora; Scheinost, Dustin; Pittenger, Christopher; Hampson, Michelle

    2016-04-05

    Feedback-driven learning, observed across phylogeny and of clear adaptive value, is frequently operationalized in simple operant conditioning paradigms, but it can be much more complex, driven by abstract representations of success and failure. This study investigates the neural processes involved in processing success and failure during feedback learning, which are not well understood. Data analyzed were acquired during a multisession neurofeedback experiment in which ten participants were presented with, and instructed to modulate, the activity of their orbitofrontal cortex with the aim of decreasing their anxiety. We assessed the regional blood-oxygenation-level-dependent response to the individualized neurofeedback signals of success and failure across twelve functional runs acquired in two different magnetic resonance sessions in each of ten individuals. Neurofeedback signals of failure correlated early during learning with deactivation in the precuneus/posterior cingulate and neurofeedback signals of success correlated later during learning with deactivation in the medial prefrontal/anterior cingulate cortex. The intensity of the latter deactivations predicted the efficacy of the neurofeedback intervention in the reduction of anxiety. These findings indicate a role for regulation of the default mode network during feedback learning, and suggest a higher sensitivity to signals of failure during the early feedback learning and to signals of success subsequently. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Neural correlates for naming disadvantage of the dominant language in bilingual word production.

    Science.gov (United States)

    Fu, Yongben; Lu, Di; Kang, Chunyan; Wu, Junjie; Ma, Fengyang; Ding, Guosheng; Guo, Taomei

    2017-12-01

    The present study investigated the neural correlates of naming disadvantage of the dominant language under the mixed language context. Twenty one unbalanced Chinese-English bilinguals completed a cued picture naming task while being scanned with functional magnetic resonance imaging (fMRI). Behavioral results showed that naming pictures in the second lanuage (L2) was significantly slower than naming pictures in the first language (L1) under a single language context. When comparing picture naming in L2 to naming in L1, enhanced activity in the left inferior parietal lobule and left cerebellum was observed. On the contrary, naming pictures in Chinese (L1) was significantly slower than naming in English (L2) under the mixed language context. The fMRI results showed that bilateral inferior frontal gyri, right middle frontal gyrus, and right supplementary motor area were activated to a greater extent in L1 than in L2. These results suggest that the dominant language is inhibited to a greater extent to ensure the production of the second language under the mixed language context. Therefore, more attentional control resources are recruited when bilinguals produced the dominant language. The present study, for the first time, reveals neural correlates of L1 naming disadvantage under the mixed language context. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    International Nuclear Information System (INIS)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez

    2011-01-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  20. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Valter Magalhaes; Pereira, Iraci Martinez, E-mail: valter.costa@usp.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because a previous diagnosis allows the correction of the fault and, like this, to prevent the production stopped, improving operator's security and it's not provoking economics losses. The objective of this work is to build a set, using bivariate correlation and canonical correlation, which will be the set of input variables of an artificial neural network to monitor the greater number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. Initially, for the input set of neural network we selected the variables: nuclear power, primary circuit flow rate, control/safety rod position and difference in pressure in the core of the reactor, because almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The nuclear power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures; the primary circuit flow rate has the function of energy transport by removing the nucleus heat. An artificial neural network was trained and the results were satisfactory since the IEA-R1 Data Acquisition System reactor monitors 64 variables and, with a set of 9 input variables resulting from the correlation analysis, it was possible to monitor 51 variables. (author)

  1. Cognitive correlates of visual neural plasticity in schizophrenia.

    Science.gov (United States)

    Jahshan, Carol; Wynn, Jonathan K; Mathalon, Daniel H; Green, Michael F

    2017-12-01

    Neuroplasticity may be an important treatment target to improve the cognitive deficits in schizophrenia (SZ). Yet, it is poorly understood and difficult to assess. Recently, a visual high-frequency stimulation (HFS) paradigm that potentiates electroencephalography (EEG)-based visual evoked potentials (VEP) has been developed to assess neural plasticity in the visual cortex. Using this paradigm, we examined visual plasticity in SZ patients (N=64) and its correlations with clinical symptoms, neurocognition, functional capacity, and community functioning. VEPs were assessed prior to (baseline), and 2-, 4-, and 20-min after (Post-1, Post-2, and Post-3, respectively) 2min of visual HFS. Cluster-based permutation tests were conducted to identify time points and electrodes at which VEP amplitudes were significantly different after HFS. Compared to baseline, there was increased negativity between 140 and 227ms for the early post-HFS block (average of Post-1 and Post-2), and increased positivity between 180 and 281ms for the late post-HFS block (Post-3), at parieto-occipital and occipital electrodes. The increased negativity in the early post-HFS block did not correlate with any of the measures, whereas increased positivity in the late post-HFS block correlated with better neurocognitive performance. Results suggest that SZ patients exhibit both short- and long-term plasticity. The long-term plasticity effect, which was present 22min after HFS, was evident relatively late in the VEP, suggesting that neuroplastic changes in higher-order visual association areas, rather than earlier short-term changes in primary and secondary visual cortex, may be particularly important for the maintenance of neurocognitive function in SZ. Published by Elsevier B.V.

  2. Neural Correlates of Encoding within- and across-Domain Inter-Item Associations

    Science.gov (United States)

    Park, Heekyeong; Rugg, Michael D.

    2011-01-01

    The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine, first, whether the neural correlates of associative encoding vary according to study material and, second, whether encoding of across- versus within-material item pairs is associated…

  3. Neural Correlates of Visual Aesthetics - Beauty as the Coalescence of Stimulus and Internal State

    NARCIS (Netherlands)

    Jacobs, Richard H. A. H.; Renken, Remco; Cornelissen, Frans W.

    2012-01-01

    How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of

  4. Analysis of input variables of an artificial neural network using bivariate correlation and canonical correlation

    International Nuclear Information System (INIS)

    Costa, Valter Magalhaes

    2011-01-01

    The monitoring of variables and diagnosis of sensor fault in nuclear power plants or processes industries is very important because an early diagnosis allows the correction of the fault and, like this, do not cause the production interruption, improving operator's security and it's not provoking economics losses. The objective of this work is, in the whole of all variables monitor of a nuclear power plant, to build a set, not necessary minimum, which will be the set of input variables of an artificial neural network and, like way, to monitor the biggest number of variables. This methodology was applied to the IEA-R1 Research Reactor at IPEN. For this, the variables Power, Rate of flow of primary circuit, Rod of control/security and Difference in pressure in the core of the reactor ( Δ P) was grouped, because, for hypothesis, almost whole of monitoring variables have relation with the variables early described or its effect can be result of the interaction of two or more. The Power is related to the increasing and decreasing of temperatures as well as the amount radiation due fission of the uranium; the Rods are controls of power and influence in the amount of radiation and increasing and decreasing of temperatures and the Rate of flow of primary circuit has function of the transport of energy by removing of heat of the nucleus Like this, labeling B= {Power, Rate of flow of Primary Circuit, Rod of Control/Security and Δ P} was computed the correlation between B and all another variables monitoring (coefficient of multiple correlation), that is, by the computer of the multiple correlation, that is tool of Theory of Canonical Correlations, was possible to computer how much the set B can predict each variable. Due the impossibility of a satisfactory approximation by B in the prediction of some variables, it was included one or more variables that have high correlation with this variable to improve the quality of prediction. In this work an artificial neural network

  5. Neural correlates of sound localization in complex acoustic environments.

    Directory of Open Access Journals (Sweden)

    Ida C Zündorf

    Full Text Available Listening to and understanding people in a "cocktail-party situation" is a remarkable feature of the human auditory system. Here we investigated the neural correlates of the ability to localize a particular sound among others in an acoustically cluttered environment with healthy subjects. In a sound localization task, five different natural sounds were presented from five virtual spatial locations during functional magnetic resonance imaging (fMRI. Activity related to auditory stream segregation was revealed in posterior superior temporal gyrus bilaterally, anterior insula, supplementary motor area, and frontoparietal network. Moreover, the results indicated critical roles of left planum temporale in extracting the sound of interest among acoustical distracters and the precuneus in orienting spatial attention to the target sound. We hypothesized that the left-sided lateralization of the planum temporale activation is related to the higher specialization of the left hemisphere for analysis of spectrotemporal sound features. Furthermore, the precuneus - a brain area known to be involved in the computation of spatial coordinates across diverse frames of reference for reaching to objects - seems to be also a crucial area for accurately determining locations of auditory targets in an acoustically complex scene of multiple sound sources. The precuneus thus may not only be involved in visuo-motor processes, but may also subserve related functions in the auditory modality.

  6. The neural correlates of reading fluency deficits in children.

    Science.gov (United States)

    Langer, Nicolas; Benjamin, Christopher; Minas, Jennifer; Gaab, Nadine

    2015-06-01

    Multiple studies have shown that individuals with a reading disability (RD) demonstrate deficits in posterior left-hemispheric brain regions during reading-related tasks. These studies mainly focused on reading sub-skills, and it remains debated whether such dysfunction is apparent during more ecologically valid reading skills, such as reading fluency. In this fMRI study, reading fluency was systematically varied to characterize neural correlates of reading fluency in 30 children with (RD) and without (typical developing children, TYP) a RD. Sentences were presented at constrained, comfortable, and accelerated speeds, which were determined based on individual reading speed. Behaviorally, RD children displayed decreased performance in several reading-related tasks. Using fMRI, we demonstrated that both TYP and RD children display increased activation in several components of the reading network during fluent reading. When required to read at an accelerated speed, RD children exhibited less activation in the fusiform gyrus (FG) compared with the TYP children. A region of interest analysis substantiated differences in the FG and demonstrated a relationship to behavioral reading performance. These results suggest that the FG plays a key role in fluent reading and that it can be modulated by speed. These results and their implications for remediation strategies should be considered in educational practice. Published by Oxford University Press 2013. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Neural correlates of decision making after unfair treatment

    Directory of Open Access Journals (Sweden)

    Yan eWu

    2015-03-01

    Full Text Available Empirical evidence indicates that people are inequity averse. However, it is unclear whether and how suffering unfairness impacts subsequent behavior. We investigated the consequences of unfair treatment in subsequent interactions with new interaction partners and the associated neural mechanisms. Participants were experimentally manipulated to experience fair or unfair treatment in the ultimatum game (UG, and subsequently, they were given the opportunity to retaliate in the dictator game (DG in their interactions with players who had not played a role in the previous fair or unfair treatment. The results showed that participants dictated less money to unrelated partners after frequently receiving unfair offers in the previous UG (versus frequently receiving fair offers in the previous UG, but only when they were first exposed to unfair UG/DG. Stronger activation in the right dorsal anterior insula was found during receiving unfair offers and during the subsequent offer-considering phase. The regional homogeneity (ReHo, a measure of the local synchronization of neighboring voxels in resting-state brain activity, in the left ventral anterior insula and left superior temporal pole was positively correlated with the behavior change. These findings suggest that unfair treatment may encourage a spread of unfairness, and that the anterior insula may be not only engaged in signaling social norm violations, but also recruited in guiding subsequent adaptive behaviors.

  8. Neural correlates of insight in dreaming and psychosis.

    Science.gov (United States)

    Dresler, Martin; Wehrle, Renate; Spoormaker, Victor I; Steiger, Axel; Holsboer, Florian; Czisch, Michael; Hobson, J Allan

    2015-04-01

    The idea that dreaming can serve as a model for psychosis has a long and honourable tradition, however it is notoriously speculative. Here we demonstrate that recent research on the phenomenon of lucid dreaming sheds new light on the debate. Lucid dreaming is a rare state of sleep in which the dreamer gains insight into his state of mind during dreaming. Recent electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) data for the first time allow very specific hypotheses about the dream-psychosis relationship: if dreaming is a reasonable model for psychosis, then insight into the dreaming state and insight into the psychotic state should share similar neural correlates. This indeed seems to be the case: cortical areas activated during lucid dreaming show striking overlap with brain regions that are impaired in psychotic patients who lack insight into their pathological state. This parallel allows for new therapeutic approaches and ways to test antipsychotic medication. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A systematic review of the neural correlates of positive emotions.

    Science.gov (United States)

    Machado, Leonardo; Cantilino, Amaury

    2017-01-01

    To conduct a systematic literature review of human studies reporting neural correlates of positive emotions. The PubMed and Web of Science databases were searched in January 2016 for scientific papers written in English. No restrictions were placed on year of publication. Twenty-two articles were identified and 12 met the established criteria. Five had been published during the last 4 years. Formation and regulation of positive emotions, including happiness, are associated with significant reductions in activity in the right prefrontal cortex and bilaterally in the temporoparietal cortex, as well as with increased activity in the left prefrontal regions. They are also associated with increased activity in the cingulate gyrus, inferior and middle temporal gyri, amygdalae, and ventral striatum. It is too early to claim that there is an established understanding of the neuroscience of positive emotions and happiness. However, despite overlap in the brain regions involved in the formation and regulation of positive and negative emotions, we can conclude that positive emotions such as happiness activate specific brain regions.

  10. Neural correlates of behavior therapy for Tourette's disorder.

    Science.gov (United States)

    Deckersbach, Thilo; Chou, Tina; Britton, Jennifer C; Carlson, Lindsay E; Reese, Hannah E; Siev, Jedidiah; Scahill, Lawrence; Piacentini, John C; Woods, Douglas W; Walkup, John T; Peterson, Alan L; Dougherty, Darin D; Wilhelm, Sabine

    2014-12-30

    Tourette's disorder, also called Tourette syndrome (TS), is characterized by motor and vocal tics that can cause significant impairment in daily functioning. Tics are believed to be due to failed inhibition of both associative and motor cortico-striato-thalamo-cortical pathways. Comprehensive Behavioral Intervention for Tics (CBIT), which is an extension of Habit Reversal Therapy (HRT), teaches patients to become more aware of sensations that reliably precede tics (premonitory urges) and to initiate competing movements that inhibit the occurrence of tics. In this study, we used functional magnetic resonance imaging (fMRI) to investigate the neural changes associated with CBIT treatment in subjects with TS. Eight subjects with TS were matched with eight healthy controls in gender, education, age, and handedness. Subjects completed the Visuospatial Priming (VSP) task, a measure of response inhibition, during fMRI scanning before and after CBIT treatment (or waiting period for controls). For TS subjects, we found a significant decrease in striatal (putamen) activation from pre- to post-treatment. Change in VSP task-related activation from pre- to post-treatment in Brodmann's area 47 (the inferior frontal gyrus) was negatively correlated with changes in tic severity. CBIT may promote normalization of aberrant cortico-striato-thalamo-cortical associative and motor pathways in individuals with TS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Neural correlates of autobiographical memory retrieval in children and adults.

    Science.gov (United States)

    Bauer, Patricia J; Pathman, Thanujeni; Inman, Cory; Campanella, Carolina; Hamann, Stephan

    2017-04-01

    Autobiographical memory (AM) is a critically important form of memory for life events that undergoes substantial developmental changes from childhood to adulthood. Relatively little is known regarding the functional neural correlates of AM retrieval in children as assessed with fMRI, and how they may differ from adults. We investigated this question with 14 children ages 8-11 years and 14 adults ages 19-30 years, contrasting AM retrieval with semantic memory (SM) retrieval. During scanning, participants were cued by verbal prompts to retrieve previously selected recent AMs or to verify semantic properties of words. As predicted, both groups showed AM retrieval-related increased activation in regions implicated in prior studies, including bilateral hippocampus, and prefrontal, posterior cingulate, and parietal cortices. Adults showed greater activation in the hippocampal/parahippocampal region as well as prefrontal and parietal cortex, relative to children; age-related differences were most prominent in the first 8 sec versus the second 8 sec of AM retrieval and when AM retrieval was contrasted with semantic retrieval. This study is the first to characterise similarities and differences during AM retrieval in children and adults using fMRI.

  12. The neural correlates of impaired inhibitory control in anxiety.

    Science.gov (United States)

    Ansari, Tahereh L; Derakshan, Nazanin

    2011-04-01

    According to Attentional Control Theory (Eysenck et al., 2007) anxiety impairs the inhibition function of working memory by increasing the influence of stimulus-driven processes over efficient top-down control. We investigated the neural correlates of impaired inhibitory control in anxiety using an antisaccade task. Low- and high-anxious participants performed anti- and prosaccade tasks and electrophysiological activity was recorded. Consistent with previous research high-anxious individuals had longer antisaccade latencies in response to the to-be-inhibited target, compared with low-anxious individuals. Central to our predictions, high-anxious individuals showed lower ERP activity, at frontocentral and central recording sites, than low anxious individuals, in the period immediately prior to onset of the to-be-inhibited target on correct antisaccade trials. Our findings indicate that anxiety interferes with the efficient recruitment of top-down mechanisms required for the suppression of prepotent responses. Implications are discussed within current models of attentional control in anxiety (Bishop, 2009; Eysenck et al., 2007). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The neural correlates of maternal and romantic love.

    Science.gov (United States)

    Bartels, Andreas; Zeki, Semir

    2004-03-01

    Romantic and maternal love are highly rewarding experiences. Both are linked to the perpetuation of the species and therefore have a closely linked biological function of crucial evolutionary importance. Yet almost nothing is known about their neural correlates in the human. We therefore used fMRI to measure brain activity in mothers while they viewed pictures of their own and of acquainted children, and of their best friend and of acquainted adults as additional controls. The activity specific to maternal attachment was compared to that associated to romantic love described in our earlier study and to the distribution of attachment-mediating neurohormones established by other studies. Both types of attachment activated regions specific to each, as well as overlapping regions in the brain's reward system that coincide with areas rich in oxytocin and vasopressin receptors. Both deactivated a common set of regions associated with negative emotions, social judgment and 'mentalizing', that is, the assessment of other people's intentions and emotions. We conclude that human attachment employs a push-pull mechanism that overcomes social distance by deactivating networks used for critical social assessment and negative emotions, while it bonds individuals through the involvement of the reward circuitry, explaining the power of love to motivate and exhilarate.

  14. Neural correlates of ambient thermal sensation: An fMRI study.

    Science.gov (United States)

    Oi, Hajime; Hashimoto, Teruo; Nozawa, Takayuki; Kanno, Akitake; Kawata, Natasha; Hirano, Kanan; Yamamoto, Yuki; Sugiura, Motoaki; Kawashima, Ryuta

    2017-09-12

    An increasing number of biometeorological and psychological studies have demonstrated the importance and complexity of the processes involved in environmental thermal perception in humans. However, extant functional imaging data on thermal perception have yet to fully reveal the neural mechanisms underlying these processes because most studies were performed using local thermal stimulation and did not dissociate thermal sensation from comfort. Thus, for the first time, the present study employed functional magnetic resonance imaging (fMRI) and manipulated ambient temperature during brain measurement to independently explore the neural correlates of thermal sensation and comfort. There were significant correlations between the sensation of a lower temperature and activation in the left dorsal posterior insula, putamen, amygdala, and bilateral retrosplenial cortices but no significant correlations were observed between brain activation and thermal comfort. The dorsal posterior insula corresponds to the phylogenetically new thermosensory cortex whereas the limbic structures (i.e., amygdala and retrosplenial cortex) and dorsal striatum may be associated with supramodal emotional representations and the behavioral motivation to obtain heat, respectively. The co-involvement of these phylogenetically new and old systems may explain the psychological processes underlying the flexible psychological and behavioral thermo-environmental adaptations that are unique to humans.

  15. The neural correlates of emotional memory in posttraumatic stress disorder.

    Science.gov (United States)

    Brohawn, Kathryn Handwerger; Offringa, Reid; Pfaff, Danielle L; Hughes, Katherine C; Shin, Lisa M

    2010-12-01

    Posttraumatic stress disorder (PTSD) is marked by intrusive, chronic, and distressing memories of highly emotional events. Previous research has highlighted the role of the amygdala and its interactions with the hippocampus in mediating the effect of enhanced memory for emotional information in healthy individuals. As the functional integrity of these regions may be compromised in PTSD, the current study examined the neural correlates of emotional memory in PTSD. We used functional magnetic resonance imaging and an event-related subsequent memory recognition paradigm to study amygdala and hippocampus activation in 18 individuals with PTSD and 18 trauma-exposed non-PTSD control participants. Memory enhancement for negative, relative to neutral, pictures was found across all subjects, without significant differences between groups. Relative to the trauma-exposed non-PTSD group, the PTSD group showed exaggerated amygdala activation during the encoding of negative versus neutral pictures. This effect was even more pronounced when the analysis included data from only pictures that were subsequently remembered 1 week later. In the PTSD group, degree of amygdala activation during the encoding of negative versus neutral pictures was positively correlated with hippocampal activation and current PTSD symptom severity. The PTSD group also showed exaggerated hippocampal activation in response to negative pictures that were remembered versus forgotten. Finally, hippocampal activation associated with the successful encoding of negative relative to neutral pictures was significantly greater in the PTSD group. Exaggerated amygdala activation during the encoding of emotionally negative stimuli in PTSD is related to symptom severity and to hippocampal activation. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  17. Stochastic resonance in FitzHugh-Nagumo neural system driven by correlated non-Gaussian noise and Gaussian noise

    Science.gov (United States)

    Guo, Yong-Feng; Xi, Bei; Wei, Fang; Tan, Jian-Guo

    2017-12-01

    In this paper, the phenomenon of stochastic resonance in FitzHugh-Nagumo (FHN) neural system driven by correlated non-Gaussian noise and Gaussian white noise is investigated. First, the analytical expression of the stationary probability distribution is derived by using the path integral approach and the unified colored noise approximation. Then, we obtain the expression of signal-to-noise ratio (SNR) by applying the theory of two-state model. The results show that the phenomena of stochastic resonance and multiple stochastic resonance appear in FHN neural system under different values of parameters. The effects of the multiplicative noise intensity D and the additive noise intensity Q on the SNR are entirely different. In addition, the discharge behavior of FHN neural system is restrained when the value of Q is smaller. But, it is conducive to enhance signal response of FHN neural system when the values of Q and D are relatively larger.

  18. Neural Correlates of Psychotherapeutic Treatment of Post-traumatic Stress Disorder: A Systematic Literature Review.

    Science.gov (United States)

    Malejko, Kathrin; Abler, Birgit; Plener, Paul L; Straub, Joana

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease with changes in neural circuitries. Neurobiological models conceptualize the symptoms of PTSD as correlates of a dysfunctional stress reaction to traumatic events. Functional imaging studies showed an increased amygdala and a decreased prefrontal cortex response in PTSD patients. As psychotherapeutic approaches represent the gold standard for PTSD treatment, it is important to examine its underlying neurobiological correlates. Studies published until August 2016 were selected through systematic literature research in the databases PubMed, PsychInfo, and Cochrane Library's Central Register of Controlled Trials or were identified manually by searching reference lists of selected articles. Search terms were "neural correlates" OR "fMRI" OR "SPECT," AND "therapy" AND "PTSD." A total of 19 articles were included in the present review whereof 15 studies compared pre-to-post-therapy signal changes, six studies related pre-treatment activity to pre-to-post-symptom improvement, and four studies compared neural correlates of responders versus non-responders. The disposed therapy forms were cognitive behavioral therapy (CBT), eye movement desensitization and reprocessing, cognitive therapy, exposure therapy, mindfulness-based intervention, brief eclectic psychotherapy, and unspecified therapy. Successful psychotherapy of PTSD was repeatedly shown to be accompanied by decreased activity in the amygdala and the insula as well as increased activity in the dorsal anterior cingulate cortex (dACC) and hippocampus. Elevated dACC activity prior to treatment was related to subsequent treatment success and a positive predictor for treatment response. Elevated amygdala and insula pre-treatment activities were related to treatment failure. Decreased activity in limbic brain regions and increased activity in frontal brain areas in PTSD patients after successful psychotherapeutic treatment might reflect regained top

  19. Neural correlates of fluid reasoning in children and adults

    Directory of Open Access Journals (Sweden)

    Samantha B Wright

    2008-03-01

    Full Text Available Fluid reasoning, or the capacity to think logically and solve novel problems, is central to the development of human cognition, but little is known about the underlying neural changes. During the acquisition of event-related fMRI data, children aged 6-13 (N = 16 and young adults (N = 17 performed a task in which they were asked to identify semantic relationships between drawings of common objects. On semantic problems, participants indicated which of fi ve objects was most closely semantically related to a cued object. On analogy problems, participants solved a visual propositional analogy (e.g., shoe is to foot as glove is to…µ by indicating which of four objects would complete the problem; these problems required integration of two semantic relations, or relational integration. Our prior research on analogical reasoning in adults implicated left anterior ventrolateral prefrontal cortex (VLPFC in the controlled retrieval of individual semantic relationships, and rostrolateral prefrontal cortex (RLPFC in relational integration. In this study, age-related changes in the recruitment of VLPFC, temporal cortex, and other cortical regions were observed during the retrieval of individual semantic relations. In contrast, agerelated changes in RLPFC function were observed during relational integration. Children aged 6-13 engage RLPFC too late in the analogy trials to infl uence their behavioral responses, suggesting that important changes in RLPFC function take place during adolescence.

  20. Neural correlates of gesture processing across human development.

    Science.gov (United States)

    Wakefield, Elizabeth M; James, Thomas W; James, Karin H

    2013-01-01

    Co-speech gesture facilitates learning to a greater degree in children than in adults, suggesting that the mechanisms underlying the processing of co-speech gesture differ as a function of development. We suggest that this may be partially due to children's lack of experience producing gesture, leading to differences in the recruitment of sensorimotor networks when comparing adults to children. Here, we investigated the neural substrates of gesture processing in a cross-sectional sample of 5-, 7.5-, and 10-year-old children and adults and focused on relative recruitment of a sensorimotor system that included the precentral gyrus (PCG) and the posterior middle temporal gyrus (pMTG). Children and adults were presented with videos in which communication occurred through different combinations of speech and gesture during a functional magnetic resonance imaging (fMRI) session. Results demonstrated that the PCG and pMTG were recruited to different extents in the two populations. We interpret these novel findings as supporting the idea that gesture perception (pMTG) is affected by a history of gesture production (PCG), revealing the importance of considering gesture processing as a sensorimotor process.

  1. Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials.

    Science.gov (United States)

    Isaac, Clémence; Januel, Dominique

    2016-01-01

    Cognitive impairments are a core feature in schizophrenia and are linked to poor social functioning. Numerous studies have shown that cognitive remediation can enhance cognitive and functional abilities in patients with this pathology. The underlying mechanism of these behavioral improvements seems to be related to structural and functional changes in the brain. However, studies on neural correlates of such enhancement remain scarce. We explored the neural correlates of cognitive enhancement following cognitive remediation interventions in schizophrenia and the differential effect between cognitive training and other therapeutic interventions or patients' usual care. We searched MEDLINE, PsycInfo, and ScienceDirect databases for studies on cognitive remediation therapy in schizophrenia that used neuroimaging techniques and a randomized design. Search terms included randomized controlled trial, cognitive remediation, cognitive training, rehabilitation, magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, near infrared spectroscopy, and diffusion tensor imaging. We selected randomized controlled trials that proposed multiple sessions of cognitive training to adult patients with a schizophrenia spectrum disorder and assessed its efficacy with imaging techniques. In total, 15 reports involving 19 studies were included in the systematic review. They involved a total of 455 adult patients, 271 of whom received cognitive remediation. Cognitive remediation therapy seems to provide a neurobiological enhancing effect in schizophrenia. After therapy, increased activations are observed in various brain regions mainly in frontal - especially prefrontal - and also in occipital and anterior cingulate regions during working memory and executive tasks. Several studies provide evidence of an improved functional connectivity after cognitive training, suggesting a neuroplastic effect of therapy through mechanisms of functional

  2. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    International Nuclear Information System (INIS)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei; Chung, June-key

    2017-01-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  3. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiaozhen [The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China); Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei [Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Chung, June-key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between {sup 11}C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased {sup 11}C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  4. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    Science.gov (United States)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  5. Parallel and interrelated neural systems underlying adaptive navigation.

    Science.gov (United States)

    Mizumori, Sheri J Y; Canfield, James G; Yeshenko, Oksana

    2005-06-01

    The ability to process in parallel multiple forms of sensory information, and link sensory-sensory associations to behavior, presumably allows for the opportunistic use of the most reliable and predictive sensory modalities in diverse behavioral contexts. Evolutionary considerations indicate that such processing may represent a fundamental operating principle underlying complex sensory associations and sensory-motor integration. Here, we suggest that animal navigation is a particularly useful model of such opportunistic use of sensory and motor information because it is possible to study directly the effects of memory on neural system functions. First, comparative evidence for parallel processing across multiple brain structures during navigation is provided from the literatures on fish and rodent navigation. Then, based on neurophysiological evidence of coordinated, multiregional processing, we provide a neurobiological explanation of learning and memory effects on neural circuitry mediating navigation.

  6. Functional and Anatomic Correlates of Neural Aging in Birds.

    Science.gov (United States)

    Ottinger, Mary Ann

    2018-01-01

    Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Neural correlates of real-world route learning.

    Science.gov (United States)

    Schinazi, Victor R; Epstein, Russell A

    2010-11-01

    Classical theories of spatial microgenesis (Siegel and White, 1975) posit that information about landmarks and the paths between them is acquired prior to the establishment of more holistic survey-level representations. To test this idea, we examined the neural and behavioral correlates of landmark and path encoding during a real-world route learning episode. Subjects were taught a novel 3 km route around the University of Pennsylvania campus and then brought to the laboratory where they performed a recognition task that required them to discriminate between on-route and off-route buildings. Each building was preceded by a masked prime, which could either be the building that immediately preceded the target building along the route or immediately succeeded it. Consistent with previous reports using a similar paradigm in a virtual environment (Janzen and Weststeijn, 2007), buildings at navigational decision points (DPs) were more easily recognized than non-DP buildings and recognition was facilitated by in-route vs. against-route primes. Functional magnetic resonance imaging (fMRI) data collected during the recognition task revealed two effects of interest: first, greater response to DP vs. non-DP buildings in a wide network of brain regions previously implicated in spatial processing; second, a significant interaction between building location (DP vs. non-DP) and route direction (in-route vs. against-route) in a retrosplenial/parietal-occipital sulcus region previously labeled the retrosplenial complex (RSC). These results indicate that newly learned real-world routes are coded in terms of paths between decision points and suggest that the RSC may be a critical locus for integrating landmark and path information. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Shared and distinct neural correlates of singing and speaking.

