WorldWideScience

Sample records for underlying neural circuits

  1. Ontogeny of neural circuits underlying spatial memory in the rat

    Directory of Open Access Journals (Sweden)

    James Alexander Ainge

    2012-03-01

    Full Text Available Spatial memory is a well characterised psychological function in both humans and rodents. The combined computations of a network of systems including place cells in the hippocampus, grid cells in the medial entorhinal cortex and head direction cells found in numerous structures in the brain have been suggested to form the neural instantiation of the cognitive map as first described by Tolman in 1948. However, while our understanding of the neural mechanisms underlying spatial representations in adults is relatively sophisticated, we know substantially less about how this network develops in young animals. In this article we review studies examining the developmental timescale that these systems follow. Electrophysiological recordings from very young rats show that directional information is at adult levels at the outset of navigational experience. The systems supporting allocentric memory, however, take longer to mature. This is consistent with behavioural studies of young rats which show that spatial memory based on head direction develops very early but that allocentric spatial memory takes longer to mature. We go on to report new data demonstrating that memory for associations between objects and their spatial locations is slower to develop than memory for objects alone. This is again consistent with previous reports suggesting that adult like spatial representations have a protracted development in rats and also suggests that the systems involved in processing non-spatial stimuli come online earlier.

  2. Bridging the Gap: Towards a Cell-Type Specific Understanding of Neural Circuits Underlying Fear Behaviors

    Science.gov (United States)

    McCullough, KM; Morrison, FG; Ressler, KJ

    2016-01-01

    Fear and anxiety-related disorders are remarkably common and debilitating, and are often characterized by dysregulated fear responses. Rodent models of fear learning and memory have taken great strides towards elucidating the specific neuronal circuitries underlying the learning of fear responses. The present review addresses recent research utilizing optogenetic approaches to parse circuitries underlying fear behaviors. It also highlights the powerful advances made when optogenetic techniques are utilized in a genetically defined, cell-type specific, manner. The application of next-generation genetic and sequencing approaches in a cell-type specific context will be essential for a mechanistic understanding of the neural circuitry underlying fear behavior and for the rational design of targeted, circuit specific, pharmacologic interventions for the treatment and prevention of fear-related disorders. PMID:27470092

  3. Optogenetic dissection of neural circuit underlying locomotory decision-making in Caenorhabditis Elegans

    Science.gov (United States)

    Kocabas, Askin; Guo, Zengcai; Ramanathan, Sharad

    2011-03-01

    Despite the knowledge of the physical connectivity of the entire nervous system of C.elegans, we know little about how neuronal dynamics results in decision-making. Detailed understanding of functional and dynamic relations of the neural circuitry requires spatiotemporal control of the neuronal activity. Recent discoveries of light gated ion channels have allowed temporal optical control of neural activity. However, excitation of a specific neuron from among many expressing the channel has been a challenge. By combining optogenetic tools, micro mirror array technology and fast real time image processing, we have developed a technique to activate specific single or multiple neurons in an intact crawling animal while tracking its behavior. Using this setup we traced the neural pathway controlling the gradual turning of the animal during the locomotion. We found that the activity of a specific neuronal circuit that receives inputs from sensory neurons is coordinated with head movement. This coordination allows the animal to turn left or right based on the variation of sensory stimulus during head movement. By directly modulating the activity of the neural circuit, we can force the animal to turn in a specific direction independent of sensory stimuli. Human Frontier Science Program.

  4. Demultiplexer circuit for neural stimulation

    Science.gov (United States)

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  5. Imaging Neuronal Populations in Behaving Rodents: Paradigms for Studying Neural Circuits Underlying Behavior in the Mammalian Cortex

    Science.gov (United States)

    Andermann, Mark L.; Keck, Tara; Xu, Ning-Long; Ziv, Yaniv

    2013-01-01

    Understanding the neural correlates of behavior in the mammalian cortex requires measurements of activity in awake, behaving animals. Rodents have emerged as a powerful model for dissecting the cortical circuits underlying behavior attributable to the convergence of several methods. Genetically encoded calcium indicators combined with viral-mediated or transgenic tools enable chronic monitoring of calcium signals in neuronal populations and subcellular structures of identified cell types. Stable one- and two-photon imaging of neuronal activity in awake, behaving animals is now possible using new behavioral paradigms in head-fixed animals, or using novel miniature head-mounted microscopes in freely moving animals. This mini-symposium will highlight recent applications of these methods for studying sensorimotor integration, decision making, learning, and memory in cortical and subcortical brain areas. We will outline future prospects and challenges for identifying the neural underpinnings of task-dependent behavior using cellular imaging in rodents. PMID:24198355

  6. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    Science.gov (United States)

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  7. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    OpenAIRE

    Aronov, Dmitriy; Tank, David W.

    2014-01-01

    Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any...

  8. Neural circuits underlying mother's voice perception predict social communication abilities in children.

    Science.gov (United States)

    Abrams, Daniel A; Chen, Tianwen; Odriozola, Paola; Cheng, Katherine M; Baker, Amanda E; Padmanabhan, Aarthi; Ryali, Srikanth; Kochalka, John; Feinstein, Carl; Menon, Vinod

    2016-05-31

    The human voice is a critical social cue, and listeners are extremely sensitive to the voices in their environment. One of the most salient voices in a child's life is mother's voice: Infants discriminate their mother's voice from the first days of life, and this stimulus is associated with guiding emotional and social function during development. Little is known regarding the functional circuits that are selectively engaged in children by biologically salient voices such as mother's voice or whether this brain activity is related to children's social communication abilities. We used functional MRI to measure brain activity in 24 healthy children (mean age, 10.2 y) while they attended to brief (auditory regions in the midbrain and cortex; voice-selective superior temporal sulcus (STS); the amygdala, which is crucial for processing of affect; nucleus accumbens and orbitofrontal cortex of the reward circuit; anterior insula and cingulate of the salience network; and a subregion of fusiform gyrus associated with face perception. The strength of brain connectivity between voice-selective STS and reward, affective, salience, memory, and face-processing regions during mother's voice perception predicted social communication skills. Our findings provide a novel neurobiological template for investigation of typical social development as well as clinical disorders, such as autism, in which perception of biologically and socially salient voices may be impaired.

  9. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    Directory of Open Access Journals (Sweden)

    Daniela Ballotta

    Full Text Available According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a whether observation of facial expressions of pain interferes with time production; and b the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1 the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2 the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  10. Modulation of neural circuits underlying temporal production by facial expressions of pain

    Science.gov (United States)

    Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems. PMID:29447256

  11. Neural Circuit Mechanisms of Social Behavior.

    Science.gov (United States)

    Chen, Patrick; Hong, Weizhe

    2018-04-04

    We live in a world that is largely socially constructed, and we are constantly involved in and fundamentally influenced by a broad array of complex social interactions. Social behaviors among conspecifics, either conflictive or cooperative, are exhibited by all sexually reproducing animal species and are essential for the health, survival, and reproduction of animals. Conversely, impairment in social function is a prominent feature of several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia. Despite the importance of social behaviors, many fundamental questions remain unanswered. How is social sensory information processed and integrated in the nervous system? How are different social behavioral decisions selected and modulated in brain circuits? Here we discuss conceptual issues and recent advances in our understanding of brain regions and neural circuit mechanisms underlying the regulation of social behaviors. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors.

    Science.gov (United States)

    Swanson, Larry W

    2005-12-05

    Understanding the principles of cerebral hemisphere neural network organization is essential for understanding the biological foundations of cognition and affect-thinking and feeling. A tripartite model of cerebral structure-function organization is reviewed, with attention focused on a behavior control system differentiation that mediates voluntary influences on three fundamental classes of goal-oriented behavior common to all animals. The model postulates just three cerebral divisions, one cortical and two nuclear (lateral or striatal, and medial or pallidal), that together generate a triple descending projection to the brainstem/cord motor system. This minimal circuit element is topographically organized and regionally differentiated, with the map of cortical areas serving as a basic starting point. Virtually all of the cerebral hemisphere projects on the upper brainstem behavior control column, atop the motor system hierarchy. The latter's rostral segment helps control ingestive (eating and drinking), defensive (fight or flight), and reproductive (sexual and parental) motivated behaviors, whereas its caudal segment helps control foraging or exploratory behavior to obtain or avoid specific goal objects associated with all classes of motivated behavior. (c) 2005 Wiley-Liss, Inc.

  13. Developmental and genetic mechanisms of neural circuit evolution.

    Science.gov (United States)

    Tosches, Maria Antonietta

    2017-11-01

    Regardless of how a nervous system is genetically built, natural selection is acting on the functional outcome of its activity. To understand how nervous systems evolve, it is essential to analyze how their functional units - the neural circuits - change and adapt over time. A neural circuit can evolve in many different ways, and the underlying developmental and genetic mechanisms involve different sets of genes. Therefore, the comparison of gene expression can help reconstructing circuit evolution, as demonstrated by several examples in sensory systems. Functional constraints on neural circuit evolution suggest that in nervous systems developmental and genetic variants do not appear randomly, and that the evolution of neuroanatomy might be biased. Sensory systems, in particular, seem to evolve along trajectories that enhance their evolvability, ensuring adaptation to different environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Japanese studies on neural circuits and behavior of Caenorhabditis elegans

    Science.gov (United States)

    Sasakura, Hiroyuki; Tsukada, Yuki; Takagi, Shin; Mori, Ikue

    2013-01-01

    The nematode Caenorhabditis elegans is an ideal organism for studying neural plasticity and animal behaviors. A total of 302 neurons of a C. elegans hermaphrodite have been classified into 118 neuronal groups. This simple neural circuit provides a solid basis for understanding the mechanisms of the brains of higher animals, including humans. Recent studies that employ modern imaging and manipulation techniques enable researchers to study the dynamic properties of nervous systems with great precision. Behavioral and molecular genetic analyses of this tiny animal have contributed greatly to the advancement of neural circuit research. Here, we will review the recent studies on the neural circuits of C. elegans that have been conducted in Japan. Several laboratories have established unique and clever methods to study the underlying neuronal substrates of behavioral regulation in C. elegans. The technological advances applied to studies of C. elegans have allowed new approaches for the studies of complex neural systems. Through reviewing the studies on the neuronal circuits of C. elegans in Japan, we will analyze and discuss the directions of neural circuit studies. PMID:24348340

  15. Document analysis with neural net circuits

    Science.gov (United States)

    Graf, Hans Peter

    1994-01-01

    Document analysis is one of the main applications of machine vision today and offers great opportunities for neural net circuits. Despite more and more data processing with computers, the number of paper documents is still increasing rapidly. A fast translation of data from paper into electronic format is needed almost everywhere, and when done manually, this is a time consuming process. Markets range from small scanners for personal use to high-volume document analysis systems, such as address readers for the postal service or check processing systems for banks. A major concern with present systems is the accuracy of the automatic interpretation. Today's algorithms fail miserably when noise is present, when print quality is poor, or when the layout is complex. A common approach to circumvent these problems is to restrict the variations of the documents handled by a system. In our laboratory, we had the best luck with circuits implementing basic functions, such as convolutions, that can be used in many different algorithms. To illustrate the flexibility of this approach, three applications of the NET32K circuit are described in this short viewgraph presentation: locating address blocks, cleaning document images by removing noise, and locating areas of interest in personal checks to improve image compression. Several of the ideas realized in this circuit that were inspired by neural nets, such as analog computation with a low resolution, resulted in a chip that is well suited for real-world document analysis applications and that compares favorably with alternative, 'conventional' circuits.

  16. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  17. Phylogenetic plasticity in the evolution of molluscan neural circuits.

    Science.gov (United States)

    Katz, Paul S

    2016-12-01

    Recent research on molluscan nervous systems provides a unique perspective on the evolution of neural circuits. Molluscs evolved large, encephalized nervous systems independently from other phyla. Homologous body-patterning genes were re-specified in molluscs to create a plethora of body plans and nervous system organizations. Octopuses, having the largest brains of any invertebrate, independently evolved a learning circuit similar in organization and function to the mushroom body of insects and the hippocampus of mammals. In gastropods, homologous neurons have been re-specified for different functions. Even species exhibiting similar, possibly homologous behavior have fundamental differences in the connectivity of the neurons underlying that behavior. Thus, molluscan nervous systems provide clear examples of re-purposing of homologous genes and neurons for neural circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A central neural circuit for itch sensation.

    Science.gov (United States)

    Mu, Di; Deng, Juan; Liu, Ke-Fei; Wu, Zhen-Yu; Shi, Yu-Feng; Guo, Wei-Min; Mao, Qun-Quan; Liu, Xing-Jun; Li, Hui; Sun, Yan-Gang

    2017-08-18

    Although itch sensation is an important protective mechanism for animals, chronic itch remains a challenging clinical problem. Itch processing has been studied extensively at the spinal level. However, how itch information is transmitted to the brain and what central circuits underlie the itch-induced scratching behavior remain largely unknown. We found that the spinoparabrachial pathway was activated during itch processing and that optogenetic suppression of this pathway impaired itch-induced scratching behaviors. Itch-mediating spinal neurons, which express the gastrin-releasing peptide receptor, are disynaptically connected to the parabrachial nucleus via glutamatergic spinal projection neurons. Blockade of synaptic output of glutamatergic neurons in the parabrachial nucleus suppressed pruritogen-induced scratching behavior. Thus, our studies reveal a central neural circuit that is critical for itch signal processing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Stable chaos in fluctuation driven neural circuits

    International Nuclear Information System (INIS)

    Angulo-Garcia, David; Torcini, Alessandro

    2014-01-01

    Highlights: • Nonlinear instabilities in fluctuation driven (balanced) neural circuits are studied. • Balanced networks display chaos and stable phases at different post-synaptic widths. • Linear instabilities coexists with nonlinear ones in the chaotic regime. • Erratic motion appears also in linearly stable phase due to stable chaos. - Abstract: We study the dynamical stability of pulse coupled networks of leaky integrate-and-fire neurons against infinitesimal and finite perturbations. In particular, we compare mean versus fluctuations driven networks, the former (latter) is realized by considering purely excitatory (inhibitory) sparse neural circuits. In the excitatory case the instabilities of the system can be completely captured by an usual linear stability (Lyapunov) analysis, whereas the inhibitory networks can display the coexistence of linear and nonlinear instabilities. The nonlinear effects are associated to finite amplitude instabilities, which have been characterized in terms of suitable indicators. For inhibitory coupling one observes a transition from chaotic to non chaotic dynamics by decreasing the pulse-width. For sufficiently fast synapses the system, despite showing an erratic evolution, is linearly stable, thus representing a prototypical example of stable chaos

  20. Molecular annotation of integrative feeding neural circuits.

    Science.gov (United States)

    Pérez, Cristian A; Stanley, Sarah A; Wysocki, Robert W; Havranova, Jana; Ahrens-Nicklas, Rebecca; Onyimba, Frances; Friedman, Jeffrey M

    2011-02-02

    The identity of higher-order neurons and circuits playing an associative role to control feeding is unknown. We injected pseudorabies virus, a retrograde tracer, into masseter muscle, salivary gland, and tongue of BAC-transgenic mice expressing GFP in specific neural populations and identified several CNS regions that project multisynaptically to the periphery. MCH and orexin neurons were identified in the lateral hypothalamus, and Nurr1 and Cnr1 in the amygdala and insular/rhinal cortices. Cholera toxin β tracing showed that insular Nurr1(+) and Cnr1(+) neurons project to the amygdala or lateral hypothalamus, respectively. Finally, we show that cortical Cnr1(+) neurons show increased Cnr1 mRNA and c-Fos expression after fasting, consistent with a possible role for Cnr1(+) neurons in feeding. Overall, these studies define a general approach for identifying specific molecular markers for neurons in complex neural circuits. These markers now provide a means for functional studies of specific neuronal populations in feeding or other complex behaviors. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Explicit Logic Circuits Discriminate Neural States

    Science.gov (United States)

    Yoder, Lane

    2009-01-01

    The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems. PMID:19127299

  2. Explicit logic circuits discriminate neural states.

    Directory of Open Access Journals (Sweden)

    Lane Yoder

    Full Text Available The magnitude and apparent complexity of the brain's connectivity have left explicit networks largely unexplored. As a result, the relationship between the organization of synaptic connections and how the brain processes information is poorly understood. A recently proposed retinal network that produces neural correlates of color vision is refined and extended here to a family of general logic circuits. For any combination of high and low activity in any set of neurons, one of the logic circuits can receive input from the neurons and activate a single output neuron whenever the input neurons have the given activity state. The strength of the output neuron's response is a measure of the difference between the smallest of the high inputs and the largest of the low inputs. The networks generate correlates of known psychophysical phenomena. These results follow directly from the most cost-effective architectures for specific logic circuits and the minimal cellular capabilities of excitation and inhibition. The networks function dynamically, making their operation consistent with the speed of most brain functions. The networks show that well-known psychophysical phenomena do not require extraordinarily complex brain structures, and that a single network architecture can produce apparently disparate phenomena in different sensory systems.

  3. Self-Organizing Neural Circuits for Sensory-Guided Motor Control

    National Research Council Canada - National Science Library

    Grossberg, Stephen

    1999-01-01

    The reported projects developed mathematical models to explain how self-organizing neural circuits that operate under continuous or intermittent sensory guidance achieve flexible and accurate control of human movement...

  4. Adaptive Neurotechnology for Making Neural Circuits Functional .

    Science.gov (United States)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  5. Classes of feedforward neural networks and their circuit complexity

    NARCIS (Netherlands)

    Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter

    1992-01-01

    This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a

  6. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  7. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    Science.gov (United States)

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  8. Complexity and competition in appetitive and aversive neural circuits

    Directory of Open Access Journals (Sweden)

    Crista L. Barberini

    2012-11-01

    Full Text Available Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors.

  9. Acute Stress Influences Neural Circuits of Reward Processing

    Directory of Open Access Journals (Sweden)

    Anthony John Porcelli

    2012-11-01

    Full Text Available People often make decisions under aversive conditions such as acute stress. Yet, less is known about the process in which acute stress can influence decision-making. A growing body of research has established that reward-related information associated with the outcomes of decisions exerts a powerful influence over the choices people make and that an extensive network of brain regions, prominently featuring the striatum, is involved in the processing of this reward-related information. Thus, an important step in research on the nature of acute stress’ influence over decision-making is to examine how it may modulate responses to rewards and punishments within reward-processing neural circuitry. In the current experiment, we employed a simple reward processing paradigm – where participants received monetary rewards and punishments – known to evoke robust striatal responses. Immediately prior to performing each of two task runs, participants were exposed to acute stress (i.e., cold pressor or a no stress control procedure in a between-subjects fashion. No stress group participants exhibited a pattern of activity within the dorsal striatum and orbitofrontal cortex consistent with past research on outcome processing – specifically, differential responses for monetary rewards over punishments. In contrast, acute stress group participants’ dorsal striatum and orbitofrontal cortex demonstrated decreased sensitivity to monetary outcomes and a lack of differential activity. These findings provide insight into how neural circuits may process rewards and punishments associated with simple decisions under acutely stressful conditions.

  10. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop...... a suitable learning algorithm -- a continuous-time version of a temporal differential Hebbian learning algorithm for pulsed neural systems with non-linear synapses -- as well as circuits for the electronic implementation. Measurements from an experimental CMOS chip are presented. Finally, we use our test...

  11. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  12. Fully integrated circuit chip of microelectronic neural bridge

    Science.gov (United States)

    Xiaoyan, Shen; Zhigong, Wang

    2014-09-01

    Nerve tracts interruption is one of the major reasons for dysfunction after spiral cord injury. The microelectronic neural bridge is a method to restore function of interrupted neural pathways, by making use of microelectronic chips to bypass the injured nerve tracts. A low-power fully integrated microelectronic neural bridge chip is designed, using CSMC 0.5-μm CMOS technology. The structure and the key points in the circuit design will be introduced in detail. In order to meet the requirement for implantation, the circuit was modified to avoid the use of off-chip components, and fully monolithic integration is achieved. The operating voltage of the circuit is ±2.5 V, and the chip area is 1.21 × 1.18 mm2. According to the characteristic of neural signal, the time-domain method is used in testing. The pass bandwidth of the microelectronic neural bridge system covers the whole frequency range of the neural signal, power consumption is 4.33 mW, and the gain is adjustable. The design goals are achieved.

  13. Integrating Neural Circuits Controlling Female Sexual Behavior

    Directory of Open Access Journals (Sweden)

    Paul E. Micevych

    2017-06-01

    Full Text Available The hypothalamus is most often associated with innate behaviors such as is hunger, thirst and sex. While the expression of these behaviors important for survival of the individual or the species is nested within the hypothalamus, the desire (i.e., motivation for them is centered within the mesolimbic reward circuitry. In this review, we will use female sexual behavior as a model to examine the interaction of these circuits. We will examine the evidence for a hypothalamic circuit that regulates consummatory aspects of reproductive behavior, i.e., lordosis behavior, a measure of sexual receptivity that involves estradiol membrane-initiated signaling in the arcuate nucleus (ARH, activating β-endorphin projections to the medial preoptic nucleus (MPN, which in turn modulate ventromedial hypothalamic nucleus (VMH activity—the common output from the hypothalamus. Estradiol modulates not only a series of neuropeptides, transmitters and receptors but induces dendritic spines that are for estrogenic induction of lordosis behavior. Simultaneously, in the nucleus accumbens of the mesolimbic system, the mating experience produces long term changes in dopamine signaling and structure. Sexual experience sensitizes the response of nucleus accumbens neurons to dopamine signaling through the induction of a long lasting early immediate gene. While estrogen alone increases spines in the ARH, sexual experience increases dendritic spine density in the nucleus accumbens. These two circuits appear to converge onto the medial preoptic area where there is a reciprocal influence of motivational circuits on consummatory behavior and vice versa. While it has not been formally demonstrated in the human, such circuitry is generally highly conserved and thus, understanding the anatomy, neurochemistry and physiology can provide useful insight into the motivation for sexual behavior and other innate behaviors in humans.

  14. [Dual neural circuit model of reading and writing].