    Science.gov (United States)

    Ozdemir, Elif; Norton, Andrea; Schlaug, Gottfried

    2006-11-01

    Using a modified sparse temporal sampling fMRI technique, we examined both shared and distinct neural correlates of singing and speaking. In the experimental conditions, 10 right-handed subjects were asked to repeat intoned ("sung") and non-intoned ("spoken") bisyllabic words/phrases that were contrasted with conditions controlling for pitch ("humming") and the basic motor processes associated with vocalization ("vowel production"). Areas of activation common to all tasks included the inferior pre- and post-central gyrus, superior temporal gyrus (STG), and superior temporal sulcus (STS) bilaterally, indicating a large shared network for motor preparation and execution as well as sensory feedback/control for vocal production. The speaking more than vowel-production contrast revealed activation in the inferior frontal gyrus most likely related to motor planning and preparation, in the primary sensorimotor cortex related to motor execution, and the middle and posterior STG/STS related to sensory feedback. The singing more than speaking contrast revealed additional activation in the mid-portions of the STG (more strongly on the right than left) and the most inferior and middle portions of the primary sensorimotor cortex. Our results suggest a bihemispheric network for vocal production regardless of whether the words/phrases were intoned or spoken. Furthermore, singing more than humming ("intoned speaking") showed additional right-lateralized activation of the superior temporal gyrus, inferior central operculum, and inferior frontal gyrus which may offer an explanation for the clinical observation that patients with non-fluent aphasia due to left hemisphere lesions are able to sing the text of a song while they are unable to speak the same words.

  9. Neural and Genetic Correlates of the Social Sharing of Happiness

    Science.gov (United States)

    Matsunaga, Masahiro; Kawamichi, Hiroaki; Umemura, Tomohiro; Hori, Reiko; Shibata, Eiji; Kobayashi, Fumio; Suzuki, Kohta; Ishii, Keiko; Ohtsubo, Yohsuke; Noguchi, Yasuki; Ochi, Misaki; Yamasue, Hidenori; Ohira, Hideki

    2017-01-01

    Happiness is regarded as one of the most fundamental human goals. Given recent reports that positive feelings are contagious (e.g., the presence of a happy person enhances others' happiness) because of the human ability to empathize (i.e., sharing emotions), empathic ability may be a key factor in increasing one's own subjective level of happiness. Based on previous studies indicating that a single nucleotide polymorphism in the serotonin 2A receptor gene [HTR2A rs6311 guanine (G) vs. adenine (A)] is associated with sensitivity to emotional stimuli and several mental disorders such as depression, we predicted that the polymorphism might be associated with the effect of sharing happiness. To elucidate the neural and genetic correlates of the effect of sharing happiness, we first performed functional magnetic resonance imaging (fMRI) during a “happy feelings” evocation task (emotional event imagination task), during which we manipulated the valence of the imagined event (positive, neutral, or negative), as well as the presence of a friend experiencing a positive-valence event (presence or absence). We recruited young adult women for this fMRI study because empathic ability may be higher in women than in men. Participants felt happier (p happiness (neutral/presence condition) than those with the AA genotype. In a follow-up study with a vignette-based questionnaire conducted in a relatively large sample, male and female participants were presented with the same imagined events wherein their valence and the presence of a friend were manipulated. Results showed genetic differences in happiness-related empathy regardless of sex (p happiness by modulating the activity of the mentalizing/theory-of-mind network. PMID:29311795

  10. The neural bases underlying social risk perception in purchase decisions.

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta

    2014-05-01

    Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental

  11. Neural Correlates of Psychotherapeutic Treatment of Post-traumatic Stress Disorder: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Kathrin Malejko

    2017-05-01

    Full Text Available ObjectivesPost-traumatic stress disorder (PTSD is a common psychiatric disease with changes in neural circuitries. Neurobiological models conceptualize the symptoms of PTSD as correlates of a dysfunctional stress reaction to traumatic events. Functional imaging studies showed an increased amygdala and a decreased prefrontal cortex response in PTSD patients. As psychotherapeutic approaches represent the gold standard for PTSD treatment, it is important to examine its underlying neurobiological correlates.MethodsStudies published until August 2016 were selected through systematic literature research in the databases PubMed, PsychInfo, and Cochrane Library’s Central Register of Controlled Trials or were identified manually by searching reference lists of selected articles. Search terms were “neural correlates” OR “fMRI” OR “SPECT,” AND “therapy” AND “PTSD.” A total of 19 articles were included in the present review whereof 15 studies compared pre-to-post-therapy signal changes, six studies related pre-treatment activity to pre-to-post-symptom improvement, and four studies compared neural correlates of responders versus non-responders. The disposed therapy forms were cognitive behavioral therapy (CBT, eye movement desensitization and reprocessing, cognitive therapy, exposure therapy, mindfulness-based intervention, brief eclectic psychotherapy, and unspecified therapy.ResultsSuccessful psychotherapy of PTSD was repeatedly shown to be accompanied by decreased activity in the amygdala and the insula as well as increased activity in the dorsal anterior cingulate cortex (dACC and hippocampus. Elevated dACC activity prior to treatment was related to subsequent treatment success and a positive predictor for treatment response. Elevated amygdala and insula pre-treatment activities were related to treatment failure.DiscussionDecreased activity in limbic brain regions and increased activity in frontal brain areas in PTSD patients after

  12. Neural changes underlying early stages of L2 vocabulary acquisition.

    Science.gov (United States)

    Pu, He; Holcomb, Phillip J; Midgley, Katherine J

    2016-11-01

    Research has shown neural changes following second language (L2) acquisition after weeks or months of instruction. But are such changes detectable even earlier than previously shown? The present study examines the electrophysiological changes underlying the earliest stages of second language vocabulary acquisition by recording event-related potentials (ERPs) within the first week of learning. Adult native English speakers with no previous Spanish experience completed less than four hours of Spanish vocabulary training, with pre- and post-training ERPs recorded to a backward translation task. Results indicate that beginning L2 learners show rapid neural changes following learning, manifested in changes to the N400 - an ERP component sensitive to lexicosemantic processing and degree of L2 proficiency. Specifically, learners in early stages of L2 acquisition show growth in N400 amplitude to L2 words following learning as well as a backward translation N400 priming effect that was absent pre-training. These results were shown within days of minimal L2 training, suggesting that the neural changes captured during adult second language acquisition are more rapid than previously shown. Such findings are consistent with models of early stages of bilingualism in adult learners of L2 ( e.g. Kroll and Stewart's RHM) and reinforce the use of ERP measures to assess L2 learning.

  13. Using IQ discrepancy scores to examine the neural correlates of specific cognitive abilities.

    Science.gov (United States)

    Margolis, Amy; Bansal, Ravi; Hao, Xuejun; Algermissen, Molly; Erickson, Cole; Klahr, Kristin W; Naglieri, Jack A; Peterson, Bradley S

    2013-08-28

    The underlying neural determinants of general intelligence have been studied intensively, and seem to derive from the anatomical and functional characteristics of a frontoparietal network. Little is known, however, about the underlying neural correlates of domain-specific cognitive abilities, the other factors hypothesized to explain individual performance on intelligence tests. Previous preliminary studies have suggested that spatially distinct neural structures do not support domain-specific cognitive abilities. To test whether differences between abilities that affect performance on verbal and performance tasks derive instead from the morphological features of a single anatomical network, we assessed in two independent samples of healthy human participants (N=83 and N=58; age range, 5-57 years) the correlation of cortical thickness with the magnitude of the verbal intelligence quotient (VIQ)-performance intelligence quotient (PIQ) discrepancy. We operationalized the VIQ-PIQ discrepancy by regressing VIQ onto PIQ (VIQ-regressed-on-PIQ score), and by regressing PIQ onto VIQ (PIQ-regressed-on-VIQ score). In both samples, a progressively thinner cortical mantle in anterior and posterior regions bilaterally was associated with progressively greater (more positive) VIQ-regressed-on-PIQ scores. A progressively thicker cortical mantle in anterior and posterior regions bilaterally was associated with progressively greater (more positive) PIQ-regressed-on-VIQ scores. Variation in cortical thickness in these regions accounted for a large portion of the overall variance in magnitude of the VIQ-PIQ discrepancy. The degree of hemispheric asymmetry in cortical thickness accounted for a much smaller but statistically significant portion of variance in VIQ-PIQ discrepancy.

  14. The neural correlates of agrammatism: Evidence from aphasic and healthy speakers performing an overt picture description task.

    Science.gov (United States)

    Schönberger, Eva; Heim, Stefan; Meffert, Elisabeth; Pieperhoff, Peter; da Costa Avelar, Patricia; Huber, Walter; Binkofski, Ferdinand; Grande, Marion

    2014-01-01

    Functional brain imaging studies have improved our knowledge of the neural localization of language functions and the functional reorganization after a lesion. However, the neural correlates of agrammatic symptoms in aphasia remain largely unknown. The present fMRI study examined the neural correlates of morpho-syntactic encoding and agrammatic errors in continuous language production by combining three approaches. First, the neural mechanisms underlying natural morpho-syntactic processing in a picture description task were analyzed in 15 healthy speakers. Second, agrammatic-like speech behavior was induced in the same group of healthy speakers to study the underlying functional processes by limiting the utterance length. In a third approach, five agrammatic participants performed the picture description task to gain insights in the neural correlates of agrammatism and the functional reorganization of language processing after stroke. In all approaches, utterances were analyzed for syntactic completeness, complexity, and morphology. Event-related data analysis was conducted by defining every clause-like unit (CLU) as an event with its onset-time and duration. Agrammatic and correct CLUs were contrasted. Due to the small sample size as well as heterogeneous lesion sizes and sites with lesion foci in the insula lobe, inferior frontal, superior temporal and inferior parietal areas the activation patterns in the agrammatic speakers were analyzed on a single subject level. In the group of healthy speakers, posterior temporal and inferior parietal areas were associated with greater morpho-syntactic demands in complete and complex CLUs. The intentional manipulation of morpho-syntactic structures and the omission of function words were associated with additional inferior frontal activation. Overall, the results revealed that the investigation of the neural correlates of agrammatic language production can be reasonably conducted with an overt language production paradigm.

  15. Neural correlates of motor learning, transfer of learning, and learning to learn.

    Science.gov (United States)

    Seidler, Rachael D

    2010-01-01

    Recent studies on the neural bases of sensorimotor adaptation demonstrate that the cerebellar and striatal thalamocortical pathways contribute to early learning. Transfer of learning involves a reduction in the contribution of early learning networks and increased reliance on the cerebellum. The neural correlates of learning to learn remain to be determined but likely involve enhanced functioning of the general aspects of early learning.

  16. Effects of Modality on the Neural Correlates of Encoding Processes Supporting Recollection and Familiarity

    Science.gov (United States)

    Gottlieb, Lauren J.; Rugg, Michael D.

    2011-01-01

    Prior research has demonstrated that the neural correlates of successful encoding ("subsequent memory effects") partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting…

  17. "Binaural Rivalry": Dichotic Listening as a Tool for the Investigation of the Neural Correlate of Consciousness

    Science.gov (United States)

    Brancucci, Alfredo; Tommasi, Luca

    2011-01-01

    Since about two decades neuroscientists have systematically faced the problem of consciousness: the aim is to discover the neural activity specifically related to conscious perceptions, i.e. the biological properties of what philosophers call qualia. In this view, a neural correlate of consciousness (NCC) is a precise pattern of brain activity…

  18. The sign rule and beyond: boundary effects, flexibility, and noise correlations in neural population codes.

    Directory of Open Access Journals (Sweden)

    Yu Hu

    2014-02-01

    Full Text Available Over repeat presentations of the same stimulus, sensory neurons show variable responses. This "noise" is typically correlated between pairs of cells, and a question with rich history in neuroscience is how these noise correlations impact the population's ability to encode the stimulus. Here, we consider a very general setting for population coding, investigating how information varies as a function of noise correlations, with all other aspects of the problem - neural tuning curves, etc. - held fixed. This work yields unifying insights into the role of noise correlations. These are summarized in the form of theorems, and illustrated with numerical examples involving neurons with diverse tuning curves. Our main contributions are as follows. (1 We generalize previous results to prove a sign rule (SR - if noise correlations between pairs of neurons have opposite signs vs. their signal correlations, then coding performance will improve compared to the independent case. This holds for three different metrics of coding performance, and for arbitrary tuning curves and levels of heterogeneity. This generality is true for our other results as well. (2 As also pointed out in the literature, the SR does not provide a necessary condition for good coding. We show that a diverse set of correlation structures can improve coding. Many of these violate the SR, as do experimentally observed correlations. There is structure to this diversity: we prove that the optimal correlation structures must lie on boundaries of the possible set of noise correlations. (3 We provide a novel set of necessary and sufficient conditions, under which the coding performance (in the presence of noise will be as good as it would be if there were no noise present at all.

  19. Neural and Genetic Correlates of the Social Sharing of Happiness

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    2017-12-01

    Full Text Available Happiness is regarded as one of the most fundamental human goals. Given recent reports that positive feelings are contagious (e.g., the presence of a happy person enhances others' happiness because of the human ability to empathize (i.e., sharing emotions, empathic ability may be a key factor in increasing one's own subjective level of happiness. Based on previous studies indicating that a single nucleotide polymorphism in the serotonin 2A receptor gene [HTR2A rs6311 guanine (G vs. adenine (A] is associated with sensitivity to emotional stimuli and several mental disorders such as depression, we predicted that the polymorphism might be associated with the effect of sharing happiness. To elucidate the neural and genetic correlates of the effect of sharing happiness, we first performed functional magnetic resonance imaging (fMRI during a “happy feelings” evocation task (emotional event imagination task, during which we manipulated the valence of the imagined event (positive, neutral, or negative, as well as the presence of a friend experiencing a positive-valence event (presence or absence. We recruited young adult women for this fMRI study because empathic ability may be higher in women than in men. Participants felt happier (p < 0.01 and the mentalizing/theory-of-mind network, which spans the medial prefrontal cortex, temporoparietal junction, temporal poles, and precuneus, was significantly more active (p < 0.05 in the presence condition than in the absence condition regardless of event valence. Moreover, participants with the GG (p < 0.01 and AG (p < 0.05 genotypes of HTR2A experienced happier feelings as well as greater activation of a part of the mentalizing/theory-of-mind network (p < 0.05 during empathy for happiness (neutral/presence condition than those with the AA genotype. In a follow-up study with a vignette-based questionnaire conducted in a relatively large sample, male and female participants were presented with the same

  20. Improved Target Identification of Correlated Input Data Using Recurrent Neural Networks and Feature Selection

    National Research Council Canada - National Science Library

    Laine, Trevor

    2003-01-01

    .... Since input features extracted from sensor data for ATR algorithms are likely to contain significant correlation, models such as artificial neural networks that do not assume independent input data...

  1. Neural correlates of long-term memory: the interplay between encoding and retrieval

    OpenAIRE

    Bauch, E. M.

    2012-01-01

    Neural correlates of human long-term memory encoding and retrieval have been studied in relative isolation. Memory performance, however, benefits from an overlap between processes engaged at encoding and retrieval. This thesis sought to determine how encoding-retrieval overlap affects neural correlates of memory. Four studies were conducted using electrical brain activity recorded from the scalps of healthy adults. The first experiment addressed whether congruency in mode of pr...

  2. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study.

    Science.gov (United States)

    Jones, Stephanie R; Pritchett, Dominique L; Stufflebeam, Steven M; Hämäläinen, Matti; Moore, Christopher I

    2007-10-03

    Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0-175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at approximately 70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (approximately 25 ms), exogenous input to the supragranular layers (approximately 70 ms), and a second wave of granular output (approximately 135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.

  3. Neural correlates of informational cascades: brain mechanisms of social influence on belief updating.

    Science.gov (United States)

    Huber, Rafael E; Klucharev, Vasily; Rieskamp, Jörg

    2015-04-01

    Informational cascades can occur when rationally acting individuals decide independently of their private information and follow the decisions of preceding decision-makers. In the process of updating beliefs, differences in the weighting of private and publicly available social information may modulate the probability that a cascade starts in a decisive way. By using functional magnetic resonance imaging, we examined neural activity while participants updated their beliefs based on the decisions of two fictitious stock market traders and their own private information, which led to a final decision of buying one of two stocks. Computational modeling of the behavioral data showed that a majority of participants overweighted private information. Overweighting was negatively correlated with the probability of starting an informational cascade in trials especially prone to conformity. Belief updating by private information was related to activity in the inferior frontal gyrus/anterior insula, the dorsolateral prefrontal cortex and the parietal cortex; the more a participant overweighted private information, the higher the activity in the inferior frontal gyrus/anterior insula and the lower in the parietal-temporal cortex. This study explores the neural correlates of overweighting of private information, which underlies the tendency to start an informational cascade. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. More than just two sexes: the neural correlates of voice gender perception in gender dysphoria.

    Directory of Open Access Journals (Sweden)

    Jessica Junger

    Full Text Available Gender dysphoria (also known as "transsexualism" is characterized as a discrepancy between anatomical sex and gender identity. Research points towards neurobiological influences. Due to the sexually dimorphic characteristics of the human voice, voice gender perception provides a biologically relevant function, e.g. in the context of mating selection. There is evidence for a better recognition of voices of the opposite sex and a differentiation of the sexes in its underlying functional cerebral correlates, namely the prefrontal and middle temporal areas. This fMRI study investigated the neural correlates of voice gender perception in 32 male-to-female gender dysphoric individuals (MtFs compared to 20 non-gender dysphoric men and 19 non-gender dysphoric women. Participants indicated the sex of 240 voice stimuli modified in semitone steps in the direction to the other gender. Compared to men and women, MtFs showed differences in a neural network including the medial prefrontal gyrus, the insula, and the precuneus when responding to male vs. female voices. With increased voice morphing men recruited more prefrontal areas compared to women and MtFs, while MtFs revealed a pattern more similar to women. On a behavioral and neuronal level, our results support the feeling of MtFs reporting they cannot identify with their assigned sex.

  5. More than Just Two Sexes: The Neural Correlates of Voice Gender Perception in Gender Dysphoria

    Science.gov (United States)

    Junger, Jessica; Habel, Ute; Bröhr, Sabine; Neulen, Josef; Neuschaefer-Rube, Christiane; Birkholz, Peter; Kohler, Christian; Schneider, Frank; Derntl, Birgit; Pauly, Katharina

    2014-01-01

    Gender dysphoria (also known as “transsexualism”) is characterized as a discrepancy between anatomical sex and gender identity. Research points towards neurobiological influences. Due to the sexually dimorphic characteristics of the human voice, voice gender perception provides a biologically relevant function, e.g. in the context of mating selection. There is evidence for a better recognition of voices of the opposite sex and a differentiation of the sexes in its underlying functional cerebral correlates, namely the prefrontal and middle temporal areas. This fMRI study investigated the neural correlates of voice gender perception in 32 male-to-female gender dysphoric individuals (MtFs) compared to 20 non-gender dysphoric men and 19 non-gender dysphoric women. Participants indicated the sex of 240 voice stimuli modified in semitone steps in the direction to the other gender. Compared to men and women, MtFs showed differences in a neural network including the medial prefrontal gyrus, the insula, and the precuneus when responding to male vs. female voices. With increased voice morphing men recruited more prefrontal areas compared to women and MtFs, while MtFs revealed a pattern more similar to women. On a behavioral and neuronal level, our results support the feeling of MtFs reporting they cannot identify with their assigned sex. PMID:25375171

  6. Neural correlates of human wayfinding in stroke patients.

    NARCIS (Netherlands)

    Asselen, M. van; Kessels, R.P.C.; Kappelle, L.J.; Neggers, S.F.W.; Frijns, C.J.M.; Postma, A.

    2006-01-01

    Wayfinding is a complex cognitive function involving different types of information, such as knowledge about landmarks and direction information. This variety of processes suggest that multiple neural mechanisms are involved, e.g., the hippocampal system, the posterior parietal and temporal cortical

  7. Neural Correlates of Machiavellian Strategies in a Social Dilemma Task

    Science.gov (United States)

    Bereczkei, Tamas; Deak, Anita; Papp, Peter; Perlaki, Gabor; Orsi, Gergely

    2013-01-01

    In spite of having deficits in various areas of social cognition, especially in mindreading, Machiavellian individuals are typically very successful in different tasks, including solving social dilemmas. We assume that a profound examination of neural structures associated with decision-making processes is needed to learn more about…

  8. Commentary: Elucidating the Neural Correlates of Early Childhood Memory

    Science.gov (United States)

    Mullally, Sinead L.

    2015-01-01

    Both episodic memory and the key neural structure believed to support it, namely the hippocampus, are believed to undergo protracted periods of postnatal developmental. Critically however, the hippocampus is comprised of distinct subfields and circuits, and these circuits appear to mature at different rates (Lavenex and Banta Lavenex, 2013).…

  9. Empathy in paediatric intensive care nurses part 2: Neural correlates.

    Science.gov (United States)

    Jackson, Philip L; Latimer, Margot; Eugène, Fanny; MacLeod, Emily; Hatfield, Tara; Vachon-Presseau, Etienne; Michon, Pierre-Emmanuel; Prkachin, Kenneth M

    2017-11-01

    To determine if there are brain activity differences between paediatric intensive care nurses and allied health professionals during pain intensity rating tasks and test whether these differences are related to the population observed (infant or adult) and professional experience. The underestimation of patients' pain by healthcare professionals has generally been associated with patterns of change in neural response to vicarious pain, notably reduced activation in regions associated with affective sharing and increased activation in regions associated with regulation, compared with controls. Paediatric nurses, however, have recently been found to provide higher estimates of infants' pain in comparison to allied health controls, suggesting that changes in neural response of this population might be different than other health professionals. Cross-sectional study. Functional MRI data were acquired from September 2014-June 2015 and used to compare changes in brain activity in 27 female paediatric care nurses and 24 allied health professionals while rating the pain of infants and adults in a series of video clips. Paediatric nurses rated infant and adult pain higher than allied health professionals, but the two groups' neural response only differed during observation of infant pain; paediatric nurses mainly showed significantly less activation in the medial prefrontal cortex (linked to cognitive empathy) and in the left anterior insula and inferior frontal cortex (linked to affective sharing). Patterns of neural activity to vicarious pain may vary across healthcare professions and patient populations and the amount of professional experience might explain part of these differences. © 2017 John Wiley & Sons Ltd.

  10. Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics

    NARCIS (Netherlands)

    Laan, van der L.N.; Ridder, de D.T.D.; Viergever, M.A.; Smeets, P.A.M.

    2012-01-01

    Neuro-imaging holds great potential for predicting choice behavior from brain responses. In this study we used both traditional mass-univariate and state-of-the-art multivariate pattern analysis to establish which brain regions respond to preferred packages and to what extent neural activation

  11. Getting the word out: Neural correlates of enthusiastic message propagation

    Directory of Open Access Journals (Sweden)

    Emily eFalk

    2012-11-01

    Full Text Available What happens in the mind of a person who first hears a potentially exciting idea? We examined the neural precursors of spreading ideas with enthusiasm, and dissect enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing with data gathered using fMRI, to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants’ neural activity was recorded as they reviewed ideas for potential television show pilots. Participants’ language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis classifier, which returned ratings for evaluative language (evaluative vs. descriptive and valence (positive vs. negative. Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal parietal junction (TPJ. Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, MTL as well as in ventral striatum, inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. These data also demonstrate the novel use of machine learning tools to link natural language data to neuroimaging data.

  12. Getting the word out: neural correlates of enthusiastic message propagation.

    Science.gov (United States)

    Falk, Emily B; O'Donnell, Matthew Brook; Lieberman, Matthew D

    2012-01-01

    What happens in the mind of a person who first hears a potentially exciting idea?We examined the neural precursors of spreading ideas with enthusiasm, and dissected enthusiasm into component processes that can be identified through automated linguistic analysis, gestalt human ratings of combined linguistic and non-verbal cues, and points of convergence/divergence between the two. We combined tools from natural language processing (NLP) with data gathered using fMRI to link the neurocognitive mechanisms that are set in motion during initial exposure to ideas and subsequent behaviors of these message communicators outside of the scanner. Participants' neural activity was recorded as they reviewed ideas for potential television show pilots. Participants' language from video-taped interviews collected post-scan was transcribed and given to an automated linguistic sentiment analysis (SA) classifier, which returned ratings for evaluative language (evaluative vs. descriptive) and valence (positive vs. negative). Separately, human coders rated the enthusiasm with which participants transmitted each idea. More positive sentiment ratings by the automated classifier were associated with activation in neural regions including medial prefrontal cortex; MPFC, precuneus/posterior cingulate cortex; PC/PCC, and medial temporal lobe; MTL. More evaluative, positive, descriptions were associated exclusively with neural activity in temporal-parietal junction (TPJ). Finally, human ratings indicative of more enthusiastic sentiment were associated with activation across these regions (MPFC, PC/PCC, DMPFC, TPJ, and MTL) as well as in ventral striatum (VS), inferior parietal lobule and premotor cortex. Taken together, these data demonstrate novel links between neural activity during initial idea encoding and the enthusiasm with which the ideas are subsequently delivered. This research lays the groundwork to use machine learning and neuroimaging data to study word of mouth communication and

  13. Neural Correlates of Belief and Emotion Attribution in Schizophrenia.

    Science.gov (United States)

    Lee, Junghee; Horan, William P; Wynn, Jonathan K; Green, Michael F

    2016-01-01

    Impaired mental state attribution is a core social cognitive deficit in schizophrenia. With functional magnetic resonance imaging (fMRI), this study examined the extent to which the core neural system of mental state attribution is involved in mental state attribution, focusing on belief attribution and emotion attribution. Fifteen schizophrenia outpatients and 14 healthy controls performed two mental state attribution tasks in the scanner. In a Belief Attribution Task, after reading a short vignette, participants were asked infer either the belief of a character (a false belief condition) or a physical state of an affair (a false photograph condition). In an Emotion Attribution Task, participants were asked either to judge whether character(s) in pictures felt unpleasant, pleasant, or neutral emotion (other condition) or to look at pictures that did not have any human characters (view condition). fMRI data were analyzing focusing on a priori regions of interest (ROIs) of the core neural systems of mental state attribution: the medial prefrontal cortex (mPFC), temporoparietal junction (TPJ) and precuneus. An exploratory whole brain analysis was also performed. Both patients and controls showed greater activation in all four ROIs during the Belief Attribution Task than the Emotion Attribution Task. Patients also showed less activation in the precuneus and left TPJ compared to controls during the Belief Attribution Task. No significant group difference was found during the Emotion Attribution Task in any of ROIs. An exploratory whole brain analysis showed a similar pattern of neural activations. These findings suggest that while schizophrenia patients rely on the same neural network as controls do when attributing beliefs of others, patients did not show reduced activation in the key regions such as the TPJ. Further, this study did not find evidence for aberrant neural activation during emotion attribution or recruitment of compensatory brain regions in schizophrenia.

  14. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  15. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  16. Abacus Training Modulates the Neural Correlates of Exact and Approximate Calculations in Chinese Children: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Fenglei Du

    2013-01-01

    Full Text Available Exact (EX and approximate (AP calculations rely on distinct neural circuits. However, the training effect on the neural correlates of EX and AP calculations is largely unknown, especially for the AP calculation. Abacus-based mental calculation (AMC is a particular arithmetic skill that can be acquired by long-term abacus training. The present study investigated whether and how the abacus training modulates the neural correlates of EX and AP calculations by functional magnetic resonance imaging (fMRI. Neural activations were measured in 20 abacus-trained and 19 nontrained Chinese children during AP and EX calculation tasks. Our results demonstrated that: (1 in nontrained children, similar neural regions were activated in both tasks, while the size of activated regions was larger in AP than those in the EX; (2 in abacus-trained children, no significant difference was found between these two tasks; (3 more visuospatial areas were activated in abacus-trained children under the EX task compared to the nontrained. These results suggested that more visuospatial strategies were used by the nontrained children in the AP task compared to the EX; abacus-trained children adopted a similar strategy in both tasks; after long-term abacus training, children were more inclined to apply a visuospatial strategy during processing EX calculations.

  17. Abacus training modulates the neural correlates of exact and approximate calculations in Chinese children: an fMRI study.

    Science.gov (United States)

    Du, Fenglei; Chen, Feiyan; Li, Yongxin; Hu, Yuzheng; Tian, Mei; Zhang, Hong

    2013-01-01

    Exact (EX) and approximate (AP) calculations rely on distinct neural circuits. However, the training effect on the neural correlates of EX and AP calculations is largely unknown, especially for the AP calculation. Abacus-based mental calculation (AMC) is a particular arithmetic skill that can be acquired by long-term abacus training. The present study investigated whether and how the abacus training modulates the neural correlates of EX and AP calculations by functional magnetic resonance imaging (fMRI). Neural activations were measured in 20 abacus-trained and 19 nontrained Chinese children during AP and EX calculation tasks. Our results demonstrated that: (1) in nontrained children, similar neural regions were activated in both tasks, while the size of activated regions was larger in AP than those in the EX; (2) in abacus-trained children, no significant difference was found between these two tasks; (3) more visuospatial areas were activated in abacus-trained children under the EX task compared to the nontrained. These results suggested that more visuospatial strategies were used by the nontrained children in the AP task compared to the EX; abacus-trained children adopted a similar strategy in both tasks; after long-term abacus training, children were more inclined to apply a visuospatial strategy during processing EX calculations.

  18. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment.

    Science.gov (United States)

    Morese, Rosalba; Rabellino, Daniela; Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G; Bosco, Francesca M

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members' behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions.

  19. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    Directory of Open Access Journals (Sweden)

    Eline Borch Petersen

    2015-02-01

    Full Text Available Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory. One neural signature of working memory load is enhanced power of alpha oscillations (6 ‒ 12 Hz. However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of working memory when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram (EEG was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62 – 86 years, with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss, behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level and hearing loss; while alpha power increased with hearing loss during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe hearing loss under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of hearing loss, even when adequate hearing aid amplification is in place.

  20. Review on Neural Correlates of Emotion Regulation and Music: Implications for Emotion Dysregulation.

    Science.gov (United States)

    Hou, Jiancheng; Song, Bei; Chen, Andrew C N; Sun, Changan; Zhou, Jiaxian; Zhu, Haidong; Beauchaine, Theodore P

    2017-01-01

    Previous studies have examined the neural correlates of emotion regulation and the neural changes that are evoked by music exposure. However, the link between music and emotion regulation is poorly understood. The objectives of this review are to (1) synthesize what is known about the neural correlates of emotion regulation and music-evoked emotions, and (2) consider the possibility of therapeutic effects of music on emotion dysregulation. Music-evoked emotions can modulate activities in both cortical and subcortical systems, and across cortical-subcortical networks. Functions within these networks are integral to generation and regulation of emotions. Since dysfunction in these networks are observed in numerous psychiatric disorders, a better understanding of neural correlates of music exposure may lead to more systematic and effective use of music therapy in emotion dysregulation.

  1. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. An approach to studying the neural correlates of reserve

    Science.gov (United States)

    Stern, Yaakov

    2018-01-01

    The goal of this paper is to review my current understanding of the concepts of cognitive reserve (CR), brain reserve and brain maintenance, and to describe our group’s approach to using imaging to study their neural basis. I present a working model for utilizing data regarding brain integrity, clinical status, cognitive activation and CR proxies to develop analyses that can explore the neural basis of cognitive reserve and brain maintenance. The basic model assumes that the effect of brain changes on cognition is mediated by task-related activation. We treat CR as a moderator to understand how task-related activation might vary as a function of CR, or how CR might operate independently of these differences in task-related activation. My hope is that this presentation will spark discussion across groups that study these concepts, allowing us to come to some common agreement on definitions, methodology and approaches. PMID:27450378

  3. Neural correlates of observing joint actions with shared intentions.

    Science.gov (United States)

    Eskenazi, Terry; Rueschemeyer, Shirley-Ann; de Lange, Floris P; Knoblich, Günther; Sebanz, Natalie

    2015-09-01

    Studies on the neural bases of action perception have largely focused on the perception of individual actions. Little is known about perception of joint actions where two or more individuals coordinate their actions based on a shared intention. In this fMRI study we asked whether observing situations where two individuals act on a shared intention elicits a different neural response than observing situations where individuals act on their independent parallel intentions. We compared the neural response to perceptually identical yet intentionally ambiguous actions observed in varying contexts. A dialog between two individuals conveyed either a shared intention or two independent parallel intentions. The dialogs were followed by an identical video clip where the two individuals performed certain actions. In one task condition participants tracked the intentions of the actors, in the other, they monitored moving colored dots placed on the same videos. We found that in the intention task versus the color task, observing joint actions based on shared intentions activated the temporal poles, precuneus, and the ventral striatum compared to observing interactions based on parallel intentions. Precuneus and the temporal poles are thought to support mental state reasoning, the latter with a more specific role in retrieving memories associated with social scripts. Activation in the ventral striatum, an area involved in reward processing, likely indicates a hedonistic response to observed shared intentional relations similarly to those experienced when personally sharing mental states with others. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Neural correlates of dynamically evolving interpersonal ties predict prosocial behaviour

    Directory of Open Access Journals (Sweden)

    Johannes Jacobus Fahrenfort

    2012-03-01

    Full Text Available There is a growing interest for the determinants of human choice behaviour in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behaviour even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behaviour to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behaviour may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction - rather than trait empathy - motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum, empathy (anterior insular cortex [AIC] and anterior cingulate cortex [ACC] as well as altruism and social significance (posterior superior temporal sulcus [pSTS]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behaviour during subsequent interaction, suggesting a neural substrate for keeping track of social relevance.

  5. Neural correlates of central inhibition during physical fatigue.

    Directory of Open Access Journals (Sweden)

    Masaaki Tanaka

    Full Text Available Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG. Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs in the posterior cingulated cortex (PCC, with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue.

  6. Neural Correlates of Dynamically Evolving Interpersonal Ties Predict Prosocial Behavior

    Science.gov (United States)

    Fahrenfort, Johannes J.; van Winden, Frans; Pelloux, Benjamin; Stallen, Mirre; Ridderinkhof, K. Richard

    2011-01-01

    There is a growing interest for the determinants of human choice behavior in social settings. Upon initial contact, investment choices in social settings can be inherently risky, as the degree to which the other person will reciprocate is unknown. Nevertheless, people have been shown to exhibit prosocial behavior even in one-shot laboratory settings where all interaction has been taken away. A logical step has been to link such behavior to trait empathy-related neurobiological networks. However, as a social interaction unfolds, the degree of uncertainty with respect to the expected payoff of choice behavior may change as a function of the interaction. Here we attempt to capture this factor. We show that the interpersonal tie one develops with another person during interaction – rather than trait empathy – motivates investment in a public good that is shared with an anonymous interaction partner. We examined how individual differences in trait empathy and interpersonal ties modulate neural responses to imposed monetary sharing. After, but not before interaction in a public good game, sharing prompted activation of neural systems associated with reward (striatum), empathy (anterior insular cortex and anterior cingulate cortex) as well as altruism, and social significance [posterior superior temporal sulcus (pSTS)]. Although these activations could be linked to both empathy and interpersonal ties, only tie-related pSTS activation predicted prosocial behavior during subsequent interaction, suggesting a neural substrate for keeping track of social relevance. PMID:22403524

  7. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  8. Correlation and Comparison of Cortical and Hippocampal Neural Progenitor Morphology and Differentiation through the Use of Micro- and Nano-Topographies.

    Science.gov (United States)

    Sathe, Sharvari; Chan, Xiang Quan; Jin, Jing; Bernitt, Erik; Döbereiner, Hans-Günther; Yim, Evelyn K F

    2017-08-12

    Neuronal morphology and differentiation have been extensively studied on topography. The differentiation potential of neural progenitors has been shown to be influenced by brain region, developmental stage, and time in culture. However, the neurogenecity and morphology of different neural progenitors in response to topography have not been quantitatively compared. In this study, the correlation between the morphology and differentiation of hippocampal and cortical neural progenitor cells was explored. The morphology of differentiated neural progenitors was quantified on an array of topographies. In spite of topographical contact guidance, cell morphology was observed to be under the influence of regional priming, even after differentiation. This influence of regional priming was further reflected in the correlations between the morphological properties and the differentiation efficiency of the cells. For example, neuronal differentiation efficiency of cortical neural progenitors showed a negative correlation with the number of neurites per neuron, but hippocampal neural progenitors showed a positive correlation. Correlations of morphological parameters and differentiation were further enhanced on gratings, which are known to promote neuronal differentiation. Thus, the neurogenecity and morphology of neural progenitors is highly responsive to certain topographies and is committed early on in development.

  9. Neural correlates to food-related behavior in normal-weight and overweight/obese participants.

    Directory of Open Access Journals (Sweden)

    Alan Ho

    Full Text Available Two thirds of US adults are either obese or overweight and this rate is rising. Although the etiology of obesity is not yet fully understood, neuroimaging studies have demonstrated that the central nervous system has a principal role in regulating eating behavior. In this study, functional magnetic resonance imaging and survey data were evaluated for correlations between food-related problem behaviors and the neural regions underlying responses to visual food cues before and after eating in normal-weight individuals and overweight/obese individuals. In normal-weight individuals, activity in the left amygdala in response to high-calorie food vs. nonfood object cues was positively correlated with impaired satiety scores during fasting, suggesting that those with impaired satiety scores may have an abnormal anticipatory reward response. In overweight/obese individuals, activity in the dorsolateral prefrontal cortex (DLPFC in response to low-calorie food cues was negatively correlated with impaired satiety during fasting, suggesting that individuals scoring lower in satiety impairment were more likely to activate the DLPFC inhibitory system. After eating, activity in both the putamen and the amygdala was positively correlated with impaired satiety scores among obese/overweight participants. While these individuals may volitionally suggest they are full, their functional response to food cues suggests food continues to be salient. These findings suggest brain regions involved in the evaluation of visual food cues may be mediated by satiety-related problems, dependent on calorie content, state of satiation, and body mass index.

  10. Heritability and correlates of maize yield ( Zea mays L .) under ...

    African Journals Online (AJOL)

    Heritability and correlates of maize yield ( Zea mays L .) under varying drought conditions. ... Nigeria Agricultural Journal ... Correlation analysis revealed that days to 50% tasseling and silking under non-stress, ASI and leaf senescence under severe stress exhibited negative and significant correlations with grain yield.

  11. Identification of Correlated GRACE Monthly Harmonic Coefficients Using Pattern Recognition and Neural Networks

    Science.gov (United States)

    Piretzidis, D.; Sra, G.; Sideris, M. G.

    2016-12-01

    This study explores new methods for identifying correlation errors in harmonic coefficients derived from monthly solutions of the Gravity Recovery and Climate Experiment (GRACE) satellite mission using pattern recognition and neural network algorithms. These correlation errors are evidenced in the differences between monthly solutions and can be suppressed using a de-correlation filter. In all studies so far, the implementation of the de-correlation filter starts from a specific minimum order (i.e., 11 for RL04 and 38 for RL05) until the maximum order of the monthly solution examined. This implementation method has two disadvantages, namely, the omission of filtering correlated coefficients of order less than the minimum order and the filtering of uncorrelated coefficients of order higher than the minimum order. In the first case, the filtered solution is not completely free of correlated errors, whereas the second case results in a monthly solution that suffers from loss of geophysical signal. In the present study, a new method of implementing the de-correlation filter is suggested, by identifying and filtering only the coefficients that show indications of high correlation. Several numerical and geometric properties of the harmonic coefficient series of all orders are examined. Extreme cases of both correlated and uncorrelated coefficients are selected, and their corresponding properties are used to train a two-layer feed-forward neural network. The objective of the neural network is to identify and quantify the correlation by providing the probability of an order of coefficients to be correlated. Results show good performance of the neural network, both in the validation stage of the training procedure and in the subsequent use of the trained network to classify independent coefficients. The neural network is also capable of identifying correlated coefficients even when a small number of training samples and neurons are used (e.g.,100 and 10, respectively).

  12. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    Science.gov (United States)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  13. Effects of modafinil on neural correlates of response inhibition in alcohol-dependent patients.

    Science.gov (United States)

    Schmaal, Lianne; Joos, Leen; Koeleman, Marte; Veltman, Dick J; van den Brink, Wim; Goudriaan, Anna E

    2013-02-01

    Impaired response inhibition is a key feature of patients with alcohol dependence. Improving impulse control is a promising target for the treatment of alcohol dependence. The pharmacologic agent modafinil enhances cognitive control functions in both healthy subjects and in patients with various psychiatric disorders. However, very little is known about the underlying neural correlates of improvements in response inhibition following modafinil. We conducted a randomized, double-blind, placebo-controlled, crossover study using functional magnetic resonance imaging with a stop signal task to examine effects of a single dose of modafinil (200 mg) on response inhibition and underlying neural correlates in abstinent alcohol-dependent patients (AD) (n = 16) and healthy control subjects (n = 16). Within the AD group modafinil administration improved response inhibition (reflected by the stop signal reaction time [SSRT]) in subjects with initial poor response inhibition, whereas response inhibition was diminished in better performing subjects. In AD patients with initial poor response inhibition, modafinil-induced SSRT improvement was accompanied by greater activation in the thalamus and supplementary motor area (SMA) and reduced connectivity between the thalamus and the primary motor cortex. In addition, the relationship between baseline response inhibition and modafinil-induced SSRT improvement was mediated by these changes in thalamus and SMA activation. These findings indicate that modafinil can improve response inhibition in alcohol-dependent patients through its effect on thalamus and SMA function but only in subjects with poor baseline response inhibition. Therefore, baseline levels of response inhibition should be taken into account when considering treatment with modafinil in AD. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.

    Science.gov (United States)

    Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  15. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    Directory of Open Access Journals (Sweden)

    Saima eNoreen

    2016-03-01

    Full Text Available Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC and the mid-ventrolateral prefrontal cortex (VLPFC regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think or to suppress (no-think the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution. Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  16. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    Science.gov (United States)

    Noreen, Saima; O’Connor, Akira R.; MacLeod, Malcolm D.

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one’s attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory. PMID:27047412

  17. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  18. Exploring the Neural Substrates of Phonological Recovery for Symposium: Neural Correlates of Recovery and Rehabilitation

    Directory of Open Access Journals (Sweden)

    Pelagie M Beeson

    2015-10-01

    All participants improved written language abilities in response to treatment, but one subgroup was limited in their ability to regain phonological skills. Both anterior and posterior components of the perisylvian phonological network were damaged in that group. These findings are consistent with fMRI activation when healthy adults write nonwords, and provide insight regarding neural support necessary for phonological rehabilitation.

  19. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  20. Cross-cultural differences in the neural correlates of specific and general recognition.

    Science.gov (United States)

    Paige, Laura E; Ksander, John C; Johndro, Hunter A; Gutchess, Angela H

    2017-06-01

    Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs East Asians) at the time of encoding in the neural correlates of specific versus general memory formation. Participants encoded photos of everyday items in the scanner and 48 h later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific versus general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural Correlates of Antidepressant Treatment Response in Adolescents with Major Depressive Disorder.

    Science.gov (United States)

    Cullen, Kathryn R; Klimes-Dougan, Bonnie; Vu, Dung Pham; Westlund Schreiner, Melinda; Mueller, Bryon A; Eberly, Lynn E; Camchong, Jazmin; Westervelt, Ana; Lim, Kelvin O

    2016-10-01

    The neural changes underlying response to antidepressant treatment in adolescents are unknown. Identification of neural change correlates of treatment response could (1) aid in understanding mechanisms of depression and its treatment and (2) serve as target biomarkers for future research. Using functional magnetic resonance imaging, we examined changes in brain activation and functional connectivity in 13 unmedicated adolescents with major depressive disorder (MDD) before and after receiving treatment with a selective serotonin reuptake inhibitor medication for 8 weeks. Specifically, we examined brain activation during a negative emotion task and resting-state functional connectivity (RSFC), focusing on the amygdala to capture networks relevant to negative emotion. We conducted whole-brain analyses to identify how symptom improvement was related to change in brain activation during a negative emotion task or amygdala RSFC. After treatment, clinical improvement was associated with decreased task activation in rostral and subgenual anterior cingulate cortex and increased activation in bilateral insula, bilateral middle frontal cortices, right parahippocampus, and left cerebellum. Analysis of change in amygdala RSFC showed that treatment response was associated with increased amygdala RSFC with right frontal cortex, but decreased amygdala RSFC with right precuneus and right posterior cingulate cortex. The findings represent a foothold for advancing understanding of pathophysiology of MDD in adolescents by revealing the critical neural circuitry changes that underlie a positive response to a standard treatment. Although preliminary, the present study provides a research platform for future work needed to confirm these biomarkers at a larger scale before using them in future target engagement studies of novel treatments.

  2. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  3. Neural correlates related to action observation in expert archers.

    Science.gov (United States)

    Kim, Yang-Tae; Seo, Jee-Hye; Song, Hui-Jin; Yoo, Done-Sik; Lee, Hui Joong; Lee, Jongmin; Lee, Gunyoung; Kwon, Eunjin; Kim, Jin Goo; Chang, Yongmin

    2011-10-01

    A growing body of evidence suggests that activity of the mirror neuron system is dependent on the observer's motor experience of a given action. It remains unclear, however, whether activity of the mirror neuron system is also associated with the observer's motor experience in sports game. Therefore, the aim of the present study is to investigate differences in activation of the mirror neuron system during action observation between experts and non-archer control subjects. We used video of Western-style archery in which participants were asked to watch the archery movements. Hyperactivation of the premotor and inferior parietal cortex in expert archers relative to non-archer control subjects suggests that the human mirror neuron system could contain and expand representations of the motor repertoire. The fact that dorsomedial prefrontal cortex was more active in expert archers than in non-archer control subjects indicates a spontaneous engagement of theory of mind in experts when watching video of Western-style archery. Compared with the non-archer control subjects, expert archers showed greater activation in the neural system in regions associated with episodic recall from familiar and meaningful information, including the cingulate cortex, retrosplenial cortex, and parahippocampal gyrus. The results demonstrate that expertise effects stimulate brain activity not only in the mirror neuron system but also in the neural networks related to theory of mind and episodic memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Neural Correlates of the Cortisol Awakening Response in Humans.

    Science.gov (United States)

    Boehringer, Andreas; Tost, Heike; Haddad, Leila; Lederbogen, Florian; Wüst, Stefan; Schwarz, Emanuel; Meyer-Lindenberg, Andreas

    2015-08-01

    The cortisol rise after awakening (cortisol awakening response, CAR) is a core biomarker of hypothalamic-pituitary-adrenal (HPA) axis regulation related to psychosocial stress and stress-related psychiatric disorders. However, the neural regulation of the CAR has not been examined in humans. Here, we studied neural regulation related to the CAR in a sample of 25 healthy human participants using an established psychosocial stress paradigm together with multimodal functional and structural (voxel-based morphometry) magnetic resonance imaging. Across subjects, a smaller CAR was associated with reduced grey matter volume and increased stress-related brain activity in the perigenual ACC, a region which inhibits HPA axis activity during stress that is implicated in risk mechanisms and pathophysiology of stress-related mental diseases. Moreover, functional connectivity between the perigenual ACC and the hypothalamus, the primary controller of HPA axis activity, was associated with the CAR. Our findings provide support for a role of the perigenual ACC in regulating the CAR in humans and may aid future research on the pathophysiology of stress-related illnesses, such as depression, and environmental risk for illnesses such as schizophrenia.

  5. Neural correlates of appetite and hunger-related evaluative judgments.

    Directory of Open Access Journals (Sweden)

    Richard M Piech

    2009-08-01

    Full Text Available How much we desire a meal depends on both the constituent foods and how hungry we are, though not every meal becomes more desirable with increasing hunger. The brain therefore needs to be able to integrate hunger and meal properties to compute the correct incentive value of a meal. The present study investigated the functional role of the amygdala and the orbitofrontal cortex in mediating hunger and dish attractiveness. Furthermore, it explored neural responses to dish descriptions particularly susceptible to value-increase following fasting. We instructed participants to rate how much they wanted food menu items while they were either hungry or sated, and compared the rating differences in these states. Our results point to the representation of food value in the amygdala, and to an integration of attractiveness with hunger level in the orbitofrontal cortex. Dishes particularly desirable during hunger activated the thalamus and the insula. Our results specify the functions of evaluative structures in the context of food attractiveness, and point to a complex neural representation of dish qualities which contribute to state-dependent value.

  6. Robust entanglement under multipartite correlated dephasing

    Energy Technology Data Exchange (ETDEWEB)

    Carnio, Edoardo [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg (Germany); Gessner, Manuel [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg (Germany); Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg (Germany); Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universitaet Freiburg, Albertstrasse 19, 79104 Freiburg (Germany)

    2015-07-01

    We derive an analytical description for the dephasing process undergone by a system on non-interacting atomic qubits, immersed in a uniform, fluctuating magnetic field. The dephasing process is correlated, as the noise source is common to all the particles and induces an effective atom-atom interaction on them. This correlated nature allows to specify field orientations that preserve any degree of atomic entanglement for all times, and families of states with entanglement properties that are time-invariant for arbitrary field orientations. Our formalism applies to arbitrary spectral distributions of the fluctuations.

  7. Neural correlates of anxiety sensitivity in panic disorder: A functional magnetic resonance imaging study.

    Science.gov (United States)

    Poletti, Sara; Radaelli, Daniele; Cucchi, Michele; Ricci, Liana; Vai, Benedetta; Smeraldi, Enrico; Benedetti, Francesco

    2015-08-30

    Panic disorder has been associated with dysfunctional neuropsychological dimensions, including anxiety sensitivity. Brain-imaging studies of the neural correlates of emotional processing have identified a network of structures that constitute the neural circuitry for emotions. The anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC) and insula, which are part of this network, are also involved in the processing of threat-related stimuli. The aim of the study was to investigate if neural activity in response to emotional stimuli in the cortico-limbic network is associated to anxiety sensitivity in panic disorder. In a sample of 18 outpatients with panic disorder, we studied neural correlates of implicit emotional processing of facial affect expressions with a face-matching paradigm; correlational analyses were performed between brain activations and anxiety sensitivity. The correlational analyses performed showed a positive correlation between anxiety sensitivity and brain activity during emotional processing in regions encompassing the PFC, ACC and insula. Our data seem to confirm that anxiety sensitivity is an important component of panic disorder. Accordingly, the neural underpinnings of anxiety sensitivity could be an interesting focus for treatment and further research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis.

    Science.gov (United States)

    Vytal, Katherine; Hamann, Stephan

    2010-12-01

    What is the basic structure of emotional experience and how is it represented in the human brain? One highly influential theory, discrete basic emotions, proposes a limited set of basic emotions such as happiness and fear, which are characterized by unique physiological and neural profiles. Although many studies using diverse methods have linked particular brain structures with specific basic emotions, evidence from individual neuroimaging studies and from neuroimaging meta-analyses has been inconclusive regarding whether basic emotions are associated with both consistent and discriminable regional brain activations. We revisited this question, using activation likelihood estimation (ALE), which allows spatially sensitive, voxelwise statistical comparison of results from multiple studies. In addition, we examined substantially more studies than previous meta-analyses. The ALE meta-analysis yielded results consistent with basic emotion theory. Each of the emotions examined (fear, anger, disgust, sadness, and happiness) was characterized by consistent neural correlates across studies, as defined by reliable correlations with regional brain activations. In addition, the activation patterns associated with each emotion were discrete (discriminable from the other emotions in pairwise contrasts) and overlapped substantially with structure-function correspondences identified using other approaches, providing converging evidence that discrete basic emotions have consistent and discriminable neural correlates. Complementing prior studies that have demonstrated neural correlates for the affective dimensions of arousal and valence, the current meta-analysis results indicate that the key elements of basic emotion views are reflected in neural correlates identified by neuroimaging studies.

  9. Neural processes underlying the orienting of attention without awareness.

    Science.gov (United States)

    Giattino, Charles M; Alam, Zaynah M; Woldorff, Marty G

    2017-07-22

    Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome

    Science.gov (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.

    2006-01-01

    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  11. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.

    Science.gov (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R

    2006-06-01

    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  12. Neural correlates of RDoC reward constructs in adolescents with diverse psychiatric symptoms: A Reward Flanker Task pilot study.

    Science.gov (United States)

    Bradley, Kailyn A L; Case, Julia A C; Freed, Rachel D; Stern, Emily R; Gabbay, Vilma

    2017-07-01

    There has been growing interest under the Research Domain Criteria initiative to investigate behavioral constructs and their underlying neural circuitry. Abnormalities in reward processes are salient across psychiatric conditions and may precede future psychopathology in youth. However, the neural circuitry underlying such deficits has not been well defined. Therefore, in this pilot, we studied youth with diverse psychiatric symptoms and examined the neural underpinnings of reward anticipation, attainment, and positive prediction error (PPE, unexpected reward gain). Clinically, we focused on anhedonia, known to reflect deficits in reward function. Twenty-two psychotropic medication-free youth, 16 with psychiatric symptoms, exhibiting a full range of anhedonia, were scanned during the Reward Flanker Task. Anhedonia severity was quantified using the Snaith-Hamilton Pleasure Scale. Functional magnetic resonance imaging analyses were false discovery rate corrected for multiple comparisons. Anticipation activated a broad network, including the medial frontal cortex and ventral striatum, while attainment activated memory and emotion-related regions such as the hippocampus and parahippocampal gyrus, but not the ventral striatum. PPE activated a right-dominant fronto-temporo-parietal network. Anhedonia was only correlated with activation of the right angular gyrus during anticipation and the left precuneus during PPE at an uncorrected threshold. Findings are preliminary due to the small sample size. This pilot characterized the neural circuitry underlying different aspects of reward processing in youth with diverse psychiatric symptoms. These results highlight the complexity of the neural circuitry underlying reward anticipation, attainment, and PPE. Furthermore, this study underscores the importance of RDoC research in youth. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Science.gov (United States)

    Avey, Marc T; Hoeschele, Marisa; Moscicki, Michele K; Bloomfield, Laurie L; Sturdy, Christopher B

    2011-01-01

    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  14. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Directory of Open Access Journals (Sweden)

    Marc T Avey

    Full Text Available Songbird auditory areas (i.e., CMM and NCM are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  15. Neural correlates of increased risk-taking propensity in sleep-deprived people along with a changing risk level.

    Science.gov (United States)

    Lei, Yu; Wang, Lubin; Chen, Pinhong; Li, Yanyan; Han, Wei; Ge, Mingmei; Yang, Liu; Chen, Shanshan; Hu, Wendong; Wu, Xinhuai; Yang, Zheng

    2017-12-01

    Risky decision-making under a changing risk level is a complex process involving contextual information. The neural mechanism underlying how sleep deprivation (SD) influences risky decision-making behaviors with a changing risk level has yet to be elucidated. In this study, we used the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging to investigate the neural correlates of SD-induced changes on decision-making behaviors at different risk levels. Thirty-seven healthy male adults were recruited in this within-subjects, repeat-measure, counterbalanced study. These individuals were examined during a state of rested wakefulness state and after nearly 36 h of total SD. The results showed that SD increased the activation of risk modulation in the left inferior frontal gyrus and were positively correlated with risk-taking propensity after SD. Activation in the ventral striatum and thalamus during cash out was increased, and activation in the middle temporal gyrus after explosion (loss of money) was decreased in sleep-deprived subjects, providing additional evidence for greater risk-taking propensity after SD. These results extend our understanding of the neural mechanism underlying alteration of the risk-taking propensity in sleep-deprived individuals.

  16. Neural correlate of filtering of irrelevant information from visual working memory.

    Science.gov (United States)

    Nasr, Shahin; Moeeny, Ali; Esteky, Hossein

    2008-09-26

    In a dynamic environment stimulus task relevancy could be altered through time and it is not always possible to dissociate relevant and irrelevant objects from the very first moment they come to our sight. In such conditions, subjects need to retain maximum possible information in their WM until it is clear which items should be eliminated from WM to free attention and memory resources. Here, we examined the neural basis of irrelevant information filtering from WM by recording human ERP during a visual change detection task in which the stimulus irrelevancy was revealed in a later stage of the task forcing the subjects to keep all of the information in WM until test object set was presented. Assessing subjects' behaviour we found that subjects' RT was highly correlated with the number of irrelevant objects and not the relevant one, pointing to the notion that filtering, and not selection, process was used to handle the distracting effect of irrelevant objects. In addition we found that frontal N150 and parietal N200 peak latencies increased systematically as the amount of irrelevancy load increased. Interestingly, the peak latency of parietal N200, and not frontal N150, better correlated with subjects' RT. The difference between frontal N150 and parietal N200 peak latencies varied with the amount of irrelevancy load suggesting that functional connectivity between modules underlying fronto-parietal potentials vary concomitant with the irrelevancy load. These findings suggest the existence of two neural modules, responsible for irrelevant objects elimination, whose activity latency and functional connectivity depend on the number of irrelevant object.

  17. Neural correlate of filtering of irrelevant information from visual working memory.

    Directory of Open Access Journals (Sweden)

    Shahin Nasr

    Full Text Available In a dynamic environment stimulus task relevancy could be altered through time and it is not always possible to dissociate relevant and irrelevant objects from the very first moment they come to our sight. In such conditions, subjects need to retain maximum possible information in their WM until it is clear which items should be eliminated from WM to free attention and memory resources. Here, we examined the neural basis of irrelevant information filtering from WM by recording human ERP during a visual change detection task in which the stimulus irrelevancy was revealed in a later stage of the task forcing the subjects to keep all of the information in WM until test object set was presented. Assessing subjects' behaviour we found that subjects' RT was highly correlated with the number of irrelevant objects and not the relevant one, pointing to the notion that filtering, and not selection, process was used to handle the distracting effect of irrelevant objects. In addition we found that frontal N150 and parietal N200 peak latencies increased systematically as the amount of irrelevancy load increased. Interestingly, the peak latency of parietal N200, and not frontal N150, better correlated with subjects' RT. The difference between frontal N150 and parietal N200 peak latencies varied with the amount of irrelevancy load suggesting that functional connectivity between modules underlying fronto-parietal potentials vary concomitant with the irrelevancy load. These findings suggest the existence of two neural modules, responsible for irrelevant objects elimination, whose activity latency and functional connectivity depend on the number of irrelevant object.

  18. Neural correlates of emotional distractibility in bipolar disorder patients, unaffected relatives, and individuals with hypomanic personality.

    Science.gov (United States)

    Kanske, Philipp; Heissler, Janine; Schönfelder, Sandra; Forneck, Johanna; Wessa, Michèle

    2013-12-01

    Neuropsychological deficits and emotion dysregulation are present in symptomatic and euthymic patients with bipolar disorder. However, there is little evidence on how cognitive functioning is influenced by emotion, what the neural correlates of emotional distraction effects are, and whether such deficits are a consequence or a precursor of the disorder. The authors used functional MRI (fMRI) to investigate these questions. fMRI was used first to localize the neural network specific to a certain cognitive task (mental arithmetic) and then to test the effect of emotional distractors on this network. Euthymic patients with bipolar I disorder (N=22), two populations at high risk for developing the disorder (unaffected first-degree relatives of individuals with bipolar disorder [N=17]), and healthy participants with hypomanic personality traits [N=22]) were tested, along with three age-, gender-, and education-matched healthy comparison groups (N=22, N=17, N=24, respectively). There were no differences in performance or activation in the task network for mental arithmetic. However, while all participants exhibited slower responses when emotional distractors were present, this response slowing was greatly enlarged in bipolar patients. Similarly, task-related activation was generally increased under emotional distraction; however, bipolar patients exhibited a further increase in right parietal activation that correlated positively with the response slowing effect. The results suggest that emotional dysregulation leads to exacerbated neuropsychological deficits in bipolar patients, as evidenced by behavioral slowing and task-related hyperactivation. The lack of such a deficit in high-risk populations suggests that it occurs only after disease onset, rather than representing a vulnerability marker.

  19. Neural correlates of emotional action control in anger-prone women with borderline personality disorder.

    Science.gov (United States)

    Bertsch, Katja; Roelofs, Karin; Roch, Paul Jonathan; Ma, Bo; Hensel, Saskia; Herpertz, Sabine C; Volman, Inge

    2018-01-12

    Difficulty in controlling emotional impulses is a crucial component of borderline personality disorder (BPD) that often leads to destructive, impulsive behaviours against others. In line with recent findings in aggressive individuals, deficits in prefrontal amygdala coupling during emotional action control may account for these symptoms. To study the neurobiological correlates of altered emotional action control in individuals with BPD, we asked medication-free, anger-prone, female patients with BPD and age- and intelligence-matched healthy women to take part in an approach-avoidance task while lying in an MRI scanner. The task required controlling fast behavioural tendencies to approach happy and avoid angry faces. Additionally, before the task we collected saliva testosterone and self-reported information on tendencies to act out anger and correlated this with behavioural and functional MRI (fMRI) data. We included 30 patients and 28 controls in our analysis. Patients with BPD reported increased tendencies to act out anger and were faster in approaching than avoiding angry faces than with healthy women, suggesting deficits in emotional action control in women with BPD. On a neural level, controlling fast emotional action tendencies was associated with enhanced activation in the antero- and dorsolateral prefrontal cortex across groups. Healthy women showed a negative coupling between the left dorsolateral prefrontal cortex and right amygdala, whereas this was absent in patients with BPD. Specificity of results to BPD and sex differences remain unknown owing to the lack of clinical control groups and male participants. The results indicate reduced lateral prefrontal-amygdala communication during emotional action control in anger-prone women with BPD. The findings provide a possible neural mechanism underlying difficulties with controlling emotional impulses in patients with BPD.

  20. Neural Correlates of Feedback Processing in Decision Making under Risk

    Directory of Open Access Journals (Sweden)

    Beate eSchuermann

    2012-07-01

    Full Text Available Introduction. Event-related brain potentials (ERP provide important information about the sensitivity of the brain to process varying risks. The aim of the present study was to determine how different risk levels are reflected in decision-related ERPs, namely the feedback-related negativity (FRN and the P300. Material and Methods. 20 participants conducted a probabilistic two-choice gambling task while an electroencephalogram was recorded. Choices were provided between a low-risk option yielding low rewards and low losses and a high-risk option yielding high rewards and high losses. While options differed in expected risks, they were equal in expected values and in feedback probabilities. Results. At the behavioral level, participants were generally risk-averse but modulated their risk-taking behavior according to reward history. An early positivity (P200 was enhanced on negative feedbacks in high-risk compared to low-risk options. With regard to the FRN, there were significant amplitude differences between positive and negative feedbacks in high-risk options, but not in low-risk options. While the FRN on negative feedbacks did not vary with decision riskiness, reduced amplitudes were found for positive feedbacks in high-risk relative to low-risk choices. P300 amplitudes were larger in high-risk decisions, and in an additive way, after negative compared to positive feedback. Discussion. The present study revealed significant influences of risk and valence processing on ERPs. FRN findings suggest that the reward prediction error signal is increased after high-risk decisions. The increased P200 on negative feedback in risky decisions suggests that large negative prediction errors are processed as early as in the P200 time range. The later P300 amplitude is sensitive to feedback valence as well as to the risk of a decision. Thus, the P300 carries additional information for reward processing, mainly the enhanced motivational significance of risky decisions.