    Science.gov (United States)

    Iwata, Makoto

    2011-08-01

    In the hypothetical neural circuit model of reading and writing that was initially proposed by Dejerine and subsequently confirmed by Geschwind, the left angular gyrus was considered as a unique center for processing letters. Japanese investigators, however, have repeatedly pointed out that this angular gyrus model cannot fully explain the disturbances observed in reading and writing Kanji letters in Japanese patients with various types of alexia with or without agraphia. In 1982, I proposed a dual neural circuit model of reading and writing Japanese on the basis of neuropsychological studies on the various types of alexia with or without agraphia without aphasia. This dual neural circuit model proposes that apart from the left angular gyrus which was thought to be a node for phonological processing of letters, the left posterior inferior temporal area, also acts as a node for semantic processing of letters. Further investigations using O15-PET activation on normal subjects revealed that the left middle occipital gyrus (area 19 of Brodmann) and the posterior portion of the left inferior temporal gyrus (area 37 of Brodmann) are the cortical areas responsible for reading Japanese letters; the former serving for phonological reading and the latter for semantic reading. This duality of the neural circuit in processing letters was later applied to explain disturbances in reading English, and was finally accepted as a valid model for other alphabetic letter systems too.

  15. Railway track circuit fault diagnosis using recurrent neural networks

    NARCIS (Netherlands)

    de Bruin, T.D.; Verbert, K.A.J.; Babuska, R.

    2017-01-01

    Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available

  16. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  17. Neural correlates underlying micrographia in Parkinson's disease.

    Science.gov (United States)

    Wu, Tao; Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson's disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The neural circuits that generate tics in Tourette's syndrome.

    Science.gov (United States)

    Wang, Zhishun; Maia, Tiago V; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S

    2011-12-01

    The purpose of this study was to examine neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette's syndrome. Functional magnetic resonance imaging data were acquired from 13 individuals with Tourette's syndrome and 21 healthy comparison subjects during spontaneous or simulated tics. Independent component analysis with hierarchical partner matching was used to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. Granger causality was used to investigate causal interactions among these regions. The Tourette's syndrome group exhibited stronger neural activity and interregional causality than healthy comparison subjects throughout all portions of the motor pathway, including the sensorimotor cortex, putamen, pallidum, and substantia nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette's syndrome group was stronger during spontaneous tics than during voluntary tics in the somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette's syndrome group than in the healthy comparison group within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (the caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may result in their failure to control tic behaviors or the premonitory urges that generate them. Our findings, taken together, suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico

  19. Distributed dynamical computation in neural circuits with propagating coherent activity patterns.

    Directory of Open Access Journals (Sweden)

    Pulin Gong

    2009-12-01

    Full Text Available Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation.

  20. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    Science.gov (United States)

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.

  1. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China.

    Science.gov (United States)

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.

  2. Functional neural circuits that underlie developmental stuttering

    Science.gov (United States)

    Zhao, Guihu; Huo, Yuankai; Herder, Carl L.; Sikora, Chamonix O.; Peterson, Bradley S.

    2017-01-01

    The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS) and typically developing (TD) fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA) together with Hierarchical Partner Matching (HPM) to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC) to study the causal interactions (effective connectivity) between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA) and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca’s area), caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS. PMID:28759567

  3. Functional neural circuits that underlie developmental stuttering.

    Directory of Open Access Journals (Sweden)

    Jianping Qiao

    Full Text Available The aim of this study was to identify differences in functional and effective brain connectivity between persons who stutter (PWS and typically developing (TD fluent speakers, and to assess whether those differences can serve as biomarkers to distinguish PWS from TD controls. We acquired resting-state functional magnetic resonance imaging data in 44 PWS and 50 TD controls. We then used Independent Component Analysis (ICA together with Hierarchical Partner Matching (HPM to identify networks of robust, functionally connected brain regions that were highly reproducible across participants, and we assessed whether connectivity differed significantly across diagnostic groups. We then used Granger Causality (GC to study the causal interactions (effective connectivity between the regions that ICA and HPM identified. Finally, we used a kernel support vector machine to assess how well these measures of functional connectivity and granger causality discriminate PWS from TD controls. Functional connectivity was stronger in PWS compared with TD controls in the supplementary motor area (SMA and primary motor cortices, but weaker in inferior frontal cortex (IFG, Broca's area, caudate, putamen, and thalamus. Additionally, causal influences were significantly weaker in PWS from the IFG to SMA, and from the basal ganglia to IFG through the thalamus, compared to TD controls. ICA and GC indices together yielded an accuracy of 92.7% in classifying PWS from TD controls. Our findings suggest the presence of dysfunctional circuits that support speech planning and timing cues for the initiation and execution of motor sequences in PWS. Our high accuracy of classification further suggests that these aberrant brain features may serve as robust biomarkers for PWS.

  4. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    OpenAIRE

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2008-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allo...

  5. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Complexity of Dynamics in Small Neural Circuits.

    Directory of Open Access Journals (Sweden)

    Diego Fasoli

    2016-08-01

    Full Text Available Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing.

  7. Nonlinear resonances and multi-stability in simple neural circuits

    Science.gov (United States)

    Alonso, Leandro M.

    2017-01-01

    This article describes a numerical procedure designed to tune the parameters of periodically driven dynamical systems to a state in which they exhibit rich dynamical behavior. This is achieved by maximizing the diversity of subharmonic solutions available to the system within a range of the parameters that define the driving. The procedure is applied to a problem of interest in computational neuroscience: a circuit composed of two interacting populations of neurons under external periodic forcing. Depending on the parameters that define the circuit, such as the weights of the connections between the populations, the response of the circuit to the driving can be strikingly rich and diverse. The procedure is employed to find circuits that, when driven by external input, exhibit multiple stable patterns of periodic activity organized in complex tuning diagrams and signatures of low dimensional chaos.

  8. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  9. Olfactory systems and neural circuits that modulate predator odor fear.

    Science.gov (United States)

    Takahashi, Lorey K

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  10. How Do Efficient Coding Strategies Depend on Origins of Noise in Neural Circuits?

    Science.gov (United States)

    Brinkman, Braden A W; Weber, Alison I; Rieke, Fred; Shea-Brown, Eric

    2016-10-01

    Neural circuits reliably encode and transmit signals despite the presence of noise at multiple stages of processing. The efficient coding hypothesis, a guiding principle in computational neuroscience, suggests that a neuron or population of neurons allocates its limited range of responses as efficiently as possible to best encode inputs while mitigating the effects of noise. Previous work on this question relies on specific assumptions about where noise enters a circuit, limiting the generality of the resulting conclusions. Here we systematically investigate how noise introduced at different stages of neural processing impacts optimal coding strategies. Using simulations and a flexible analytical approach, we show how these strategies depend on the strength of each noise source, revealing under what conditions the different noise sources have competing or complementary effects. We draw two primary conclusions: (1) differences in encoding strategies between sensory systems-or even adaptational changes in encoding properties within a given system-may be produced by changes in the structure or location of neural noise, and (2) characterization of both circuit nonlinearities as well as noise are necessary to evaluate whether a circuit is performing efficiently.

  11. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  12. A neural circuit architecture for angular integration in Drosophila.

    Science.gov (United States)

    Green, Jonathan; Adachi, Atsuko; Shah, Kunal K; Hirokawa, Jonathan D; Magani, Pablo S; Maimon, Gaby

    2017-06-01

    Many animals keep track of their angular heading over time while navigating through their environment. However, a neural-circuit architecture for computing heading has not been experimentally defined in any species. Here we describe a set of clockwise- and anticlockwise-shifting neurons in the Drosophila central complex whose wiring and physiology provide a means to rotate an angular heading estimate based on the fly's angular velocity. We show that each class of shifting neurons exists in two subtypes, with spatiotemporal activity profiles that suggest different roles for each subtype at the start and end of tethered-walking turns. Shifting neurons are required for the heading system to properly track the fly's heading in the dark, and stimulation of these neurons induces predictable shifts in the heading signal. The central features of this biological circuit are analogous to those of computational models proposed for head-direction cells in rodents and may shed light on how neural systems, in general, perform integration.

  13. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction

    OpenAIRE

    Saunders, Benjamin T.; Richard, Jocelyn M.; Janak, Patricia H.

    2015-01-01

    Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of...

  14. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    Science.gov (United States)

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  15. Neural Circuits Underlying Mating Behavior in Drosophila

    OpenAIRE

    Kallman, Benjamin Rory

    2016-01-01

    Reproduction is essential for the survival of animal species. Males and females exhibit innate sex-specific reproductive behaviors, which are established developmentally and do not require previous experience. Because mating can be energetically costly, animals have evolved mechanisms to distinguish between reproductively viable and futile conspecifics that rely largely on sex-specific pheromones. How these complex, often antagonistic cues are transmitted from the periphery to the higher brai...

  16. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks.

    Science.gov (United States)

    de Bruin, Tim; Verbert, Kim; Babuska, Robert

    2017-03-01

    Timely detection and identification of faults in railway track circuits are crucial for the safety and availability of railway networks. In this paper, the use of the long-short-term memory (LSTM) recurrent neural network is proposed to accomplish these tasks based on the commonly available measurement signals. By considering the signals from multiple track circuits in a geographic area, faults are diagnosed from their spatial and temporal dependences. A generative model is used to show that the LSTM network can learn these dependences directly from the data. The network correctly classifies 99.7% of the test input sequences, with no false positive fault detections. In addition, the t-Distributed Stochastic Neighbor Embedding (t-SNE) method is used to examine the resulting network, further showing that it has learned the relevant dependences in the data. Finally, we compare our LSTM network with a convolutional network trained on the same task. From this comparison, we conclude that the LSTM network architecture is better suited for the railway track circuit fault detection and identification tasks than the convolutional network.

  17. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    Science.gov (United States)

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-04-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  18. Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia)

    Science.gov (United States)

    Newcomb, James M.; Sakurai, Akira; Lillvis, Joshua L.; Gunaratne, Charuni A.; Katz, Paul S.

    2012-01-01

    How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited number of categories, the most prevalent of which are rhythmic left–right body flexions (LR) and rhythmic dorsal–ventral body flexions (DV). The phylogenetic distribution of these behaviors suggests a high degree of homoplasy. The central pattern generator (CPG) underlying DV swimming has been well characterized in Tritonia diomedea and in Pleurobranchaea californica. The CPG for LR swimming has been elucidated in Melibe leonina and Dendronotus iris, which are more closely related. The CPGs for the categorically distinct DV and LR swimming behaviors consist of nonoverlapping sets of homologous identified neurons, whereas the categorically similar behaviors share some homologous identified neurons, although the exact composition of neurons and synapses in the neural circuits differ. The roles played by homologous identified neurons in categorically distinct behaviors differ. However, homologous identified neurons also play different roles even in the swim CPGs of the two LR swimming species. Individual neurons can be multifunctional within a species. Some of those functions are shared across species, whereas others are not. The pattern of use and reuse of homologous neurons in various forms of swimming and other behaviors further demonstrates that the composition of neural circuits influences the evolution of behaviors. PMID:22723353

  19. Two multichannel integrated circuits for neural recording and signal processing.

    Science.gov (United States)

    Obeid, Iyad; Morizio, James C; Moxon, Karen A; Nicolelis, Miguel A L; Wolf, Patrick D

    2003-02-01

    We have developed, manufactured, and tested two analog CMOS integrated circuit "neurochips" for recording from arrays of densely packed neural electrodes. Device A is a 16-channel buffer consisting of parallel noninverting amplifiers with a gain of 2 V/V. Device B is a 16-channel two-stage analog signal processor with differential amplification and high-pass filtering. It features selectable gains of 250 and 500 V/V as well as reference channel selection. The resulting amplifiers on Device A had a mean gain of 1.99 V/V with an equivalent input noise of 10 microV(rms). Those on Device B had mean gains of 53.4 and 47.4 dB with a high-pass filter pole at 211 Hz and an equivalent input noise of 4.4 microV(rms). Both devices were tested in vivo with electrode arrays implanted in the somatosensory cortex.

  20. Neural correlates underlying micrographia in Parkinson’s disease

    Science.gov (United States)

    Zhang, Jiarong; Hallett, Mark; Feng, Tao; Hou, Yanan; Chan, Piu

    2016-01-01

    Micrographia is a common symptom in Parkinson’s disease, which manifests as either a consistent or progressive reduction in the size of handwriting or both. Neural correlates underlying micrographia remain unclear. We used functional magnetic resonance imaging to investigate micrographia-related neural activity and connectivity modulations. In addition, the effect of attention and dopaminergic administration on micrographia was examined. We found that consistent micrographia was associated with decreased activity and connectivity in the basal ganglia motor circuit; while progressive micrographia was related to the dysfunction of basal ganglia motor circuit together with disconnections between the rostral supplementary motor area, rostral cingulate motor area and cerebellum. Attention significantly improved both consistent and progressive micrographia, accompanied by recruitment of anterior putamen and dorsolateral prefrontal cortex. Levodopa improved consistent micrographia accompanied by increased activity and connectivity in the basal ganglia motor circuit, but had no effect on progressive micrographia. Our findings suggest that consistent micrographia is related to dysfunction of the basal ganglia motor circuit; while dysfunction of the basal ganglia motor circuit and disconnection between the rostral supplementary motor area, rostral cingulate motor area and cerebellum likely contributes to progressive micrographia. Attention improves both types of micrographia by recruiting additional brain networks. Levodopa improves consistent micrographia by restoring the function of the basal ganglia motor circuit, but does not improve progressive micrographia, probably because of failure to repair the disconnected networks. PMID:26525918

  1. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  2. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  3. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats.

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin; Zhang, Zhi-Jun

    2015-04-21

    Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray's Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats' depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats' depressive behaviors, suggesting a therapeutic target for further exploration. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  4. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction.

    Science.gov (United States)

    Saunders, Benjamin T; Richard, Jocelyn M; Janak, Patricia H

    2015-09-19

    Tying complex psychological processes to precisely defined neural circuits is a major goal of systems and behavioural neuroscience. This is critical for understanding adaptive behaviour, and also how neural systems are altered in states of psychopathology, such as addiction. Efforts to relate psychological processes relevant to addiction to activity within defined neural circuits have been complicated by neural heterogeneity. Recent advances in technology allow for manipulation and mapping of genetically and anatomically defined neurons, which when used in concert with sophisticated behavioural models, have the potential to provide great insight into neural circuit bases of behaviour. Here we discuss contemporary approaches for understanding reward and addiction, with a focus on midbrain dopamine and cortico-striato-pallidal circuits. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. A neural circuit covarying with social hierarchy in macaques.

    Directory of Open Access Journals (Sweden)

    MaryAnn P Noonan

    2014-09-01

    Full Text Available Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI, which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI data in 25 group-living macaques. First, a deformation-based morphometric (DBM approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  6. A neural circuit covarying with social hierarchy in macaques.

    Science.gov (United States)

    Noonan, MaryAnn P; Sallet, Jerome; Mars, Rogier B; Neubert, Franz X; O'Reilly, Jill X; Andersson, Jesper L; Mitchell, Anna S; Bell, Andrew H; Miller, Karla L; Rushworth, Matthew F S

    2014-09-01

    Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.

  7. Spiking neural circuits with dendritic stimulus processors : encoding, decoding, and identification in reproducing kernel Hilbert spaces.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2015-02-01

    We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and visual stimuli in the analog domain. Dendritic stimulus processors may act on both individual stimuli and on groups of stimuli, thereby executing complex computations that arise as a result of interactions between concurrently received signals. The results of the analog-domain computations are then encoded into a multi-dimensional spike train by a population of spiking neurons modeled as nonlinear dynamical systems. We investigate general conditions under which such circuits faithfully represent stimuli and demonstrate algorithms for (i) stimulus recovery, or decoding, and (ii) identification of dendritic stimulus processors from the observed spikes. Taken together, our results demonstrate a fundamental duality between the identification of the dendritic stimulus processor of a single neuron and the decoding of stimuli encoded by a population of neurons with a bank of dendritic stimulus processors. This duality result enabled us to derive lower bounds on the number of experiments to be performed and the total number of spikes that need to be recorded for identifying a neural circuit.

  8. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    Science.gov (United States)

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control

  9. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Directory of Open Access Journals (Sweden)

    Thomas J Foutz

    Full Text Available The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  10. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    Science.gov (United States)

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  11. Rapid neural circuit switching mediated by synaptic plasticity during neural morphallactic regeneration.

    Science.gov (United States)

    Lybrand, Zane R; Zoran, Mark J

    2012-09-01

    The aquatic oligochaete, Lumbriculus variegatus (Lumbriculidae), undergoes a rapid regenerative transformation of its neural circuits following body fragmentation. This type of nervous system plasticity, called neural morphallaxis, involves the remodeling of the giant fiber pathways that mediate rapid head and tail withdrawal behaviors. Extra- and intracellular electrophysiological recordings demonstrated that changes in cellular properties and synaptic connections underlie neurobehavioral plasticity during morphallaxis. Sensory-to-giant interneuron connections, undetectable prior to body injury, emerged within hours of segment amputation. The appearance of functional synaptic transmission was followed by interneuron activation, coupling of giant fiber spiking to motor outputs and overt segmental shortening. The onset of morphallactic plasticity varied along the body axis and emerged more rapidly in segments closer to regions of sensory field overlap between the two giant fiber pathways. The medial and lateral giant fibers were simultaneously activated during a transient phase of network remodeling. Thus, synaptic plasticity at sensory-to-giant interneuron connections mediates escape circuit morphallaxis in this regenerating annelid worm. Copyright © 2011 Wiley Periodicals, Inc.

  12. Sex differences in behavioral decision-making and the modulation of shared neural circuits

    Directory of Open Access Journals (Sweden)

    Mowrey William R

    2012-03-01

    Full Text Available Abstract Animals prioritize behaviors according to their physiological needs and reproductive goals, selecting a single behavioral strategy from a repertoire of possible responses to any given stimulus. Biological sex influences this decision-making process in significant ways, differentiating the responses animals choose when faced with stimuli ranging from food to conspecifics. We review here recent work in invertebrate models, including C. elegans, Drosophila, and a variety of insects, mollusks and crustaceans, that has begun to offer intriguing insights into the neural mechanisms underlying the sexual modulation of behavioral decision-making. These findings show that an animal's sex can modulate neural function in surprisingly diverse ways, much like internal physiological variables such as hunger or thirst. In the context of homeostatic behaviors such as feeding, an animal's sex and nutritional status may converge on a common physiological mechanism, the functional modulation of shared sensory circuitry, to influence decision-making. Similarly, considerable evidence suggests that decisions on whether to mate or fight with conspecifics are also mediated through sex-specific neuromodulatory control of nominally shared neural circuits. This work offers a new perspective on how sex differences in behavior emerge, in which the regulated function of shared neural circuitry plays a crucial role. Emerging evidence from vertebrates indicates that this paradigm is likely to extend to more complex nervous systems as well. As men and women differ in their susceptibility to a variety of neuropsychiatric disorders affecting shared behaviors, these findings may ultimately have important implications for human health.

  13. The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics.

    Directory of Open Access Journals (Sweden)

    Laurence Aitchison

    2016-12-01

    Full Text Available Probabilistic inference offers a principled framework for understanding both behaviour and cortical computation. However, two basic and ubiquitous properties of cortical responses seem difficult to reconcile with probabilistic inference: neural activity displays prominent oscillations in response to constant input, and large transient changes in response to stimulus onset. Indeed, cortical models of probabilistic inference have typically either concentrated on tuning curve or receptive field properties and remained agnostic as to the underlying circuit dynamics, or had simplistic dynamics that gave neither oscillations nor transients. Here we show that these dynamical behaviours may in fact be understood as hallmarks of the specific representation and algorithm that the cortex employs to perform probabilistic inference. We demonstrate that a particular family of probabilistic inference algorithms, Hamiltonian Monte Carlo (HMC, naturally maps onto the dynamics of excitatory-inhibitory neural networks. Specifically, we constructed a model of an excitatory-inhibitory circuit in primary visual cortex that performed HMC inference, and thus inherently gave rise to oscillations and transients. These oscillations were not mere epiphenomena but served an important functional role: speeding up inference by rapidly spanning a large volume of state space. Inference thus became an order of magnitude more efficient than in a non-oscillatory variant of the model. In addition, the network matched two specific properties of observed neural dynamics that would otherwise be difficult to account for using probabilistic inference. First, the frequency of oscillations as well as the magnitude of transients increased with the contrast of the image stimulus. Second, excitation and inhibition were balanced, and inhibition lagged excitation. These results suggest a new functional role for the separation of cortical populations into excitatory and inhibitory neurons, and

  14. Ultra low-power integrated circuit design for wireless neural interfaces

    CERN Document Server

    Holleman, Jeremy; Otis, Brian

    2014-01-01

    Presenting results from real prototype systems, this volume provides an overview of ultra low-power integrated circuits and systems for neural signal processing and wireless communication. Topics include analog, radio, and signal processing theory and design for ultra low-power circuits.

  15. Neural Circuits via Which Single Prolonged Stress Exposure Leads to Fear Extinction Retention Deficits

    Science.gov (United States)

    Knox, Dayan; Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions…

  16. In Search of the Neural Circuits of Intrinsic Motivation

    Science.gov (United States)

    Kaplan, Frederic; Oudeyer, Pierre-Yves

    2007-01-01

    Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children's developmental trajectories. In this view, children engage in exploratory and playful activities for their own sake, not as steps toward other extrinsic goals. The central hypothesis of this paper is that intrinsically motivating activities correspond to expected decrease in prediction error. This motivation system pushes the infant to avoid both predictable and unpredictable situations in order to focus on the ones that are expected to maximize progress in learning. Based on a computational model and a series of robotic experiments, we show how this principle can lead to organized sequences of behavior of increasing complexity characteristic of several behavioral and developmental patterns observed in humans. We then discuss the putative circuitry underlying such an intrinsic motivation system in the brain and formulate two novel hypotheses. The first one is that tonic dopamine acts as a learning progress signal. The second is that this progress signal is directly computed through a hierarchy of microcortical circuits that act both as prediction and metaprediction systems. PMID:18982131

  17. In search of the neural circuits of intrinsic motivation

    Directory of Open Access Journals (Sweden)

    Frederic Kaplan

    2007-10-01

    Full Text Available Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children's developmental trajectories. In this view, children engage in exploratory and playful activities for their own sake, not as steps toward other extrinsic goals. The central hypothesis of this paper is that intrinsically motivating activities correspond to expected decrease in prediction error. This motivation system pushes the infant to avoid both predictable and unpredictable situations in order to focus on the ones that are expected to maximize progress in learning. Based on a computational model and a series of robotic experiments, we show how this principle can lead to organized sequences of behavior of increasing complexity characteristic of several behavioral and developmental patterns observed in humans. We then discuss the putative circuitry underlying such an intrinsic motivation system in the brain and formulate two novel hypotheses. The first one is that tonic dopamine acts as a learning progress signal. The second is that this progress signal is directly computed through a hierarchy of microcortical circuits that act both as prediction and metaprediction systems.