  1. Single-trial analysis of the neural correlates of speech quality perception.

    Science.gov (United States)

    Porbadnigk, Anne K; Treder, Matthias S; Blankertz, Benjamin; Antons, Jan-Niklas; Schleicher, Robert; Möller, Sebastian; Curio, Gabriel; Müller, Klaus-Robert

    2013-10-01

    Assessing speech quality perception is a challenge typically addressed in behavioral and opinion-seeking experiments. Only recently, neuroimaging methods were introduced, which were used to study the neural processing of quality at group level. However, our electroencephalography (EEG) studies show that the neural correlates of quality perception are highly individual. Therefore, it became necessary to establish dedicated machine learning methods for decoding subject-specific effects. The effectiveness of our methods is shown by the data of an EEG study that investigates how the quality of spoken vowels is processed neurally. Participants were asked to indicate whether they had perceived a degradation of quality (signal-correlated noise) in vowels, presented in an oddball paradigm. We find that the P3 amplitude is attenuated with increasing noise. Single-trial analysis allows one to show that this is partly due to an increasing jitter of the P3 component. A novel classification approach helps to detect trials with presumably non-conscious processing at the threshold of perception. We show that this approach uncovers a non-trivial confounder between neural hits and neural misses. The combined use of EEG signals and machine learning methods results in a significant 'neural' gain in sensitivity (in processing quality loss) when compared to standard behavioral evaluation; averaged over 11 subjects, this amounts to a relative improvement in sensitivity of 35%.

  2. Neural correlates of water reward in thirsty Drosophila.

    Science.gov (United States)

    Lin, Suewei; Owald, David; Chandra, Vikram; Talbot, Clifford; Huetteroth, Wolf; Waddell, Scott

    2014-11-01

    Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naive Drosophila melanogaster. Thirst also permitted flies to learn olfactory cues paired with water reward. Water learning required water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical for conveying the reinforcing effects of sugar. Naive water-seeking behavior in thirsty flies did not require water taste but relied on another subset of water-responsive dopaminergic neurons that target the mushroom body β' lobe. Furthermore, these naive water-approach neurons were not required for learned water-seeking. Our results therefore demonstrate that naive water-seeking, learned water-seeking and water learning use separable neural circuitry in the brain of thirsty flies.

  3. Appearance matters: neural correlates of food choice and packaging aesthetics.

    Directory of Open Access Journals (Sweden)

    Laura N Van der Laan

    Full Text Available Neuro-imaging holds great potential for predicting choice behavior from brain responses. In this study we used both traditional mass-univariate and state-of-the-art multivariate pattern analysis to establish which brain regions respond to preferred packages and to what extent neural activation patterns can predict realistic low-involvement consumer choices. More specifically, this was assessed in the context of package-induced binary food choices. Mass-univariate analyses showed that several regions, among which the bilateral striatum, were more strongly activated in response to preferred food packages. Food choices could be predicted with an accuracy of up to 61.2% by activation patterns in brain regions previously found to be involved in healthy food choices (superior frontal gyrus and visual processing (middle occipital gyrus. In conclusion, this study shows that mass-univariate analysis can detect small package-induced differences in product preference and that MVPA can successfully predict realistic low-involvement consumer choices from functional MRI data.

  4. Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics

    Science.gov (United States)

    Van der Laan, Laura N.; De Ridder, Denise T. D.; Viergever, Max A.; Smeets, Paul A. M.

    2012-01-01

    Neuro-imaging holds great potential for predicting choice behavior from brain responses. In this study we used both traditional mass-univariate and state-of-the-art multivariate pattern analysis to establish which brain regions respond to preferred packages and to what extent neural activation patterns can predict realistic low-involvement consumer choices. More specifically, this was assessed in the context of package-induced binary food choices. Mass-univariate analyses showed that several regions, among which the bilateral striatum, were more strongly activated in response to preferred food packages. Food choices could be predicted with an accuracy of up to 61.2% by activation patterns in brain regions previously found to be involved in healthy food choices (superior frontal gyrus) and visual processing (middle occipital gyrus). In conclusion, this study shows that mass-univariate analysis can detect small package-induced differences in product preference and that MVPA can successfully predict realistic low-involvement consumer choices from functional MRI data. PMID:22848586

  5. Emotion in voice matters: neural correlates of emotional prosody perception.

    Science.gov (United States)

    Iredale, Jaimi Marie; Rushby, Jacqueline A; McDonald, Skye; Dimoska-Di Marco, Aneta; Swift, Joshua

    2013-09-01

    The ability to perceive emotions is imperative for successful interpersonal functioning. The present study examined the neural characteristics of emotional prosody perception with an exploratory event-related potential analysis. Participants were 59 healthy individuals who completed a discrimination task presenting 120 semantically neutral word pairs from five prosody conditions (happy/happy, angry/angry, neutral/neutral, angry/happy, happy/angry). The task required participants to determine whether words in the pair were spoken in same or different emotional prosody. Reflective of an initial processing stage, the word 1 N1 component was found to have greatest amplitude in parietal regions of the hemispheres, and was largest for emotional compared to neutral stimuli, indicating detection of emotion features. A second processing stage, represented by word 1 P2, showed similar topographic effects; however, amplitude was largest for happy in the left hemisphere while angry was largest in the right, illustrating differentiation of emotions. At the third processing stage, word 1 N3 amplitude was largest in frontal regions, indicating later cognitive processing occurs in the frontal cortex. N3 was largest for happy, which had lowest accuracy compared to angry and neutral. The present results support Schirmer and Kotz's (2006) model of vocal emotion perception because they elucidated the function and ERP components by reflecting three primary stages of emotional prosody perception, controlling for semantic influence. © 2013.

  6. No-Report Paradigms: Extracting the True Neural Correlates of Consciousness.

    Science.gov (United States)

    Tsuchiya, Naotsugu; Wilke, Melanie; Frässle, Stefan; Lamme, Victor A F

    2015-12-01

    The goal of consciousness research is to reveal the neural basis of phenomenal experience. To study phenomenology, experimenters seem obliged to ask reports from the subjects to ascertain what they experience. However, we argue that the requirement of reports has biased the search for the neural correlates of consciousness over the past decades. More recent studies attempt to dissociate neural activity that gives rise to consciousness from the activity that enables the report; in particular, no-report paradigms have been utilized to study conscious experience in the full absence of any report. We discuss the advantages and disadvantages of report-based and no-report paradigms, and ask how these jointly bring us closer to understanding the true neural basis of consciousness. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  8. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits

    Science.gov (United States)

    2018-01-01

    Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures—recurrent connections, shared feed-forward projections, and shared gain fluctuations—on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing. PMID:29408930

  9. Neural correlates of reconfiguration failure reveal the time course of task-set reconfiguration.

    Science.gov (United States)

    Steinhauser, Marco; Maier, Martin E; Ernst, Benjamin

    2017-11-01

    The ability to actively prepare for new tasks is crucial for achieving goal-directed behavior. The task-switching paradigm is frequently used to investigate this task-set reconfiguration. In the present study, we adopted a novel approach to identify a neural signature of reconfiguration in event-related potentials. Our method was to isolate neural correlates of reconfiguration failure and to use these correlates to reveal the time course of reconfiguration in task switches and task repetitions. We employed a task-switching paradigm in which two types of errors could be distinguished: task errors (the incorrect task was applied) and response errors (an incorrect response for the correct task was provided). Because differential activity between both error types distinguishes successful and failed reconfiguration, this activity could be used as a neural signature of the reconfiguration process. We found that, whereas reconfiguration takes place on task repetitions and task switches, it occurred earlier in the former than in the latter. Single-trial analysis revealed that the same activity predicted the amplitude of error-related brain activity, providing further support that this preparatory activity reflects reconfiguration. Our results implicate that reconfiguration is not switch-specific but that task switches and task repetitions differ with respect to the time course of reconfiguration. Furthermore, this study demonstrates that considering neural correlates of failure is a promising approach to link cognitive mechanisms to specific neural processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The XCNN flow meter - a combined cross-correlation and neural network model

    International Nuclear Information System (INIS)

    Roverso, Davide

    2004-05-01

    In this report we propose the XCNN flow meter model, which consists of an integration of a cross-correlator (XC) of pressure measurements and an ensemble of neural network (NN) estimators. Since pressure information does not only travel with the fluid, like for example particles, bubbles, eddies and, to a big extent, temperature, but also through the fluid, the transit time of a pressure disturbance estimated by cross-correlation needs to be corrected to take into account the propagation velocity of pressure differentials in the fluid. This correction is performed by the neural network models, which in this case are simple single input single output three layer feed-forward neural networks. Instead of a single neural network an ensemble is used to reduce the variance of the estimate. The proposed method involves several stages where pressure transmitter data is first filtered, then fed to the cross-correlator whose result is interpolated and filtered again before being fed to the ensemble of neural networks, which produce the final flow estimate. An average accuracy of 0.29% (with 0.18 standard deviation) of a reference ultrasonic meter has been obtained on experimental measurements performed at Tecnatom s.a. This report marks the conclusion of the Virtual Sensors for Feedwater Flow Measurement project at the HRP, which run in the 2001-2003 period. (Author)

  11. The experience of mathematical beauty and its neural correlates

    Science.gov (United States)

    Zeki, Semir; Romaya, John Paul; Benincasa, Dionigi M. T.; Atiyah, Michael F.

    2014-01-01

    Many have written of the experience of mathematical beauty as being comparable to that derived from the greatest art. This makes it interesting to learn whether the experience of beauty derived from such a highly intellectual and abstract source as mathematics correlates with activity in the same part of the emotional brain as that derived from more sensory, perceptually based, sources. To determine this, we used functional magnetic resonance imaging (fMRI) to image the activity in the brains of 15 mathematicians when they viewed mathematical formulae which they had individually rated as beautiful, indifferent or ugly. Results showed that the experience of mathematical beauty correlates parametrically with activity in the same part of the emotional brain, namely field A1 of the medial orbito-frontal cortex (mOFC), as the experience of beauty derived from other sources. PMID:24592230

  12. Neural correlates of the LSD experience revealed by multimodal neuroimaging.

    Science.gov (United States)

    Carhart-Harris, Robin L; Muthukumaraswamy, Suresh; Roseman, Leor; Kaelen, Mendel; Droog, Wouter; Murphy, Kevin; Tagliazucchi, Enzo; Schenberg, Eduardo E; Nest, Timothy; Orban, Csaba; Leech, Robert; Williams, Luke T; Williams, Tim M; Bolstridge, Mark; Sessa, Ben; McGonigle, John; Sereno, Martin I; Nichols, David; Hellyer, Peter J; Hobden, Peter; Evans, John; Singh, Krish D; Wise, Richard G; Curran, H Valerie; Feilding, Amanda; Nutt, David J

    2016-04-26

    Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.

  13. The neural correlates of apathy in schizophrenia: An exploratory investigation.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Menon, Mahesh; Remington, Gary; Graff-Guerrero, Ariel; Gerretsen, Philip

    2017-10-25

    Motivational deficits represent a core negative symptom in patients with schizophrenia. Previous morphology studies have demonstrated that apathy in patients with schizophrenia is associated with reduced frontal grey matter (GM). We attempted to replicate this previous finding, and explored whether it was distinct from potential associations with a distinct subdomain of negative symptoms, namely Affective Flattening, and GM. Twenty medicated patients with schizophrenia provided structural T1-weighted images acquired on a 3-Tesla MRI scanner and negative symptoms were evaluated using the Scale for the Assessment of Negative Symptoms. Voxel-based morphometry (VBM) was used to explore the correlations between whole-brain GM and i) Apathy, and ii) Affective Flattening, respectively. Apathy scores were negatively correlated with several GM clusters in frontal regions, including the frontal inferior operculum and the left dorsal anterior cingulate cortex. Only positive correlations with GM clusters were observed for Affective Flattening, particularly in the inferior temporal lobe. Notably, the regions associated with apathy scores were distinct from those associated with Affective Flattening, and these findings remained after controlling for antipsychotic medication dosage. We replicated previous associations between reduced frontal GM and apathy in patients with schizophrenia. Moreover, we demonstrated that these GM associations are distinct from those with Affective Flattening. The present findings set the stage for future larger-scale studies confirming the structural and neurochemical substrates of apathy in schizophrenia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Distinct neural correlates of emotional and cognitive empathy in older adults.

    Science.gov (United States)

    Moore, Raeanne C; Dev, Sheena I; Jeste, Dilip V; Dziobek, Isabel; Eyler, Lisa T

    2015-04-30

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of "cold" cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. Published by Elsevier Ireland Ltd.

  15. Distinct neural correlates of emotional and cognitive empathy in older adults

    Science.gov (United States)

    Moore, Raeanne C.; Dev, Sheena I.; Jeste, Dilip V.; Dziobek, Isabel; Eyler, Lisa T.

    2014-01-01

    Empathy is thought to be a mechanism underlying prosocial behavior across the lifespan, yet little is known about how levels of empathy relate to individual differences in brain functioning among older adults. In this exploratory study, we examined the neural correlates of affective and cognitive empathy in older adults. Thirty older adults (M=79 years) underwent fMRI scanning and neuropsychological testing and completed a test of affective and cognitive empathy. Brain response during processing of cognitive and emotional stimuli was measured by fMRI in a priori and task-related regions and was correlated with levels of empathy. Older adults with higher levels of affective empathy showed more deactivation in the amygdala and insula during a working memory task, whereas those with higher cognitive empathy showed greater insula activation during a response inhibition task. Our preliminary findings suggest that brain systems linked to emotional and social processing respond differently among older adults with more or less affective and cognitive empathy. That these relationships can be seen both during affective and non-emotional tasks of “cold” cognitive abilities suggests that empathy may impact social behavior through both emotional and cognitive mechanisms. PMID:25770039

  16. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar M.

    2018-04-12

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  17. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  18. Dispositional Mindfulness and Depressive Symptomatology: Correlations with Limbic and Self-Referential Neural Activity during Rest

    Science.gov (United States)

    Way, Baldwin M.; Creswell, J. David; Eisenberger, Naomi I.; Lieberman, Matthew D.

    2010-01-01

    To better understand the relationship between mindfulness and depression, we studied normal young adults (n=27) who completed measures of dispositional mindfulness and depressive symptomatology, which were then correlated with: a) Rest: resting neural activity during passive viewing of a fixation cross, relative to a simple goal-directed task (shape-matching); and b) Reactivity: neural reactivity during viewing of negative emotional faces, relative to the same shape-matching task. Dispositional mindfulness was negatively correlated with resting activity in self-referential processing areas, while depressive symptomatology was positively correlated with resting activity in similar areas. In addition, dispositional mindfulness was negatively correlated with resting activity in the amygdala, bilaterally, while depressive symptomatology was positively correlated with activity in the right amygdala. Similarly, when viewing emotional faces, amygdala reactivity was positively correlated with depressive symptomatology and negatively correlated with dispositional mindfulness, an effect that was largely attributable to differences in resting activity. These findings indicate that mindfulness is associated with intrinsic neural activity and that changes in resting amygdala activity could be a potential mechanism by which mindfulness-based depression treatments elicit therapeutic improvement. PMID:20141298

  19. Neural correlates of affect processing and aggression in methamphetamine dependence.

    Science.gov (United States)

    Payer, Doris E; Lieberman, Matthew D; London, Edythe D

    2011-03-01

    Methamphetamine abuse is associated with high rates of aggression but few studies have addressed the contributing neurobiological factors. To quantify aggression, investigate function in the amygdala and prefrontal cortex, and assess relationships between brain function and behavior in methamphetamine-dependent individuals. In a case-control study, aggression and brain activation were compared between methamphetamine-dependent and control participants. Participants were recruited from the general community to an academic research center. Thirty-nine methamphetamine-dependent volunteers (16 women) who were abstinent for 7 to 10 days and 37 drug-free control volunteers (18 women) participated in the study; subsets completed self-report and behavioral measures. Functional magnetic resonance imaging (fMRI) was performed on 25 methamphetamine-dependent and 23 control participants. We measured self-reported and perpetrated aggression and self-reported alexithymia. Brain activation was assessed using fMRI during visual processing of facial affect (affect matching) and symbolic processing (affect labeling), the latter representing an incidental form of emotion regulation. Methamphetamine-dependent participants self-reported more aggression and alexithymia than control participants and escalated perpetrated aggression more following provocation. Alexithymia scores correlated with measures of aggression. During affect matching, fMRI showed no differences between groups in amygdala activation but found lower activation in methamphetamine-dependent than control participants in the bilateral ventral inferior frontal gyrus. During affect labeling, participants recruited the dorsal inferior frontal gyrus and exhibited decreased amygdala activity, consistent with successful emotion regulation; there was no group difference in this effect. The magnitude of decrease in amygdala activity during affect labeling correlated inversely with self-reported aggression in control participants

  20. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    OpenAIRE

    Petersen, Eline B.; Wöstmann, Malte; Obleser, Jonas; Stenfelt, Stefan; Lunner, Thomas

    2015-01-01

    Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory (WM). One neural signature of WM load is enhanced power of alpha oscillations (6–12 Hz). However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of WM when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and backgrou...

  1. Neural correlates of somatosensory processing in patients with neglect.

    Science.gov (United States)

    Hassa, Thomas; Schoenfeld, Mircea Ariel; Dettmers, Christian; Stoppel, Christian Michael; Weiller, Cornelius; Lange, Rüdiger

    2011-01-01

    Recent evidence from neuroimaging studies using visual tasks suggests that the right superior parietal cortex plays a pivotal role for the recovery of neglect. Importantly, neglect-related deficits are not limited to the visual system and have a rather multimodal nature. We employed somatosensory stimulation in patients with neglect in order to analyze activity changes in networks that are presumably associated with this condition. Eleven chronic neglect patients with right hemispherical stroke were investigated with a fMRI paradigm in which the affected and unaffected hand were passively moved. Brain activation was correlated with the performance in clinical neglect tests. Significant positive correlations with brain activation were found for the lesion duration, the performance in bells and letter cancellation tests and the line bisection test. These activated areas formed a distributed pattern in the right superior parietal cortex. The results suggest a shared representation of visual and somatosensory networks in the right superior parietal cortex in patients with right hemispherical strokes and neglect. The spatial pattern of activity in the superior parietal cortex points out to a different representation of changes related to lesion duration and neglect.

  2. Neural correlates of the numerical distance effect in children

    Directory of Open Access Journals (Sweden)

    Christophe eMussolin

    2013-10-01

    Full Text Available In number comparison tasks, the performance is better when the distance between the two numbers to compare increases. During development this so-called numerical distance effect decreases with age and the neuroanatomical correlates of these age-related changes are poorly known. Using functional magnetic resonance imaging, we recorded the brain activity changes in children aged from 8 to 14 years while they performed a number comparison task on pairs of Arabic digits and a control colour comparison task on non-numerical symbols. On the one hand, we observed developmental changes in the recruitment of frontal regions and the left intraparietal sulcus, with lower activation as the age increased. On the other hand, we found that a behavioural index of selective sensitivity to the numerical distance effect was positively correlated with higher brain activity in a right lateralized occipito-temporo-parietal network including the intraparietal sulcus. This leads us to propose that the left intraparietal sulcus would be engaged in the refinement of cognitive processes involved in number comparison during development, while the right intraparietal sulcus would underlie the semantic representation of numbers and its activation would be mainly affected by the numerical proximity between them.

  3. Neural Correlates of Cognitive Reappraisal in Children: An ERP Study

    Science.gov (United States)

    DeCicco, Jennifer M.; Solomon, Beylul; Dennis, Tracy A.

    2011-01-01

    Cognitive emotion regulation strategies, such as reappraising the emotional meaning of events, are linked to positive adjustment and are disrupted in individuals showing emotional distress, like anxiety. The late positive potential (LPP) is sensitive to reappraisal: LPP amplitudes are reduced when unpleasant pictures are reappraised in a positive light, suggesting regulation of negative emotion. However, only one study has examined reappraisal in children using the LPP. The present study examined whether directed reappraisals reduce the LPP in a group of 5- to 7-year-olds, and correlate with individual differences in fear and anxiety. EEG was recorded from 32 typically-developing children via 64 scalp electrodes during a directed reappraisal task. Mothers reported on child anxiety. Fearful behavior was observed. As predicted, LPP amplitudes were larger to unpleasant versus neutral pictures; counter to predictions, the LPP was not sensitive to reappraisal. The degree to which unpleasant versus neutral pictures elicited larger LPPs was correlated with greater anxiety and fear. Results suggest that reappraisal in young children is still developing, but that the LPP is sensitive to individual differences related to fear and anxiety. The utility of the LPP as a measure of cognitive emotion regulation and emotional processing biases in children is discussed. PMID:22163262

  4. Neural correlates of creative writing: an fMRI study.

    Science.gov (United States)

    Shah, Carolin; Erhard, Katharina; Ortheil, Hanns-Josef; Kaza, Evangelia; Kessler, Christof; Lotze, Martin

    2013-05-01

    Cerebral activations involved in actual writing of a new story and the associated correlates with creative performance are still unexplored. To investigate the different aspects of the creative writing process, we used functional magnetic resonance imaging while 28 healthy participants performed a new paradigm related to creative writing: "brainstorming" (planning a story) and "creative writing" (writing a new and creative continuation of a given literary text), as well as an additional control paradigm of "reading" and "copying." Individual verbal creativity was assessed with a verbal creativity test and creative performance with a qualitative rating of the creative products. "brainstorming" engaged cognitive, linguistic, and creative brain functions mainly represented in a parieto-frontal-temporal network, as well as writing preparation, and visual and imaginative processing. "creative writing" activated motor and visual brain areas for handwriting and additionally, cognitive and linguistic areas. Episodic memory retrieval, free-associative and spontaneous cognition, and semantic integration were observed in a right lateralized activation pattern in bilateral hippocampi, bilateral temporal poles (BA 38), and bilateral posterior cingulate cortex in a "creative writing" minus "copying" comparison. A correlation analysis of "creative writing" minus "copying" with the creativity index revealed activation in the left inferior frontal gyrus (BA 45) and the left temporal pole (BA 38). Thus, verbal creativity during "creative writing" is associated with verbal and semantic memory as well as semantic integration. Copyright © 2011 Wiley Periodicals, Inc.

  5. Neural correlates of individual differences in manual imitation fidelity

    Directory of Open Access Journals (Sweden)

    Lieke eBraadbaart

    2012-10-01

    Full Text Available Imitation is crucial for social learning, and so it is important to identify what determines between-subject variability in imitation fidelity. This might help explain what makes some people, like those with social difficulties such as in Autism Spectrum Disorder, significantly worse at performance on these tasks than others. A novel paradigm was developed to provide objective measures of imitation fidelity in which participants used a touchscreen to imitate videos of a model drawing different shapes. Comparisons between model and participants’ kinematic data provided three measures of imitative fidelity. We hypothesised that imitative ability would predict variation in BOLD signal whilst performing a simple imitation task in the MRI-scanner. In particular, an overall measure of accuracy (correlation between model and imitator would predict activity in the overarching imitation system, whereas bias would be subject to more general aspects of motor control. Participants lying in the MRI-scanner were instructed to imitate different grips on a handle, or to watch someone or a circle moving the handle. Our hypothesis was partly confirmed as correlation between model and imitator was mediated by somatosensory cortex but also ventromedial prefrontal cortex, and bias was mediated mainly by cerebellum but also by the medial frontal and parietal cortices and insula. We suggest that this variance differentially reflects cognitive functions such as feedback-sensitivity and reward-dependent learning, contributing significantly to variability in individuals’ imitative abilities as characterised by objective kinematic measures.

  6. Neural Correlates of Visual Perceptual Expertise: Evidence from Cognitive Neuroscience Using Functional Neuroimaging

    Science.gov (United States)

    Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…

  7. Neural Correlates of Coherence-Break Detection during Reading of Narratives

    Science.gov (United States)

    Helder, Anne; van den Broek, Paul; Karlsson, Josefine; Van Leijenhorst, Linda

    2017-01-01

    This functional magnetic resonance imaging study examined the neural correlates of coherence-break detection during reading in the context of a contradiction paradigm. Young adults (N = 31, ages 19-27) read short narratives (half contained a break in coherence) that were presented sentence by sentence in a self-paced, slow event-related design.…

  8. Neural Correlates of Conflict Control on Facial Expressions with a Flanker Paradigm

    DEFF Research Database (Denmark)

    Liu, T.; Xiao, T; Shi, Jiannong

    2013-01-01

    Conflict control is an important cognitive control ability and it is also crucial for human beings to execute conflict control on affective information. To address the neural correlates of cognitive control on affective conflicts, the present study recorded event-related potentials (ERPs) during...

  9. Material-Specific Neural Correlates of Recollection: Objects, Words, and Faces

    Science.gov (United States)

    Galli, Giulia; Otten, Leun J.

    2011-01-01

    It is unclear how neural correlates of episodic memory retrieval differ depending on the type of material that is retrieved. Here, we used a source memory task to compare electrical brain activity for the recollection of three types of stimulus material. At study, healthy adults judged how well visually presented objects, words, and faces fitted…

  10. Effects of Study Task on the Neural Correlates of Source Encoding

    Science.gov (United States)

    Park, Heekyeong; Uncapher, Melina R.; Rugg, Michael D.

    2008-01-01

    The present study investigated whether the neural correlates of source memory vary according to study task. Subjects studied visually presented words in one of two background contexts. In each test, subjects made old/new recognition and source memory judgments. In one study test cycle, study words were subjected to animacy judgments, whereas in…

  11. Neural Correlates of Communication Skill and Symptom Severity in Autism: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.

    2009-01-01

    Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…

  12. Neural Correlates of Irritability in Disruptive Mood Dysregulation and Bipolar Disorders.

    Science.gov (United States)

    Wiggins, Jillian Lee; Brotman, Melissa A; Adleman, Nancy E; Kim, Pilyoung; Oakes, Allison H; Reynolds, Richard C; Chen, Gang; Pine, Daniel S; Leibenluft, Ellen

    2016-07-01

    Bipolar disorder and disruptive mood dysregulation disorder (DMDD) are clinically and pathophysiologically distinct, yet irritability can be a clinical feature of both illnesses. The authors examine whether the neural mechanisms mediating irritability differ between bipolar disorder and DMDD, using a face emotion labeling paradigm because such labeling is deficient in both patient groups. The authors hypothesized that during face emotion labeling, irritability would be associated with dysfunctional activation in the amygdala and other temporal and prefrontal regions in both disorders, but that the nature of these associations would differ between DMDD and bipolar disorder. During functional MRI acquisition, 71 youths (25 with DMDD, 24 with bipolar disorder, and 22 healthy youths) performed a labeling task with happy, fearful, and angry faces of varying emotional intensity. Participants with DMDD and bipolar disorder showed similar levels of irritability and did not differ from each other or from healthy youths in face emotion labeling accuracy. Irritability correlated with amygdala activity across all intensities for all emotions in the DMDD group; such correlation was present in the bipolar disorder group only for fearful faces. In the ventral visual stream, associations between neural activity and irritability were found more consistently in the DMDD group than in the bipolar disorder group, especially in response to ambiguous angry faces. These results suggest diagnostic specificity in the neural correlates of irritability, a symptom of both DMDD and bipolar disorder. Such evidence of distinct neural correlates suggests the need to evaluate different approaches to treating irritability in the two disorders.

  13. Neural Correlates of Infant Accent Discrimination: An fNIRS Study

    Science.gov (United States)

    Cristia, Alejandrina; Minagawa-Kawai, Yasuyo; Egorova, Natalia; Gervain, Judit; Filippin, Luca; Cabrol, Dominique; Dupoux, Emmanuel

    2014-01-01

    The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas…

  14. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  15. Neural Correlates of Written Emotion Word Processing: A Review of Recent Electrophysiological and Hemodynamic Neuroimaging Studies

    Science.gov (United States)

    Citron, Francesca M. M.

    2012-01-01

    A growing body of literature investigating the neural correlates of emotion word processing has emerged in recent years. Written words have been shown to represent a suitable means to study emotion processing and most importantly to address the distinct and interactive contributions of the two dimensions of emotion: valence and arousal. The aim of…

  16. Neural Correlates of Traditional Chinese Medicine Induced Advantageous Risk-Taking Decision Making

    Science.gov (United States)

    Lee, Tiffany M. Y.; Guo, Li-guo; Shi, Hong-zhi; Li, Yong-zhi; Luo, Yue-jia; Sung, Connie Y. Y.; Chan, Chetwyn C. H.; Lee, Tatia M. C.

    2009-01-01

    This fMRI study examined the neural correlates of the observed improvement in advantageous risk-taking behavior, as measured by the number of adjusted pumps in the Balloon Analogue Risk Task (BART), following a 60-day course of a Traditional Chinese Medicine (TCM) recipe, specifically designed to regulate impulsiveness in order to modulate…

  17. Dissociation of the Neural Correlates of Visual and Auditory Contextual Encoding

    Science.gov (United States)

    Gottlieb, Lauren J.; Uncapher, Melina R.; Rugg, Michael D.

    2010-01-01

    The present study contrasted the neural correlates of encoding item-context associations according to whether the contextual information was visual or auditory. Subjects (N = 20) underwent fMRI scanning while studying a series of visually presented pictures, each of which co-occurred with either a visually or an auditorily presented name. The task…

  18. Neural correlates of visual perceptual expertise: Evidence from cognitive neuroscience using functional neuroimaging

    NARCIS (Netherlands)

    Gegenfurtner, Andreas; Kok, Ellen M; Van Geel, Koos; de Bruin, Anique B H; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically

  19. Longitudinal links between childhood peer acceptance and the neural correlates of sharing.

    Science.gov (United States)

    Will, Geert-Jan; Crone, Eveline A; van Lier, Pol A C; Güroğlu, Berna

    2018-01-01

    Childhood peer acceptance is associated with high levels of prosocial behavior and advanced perspective taking skills. Yet, the neurobiological mechanisms underlying these associations have not been studied. This functional magnetic resonance imaging study examined the neural correlates of sharing decisions in a group of adolescents who had a stable accepted status (n = 27) and a group who had a chronic rejected status (n = 19) across six elementary school grades. Both groups of adolescents played three allocation games in which they could share money with strangers with varying costs and profits to them and the other person. Stably accepted adolescents were more likely to share their money with unknown others than chronically rejected adolescents when sharing was not costly. Neuroimaging analyses showed that stably accepted adolescents, compared to chronically rejected adolescents, exhibited higher levels of activation in the temporo-parietal junction, posterior superior temporal sulcus, temporal pole, pre-supplementary motor area, and anterior insula during costly sharing decisions. These findings demonstrate that stable peer acceptance across childhood is associated with heightened activity in brain regions previously linked to perspective taking and the detection of social norm violations during adolescence, and thereby provide insight into processes underlying the widely established links between peer acceptance and prosocial behavior. © 2016 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  20. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study.