  18. An Implantable Mixed Analog/Digital Neural Stimulator Circuit

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    1999-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation. The chip performs all the signal processing required in an implanted neural stimulator. The power and signal transmission to the stimulator is carried out via an inductive link. From the signal...

  19. Anomalous neural circuit function in schizophrenia during a virtual Morris water task.

    Science.gov (United States)

    Folley, Bradley S; Astur, Robert; Jagannathan, Kanchana; Calhoun, Vince D; Pearlson, Godfrey D

    2010-02-15

    Previous studies have reported learning and navigation impairments in schizophrenia patients during virtual reality allocentric learning tasks. The neural bases of these deficits have not been explored using functional MRI despite well-explored anatomic characterization of these paradigms in non-human animals. Our objective was to characterize the differential distributed neural circuits involved in virtual Morris water task performance using independent component analysis (ICA) in schizophrenia patients and controls. Additionally, we present behavioral data in order to derive relationships between brain function and performance, and we have included a general linear model-based analysis in order to exemplify the incremental and differential results afforded by ICA. Thirty-four individuals with schizophrenia and twenty-eight healthy controls underwent fMRI scanning during a block design virtual Morris water task using hidden and visible platform conditions. Independent components analysis was used to deconstruct neural contributions to hidden and visible platform conditions for patients and controls. We also examined performance variables, voxel-based morphometry and hippocampal subparcellation, and regional BOLD signal variation. Independent component analysis identified five neural circuits. Mesial temporal lobe regions, including the hippocampus, were consistently task-related across conditions and groups. Frontal, striatal, and parietal circuits were recruited preferentially during the visible condition for patients, while frontal and temporal lobe regions were more saliently recruited by controls during the hidden platform condition. Gray matter concentrations and BOLD signal in hippocampal subregions were associated with task performance in controls but not patients. Patients exhibited impaired performance on the hidden and visible conditions of the task, related to negative symptom severity. While controls showed coupling between neural circuits, regional

  20. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.

    Science.gov (United States)

    Suzuki, Takumi; Sato, Makoto

    2017-11-15

    Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A neural command circuit for grooming movement control.

    Science.gov (United States)

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-09-07

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.

  2. Neural dynamics underlying emotional transmissions between individuals.

    Science.gov (United States)

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-08-01

    Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social-emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional feedback to participants who viewed a movie in the scanner. Participants in the social group (but not in the control group) believed that the feedback was coming from another person who was co-viewing the same movie. We found that social-emotional feedback significantly affected the neural dynamics both in the core affect and in the medial pre-frontal regions. Specifically, the response time-courses in those regions exhibited increased similarity across recipients and increased neural alignment with the timeline of the feedback in the social compared with control group. Taken in conjunction with previous research, this study suggests that emotional cues from others shape the neural dynamics across the whole neural continuum of emotional processing in the brain. Moreover, it demonstrates that interpersonal neural alignment can serve as a neural mechanism through which affective information is conveyed between individuals. © The Author (2017). Published by Oxford University Press.

  3. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stamatakis, Alice M; Phillips, Jana L; Hovelsø, Nanna; van Zessen, Ruud; Stuber, Garret D

    2011-12-08

    In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2-6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior.

  4. Neural circuit components of the Drosophila OFF motion vision pathway.

    Science.gov (United States)

    Meier, Matthias; Serbe, Etienne; Maisak, Matthew S; Haag, Jürgen; Dickson, Barry J; Borst, Alexander

    2014-02-17

    Detecting the direction of visual motion is an essential task of the early visual system. The Reichardt detector has been proven to be a faithful description of the underlying computation in insects. A series of recent studies addressed the neural implementation of the Reichardt detector in Drosophila revealing the overall layout in parallel ON and OFF channels, its input neurons from the lamina (L1→ON, and L2→OFF), and the respective output neurons to the lobula plate (ON→T4, and OFF→T5). While anatomical studies showed that T4 cells receive input from L1 via Mi1 and Tm3 cells, the neurons connecting L2 to T5 cells have not been identified so far. It is, however, known that L2 contacts, among others, two neurons, called Tm2 and L4, which show a pronounced directionality in their wiring. We characterized the visual response properties of both Tm2 and L4 neurons via Ca(2+) imaging. We found that Tm2 and L4 cells respond with an increase in activity to moving OFF edges in a direction-unselective manner. To investigate their participation in motion vision, we blocked their output while recording from downstream tangential cells in the lobula plate. Silencing of Tm2 and L4 completely abolishes the response to moving OFF edges. Our results demonstrate that both cell types are essential components of the Drosophila OFF motion vision pathway, prior to the computation of directionality in the dendrites of T5 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. MRI/DTI of the Brain Stem Reveals Reversible and Irreversible Disruption of the Baroreflex Neural Circuits: Clinical Implications.

    Science.gov (United States)

    Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2016-01-01

    Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.

  6. Quantum Correlation in Circuit QED Under Various Dissipative Modes

    Science.gov (United States)

    Ying-Hua, Ji; Yong-Mei, Liu

    2017-02-01

    Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.

  7. Neural circuit remodeling and structural plasticity in the cortex during chronic pain.

    Science.gov (United States)

    Kim, Woojin; Kim, Sun Kwang

    2016-01-01

    Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

  8. Information processing in micro and meso-scale neural circuits during normal and disease states

    Science.gov (United States)

    Luongo, Francisco

    Neural computation can occur at multiple spatial and temporal timescales. The sum total of all of these processes is to guide optimal behaviors within the context of the constraints imposed by the physical world. How the circuits of the brain achieves this goal represents a central question in systems neuroscience. Here I explore the many ways in which the circuits of the brain can process information at both the micro and meso scale. Understanding the way information is represented and processed in the brain could shed light on the neuropathology underlying complex neuropsychiatric diseases such as autism and schizophrenia. Chapter 2 establishes an experimental paradigm for assaying patterns of microcircuit activity and examines the role of dopaminergic modulation on prefrontal microcircuits. We find that dopamine type 2 (D2) receptor activation results in an increase in spontaneous activity while dopamine type 1 (D1) activation does not. Chapter 3 of this dissertation presents a study that illustrates how cholingergic activation normally produces what has been suggested as a neural substrate of attention; pairwise decorrelation in microcircuit activity. This study also shows that in two etiologicall distinct mouse models of autism, FMR1 knockout mice and Valproic Acid exposed mice, this ability to decorrelate in the presence of cholinergic activation is lost. This represents a putative microcircuit level biomarker of autism. Chapter 4 examines the structure/function relationship within the prefrontal microcircuit. Spontaneous activity in prefrontal microcircuits is shown to be organized according to a small world architecture. Interestingly, this architecture is important for one concrete function of neuronal microcircuits; the ability to produce temporally stereotyped patterns of activation. In the final chapter, we identify subnetworks in chronic intracranial electrocorticographic (ECoG) recordings using pairwise electrode coherence and dimensionality reduction

  9. The Neural Circuits that Generate Tics in Gilles de la Tourette Syndrome

    Science.gov (United States)

    Wang, Zhishun; Maia, Tiago V.; Marsh, Rachel; Colibazzi, Tiziano; Gerber, Andrew; Peterson, Bradley S.

    2014-01-01

    Objective To study neural activity and connectivity within cortico-striato-thalamo-cortical circuits and to reveal circuit-based neural mechanisms that govern tic generation in Tourette syndrome. Method We acquired fMRI data from 13 participants with Tourette syndrome and 21 controls during spontaneous or simulated tics. We used independent component analysis with hierarchical partner matching to isolate neural activity within functionally distinct regions of cortico-striato-thalamo-cortical circuits. We used Granger causality to investigate causal interactions among these regions. Results We found that the Tourette group exhibited stronger neural activity and interregional causality than controls throughout all portions of the motor pathway including sensorimotor cortex, putamen, pallidum, and substania nigra. Activity in these areas correlated positively with the severity of tic symptoms. Activity within the Tourette group was stronger during spontaneous tics than during voluntary tics in somatosensory and posterior parietal cortices, putamen, and amygdala/hippocampus complex, suggesting that activity in these regions may represent features of the premonitory urges that generate spontaneous tic behaviors. In contrast, activity was weaker in the Tourette group than in controls within portions of cortico-striato-thalamo-cortical circuits that exert top-down control over motor pathways (caudate and anterior cingulate cortex), and progressively less activity in these regions accompanied more severe tic symptoms, suggesting that faulty activity in these circuits may fail to control tic behaviors or the premonitory urges that generate them. Conclusions Our findings taken together suggest that tics are caused by the combined effects of excessive activity in motor pathways and reduced activation in control portions of cortico-striato-thalamo-cortical circuits. PMID:21955933

  10. Stochastic interpolation model of the medial superior olive neural circuit

    Czech Academy of Sciences Publication Activity Database

    Šanda, Pavel; Maršálek, P.

    2012-01-01

    Roč. 1434, JAN 24 (2012), s. 257-265 ISSN 0006-8993. [International Workshop on Neural Coding. Limassol, 29.10.2010-03.11.2010] R&D Projects: GA ČR(CZ) GAP103/11/0282 Grant - others:GA MPO(CZ) FR-TI3/869 Institutional research plan: CEZ:AV0Z50110509 Keywords : coincidence detection * directional hearing * interaural time delay * sound azimuth * interpolation model Subject RIV: FH - Neurology Impact factor: 2.879, year: 2012

  11. Neural dynamics underlying emotional transmissions between individuals

    OpenAIRE

    Golland, Yulia; Levit-Binnun, Nava; Hendler, Talma; Lerner, Yulia

    2017-01-01

    Abstract Emotional experiences are frequently shaped by the emotional responses of co-present others. Research has shown that people constantly monitor and adapt to the incoming social–emotional signals, even without face-to-face interaction. And yet, the neural processes underlying such emotional transmissions have not been directly studied. Here, we investigated how the human brain processes emotional cues which arrive from another, co-attending individual. We presented continuous emotional...

  12. Interpretation of correlated neural variability from models of feed-forward and recurrent circuits

    Science.gov (United States)

    2018-01-01

    Neural populations respond to the repeated presentations of a sensory stimulus with correlated variability. These correlations have been studied in detail, with respect to their mechanistic origin, as well as their influence on stimulus discrimination and on the performance of population codes. A number of theoretical studies have endeavored to link network architecture to the nature of the correlations in neural activity. Here, we contribute to this effort: in models of circuits of stochastic neurons, we elucidate the implications of various network architectures—recurrent connections, shared feed-forward projections, and shared gain fluctuations—on the stimulus dependence in correlations. Specifically, we derive mathematical relations that specify the dependence of population-averaged covariances on firing rates, for different network architectures. In turn, these relations can be used to analyze data on population activity. We examine recordings from neural populations in mouse auditory cortex. We find that a recurrent network model with random effective connections captures the observed statistics. Furthermore, using our circuit model, we investigate the relation between network parameters, correlations, and how well different stimuli can be discriminated from one another based on the population activity. As such, our approach allows us to relate properties of the neural circuit to information processing. PMID:29408930

  13. Nanowire electrodes for high-density stimulation and measurement of neural circuits

    Directory of Open Access Journals (Sweden)

    Jacob T. Robinson

    2013-03-01

    Full Text Available Brain-machine interfaces (BMIs that can precisely monitor and control neural activity will likely require new hardware with improved resolution and specificity. New nanofabricated electrodes with feature sizes and densities comparable to neural circuits may lead to such improvements. In this perspective, we review the recent development of vertical nanowire (NW electrodes that could provide highly parallel single-cell recording and stimulation for future BMIs. We compare the advantages of these devices and discuss some of the technical challenges that must be overcome for this technology to become a platform for next-generation closed-loop BMIs.

  14. Neural circuits involved in the renewal of extinguished fear.

    Science.gov (United States)

    Chen, Weihai; Wang, Yan; Wang, Xiaqing; Li, Hong

    2017-07-01

    The last 10 years have witnessed a substantial progress in understanding the neural mechanisms for the renewal of the extinguished fear memory. Based on the theory of fear extinction, exposure therapy has been developed as a typical cognitive behavioral therapy for posttraumatic stress disorder. Although the fear memory can be extinguished by repeated presentation of conditioned stimulus without unconditioned stimulus, the fear memory is not erased and tends to relapse outside of extinction context, which is referred to as renewal. Therefore, the renewal is regarded as a great obstruction interfering with the effect of exposure therapy. In recent years, there has been a great deal of studies in understanding the neurobiological underpinnings of fear renewal. These offer a foundation upon which novel therapeutic interventions for the renewal may be built. This review focuses on behavioral, anatomical and electrophysiological studies that interpret roles of the hippocampus, prelimbic cortex and amygdala as well as the connections between them for the renewal of the extinguished fear. Additionally, this review suggests the possible pathways for the renewal: (1) the prelimbic cortex may integrate contextual information from hippocampal inputs and project to the basolateral amygdala to mediate the renewal of extinguished fear memory; the ventral hippocampus may innervate the activities of the basolateral amygdala or the central amygdala directly for the renewal. © 2017 IUBMB Life, 69(7):470-478, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  15. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    Science.gov (United States)

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  16. The malleable brain: plasticity of neural circuits and behavior - a review from students to students.

    Science.gov (United States)

    Schaefer, Natascha; Rotermund, Carola; Blumrich, Eva-Maria; Lourenco, Mychael V; Joshi, Pooja; Hegemann, Regina U; Jamwal, Sumit; Ali, Nilufar; García Romero, Ezra Michelet; Sharma, Sorabh; Ghosh, Shampa; Sinha, Jitendra K; Loke, Hannah; Jain, Vishal; Lepeta, Katarzyna; Salamian, Ahmad; Sharma, Mahima; Golpich, Mojtaba; Nawrotek, Katarzyna; Paidi, Ramesh K; Shahidzadeh, Sheila M; Piermartiri, Tetsade; Amini, Elham; Pastor, Veronica; Wilson, Yvette; Adeniyi, Philip A; Datusalia, Ashok K; Vafadari, Benham; Saini, Vedangana; Suárez-Pozos, Edna; Kushwah, Neetu; Fontanet, Paula; Turner, Anthony J

    2017-06-20

    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102. © 2017 International Society for Neurochemistry.

  17. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    Directory of Open Access Journals (Sweden)

    Yuzhe Li

    2016-09-01

    Full Text Available Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS and an unconditioned stimulus (US is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE. Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons in the amygdala and medial prefrontal cortex (mPFC. In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  18. Priming Neural Circuits to Modulate Spinal Reflex Excitability

    Science.gov (United States)

    Estes, Stephen P.; Iddings, Jennifer A.; Field-Fote, Edelle C.

    2017-01-01

    While priming is most often thought of as a strategy for modulating neural excitability to facilitate voluntary motor control, priming stimulation can also be utilized to target spinal reflex excitability. In this application, priming can be used to modulate the involuntary motor output that often follows central nervous system injury. Individuals with spinal cord injury (SCI) often experience spasticity, for which antispasmodic medications are the most common treatment. Physical therapeutic/electroceutic interventions offer an alternative treatment for spasticity, without the deleterious side effects that can accompany pharmacological interventions. While studies of physical therapeutic/electroceutic interventions have been published, a systematic comparison of these approaches has not been performed. The purpose of this study was to compare four non-pharmacological interventions to a sham-control intervention to assess their efficacy for spasticity reduction. Participants were individuals (n = 10) with chronic SCI (≥1 year) who exhibited stretch-induced quadriceps spasticity. Spasticity was quantified using the pendulum test before and at two time points after (immediate, 45 min delayed) each of four different physical therapeutic/electroceutic interventions, plus a sham-control intervention. Interventions included stretching, cyclic passive movement (CPM), transcutaneous spinal cord stimulation (tcSCS), and transcranial direct current stimulation (tDCS). The sham-control intervention consisted of a brief ramp-up and ramp-down of knee and ankle stimulation while reclined with legs extended. The order of interventions was randomized, and each was tested on a separate day with at least 48 h between sessions. Compared to the sham-control intervention, stretching, CPM, and tcSCS were associated with a significantly greater reduction in spasticity immediately after treatment. While the immediate effect was largest for stretching, the reduction persisted

  19. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).

    Science.gov (United States)

    Shi, Yulin; Veidenbaum, Alexander V; Nicolau, Alex; Xu, Xiangmin

    2015-01-15

    Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post hoc processing and analysis. Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22× speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    Science.gov (United States)

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  1. Biologically based neural circuit modelling for the study of fear learning and extinction

    Science.gov (United States)

    Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra

    2016-11-01

    The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.

  2. Neural learning circuits utilizing nano-crystalline silicon transistors and memristors.

    Science.gov (United States)

    Cantley, Kurtis D; Subramaniam, Anand; Stiegler, Harvey J; Chapman, Richard A; Vogel, Eric M

    2012-04-01

    Properties of neural circuits are demonstrated via SPICE simulations and their applications are discussed. The neuron and synapse subcircuits include ambipolar nano-crystalline silicon transistor and memristor device models based on measured data. Neuron circuit characteristics and the Hebbian synaptic learning rule are shown to be similar to biology. Changes in the average firing rate learning rule depending on various circuit parameters are also presented. The subcircuits are then connected into larger neural networks that demonstrate fundamental properties including associative learning and pulse coincidence detection. Learned extraction of a fundamental frequency component from noisy inputs is demonstrated. It is then shown that if the fundamental sinusoid of one neuron input is out of phase with the rest, its synaptic connection changes differently than the others. Such behavior indicates that the system can learn to detect which signals are important in the general population, and that there is a spike-timing-dependent component of the learning mechanism. Finally, future circuit design and considerations are discussed, including requirements for the memristive device.

  3. Amigo adhesion protein regulates development of neural circuits in zebrafish brain.

    Science.gov (United States)

    Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki

    2014-07-18

    The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Circuit models and experimental noise measurements of micropipette amplifiers for extracellular neural recordings from live animals.

    Science.gov (United States)

    Chen, Chang Hao; Pun, Sio Hang; Mak, Peng Un; Vai, Mang I; Klug, Achim; Lei, Tim C

    2014-01-01

    Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  5. Circuit Models and Experimental Noise Measurements of Micropipette Amplifiers for Extracellular Neural Recordings from Live Animals

    Directory of Open Access Journals (Sweden)

    Chang Hao Chen

    2014-01-01

    Full Text Available Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise for in vivo experiments.

  6. A neuroplasticity-inspired neural circuit for acoustic navigation with obstacle avoidance that learns smooth motion paths

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2018-01-01

    avoiding obstacles. We have reported earlier on a neural circuit for acoustic navigation, inspired by neuroplasticity mechanisms, which learned stable robot motion paths for a simulated mobile robot. The circuit realised a reactive behaviour-based navigation architecture where a phonotaxis behaviour...

  7. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates.

    Science.gov (United States)

    Borton, David A; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have the potential for wider diagnosis of

  8. Modulatory Effects of Modafinil on Neural Circuits Regulating Emotion and Cognition

    Science.gov (United States)

    Rasetti, Roberta; Mattay, Venkata S; Stankevich, Beth; Skjei, Kelsey; Blasi, Giuseppe; Sambataro, Fabio; Arrillaga-Romany, Isabel C; Goldberg, Terry E; Callicott, Joseph H; Apud, José A; Weinberger, Daniel R

    2010-01-01

    Modafinil differs from other arousal-enhancing agents in chemical structure, neurochemical profile, and behavioral effects. Most functional neuroimaging studies to date examined the effect of modafinil only on information processing underlying executive cognition, but cognitive enhancers in general have been shown to have pronounced effects on emotional behavior, too. We examined the effect of modafinil on neural circuits underlying affective processing and cognitive functions. Healthy volunteers were enrolled in this double-blinded placebo-controlled trial (100 mg/day for 7 days). They underwent BOLD fMRI while performing an emotion information-processing task that activates the amygdala and two prefrontally dependent cognitive tasks—a working memory (WM) task and a variable attentional control (VAC) task. A clinical assessment that included measurement of blood pressure, heart rate, the Hamilton anxiety scale, and the profile of mood state (POMS) questionnaire was also performed on each test day. BOLD fMRI revealed significantly decreased amygdala reactivity to fearful stimuli on modafinil compared with the placebo condition. During executive cognition tasks, a WM task and a VAC task, modafinil reduced BOLD signal in the prefrontal cortex and anterior cingulate. Although not statistically significant, there were trends for reduced anxiety, for decreased fatigue-inertia and increased vigor-activity, as well as decreased anger-hostility on modafinil. Modafinil in low doses has a unique physiologic profile compared with stimulant drugs: it enhances the efficiency of prefrontal cortical cognitive information processing, while dampening reactivity to threatening stimuli in the amygdala, a brain region implicated in anxiety. PMID:20555311

  9. Neural Population Dynamics Underlying Motor Learning Transfer.

    Science.gov (United States)

    Vyas, Saurabh; Even-Chen, Nir; Stavisky, Sergey D; Ryu, Stephen I; Nuyujukian, Paul; Shenoy, Krishna V

    2018-03-07

    Covert motor learning can sometimes transfer to overt behavior. We investigated the neural mechanism underlying transfer by constructing a two-context paradigm. Subjects performed cursor movements either overtly using arm movements, or covertly via a brain-machine interface that moves the cursor based on motor cortical activity (in lieu of arm movement). These tasks helped evaluate whether and how cortical changes resulting from "covert rehearsal" affect overt performance. We found that covert learning indeed transfers to overt performance and is accompanied by systematic population-level changes in motor preparatory activity. Current models of motor cortical function ascribe motor preparation to achieving initial conditions favorable for subsequent movement-period neural dynamics. We found that covert and overt contexts share these initial conditions, and covert rehearsal manipulates them in a manner that persists across context changes, thus facilitating overt motor learning. This transfer learning mechanism might provide new insights into other covert processes like mental rehearsal. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Dynamical systems, attractors, and neural circuits [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Paul Miller

    2016-05-01

    Full Text Available Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic—they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  11. An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit.