    Science.gov (United States)

    Zhang, Juan; Wu, Chenggang; Meng, Yaxuan; Yuan, Zhen

    2017-01-01

    It is well-documented that both emotion-label words (e.g., sadness, happiness) and emotion-laden words (e.g., death, wedding) can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP) measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1) emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2) larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3) negative emotion-label words elicited larger Late Positivity Complex (LPC) on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170) and late (LPC) stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC) while fails to be detected in some other time window (i.e., P100). The implications of the current findings for future emotion research were discussed.

  1. Neural correlates of generating visual nouns and motor verbs in a minimal phrase context.

    Science.gov (United States)

    Khader, Patrick H; Jost, Kerstin; Mertens, Michelle; Bien, Siegfried; Rösler, Frank

    2010-03-08

    The neural basis underlying the generation of nouns and verbs is still not completely understood. In classical generation tasks, specific features of the produced words can hardly be controlled. Therefore, the observed neural correlates of noun and verb production cannot be directly related to differences in specific features of the generated words. The present study seeks to address this issue by using a "minimal-phrase context" to elicit the activation of specific nouns and verbs. With this context, the to-be-generated words were highly constrained, and thus their semantic and other features (visual/action relatedness, word frequency, cloze probability, etc.) are well controlled. Thus, the present paradigm combines the advantages of classical word generation tasks (i.e., active semantic processing) with the advantages of tasks that allow for a high control of the experimental stimuli, such as passive viewing, reading, or lexical decision tasks. In an fMRI study, 17 participants generated verbs with strong motor and nouns with strong visual associations. Both noun and verb generation, compared to a rhyme generation baseline, elicited stronger activation in perisylvian language areas of the temporal and parietal cortex. In addition, stronger activation for nouns was found in the right middle/inferior temporal cortex. This activation supports the claim that noun generation is mediated by visual processing areas. Stronger activation for verb generation was found in the left superior temporal gyrus. Since this area is involved in motion perception, the results suggest that perceptual representations of movements mediate the generation of action verbs. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Different Neural Correlates of Emotion-Label Words and Emotion-Laden Words: An ERP Study

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-09-01

    Full Text Available It is well-documented that both emotion-label words (e.g., sadness, happiness and emotion-laden words (e.g., death, wedding can induce emotion activation. However, the neural correlates of emotion-label words and emotion-laden words recognition have not been examined. The present study aimed to compare the underlying neural responses when processing the two kinds of words by employing event-related potential (ERP measurements. Fifteen Chinese native speakers were asked to perform a lexical decision task in which they should judge whether a two-character compound stimulus was a real word or not. Results showed that (1 emotion-label words and emotion-laden words elicited similar P100 at the posteriors sites, (2 larger N170 was found for emotion-label words than for emotion-laden words at the occipital sites on the right hemisphere, and (3 negative emotion-label words elicited larger Late Positivity Complex (LPC on the right hemisphere than on the left hemisphere while such effect was not found for emotion-laden words and positive emotion-label words. The results indicate that emotion-label words and emotion-laden words elicit different cortical responses at both early (N170 and late (LPC stages. In addition, right hemisphere advantage for emotion-label words over emotion-laden words can be observed in certain time windows (i.e., N170 and LPC while fails to be detected in some other time window (i.e., P100. The implications of the current findings for future emotion research were discussed.

  3. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  4. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  5. Neural Correlates of Consumer Buying Motivations: A 7T functional Magnetic Resonance Imaging (fMRI) Study.

    Science.gov (United States)

    Goodman, Adam M; Wang, Yun; Kwon, Wi-Suk; Byun, Sang-Eun; Katz, Jeffrey S; Deshpande, Gopikrishna

    2017-01-01

    Consumer buying motivations can be distinguished into three categories: functional, experiential, or symbolic motivations (Keller, 1993). Although prior neuroimaging studies have examined the neural substrates which enable these motivations, direct comparisons between these three types of consumer motivations have yet to be made. In the current study, we used 7 Tesla (7T) functional magnetic resonance imaging (fMRI) to assess the neural correlates of each motivation by instructing participants to view common consumer goods while emphasizing either functional, experiential, or symbolic values of these products. The results demonstrated mostly consistent activations between symbolic and experiential motivations. Although, these motivations differed in that symbolic motivation was associated with medial frontal gyrus (MFG) activation, whereas experiential motivation was associated with posterior cingulate cortex (PCC) activation. Functional motivation was associated with dorsolateral prefrontal cortex (DLPFC) activation, as compared to other motivations. These findings provide a neural basis for how symbolic and experiential motivations may be similar, yet different in subtle ways. Furthermore, the dissociation of functional motivation within the DLPFC supports the notion that this motivation relies on executive function processes relatively more than hedonic motivation. These findings provide a better understanding of the underlying neural functioning which may contribute to poor self-control choices.

  6. Neural Correlates of Consumer Buying Motivations: A 7T functional Magnetic Resonance Imaging (fMRI) Study

    Science.gov (United States)

    Goodman, Adam M.; Wang, Yun; Kwon, Wi-Suk; Byun, Sang-Eun; Katz, Jeffrey S.; Deshpande, Gopikrishna

    2017-01-01

    Consumer buying motivations can be distinguished into three categories: functional, experiential, or symbolic motivations (Keller, 1993). Although prior neuroimaging studies have examined the neural substrates which enable these motivations, direct comparisons between these three types of consumer motivations have yet to be made. In the current study, we used 7 Tesla (7T) functional magnetic resonance imaging (fMRI) to assess the neural correlates of each motivation by instructing participants to view common consumer goods while emphasizing either functional, experiential, or symbolic values of these products. The results demonstrated mostly consistent activations between symbolic and experiential motivations. Although, these motivations differed in that symbolic motivation was associated with medial frontal gyrus (MFG) activation, whereas experiential motivation was associated with posterior cingulate cortex (PCC) activation. Functional motivation was associated with dorsolateral prefrontal cortex (DLPFC) activation, as compared to other motivations. These findings provide a neural basis for how symbolic and experiential motivations may be similar, yet different in subtle ways. Furthermore, the dissociation of functional motivation within the DLPFC supports the notion that this motivation relies on executive function processes relatively more than hedonic motivation. These findings provide a better understanding of the underlying neural functioning which may contribute to poor self-control choices. PMID:28959182

  7. Long-range temporal correlations, multifractality, and the causal relation between neural inputs and movements

    Directory of Open Access Journals (Sweden)

    Jing eHu

    2013-10-01

    Full Text Available Understanding the causal relation between neural inputs and movements is very important for the success of brain machine interfaces (BMIs. In this study, we analyze 104 neurons’ firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA, and wavelet multifractal analysis. We find neuronal firings are highly nonstationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a re-setting effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains’ long range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses.

  8. Vector neural net identifying many strongly distorted and correlated patterns

    Science.gov (United States)

    Kryzhanovsky, Boris V.; Mikaelian, Andrei L.; Fonarev, Anatoly B.

    2005-01-01

    We suggest an effective and simple algorithm providing a polynomial storage capacity of a network of the form M ~ N2s+1, where N is the dimension of the stored binary patterns. In this problem the value of the free parameter s is restricted by the inequalities N >> slnN >= 1. The algorithm allows us to identify a large number of highly distorted similar patterns. The negative influence of correlations of the patterns is suppressed by choosing a sufficiently large value of the parameter s. We show the efficiency of the algorithm by the example of a perceptron identifier, but it also can be used to increase the storage capacity of full connected systems of associative memory.

  9. Neural correlates of three types of negative life events during angry face processing in adolescents.

    Science.gov (United States)

    Gollier-Briant, Fanny; Paillère-Martinot, Marie-Laure; Lemaitre, Hervé; Miranda, Ruben; Vulser, Hélène; Goodman, Robert; Penttilä, Jani; Struve, Maren; Fadai, Tahmine; Kappel, Viola; Poustka, Luise; Grimmer, Yvonne; Bromberg, Uli; Conrod, Patricia; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Büchel, Christian; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Heinz, Andreas; Lawrence, Claire; Mann, Karl; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Frouin, Vincent; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Schumann, Gunter; Martinot, Jean-Luc; Artiges, Eric

    2016-12-01

    Negative life events (NLE) contribute to anxiety and depression disorders, but their relationship with brain functioning in adolescence has rarely been studied. We hypothesized that neural response to social threat would relate to NLE in the frontal-limbic emotional regions. Participants (N = 685) were drawn from the Imagen database of 14-year-old community adolescents recruited in schools. They underwent functional MRI while viewing angry and neutral faces, as a probe to neural response to social threat. Lifetime NLEs were assessed using the 'distress', 'family' and 'accident' subscales from a life event dimensional questionnaire. Relationships between NLE subscale scores and neural response were investigated. Links of NLE subscales scores with anxiety or depression outcomes at the age of 16 years were also investigated. Lifetime 'distress' positively correlated with ventral-lateral orbitofrontal and temporal cortex activations during angry face processing. 'Distress' scores correlated with the probabilities of meeting criteria for Generalized Anxiety Disorder or Major Depressive Disorder at the age of 16 years. Lifetime 'family' and 'accident' scores did not relate with neural response or follow-up conditions, however. Thus, different types of NLEs differentially predicted neural responses to threat during adolescence, and differentially predicted a de novo internalizing condition 2 years later. The deleterious effect of self-referential NLEs is suggested. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Single-trial analysis of the neural correlates of speech quality perception

    Science.gov (United States)

    Porbadnigk, Anne K.; Treder, Matthias S.; Blankertz, Benjamin; Antons, Jan-Niklas; Schleicher, Robert; Möller, Sebastian; Curio, Gabriel; Müller, Klaus-Robert

    2013-10-01

    Objective. Assessing speech quality perception is a challenge typically addressed in behavioral and opinion-seeking experiments. Only recently, neuroimaging methods were introduced, which were used to study the neural processing of quality at group level. However, our electroencephalography (EEG) studies show that the neural correlates of quality perception are highly individual. Therefore, it became necessary to establish dedicated machine learning methods for decoding subject-specific effects. Approach. The effectiveness of our methods is shown by the data of an EEG study that investigates how the quality of spoken vowels is processed neurally. Participants were asked to indicate whether they had perceived a degradation of quality (signal-correlated noise) in vowels, presented in an oddball paradigm. Main results. We find that the P3 amplitude is attenuated with increasing noise. Single-trial analysis allows one to show that this is partly due to an increasing jitter of the P3 component. A novel classification approach helps to detect trials with presumably non-conscious processing at the threshold of perception. We show that this approach uncovers a non-trivial confounder between neural hits and neural misses. Significance. The combined use of EEG signals and machine learning methods results in a significant ‘neural’ gain in sensitivity (in processing quality loss) when compared to standard behavioral evaluation; averaged over 11 subjects, this amounts to a relative improvement in sensitivity of 35%.

  11. Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances

    Science.gov (United States)

    Soltoggio, Andrea; Lemme, Andre; Reinhart, Felix; Steil, Jochen J.

    2013-01-01

    Neural conditioning associates cues and actions with following rewards. The environments in which robots operate, however, are pervaded by a variety of disturbing stimuli and uncertain timing. In particular, variable reward delays make it difficult to reconstruct which previous actions are responsible for following rewards. Such an uncertainty is handled by biological neural networks, but represents a challenge for computational models, suggesting the lack of a satisfactory theory for robotic neural conditioning. The present study demonstrates the use of rare neural correlations in making correct associations between rewards and previous cues or actions. Rare correlations are functional in selecting sparse synapses to be eligible for later weight updates if a reward occurs. The repetition of this process singles out the associating and reward-triggering pathways, and thereby copes with distal rewards. The neural network displays macro-level classical and operant conditioning, which is demonstrated in an interactive real-life human-robot interaction. The proposed mechanism models realistic conditioning in humans and animals and implements similar behaviors in neuro-robotic platforms. PMID:23565092

  12. Neural correlates of virtual route recognition in congenital blindness

    DEFF Research Database (Denmark)

    Kupers, Ron; Chebat, Daniel R; Madsen, Kristoffer H

    2010-01-01

    functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device...... that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind...

  13. Neural correlates of sexual arousal in homosexual and heterosexual men.

    Science.gov (United States)

    Safron, Adam; Barch, Bennett; Bailey, J Michael; Gitelman, Darren R; Parrish, Todd B; Reber, Paul J

    2007-04-01

    Men exhibit much higher levels of genital and subjective arousal to sexual stimuli containing their preferred sex than they do to stimuli containing only the nonpreferred sex. This study used event-related functional magnetic resonance imaging to investigate how this category-specific pattern would be reflected in the brains of homosexual (n = 11) and heterosexual (n = 11) men. Comparisons of activation to preferred sexual stimuli, nonpreferred sexual stimuli, and sports stimuli revealed large networks correlated with sexual arousal, spanning multiple cortical and subcortical areas. Both homosexual and heterosexual men exhibited category-specific arousal in brain activity. Within the amygdala, greater preference-related activity was observed in homosexual men, but it is unclear whether this is a cause or a consequence of their sexuality. In a subsequent analysis of regions hypothesized to support arousal, both participant groups demonstrated widespread increases in evoked activity for preferred stimuli. Aggregate data from these regions produced significant differences between stimulus types in 16 out of 22 participants. Significant activational differences matched reported sexual orientation in 15 of these 16 participants, representing an advance in psychophysiological measures of arousal. (c) 2007 APA, all rights reserved

  14. Neural correlates of expression-independent memories in the crab Neohelice.

    Science.gov (United States)

    Maza, F J; Locatelli, F F; Delorenzi, A

    2016-05-01

    The neural correlates of memory have been usually examined considering that memory retrieval and memory expression are interchangeable concepts. However, our studies in the crab Neohelice (Chasmagnathus) granulata and in other memory models have shown that memory expression is not necessary for memory to be re-activated and become labile. In order to examine putative neural correlates of memory in the crab Neohelice, we contrast changes induced by training in both animal's behavior and neuronal responses in the medulla terminalis using in vivo Ca(2+) imaging. Disruption of long-term memory by the amnesic agents MK-801 or scopolamine (5μg/g) blocks the learning-induced changes in the Ca(2+) responses in the medulla terminalis. Conversely, treatments that lead to an unexpressed but persistent memory (weak training protocol or scopolamine 0.1μg/g) do not block these learning-induced neural changes. The present results reveal a set of changes in the neural activity induced by training that correlates with memory persistence but not with the probability of this memory to be expressed in the long-term. In addition, the study constitutes the first in vivo evidence in favor of a role of the medulla terminalis in learning and memory in crustaceans, and provides a physiological evidence indicating that memory persistence and the probability of memory to be expressed might involve separate components of memory traces. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dissociation between the neural correlates of conscious face perception and visual attention.

    Science.gov (United States)

    Navajas, Joaquin; Nitka, Aleksander W; Quian Quiroga, Rodrigo

    2017-08-01

    Given the higher chance to recognize attended compared to unattended stimuli, the specific neural correlates of these two processes, attention and awareness, tend to be intermingled in experimental designs. In this study, we dissociated the neural correlates of conscious face perception from the effects of visual attention. To do this, we presented faces at the threshold of awareness and manipulated attention through the use of exogenous prestimulus cues. We show that the N170 component, a scalp EEG marker of face perception, was modulated independently by attention and by awareness. An earlier P1 component was not modulated by either of the two effects and a later P3 component was indicative of awareness but not of attention. These claims are supported by converging evidence from (a) modulations observed in the average evoked potentials, (b) correlations between neural and behavioral data at the single-subject level, and (c) single-trial analyses. Overall, our results show a clear dissociation between the neural substrates of attention and awareness. Based on these results, we argue that conscious face perception is triggered by a boost in face-selective cortical ensembles that can be modulated by, but are still independent from, visual attention. © 2017 Society for Psychophysiological Research.

  16. Common and distinct neural correlates of inhibitory dysregulation: stroop fMRI study of cocaine addiction and intermittent explosive disorder.

    Science.gov (United States)

    Moeller, Scott J; Froböse, Monja I; Konova, Anna B; Misyrlis, Michail; Parvaz, Muhammad A; Goldstein, Rita Z; Alia-Klein, Nelly

    2014-11-01

    Despite the high prevalence and consequences associated with externalizing psychopathologies, little is known about their underlying neurobiological mechanisms. Studying multiple externalizing disorders, each characterized by compromised inhibition, could reveal both common and distinct mechanisms of impairment. The present study therefore compared individuals with intermittent explosive disorder (IED) (N = 11), individuals with cocaine use disorder (CUD) (N = 21), and healthy controls (N = 17) on task performance and functional magnetic resonance imaging (fMRI) activity during an event-related color-word Stroop task; self-reported trait anger expression was also collected in all participants. Results revealed higher error-related activity in the two externalizing psychopathologies as compared with controls in two subregions of the dorsolateral prefrontal cortex (DLPFC) (a region known to be involved in exerting cognitive control during this task), suggesting a neural signature of inhibitory-related error processing common to these psychopathologies. Interestingly, in one DLPFC subregion, error-related activity was especially high in IED, possibly indicating a specific neural correlate of clinically high anger expression. Supporting this interpretation, error-related DLPFC activity in this same subregion positively correlated with trait anger expression across all participants. These collective results help to illuminate common and distinct neural signatures of impaired self-control, and could suggest novel therapeutic targets for increasing self-control in clinical aggression specifically and/or in various externalizing psychopathologies more generally. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. An fMRI study of the neural correlates of graded visual perception

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Ramsoy, T.Z.; Lund, T.E.

    2006-01-01

    The neural correlates of clearly perceived visual stimuli have been reported previously in contrast to unperceived stimuli, but it is uncertain whether intermediate or graded perceptual experiences correlate with different patterns of neural activity. In this study, the subjective appearance...... of briefly presented visual stimuli was rated individually by subjects with respect to perceptual clarity: clear, vague or no experience of a stimulus. Reports of clear experiences correlated with activation in a widespread network of brain areas, including parietal cortex, prefrontal cortex, premotor cortex...... of activation. Different degrees of perceptual clarity were reflected both in the degree to which activation was found within parts of the network serving a clear conscious percept, and additional unique activation patterns for different degrees of perceptual clarity. Our findings support theories proposing...

  18. Functional neural correlates of reduced physiological falls risk.

    Science.gov (United States)

    Nagamatsu, Lindsay S; Hsu, Chun Liang; Handy, Todd C; Liu-Ambrose, Teresa

    2011-08-16

    It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors. We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA). After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk. Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity. ClinicalTrials.gov Identifier: NCT00426881.

  19. Correlation of diffusion tensor imaging parameters with neural status in Pott’s spine

    Directory of Open Access Journals (Sweden)

    Jain Nikhil

    2016-01-01

    Full Text Available Introduction: Diffusion tensor imaging (DTI has been used in cervical trauma and spondylotic myelopathy, and it has been found to correlate with neural deficit and prognosticate neural recovery. Such a correlation has not been studied in Pott’s spine with paraplegia. Hence, this prospective study has been used to find correlation of DTI parameters with neural deficit in these patients. Methods: Thirty-four patients of spinal TB were enrolled and DTI was performed before the start of treatment and after six months. Fractional anisotropy (FA, Mean diffusivity (MD, and Tractography were studied. Neurological deficit was graded by the Jain and Sinha scoring. Changes in FA and MD at and below the site of lesion (SOL were compared to above the SOL (control using the unpaired t-test. Pre-treatment and post-treatment values were also compared using the paired t-test. Correlation of DTI parameters with neurological score was done by Pearson’s correlation. Subjective assessment of Tractography images was done. Results: Mean average FA was not significantly decreased at the SOL in patients with paraplegia as compared to control. After six months of treatment, a significant decrease (p = 0.02 in mean average FA at the SOL compared to pre-treatment was seen. Moderate positive correlation (r = 0.49 between mean average FA and neural score after six months of treatment was found. Tractography images were not consistent with severity of paraplegia. Conclusion: Unlike spondylotic myelopathy and trauma, epidural collection and its organized inflammatory tissue in Pott’s spine precludes accurate assessment of diffusion characteristics of the compressed cord.

  20. Comparisons of neural networks to standard techniques for image classification and correlation

    Science.gov (United States)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  1. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    Science.gov (United States)

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  2. The neural correlates of gist-based true and false recognition

    Science.gov (United States)

    Gutchess, Angela H.; Schacter, Daniel L.

    2012-01-01

    When information is thematically related to previously studied information, gist-based processes contribute to false recognition. Using functional MRI, we examined the neural correlates of gist-based recognition as a function of increasing numbers of studied exemplars. Sixteen participants incidentally encoded small, medium, and large sets of pictures, and we compared the neural response at recognition using parametric modulation analyses. For hits, regions in middle occipital, middle temporal, and posterior parietal cortex linearly modulated their activity according to the number of related encoded items. For false alarms, visual, parietal, and hippocampal regions were modulated as a function of the encoded set size. The present results are consistent with prior work in that the neural regions supporting veridical memory also contribute to false memory for related information. The results also reveal that these regions respond to the degree of relatedness among similar items, and implicate perceptual and constructive processes in gist-based false memory. PMID:22155331

  3. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  4. Polygenic risk for schizophrenia affects working memory and its neural correlates in healthy subjects.

    Science.gov (United States)

    Krug, Axel; Dietsche, Bruno; Zöllner, Rebecca; Yüksel, Dilara; Nöthen, Markus M; Forstner, Andreas J; Rietschel, Marcella; Dannlowski, Udo; Baune, Bernhard T; Maier, Robert; Witt, Stephanie H; Kircher, Tilo

    2018-02-03

    Schizophrenia is a disorder with a high heritability. Patients as well as their first degree relatives display lower levels of performance in a number of cognitive domains compared to subjects without genetic risk. Several studies could link these aberrations to single genetic variants, however, only recently, polygenic risk scores as proxies for genetic risk have been associated with cognitive domains and their neural correlates. In the present study, a sample of healthy subjects (n=137) performed a letter version of the n-back task while scanned with 3-T fMRI. All subjects were genotyped with the PsychChip and polygenic risk scores were calculated based on the PGC2 schizophrenia GWAS results. Polygenic risk for schizophrenia was associated with a lower degree of brain activation in prefrontal areas during the 3-back compared to the 0-back baseline condition. Furthermore, polygenic risk was associated with lower levels of brain activation in the right inferior frontal gyrus during the 3-back compared to a 2-back condition. Polygenic risk leads to a shift in the underlying activation pattern to the left side, thus resembling results reported in patients with schizophrenia. The data may point to polygenic risk for schizophrenia being associated with brain function in a cognitive task known to be impaired in patients and their relatives. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Neural correlates of strategy use during auditory working memory in musicians and non-musicians.

    Science.gov (United States)

    Schulze, K; Mueller, K; Koelsch, S

    2011-01-01

    Working memory (WM) performance in humans can be improved by structuring and organizing the material to be remembered. For visual and verbal information, this process of structuring has been associated with the involvement of a prefrontal-parietal network, but for non-verbal auditory material, the brain areas that facilitate WM for structured information have remained elusive. Using functional magnetic resonance imaging, this study compared neural correlates underlying encoding and rehearsal of auditory WM for structured and unstructured material. Musicians and non-musicians performed a WM task on five-tone sequences that were either tonally structured (with all tones belonging to one tonal key) or tonally unstructured (atonal) sequences. Functional differences were observed for musicians (who are experts in the music domain), but not for non-musicians - The right pars orbitalis was activated more strongly in musicians during the encoding of unstructured (atonal) vs. structured (tonal) sequences. In addition, data for musicians showed that a lateral (pre)frontal-parietal network (including the right premotor cortex, right inferior precentral sulcus and left intraparietal sulcus) was activated during WM rehearsal of structured, as compared with unstructured, sequences. Our findings indicate that this network plays a role in strategy-based WM for non-verbal auditory information, corroborating previous results showing a similar network for strategy-based WM for visual and verbal information. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Neural correlation of successful cognitive behaviour therapy for spider phobia: a magnetoencephalography study.

    Science.gov (United States)

    Wright, Barry; Alderson-Day, Ben; Prendergast, Garreth; Kennedy, Juliette; Bennett, Sophie; Docherty, Mary; Whitton, Clare; Manea, Laura; Gouws, Andre; Tomlinson, Heather; Green, Gary

    2013-12-30

    Cognitive behavioural therapy (CBT) can be an effective treatment for spider phobia, but the underlying neural correlates of therapeutic change are yet to be specified. The present study used magnetoencephalography (MEG) to study responses within the first half second, to phobogenic stimuli in a group of individuals with spider phobia prior to treatment (n=12) and then in nine of them following successful CBT (where they could touch and manage live large common house spiders) at least 9 months later. We also compared responses to a group of age-matched healthy control participants (n=11). Participants viewed static photographs of real spiders, other fear-inducing images (e.g. snakes, sharks) and neutral stimuli (e.g. kittens). Beamforming methods were used to localise sources of significant power changes in response to stimuli. Prior to treatment, participants with spider phobia showed a significant maximum response in the right frontal pole when viewing images of real spiders specifically. No significant frontal response was observed for either control participants or participants with spider phobia post-treatment. In addition, participants' subjective ratings of spider stimuli significantly predicted peak responses in right frontal regions. The implications for understanding brain-based effects of cognitive therapies are discussed. © 2013 Published by Elsevier Ireland Ltd.

  7. Categorical and continuous - disentangling the neural correlates of the carry effect in multi-digit addition

    Directory of Open Access Journals (Sweden)

    Dressel Katharina

    2010-11-01

    Full Text Available Abstract Background Recently it was suggested that the carry effect observed in addition involves both categorical and continuous processing characteristics. Methods In the present study, we aimed at identifying the specific neural correlates associated with processing either categorical or continuous aspects of the carry effect in an fMRI study on multi-digit addition. Results In line with our expectations, we observed two distinct parts of the fronto-parietal network subserving numerical cognition to be associated with either one of these two characteristics. On the one hand, the categorical aspect of the carry effect was associated with left-hemispheric language areas and the basal ganglia probably reflecting increased demands on procedural and problem solving processes. Complementarily, the continuous aspect of the carry effect was associated with increased intraparietal activation indicating increasing demands on magnitude processing as well as place-value integration with increasing unit sum. Conclusions In summary, the findings suggest representations and processes underlying the carry effect in multi-digit addition to be more complex and interactive than assumed previously.

  8. Neural mechanisms underlying probalistic category learning in normal aging.

    NARCIS (Netherlands)

    Fera, F.; Weickert, T.W.; Goldberg, T.E.; Tessitore, A.; Hariri, A.; Das, S.; Lee, S.; Zoltick, B.; Meeter, M.; Gluck, M.A.; Weinberger, D.A.; Matta, V.S.

    2005-01-01

    Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been

  9. Neural suppression of irrelevant information underlies optimal working memory performance.

    Science.gov (United States)

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  10. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM

    2012-01-01

    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  12. Neural Correlates of Perceptual Narrowing in Cross-Species Face-Voice Matching

    Science.gov (United States)

    Grossmann, Tobias; Missana, Manuela; Friederici, Angela D.; Ghazanfar, Asif A.

    2012-01-01

    Integrating the multisensory features of talking faces is critical to learning and extracting coherent meaning from social signals. While we know much about the development of these capacities at the behavioral level, we know very little about the underlying neural processes. One prominent behavioral milestone of these capacities is the perceptual…

  13. Neural Correlates of Explicit versus Implicit Facial Emotion Processing in ASD

    Science.gov (United States)

    Luckhardt, Christina; Kröger, Anne; Cholemkery, Hannah; Bender, Stephan; Freitag, Christine M.

    2017-01-01

    The underlying neural mechanisms of implicit and explicit facial emotion recognition (FER) were studied in children and adolescents with autism spectrum disorder (ASD) compared to matched typically developing controls (TDC). EEG was obtained from N = 21 ASD and N = 16 TDC. Task performance, visual (P100, N170) and cognitive (late positive…

  14. Neural correlates of visuospatial working memory in attention-deficit/hyperactivity disorder and healthy controls

    NARCIS (Netherlands)

    Ewijk, H. van; Weeda, W.D.; Heslenfeld, D.J.; Luman, M.; Hartman, C.A.; Hoekstra, P.J.; Faraone, S.V.; Franke, B.; Buitelaar, J.K.; Oosterlaan, J.

    2015-01-01

    Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in

  15. A Deeper Look at the “Neural Correlate of Consciousness”

    Science.gov (United States)

    Fink, Sascha Benjamin

    2016-01-01

    A main goal of the neuroscience of consciousness is: find the neural correlate to conscious experiences (NCC). When have we achieved this goal? The answer depends on our operationalization of “NCC.” Chalmers (2000) shaped the widely accepted operationalization according to which an NCC is a neural system with a state which is minimally sufficient (but not necessary) for an experience. A deeper look at this operationalization reveals why it might be unsatisfactory: (i) it is not an operationalization of a correlate for occurring experiences, but of the capacity to experience; (ii) it is unhelpful for certain cases which are used to motivate a search for neural correlates of consciousness; (iii) it does not mirror the usage of “NCC” by scientists who seek for unique correlates; (iv) it hardly allows for a form of comparative testing of hypotheses, namely experimenta crucis. Because of these problems (i–iv), we ought to amend or improve on Chalmers's operationalization. Here, I present an alternative which avoids these problems. This “NCC2.0” also retains some benefits of Chalmers's operationalization, namely being compatible with contributions from extended, embedded, enacted, or embodied accounts (4E-accounts) and allowing for the possibility of non-biological or artificial experiencers. PMID:27507950

  16. Associations Between Behavioral and Neural Correlates of Inhibitory Control and Amphetamine Reward Sensitivity.

    Science.gov (United States)

    Weafer, Jessica; Gorka, Stephanie M; Hedeker, Donald; Dzemidzic, Mario; Kareken, David A; Phan, K Luan; de Wit, Harriet

    2017-08-01

    Poor inhibitory control and sensitivity to drug reward are two significant risk factors for drug abuse. Although the two have been largely viewed as separate and independent risk factors, there is new evidence to suggest that they may be related at both the behavioral and neural level. This study examined associations between behavioral and neural correlates of inhibitory control and sensitivity to the subjective rewarding effects of amphetamine in humans. Healthy volunteers (n=63) first completed the stop signal task, a behavioral measure of inhibitory control. Then they participated in four sessions in which they received amphetamine (20 mg) and placebo in alternating order, providing self-report measures of euphoria and arousal at regular intervals. Finally, a subset of participants (n=38) underwent an fMRI scan to assess neural correlates of inhibitory control. In the first phase of the study, participants with longer stop signal reaction time (SSRT) reported greater amphetamine-induced euphoria and stimulation than those with shorter SSRT. In the second phase, fMRI of response inhibition showed the expected activation in right prefrontal regions. Further, individuals who exhibited less activation in the right middle frontal gyrus during the inhibition task reported more euphoria during the amphetamine sessions. This study is the first to show associations between poor inhibitory control and amphetamine reward sensitivity at both behavioral and neural levels in humans. These findings extend our understanding of risk for drug abuse in individuals with poor inhibitory control and suggest novel targets for prevention efforts.