    Science.gov (United States)

    Tao Tang; Wang Ling Goh; Lei Yao; Jia Hao Cheong; Yuan Gao

    2017-07-01

    This paper describes an integrated multichannel neural recording analog front end (AFE) with a novel area-efficient driven right leg (DRL) circuit to improve the system common mode rejection ratio (CMRR). The proposed AFE consists of an AC-coupled low-noise programmable-gain amplifier, an area-efficient DRL block and a 10-bit SAR ADC. Compared to conventional DRL circuit, the proposed capacitor-less DRL design achieves 90% chip area reduction with enhanced CMRR performance, making it ideal for multichannel biomedical recording applications. The AFE circuit has been designed in a standard 0.18-μm CMOS process. Post-layout simulation results show that the AFE provides two gain settings of 54dB/60dB while consuming 1 μA per channel under a supply voltage of 1 V. The input-referred noise of the AFE integrated from 1 Hz to 10k Hz is only 4 μVrms and the CMRR is 110 dB.

  12. The road to restoring neural circuits for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Canter, Rebecca G; Penney, Jay; Tsai, Li-Huei

    2016-11-10

    Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.

  13. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  14. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  15. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    Science.gov (United States)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  16. Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions

    Directory of Open Access Journals (Sweden)

    Saima Siouane

    2017-03-01

    Full Text Available Energy harvesting has become a promising and alternative solution to conventional energy generation patterns to overcome the problem of supplying autonomous electrical systems. More particularly, thermal energy harvesting technologies have drawn a major interest in both research and industry. Thermoelectric Generators (TEGs can be used in two different operating conditions, under constant temperature gradient or constant heat flow. The commonly used TEG electrical model, based on a voltage source in series with an electrical resistance, shows its limitations especially under constant heat flow conditions. Here, the analytical electrical modeling, taking into consideration the internal and contact thermal resistances of a TEG under constant temperature gradient and constant heat flow conditions, is first given. To give further insight into the electrical behavior of a TEG module in different operating conditions, we propose a new and original way of emulating the above analytical expressions with usual electronics components (voltage source, resistors, diode, whose values are determined with the TEG’s parameters. Note that such a TEG emulation is particularly suited when designing the electronic circuitry commonly associated to the TEG, to realize both Maximum Power Point Tracking and output voltage regulation. First, the proposed equivalent electrical circuits are validated through simulation with a SPICE environment in static operating conditions using only one value of either temperature gradient or heat flow. Then, they are also analyzed in dynamic operating conditions where both temperature gradient and heat flow are considered as time-varying functions.

  17. Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model

    Science.gov (United States)

    Quan, Tingwei; Li, Jing; Zhou, Hang; Li, Shiwei; Zheng, Ting; Yang, Zhongqing; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-05-01

    Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies.

  18. Why we can talk, debate, and change our minds: neural circuits, basal ganglia operations, and transcriptional factors.

    Science.gov (United States)

    Lieberman, Philip

    2014-12-01

    Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for "what is special about the human brain." Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

  19. An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits.

    Science.gov (United States)

    Förster, Dominique; Dal Maschio, Marco; Laurell, Eva; Baier, Herwig

    2017-07-24

    Optical imaging approaches have revolutionized our ability to monitor neural network dynamics, but by themselves are unable to link a neuron's activity to its functional connectivity. We present a versatile genetic toolbox, termed 'Optobow', for all-optical discovery of excitatory connections in vivo. By combining the Gal4-UAS system with Cre/lox recombination, we target the optogenetic actuator ChrimsonR and the sensor GCaMP6 to stochastically labeled, nonoverlapping and sparse subsets of neurons. Photostimulation of single cells using two-photon computer-generated holography evokes calcium responses in downstream neurons. Morphological reconstruction of neurite arbors, response latencies and localization of presynaptic markers suggest that some neuron pairs recorded here are directly connected, while others are two or more synapses apart from each other. With this toolbox, we discover wiring principles between specific cell types in the larval zebrafish tectum. Optobow should be useful for identification and manipulation of networks of interconnected neurons, even in dense neural tissues.Mechanisms of neural processing can only be understood by revealing patterns of connectivity among the cellular components of the circuit. Here the authors report a new genetic toolbox, 'Optobow', which enables simultaneous optogenetic activation of single neurons in zebrafish and measuring the activity of downstream neurons in the network.

  20. Genetic Circuit Performance under Conditions Relevant for Industrial Bioreactors

    NARCIS (Netherlands)

    Moser, Felix; Broers, Nicolette J.; Hartmans, Sybe; Tamsir, Alvin; Kerkman, Richard; Roubos, Johannes A.; Bovenberg, Roel; Voigt, Christopher A.

    2012-01-01

    Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli

  1. Cognitive consilience: Primate non-primary neuroanatomical circuits underlying cognition

    Directory of Open Access Journals (Sweden)

    Soren Van Hout Solari

    2011-12-01

    Full Text Available Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis ofcognitive information processing in the mammalian brain. Understanding the principles ofneuroanatomical organization in these structures is critical to understanding the functions theyperform and ultimately how the human brain works. We have manually distilled and synthesizedhundreds of primate neuroanatomy facts into a single interactive visualization. The resultingpicture represents the fundamental neuroanatomical blueprint upon which cognitive functionsmust be implemented. Within this framework we hypothesize and detail 7 functional circuitscorresponding to psychological perspectives on the brain: consolidated long-term declarativememory, short-term declarative memory, working memory/information processing, behavioralmemory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including thecerebral isocortex (9 pyramidal neuronal groups, parahippocampal gyrus and hippocampus,thalamus (4 neuronal groups, basal ganglia (7 neuronal groups, metencephalon, basal forebrainand other subcortical nuclei. We focus on neuroanatomy related to primate non-primary corticalsystems to elucidate the basis underlying the distinct homotypical cognitive architecture. To dis-play the breadth of this review, we introduce a novel method of integrating and presenting datain multiple independent visualizations: an interactive website (www.cognitiveconsilience.comand standalone iPhone and iPad applications. With these tools we present a unique, annotatedview of neuroanatomical consilience (integration of knowledge.

  2. Neural correlates underlying musical semantic memory.

    Science.gov (United States)

    Groussard, M; Viader, F; Landeau, B; Desgranges, B; Eustache, F; Platel, H

    2009-07-01

    Numerous functional imaging studies have examined the neural basis of semantic memory mainly using verbal and visuospatial materials. Musical material also allows an original way to explore semantic memory processes. We used PET imaging to determine the neural substrates that underlie musical semantic memory using different tasks and stimuli. The results of three PET studies revealed a greater involvement of the anterior part of the temporal lobe. Concerning clinical observations and our neuroimaging data, the musical lexicon (and most widely musical semantic memory) appears to be sustained by a temporo-prefrontal cerebral network involving right and left cerebral regions.

  3. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms.

    Science.gov (United States)

    Egervari, Gabor; Ciccocioppo, Roberto; Jentsch, J David; Hurd, Yasmin L

    2018-02-01

    Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long-term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

    Science.gov (United States)

    Eagleson, Kathie L; Xie, Zhihui; Levitt, Pat

    2017-03-01

    People with autism spectrum disorder and other neurodevelopmental disorders (NDDs) are behaviorally and medically heterogeneous. The combination of polygenicity and gene pleiotropy-the influence of one gene on distinct phenotypes-raises questions of how specific genes and their protein products interact to contribute to NDDs. A preponderance of evidence supports developmental and pathophysiological roles for the MET receptor tyrosine kinase, a multifunctional receptor that mediates distinct biological responses depending upon cell context. MET influences neuron architecture and synapse maturation in the forebrain and regulates homeostasis in gastrointestinal and immune systems, both commonly disrupted in NDDs. Peak expression of synapse-enriched MET is conserved across rodent and primate forebrain, yet regional differences in primate neocortex are pronounced, with enrichment in circuits that participate in social information processing. A functional risk allele in the MET promoter, enriched in subgroups of children with autism spectrum disorder, reduces transcription and disrupts socially relevant neural circuits structurally and functionally. In mice, circuit-specific deletion of Met causes distinct atypical behaviors. MET activation increases dendritic complexity and nascent synapse number, but synapse maturation requires reductions in MET. MET mediates its specific biological effects through different intracellular signaling pathways and has a complex protein interactome that is enriched in autism spectrum disorder and other NDD candidates. The interactome is coregulated in developing human neocortex. We suggest that a gene as pleiotropic and highly regulated as MET, together with its interactome, is biologically relevant in normal and pathophysiological contexts, affecting central and peripheral phenotypes that contribute to NDD risk and clinical symptoms. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Estimating neural background input with controlled and fast perturbations: A bandwidth comparison between inhibitory opsins and neural circuits

    Directory of Open Access Journals (Sweden)

    David Eriksson

    2016-08-01

    Full Text Available To test the importance of a certain cell type or brain area it is common to make a lack of function experiment in which the neuronal population of interest is inhibited. Here we review physiological and methodological constraints for making controlled perturbations using the corticothalamic circuit as an example. The brain with its many types of cells and rich interconnectivity offers many paths through which a perturbation can spread within a short time. To understand the side effects of the perturbation one should record from those paths. We find that ephaptic effects, gap-junctions, and fast chemical synapses are so fast that they can react to the perturbation during the few milliseconds it takes for an opsin to change the membrane potential. The slow chemical synapses, astrocytes, extracellular ions and vascular signals, will continue to give their physiological input for around 20 milliseconds before they also react to the perturbation. Although we show that some pathways can react within milliseconds the strength/speed reported in this review should be seen as an upper bound since we have omitted how polysynaptic signals are attenuated. Thus the number of additional recordings that has to be made to control for the perturbation side effects is expected to be fewer than proposed here. To summarize, the reviewed literature not only suggests that it is possible to make controlled lack of function experiments, but, it also suggests that such a lack of function experiment can be used to measure the context of local neural computations.

  6. Durability evaluation method for contact component interconnections in printed circuit boards under thermal loads

    Science.gov (United States)

    Azin, Anton; Zhukov, Andrey A.; Ponomarev, Sergey A.; Ponomarev, Sergey V.

    2017-11-01

    In designing sophisticated printed circuit boards, required evaluation of the product life cycle is relevant in terms of presumably applied load conditions during operation. The paper describes the durability evaluation method of printed circuit board components with contact output such as ball grid array (BGA) and pitch grid array (PGA) under thermal loads. Experiment data and numerical simulation results of soldered connections have been obtained. This method is demonstrated by a practical application example-evaluating of printed circuit board durability under cyclic thermal loads. The application of proposed method for printed circuit boards would make it possible to predict the service life of these designed products.

  7. Persistent activity in a recurrent circuit underlies courtship memory in Drosophila

    Science.gov (United States)

    Zhao, Xiaoliang; Lenek, Daniela; Dag, Ugur; Dickson, Barry J

    2018-01-01

    Recurrent connections are thought to be a common feature of the neural circuits that encode memories, but how memories are laid down in such circuits is not fully understood. Here we present evidence that courtship memory in Drosophila relies on the recurrent circuit between mushroom body gamma (MBγ), M6 output, and aSP13 dopaminergic neurons. We demonstrate persistent neuronal activity of aSP13 neurons and show that it transiently potentiates synaptic transmission from MBγ>M6 neurons. M6 neurons in turn provide input to aSP13 neurons, prolonging potentiation of MBγ>M6 synapses over time periods that match short-term memory. These data support a model in which persistent aSP13 activity within a recurrent circuit lays the foundation for a short-term memory. PMID:29322941

  8. Review of the Neural Oscillations Underlying Meditation

    Directory of Open Access Journals (Sweden)

    Darrin J. Lee

    2018-03-01

    Full Text Available Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. These benefits are thought to occur as a result of neurophysiologic changes. The most commonly studied specific meditation practices are focused attention (FA, open-monitoring (OM, as well as transcendental meditation (TM, and loving-kindness (LK meditation. In this review, we compare the neural oscillatory patterns during these forms of meditation.Method: We performed a systematic review of neural oscillations during FA, OM, TM, and LK meditation practices, comparing meditators to meditation-naïve adults.Results: FA, OM, TM, and LK meditation are associated with global increases in oscillatory activity in meditators compared to meditation-naïve adults, with larger changes occurring as the length of meditation training increases. While FA and OM are related to increases in anterior theta activity, only FA is associated with changes in posterior theta oscillations. Alpha activity increases in posterior brain regions during both FA and OM. In anterior regions, FA shows a bilateral increase in alpha power, while OM shows a decrease only in left-sided power. Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions.Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their

  9. Neural mechanisms and models underlying joint action.

    Science.gov (United States)

    Chersi, Fabian

    2011-06-01

    Humans, in particular, and to a lesser extent also other species of animals, possess the impressive capability of smoothly coordinating their actions with those of others. The great amount of work done in recent years in neuroscience has provided new insights into the processes involved in joint action, intention understanding, and task sharing. In particular, the discovery of mirror neurons, which fire both when animals execute actions and when they observe the same actions done by other individuals, has shed light on the intimate relationship between perception and action elucidating the direct contribution of motor knowledge to action understanding. Up to date, however, a detailed description of the neural processes involved in these phenomena is still mostly lacking. Building upon data from single neuron recordings in monkeys observing the actions of a demonstrator and then executing the same or a complementary action, this paper describes the functioning of a biologically constraint neural network model of the motor and mirror systems during joint action. In this model, motor sequences are encoded as independent neuronal chains that represent concatenations of elementary motor acts leading to a specific goal. Action execution and recognition are achieved through the propagation of activity within specific chains. Due to the dual property of mirror neurons, the same architecture is capable of smoothly integrating and switching between observed and self-generated action sequences, thus allowing to evaluate multiple hypotheses simultaneously, understand actions done by others, and to respond in an appropriate way.

  10. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Naina Kurup

    2017-06-01

    Full Text Available Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  11. NEURAL CORRELATES FOR APATHY: FRONTAL - PREFRONTAL AND PARIETAL CORTICAL - SUBCORTICAL CIRCUITS

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2016-12-01

    Full Text Available Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional invovlement; it is an important and heavy-burden clinical condition which strongly impacts in every day life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC and basal ganglia; emotional affective apathy may be related to the orbitomedial PFC and ventral striatum; cognitive apathy may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of autoactivation may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to grey matter atrophy in the anterior cingulate (ACC and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies and a reduced speedness in action decsion, major resposnible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control.We will discuss the importance of these circuits in different pathologies

  12. Neural Correlates for Apathy: Frontal-Prefrontal and Parietal Cortical- Subcortical Circuits

    Science.gov (United States)

    Moretti, Rita; Signori, Riccardo

    2016-01-01

    Apathy is an uncertain nosographical entity, which includes reduced motivation, abulia, decreased empathy, and lack of emotional involvement; it is an important and heavy-burden clinical condition which strongly impacts in everyday life events, affects the common daily living abilities, reduced the inner goal directed behavior, and gives the heaviest burden on caregivers. Is a quite common comorbidity of many neurological disease, However, there is no definite consensus on the role of apathy in clinical practice, no definite data on anatomical circuits involved in its development, and no definite instrument to detect it at bedside. As a general observation, the occurrence of apathy is connected to damage of prefrontal cortex (PFC) and basal ganglia; “emotional affective” apathy may be related to the orbitomedial PFC and ventral striatum; “cognitive apathy” may be associated with dysfunction of lateral PFC and dorsal caudate nuclei; deficit of “autoactivation” may be due to bilateral lesions of the internal portion of globus pallidus, bilateral paramedian thalamic lesions, or the dorsomedial portion of PFC. On the other hand, apathy severity has been connected to neurofibrillary tangles density in the anterior cingulate gyrus and to gray matter atrophy in the anterior cingulate (ACC) and in the left medial frontal cortex, confirmed by functional imaging studies. These neural networks are linked to projects, judjing and planning, execution and selection common actions, and through the basolateral amygdala and nucleus accumbens projects to the frontostriatal and to the dorsolateral prefrontal cortex. Therefore, an alteration of these circuitry caused a lack of insight, a reduction of decision-making strategies, and a reduced speedness in action decision, major responsible for apathy. Emergent role concerns also the parietal cortex, with its direct action motivation control. We will discuss the importance of these circuits in different pathologies

  13. The use of brain imaging to elucidate neural circuit changes in cocaine addiction

    Directory of Open Access Journals (Sweden)

    Hanlon CA

    2012-09-01

    Full Text Available Colleen A Hanlon,1,2 Melanie Canterberry11Department of Psychiatry and Behavioral Sciences, 2Department of Neurosciences Medical University of South Carolina, Charleston, SC, USAAbstract: Within substance abuse, neuroimaging has experienced tremendous growth as both a research method and a clinical tool in the last decade. The application of functional imaging methods to cocaine dependent patients and individuals in treatment programs, has revealed that the effects of cocaine are not limited to dopamine-rich subcortical structures, but that the cortical projection areas are also disrupted in cocaine dependent patients. In this review, we will first describe several of the imaging methods that are actively being used to address functional and structural abnormalities in addiction. This will be followed by an overview of the cortical and subcortical brain regions that are most often cited as dysfunctional in cocaine users. We will also introduce functional connectivity analyses currently being used to investigate interactions between these cortical and subcortical areas in cocaine users and abstainers. Finally, this review will address recent research which demonstrates that alterations in the functional connectivity in cocaine users may be associated with structural pathology in these circuits, as demonstrated through diffusion tensor imaging. Through the use of these tools in both a basic science setting and as applied to treatment seeking individuals, we now have a greater understanding of the complex cortical and subcortical networks which contribute to the stages of initial craving, dependence, abstinence, and relapse. Although the ability to use neuroimaging to predict treatment response or identify vulnerable populations is still in its infancy, the next decade holds tremendous promise for using neuroimaging to tailor either behavioral or pharmacologic treatment interventions to the individual.Keywords: addiction, neural circuit, functional

  14. Acute genetic manipulation of neuronal activity for the functional dissection of neural circuits-a dream come true for the pioneers of behavioral genetics.

    Science.gov (United States)

    Yoshihara, Moto; Ito, Kei

    2012-03-01

    Abstract: This review summarizes technical development of the functional manipulation of specific neural circuits through genetic techniques in Drosophila. Long after pioneers' efforts for the genetic dissection of behavior using this organism as a model, analyses with acute activation of specific neural circuits have finally become feasible using transgenic Drosophila that expresses light-, heat-, or cold-activatable cation channels by xxx/upstream activation sequence (Gal4/UAS)-based induction system. This methodology opened a new avenue to dissect functions of neural circuits to make dreams of the pioneers into reality.

  15. Segregated and overlapping neural circuits exist for the production of static and dynamic precision grip force.

    Science.gov (United States)

    Neely, Kristina A; Coombes, Stephen A; Planetta, Peggy J; Vaillancourt, David E

    2013-03-01

    A central topic in sensorimotor neuroscience is the static-dynamic dichotomy that exists throughout the nervous system. Previous work examining motor unit synchronization reports that the activation strategy and timing of motor units differ for static and dynamic tasks. However, it remains unclear whether segregated or overlapping blood-oxygen-level-dependent (BOLD) activity exists in the brain for static and dynamic motor control. This study compared the neural circuits associated with the production of static force to those associated with the production of dynamic force pulses. To that end, healthy young adults (n = 17) completed static and dynamic precision grip force tasks during functional magnetic resonance imaging (fMRI). Both tasks activated core regions within the visuomotor network, including primary and sensory motor cortices, premotor cortices, multiple visual areas, putamen, and cerebellum. Static force was associated with unique activity in a right-lateralized cortical network including inferior parietal lobe, ventral premotor cortex, and dorsolateral prefrontal cortex. In contrast, dynamic force was associated with unique activity in left-lateralized and midline cortical regions, including supplementary motor area, superior parietal lobe, fusiform gyrus, and visual area V3. These findings provide the first neuroimaging evidence supporting a lateralized pattern of brain activity for the production of static and dynamic precision grip force. Copyright © 2011 Wiley Periodicals, Inc.

  16. Prenatal nicotine alters maturation of breathing and neural circuits regulating respiratory control.

    Science.gov (United States)

    Mahlière, Sophie; Perrin, David; Peyronnet, Julie; Boussouar, Aurélien; Annat, Guy; Viale, Jean-Paul; Pequignot, Jacqueline; Pequignot, Jean-Marc; Dalmaz, Yvette

    2008-06-30

    While perinatal nicotine effects on ventilation have been widely investigated, the prenatal impact of nicotine treatment during gestation on both breathing and neural circuits involved in respiratory control remains unknown. We examined the effects of nicotine, from embryonic day 5 (E5) to E20, on baseline ventilation, the two hypoxic ventilatory response components and in vivo tyrosine hydroxylase (TH) activity in carotid bodies and brainstem areas, assessed at postnatal day 7 (P7), P11 and P21. In pups prenatally exposed to nicotine, baseline ventilation and hypoxic ventilatory response were increased at P7 (+48%) and P11 (+46%), with increased tidal volume (p<0.05). Hypoxia blunted frequency response at P7 and revealed unstable ventilation at P11. In carotid bodies, TH activity increased by 20% at P7 and decreased by 48% at P11 (p<0.05). In most brainstem areas it was reduced by 20-33% until P11. Changes were resolved by P21. Prenatal nicotine led to postnatal ventilatory sequelae, partly resulting from impaired maturation of peripheral chemoreceptors and brainstem integrative sites.