  17. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    Science.gov (United States)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  18. Neural correlates of lower limbs proprioception: An fMRI study of foot position matching.

    Science.gov (United States)

    Iandolo, Riccardo; Bellini, Alessandro; Saiote, Catarina; Marre, Ilaria; Bommarito, Giulia; Oesingmann, Niels; Fleysher, Lazar; Mancardi, Giovanni Luigi; Casadio, Maura; Inglese, Matilde

    2018-05-01

    Little is known about the neural correlates of lower limbs position sense, despite the impact that proprioceptive deficits have on everyday life activities, such as posture and gait control. We used fMRI to investigate in 30 healthy right-handed and right-footed subjects the regional distribution of brain activity during position matching tasks performed with the right dominant and the left nondominant foot. Along with the brain activation, we assessed the performance during both ipsilateral and contralateral matching tasks. Subjects had lower errors when matching was performed by the left nondominant foot. The fMRI analysis suggested that the significant regions responsible for position sense are in the right parietal and frontal cortex, providing a first characterization of the neural correlates of foot position matching. © 2018 Wiley Periodicals, Inc.

  19. Parental reflective functioning and the neural correlates of processing infant affective cues.

    Science.gov (United States)

    Rutherford, Helena J V; Maupin, Angela N; Landi, Nicole; Potenza, Marc N; Mayes, Linda C

    2017-10-01

    Parental reflective functioning refers to the capacity for a parent to understand their own and their infant's mental states, and how these mental states relate to behavior. Higher levels of parental reflective functioning may be associated with greater sensitivity to infant emotional signals in fostering adaptive and responsive caregiving. We investigated this hypothesis by examining associations between parental reflective functioning and neural correlates of infant face and cry perception using event-related potentials (ERPs) in a sample of recent mothers. We found both early and late ERPs were associated with different components of reflective functioning. These findings suggest that parental reflective functioning may be associated with the neural correlates of infant cue perception and further support the value of enhancing reflective functioning as a mechanism in parenting intervention programs.

  20. Neural Correlates of Phrase Rhythm: An EEG Study of Bipartite vs. Rondo Sonata Form

    Directory of Open Access Journals (Sweden)

    Antonio Fernández-Caballero

    2017-04-01

    Full Text Available This paper introduces the neural correlates of phrase rhythm. In short, phrase rhythm is the rhythmic aspect of phrase construction and the relationships between phrases. For the sake of establishing the neural correlates, a musical experiment has been designed to induce music-evoked stimuli related to phrase rhythm. Brain activity is monitored through electroencephalography (EEG by using a brain–computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. Our experiment shows statistical differences in theta and alpha bands in the phrase rhythm variations of two classical sonatas, one in bipartite form and the other in rondo form.

  1. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  2. Dissociation of the Neural Correlates of Visual and Auditory Contextual Encoding

    OpenAIRE

    Gottlieb, Lauren J.; Uncapher, Melina R.; Rugg, Michael D.

    2010-01-01

    The present study contrasted the neural correlates of encoding item-context associations according to whether the contextual information was visual or auditory. Subjects (N=20) underwent fMRI scanning while studying a series of visually-presented pictures, each of which co-occurred with either a visually- or an auditorily-presented name. The task requirement was to judge whether the name corresponded to the presented object. In a subsequent memory test subjects judged whether test pictures we...

  3. High order neural correlates of social behavior in the honeybee brain.

    Science.gov (United States)

    Duer, Aron; Paffhausen, Benjamin H; Menzel, Randolf

    2015-10-30

    Honeybees are well established models of neural correlates of sensory function, learning and memory formation. Here we report a novel approach allowing to record high-order mushroom body-extrinsic interneurons in the brain of worker bees within a functional colony. New method The use of two 100 cm long twisted copper electrodes allowed recording of up to four units of mushroom body-extrinsic neurons simultaneously for up to 24h in animals moving freely between members of the colony. Every worker, including the recorded bee, hatched in the experimental environment. The group consisted of 200 animals in average. Animals explored different regions of the comb and interacted with other colony members. The activities of the units were not selective for locations on the comb, body directions with respect to gravity and olfactory signals on the comb, or different social interactions. However, combinations of these parameters defined neural activity in a unit-specific way. In addition, units recorded from the same animal co-varied according to unknown factors. Comparison with existing method(s): All electrophysiological studies with honey bees were performed so far on constrained animals outside their natural behavioral contexts. Yet no neuronal correlates were measured in a social context. Free mobility of recoded insects over a range of a quarter square meter allows addressing questions concerning neural correlates of social communication, planning of tasks within the colony and attention-like processes. The method makes it possible to study neural correlates of social behavior in a near-natural setting within the honeybee colony. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Neural Correlates of Impulsive Aggressive Behavior in Subjects With a History of Alcohol Dependence

    OpenAIRE

    Kose, Samet; Steinberg, Joel L.; Moeller, F. Gerard; Gowin, Joshua L.; Zuniga, Edward; Kamdar, Zahra N.; Schmitz, Joy M.; Lane, Scott D.

    2015-01-01

    Alcohol-related aggression is a complex and problematic phenomenon with profound public health consequences. We examined neural correlates potentially moderating the relationship between human aggressive behavior and chronic alcohol use. Thirteen subjects meeting DSM–IV criteria for past alcohol-dependence in remission (AD) and 13 matched healthy controls (CONT) participated in an fMRI study adapted from a laboratory model of human aggressive behavior (Point Subtraction Aggression Paradigm, o...

  5. Neural Correlates of Word Recognition: A Systematic Comparison of Natural Reading and Rapid Serial Visual Presentation.

    Science.gov (United States)

    Kornrumpf, Benthe; Niefind, Florian; Sommer, Werner; Dimigen, Olaf

    2016-09-01

    Neural correlates of word recognition are commonly studied with (rapid) serial visual presentation (RSVP), a condition that eliminates three fundamental properties of natural reading: parafoveal preprocessing, saccade execution, and the fast changes in attentional processing load occurring from fixation to fixation. We combined eye-tracking and EEG to systematically investigate the impact of all three factors on brain-electric activity during reading. Participants read lists of words either actively with eye movements (eliciting fixation-related potentials) or maintained fixation while the text moved passively through foveal vision at a matched pace (RSVP-with-flankers paradigm, eliciting ERPs). The preview of the upcoming word was manipulated by changing the number of parafoveally visible letters. Processing load was varied by presenting words of varying lexical frequency. We found that all three factors have strong interactive effects on the brain's responses to words: Once a word was fixated, occipitotemporal N1 amplitude decreased monotonically with the amount of parafoveal information available during the preceding fixation; hence, the N1 component was markedly attenuated under reading conditions with preview. Importantly, this preview effect was substantially larger during active reading (with saccades) than during passive RSVP with flankers, suggesting that the execution of eye movements facilitates word recognition by increasing parafoveal preprocessing. Lastly, we found that the N1 component elicited by a word also reflects the lexical processing load imposed by the previously inspected word. Together, these results demonstrate that, under more natural conditions, words are recognized in a spatiotemporally distributed and interdependent manner across multiple eye fixations, a process that is mediated by active motor behavior.

  6. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish.

    Science.gov (United States)

    Hofmann, Volker; Chacron, Maurice J

    2017-09-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity.

  7. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish.

    Directory of Open Access Journals (Sweden)

    Volker Hofmann

    2017-09-01

    Full Text Available Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity.

  8. Neural Correlates of Consciousness at Near-Electrocerebral Silence in an Asphyxial Cardiac Arrest Model.

    Science.gov (United States)

    Lee, Donald E; Lee, Lauren G; Siu, Danny; Bazrafkan, Afsheen K; Farahabadi, Maryam H; Dinh, Tin J; Orellana, Josue; Xiong, Wei; Lopour, Beth A; Akbari, Yama

    2017-04-01

    Recent electrophysiological studies have suggested surges in electrical correlates of consciousness (i.e., elevated gamma power and connectivity) after cardiac arrest (CA). This study examines electrocorticogram (ECoG) activity and coherence of the dying brain during asphyxial CA. Male Wistar rats (n = 16) were induced with isoflurane anesthesia, which was washed out before asphyxial CA. Mean phase coherence and ECoG power were compared during different stages of the asphyxial period to assess potential neural correlates of consciousness. After asphyxia, the ECoG progressed through four distinct stages (asphyxial stages 1-4 [AS1-4]), including a transient period of near-electrocerebral silence lasting several seconds (AS3). Electrocerebral silence (AS4) occurred within 1 min of the start of asphyxia, and pulseless electrical activity followed the start of AS4 by 1-2 min. AS3 was linked to a significant increase in frontal coherence between the left and right motor cortices (p neural activity. Specifically, the burst in frontal coherence and posterior shift of ECoG power that we find during this period immediately preceding CA may be a neural correlate of conscious processing.

  9. Canonical correlation analysis of synchronous neural interactions and cognitive deficits in Alzheimer's dementia

    Science.gov (United States)

    Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.

    2012-10-01

    In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.

  10. Basic perceptual changes that alter meaning and neural correlates of recognition memory.

    Science.gov (United States)

    Gao, Chuanji; Hermiller, Molly S; Voss, Joel L; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes ("squiggles") were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of memory

  11. Neural correlates of multisensory reliability and perceptual weights emerge at early latencies during audio-visual integration.

    Science.gov (United States)

    Boyle, Stephanie C; Kayser, Stephanie J; Kayser, Christoph

    2017-11-01

    To make accurate perceptual estimates, observers must take the reliability of sensory information into account. Despite many behavioural studies showing that subjects weight individual sensory cues in proportion to their reliabilities, it is still unclear when during a trial neuronal responses are modulated by the reliability of sensory information or when they reflect the perceptual weights attributed to each sensory input. We investigated these questions using a combination of psychophysics, EEG-based neuroimaging and single-trial decoding. Our results show that the weighted integration of sensory information in the brain is a dynamic process; effects of sensory reliability on task-relevant EEG components were evident 84 ms after stimulus onset, while neural correlates of perceptual weights emerged 120 ms after stimulus onset. These neural processes had different underlying sources, arising from sensory and parietal regions, respectively. Together these results reveal the temporal dynamics of perceptual and neural audio-visual integration and support the notion of temporally early and functionally specific multisensory processes in the brain. © 2017 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Neural Correlates of Learning from Induced Insight: A Case for Reward-Based Episodic Encoding.

    Science.gov (United States)

    Kizilirmak, Jasmin M; Thuerich, Hannes; Folta-Schoofs, Kristian; Schott, Björn H; Richardson-Klavehn, Alan

    2016-01-01

    Experiencing insight when solving problems can improve memory formation for both the problem and its solution. The underlying neural processes involved in this kind of learning are, however, thus far insufficiently understood. Here, we conceptualized insight as the sudden understanding of a novel relationship between known stimuli that fits into existing knowledge and is accompanied by a positive emotional response. Hence, insight is thought to comprise associative novelty, schema congruency, and intrinsic reward, all of which are separately known to enhance memory performance. We examined the neural correlates of learning from induced insight with functional magnetic resonance imaging (fMRI) using our own version of the compound-remote-associates-task (CRAT) in which each item consists of three clue words and a solution word. (Pseudo-)Solution words were presented after a brief period of problem-solving attempts to induce either sudden comprehension (CRA items) or continued incomprehension (control items) at a specific time point. By comparing processing of the solution words of CRA with control items, we found induced insight to elicit activation of the rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC) and left hippocampus. This pattern of results lends support to the role of schema congruency (rACC/mPFC) and associative novelty (hippocampus) in the processing of induced insight. We propose that (1) the mPFC not only responds to schema-congruent information, but also to the detection of novel schemata, and (2) that the hippocampus responds to a form of associative novelty that is not just a novel constellation of familiar items, but rather comprises a novel meaningful relationship between the items-which was the only difference between our insight and no insight conditions. To investigate episodic long-term memory encoding, we compared CRA items whose solution word was recognized 24 h after encoding to those with forgotten solutions. We found

  13. Neural Correlates of Biased Responses: The Negative Method Effect in the Rosenberg Self-Esteem Scale Is Associated with Right Amygdala Volume.

    Science.gov (United States)

    Wang, Yinan; Kong, Feng; Huang, Lijie; Liu, Jia

    2016-10-01

    Self-esteem is a widely studied construct in psychology that is typically measured by the Rosenberg Self-Esteem Scale (RSES). However, a series of cross-sectional and longitudinal studies have suggested that a simple and widely used unidimensional factor model does not provide an adequate explanation of RSES responses due to method effects. To identify the neural correlates of the method effect, we sought to determine whether and how method effects were associated with the RSES and investigate the neural basis of these effects. Two hundred and eighty Chinese college students (130 males; mean age = 22.64 years) completed the RSES and underwent magnetic resonance imaging (MRI). Behaviorally, method effects were linked to both positively and negatively worded items in the RSES. Neurally, the right amygdala volume negatively correlated with the negative method factor, while the hippocampal volume positively correlated with the general self-esteem factor in the RSES. The neural dissociation between the general self-esteem factor and negative method factor suggests that there are different neural mechanisms underlying them. The amygdala is involved in modulating negative affectivity; therefore, the current study sheds light on the nature of method effects that are related to self-report with a mix of positively and negatively worded items. © 2015 Wiley Periodicals, Inc.

  14. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  15. The behavioral and neural mechanisms underlying the tracking of expertise.

    Science.gov (United States)

    Boorman, Erie D; O'Doherty, John P; Adolphs, Ralph; Rangel, Antonio

    2013-12-18

    Evaluating the abilities of others is fundamental for successful economic and social behavior. We investigated the computational and neurobiological basis of ability tracking by designing an fMRI task that required participants to use and update estimates of both people and algorithms' expertise through observation of their predictions. Behaviorally, we find a model-based algorithm characterized subject predictions better than several alternative models. Notably, when the agent's prediction was concordant rather than discordant with the subject's own likely prediction, participants credited people more than algorithms for correct predictions and penalized them less for incorrect predictions. Neurally, many components of the mentalizing network-medial prefrontal cortex, anterior cingulate gyrus, temporoparietal junction, and precuneus-represented or updated expertise beliefs about both people and algorithms. Moreover, activity in lateral orbitofrontal and medial prefrontal cortex reflected behavioral differences in learning about people and algorithms. These findings provide basic insights into the neural basis of social learning. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Structural neural correlates of multitasking: A voxel-based morphometry study.

    Science.gov (United States)

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children.

    Science.gov (United States)

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M

    2014-03-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis to investigate the neural substrates for symbolic number processing in young children. We hypothesized that, as children solidify the mapping between symbols and underlying magnitudes, important developmental changes occur in the neural communication between the right parietal region, important for the representation of non-symbolic numerical magnitudes, and other brain regions known to be critical for processing numerical symbols. To test this hypothesis, we scanned children between 4 and 6 years of age while they performed a magnitude comparison task with Arabic numerals (numerical, symbolic), dot arrays (numerical, non-symbolic), and lines (non-numerical). We then identified the right parietal seed region that showed greater blood-oxygen-level-dependent signal in the numerical versus the non-numerical conditions. A psychophysiological interaction method was used to find patterns of effective connectivity arising from this parietal seed region specific to symbolic compared to non-symbolic number processing. Two brain regions, the left supramarginal gyrus and the right precentral gyrus, showed significant effective connectivity from the right parietal cortex. Moreover, the degree of this effective connectivity to the left supramarginal gyrus was correlated with age, and the degree of the connectivity to the right precentral gyrus predicted performance on a standardized symbolic math test. These findings suggest that effective connectivity underlying symbolic number processing may be critical as children master the associations between numerical symbols and magnitudes, and that these connectivity patterns may serve as an

  18. Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers.

    Science.gov (United States)

    Schreuders, Elisabeth; Klapwijk, Eduard T; Will, Geert-Jan; Güroğlu, Berna

    2018-02-01

    Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner.

  19. The Effect of Wealth Shocks on Loss Aversion: Behavior and Neural Correlates

    Directory of Open Access Journals (Sweden)

    V. S. Chandrasekhar Pammi

    2017-04-01

    Full Text Available Kahneman and Tversky (1979 first demonstrated that when individuals decide whether or not to accept a gamble, potential losses receive more weight than possible gains in the decision. This phenomenon is referred to as loss aversion. We investigated how loss aversion in risky financial decisions is influenced by sudden changes to wealth, employing both behavioral and neurobiological measures. We implemented an fMRI experimental paradigm, based on that employed by Tom et al. (2007. There are two treatments, called RANDOM and CONTINGENT. In RANDOM, the baseline setting, the changes to wealth, referred to as wealth shocks in economics, are independent of the actual choices participants make. Under CONTINGENT, we induce the belief that the changes in income are a consequence of subjects' own decisions. The magnitudes and sequence of the shocks to wealth are identical between the CONTINGENT and RANDOM treatments. We investigated whether more loss aversion existed in one treatment than another. The behavioral results showed significantly greater loss aversion in CONTINGENT compared to RANDOM after a negative wealth shock. No differences were observed in the response to positive shocks. The fMRI results revealed a neural loss aversion network, comprising the bilateral striatum, amygdala and dorsal anterior cingulate cortex that was common to the CONTINGENT and RANDOM tasks. However, the ventral prefrontal cortex, primary somatosensory cortex and superior occipital cortex, showed greater activation in response to a negative change in wealth due to individual's own decisions than when the change was exogenous. These results indicate that striatum activation correlates with loss aversion independently of the source of the shock, and that the ventral prefrontal cortex (vPFC codes the experimental manipulation of agency in one's actions influencing loss aversion.

  20. Neural correlates of visualizations of concrete and abstract words in preschool children: A developmental embodied approach

    Directory of Open Access Journals (Sweden)

    Amedeo eD'angiulli

    2015-06-01

    Full Text Available The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization, followed by a four-picture array (a target plus three distractors (part 2: matching visualization. Children were to select the picture matching the word they heard in part 1. Event-Related Potentials (ERPs locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e. < 300 ms was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e. 300-699 ms and late (i.e. 700-1000 ms ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a post-anterior pathway sequence: occipital, parietal and temporal areas; conversely, matching visualization involved left-hemispheric activity following an ant-posterior pathway sequence: frontal, temporal, parietal and occipital areas. These results suggest that, similarly for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying

  1. Neural correlates of own name and own face detection in autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Hanna B Cygan

    Full Text Available Autism spectrum disorder (ASD is a heterogeneous neurodevelopmental condition clinically characterized by social interaction and communication difficulties. To date, the majority of research efforts have focused on brain mechanisms underlying the deficits in interpersonal social cognition associated with ASD. Recent empirical and theoretical work has begun to reveal evidence for a reduced or even absent self-preference effect in patients with ASD. One may hypothesize that this is related to the impaired attentional processing of self-referential stimuli. The aim of our study was to test this hypothesis. We investigated the neural correlates of face and name detection in ASD. Four categories of face/name stimuli were used: own, close-other, famous, and unknown. Event-related potentials were recorded from 62 electrodes in 23 subjects with ASD and 23 matched control subjects. P100, N170, and P300 components were analyzed. The control group clearly showed a significant self-preference effect: higher P300 amplitude to the presentation of own face and own name than to the close-other, famous, and unknown categories, indicating preferential attentional engagement in processing of self-related information. In contrast, detection of both own and close-other's face and name in the ASD group was associated with enhanced P300, suggesting similar attention allocation for self and close-other related information. These findings suggest that attention allocation in the ASD group is modulated by the personal significance factor, and that the self-preference effect is absent if self is compared to close-other. These effects are similar for physical and non-physical aspects of the autistic self. In addition, lateralization of face and name processing is attenuated in ASD, suggesting atypical brain organization.

  2. Neural correlates of own name and own face detection in autism spectrum disorder.

    Science.gov (United States)

    Cygan, Hanna B; Tacikowski, Pawel; Ostaszewski, Pawel; Chojnicka, Izabela; Nowicka, Anna

    2014-01-01

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition clinically characterized by social interaction and communication difficulties. To date, the majority of research efforts have focused on brain mechanisms underlying the deficits in interpersonal social cognition associated with ASD. Recent empirical and theoretical work has begun to reveal evidence for a reduced or even absent self-preference effect in patients with ASD. One may hypothesize that this is related to the impaired attentional processing of self-referential stimuli. The aim of our study was to test this hypothesis. We investigated the neural correlates of face and name detection in ASD. Four categories of face/name stimuli were used: own, close-other, famous, and unknown. Event-related potentials were recorded from 62 electrodes in 23 subjects with ASD and 23 matched control subjects. P100, N170, and P300 components were analyzed. The control group clearly showed a significant self-preference effect: higher P300 amplitude to the presentation of own face and own name than to the close-other, famous, and unknown categories, indicating preferential attentional engagement in processing of self-related information. In contrast, detection of both own and close-other's face and name in the ASD group was associated with enhanced P300, suggesting similar attention allocation for self and close-other related information. These findings suggest that attention allocation in the ASD group is modulated by the personal significance factor, and that the self-preference effect is absent if self is compared to close-other. These effects are similar for physical and non-physical aspects of the autistic self. In addition, lateralization of face and name processing is attenuated in ASD, suggesting atypical brain organization.

  3. The Effect of Wealth Shocks on Loss Aversion: Behavior and Neural Correlates.

    Science.gov (United States)

    Pammi, V S Chandrasekhar; Ruiz, Sergio; Lee, Sangkyun; Noussair, Charles N; Sitaram, Ranganatha

    2017-01-01

    Kahneman and Tversky (1979) first demonstrated that when individuals decide whether or not to accept a gamble, potential losses receive more weight than possible gains in the decision. This phenomenon is referred to as loss aversion. We investigated how loss aversion in risky financial decisions is influenced by sudden changes to wealth, employing both behavioral and neurobiological measures. We implemented an fMRI experimental paradigm, based on that employed by Tom et al. (2007). There are two treatments, called RANDOM and CONTINGENT. In RANDOM, the baseline setting, the changes to wealth, referred to as wealth shocks in economics, are independent of the actual choices participants make. Under CONTINGENT, we induce the belief that the changes in income are a consequence of subjects' own decisions. The magnitudes and sequence of the shocks to wealth are identical between the CONTINGENT and RANDOM treatments. We investigated whether more loss aversion existed in one treatment than another. The behavioral results showed significantly greater loss aversion in CONTINGENT compared to RANDOM after a negative wealth shock. No differences were observed in the response to positive shocks. The fMRI results revealed a neural loss aversion network, comprising the bilateral striatum, amygdala and dorsal anterior cingulate cortex that was common to the CONTINGENT and RANDOM tasks. However, the ventral prefrontal cortex, primary somatosensory cortex and superior occipital cortex, showed greater activation in response to a negative change in wealth due to individual's own decisions than when the change was exogenous. These results indicate that striatum activation correlates with loss aversion independently of the source of the shock, and that the ventral prefrontal cortex (vPFC) codes the experimental manipulation of agency in one's actions influencing loss aversion.

  4. Neural correlates of viewing paintings: evidence from a quantitative meta-analysis of functional magnetic resonance imaging data.

    Science.gov (United States)

    Vartanian, Oshin; Skov, Martin

    2014-06-01

    Many studies involving functional magnetic resonance imaging (fMRI) have exposed participants to paintings under varying task demands. To isolate neural systems that are activated reliably across fMRI studies in response to viewing paintings regardless of variation in task demands, a quantitative meta-analysis of fifteen experiments using the activation likelihood estimation (ALE) method was conducted. As predicted, viewing paintings was correlated with activation in a distributed system including the occipital lobes, temporal lobe structures in the ventral stream involved in object (fusiform gyrus) and scene (parahippocampal gyrus) perception, and the anterior insula-a key structure in experience of emotion. In addition, we also observed activation in the posterior cingulate cortex bilaterally-part of the brain's default network. These results suggest that viewing paintings engages not only systems involved in visual representation and object recognition, but also structures underlying emotions and internalized cognitions. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions

  6. Human cortical neural correlates of visual fatigue during binocular depth perception: An fNIRS study.

    Directory of Open Access Journals (Sweden)

    Tingting Cai

    Full Text Available Functional near-infrared spectroscopy (fNIRS was adopted to investigate the cortical neural correlates of visual fatigue during binocular depth perception for different disparities (from 0.1° to 1.5°. By using a slow event-related paradigm, the oxyhaemoglobin (HbO responses to fused binocular stimuli presented by the random-dot stereogram (RDS were recorded over the whole visual dorsal area. To extract from an HbO curve the characteristics that are correlated with subjective experiences of stereopsis and visual fatigue, we proposed a novel method to fit the time-course HbO curve with various response functions which could reflect various processes of binocular depth perception. Our results indicate that the parietal-occipital cortices are spatially correlated with binocular depth perception and that the process of depth perception includes two steps, associated with generating and sustaining stereovision. Visual fatigue is caused mainly by generating stereovision, while the amplitude of the haemodynamic response corresponding to sustaining stereovision is correlated with stereopsis. Combining statistical parameter analysis and the fitted time-course analysis, fNIRS could be a promising method to study visual fatigue and possibly other multi-process neural bases.

  7. Objects and their icons in the brain: the neural correlates of visual concept formation.

    Science.gov (United States)

    Shin, Yong-Wook; Kwon, Jun Soo; Kwon, Ki Won; Gu, Bon Mi; Song, In Chan; Na, Dong Gyu; Park, Sohee

    2008-05-16

    We are constantly exposed to symbols such as traffic signs, emoticons in internet communication, or other abstract representations of objects as well as, of course, the written words. However, aside from the word reading, little is known about the way our brain responds when we read non-lexical iconic symbols. By using functional MRI, we found that the watching of icons recruited manifold brain areas including frontal and parietal cortices in addition to the temporo-occipital junction in the ventral pathway. Remarkably, the brain response for icons was contrasted with the response for corresponding concrete objects with the pattern of 'hyper-cortical and hypo-subcortical' brain activation. This neural underpinning might be called the neural correlates for visual concept formation.

  8. Neural correlates of judgments of learning - An ERP study on metacognition.

    Science.gov (United States)

    Müller, Barbara C N; Tsalas, Nike R H; van Schie, Hein T; Meinhardt, Jörg; Proust, Joëlle; Sodian, Beate; Paulus, Markus

    2016-12-01

    Metacognitive assessment of performance has been revealed to be one of the most powerful predictors of human learning success and academic achievement. Yet, little is known about the functional nature of cognitive processes supporting judgments of learning (JOLs). The present study investigated the neural underpinnings of JOLs, using event-related brain potentials. Participants were presented with picture pairs and instructed to learn these pairs. After each pair, participants received a task cue, which instructed them to make a JOL (the likelihood of remembering the target when only presented with the cue) or to make a control judgment. Results revealed that JOLs were accompanied by a positive slow wave over medial frontal areas and a bilateral negative slow wave over occipital areas between 350ms and 700ms following the task cue. The results are discussed with respect to recent accounts on the neural correlates of judgments of learning. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Neural correlates of depth of strategic reasoning in medial prefrontal cortex

    Science.gov (United States)

    Coricelli, Giorgio; Nagel, Rosemarie

    2009-01-01

    We used functional MRI (fMRI) to investigate human mental processes in a competitive interactive setting—the “beauty contest” game. This game is well-suited for investigating whether and how a player's mental processing incorporates the thinking process of others in strategic reasoning. We apply a cognitive hierarchy model to classify subject's choices in the experimental game according to the degree of strategic reasoning so that we can identify the neural substrates of different levels of strategizing. According to this model, high-level reasoners expect the others to behave strategically, whereas low-level reasoners choose based on the expectation that others will choose randomly. The data show that high-level reasoning and a measure of strategic IQ (related to winning in the game) correlate with the neural activity in the medial prefrontal cortex, demonstrating its crucial role in successful mentalizing. This supports a cognitive hierarchy model of human brain and behavior. PMID:19470476

  10. Vocal production complexity correlates with neural instructions in the oyster toadfish (Opsanus tau)

    DEFF Research Database (Denmark)

    Elemans, C. P. H.; Mensinger, A. F.; Rome, L. C.

    2014-01-01

    frequencies are determined directly by the firing rate of a vocal-acoustic neural network that drives the contraction frequency of superfast swimbladder muscles. The oyster toadfish boatwhistle call starts with an irregular sound waveform that could be an emergent property of the peripheral nonlinear sound......-producing system or reflect complex encoding in the central nervous system. Here, we demonstrate that the start of the boatwhistle is indicative of a chaotic strange attractor, and tested whether its origin lies in the peripheral sound-producing system or in the vocal motor network. We recorded sound...... during spontaneous grunts correlates with complex sounds. This supports the hypothesis that the irregular start of the boatwhistle is encoded in the vocal pre-motor neural network, and not caused by peripheral interactions with the sound-producing system. We suggest that sound production system demands...

  11. Mood and neural correlates of excessive daytime sleepiness in Parkinson's disease.

    Science.gov (United States)

    Wen, M-C; Chan, L L; Tan, L C S; Tan, E K

    2017-08-01

    For patients with Parkinson's disease (PD), excessive daytime sleepiness (PD-EDS) is a debilitating non-motor symptom and may be affected by mood symptoms, especially depression and anxiety. Few neuroimaging works have attempted to identify the neural features of PD-EDS, but various findings were reported. The purpose of this study was to systematically review the literature on mood and neuroimaging correlates of PD-EDS. A MEDLINE, PubMed, EMBASE, and PsycInfo search for peer-reviewed original research articles on depression, anxiety, and neuroimaging in PD-EDS identified 26 studies on depression, nine on anxiety, and eight on neuroimaging. Half of the studies reported greater depression in PD-EDS-positive patients compared with PD-EDS-negative patients. There was a significantly positive correlation between depression and PD-EDS. Limited studies on anxiety in PD-EDS suggested a weak correlation between anxiety and EDS. For depression and anxiety, the effect sizes were medium when EDS was subjectively measured, but became small when EDS was objective measured. Current neuroimaging studies generally suggested diminished neural structural and functional features (eg, brain volume, white matter integrity as indicated by fractional anisotropy, and cerebral metabolism) in patients with PD-EDS. Future studies should apply objective and subjective measures of mood symptoms and EDS and improve the neuroimaging methodology via using multimodal techniques and whole-brain analysis to provide new clues on the mood and neural correlates of PD-EDS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The neural correlates of risk propensity in males and females using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Yuan eZhou

    2014-01-01

    Full Text Available Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity.

  13. Neural correlates of psychological resilience and their relation to life satisfaction in a sample of healthy young adults.

    Science.gov (United States)

    Kong, Feng; Wang, Xu; Hu, Siyuan; Liu, Jia

    2015-12-01

    Psychological resilience refers to the ability to thrive in the face of risk and adversity, which is crucial for individuals' mental and physical health. However, its precise neural correlates are still largely unknown. Here we used resting-state functional magnetic resonance imaging (rs-fMRI) to identify the brain regions underlying this construct by correlating individuals' psychological resilience scores with the regional homogeneity (ReHo) and then examined how these resilience-related regions predicted life satisfaction in a sample of healthy young adults. We found that the ReHo in the bilateral insula, right dorsal anterior cingulate cortex (dACC) and right rostral ACC (rACC) negatively predicted individual differences in psychological resilience, revealing the critical role of the salience network (SN) in psychological resilience. Crucially, the ReHo in the dACC within the SN mediated the effects of psychological resilience on life satisfaction. In summary, these findings suggest that spontaneous activity of the human brain reflect the efficiency of psychological resilience and highlight the dACC within the SN as a neural substrate linking psychological resilience and life satisfaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Can clouds dance? Neural correlates of passive conceptual expansion using a metaphor processing task: Implications for creative cognition.

    Science.gov (United States)

    Rutter, Barbara; Kröger, Sören; Stark, Rudolf; Schweckendiek, Jan; Windmann, Sabine; Hermann, Christiane; Abraham, Anna

    2012-03-01

    Creativity has emerged in the focus of neurocognitive research in the past decade. However, a heterogeneous pattern of brain areas has been implicated as underpinning the neural correlates of creativity. One explanation for these divergent findings lies in the fact that creativity is not usually investigated in terms of its many underlying cognitive processes. The present fMRI study focuses on the neural correlates of conceptual expansion, a central component of all creative processes. The study aims to avoid pitfalls of previous fMRI studies on creativity by employing a novel paradigm. Participants were presented with phrases and made judgments regarding both the unusualness and the appropriateness of the stimuli, corresponding to the two defining criteria of creativity. According to their respective evaluation, three subject-determined experimental conditions were obtained. Phrases judged as both unusual and appropriate were classified as indicating conceptual expansion in participants. The findings reveal the involvement of frontal and temporal regions when engaging in passive conceptual expansion as opposed to the information processing of mere unusualness (novelty) or appropriateness (relevance). Taking this new experimental approach to uncover specific processes involved in creative cognition revealed that frontal and temporal regions known to be involved in semantic cognition and relational reasoning play a role in passive conceptual expansion. Adopting a different vantage point on the investigation of creativity would allow for critical advances in future research on this topic. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A temporo-spatial analysis of the neural correlates of extrinsic perceptual grouping in vision.

    Science.gov (United States)

    Montoro, Pedro R; Luna, Dolores; Albert, Jacobo; Santaniello, Gerardo; López-Martín, Sara; Pozo, Miguel A; Hinojosa, José A

    2015-03-01

    Principles of perceptual grouping can be divided into intrinsic grouping cues, which are based on built-in properties of the grouped elements (e.g., their shape, position, colour, etc.) like most of the classical Gestalt laws, and extrinsic grouping principles, based on relations between the discrete elements and other external stimuli that induce them to group (e.g., common region, connectedness). Several studies have explored the neural correlates of intrinsic grouping factors but, to our knowledge, no previous study has studied the neural correlates of extrinsic principles. The present study aimed to shed light on this issue by exploiting the high temporal resolution of event-related potentials (ERPs) and recent advances in source localization. Specifically, grouping by common region was compared with two comparison conditions, an intrinsic grouping (luminance similarity) and a uniform stimulus condition, in a perceptual discrimination task. We reported three main neural effects associated with grouping by common region. First, a posterior N210 component with a neural origin in the left extrastriate cortex was related to perceptual analysis of extrinsic elements inducing grouping and the formation of a visual group. Second, an enhanced posterior P280, which presumably reflects higher confidence decisions during response selection. Finally, a P550 originated in the right superior parietal cortex that seems to be associated with top-down suppression activity connected with the termination of the processing of the current trial. Overall, our results suggest that common region cues belong to the category of long latency grouping principles that mainly involve activity in extrastriate cortices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neural correlates of distraction in borderline personality disorder before and after dialectical behavior therapy.

    Science.gov (United States)

    Winter, Dorina; Niedtfeld, Inga; Schmitt, Ruth; Bohus, Martin; Schmahl, Christian; Herpertz, Sabine C

    2017-02-01

    Neural underpinnings of emotion dysregulation in borderline personality disorder (BPD) are characterized by limbic hyperactivity and disturbed prefrontal activity. It is unknown whether neural correlates of emotion regulation change after a psychotherapy which has the goal to improve emotion dysregulation in BPD, such as dialectical behavioral therapy (DBT). We investigated distraction as a main emotion regulation strategy before and after DBT in female patients with BPD. Thirty-one BPD patients were instructed to either passively view or memorize letters before being confronted with negative or neutral pictures in a distraction task during functional magnetic resonance imaging. This paradigm was applied before and after a 12-week residential DBT-based treatment program. We compared the DBT group to 15 BPD control patients, who continued their usual, non-DBT-based treatment or did not have any treatment, and 22 healthy participants. Behaviorally, BPD groups and healthy participants did not differ significantly with respect to alterations over time. On the neural level, BPD patients who received DBT-based treatment showed an activity decrease in the right inferior parietal lobe/supramarginal gyrus during distraction from negative rather than neutral stimuli when compared to both control groups. This decrease was correlated with improvement in self-reported borderline symptom severity. DBT responders exhibited decreased right perigenual anterior cingulate activity when viewing negative (rather than neutral) pictures. In conclusion, our findings reveal changes in neural activity associated with distraction during emotion processing after DBT in patients with BPD. These changes point to lower emotional susceptibility during distraction after BPD symptom improvement.

  17. Neural correlates of sexual arousal in heterosexual and homosexual women and men.

    Science.gov (United States)

    Sylva, David; Safron, Adam; Rosenthal, A M; Reber, Paul J; Parrish, Todd B; Bailey, J Michael

    2013-09-01

    Most men have a category-specific pattern of genital and subjective sexual arousal, responding much more strongly to erotic stimuli depicting their preferred sex than to erotic stimuli depicting their nonpreferred sex. In contrast, women tend to have a less specific arousal pattern. To better understand this sex difference, we used neuroimaging to explore its neural correlates. Heterosexual and homosexual women viewed erotic photographs of either men or women. Evoked neural activity was monitored via fMRI and compared with responses to the same stimuli in heterosexual and homosexual men. Overall, a network of limbic (as well as the anterior cingulate) and visual processing regions showed significantly less category-specific activity in women than men. This was primarily driven by weaker overall activations to preferred-sex stimuli in women, though there was also some evidence of stronger limbic activations to nonpreferred-sex stimuli in women. Primary results were similar for heterosexual and homosexual participants. Women did show some evidence of category-specific responses in the visual processing regions, although even in these regions they exhibited less differential activity than men. In the anterior cingulate, a region with high concentrations of sex-hormone receptors, subjective and neural category specificity measures correlated positively for women but negatively for men, suggesting a possible sex difference in the role of the anterior cingulate. Overall, results suggest that men tend to show more differentiated neural responses than do women to erotic photographs of one sex compared to the other sex, though women may not be entirely indifferent to which sex is depicted. © 2013.

  18. Neural correlates of four broad temperament dimensions: testing predictions for a novel construct of personality.

    Directory of Open Access Journals (Sweden)

    Lucy L Brown

    Full Text Available Four suites of behavioral traits have been associated with four broad neural systems: the 1 dopamine and related norepinephrine system; 2 serotonin; 3 testosterone; 4 and estrogen and oxytocin system. A 56-item questionnaire, the Fisher Temperament Inventory (FTI, was developed to define four temperament dimensions associated with these behavioral traits and neural systems. The questionnaire has been used to suggest romantic partner compatibility. The dimensions were named: Curious/Energetic; Cautious/Social Norm Compliant; Analytical/Tough-minded; and Prosocial/Empathetic. For the present study, the FTI was administered to participants in two functional magnetic resonance imaging studies that elicited feelings of love and attachment, near-universal human experiences. Scores for the Curious/Energetic dimension co-varied with activation in a region of the substantia nigra, consistent with the prediction that this dimension reflects activity in the dopamine system. Scores for the Cautious/Social Norm Compliant dimension correlated with activation in the ventrolateral prefrontal cortex in regions associated with social norm compliance, a trait linked with the serotonin system. Scores on the Analytical/Tough-minded scale co-varied with activity in regions of the occipital and parietal cortices associated with visual acuity and mathematical thinking, traits linked with testosterone. Also, testosterone contributes to brain architecture in these areas. Scores on the Prosocial/Empathetic scale correlated with activity in regions of the inferior frontal gyrus, anterior insula and fusiform gyrus. These are regions associated with mirror neurons or empathy, a trait linked with the estrogen/oxytocin system, and where estrogen contributes to brain architecture. These findings, replicated across two studies, suggest that the FTI measures influences of four broad neural systems, and that these temperament dimensions and neural systems could constitute

  19. Neural correlates of four broad temperament dimensions: testing predictions for a novel construct of personality.

    Science.gov (United States)

    Brown, Lucy L; Acevedo, Bianca; Fisher, Helen E

    2013-01-01

    Four suites of behavioral traits have been associated with four broad neural systems: the 1) dopamine and related norepinephrine system; 2) serotonin; 3) testosterone; 4) and estrogen and oxytocin system. A 56-item questionnaire, the Fisher Temperament Inventory (FTI), was developed to define four temperament dimensions associated with these behavioral traits and neural systems. The questionnaire has been used to suggest romantic partner compatibility. The dimensions were named: Curious/Energetic; Cautious/Social Norm Compliant; Analytical/Tough-minded; and Prosocial/Empathetic. For the present study, the FTI was administered to participants in two functional magnetic resonance imaging studies that elicited feelings of love and attachment, near-universal human experiences. Scores for the Curious/Energetic dimension co-varied with activation in a region of the substantia nigra, consistent with the prediction that this dimension reflects activity in the dopamine system. Scores for the Cautious/Social Norm Compliant dimension correlated with activation in the ventrolateral prefrontal cortex in regions associated with social norm compliance, a trait linked with the serotonin system. Scores on the Analytical/Tough-minded scale co-varied with activity in regions of the occipital and parietal cortices associated with visual acuity and mathematical thinking, traits linked with testosterone. Also, testosterone contributes to brain architecture in these areas. Scores on the Prosocial/Empathetic scale correlated with activity in regions of the inferior frontal gyrus, anterior insula and fusiform gyrus. These are regions associated with mirror neurons or empathy, a trait linked with the estrogen/oxytocin system, and where estrogen contributes to brain architecture. These findings, replicated across two studies, suggest that the FTI measures influences of four broad neural systems, and that these temperament dimensions and neural systems could constitute foundational mechanisms

  20. Nonlinear spectral correlation for fatigue crack detection under noisy environments

    Science.gov (United States)

    Liu, Peipei; Sohn, Hoon; Jeon, Ikgeun

    2017-07-01

    When ultrasonic waves at two distinct frequencies are applied to a structure with a fatigue crack, crack-induced nonlinearity creates nonlinear ultrasonic modulations at the sum and difference of the two input frequencies. The amplitude of the nonlinear modulation components is typically one or two orders of magnitude smaller than that of the primary linear components. Therefore, the modulation components can be easily buried under noise levels and it becomes difficult to extract the nonlinear modulation components under noisy environments using a conventional spectral density function. In this study, nonlinear spectral correlation, which calculates the spectral correlation between nonlinear modulation components, is proposed to isolate the nonlinear modulation components from noisy environments and used for fatigue crack detection. The proposed nonlinear spectral correlation offers the following benefits: (1) Stationary noises have little effect on nonlinear spectral correlation; (2) By using a wideband high-frequency input and a single low-frequency input, the contrast of nonlinear spectral correlation between damage and intact conditions can be enhanced; and (3) The test efficiency can be also improved via reducing the data collection time. Validation tests are performed on aluminum plates and scaled steel shafts with real fatigue cracks. The experimental results demonstrate that the proposed nonlinear spectral correlation owns a higher sensitivity to fatigue crack than the classical nonlinear coefficient estimated from the spectral density function, and the usage of nonlinear spectral correlation allows the detection of fatigue crack even using noncontact air-coupled transducers with a low signal-to-noise ratio.

  1. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  2. Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex

    Science.gov (United States)

    Andermann, Mark L.; Keck, Tara; Xu, Ning-Long; Ziv, Yaniv

    2013-01-01

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents. PMID:24198355

  3. Cognitive distortions in an acutely traumatized sample: an investigation of predictive power and neural correlates.

    Science.gov (United States)

    Daniels, J K; Hegadoren, K; Coupland, N J; Rowe, B H; Neufeld, R W J; Lanius, R A

    2011-10-01

    Current theories of post-traumatic stress disorder (PTSD) place considerable emphasis on the role cognitive distortions such as self-blame, hopelessness or preoccupation with danger play in the etiology and maintenance of the disorder. Previous studies have shown that cognitive distortions in the early aftermath of traumatic events can predict future PTSD severity but, to date, no studies have investigated the neural correlates of this association. We conducted a prospective study with 106 acutely traumatized subjects, assessing symptom severity at three time points within the first 3 months post-trauma. A subsample of 20 subjects additionally underwent a functional 4-T magnetic resonance imaging (MRI) scan at 2 to 4 months post-trauma. Cognitive distortions proved to be a significant predictor of concurrent symptom severity in addition to diagnostic status, but did not predict future symptom severity or diagnostic status over and above the initial symptom severity. Cognitive distortions were correlated with blood oxygen level-dependent (BOLD) signal strength in brain regions previously implicated in visual processing, imagery and autobiographic memory recall. Intrusion characteristics accounted for most of these correlations. This investigation revealed significant predictive value of cognitive distortions concerning concurrent PTSD severity and also established a significant relationship between cognitive distortions and neural activations during trauma recall in an acutely traumatized sample. These data indicate a direct link between the extent of cognitive distortions and the intrusive nature of trauma memories.

  4. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation.

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao; Chen, Hsueh-Chih

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC-dlPFC and midbrain-dmPFC for HJs and functional coupling of the vmPFC-midbrain and amygdala-midbrain-NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor.

  5. Neural Correlates of Hostile Jokes: Cognitive and Motivational Processes in Humor Appreciation

    Science.gov (United States)

    Chan, Yu-Chen; Liao, Yi-Jun; Tu, Cheng-Hao

    2016-01-01

    Hostile jokes (HJs) provide aggressive catharsis and a feeling of superiority. Behavioral research has found that HJs are perceived as funnier than non-hostile jokes (NJs). The purpose of the present study was to identify the neural correlates of the interaction between type and humor by comparing HJs, NJs, and their corresponding hostile sentences (HSs) and non-hostile sentences (NSs). HJs primarily showed activation in the dorsomedial prefrontal cortex (dmPFC) and midbrain compared with the corresponding hostile baseline. Conversely, NJs primarily revealed activation in the ventromedial PFC (vmPFC), amygdala, midbrain, ventral anterior cingulate cortex, and nucleus accumbens (NAcc) compared with the corresponding non-hostile baseline. These results support the critical role of the medial PFC (mPFC) for the neural correlates of social cognition and socio-emotional processing in response to different types of jokes. Moreover, the processing of HJs showed increased activation in the dmPFC, which suggested cognitive operations of social motivation, whereas the processing of NJs displayed increased activation in the vmPFC, which suggested social-affective engagement. HJs versus NJs primarily showed increased activation in the dmPFC and midbrain, whereas NJs versus HJs primarily displayed greater activation in the amygdala and midbrain. The psychophysiological interaction (PPI) analysis demonstrated functional coupling of the dmPFC–dlPFC and midbrain–dmPFC for HJs and functional coupling of the vmPFC–midbrain and amygdala–midbrain–NAcc for NJs. Surprisingly, HJs were not perceived as funnier than NJs. Future studies could further investigate the neural correlates of potentially important traits of high-hostility tendencies in humor appreciation based on the psychoanalytic and superiority theories of humor. PMID:27840604

  6. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  7. The neural underpinnings of music listening under different attention conditions.

    Science.gov (United States)

    Jäncke, Lutz; Leipold, Simon; Burkhard, Anja

    2018-05-02

    Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.

  8. Neural correlates of improved executive function following erythropoietin treatment in mood disorders

    DEFF Research Database (Denmark)

    Miskowiak, K. W.; Vinberg, M.; Glerup, L.

    2016-01-01

    magnetic resonance imaging (fMRI) study investigated the effects of EPO on neural circuitry activity during working memory (WM) performance. METHOD: Patients with treatment-resistant major depression, who were moderately depressed, or with BD in partial remission, were randomized to eight weekly infusions......, baseline to follow-up changes in WM performance correlated positively with changes in WM-related SFG activity and negatively with hippocampal response (r = 0.28-0.30, p red blood cells (p ⩾0.08). CONCLUSIONS: The present findings...

  9. Intolerance of uncertainty: Neural and psychophysiological correlates of the perception of uncertainty as threatening.

    Science.gov (United States)

    Tanovic, Ema; Gee, Dylan G; Joormann, Jutta

    2018-03-01

    Intolerance of uncertainty (IU) reflects the perception of uncertainty as threatening, regardless of the true probability of threat. IU is elevated in various forms of psychopathology, uniquely associated with anxiety and depression symptoms after controlling for related constructs, and prospectively predicts symptoms. Given the ubiquity of uncertainty in daily life and the clinical implications of IU, recent work has begun to investigate the neural and psychophysiological correlates of IU. This review summarizes the existing literature and integrates findings within a mechanistic neural model of responding to uncertainty. IU is associated with heightened reactivity to uncertainty reflected in greater activity of the anterior insula and amygdala, alterations in neural responses to rewards and errors evident in event-related potentials, a mixed pattern of startle responses to uncertain threat, and deficiencies in safety learning indexed by startle and skin conductance responding. These findings provide evidence of disruptions in several domains of responding to uncertainty, threat, and reward associated with IU that may confer risk for the development of psychopathology. Significant attention is devoted to recommendations for future research, including consideration of the complex interplay of IU with emotion regulation, cognitive control, and reward processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Anxiety-Like Behavioural Inhibition Is Normative under Environmental Threat-Reward Correlations.

    Directory of Open Access Journals (Sweden)

    Dominik R Bach

    2015-12-01

    Full Text Available Behavioural inhibition is a key anxiety-like behaviour in rodents and humans, distinct from avoidance of danger, and reduced by anxiolytic drugs. In some situations, it is not clear how behavioural inhibition minimises harm or maximises benefit for the agent, and can even appear counterproductive. Extant explanations of this phenomenon make use of descriptive models but do not provide a formal assessment of its adaptive value. This hampers a better understanding of the neural computations underlying anxiety behaviour. Here, we analyse a standard rodent anxiety model, the operant conflict test. We harvest Bayesian Decision Theory to show that behavioural inhibition normatively arises as cost-minimising strategy in temporally correlated environments. Importantly, only if behavioural inhibition is aimed at minimising cost, it depends on probability and magnitude of threat. Harnessing a virtual computer game, we test model predictions in four experiments with human participants. Humans exhibit behavioural inhibition with a strong linear dependence on threat probability and magnitude. Strikingly, inhibition occurs before motor execution and depends on the virtual environment, thus likely resulting from a neural optimisation process rather than a pre-programmed mechanism. Individual trait anxiety scores predict behavioural inhibition, underlining the validity of this anxiety model. These findings put anxiety behaviour into the context of cost-minimisation and optimal inference, and may ultimately pave the way towards a mechanistic understanding of the neural computations gone awry in human anxiety disorder.

  11. Neural correlates of sexual cue reactivity in individuals with and without compulsive sexual behaviours.

    Directory of Open Access Journals (Sweden)

    Valerie Voon

    Full Text Available Although compulsive sexual behaviour (CSB has been conceptualized as a "behavioural" addiction and common or overlapping neural circuits may govern the processing of natural and drug rewards, little is known regarding the responses to sexually explicit materials in individuals with and without CSB. Here, the processing of cues of varying sexual content was assessed in individuals with and without CSB, focusing on neural regions identified in prior studies of drug-cue reactivity. 19 CSB subjects and 19 healthy volunteers were assessed using functional MRI comparing sexually explicit videos with non-sexual exciting videos. Ratings of sexual desire and liking were obtained. Relative to healthy volunteers, CSB subjects had greater desire but similar liking scores in response to the sexually explicit videos. Exposure to sexually explicit cues in CSB compared to non-CSB subjects was associated with activation of the dorsal anterior cingulate, ventral striatum and amygdala. Functional connectivity of the dorsal anterior cingulate-ventral striatum-amygdala network was associated with subjective sexual desire (but not liking to a greater degree in CSB relative to non-CSB subjects. The dissociation between desire or wanting and liking is consistent with theories of incentive motivation underlying CSB as in drug addictions. Neural differences in the processing of sexual-cue reactivity were identified in CSB subjects in regions previously implicated in drug-cue reactivity studies. The greater engagement of corticostriatal limbic circuitry in CSB following exposure to sexual cues suggests neural mechanisms underlying CSB and potential biological targets for interventions.

  12. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    Directory of Open Access Journals (Sweden)

    Chuanji eGao

    2015-02-01

    Full Text Available It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not. Abstract visual shapes (squiggles were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400, indicating that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition. Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates

  13. Unifying neural-network quantum states and correlator product states via tensor networks

    Science.gov (United States)

    Clark, Stephen R.

    2018-04-01

    Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.

  14. Neural correlates of outcome processing post dishonest choice: an fMRI and ERP study.

    Science.gov (United States)

    Sun, Delin; Chan, Chetwyn C H; Hu, Yang; Wang, Zhaoxin; Lee, Tatia M C

    2015-02-01

    A dishonest person often utilizes another person's obliviousness to appropriate the property that belongs to the other person. Previous researchers have studied the making of a dishonest choice and the manipulation of truthful information. Here, we have investigated the neural correlates of processing the outcomes of dishonest decisions. Participants in this study were asked to interact with counterparts in an economic game. They could accept the counterparts' proposals on how to divide the profits (honest choice) or choose the alternative plan that was advantageous to themselves (dishonest choice), playing to the ignorance of their counterparts who had a 50% chance of detecting the situation. Successful dishonest choices (not being detected) would bring large rewards, whereas honest choices would lead to less of a reward, and failed dishonest choices (being caught) would result in no reward. Participants' neural responses during the outcome presentations were recorded by functional magnetic resonance imaging (fMRI) and event-related potential (ERP) methods in different sessions. We found that the outcomes of successful dishonest (vs. honest) choices elicited stronger activations in the ventral striatum and posterior cingulate cortex and a smaller ERP component called feedback-related negativity (FRN), which suggests that positive outcome evaluation and attention processing were aroused by successful dishonest choices. Moreover, the outcomes of failed dishonest (relative to honest) choices were associated with different neural response patterns in the medial orbitofrontal cortex and P3b ERP component between human and computer counterparts, suggesting that processing the output of social decision making (playing human) is different from that of risk taking (playing computer). The findings advanced our understanding about the neural processing of outcome presentation after a dishonest choice has been made. Copyright © 2015 The Authors. Published by Elsevier Ltd

  15. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  16. The neurochemical correlate of consciousness: exploring neurotransmitter systems underlying conscious vision

    NARCIS (Netherlands)

    van Loon, A.M.

    2014-01-01

    How and where does our brain integrated the information that we get into our eyes into a unifying percept and into a conscious experience? Although different neural correlates of consciousness (NCC) have been proposed, depending on the kind of neural signals recorded, the type of manipulation used,

  17. The neural basis of loss aversion in decision-making under risk.

    Science.gov (United States)

    Tom, Sabrina M; Fox, Craig R; Trepel, Christopher; Poldrack, Russell A

    2007-01-26

    People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.

  18. Music in depression: Neural correlates of emotional experience in remitted depression.

    Science.gov (United States)

    Aust, Sabine; Filip, Karin; Koelsch, Stefan; Grimm, Simone; Bajbouj, Malek

    2013-06-22

    To investigate neural and behavioral correlates of emotional experiences as potential vulnerability markers in remitted depression. Fourteen remitted participants with a history of major depression and fourteen closely matched healthy control participants took part in the study. We used two psychiatric interviews (Hamilton Depression Rating Scale, Montgomery-Asberg Depression Rating Scale) and one self-report scale (Beck Depression Inventory) to assess remission. Healthy control participants were interviewed by an experienced psychiatrist to exclude those who showed any current or lifetime psychiatric or neurological disorders. To explore psychosocial and cognitive-interpersonal underpinnings of potential vulnerability markers of depression, early life stress, coping styles and alexithymia were also assessed. We induced pleasant and unpleasant emotional states using congruent combinations of music and human emotional faces to investigate neural and behavioral correlates of emotional experiences; neutral stimuli were used as a control condition. Brain responses were recorded using functional magnetic resonance imaging. Behavioral responses of pleasantness, arousal, joy and fear were measured via button-press inside the resonance imaging scanner. The mean age of the sample was 54.9 (± 11.3) years. There were no differences between remitted depressed (RD) (n = 14; 9 females and 5 males) and healthy participants (n = 14; 8 females and 6 males) regarding age, current degree of depression, early life stress, coping styles and alexithymia. On a neural level, RD participants showed reduced activations in the pregenual anterior cingulate cortex (pgACC) in response to pleasant [parameter estimates: -0.78 vs 0.32; t(26) = -3.41, P < 0.05] and unpleasant [parameter estimates: -0.88 vs 0.56; t(26)= -4.02, P < 0.05] emotional stimuli. Linear regression analysis revealed that pgACC activity was modulated by early life stress [β = -0.48; R(2) = 0.23, F(1,27) = 7.83, P < 0

  19. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia.

    Science.gov (United States)

    Wojtalik, Jessica A; Smith, Matthew J; Keshavan, Matcheri S; Eack, Shaun M

    2017-10-21

    Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Neural correlates of the in-group memory advantage on the encoding and recognition of faces.

    Science.gov (United States)

    Herzmann, Grit; Curran, Tim

    2013-01-01

    People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject's own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset), subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms), frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms) thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by top

  1. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap.

    Science.gov (United States)

    Liu, Siyuan; Chow, Ho Ming; Xu, Yisheng; Erkkinen, Michael G; Swett, Katherine E; Eagle, Michael W; Rizik-Baer, Daniel A; Braun, Allen R

    2012-01-01

    The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior.

  2. Optical fingerprint identification using cellular neural network and joint transform correlation

    Science.gov (United States)

    Bal, Abdullah; Alam, Mohammad S.; El-Saba, Aed

    2004-10-01

    An important step in the fingerprint identification system is the extraction of relevant details against distributed complex features. Identification performance is directly related to the enhancement of fingerprint images during or after the enrollment phase. Among the various enhancement algorithms, artificial intelligence based feature extraction techniques are attractive due to their adaptive learning properties. In this paper, we propose a cellular neural network (CNN) based filtering technique due to its ability of parallel processing and generating learnable filtering features. CNN offers high efficient feature extraction and enhancement possibility for fingerprint images. The enhanced fingerprint images are then introduced to joint transform correlator (JTC) architecture to identify unknown fingerprint from the database. Since the fringe-adjusted JTC algorithm has been found to yield significantly better correlation output compared to alternate JTCs, we used it for the identification process. Test results are presented to verify the effectiveness of the proposed algorithm.

  3. Mathematical Modeling of Neural Correlates of Cognition: The Case of Selective Attention and Habituation

    Science.gov (United States)

    Trenado, C.; Haab, L.; Strauss, D. J.

    2009-05-01

    Auditory evoked cortical potentials (AECPs) have extensively been applied in studies related to diagnosis and treatment of hearing disorders as well as cognitive and behavioral mechanisms. Regarding the mechanisms of attention and habituation, numerous studies involving electroencephalographic and magnetic resonance imaging techniques, emphasize the role of prominent cortico-subcortical brain structures as being implicated in a bidirectional processing and flux of sensory information with specific consequences for these processes. In spite of such progress, the effect of the interplay between prominent cortico-subcortical structures reflected in AECPs remains poorly understood. To address this issue, we propose a neuronal mean field approach for the study of neural correlates of selective attention and habituation in the case of the auditory modality. Such a framework is endowed with a neurophysiological interpretation so that we can formulate hypothesis concerning the mechanisms of selective attention and habituation. It is concluded that our approach represents a useful methodology for the study of neural correlates reflected in large-scale potentials.

  4. Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension.

    Science.gov (United States)

    Lin, Nan; Yang, Xiaohong; Li, Jing; Wang, Shaonan; Hua, Huimin; Ma, Yujun; Li, Xingshan

    2018-01-29

    Neuroimaging studies have found that theory of mind (ToM) and discourse comprehension involve similar brain regions. These brain regions may be associated with three cognitive components that are necessarily or frequently involved in ToM and discourse comprehension, including social concept representation and retrieval, domain-general semantic integration, and domain-specific integration of social semantic contents. Using fMRI, we investigated the neural correlates of these three cognitive components by exploring how discourse topic (social/nonsocial) and discourse processing period (ending/beginning) modulate brain activation in a discourse comprehension (and also ToM) task. Different sets of brain areas showed sensitivity to discourse topic, discourse processing period, and the interaction between them, respectively. The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration. Our finding indicates how different domains of semantic information are processed and integrated in the brain and provides new insights into the neural correlates of ToM and discourse comprehension.

  5. Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review.

    Science.gov (United States)

    Myers, Timothy; Carey, Emma; Szűcs, Dénes

    2017-01-01

    Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.

  6. Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls.

    Science.gov (United States)

    Burkhouse, Katie L; Jacobs, Rachel H; Peters, Amy T; Ajilore, Olu; Watkins, Edward R; Langenecker, Scott A

    2017-04-01

    The aim of the present study was to use fMRI to examine the neural correlates of engaging in rumination among a sample of remitted depressed adolescents, a population at high risk for future depressive relapse. A rumination induction task was used to assess differences in the patterns of neural activation during rumination versus a distraction condition among 26 adolescents in remission from major depressive disorder (rMDD) and in 15 healthy control adolescents. Self-report depression and rumination, as well as clinician-rated depression, were also assessed among all participants. All of the participants recruited regions in the default mode network (DMN), including the posterior cingulate cortex, medial prefrontal cortex, inferior parietal lobe, and medial temporal gyrus, during rumination. Increased activation in these regions during rumination was correlated with increased self-report rumination and symptoms of depression across all participants. Adolescents with rMDD also exhibited greater activation in regions involved in visual, somatosensory, and emotion processing than did healthy peers. The present findings suggest that during ruminative thought, adolescents with rMDD are characterized by increased recruitment of regions within the DMN and in areas involved in visual, somatosensory, and emotion processing.

  7. Cognitive and Neural Correlates of Mathematical Giftedness in Adults and Children: A Review

    Directory of Open Access Journals (Sweden)

    Timothy Myers

    2017-10-01

    Full Text Available Most mathematical cognition research has focused on understanding normal adult function and child development as well as mildly and moderately impaired mathematical skill, often labeled developmental dyscalculia and/or mathematical learning disability. In contrast, much less research is available on cognitive and neural correlates of gifted/excellent mathematical knowledge in adults and children. In order to facilitate further inquiry into this area, here we review 40 available studies, which examine the cognitive and neural basis of gifted mathematics. Studies associated a large number of cognitive factors with gifted mathematics, with spatial processing and working memory being the most frequently identified contributors. However, the current literature suffers from low statistical power, which most probably contributes to variability across findings. Other major shortcomings include failing to establish domain and stimulus specificity of findings, suggesting causation without sufficient evidence and the frequent use of invalid backward inference in neuro-imaging studies. Future studies must increase statistical power and neuro-imaging studies must rely on supporting behavioral data when interpreting findings. Studies should investigate the factors shown to correlate with math giftedness in a more specific manner and determine exactly how individual factors may contribute to gifted math ability.