  17. The Neuropsychiatry of Hyperkinetic Movement Disorders: Insights from Neuroimaging into the Neural Circuit Bases of Dysfunction

    Directory of Open Access Journals (Sweden)

    Bradleigh D. Hayhow

    2013-09-01

    Full Text Available Background: Movement disorders, particularly those associated with basal ganglia disease, have a high rate of comorbid neuropsychiatric illness.Methods: We consider the pathophysiological basis of the comorbidity between movement disorders and neuropsychiatric illness by 1 reviewing the epidemiology of neuropsychiatric illness in a range of hyperkinetic movement disorders, and 2 correlating findings to evidence from studies that have utilized modern neuroimaging techniques to investigate these disorders. In addition to diseases classically associated with basal ganglia pathology, such as Huntington disease, Wilson disease, the neuroacanthocytoses, and diseases of brain iron accumulation, we include diseases associated with pathology of subcortical white matter tracts, brain stem nuclei, and the cerebellum, such as metachromatic leukodystrophy, dentatorubropallidoluysian atrophy, and the spinocerebellar ataxias.Conclusions: Neuropsychiatric symptoms are integral to a thorough phenomenological account of hyperkinetic movement disorders. Drawing on modern theories of cortico-subcortical circuits, we argue that these disorders can be conceptualized as disorders of complex subcortical networks with distinct functional architectures. Damage to any component of these complex information-processing networks can have variable and often profound consequences for the function of more remote neural structures, creating a diverse but nonetheless rational pattern of clinical symptomatology.

  18. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  19. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  20. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  1. Protection Scheme for Modular Multilevel Converters under Diode Open-Circuit Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Zhu, Rongwu; Liu, Dong

    2018-01-01

    devices. The diode open-circuit fault in the submodule (SM) is an important issue for the MMC, which would affect the performance of the MMC and disrupt the operation of the MMC. This paper analyzes the impact of diode open-circuit failures in the SMs on the performance of the MMC and proposes...... a protection scheme for the MMC under diode open-circuit faults. The proposed protection scheme not only can effectively eliminate the possible caused high voltage due to the diode open-circuit fault but also can quickly detect the faulty SMs, which effectively avoids the destruction and protects the MMC....... The proposed protection scheme is verified with a downscale MMC prototype in the laboratory. The results confirm the effectiveness of the proposed protection scheme for the MMC under diode open-circuit faults....

  2. The neuropeptide tachykinin is essential for pheromone detection in a gustatory neural circuit.

    Science.gov (United States)

    Shankar, Shruti; Chua, Jia Yi; Tan, Kah Junn; Calvert, Meredith E K; Weng, Ruifen; Ng, Wan Chin; Mori, Kenji; Yew, Joanne Y

    2015-06-17

    Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state.

  3. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning.

    Science.gov (United States)

    Sakamoto, Masayuki; Ieki, Nao; Miyoshi, Goichi; Mochimaru, Daisuke; Miyachi, Hitoshi; Imura, Tetsuya; Yamaguchi, Masahiro; Fishell, Gord; Mori, Kensaku; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-04-23

    The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.

  4. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  5. Neural mechanisms underlying context-dependent shifts in risk preferences

    NARCIS (Netherlands)

    Losecaat Vermeer, A.B.; Boksem, M.A.S.; Sanfey, A.G.

    2014-01-01

    Studies of risky decision-making have demonstrated that humans typically prefer risky options after incurring a financial loss, while generally preferring safer options after a monetary gain. Here, we examined the neural processes underlying these inconsistent risk preferences by investigating the

  6. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition

    Directory of Open Access Journals (Sweden)

    Siamak eSorooshyari

    2015-02-01

    Full Text Available Identifying the neuronal circuits and dynamics of sleep-to-wake transition is essential to understanding brain regulation of behavioral states, including sleep-wake cycles, arousal, and hyperarousal. Recent work by different laboratories has used optogenetics to determine the role of individual neuromodulators in state transitions. The optogenetically-driven data does not yet provide a multi-dimensional schematic of the mechanisms underlying changes in vigilance states. This work presents a modeling framework to interpret, assist, and drive research on the sleep-regulatory network. We identify feedback, redundancy, and gating hierarchy as three fundamental aspects of this model. The presented model is expected to expand as additional data on the contribution of each transmitter to a vigilance state becomes available. Incorporation of conductance-based models of neuronal ensembles into this model and existing models of cortical excitability will provide more comprehensive insight into sleep dynamics as well as sleep and arousal-related disorders.

  7. Safety circuit for detecting conducting liquid in a cell under surveillance

    International Nuclear Information System (INIS)

    Kazandjoglou, J.

    1984-01-01

    The present invention can be applied for the surveillance of gloveboxes for which it is imperious to detect any water leak as soon as it occurs accidently. The safety and detection circuit comprises a liquid detector which consists of two electrodes. Each electrode has two connector wires connected in an electronic circuit. This circuit includes a first MOSFET which is non-conducting when no liquid or no failure in its connections is present. This first transistor is connected to a second MOSFET, conducting when no liquid or no failure in its connections is present, delivers current to an alarm, signaling and monitoring relay of a cell under surveillance [fr

  8. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    Science.gov (United States)

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Neural Global Pattern Similarity Underlies True and False Memories.

    Science.gov (United States)

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  10. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  11. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner

    Science.gov (United States)

    Schafer, Dorothy P; Lehrman, Emily K; Kautzman, Amanda G; Koyama, Ryuta; Mardinly, Alan R; Yamasaki, Ryo; Ransohoff, Richard M; Greenberg, Michael E; Barres, Ben A; Stevens, Beth

    2012-01-01

    SUMMARY Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses. PMID:22632727

  12. Origin of excitation underlying locomotion in the spinal circuit of zebrafish

    Science.gov (United States)

    Eklöf-Ljunggren, Emma; Haupt, Sabine; Ausborn, Jessica; Dehnisch, Ivar; Uhlén, Per; Higashijima, Shin-ichi; El Manira, Abdeljabbar

    2012-01-01

    Neural circuits in the spinal cord transform instructive signals from the brain into well-coordinated locomotor movements by virtue of rhythm-generating components. Although evidence suggests that excitatory interneurons are the essence of locomotor rhythm generation, their molecular identity and the assessment of their necessity have remained unclear. Here we show, using larval zebrafish, that V2a interneurons represent an intrinsic source of excitation necessary for the normal expression of the locomotor rhythm. Acute and selective ablation of these interneurons increases the threshold of induction of swimming activity, decreases the burst frequency, and alters the coordination of the rostro–caudal propagation of activity. Thus, our results argue that V2a interneurons represent a source of excitation that endows the spinal circuit with the capacity to generate locomotion. PMID:22431619

  13. The Relation between Finger Gnosis and Mathematical Ability: Why Redeployment of Neural Circuits Best Explains the Finding

    Directory of Open Access Journals (Sweden)

    Marcie ePenner-Wilger

    2013-12-01

    Full Text Available This paper elaborates a novel hypothesis regarding the observed predictive relation between finger gnosis and mathematical ability. In brief, we suggest that these two cognitive phenomena have overlapping neural substrates, as the result of the re-use (redeployment of part of the finger gnosis circuit for the purpose of representing numbers. We offer some background on the relation and current explanations for it; an outline of our alternate hypothesis; some evidence supporting redeployment over current views; and a plan for further research.

  14. Modification of tenascin-R expression following unilateral labyrinthectomy in rats indicates its possible role in neural plasticity of the vestibular neural circuit.

    Science.gov (United States)

    Gaal, Botond; Jóhannesson, Einar Örn; Dattani, Amit; Magyar, Agnes; Wéber, Ildikó; Matesz, Clara

    2015-09-01

    We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.

  15. Modification of tenascin-R expression following unilateral labyrinthectomy in rats indicates its possible role in neural plasticity of the vestibular neural circuit

    Directory of Open Access Journals (Sweden)

    Botond Gaal

    2015-01-01

    Full Text Available We have previously found that unilateral labyrinthectomy is accompanied by modification of hyaluronan and chondroitin sulfate proteoglycan staining in the lateral vestibular nucleus of rats and the time course of subsequent reorganization of extracellular matrix assembly correlates to the restoration of impaired vestibular function. The tenascin-R has repelling effect on pathfinding during axonal growth/regrowth, and thus inhibits neural circuit repair. By using immunohistochemical method, we studied the modification of tenascin-R expression in the superior, medial, lateral, and descending vestibular nuclei of the rat following unilateral labyrinthectomy. On postoperative day 1, tenascin-R reaction in the perineuronal nets disappeared on the side of labyrinthectomy in the superior, lateral, medial, and rostral part of the descending vestibular nuclei. On survival day 3, the staining intensity of tenascin-R reaction in perineuronal nets recovered on the operated side of the medial vestibular nucleus, whereas it was restored by the time of postoperative day 7 in the superior, lateral and rostral part of the descending vestibular nuclei. The staining intensity of tenascin-R reaction remained unchanged in the caudal part of the descending vestibular nucleus bilaterally. Regional differences in the modification of tenascin-R expression presented here may be associated with different roles of individual vestibular nuclei in the compensatory processes. The decreased expression of the tenascin-R may suggest the extracellular facilitation of plastic modifications in the vestibular neural circuit after lesion of the labyrinthine receptors.

  16. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring.

    Science.gov (United States)

    Supekar, Kaustubh; Iuculano, Teresa; Chen, Lang; Menon, Vinod

    2015-09-09

    math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. Copyright © 2015 the authors 0270-6474/15/3512574-10$15.00/0.

  17. Remediation of Childhood Math Anxiety and Associated Neural Circuits through Cognitive Tutoring

    Science.gov (United States)

    Iuculano, Teresa; Chen, Lang

    2015-01-01

    math anxiety in young children. Surprisingly, there have been no studies of cognitive interventions and the underlying neurobiological mechanisms by which math anxiety can be ameliorated in young children. Here, we demonstrate that intensive 8 week one-to-one cognitive tutoring not only reduces math anxiety but also remarkably remediates aberrant functional responses and connectivity in emotion-related circuits anchored in the amygdala. Our findings are likely to propel new ways of thinking about early treatment of a disability that has significant implications for improving each individual's academic and professional chances of success in today's technological society that increasingly demands strong quantitative skills. PMID:26354922

  18. Neural processes underlying cultural differences in cognitive persistence.

    Science.gov (United States)

    Telzer, Eva H; Qu, Yang; Lin, Lynda C

    2017-08-01

    Self-improvement motivation, which occurs when individuals seek to improve upon their competence by gaining new knowledge and improving upon their skills, is critical for cognitive, social, and educational adjustment. While many studies have delineated the neural mechanisms supporting extrinsic motivation induced by monetary rewards, less work has examined the neural processes that support intrinsically motivated behaviors, such as self-improvement motivation. Because cultural groups traditionally vary in terms of their self-improvement motivation, we examined cultural differences in the behavioral and neural processes underlying motivated behaviors during cognitive persistence in the absence of extrinsic rewards. In Study 1, 71 American (47 females, M=19.68 years) and 68 Chinese (38 females, M=19.37 years) students completed a behavioral cognitive control task that required cognitive persistence across time. In Study 2, 14 American and 15 Chinese students completed the same cognitive persistence task during an fMRI scan. Across both studies, American students showed significant declines in cognitive performance across time, whereas Chinese participants demonstrated effective cognitive persistence. These behavioral effects were explained by cultural differences in self-improvement motivation and paralleled by increasing activation and functional coupling between the inferior frontal gyrus (IFG) and ventral striatum (VS) across the task among Chinese participants, neural activation and coupling that remained low in American participants. These findings suggest a potential neural mechanism by which the VS and IFG work in concert to promote cognitive persistence in the absence of extrinsic rewards. Thus, frontostriatal circuitry may be a neurobiological signal representing intrinsic motivation for self-improvement that serves an adaptive function, increasing Chinese students' motivation to engage in cognitive persistence. Copyright © 2017 Elsevier Inc. All rights

  19. Disrupted insula-based neural circuit organization and conflict interference in trauma-exposed youth

    Directory of Open Access Journals (Sweden)

    Hilary A. Marusak

    2015-01-01

    Full Text Available Childhood trauma exposure is a potent risk factor for psychopathology. Emerging research suggests that aberrant saliency processing underlies the link between early trauma exposure and later cognitive and socioemotional deficits that are hallmark of several psychiatric disorders. Here, we examine brain and behavioral responses during a face categorization conflict task, and relate these to intrinsic connectivity of the salience network (SN. The results demonstrate a unique pattern of SN dysfunction in youth exposed to trauma (n = 14 relative to comparison youth (n = 19 matched on age, sex, IQ, and sociodemographic risk. We find that trauma-exposed youth are more susceptible to conflict interference and this correlates with higher fronto-insular responses during conflict. Resting-state functional connectivity data collected in the same participants reveal increased connectivity of the insula to SN seed regions that is associated with diminished reward sensitivity, a critical risk/resilience trait following stress. In addition to altered intrinsic connectivity of the SN, we observed altered connectivity between the SN and default mode network (DMN in trauma-exposed youth. These data uncover network-level disruptions in brain organization following one of the strongest predictors of illness, early life trauma, and demonstrate the relevance of observed neural effects for behavior and specific symptom dimensions. SN dysfunction may serve as a diathesis that contributes to illness and negative outcomes following childhood trauma.

  20. Stress-protective neural circuits: not all roads lead through the prefrontal cortex.

    Science.gov (United States)

    Christianson, John P; Greenwood, Benjamin N

    2014-01-01

    Exposure to an uncontrollable stressor elicits a constellation of physiological and behavioral sequel in laboratory rats that often reflect aspects of anxiety and other emotional disruptions. We review evidence suggesting that plasticity within the serotonergic dorsal raphe nucleus (DRN) is critical to the expression of uncontrollable stressor-induced anxiety. Specifically, after uncontrollable stressor exposure subsequent anxiogenic stimuli evoke greater 5-HT release in DRN terminal regions including the amygdala and striatum; and pharmacological blockade of postsynaptic 5-HT(2C) receptors in these regions prevents expression of stressor-induced anxiety. Importantly, the controllability of stress, the presence of safety signals, and a history of exercise mitigate the expression of stressor-induced anxiety. These stress-protective factors appear to involve distinct neural substrates; with stressor controllability requiring the medial prefrontal cortex, safety signals the insular cortex and exercise affecting the 5-HT system directly. Knowledge of the distinct yet converging mechanisms underlying these stress-protective factors could provide insight into novel strategies for the treatment and prevention of stress-related psychiatric disorders.

  1. Parallel and interrelated neural systems underlying adaptive navigation.

    Science.gov (United States)

    Mizumori, Sheri J Y; Canfield, James G; Yeshenko, Oksana

    2005-06-01

    The ability to process in parallel multiple forms of sensory information, and link sensory-sensory associations to behavior, presumably allows for the opportunistic use of the most reliable and predictive sensory modalities in diverse behavioral contexts. Evolutionary considerations indicate that such processing may represent a fundamental operating principle underlying complex sensory associations and sensory-motor integration. Here, we suggest that animal navigation is a particularly useful model of such opportunistic use of sensory and motor information because it is possible to study directly the effects of memory on neural system functions. First, comparative evidence for parallel processing across multiple brain structures during navigation is provided from the literatures on fish and rodent navigation. Then, based on neurophysiological evidence of coordinated, multiregional processing, we provide a neurobiological explanation of learning and memory effects on neural circuitry mediating navigation.

  2. Neural changes underlying early stages of L2 vocabulary acquisition.

    Science.gov (United States)

    Pu, He; Holcomb, Phillip J; Midgley, Katherine J

    2016-11-01

    Research has shown neural changes following second language (L2) acquisition after weeks or months of instruction. But are such changes detectable even earlier than previously shown? The present study examines the electrophysiological changes underlying the earliest stages of second language vocabulary acquisition by recording event-related potentials (ERPs) within the first week of learning. Adult native English speakers with no previous Spanish experience completed less than four hours of Spanish vocabulary training, with pre- and post-training ERPs recorded to a backward translation task. Results indicate that beginning L2 learners show rapid neural changes following learning, manifested in changes to the N400 - an ERP component sensitive to lexicosemantic processing and degree of L2 proficiency. Specifically, learners in early stages of L2 acquisition show growth in N400 amplitude to L2 words following learning as well as a backward translation N400 priming effect that was absent pre-training. These results were shown within days of minimal L2 training, suggesting that the neural changes captured during adult second language acquisition are more rapid than previously shown. Such findings are consistent with models of early stages of bilingualism in adult learners of L2 ( e.g. Kroll and Stewart's RHM) and reinforce the use of ERP measures to assess L2 learning.

  3. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Minming [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Hu Shaohua [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Lijuan [National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing (China); Wang Qidong [Department of Radiology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Xu Xiaojun [Department of Radiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (China); Wei Erqing [College of Pharmacology, Zhejiang University (China); Yan Leqin [MD Anderson Cancer Center, Virginia Harris Cockrell Cancer Research Center, University of Texas, Austin (United States); Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China); Xu Yi, E-mail: xuyi61@yahoo.com.cn [Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qing Chun Road, Hangzhou, Zhejiang Province 310003 (China)

    2011-11-15

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  4. Neural circuits of disgust induced by sexual stimuli in homosexual and heterosexual men: An fMRI study

    International Nuclear Information System (INIS)

    Zhang Minming; Hu Shaohua; Xu Lijuan; Wang Qidong; Xu Xiaojun; Wei Erqing; Yan Leqin; Hu Jianbo; Wei Ning; Zhou Weihua; Huang Manli; Xu Yi

    2011-01-01

    Few studies demonstrated neural circuits related to disgust were influenced by internal sexual orientation in male. Here we used fMRI to study the neural responses to disgust in homosexual and heterosexual men to investigate that issue. Thirty-two healthy male volunteers (sixteen homosexual and sixteen heterosexual) were scanned while viewing alternating blocks of three types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity. All the participants rated their level of disgust and sexual arousal as well. The F-F and M-M stimuli induced disgust in homosexual and heterosexual men, respectively. The common activations related to disgusting stimuli included: bilateral frontal gyrus and occipital gyrus, right middle temporal gyrus, left superior temporal gyrus, right cerebellum, and right thalamus. Homosexual men had greater neural responses in the left medial frontal gyrus than did heterosexual men to the sexual disgusting stimuli; in contrast, heterosexual men showed significantly greater activation than homosexual men in the left cuneus. ROI analysis showed that negative correlation were found between the magnitude of MRI signals in the left medial frontal gyrus and scores of disgust in homosexual subjects (p < 0.05). This study indicated that there were regions in common as well as regions specific for each type of erotic stimuli during disgust of homosexual and heterosexual men.

  5. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia.

    Science.gov (United States)

    Crabtree, Gregg W; Gogos, Joseph A

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.

  6. Neural circuit mediating tentacle withdrawal in Helix aspersa, with specific reference to the competence of the motor neuron C3.

    Science.gov (United States)

    Prescott, S A; Gill, N; Chase, R

    1997-12-01

    The tentacle withdrawal reflex in the terrestrial snail Helix aspersa involves bending and retraction of the tentacles. When elicited by mechanical stimulation of the tentacle, the reflex is mediated by the conjoint action of the central and peripheral nervous systems. The neural circuit underlying the stimulus-response pathways was studied in vitro using a combination of morphological and physiological techniques. Sensory input caused by stimulation of the nose (situated at the superior tentacle's tip) first passes into the tentacle ganglion. Motor fibers are likely excited in the tentacle ganglion to form a peripheral stimulus-response pathway. While still in the tentacle ganglion, the excitation caused by a brief stimulus is transformed into a prolonged neuronal discharge. This modified signal travels, via the olfactory nerve, to the cerebral ganglion where it excites the giant motor neuron C3 along with numerous smaller motor neurons. Afferent input to C3 also arrives from several other sources. The afferent convergence is followed by a marked divergence of C3's output. C3 innervates the muscles mediating both tentacle retraction and tentacle bending through multiple cerebral nerves. Thus C3's pattern of effector innervation allows this single cell to elicit and coordinate both components of the tentacle withdrawal reflex. Lesion experiments indicate that C3 is responsible for 85% of the central contribution to tentacle retraction, though C3 is actually sufficient to mediate maximal muscle contraction as evidenced by intracellular stimulation. In addition to C3, three groups of putative central motor neurons were identified through nerve backfills and nerve recordings. The additional motor neurons mediating tentacle retraction are important for maximizing the rate of muscle contraction, whereas those mediating tentacle bending are likely more important for nondefensive behaviors. These neurons are arranged in parallel with C3, but unlike C3, each of these

  7. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    Science.gov (United States)

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational

  8. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  9. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  10. Organization Of The Drosophila Larval Visual Circuit

    OpenAIRE

    Fritsch, Pauline; Gendre, Nanae; Maier, Larisa; Fetter, Rick; Schneider-Mizell, Casey; Truman, James; Zlatic, Marta; Cardona, Albert; Larderet, Ivan; Sprecher, Simon

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on the types of photoreceptor neurons (PR) present, the organization of the eye and the wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create parallel circuits potentially un...

  11. Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit inC. elegans.

    Science.gov (United States)

    Kim, Byunghyuk; Emmons, Scott W

    2017-09-13

    Nervous system function relies on precise synaptic connections. A number of widely-conserved cell adhesion proteins are implicated in cell recognition between synaptic partners, but how these proteins act as a group to specify a complex neural network is poorly understood. Taking advantage of known connectivity in C. elegans , we identified and studied cell adhesion genes expressed in three interacting neurons in the mating circuits of the adult male. Two interacting pairs of cell surface proteins independently promote fasciculation between sensory neuron HOA and its postsynaptic target interneuron AVG: BAM-2/neurexin-related in HOA binds to CASY-1/calsyntenin in AVG; SAX-7/L1CAM in sensory neuron PHC binds to RIG-6/contactin in AVG. A third, basal pathway results in considerable HOA-AVG fasciculation and synapse formation in the absence of the other two. The features of this multiplexed mechanism help to explain how complex connectivity is encoded and robustly established during nervous system development.

  12. Investigating Circadian Rhythmicity in Pain Sensitivity Using a Neural Circuit Model for Spinal Cord Processing of Pain

    DEFF Research Database (Denmark)

    Crodelle, Jennifer; Piltz, Sofia Helena; Booth, Victoria

    2017-01-01

    that signal noxious and innocuous stimulation and the excitability properties of the included neuronal populations are constrained by experimental results. We consider models for the spinal cord circuit in isolation and when top-down inputs from higher brain areas that modulate pain processing are included......Primary processing of painful stimulation occurs in the dorsal horn of the spinal cord. In this article, we introduce mathematical models of the neural circuitry in the dorsal horn responsible for processing nerve fiber inputs from noxious stimulation of peripheral tissues and generating...... the resultant pain signal. The differential equation models describe the average firing rates of excitatory and inhibitory interneuron populations, as well as the wide dynamic range (WDR) neurons whose output correlates with the pain signal. The temporal profile of inputs on the different afferent nerve fibers...

  13. A Neural Circuit for Acoustic Navigation combining Heterosynaptic and Non-synaptic Plasticity that learns Stable Trajectories

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Reactive spatial robot navigation in goal-directed tasks such as phonotaxis requires generating consistent and stable trajectories towards an acoustic target while avoiding obstacles. High-level goal-directed steering behaviour can steer a robot towards the target by mapping sound direction...... information to appropriate wheel velocities. However, low-level obstacle avoidance behaviour based on distance sensors may significantly alter wheel velocities and temporarily direct the robot away from the sound source, creating conflict between the two behaviours. How can such a conflict in reactive...... controllers be resolved in a manner that generates consistent and stable robot trajectories? We propose a neural circuit that minimises this conflict by learning sensorimotor mappings as neuronal transfer functions between the perceived sound direction and wheel velocities of a simulated non-holonomic mobile...

  14. Adaptive neural network motion control for aircraft under uncertainty conditions

    Science.gov (United States)

    Efremov, A. V.; Tiaglik, M. S.; Tiumentsev, Yu V.

    2018-02-01

    We need to provide motion control of modern and advanced aircraft under diverse uncertainty conditions. This problem can be solved by using adaptive control laws. We carry out an analysis of the capabilities of these laws for such adaptive systems as MRAC (Model Reference Adaptive Control) and MPC (Model Predictive Control). In the case of a nonlinear control object, the most efficient solution to the adaptive control problem is the use of neural network technologies. These technologies are suitable for the development of both a control object model and a control law for the object. The approximate nature of the ANN model was taken into account by introducing additional compensating feedback into the control system. The capabilities of adaptive control laws under uncertainty in the source data are considered. We also conduct simulations to assess the contribution of adaptivity to the behavior of the system.

  15. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.

    Science.gov (United States)

    Briguglio, John J; Aizenberg, Mark; Balasubramanian, Vijay; Geffen, Maria N

    2018-02-21

    Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits that control cortical stimulus selectivity and sensory acuity. Theoretical studies have predicted that suppression of inhibition in such excitatory-inhibitory networks can lead to either an increase or, paradoxically, a decrease in excitatory neuronal firing, with consequent effects on stimulus selectivity. We tested whether modulation of inhibition or excitation in the auditory cortex of male mice could evoke such a variety of effects in tone-evoked responses and in behavioral frequency discrimination acuity. We found that, indeed, the effects of optogenetic manipulation on stimulus selectivity and behavior varied in both magnitude and sign across subjects, possibly reflecting differences in circuitry or expression of optogenetic factors. Changes in neural population responses consistently predicted behavioral changes for individuals separately, including improvement and impairment in acuity. This correlation between cortical and behavioral change demonstrates that, despite the complex and varied effects that these manipulations can have on neuronal dynamics, the resulting changes in cortical activity account for accompanying changes in behavioral acuity. SIGNIFICANCE STATEMENT Excitatory and inhibitory interactions determine stimulus specificity and tuning in sensory cortex, thereby controlling perceptual discrimination acuity. Modeling has predicted that suppressing the activity of inhibitory neurons can lead to increased or, paradoxically, decreased excitatory activity depending on the architecture of the network. Here, we capitalized on differences between subjects to test whether suppressing/activating inhibition and excitation can in fact exhibit such paradoxical effects for both stimulus sensitivity and behavioral discriminability. Indeed, the same optogenetic manipulation in the auditory cortex of different mice could improve or impair frequency discrimination

  16. The Vite Model: A Neural Command Circuit for Generating Arm and Articulator Trajectories,

    Science.gov (United States)

    1988-03-01

    associative map, looking at an object can activate a TPC of the hand-arm system, as Piaget (1963) noted. Then a VITE circuit can translate this latter TPC...A theory of human memory: Self-organization and performance of sensory-motor codes, maps, and plans. In R. Rosen and F. Snell (Eds.), Progress in...evolving control systems: evolution is not engineering. American Journal of Physiology, 242, R173-R177 (1982). Piaget , J., The Origins of Intelligence in

  17. Fluorescence-based monitoring of in vivo neural activity using a circuit-tracing pseudorabies virus.

    Directory of Open Access Journals (Sweden)

    Andrea E Granstedt

    Full Text Available The study of coordinated activity in neuronal circuits has been challenging without a method to simultaneously report activity and connectivity. Here we present the first use of pseudorabies virus (PRV, which spreads through synaptically connected neurons, to express a fluorescent calcium indicator protein and monitor neuronal activity in a living animal. Fluorescence signals were proportional to action potential number and could reliably detect single action potentials in vitro. With two-photon imaging in vivo, we observed both spontaneous and stimulated activity in neurons of infected murine peripheral autonomic submandibular ganglia (SMG. We optically recorded the SMG response in the salivary circuit to direct electrical stimulation of the presynaptic axons and to physiologically relevant sensory stimulation of the oral cavity. During a time window of 48 hours after inoculation, few spontaneous transients occurred. By 72 hours, we identified more frequent and prolonged spontaneous calcium transients, suggestive of neuronal or tissue responses to infection that influence calcium signaling. Our work establishes in vivo investigation of physiological neuronal circuit activity and subsequent effects of infection with single cell resolution.

  18. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    Directory of Open Access Journals (Sweden)

    Eline Borch Petersen

    2015-02-01

    Full Text Available Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory. One neural signature of working memory load is enhanced power of alpha oscillations (6 ‒ 12 Hz. However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of working memory when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and background noise level, while the electroencephalogram (EEG was recorded. In each trial, participants were presented with 2, 4, or 6 spoken digits embedded in one of three different levels of background noise. After a stimulus-free delay interval, participants indicated whether a probe digit had appeared in the sequence of digits. Participants were healthy older adults (62 – 86 years, with normal to moderately impaired hearing. Importantly, the background noise levels were individually adjusted and participants were wearing hearing aids to equalize audibility across participants. Irrespective of hearing loss, behavioral performance improved with lower memory load and also with lower levels of background noise. Interestingly, the alpha power in the stimulus-free delay interval was dependent on the interplay between task demands (memory load and noise level and hearing loss; while alpha power increased with hearing loss during low and intermediate levels of memory load and background noise, it dropped for participants with the relatively most severe hearing loss under the highest memory load and background noise level. These findings suggest that adaptive neural mechanisms for coping with adverse listening conditions break down for higher degrees of hearing loss, even when adequate hearing aid amplification is in place.

  19. A general circuit model for spintronic devices under electric and magnetic fields

    KAUST Repository

    Alawein, Meshal

    2017-10-25

    In this work, we present a circuit model of diffusive spintronic devices capable of capturing the effects of both electric and magnetic fields. Starting from a modified version of the well-established drift-diffusion equations, we derive general equivalent circuit models of semiconducting/metallic nonmagnets and metallic ferromagnets. In contrast to other models that are based on steady-state transport equations which might also neglect certain effects such as thermal fluctuations, spin dissipation in the ferromagnets, and spin precession under magnetic fields, our model incorporates most of the important physics and is based on a time-dependent formulation. An application of our model is shown through simulations of a nonlocal spin-valve under the presence of a magnetic field, where we reproduce experimental results of electrical measurements that demonstrate the phenomena of spin precession and dephasing (“Hanle effect”).

  20. Cobalt deposition studies in the primary circuit under BWR conditions (Phase 1 and 2)

    International Nuclear Information System (INIS)

    Bennett, Peter

    1996-04-01

    This report presents the results from the first 2 phases of an experiment performed to investigate the effects of water chemistry on cobalt transport and deposition in the primary circuit under BWR conditions. Two high pressure water loops have been used to compare the incorporation of cobalt into the oxide films on coupons of various LWR primary circuit constructional materials, with several pretreatments, under Hydrogen Water Chemistry (HWC) and Normal Water Chemistry (NWC) conditions. Cobalt-60 deposition rates onto samples that had been pre-oxidised in air were lower than on samples that had been exposed previously in a water loop or had untreated surfaces. In NWC, oxide layers were thicker, normalised Co-60 deposition rates were higher and Co-60 activities per unit volume of oxide were greater. Some evidence has been produced to support the conclusions of other workers that a chromium-rich outer oxide layer is responsible for enhanced cobalt incorporation. (author)

  1. Neural basis of increased costly norm enforcement under adversity.

    Science.gov (United States)

    Wu, Yan; Yu, Hongbo; Shen, Bo; Yu, Rongjun; Zhou, Zhiheng; Zhang, Guoping; Jiang, Yushi; Zhou, Xiaolin

    2014-12-01

    Humans are willing to punish norm violations even at a substantial personal cost. Using fMRI and a variant of the ultimatum game and functional magnetic resonance imaging, we investigated how the brain differentially responds to fairness in loss and gain domains. Participants (responders) received offers from anonymous partners indicating a division of an amount of monetary gain or loss. If they accept, both get their shares according to the division; if they reject, both get nothing or lose the entire stake. We used a computational model to derive perceived fairness of offers and participant-specific inequity aversion. Behaviorally, participants were more likely to reject unfair offers in the loss (vs gain) domain. Neurally, the positive correlation between fairness and activation in ventral striatum was reduced, whereas the negative correlations between fairness and activations in dorsolateral prefrontal cortex were enhanced in the loss domain. Moreover, rejection-related dorsal striatum activation was higher in the loss domain. Furthermore, the gain-loss domain modulates costly punishment only when unfair behavior was directed toward the participants and not when it was directed toward others. These findings provide neural and computational accounts of increased costly norm enforcement under adversity and advanced our understanding of the context-dependent nature of fairness preference. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism

    OpenAIRE

    Zikopoulos, Basilis; Barbas, Helen

    2013-01-01

    Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathway...

  3. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    Science.gov (United States)

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD noise ratios.

  4. Neural reuse of action perception circuits for language, concepts and communication.

    Science.gov (United States)

    Pulvermüller, Friedemann

    2018-01-01

    Neurocognitive and neurolinguistics theories make explicit statements relating specialized cognitive and linguistic processes to specific brain loci. These linking hypotheses are in need of neurobiological justification and explanation. Recent mathematical models of human language mechanisms constrained by fundamental neuroscience principles and established knowledge about comparative neuroanatomy offer explanations for where, when and how language is processed in the human brain. In these models, network structure and connectivity along with action- and perception-induced correlation of neuronal activity co-determine neurocognitive mechanisms. Language learning leads to the formation of action perception circuits (APCs) with specific distributions across cortical areas. Cognitive and linguistic processes such as speech production, comprehension, verbal working memory and prediction are modelled by activity dynamics in these APCs, and combinatorial and communicative-interactive knowledge is organized in the dynamics within, and connections between APCs. The network models and, in particular, the concept of distributionally-specific circuits, can account for some previously not well understood facts about the cortical 'hubs' for semantic processing and the motor system's role in language understanding and speech sound recognition. A review of experimental data evaluates predictions of the APC model and alternative theories, also providing detailed discussion of some seemingly contradictory findings. Throughout, recent disputes about the role of mirror neurons and grounded cognition in language and communication are assessed critically. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Normalization of Intrinsic Neural Circuits Governing Tourette's Syndrome Using Cranial Electrotherapy Stimulation.

    Science.gov (United States)

    Qiao, Jianping; Weng, Shenhong; Wang, Pengwei; Long, Jun; Wang, Zhishun

    2015-05-01

    The aim of this study was to investigate the normalization of the intrinsic functional activity and connectivity of TS adolescents before and after the cranial electrotherapy stimulation (CES) with alpha stim device. We performed resting-state functional magnetic resonance imaging on eight adolescents before and after CES with mean age of about nine-years old who had Tourette's syndrome with moderate to severe tics symptom. Independent component analysis (ICA) with hierarchical partner matching method was used to examine the functional connectivity between regions within cortico-striato-thalamo-cortical (CSTC) circuit. Granger causality was used to investigate effective connectivity among these regions detected by ICA. We then performed pattern classification on independent components with significant group differences that served as endophenotype markers to distinguish the adolescents between TS and the normalized ones after CES. Results showed that TS adolescents after CES treatment had stronger functional activity and connectivity in anterior cingulate cortex (ACC), caudate and posterior cingulate cortex while had weaker activity in supplementary motor area within the motor pathway compared with TS before CES. The results suggest that the functional activity and connectivity in motor pathway was suppressed while activities in the control portions within CSTC loop including ACC and caudate were increased in TS adolescents after CES compared with adolescents before CES. The normalization of the balance between motor and control portions of the CSTC circuit may result in the recovery of TS adolescents.

  6. Effects of aversive stimuli beyond defensive neural circuits: reduced excitability in an identified neuron critical for feeding in Aplysia.

    Science.gov (United States)

    Shields-Johnson, Maria E; Hernandez, John S; Torno, Cody; Adams, Katherine M; Wainwright, Marcy L; Mozzachiodi, Riccardo

    2012-12-14

    In Aplysia, repeated trials of aversive stimuli produce long-term sensitization (LTS) of defensive reflexes and suppression of feeding. Whereas the cellular underpinnings of LTS have been characterized, the mechanisms of feeding suppression remained unknown. Here, we report that LTS training induced a long-term decrease in the excitability of B51 (a decision-making neuron in the feeding circuit) that recovered at a time point in which LTS is no longer observed (72 h post-treatment). These findings indicate B51 as a locus of plasticity underlying feeding suppression. Finally, treatment with serotonin to induce LTS failed to alter feeding and B51 excitability, suggesting that serotonin does not mediate the effects of LTS training on the feeding circuit.

  7. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.

  8. (Physio)logical circuits: the intellectual origins of the McCulloch-Pitts neural networks.

    Science.gov (United States)

    Abraham, Tara H

    2002-01-01

    This article examines the intellectual and institutional factors that contributed to the collaboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, "A Logical Calculus of the Ideas Immanent in Nervous Activity." Historians and scientists alike often refer to the McCulloch-Pitts paper as a landmark event in the history of cybernetics, and fundamental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch-Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Although they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch-Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena. Copyright 2002 Wiley Periodicals, Inc.

  9. Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning: implications for underlying fear circuits.

    Science.gov (United States)

    Burghardt, N S; Bauer, E P

    2013-09-05

    Selective serotonin reuptake inhibitors (SSRIs) are widely used for the treatment of a spectrum of anxiety disorders, yet paradoxically they may increase symptoms of anxiety when treatment is first initiated. Despite extensive research over the past 30 years focused on SSRI treatment, the precise mechanisms by which SSRIs exert these opposing acute and chronic effects on anxiety remain unknown. By testing the behavioral effects of SSRI treatment on Pavlovian fear conditioning, a well characterized model of emotional learning, we have the opportunity to identify how SSRIs affect the functioning of specific brain regions, including the amygdala, bed nucleus of the stria terminalis (BNST) and hippocampus. In this review, we first define different stages of learning involved in cued and context fear conditioning and describe the neural circuits underlying these processes. We examine the results of numerous rodent studies investigating how acute SSRI treatment modulates fear learning and relate these effects to the known functions of serotonin in specific brain regions. With these findings, we propose a model by which acute SSRI administration, by altering neural activity in the extended amygdala and hippocampus, enhances both acquisition and expression of cued fear conditioning, but impairs the expression of contextual fear conditioning. Finally, we review the literature examining the effects of chronic SSRI treatment on fear conditioning in rodents and describe how downregulation of N-methyl-d-aspartate (NMDA) receptors in the amygdala and hippocampus may mediate the impairments in fear learning and memory that are reported. While long-term SSRI treatment effectively reduces symptoms of anxiety, their disruptive effects on fear learning should be kept in mind when combining chronic SSRI treatment and learning-based therapies, such as cognitive behavioral therapy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales.

    Science.gov (United States)

    Fusi, Stefano; Asaad, Wael F; Miller, Earl K; Wang, Xiao-Jing

    2007-04-19

    Volitional behavior relies on the brain's ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuomotor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well-established sensorimotor associations.

  11. Neural mechanisms underlying cognitive inflexibility in Parkinson's disease.

    Science.gov (United States)

    Lange, Florian; Seer, Caroline; Loens, Sebastian; Wegner, Florian; Schrader, Christoph; Dressler, Dirk; Dengler, Reinhard; Kopp, Bruno

    2016-12-01

    Cognitive inflexibility is a hallmark of executive dysfunction in Parkinson's disease (PD). This deficit consistently manifests itself in a PD-related increase in the number of perseverative errors committed on the Wisconsin Card Sorting Test (WCST). However, the neural processes underlying perseverative WCST performance in PD are still largely unknown. The present study is the first to investigate the event-related potential (ERP) correlates of cognitive inflexibility on the WCST in PD patients. Thirty-two PD patients and 35 matched control participants completed a computerized version of the WCST while the electroencephalogram (EEG) was recorded. Behavioral results revealed the expected increase in perseverative errors in patients with PD. ERP analysis focused on two established indicators of executive processes: the fronto-central P3a as an index of attentional orienting and the sustained parietal positivity (SPP) as an index of set-shifting processes. In comparison to controls, P3a amplitudes were significantly attenuated in PD patients. Regression analysis further revealed that P3a and SPP amplitudes interactively contributed to the prediction of perseverative errors in PD patients: The number of perseverative errors was only increased when both ERP amplitudes were attenuated. Notably, the two ERP markers of executive processes accounted for more than 40% of the variance in perseverative errors in PD patients. We conclude that cognitive inflexibility in PD occurs when the neural bases of multiple executive processes are affected by the pathophysiology of PD. The combined measurement of P3a and SPP might yield an electrophysiological marker of cognitive inflexibility in PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Neural processes underlying the orienting of attention without awareness.

    Science.gov (United States)

    Giattino, Charles M; Alam, Zaynah M; Woldorff, Marty G

    2017-07-22

    Despite long being of interest to both philosophers and scientists, the relationship between attention and perceptual awareness is not well understood, especially to what extent they are even dissociable. Previous studies have shown that stimuli of which we are unaware can orient spatial attention and affect behavior. Yet, relatively little is understood about the neural processes underlying such unconscious orienting of attention, and how they compare to conscious orienting. To directly compare the cascade of attentional processes with and without awareness of the orienting stimulus, we employed a spatial-cueing paradigm and used object-substitution masking to manipulate subjects' awareness of the cues. We recorded EEG during the task, from which we extracted hallmark event-related-potential (ERP) indices of attention. Behaviorally, there was a 61 ms validity effect (invalidly minus validly cued target RTs) on cue-aware trials. On cue-unaware trials, subjects also had a robust validity effect of 20 ms, despite being unaware of the cue. An N2pc to the cue, a hallmark ERP index of the lateralized orienting of attention, was observed for cue-aware but not cue-unaware trials, despite the latter showing a clear behavioral validity effect. Finally, the P1 sensory-ERP response to the targets was larger when validly versus invalidly cued, even when subjects were unaware of the preceding cue, demonstrating enhanced sensory processing of targets following subliminal cues. These results suggest that subliminal stimuli can orient attention and lead to subsequent enhancements to both stimulus sensory processing and behavior, but through different neural mechanisms (such as via a subcortical pathway) than stimuli we perceive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neural Mechanisms Underlying Hyperphagia in Prader-Willi Syndrome

    Science.gov (United States)

    Holsen, Laura M.; Zarcone, Jennifer R.; Brooks, William M.; Butler, Merlin G.; Thompson, Travis I.; Ahluwalia, Jasjit S.; Nollen, Nicole L.; Savage, Cary R.

    2006-01-01

    Objective Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Research Methods and Procedures Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Results Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Discussion Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and para-limbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC). PMID:16861608

  14. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome.

    Science.gov (United States)

    Holsen, Laura M; Zarcone, Jennifer R; Brooks, William M; Butler, Merlin G; Thompson, Travis I; Ahluwalia, Jasjit S; Nollen, Nicole L; Savage, Cary R

    2006-06-01

    Prader-Willi syndrome (PWS) is a genetic disorder associated with developmental delay, obesity, and obsessive behavior related to food consumption. The most striking symptom of PWS is hyperphagia; as such, PWS may provide important insights into factors leading to overeating and obesity in the general population. We used functional magnetic resonance imaging to study the neural mechanisms underlying responses to visual food stimuli, before and after eating, in individuals with PWS and a healthy weight control (HWC) group. Participants were scanned once before (pre-meal) and once after (post-meal) eating a standardized meal. Pictures of food, animals, and blurred control images were presented in a block design format during acquisition of functional magnetic resonance imaging data. Statistical contrasts in the HWC group showed greater activation to food pictures in the pre-meal condition compared with the post-meal condition in the amygdala, orbitofrontal cortex, medial prefrontal cortex (medial PFC), and frontal operculum. In comparison, the PWS group exhibited greater activation to food pictures in the post-meal condition compared with the pre-meal condition in the orbitofrontal cortex, medial PFC, insula, hippocampus, and parahippocampal gyrus. Between-group contrasts in the pre- and post-meal conditions confirmed group differences, with the PWS group showing greater activation than the HWC group after the meal in food motivation networks. Results point to distinct neural mechanisms associated with hyperphagia in PWS. After eating a meal, the PWS group showed hyperfunction in limbic and paralimbic regions that drive eating behavior (e.g., the amygdala) and in regions that suppress food intake (e.g., the medial PFC).

  15. Neural circuits in the brain that are activated when mitigating criminal sentences.

    Science.gov (United States)

    Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-03-27

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.

  16. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study

    Directory of Open Access Journals (Sweden)

    Przemysław Adamczyk

    2017-01-01

    Full Text Available Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH outpatients (n = 20, and sex, age and education level matched healthy controls (n = 20. The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral – complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41 in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9 in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24 in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9 and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24. Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension

  17. Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.

    Science.gov (United States)

    Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz

    2017-01-01

    Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing

  18. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism

    Directory of Open Access Journals (Sweden)

    Basilis eZikopoulos

    2013-09-01

    Full Text Available Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.

  19. Anatomical characterization of cre driver mice for neural circuit mapping and manipulation

    Directory of Open Access Journals (Sweden)

    Julie Ann Harris

    2014-07-01

    Full Text Available Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization, imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute’s Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain.