  8. Neural Correlates of the Time Marker for the Perception of Event Timing

    Science.gov (United States)

    Qi, Liang; Terada, Yoshikazu; Nishida, Shin’ya

    2016-01-01

    While sensory processing latency, inferred from the manual reaction time (RT), is substantially affected by diverse stimulus parameters, subjective temporal judgments are relatively accurate. The neural mechanisms underlying this timing perception remain obscure. Here, we measured human neural activity by magnetoencephalography while participants performed a simultaneity judgment task between the onset of random-dot coherent motion and a beep. In a separate session, participants performed an RT task for the same stimuli. We analyzed the relationship between neural activity evoked by motion onset and point of subjective simultaneity (PSS) or RT. The effect of motion coherence was smaller for PSS than RT, but changes in RT and PSS could both be predicted by the time at which an integrated sensory response crossed a threshold. The task differences could be ascribed to the lower threshold for PSS than for RT. In agreement with the psychophysical threshold difference, the participants reported longer delays in their motor response from the subjective motion onset for weaker stimuli. However, they could not judge the timing of stimuli weaker than the detection threshold. A possible interpretation of the present findings is that the brain assigns the time marker for timing perception prior to stimulus detection, but the time marker is available only after stimulus detection. PMID:27679810

  9. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2014-12-01

    Full Text Available An artificial neural network (ANN constitutive model is developed for high strength armor steel tempered at 500 °C, 600 °C and 650 °C based on high strain rate data generated from split Hopkinson pressure bar (SHPB experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500–650 °C, strains (0.05–0.2 and strain rates (1000–5500/s are employed to formulate J–C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R and average absolute relative error (AARE. R and AARE for the J–C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  10. Social cognitive deficits and their neural correlates in progressive supranuclear palsy.

    Science.gov (United States)

    Ghosh, Boyd C P; Calder, Andrew J; Peers, Polly V; Lawrence, Andrew D; Acosta-Cabronero, Julio; Pereira, João M; Hodges, John R; Rowe, James B

    2012-07-01

    Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients' and carers' quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy.

  11. Neural Correlates of Stroop Performance in Alzheimer’s Disease: A FDG-PET Study

    Directory of Open Access Journals (Sweden)

    Je-Yeon Yun

    2011-07-01

    Full Text Available Background/Aims: The Stroop test is commonly applied in elderly subjects for the evaluation of cognitive impairment related to Alzheimer’s disease (AD and related disorders. This study aimed to investigate the functional neural correlates of the Stroop performance in AD. Methods: In 136 probable AD patients and 54 cognitively normal elderly, a [18F]-fluorodeoxyglucose positron emission tomography scan and Stroop Color Word Test (SCWT were performed. The correlations between the Stroop effect, which was measured by 6 different scoring methods, and regional cerebral glucose metabolism (rCMglc were explored using a region-of-interest (ROI approach and voxel-based analysis. Results: Among 6 Stroop interference measures, only 2 scores, including the SCWT color-word (CW score, were significantly correlated with rCMglc of the dorsolateral prefrontal and anterior cingulate ROIs. Voxel-based analysis revealed significant positive correlations between SCWT CW scores and rCMglc in the inferior parietal lobule, middle temporal gyrus and middle frontal gyrus. Such correlations remained significant only in the less severe AD group. Conclusion: In AD patients, the Stroop effect depends on the functional integrity of the prefrontal cortices. Some parietotemporal regions also appear to be responsible for the Stroop effect in AD individuals.

  12. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  13. What are the odds? The neural correlates of active choice during gambling

    Directory of Open Access Journals (Sweden)

    Bettina eStuder

    2012-04-01

    Full Text Available Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials participants actively chose their bets; in the other half the computer dictated the bet size. Our results highlight the impact of volitional choice upon the neural substrates of gambling: Neural activity in a distributed network - including key structures of the reward circuitry (midbrain, striatum - was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active choice condition, where this information was used to guide bet selection. Our results indicate a neglected role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.

  14. Imagery and retrieval of auditory and visual information: neural correlates of successful and unsuccessful performance.

    Science.gov (United States)

    Huijbers, Willem; Pennartz, Cyriel M A; Rubin, David C; Daselaar, Sander M

    2011-06-01

    prefrontal cortex showed an interaction between task and performance and was associated with successful imagery but unsuccessful retrieval. Finally, the fourth set of regions, including ventral precuneus, midcingulate cortex and supramarginal gyrus, showed the opposite interaction, supporting unsuccessful imagery, but successful retrieval performance. Results are discussed in relation to reconstructive, attentional, semantic memory, and working memory processes. This is the first study to separate the neural correlates of successful and unsuccessful performance for both imagery and retrieval and for both auditory and visual modalities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Suppressing images of desire: Neural correlates of chocolate-related thoughts in high and low trait chocolate cravers.

    Science.gov (United States)

    Miedl, Stephan F; Blechert, Jens; Meule, Adrian; Richard, Anna; Wilhelm, Frank H

    2018-03-05

    Chocolate is the most often craved food in Western societies and many individuals try to resist its temptation due to weight concerns. Suppressing chocolate-related thoughts might, however, lead to paradoxical enhancements of these thoughts and this effect might be more pronounced in individuals with frequent chocolate cravings. In the current study, neural and cognitive correlates of chocolate thought suppression were investigated as a function of trait chocolate craving. Specifically, 20 high and 20 low trait chocolate cravers followed suppression vs. free thinking instructions after being exposed to chocolate and neutral images. Enhanced cue reactivity was evident in high trait chocolate cravers in that they reported more chocolate-related thoughts selectively after chocolate images compared to their low trait craving counterparts. This cue reactivity was mirrored neurally by higher activation in the ventral and dorsal striatum, demonstrating enhanced reward system activity. Unexpectedly, high trait chocolate cravers successfully reduced their elevated chocolate thoughts in the suppression condition. This lends support for the use of thought suppression as a means of regulating unwanted thoughts, cravings and imagery. Whether this thought manipulation is able to curb the elevated cue reactivity and the underlying reward sensitivity in chocolate cravers in applied settings remains to be shown. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The Neural Correlates of Anomalous Habituation to Negative Emotional Pictures in Borderline and Avoidant Personality Disorder Patients

    Science.gov (United States)

    Koenigsberg, Harold W.; Denny, Bryan T.; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Jo Mayson, Sarah; Rimsky, Liza; New, Antonia S.; Goodman, Marianne; Siever, Larry J

    2013-01-01

    Objective Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor would be diminished ability to engage the mechanism of emotional habituation. We tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy controls, and a psychopathological control group of avoidant personality disorder patients. Method During fMRI scan acquisition, borderline patients, healthy controls and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeat versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Results Unlike healthy controls, neither borderline nor avoidant personality disorder participants showed increased activity in dorsal anterior cingulate cortex when viewing repeat versus novel pictures. This failure to increase dorsal anterior cingulate activity was associated with greater affective instability in borderline participants. In addition, borderline and avoidant participants showed smaller insula-amygdala connectivity increases than healthy participants and did not show habituation in ratings of the emotional intensity of the images as did healthy participants. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate connectivity during habituation. Conclusions Borderline patients fail to habituate to negative pictures as do healthy participants and differ from both healthy controls and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline patients

  17. The neural correlates of anomalous habituation to negative emotional pictures in borderline and avoidant personality disorder patients.

    Science.gov (United States)

    Koenigsberg, Harold W; Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; New, Antonia S; Goodman, Marianne; Siever, Larry J

    2014-01-01

    Extreme emotional reactivity is a defining feature of borderline personality disorder, yet the neural-behavioral mechanisms underlying this affective instability are poorly understood. One possible contributor is diminished ability to engage the mechanism of emotional habituation. The authors tested this hypothesis by examining behavioral and neural correlates of habituation in borderline patients, healthy comparison subjects, and a psychopathological comparison group of patients with avoidant personality disorder. During fMRI scanning, borderline patients, healthy subjects, and avoidant personality disorder patients viewed novel and repeated pictures, providing valence ratings at each presentation. Statistical parametric maps of the contrasts of activation during repeated versus novel negative picture viewing were compared between groups. Psychophysiological interaction analysis was employed to examine functional connectivity differences between groups. Unlike healthy subjects, neither borderline nor avoidant personality disorder patients exhibited increased activity in the dorsal anterior cingulate cortex when viewing repeated versus novel pictures. This lack of an increase in dorsal anterior cingulate activity was associated with greater affective instability in borderline patients. In addition, borderline and avoidant patients exhibited smaller increases in insula-amygdala functional connectivity than healthy subjects and, unlike healthy subjects, did not show habituation in ratings of the emotional intensity of the images. Borderline patients differed from avoidant patients in insula-ventral anterior cingulate functional connectivity during habituation. Unlike healthy subjects, borderline patients fail to habituate to negative pictures, and they differ from both healthy subjects and avoidant patients in neural activity during habituation. A failure to effectively engage emotional habituation processes may contribute to affective instability in borderline

  18. Quantum Correlation in Circuit QED Under Various Dissipative Modes

    Science.gov (United States)

    Ying-Hua, Ji; Yong-Mei, Liu

    2017-02-01

    Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.

  19. Neural correlates of working memory training in HIV patients: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Chang, L; Løhaugen, G C; Douet, V; Miller, E N; Skranes, J; Ernst, T

    2016-02-02

    lead to a better understanding of how neural networks are modulated by CWMT. Moreover, validating the greater training gain in subjects with the LMX1A-TT(AA) genotype could lead to a personalized approach for future working memory training studies. Demonstrating and understanding the neural correlates of the efficacy of CWMT in HIV patients could lead to a safe adjunctive therapy for HAND, and possibly other brain disorders. ClinicalTrial.gov, NCT02602418.

  20. Functional Strength Training and Movement Performance Therapy for Upper Limb Recovery Early Poststroke-Efficacy, Neural Correlates, Predictive Markers, and Cost-Effectiveness: FAST-INdiCATE Trial.

    Science.gov (United States)

    Hunter, Susan M; Johansen-Berg, Heidi; Ward, Nick; Kennedy, Niamh C; Chandler, Elizabeth; Weir, Christopher John; Rothwell, John; Wing, Alan M; Grey, Michael J; Barton, Garry; Leavey, Nick Malachy; Havis, Claire; Lemon, Roger N; Burridge, Jane; Dymond, Amy; Pomeroy, Valerie M

    2017-01-01

    Variation in physiological deficits underlying upper limb paresis after stroke could influence how people recover and to which physical therapy they best respond. To determine whether functional strength training (FST) improves upper limb recovery more than movement performance therapy (MPT). To identify: (a) neural correlates of response and (b) whether pre-intervention neural characteristics predict response. Explanatory investigations within a randomised, controlled, observer-blind, and multicentre trial. Randomisation was computer-generated and concealed by an independent facility until baseline measures were completed. Primary time point was outcome, after the 6-week intervention phase. Follow-up was at 6 months after stroke. With some voluntary muscle contraction in the paretic upper limb, not full dexterity, when recruited up to 60 days after an anterior cerebral circulation territory stroke. Conventional physical therapy (CPT) plus either MPT or FST for up to 90 min-a-day, 5 days-a-week for 6 weeks. FST was "hands-off" progressive resistive exercise cemented into functional task training. MPT was "hands-on" sensory/facilitation techniques for smooth and accurate movement. The primary efficacy measure was the Action Research Arm Test (ARAT). Neural measures: fractional anisotropy (FA) corpus callosum midline; asymmetry of corticospinal tracts FA; and resting motor threshold (RMT) of motor-evoked potentials. Covariance models tested ARAT change from baseline. At outcome: correlation coefficients assessed relationship between change in ARAT and neural measures; an interaction term assessed whether baseline neural characteristics predicted response. 288 Participants had: mean age of 72.2 (SD 12.5) years and mean ARAT 25.5 (18.2). For 240 participants with ARAT at baseline and outcome the mean change was 9.70 (11.72) for FST + CPT and 7.90 (9.18) for MPT + CPT, which did not differ statistically ( p  = 0.298). Correlations between ARAT

  1. The neural correlates of tic inhibition in Gilles de la Tourette syndrome.

    Science.gov (United States)

    Ganos, Christos; Kahl, Ursula; Brandt, Valerie; Schunke, Odette; Bäumer, Tobias; Thomalla, Götz; Roessner, Veit; Haggard, Patrick; Münchau, Alexander; Kühn, Simone

    2014-12-01

    Tics in Gilles de la Tourette syndrome (GTS) resemble fragments of normal motor behaviour but appear in an intrusive, repetitive and context-inappropriate manner. Although tics can be voluntarily inhibited on demand, the neural correlates of this process remain unclear. 14 GTS adults without relevant comorbidities participated in this study. First, tic severity and voluntary tic inhibitory capacity were evaluated outside the scanner. Second, patients were examined with resting state functional magnetic resonance imaging (RS-fMRI) in two states, free ticcing and voluntary tic inhibition. Local synchronization of spontaneous fMRI-signal was analysed with regional homogeneity (ReHo) and differences between both states (free ticcingtic inhibition) were contrasted. Clinical correlations of the resulting differential ReHo parameters between both states and clinical measures of tic frequency, voluntary tic inhibition and premonitory urges were also performed. ReHo of the left inferior frontal gyrus (IFG) was increased during voluntary tic inhibition compared to free ticcing. ReHo increases were positively correlated with participants׳ ability to inhibit their tics during scanning sessions but also outside the scanner. There was no correlation with ratings of premonitory urges. Voluntary tic inhibition is associated with increased ReHo of the left IFG. Premonitory urges are unrelated to this process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Neural Correlates of Racial Ingroup Bias in Observing Computer-Animated Social Encounters

    Directory of Open Access Journals (Sweden)

    Yuta Katsumi

    2018-01-01

    Full Text Available Despite evidence for the role of group membership in the neural correlates of social cognition, the mechanisms associated with processing non-verbal behaviors displayed by racially ingroup vs. outgroup members remain unclear. Here, 20 Caucasian participants underwent fMRI recording while observing social encounters with ingroup and outgroup characters displaying dynamic and static non-verbal behaviors. Dynamic behaviors included approach and avoidance behaviors, preceded or not by a handshake; both dynamic and static behaviors were followed by participants’ ratings. Behaviorally, participants showed bias toward their ingroup members, demonstrated by faster/slower reaction times for evaluating ingroup static/approach behaviors, respectively. At the neural level, despite overall similar responses in the action observation network to ingroup and outgroup encounters, the medial prefrontal cortex showed dissociable activation, possibly reflecting spontaneous processing of ingroup static behaviors and positive evaluations of ingroup approach behaviors. The anterior cingulate and superior frontal cortices also showed sensitivity to race, reflected in coordinated and reduced activation for observing ingroup static behaviors. Finally, the posterior superior temporal sulcus showed uniquely increased activity to observing ingroup handshakes. These findings shed light on the mechanisms of racial ingroup bias in observing social encounters, and have implications for understanding factors related to successful interactions with individuals from diverse backgrounds.

  3. Neural correlates of serial abacus mental calculation in children: a functional MRI study.

    Science.gov (United States)

    Chen, Feiyan; Hu, Zhenghui; Zhao, Xiaohu; Wang, Rui; Yang, Zhenyan; Wang, Xiaolu; Tang, Xiaowei

    2006-07-31

    Abacus experts have demonstrated extraordinary potential of mental calculation by using an imaginary abacus. But the neural correlates of abacus mental calculation and the imaginary abacus still remain unclear. Here, we report, respectively, the analysis of fMRI images of abacus experts and non-experts in response to the performance of simple and complex serial calculation by visual stimuli as well as the images of the abacus experts with performance of the same tasks by auditory stimuli. We found that activated areas were quite different between two groups. In experts, enhanced activations were mainly observed in fronto-temporal circuit (lateral premotor cortex (LPMC) and posterior temporal areas) in simple addition, but in fronto-parietal circuit (lateral premotor cortex (LPMC) and posterior superior parietal lobe (PSPL)) in complex one. By contrast, in controls, the activated areas were almost similar in both simple and complex tasks, including bilateral inferior parietal lobule, prefrontal and premotor cortices. Furthermore, visual and auditory stimuli generated almost similar activations in experts. These observations reveal that (1) abacus mental calculation induces special patterns of brain response, and simple and complex tasks are sustained by dissociated brain circuits between the temporal and parietal cortices, respectively; (2) the abacus mental calculation may rely on neural resources of visuospatial representations with a super-modal form of abacus beads; (3) the posterior temporal areas and PSPL may be recruited for imaginary abacus.

  4. Acting on social exclusion: neural correlates of punishment and forgiveness of excluders.

    Science.gov (United States)

    Will, Geert-Jan; Crone, Eveline A; Güroğlu, Berna

    2015-02-01

    This functional magnetic resonance imaging study examined the neural correlates of punishment and forgiveness of initiators of social exclusion (i.e. 'excluders'). Participants divided money in a modified Dictator Game between themselves and people who previously either included or excluded them during a virtual ball-tossing game (Cyberball). Participants selectively punished the excluders by decreasing their outcomes; even when this required participants to give up monetary rewards. Punishment of excluders was associated with increased activation in the pre-supplementary motor area (pre-SMA) and bilateral anterior insula. Costly punishment was accompanied by higher activity in the pre-SMA compared with punishment that resulted in gains or was non-costly. Refraining from punishment (i.e. forgiveness) was associated with self-reported perspective-taking and increased activation in the bilateral temporoparietal junction, dorsomedial prefrontal cortex, dorsal anterior cingulate cortex, and ventrolateral and dorsolateral prefrontal cortex. These findings show that social exclusion can result in punishment as well as forgiveness of excluders and that separable neural networks implicated in social cognition and cognitive control are recruited when people choose either to punish or to forgive those who excluded them. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. CNV amplitude as a neural correlate for stuttering frequency: A case report of acquired stuttering.

    Science.gov (United States)

    Vanhoutte, Sarah; Van Borsel, John; Cosyns, Marjan; Batens, Katja; van Mierlo, Pieter; Hemelsoet, Dimitri; Van Roost, Dirk; Corthals, Paul; De Letter, Miet; Santens, Patrick

    2014-11-01

    A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect of task variation rather than on interindividual variation in stutter related variables. However, variations in motor programming seem to be related to variation in stuttering frequency. The current study presents a case report of acquired stuttering following stroke and stroke related surgery in the left superior temporal gyrus. A speech related CNV task was administered at four points in time with differences in stuttering severity and frequency. Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate of stuttering frequency. The present case report supports the hypothesis that motor preparation has an important role in stuttering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neural correlates of episodic future thinking impairment in multiple sclerosis patients.

    Science.gov (United States)

    Ernst, Alexandra; Noblet, Vincent; Gounot, Daniel; Blanc, Frédéric; de Seze, Jérôme; Manning, Liliann

    2015-01-01

    Recent clinical investigations showed impaired episodic future thinking (EFT) abilities in multiple sclerosis (MS) patients. On these bases, the aim of the current study was to explore the structural and functional correlates of EFT impairment in nondepressed MS patients. Twenty-one nondepressed MS patients and 20 matched healthy controls were assessed with the adapted Autobiographical Interview (AI), and patients were selected on the bases of an EFT impaired score criterion. The 41 participants underwent a functional magnetic resonance imaging (fMRI) session, distinguishing the construction and elaboration phases of the experimental EFT, and the categorical control tests. Structural images were also acquired. During the EFT fMRI task, increased cerebral activations were observed in patients (relative to healthy controls) within the EFT core network. These neural changes were particularly important during the construction phase of future events and involved mostly the prefrontal region. This was accompanied by an increased neural response mostly in anterior, and also posterior, cerebral regions, in association with the amount of detail produced by patients. In parallel, structural measures corroborated a main positive association between the prefrontal regions' volume and EFT performance. However, no association between the hippocampus and EFT performance was observed in patients, at both structural and functional levels. We have documented significant overlaps between the structural and functional underpinnings of EFT impairment, with a main role of the prefrontal region in its clinical expression in MS patients.

  7. The neural correlates of emotional prosody comprehension: disentangling simple from complex emotion.

    Directory of Open Access Journals (Sweden)

    Lucy Alba-Ferrara

    Full Text Available BACKGROUND: Emotional prosody comprehension (EPC, the ability to interpret another person's feelings by listening to their tone of voice, is crucial for effective social communication. Previous studies assessing the neural correlates of EPC have found inconsistent results, particularly regarding the involvement of the medial prefrontal cortex (mPFC. It remained unclear whether the involvement of the mPFC is linked to an increased demand in socio-cognitive components of EPC such as mental state attribution and if basic perceptual processing of EPC can be performed without the contribution of this region. METHODS: fMRI was used to delineate neural activity during the perception of prosodic stimuli conveying simple and complex emotion. Emotional trials in general, as compared to neutral ones, activated a network comprising temporal and lateral frontal brain regions, while complex emotion trials specifically showed an additional involvement of the mPFC, premotor cortex, frontal operculum and left insula. CONCLUSION: These results indicate that the mPFC and premotor areas might be associated, but are not crucial to EPC. However, the mPFC supports socio-cognitive skills necessary to interpret complex emotion such as inferring mental states. Additionally, the premotor cortex involvement may reflect the participation of the mirror neuron system for prosody processing particularly of complex emotion.

  8. Effects of modality on the neural correlates of encoding processes supporting recollection and familiarity

    Science.gov (United States)

    Gottlieb, Lauren J.; Rugg, Michael D.

    2011-01-01

    Prior research has demonstrated that the neural correlates of successful encoding (“subsequent memory effects”) partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting later recollection, or whether overlapping subsequent memory and study condition effects are also evident when later memory is familiarity-based. Subjects (N = 17) underwent fMRI scanning while studying a series of visually and auditorily presented words. Memory for the words was subsequently tested with a modified Remember/Know procedure. Auditorily selective subsequent familiarity effects were evident in bilateral temporal regions that also responded preferentially to auditory items. Although other interpretations are possible, these findings suggest that overlap between study condition-selective subsequent memory effects and regions selectively sensitive to study demands is not uniquely associated with later recollection. In addition, modality-independent subsequent memory effects were identified in several cortical regions. In every case, the effects were greatest for later recollected items, and smaller for items later recognized on the basis of familiarity. The implications of this quantitative dissociation for dual-process models of recognition memory are discussed. PMID:21852431

  9. Neural Correlates of Impulsivity in Healthy Males and Females with Family Histories of Alcoholism

    Science.gov (United States)

    DeVito, Elise E; Meda, Shashwath A; Jiantonio, Rachel; Potenza, Marc N; Krystal, John H; Pearlson, Godfrey D

    2013-01-01

    Individuals family-history positive (FHP) for alcoholism have increased risk for the disorder, which may be mediated by intermediate behavioral traits such as impulsivity. Given the sex differences in the risk for and clinical presentation of addictive disorders, risk for addiction may be differentially mediated by impulsivity within FHP males and females. FHP (N=28) and family-history negative (FHN, N=31) healthy, non-substance-abusing adults completed an fMRI Go/No-Go task and were assessed on impulsivity and alcohol use. Effects of family history and sex were investigated as were associations between neural correlates of impulse control and out-of-scanner measures of impulsivity and alcohol use. FHP individuals showed greater activation in the left anterior insula and inferior frontal gyrus during successful inhibitions, an effect that was driven primarily by FHP males. Higher self-reported impulsivity and behavioral discounting impulsivity, but not alcohol use measures, were associated with greater BOLD signal in the region that differentiated the FHP and FHN groups. Impulsivity factors were associated with alcohol use measures across the FHP and FHN groups. These findings are consistent with increased risk for addiction among FHP individuals being conferred through disrupted function within neural systems important for impulse control. PMID:23584260

  10. Neural Correlates of Racial Ingroup Bias in Observing Computer-Animated Social Encounters.

    Science.gov (United States)

    Katsumi, Yuta; Dolcos, Sanda

    2017-01-01

    Despite evidence for the role of group membership in the neural correlates of social cognition, the mechanisms associated with processing non-verbal behaviors displayed by racially ingroup vs. outgroup members remain unclear. Here, 20 Caucasian participants underwent fMRI recording while observing social encounters with ingroup and outgroup characters displaying dynamic and static non-verbal behaviors. Dynamic behaviors included approach and avoidance behaviors, preceded or not by a handshake; both dynamic and static behaviors were followed by participants' ratings. Behaviorally, participants showed bias toward their ingroup members, demonstrated by faster/slower reaction times for evaluating ingroup static/approach behaviors, respectively. At the neural level, despite overall similar responses in the action observation network to ingroup and outgroup encounters, the medial prefrontal cortex showed dissociable activation, possibly reflecting spontaneous processing of ingroup static behaviors and positive evaluations of ingroup approach behaviors. The anterior cingulate and superior frontal cortices also showed sensitivity to race, reflected in coordinated and reduced activation for observing ingroup static behaviors. Finally, the posterior superior temporal sulcus showed uniquely increased activity to observing ingroup handshakes. These findings shed light on the mechanisms of racial ingroup bias in observing social encounters, and have implications for understanding factors related to successful interactions with individuals from diverse backgrounds.

  11. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.

    Science.gov (United States)

    Otten, Leun J

    2007-09-01

    Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.

  12. "Thinking about not-thinking": neural correlates of conceptual processing during Zen meditation.

    Directory of Open Access Journals (Sweden)

    Giuseppe Pagnoni

    2008-09-01

    Full Text Available Recent neuroimaging studies have identified a set of brain regions that are metabolically active during wakeful rest and consistently deactivate in a variety the performance of demanding tasks. This "default network" has been functionally linked to the stream of thoughts occurring automatically in the absence of goal-directed activity and which constitutes an aspect of mental behavior specifically addressed by many meditative practices. Zen meditation, in particular, is traditionally associated with a mental state of full awareness but reduced conceptual content, to be attained via a disciplined regulation of attention and bodily posture. Using fMRI and a simplified meditative condition interspersed with a lexical decision task, we investigated the neural correlates of conceptual processing during meditation in regular Zen practitioners and matched control subjects. While behavioral performance did not differ between groups, Zen practitioners displayed a reduced duration of the neural response linked to conceptual processing in regions of the default network, suggesting that meditative training may foster the ability to control the automatic cascade of semantic associations triggered by a stimulus and, by extension, to voluntarily regulate the flow of spontaneous mentation.

  13. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder

    Science.gov (United States)

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine

    2014-01-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  14. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  15. Neural network model for evaluation of seedling vigour under clinostated conditions

    Science.gov (United States)

    Zaidi, M.; Murase, H.

    A hierarchical neural net can be applied to simulate nonlinear phenomena found in biological systems. The learning process of the hierarchical neural net can be used as an algorithm for nonlinear multivariate analysis. The non- invasive technique for monitoring the plant's growth stage is one part of the required technology of the bio-response feedback control system. The stage of a plant's growth can be identified or quantified by measuring physical indices. Automated monitoring is also necessary in the clinostat experiment and neural networks are used for the calibration of lettuce plant growth. A back propagation neural network was trained to evaluate the plant growth in terms of plant growth characteristics, with a network consisting of 4, 8 and 1 processing units in the input, hidden and output layers, respectively. Sixteen sets of training data were used. The training was terminated after 800 times of iterative calculations at the RMS error value equal to 3.35x10-3 . Four sets of validation data were used to calculate the prediction error. The ability of the neural network models to predict the required information is very accurate. As a result, there is potential for the present technique to be applied to seedling vigour evaluating system under the clinostated conditions.

  16. Neural Correlates of Visual Short-term Memory Dissociate between Fragile and Working Memory Representations.

    Science.gov (United States)

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F

    2015-12-01

    Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on

  17. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    Science.gov (United States)

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178

  18. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    Directory of Open Access Journals (Sweden)

    Marc Ebner

    2011-01-01

    synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

  19. The neural correlates of movement intentions: A pilot study comparing hypnotic and simulated paralysis.

    Science.gov (United States)

    Ludwig, Vera U; Seitz, Jochen; Schönfeldt-Lecuona, Carlos; Höse, Annett; Abler, Birgit; Hole, Günter; Goebel, Rainer; Walter, Henrik

    2015-09-01

    The distinct feeling of wanting to act and thereby causing our own actions is crucial to our self-perception as free human agents. Disturbances of the link between intention and action occur in several disorders. Little is known, however, about the neural correlates of wanting or intending to act. To investigate these for simple voluntary movements, we used a paradigm involving hypnotic paralysis and functional magnetic resonance imaging. Eight healthy women were instructed to sequentially perform left and right hand movements during a normal condition, as well as during simulated weakness, simulated paralysis and hypnotic paralysis of the right hand. Right frontopolar cortex was selectively hypoactivated for attempted right hand movement during simulated paralysis while it was active in all other conditions. Since simulated paralysis was the only condition lacking an intention to move, the activation in frontopolar cortex might be related to the intention or volition to move. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The neural correlates of coloured music: a functional MRI investigation of auditory-visual synaesthesia.

    Science.gov (United States)

    Neufeld, J; Sinke, C; Dillo, W; Emrich, H M; Szycik, G R; Dima, D; Bleich, S; Zedler, M

    2012-01-01

    In auditory-visual synaesthesia, all kinds of sound can induce additional visual experiences. To identify the brain regions mainly involved in this form of synaesthesia, functional magnetic resonance imaging (fMRI) has been used during non-linguistic sound perception (chords and pure tones) in synaesthetes and non-synaesthetes. Synaesthetes showed increased activation in the left inferior parietal cortex (IPC), an area involved in multimodal integration, feature binding and attention guidance. No significant group-differences could be detected in area V4, which is known to be related to colour vision and form processing. The results support the idea of the parietal cortex acting as sensory nexus area in auditory-visual synaesthesia, and as a common neural correlate for different types of synaesthesia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Neural correlates of age-related decline and compensation in visual attention capacity

    DEFF Research Database (Denmark)

    Wiegand, Iris; Töllner, Thomas; Dyrholm, Mads

    2014-01-01

    participants. In both age groups, the same distinct components indexed performance levels of TVA parameters visual processing speed C and visual short-term memory (vSTM) storage capacity K: The posterior N1 marked interindividual differences in C and the contralateral delay activity (CDA) marked inter......We identified neural correlates of declined and preserved basic visual attention functions in aging individuals based on Bundesen’s ‘Theory of Visual Attention’ (TVA). In an inter-individual difference approach, we contrasted electrophysiology of higher- and lower-performing younger and older......-individual differences in K. Moreover, both parameters were selectively related to two further ERP waves in older age: The anterior N1 was reduced for older participants with lower processing speed, indicating that age-related loss of attentional resources slows encoding. An enhanced right-central positivity (RCP...

  2. Neural correlates of the affective properties of spontaneous and volitional laughter types.

    Science.gov (United States)

    Lavan, Nadine; Rankin, Georgia; Lorking, Nicole; Scott, Sophie; McGettigan, Carolyn

    2017-01-27

    Previous investigations of vocal expressions of emotion have identified acoustic and perceptual distinctions between expressions of different emotion categories, and between spontaneous and volitional (or acted) variants of a given category. Recent work on laughter has identified relationships between acoustic proper