  20. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation

    Science.gov (United States)

    Harris, Julie A.; Hirokawa, Karla E.; Sorensen, Staci A.; Gu, Hong; Mills, Maya; Ng, Lydia L.; Bohn, Phillip; Mortrud, Marty; Ouellette, Benjamin; Kidney, Jolene; Smith, Kimberly A.; Dang, Chinh; Sunkin, Susan; Bernard, Amy; Oh, Seung Wook; Madisen, Linda; Zeng, Hongkui

    2014-01-01

    Significant advances in circuit-level analyses of the brain require tools that allow for labeling, modulation of gene expression, and monitoring and manipulation of cellular activity in specific cell types and/or anatomical regions. Large-scale projects and individual laboratories have produced hundreds of gene-specific promoter-driven Cre mouse lines invaluable for enabling genetic access to subpopulations of cells in the brain. However, the potential utility of each line may not be fully realized without systematic whole brain characterization of transgene expression patterns. We established a high-throughput in situ hybridization (ISH), imaging and data processing pipeline to describe whole brain gene expression patterns in Cre driver mice. Currently, anatomical data from over 100 Cre driver lines are publicly available via the Allen Institute's Transgenic Characterization database, which can be used to assist researchers in choosing the appropriate Cre drivers for functional, molecular, or connectional studies of different regions and/or cell types in the brain. PMID:25071457

  1. A Neural Circuit Model of Flexible Sensori-motor Mapping: Learning and Forgetting on Multiple Timescales

    Science.gov (United States)

    Fusi, Stefano; Asaad, Wael F.; Miller, Earl K.; Wang, Xiao-Jing

    2007-01-01

    Summary Volitional behavior relies on the brain’s ability to remap sensory flow to motor programs whenever demanded by a changed behavioral context. To investigate the circuit basis of such flexible behavior, we have developed a biophysically-based decision-making network model of spiking neurons for arbitrary sensorimotor mapping. The model quantitatively reproduces behavioral and prefrontal single-cell data from an experiment in which monkeys learn visuo-motor associations that are reversed unpredictably from time to time. We show that when synaptic modifications occur on multiple timescales, the model behavior becomes flexible only when needed: slow components of learning usually dominate the decision process. However, if behavioral contexts change frequently enough, fast components of plasticity take over, and the behavior exhibits a quick forget-and-learn pattern. This model prediction is confirmed by monkey data. Therefore, our work reveals a scenario for conditional associative learning that is distinct from instant switching between sets of well established sensorimotor associations. PMID:17442251

  2. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Science.gov (United States)

    Lo, Chung-Chuan; Wang, Xiao-Jing

    2016-08-01

    Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor) neural circuit mechanism with discrimination in perception.

  3. Conflict Resolution as Near-Threshold Decision-Making: A Spiking Neural Circuit Model with Two-Stage Competition for Antisaccadic Task.

    Directory of Open Access Journals (Sweden)

    Chung-Chuan Lo

    2016-08-01

    Full Text Available Automatic responses enable us to react quickly and effortlessly, but they often need to be inhibited so that an alternative, voluntary action can take place. To investigate the brain mechanism of controlled behavior, we investigated a biologically-based network model of spiking neurons for inhibitory control. In contrast to a simple race between pro- versus anti-response, our model incorporates a sensorimotor remapping module, and an action-selection module endowed with a "Stop" process through tonic inhibition. Both are under the modulation of rule-dependent control. We tested the model by applying it to the well known antisaccade task in which one must suppress the urge to look toward a visual target that suddenly appears, and shift the gaze diametrically away from the target instead. We found that the two-stage competition is crucial for reproducing the complex behavior and neuronal activity observed in the antisaccade task across multiple brain regions. Notably, our model demonstrates two types of errors: fast and slow. Fast errors result from failing to inhibit the quick automatic responses and therefore exhibit very short response times. Slow errors, in contrast, are due to incorrect decisions in the remapping process and exhibit long response times comparable to those of correct antisaccade responses. The model thus reveals a circuit mechanism for the empirically observed slow errors and broad distributions of erroneous response times in antisaccade. Our work suggests that selecting between competing automatic and voluntary actions in behavioral control can be understood in terms of near-threshold decision-making, sharing a common recurrent (attractor neural circuit mechanism with discrimination in perception.

  4. Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice

    Directory of Open Access Journals (Sweden)

    Naoki Matsuo

    2009-09-01

    Full Text Available The alpha-isoform of calcium/calmodulin-dependent protein kinase II (α-CaMKII is expressed abundantly in the forebrain and is considered to have an essential role in synaptic plasticity and cognitive function. Previously, we reported that mice heterozygous for a null mutation of α-CaMKII (α-CaMKII+/- have profoundly dysregulated behaviors including a severe working memory deficit, which is an endophenotype of schizophrenia and other psychiatric disorders. In addition, we found that almost all the neurons in the dentate gyrus (DG of the mutant mice failed to mature at molecular, morphological and electrophysiological levels. In the present study, to identify the brain substrates of the working memory deficit in the mutant mice, we examined the expression of the immediate early genes (IEGs, c-Fos and Arc, in the brain after a working memory version of the eight-arm radial maze test. c-Fos expression was abolished almost completely in the DG and was reduced significantly in neurons in the CA1 and CA3 areas of the hippocampus, central amygdala, and medial prefrontal cortex (mPFC. However, c-Fos expression was intact in the entorhinal and visual cortices. Immunohistochemical studies using arc promoter driven dVenus transgenic mice demonstrated that arc gene activation after the working memory task occurred in mature, but not immature neurons in the DG of wild-type mice. These results suggest crucial insights for the neural circuits underlying spatial mnemonic processing during a working memory task and suggest the involvement of α-CaMKII in the proper maturation and integration of DG neurons into these circuits.

  5. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  6. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  7. Analytic Treatment of Deep Neural Networks Under Additive Gaussian Noise

    KAUST Repository

    Alfadly, Modar M.

    2018-04-12

    Despite the impressive performance of deep neural networks (DNNs) on numerous vision tasks, they still exhibit yet-to-understand uncouth behaviours. One puzzling behaviour is the reaction of DNNs to various noise attacks, where it has been shown that there exist small adversarial noise that can result in a severe degradation in the performance of DNNs. To rigorously treat this, we derive exact analytic expressions for the first and second moments (mean and variance) of a small piecewise linear (PL) network with a single rectified linear unit (ReLU) layer subject to general Gaussian input. We experimentally show that these expressions are tight under simple linearizations of deeper PL-DNNs, especially popular architectures in the literature (e.g. LeNet and AlexNet). Extensive experiments on image classification show that these expressions can be used to study the behaviour of the output mean of the logits for each class, the inter-class confusion and the pixel-level spatial noise sensitivity of the network. Moreover, we show how these expressions can be used to systematically construct targeted and non-targeted adversarial attacks. Then, we proposed a special estimator DNN, named mixture of linearizations (MoL), and derived the analytic expressions for its output mean and variance, as well. We employed these expressions to train the model to be particularly robust against Gaussian attacks without the need for data augmentation. Upon training this network on a loss that is consolidated with the derived output probabilistic moments, the network is not only robust under very high variance Gaussian attacks but is also as robust as networks that are trained with 20 fold data augmentation.

  8. Hearing loss impacts neural alpha oscillations under adverse listening conditions

    OpenAIRE

    Petersen, Eline B.; Wöstmann, Malte; Obleser, Jonas; Stenfelt, Stefan; Lunner, Thomas

    2015-01-01

    Degradations in external, acoustic stimulation have long been suspected to increase the load on working memory (WM). One neural signature of WM load is enhanced power of alpha oscillations (6–12 Hz). However, it is unknown to what extent common internal, auditory degradation, that is, hearing impairment, affects the neural mechanisms of WM when audibility has been ensured via amplification. Using an adapted auditory Sternberg paradigm, we varied the orthogonal factors memory load and backgrou...

  9. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit

    NARCIS (Netherlands)

    Li, Zhuang; Yi, Chun-Xia; Katiraei, Saeed; Kooijman, Sander; Zhou, Enchen; Chung, Chih Kit; Gao, Yuanqing; van den Heuvel, José K.; Meijer, Onno C.; Berbée, Jimmy F. P.; Heijink, Marieke; Giera, Martin; Willems van Dijk, Ko; Groen, Albert K.; Rensen, Patrick C. N.; Wang, Yanan

    2017-01-01

    Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate. Acute effects

  10. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation.

    Directory of Open Access Journals (Sweden)

    David Zada

    2014-09-01

    Full Text Available The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2 gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8-/- zebrafish using zinc-finger nuclease (ZFN-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8-/- larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8-/- larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8-/- larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8-/- larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit

  11. Molecular mechanisms underlying monosynaptic sensory-motor circuit development in the spinal cord.

    Science.gov (United States)

    Imai, Fumiyasu; Yoshida, Yutaka

    2018-04-01

    Motor behaviors are precisely controlled by the integration of sensory and motor systems in the central nervous system (CNS). Proprioceptive sensory neurons, key components of the sensory system, are located in the dorsal root ganglia and project axons both centrally to the spinal cord and peripherally to muscles and tendons, communicating peripheral information about the body to the CNS. Changes in muscle length detected by muscle spindles, and tension variations in tendons conveyed by Golgi tendon organs, are communicated to the CNS through group Ia /II, and Ib proprioceptive sensory afferents, respectively. Group Ib proprioceptive sensory neurons connect with motor neurons indirectly through spinal interneurons, whereas group Ia/II axons form both direct (monosynaptic) and indirect connections with motor neurons. Although monosynaptic sensory-motor circuits between spindle proprioceptive sensory neurons and motor neurons have been extensively studied since 1950s, the molecular mechanisms underlying their formation and upkeep have only recently begun to be understood. We will discuss our current understanding of the molecular foundation of monosynaptic circuit development and maintenance involving proprioceptive sensory neurons and motor neurons in the mammalian spinal cord. Developmental Dynamics 247:581-587, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Neural correlates underlying true and false associative memories.

    Science.gov (United States)

    Dennis, Nancy A; Johnson, Christina E; Peterson, Kristina M

    2014-07-01

    Despite the fact that associative memory studies produce a large number of false memories, neuroimaging analyses utilizing this paradigm typically focus only on neural activity mediating successful retrieval. The current study sought to expand on this prior research by examining the neural basis of both true and false associative memories. Though associative false memories are substantially different than those found in semantic or perceptual false memory paradigms, results suggest that associative false memories are mediated by similar neural mechanisms. Specifically, we found increased frontal activity that likely represents enhanced monitoring and evaluation compared to that needed for true memories and correct rejections. Results also indicated that true, and not false associative memories, are mediated by neural activity in the MTL, specifically the hippocampus. Finally, while activity in early visual cortex distinguished true from false memories, a lack of neural differences between hits and correct rejections failed to support previous findings suggesting that activity in early visual cortex represents sensory reactivation of encoding-related processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Identifying the Neural Correlates Underlying Social Pain: Implications for Developmental Processes

    Science.gov (United States)

    Eisenberger, Naomi I.

    2006-01-01

    Although the need for social connection is critical for early social development as well as for psychological well-being throughout the lifespan, relatively little is known about the neural processes involved in maintaining social connections. The following review summarizes what is known regarding the neural correlates underlying feeling of…

  14. Neural mechanisms underlying probalistic category learning in normal aging.

    NARCIS (Netherlands)

    Fera, F.; Weickert, T.W.; Goldberg, T.E.; Tessitore, A.; Hariri, A.; Das, S.; Lee, S.; Zoltick, B.; Meeter, M.; Gluck, M.A.; Weinberger, D.A.; Matta, V.S.

    2005-01-01

    Probabilistic category learning engages neural circuitry that includes the prefrontal cortex and caudate nucleus, two regions that show prominent changes with normal aging. However, the specific contributions of these brain regions are uncertain, and the effects of normal aging have not been

  15. Neural suppression of irrelevant information underlies optimal working memory performance.

    Science.gov (United States)

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  16. Neural processing of reward magnitude under varying attentional demands.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-04-06

    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Neural mechanisms underlying neurooptometric rehabilitation following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hudac CM

    2012-01-01

    Full Text Available Caitlin M Hudac1, Srinivas Kota1, James L Nedrow2, Dennis L Molfese1,31Department of Psychology, University of Nebraska-Lincoln, 2Oculi Vision Rehabilitation, 3Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NEAbstract: Mild to severe traumatic brain injuries have lasting effects on everyday functioning. Issues relating to sensory problems are often overlooked or not addressed until well after the onset of the injury. In particular, vision problems related to ambient vision and the magnocellular pathway often result in posttrauma vision syndrome or visual midline shift syndrome. Symptoms from these syndromes are not restricted to the visual domain. Patients commonly experience proprioceptive, kinesthetic, vestibular, cognitive, and language problems. Neurooptometric rehabilitation often entails the use of corrective lenses, prisms, and binasal occlusion to accommodate the unstable magnocellular system. However, little is known regarding the neural mechanisms engaged during neurooptometric rehabilitation, nor how these mechanisms impact other domains. Event-related potentials from noninvasive electrophysiological recordings can be used to assess rehabilitation progress in patients. In this case report, high-density visual event-related potentials were recorded from one patient with posttrauma vision syndrome and secondary visual midline shift syndrome during a pattern reversal task, both with and without prisms. Results indicate that two factors occurring during the end portion of the P148 component (168–256 milliseconds poststimulus onset map onto two separate neural systems that were engaged with and without neurooptometric rehabilitation. Without prisms, neural sources within somatosensory, language, and executive brain regions engage inefficient magnocellular system processing. However, when corrective prisms were worn, primary visual areas were appropriately engaged. The impact of using early

  18. Age-related neural correlates of cognitive task performance under increased postural load

    NARCIS (Netherlands)

    Van Impe, A; Bruijn, S M; Coxon, J P; Wenderoth, N; Sunaert, S; Duysens, J; Swinnen, S P

    2013-01-01

    Behavioral studies suggest that postural control requires increased cognitive control and visuospatial processing with aging. Consequently, performance can decline when concurrently performing a postural and a demanding cognitive task. We aimed to identify the neural substrate underlying this

  19. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    Science.gov (United States)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  20. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  1. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  2. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  3. Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies.

    Science.gov (United States)

    Müller, E J; van Albada, S J; Kim, J W; Robinson, P A

    2017-09-07

    The mechanisms underlying pathologically synchronized neural oscillations in Parkinson's disease (PD) and generalized epilepsies are explored in parallel via a physiologically-based neural field model of the corticothalamic-basal ganglia (CTBG) system. The basal ganglia (BG) are approximated as a single effective population and their roles in the modulation of oscillatory dynamics of the corticothalamic (CT) system and vice versa are analyzed. In addition to normal EEG rhythms, enhanced activity around 4 Hz and 20 Hz exists in the model, consistent with the characteristic frequencies observed in PD. These rhythms result from resonances in loops formed between the BG and CT populations, analogous to those that underlie epileptic oscillations in a previous CT model, and which are still present in the combined CTBG system. Dopamine depletion is argued to weaken the dampening of these loop resonances in PD, and network connections then explain the significant coherence observed between BG, thalamic, and cortical population activity around 4-8 Hz and 20 Hz. Parallels between the afferent and efferent connection sites of the thalamic reticular nucleus (TRN) and BG predict low dopamine to correspond to a reduced likelihood of tonic-clonic (grand mal) seizures, which agrees with experimental findings. Furthermore, the model predicts an increased likelihood of absence (petit mal) seizure resulting from pathologically low dopamine levels in accordance with experimental observations. Suppression of absence seizure activity is demonstrated when afferent and efferent BG connections to the CT system are strengthened, which is consistent with other CTBG modeling studies. The BG are demonstrated to have a suppressive effect on activity of the CTBG system near tonic-clonic seizure states, which provides insight into the reported efficacy of current treatments in BG circuits. Sleep states of the TRN are also found to suppress pathological PD activity in accordance with

  4. The neural bases underlying social risk perception in purchase decisions.

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Sugiura, Motoaki; Yomogida, Yukihito; Takeuchi, Hikaru; Akimoto, Yoritaka; Shibuya, Satoru; Kawashima, Ryuta

    2014-05-01

    Social considerations significantly influence daily purchase decisions, and the perception of social risk (i.e., the anticipated disapproval of others) is crucial in dissuading consumers from making purchases. However, the neural basis for consumers' perception of social risk remains undiscovered, and this novel study clarifies the relevant neural processes. A total of 26 volunteers were scanned while they evaluated purchase intention of products (purchase intention task) and their anticipation of others' disapproval for possessing a product (social risk task), using functional magnetic resonance imaging (fMRI). The fMRI data from the purchase intention task was used to identify the brain region associated with perception of social risk during purchase decision making by using subjective social risk ratings for a parametric modulation analysis. Furthermore, we aimed to explore if there was a difference between participants' purchase decisions and their explicit evaluations of social risk, with reference to the neural activity associated with social risk perception. For this, subjective social risk ratings were used for a parametric modulation analysis on fMRI data from the social risk task. Analysis of the purchase intention task revealed a significant positive correlation between ratings of social risk and activity in the anterior insula, an area of the brain that is known as part of the emotion-related network. Analysis of the social risk task revealed a significant positive correlation between ratings of social risk and activity in the temporal parietal junction and the medial prefrontal cortex, which are known as theory-of-mind regions. Our results suggest that the anterior insula processes consumers' social risk implicitly to prompt consumers not to buy socially unacceptable products, whereas ToM-related regions process such risk explicitly in considering the anticipated disapproval of others. These findings may prove helpful in understanding the mental

  5. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  6. The behavioral and neural mechanisms underlying the tracking of expertise.

    Science.gov (United States)

    Boorman, Erie D; O'Doherty, John P; Adolphs, Ralph; Rangel, Antonio

    2013-12-18

    Evaluating the abilities of others is fundamental for successful economic and social behavior. We investigated the computational and neurobiological basis of ability tracking by designing an fMRI task that required participants to use and update estimates of both people and algorithms' expertise through observation of their predictions. Behaviorally, we find a model-based algorithm characterized subject predictions better than several alternative models. Notably, when the agent's prediction was concordant rather than discordant with the subject's own likely prediction, participants credited people more than algorithms for correct predictions and penalized them less for incorrect predictions. Neurally, many components of the mentalizing network-medial prefrontal cortex, anterior cingulate gyrus, temporoparietal junction, and precuneus-represented or updated expertise beliefs about both people and algorithms. Moreover, activity in lateral orbitofrontal and medial prefrontal cortex reflected behavioral differences in learning about people and algorithms. These findings provide basic insights into the neural basis of social learning. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Dentate Gyrus Local Circuit is Implicated in Learning Under Stress--a Role for Neurofascin.

    Science.gov (United States)

    Zitman, Femke M P; Lucas, Morgan; Trinks, Sabine; Grosse-Ophoff, Laura; Kriebel, Martin; Volkmer, Hansjürgen; Richter-Levin, Gal

    2016-03-01

    The inhibitory synapses at the axon initial segment (AIS) of dentate gyrus granular cells are almost exclusively innervated by the axo-axonic chandelier interneurons. However, the role of chandelier neurons in local circuitry is poorly understood and controversially discussed. The cell adhesion molecule neurofascin is specifically expressed at the AIS. It is crucially required for the stabilization of axo-axonic synapses. Knockdown of neurofascin is therefore a convenient tool to interfere with chandelier input at the AIS of granular neurons of the dentate gyrus. In the current study, feedback and feedforward inhibition of granule cells was measured in the dentate gyrus after knockdown of neurofascin and concomitant reduction of axo-axonic input. Results show increased feedback inhibition as a result of neurofascin knockdown, while feedforward inhibition remained unaffected. This suggests that chandelier neurons are predominantly involved in feedback inhibition. Neurofascin knockdown rats also exhibited impaired learning under stress in the two-way shuttle avoidance task. Remarkably, this learning impairment was not accompanied by differences in electrophysiological measurements of dentate gyrus LTP. This indicates that the local circuit may be involved in (certain types) of learning.

  8. Loss of CLOCK Results in Dysfunction of Brain Circuits Underlying Focal Epilepsy.

    Science.gov (United States)

    Li, Peijun; Fu, Xiaoqin; Smith, Nathan A; Ziobro, Julie; Curiel, Julian; Tenga, Milagros J; Martin, Brandon; Freedman, Samuel; Cea-Del Rio, Christian A; Oboti, Livio; Tsuchida, Tammy N; Oluigbo, Chima; Yaun, Amanda; Magge, Suresh N; O'Neill, Brent; Kao, Amy; Zelleke, Tesfaye G; Depositario-Cabacar, Dewi T; Ghimbovschi, Svetlana; Knoblach, Susan; Ho, Chen-Ying; Corbin, Joshua G; Goodkin, Howard P; Vicini, Stefano; Huntsman, Molly M; Gaillard, William D; Valdez, Gregorio; Liu, Judy S

    2017-10-11

    Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clock flox/flox and PV-Cre; Clock flox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clock flox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clock flox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clock flox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clock flox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity

    Directory of Open Access Journals (Sweden)

    Jiajia Zheng

    2014-02-01

    Full Text Available A novel magnetorheological (MR damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.

  10. Neural circuits underlying hyperactivity in an animal model for anorexia nervosa

    NARCIS (Netherlands)

    Verhagen, L.A.W.

    2009-01-01

    Anorexia nervosa (AN) means literally “a nervous loss of appetite” and is characterized by reduced food intake, extreme body weight loss, hypothermia, amenorrhea and emaciation. The average prevalence of AN has been reported to be 0.3% and has the highest mortality rate (>10%) of all psychiatric

  11. Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS

    Directory of Open Access Journals (Sweden)

    David Bol

    2011-01-01

    Full Text Available Ultra-low-voltage operation improves energy efficiency of logic circuits by a factor of 10×, at the expense of speed, which is acceptable for applications with low-to-medium performance requirements such as RFID, biomedical devices and wireless sensors. However, in 65/45 nm CMOS, variability and short-channel effects significantly harm robustness and timing closure of ultra-low-voltage circuits by reducing noise margins and jeopardizing gate delays. The consequent guardband on the supply voltage to meet a reasonable manufacturing yield potentially ruins energy efficiency. Moreover, high leakage currents in these technologies degrade energy efficiency in case of long stand-by periods. In this paper, we review recently published techniques to design robust and energy-efficient ultra-low-voltage circuits in 65/45 nm CMOS under relaxed yet strict timing constraints.

  12. Group Membership Modulates the Neural Circuitry Underlying Third Party Punishment.

    Science.gov (United States)

    Morese, Rosalba; Rabellino, Daniela; Sambataro, Fabio; Perussia, Felice; Valentini, Maria Consuelo; Bara, Bruno G; Bosco, Francesca M

    2016-01-01

    This research aims to explore the neural correlates involved in altruistic punishment, parochial altruism and anti-social punishment, using the Third-Party Punishment (TPP) game. In particular, this study considered these punishment behaviors in in-group vs. out-group game settings, to compare how people behave with members of their own national group and with members of another national group. The results showed that participants act altruistically to protect in-group members. This study indicates that norm violation in in-group (but not in out-group) settings results in increased activity in the medial prefrontal cortex and temporo-parietal junction, brain regions involved in the mentalizing network, as the third-party attempts to understand or justify in-group members' behavior. Finally, exploratory analysis during anti-social punishment behavior showed brain activation recruitment of the ventromedial prefrontal cortex, an area associated with altered regulation of emotions.

  13. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  14. The Use of Modular, Electronic Neuron Simulators for Neural Circuit Construction Produces Learning Gains in an Undergraduate Anatomy and Physiology Course.

    Science.gov (United States)

    Petto, Andrew; Fredin, Zachary; Burdo, Joseph

    2017-01-01

    During the spring of 2016 at the University of Wisconsin-Milwaukee, we implemented a novel educational technology designed to teach undergraduates about the nervous system while allowing them to physically construct their own neural circuits. Modular, electronic neuron simulators called NeuroBytes were used by the students in BIOSCI202 Anatomy and Physiology I, a four-credit course consisting of three hours per week each of lecture and laboratory time. 162 students participated in the laboratory sessions that covered reflexes; 83 in the experimental sections used the NeuroBytes to build a model of the patellar tendon reflex, while 79 in the control sections participated in alternate reflex curricula. To address the question of whether or not the NeuroBytes-based patellar tendon reflex simulation brought about learning gains, the control and experimental group students underwent pre/post testing before and after their laboratory sections. We found that for several of the neuroscience and physiology concepts assessed on the test, the experimental group students had significantly greater declarative learning gains between the pre- and post-test as compared to the control group students. While there are numerous virtual neuroscience education tools available to undergraduate educators, there are relatively few designed to engage students in the basics of electrophysiology and neural circuitry using physical manipulatives, and none to our knowledge that allow them to build circuits from functioning hand-held "neurons."

  15. Greater Utilization of Neural-Circuits Related to Executive Functions is Associated with Better Reading: A Longitudinal fMRI Study Using the Verb Generation Task.

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Vannest, Jennifer J; Gozdas, Elveda; Holland, Scott K

    2014-01-01

    Reading is an acquired-developmental ability that relies on intact language and executive function skills. Verbal fluency tasks (such as verb generation) also engage language and executive function skills. Performance of such tasks matures with normal language development, and is independent of reading proficiency. In this longitudinal fMRI study, we aim to examine the association between maturation of neural-circuits supporting both executive functions and language (assessed using verb generation) with reading proficiency achieved in adolescence with a focus on left-lateralization typical for language proficiency. Normalized fMRI data from the verb generation task was collected from 16 healthy children at ages 7, 11, and 17 years and was correlated with reading scores at 17 years of age. Lateralization indices were calculated in key language, reading, and executive function-related regions in all age groups. Typical development was associated with (i) increasingly left-lateralized patterns in language regions (ii) more profound left-lateralized activation for reading and executive function-related regions when correlating with reading scores, (iii) greater involvement of frontal and parietal regions (in older children), and of the anterior frontal cortex (in younger children). We suggest that reading and verb generation share mutual neural-circuits during development with major reliance on regions related to executive functions and reading. The results are discussed in the context of the dual-networks architecture model.

  16. Electrofluidic Circuit-Based Microfluidic Viscometer for Analysis of Newtonian and Non-Newtonian Liquids under Different Temperatures.

    Science.gov (United States)

    Lee, Tse-Ang; Liao, Wei-Hao; Wu, Yi-Fan; Chen, Yeng-Long; Tung, Yi-Chung

    2018-02-06

    This paper reports a microfluidic viscometer with an integrated pressure sensor based on electrofluidic circuits, which are electrical circuits constructed by ionic liquid-filled microfluidic channels. The electrofluidic circuit provides a pressure-sensing scheme with great long-term and thermal stability. The viscosity of the tested fluidic sample is estimated by its flow resistance, which is a function of pressure drop, flow rate, and the geometry of the microfluidic channel. The viscometer can be exploited to measure viscosity of either Newtonian or non-Newtonian power-law fluid under various shear rates (3-500 1/s) and temperatures (4-70 °C) with small sample volume (less than 400 μL). The developed sensor-integrated microfluidic viscometer is made of poly(dimethylsiloxane) (PDMS) with transparent electrofluidic circuit, which makes it feasible to simultaneously image samples under tests. In addition, the entire device is disposable to prevent cross-contamination between samples, which is desired for various chemical and biomedical applications. In the experiments, viscosities of Newtonian fluids, glycerol water solutions with different concentrations and a mixture of pyrogallol and sodium hydroxide (NaOH), and non-Newtonian fluids, xanthan gum solutions and human blood samples, have been characterized. The results demonstrate that the developed microfluidic viscometer provides a convenient and useful platform for practical viscosity characterization of fluidic samples for a wide variety of applications.

  17. The neural underpinnings of music listening under different attention conditions.

    Science.gov (United States)

    Jäncke, Lutz; Leipold, Simon; Burkhard, Anja

    2018-05-02

    Most studies examining the neural underpinnings of music listening have no specific instruction on how to process the presented musical pieces. In this study, we explicitly manipulated the participants' focus of attention while they listened to the musical pieces. We used an ecologically valid experimental setting by presenting the musical stimuli simultaneously with naturalistic film sequences. In one condition, the participants were instructed to focus their attention on the musical piece (attentive listening), whereas in the second condition, the participants directed their attention to the film sequence (passive listening). We used two instrumental musical pieces: an electronic pop song, which was a major hit at the time of testing, and a classical musical piece. During music presentation, we measured electroencephalographic oscillations and responses from the autonomic nervous system (heart rate and high-frequency heart rate variability). During passive listening to the pop song, we found strong event-related synchronizations in all analyzed frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta). The neurophysiological responses during attentive listening to the pop song were similar to those of the classical musical piece during both listening conditions. Thus, the focus of attention had a strong influence on the neurophysiological responses to the pop song, but not on the responses to the classical musical piece. The electroencephalographic responses during passive listening to the pop song are interpreted as a neurophysiological and psychological state typically observed when the participants are 'drawn into the music'.

  18. Neural correlates underlying change in state self-esteem.

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K; Hamano, Yuki H; Kitada, Ryo; Nakagawa, Eri; Kochiyama, Takanori; Sadato, Norihiro

    2018-01-29

    State self-esteem, the momentary feeling of self-worth, functions as a sociometer involved in maintenance of interpersonal relations. How others' appraisal is subjectively interpreted to change state self-esteem is unknown, and the neural underpinnings of this process remain to be elucidated. We hypothesized that changes in state self-esteem are represented by the mentalizing network, which is modulated by interactions with regions involved in the subjective interpretation of others' appraisal. To test this hypothesis, we conducted task-based and resting-state fMRI. Participants were repeatedly presented with their reputations, and then rated their pleasantness and reported their state self-esteem. To evaluate the individual sensitivity of the change in state self-esteem based on pleasantness (i.e., the subjective interpretation of reputation), we calculated evaluation sensitivity as the rate of change in state self-esteem per unit pleasantness. Evaluation sensitivity varied across participants, and was positively correlated with precuneus activity evoked by reputation rating. Resting-state fMRI revealed that evaluation sensitivity was positively correlated with functional connectivity of the precuneus with areas activated by negative reputation, but negatively correlated with areas activated by positive reputation. Thus, the precuneus, as the part of the mentalizing system, serves as a gateway for translating the subjective interpretation of reputation into state self-esteem.

  19. Reduced-order modeling of piezoelectric energy harvesters with nonlinear circuits under complex conditions

    Science.gov (United States)

    Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong

    2018-04-01

    A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.

  20. Dissociable neural processes underlying risky decisions for self versus other

    Directory of Open Access Journals (Sweden)

    Daehyun eJung

    2013-03-01

    Full Text Available Previous neuroimaging studies on decision making have mainly focused on decisions on behalf of oneself. Considering that people often make decisions on behalf of others, it is intriguing that there is little neurobiological evidence on how decisions for others differ from those for self. Thus, the present study focused on the direct comparison between risky decisions for self and those for other using functional magnetic resonance imaging (fMRI. Participants (N = 23 were asked to perform a gambling task for themselves (decision-for-self condition or for another person (decision-for-other condition while in the scanner. Their task was to choose between a low-risk option (i.e., win or lose 10 points and a high-risk option (i.e., win or lose 90 points. The winning probabilities of each option varied from 17% to 83%. Compared to choices for others, choices for self were more risk-averse at lower winning probability and more risk-seeking at higher winning probability, perhaps due to stronger affective process during risky decision for self compared to other. The brain activation pattern changed according to the target of the decision, such that reward-related regions were more active in the decision-for-self condition than in the decision-for-other condition, whereas brain regions related to the theory of mind (ToM showed greater activation in the decision-for-other condition than in the decision-for-self condition. A parametric modulation analysis reflecting each individual’s decision model revealed that activation of the amygdala and the dorsomedial prefrontal cortex (DMPFC were associated with value computation for self and for other, respectively, during a risky financial decision. The present study suggests that decisions for self and other may recruit fundamentally distinctive neural processes, which can be mainly characterized by dominant affective/impulsive and cognitive/regulatory processes, respectively.

  1. Unstable behaviour of normally-off GaN E-HEMT under short-circuit

    Science.gov (United States)

    Martínez, P. J.; Maset, E.; Sanchis-Kilders, E.; Esteve, V.; Jordán, J.; Bta Ejea, J.; Ferreres, A.

    2018-04-01

    The short-circuit capability of power switching devices plays an important role in fault detection and the protection of power circuits. In this work, an experimental study on the short-circuit (SC) capability of commercial 600 V Gallium Nitride enhancement-mode high-electron-mobility transistors (E-HEMT) is presented. A different failure mechanism has been identified for commercial p-doped GaN gate (p-GaN) HEMT and metal-insulator-semiconductor (MIS) HEMT. In addition to the well known thermal breakdown, a premature breakdown is shown on both GaN HEMTs, triggered by hot electron trapping at the surface, which demonstrates that current commercial GaN HEMTs has requirements for improving their SC ruggedness.

  2. Method for Evaluating the Corrosion Resistance of Aluminum Metallization of Integrated Circuits under Multifactorial Influence

    Science.gov (United States)

    Kolomiets, V. I.

    2018-03-01

    The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.

  3. A Review on Grid-connected Converter Control for Short Circuit Power Provision under Grid Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2017-01-01

    behave significantly different from the traditional alternators under grid faults. In order to evaluate the potential impact of future converter-based power systems on protective relays, it is necessary to consider diverse current control strategies of voltage source converters (VSC) under unbalanced...... faults as the performance of converters primarily depends on their control objectives. In this paper, current control strategies of VSC under unbalanced faults for short circuit power provision are reviewed in two groups, namely power-characteristic-oriented and voltage-support-oriented control strategy...... respectively. As the fault current provided by converters should be restricted within secure operation limits considering semiconductor capabilities, converter current limit issue is also discussed....

  4. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwager, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Muller, R. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1981-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of and at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  5. Altered Neural Circuits Accompany Lower Performance during Narrative Comprehension in Children with Reading Difficulties: An fMRI Study

    Science.gov (United States)

    Horowitz-Kraus, Tzipi; Buck, Catherine; Dorrmann, Dana

    2016-01-01

    Narrative comprehension is a linguistic ability that is foundational for future reading ability. The aim of the current study was to examine the neural circuitry of children with reading difficulties (RD) compared to typical readers during a narrative-comprehension task. We hypothesized that due to deficient executive functions, which support…

  6. FILM FORMATION ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS UNDER OPEN CIRCUIT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1980-06-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO{sub 4} and LiAsF{sub 6} at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fastformation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionicconductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  7. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-04-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements and other techniques. The results are consistent with the fast formation of a compact thin layer of Li/sub 2/O by reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion processes produce a thicker porous overlayer.

  8. Solar cell degradation under open circuit condition in out-doors-in desert region

    Directory of Open Access Journals (Sweden)

    M. Boussaid

    2016-01-01

    Full Text Available The reliability of solar cells is an important parameter in the design of photovoltaic systems and particularly for cost estimation. Solar cell degradation is the result of various operating conditions; temperature is one of most important factors. Installed PV modules in desert regions are subjected to various temperature changes with significant gradient leading to accelerated degradation. In the present work, we demonstrate the influence of open-circuit condition on the degradation of PV modules. The experiment is carried out in the desert region of ADRAR (southern Algeria using two modules IJISEL of single-crystal silicon. A continuous monitoring allows analysis of both performances of modules for duration of 330 days. The module in open-circuit condition reaches higher temperature means than the module in charging condition; therefore, it undergoes a higher degradation. By simulation, we found that the life of a PV module (whose power output is close to 50% in a condition of an open-circuit in the desert region could be reduced to 4 years, and that has a significant impact on economy.

  9. Sites of Plasticity in the Neural Circuit Mediating Tentacle Withdrawal in the Snail Helix aspersa: Implications for Behavioral Change and Learning Kinetics

    Science.gov (United States)

    Prescott, Steven A.; Chase, Ronald

    1999-01-01

    The tentacle withdrawal reflex of the snail Helix aspersa exhibits a complex combination of habituation and sensitization consistent with the dual-process theory of plasticity. Habituation, sensitization, or a combination of both were elicited by varying stimulation parameters and lesion condition. Analysis of response plasticity shows that the late phase of the response is selectively enhanced by sensitization, whereas all phases are decreased by habituation. Previous data have shown that tentacle withdrawal is mediated conjointly by parallel monosynaptic and polysynaptic pathways. The former mediates the early phase, whereas the latter mediates the late phase of the response. Plastic loci were identified by stimulating and recording at different points within the neural circuit, in combination with selective lesions. Results indicate that depression occurs at an upstream locus, before circuit divergence, and is therefore expressed in all pathways, whereas facilitation requires downstream facilitatory neurons and is selectively expressed in polysynaptic pathways. Differential expression of plasticity between pathways helps explain the behavioral manifestation of depression and facilitation. A simple mathematical model is used to show how serial positioning of depression and facilitation can explain the kinetics of dual-process learning. These results illustrate how the position of cellular plasticity in the network affects behavioral change and how forms of plasticity can interact to determine the kinetics of the net changes. PMID:10509707

  10. Detecting the single line to ground short circuit fault in the submarine’s power system using the artificial neural network

    Directory of Open Access Journals (Sweden)

    Behniafar Ali

    2013-01-01

    Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.

  11. Potential neural mechanisms underlying the effectiveness of early intervention for children with autism spectrum disorder

    Science.gov (United States)

    Sullivan, Katherine; Stone, Wendy L.; Dawson, Geraldine

    2014-01-01

    Although evidence supports the efficacy of early intervention for improving outcomes for children with autism spectrum disorder (ASD), the mechanisms underlying their effectiveness remain poorly understood. This paper reviews the research literature on the neural bases of the early core deficits in ASD and proposes three key features of early intervention related to the neural mechanisms that may contribute to its effectiveness in improving deficit areas. These features include (1) the early onset of intensive intervention which capitalizes on the experience-expectant plasticity of the immature brain, (2) the use of treatment strategies that address core deficits in social motivation through an emphasis on positive social engagement and arousal modulation, and (3) promotion of complex neural networks and connectivity through thematic, multi-sensory and multi-domain teaching approaches. Understanding the mechanisms of effective early intervention will enable us to identify common or foundational active ingredients for promoting optimal outcomes in children with ASD. PMID:25108609

  12. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  13. Studies of Neuronal Gene Regulation Controlling the Molecular Mechanisms Underlying Neural Plasticity.

    Science.gov (United States)

    Fukuchi, Mamoru

    2017-01-01

    The regulation of the development and function of the nervous system is not preprogramed but responds to environmental stimuli to change neural development and function flexibly. This neural plasticity is a characteristic property of the nervous system. For example, strong synaptic activation evoked by environmental stimuli leads to changes in synaptic functions (known as synaptic plasticity). Long-lasting synaptic plasticity is one of the molecular mechanisms underlying long-term learning and memory. Since discovering the role of the transcription factor cAMP-response element-binding protein in learning and memory, it has been widely accepted that gene regulation in neurons contributes to long-lasting changes in neural functions. However, it remains unclear how synaptic activation is converted into gene regulation that results in long-lasting neural functions like long-term memory. We continue to address this question. This review introduces our recent findings on the gene regulation of brain-derived neurotrophic factor and discusses how regulation of the gene participates in long-lasting changes in neural functions.

  14. Neural network model for evaluation of seedling vigour under clinostated conditions

    Science.gov (United States)

    Zaidi, M.; Murase, H.

    A hierarchical neural net can be applied to simulate nonlinear phenomena found in biological systems. The learning process of the hierarchical neural net can be used as an algorithm for nonlinear multivariate analysis. The non- invasive technique for monitoring the plant's growth stage is one part of the required technology of the bio-response feedback control system. The stage of a plant's growth can be identified or quantified by measuring physical indices. Automated monitoring is also necessary in the clinostat experiment and neural networks are used for the calibration of lettuce plant growth. A back propagation neural network was trained to evaluate the plant growth in terms of plant growth characteristics, with a network consisting of 4, 8 and 1 processing units in the input, hidden and output layers, respectively. Sixteen sets of training data were used. The training was terminated after 800 times of iterative calculations at the RMS error value equal to 3.35x10-3 . Four sets of validation data were used to calculate the prediction error. The ability of the neural network models to predict the required information is very accurate. As a result, there is potential for the present technique to be applied to seedling vigour evaluating system under the clinostated conditions.

  15. Curcumin Alters Neural Plasticity and Viability of Intact Hippocampal Circuits and Attenuates Behavioral Despair and COX-2 Expression in Chronically Stressed Rats

    Directory of Open Access Journals (Sweden)

    Ga-Young Choi

    2017-01-01

    Full Text Available Curcumin is a major diarylheptanoid component of Curcuma longa with traditional usage for anxiety and depression. It has been known for the anti-inflammatory, antistress, and neurotropic effects. Here we examined curcumin effect in neural plasticity and cell viability. 60-channel multielectrode array was applied on organotypic hippocampal slice cultures (OHSCs to monitor the effect of 10 μM curcumin in long-term depression (LTD through low-frequency stimulation (LFS to the Schaffer collaterals and commissural pathways. Cell viability was assayed by propidium iodide uptake test in OHSCs. In addition, the influence of oral curcumin administration on rat behavior was assessed with the forced swim test (FST. Finally, protein expression levels of brain-derived neurotrophic factor (BDNF and cyclooxygenase-2 (COX-2 were measured by Western blot in chronically stressed rats. Our results demonstrated that 10 μM curcumin attenuated LTD and reduced cell death. It also recovered the behavior immobility of FST, rescued the attenuated BDNF expression, and inhibited the enhancement of COX-2 expression in stressed animals. These findings indicate that curcumin can enhance postsynaptic electrical reactivity and cell viability in intact neural circuits with antidepressant-like effects, possibly through the upregulation of BDNF and reduction of inflammatory factors in the brain.

  16. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  17. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  18. IMPROVED VIRTUAL CIRCUIT ROUTING ALGORITHM FOR WIRELESS SENSOR NETWORKS UNDER THE ASPECT OF POWER AWARENESS

    Directory of Open Access Journals (Sweden)

    Abid Ali Minhas

    2006-06-01

    Full Text Available Routing algorithms have shown their importance in the power aware wireless micro-sensor networks. In this paper first we present virtual circuit algorithm (VCRA, a routing algorithm for wireless sensor networks. We analyze the power utilized by nodes to lengthen the battery life and thus improving the lifetime of wireless sensor network. We discuss VCRA in comparison with the Multihoprouter, an algorithm developed by UC Berkeley. Then we present Improved Virtual Circuit Routing Algorithm (IVCRA which is an improved form of VCRA. In IVCRA node failure detection and path repairing scheme has been implemented. We also present the energy analysis of IVCRA and prove that IVCRA is the best choice. We first implement our routing algorithms in simulator TOSSIM and then on real hardware of mica2 mote-sensor network platform and prove the reliable routing of the data packets from different nodes to the base station. The motes used as nodes in our mote-sensor network are from Berkeley USA. By using simulator POWERTOSSIM, we estimate and present the energy utilized by different nodes of the network. At the end we present a comparison of our work with the network layer of Zigbee/IEEE 802.15.4, which is an emerging standard for wireless sensor networks and then compare its energy efficiency with the packet size chosen for our algorithm.

  19. Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety

    Directory of Open Access Journals (Sweden)

    Johanna M. Jarcho

    2015-06-01

    Full Text Available Social anxiety disorder typically begins in adolescence, a sensitive period for brain development, when increased complexity and salience of peer relationships requires novel forms of social learning. Disordered social learning in adolescence may explain how brain dysfunction promotes social anxiety. Socially anxious adolescents (n = 15 and adults (n = 19 and non-anxious adolescents (n = 24 and adults (n = 32 predicted, then received, social feedback from high and low-value peers while undergoing functional magnetic resonance imaging (fMRI. A surprise recall task assessed memory biases for feedback. Neural correlates of social evaluation prediction errors (PEs were assessed by comparing engagement to expected and unexpected positive and negative feedback. For socially anxious adolescents, but not adults or healthy participants of either age group, PEs elicited heightened striatal activity and negative fronto-striatal functional connectivity. This occurred selectively to unexpected positive feedback from high-value peers and corresponded with impaired memory for social feedback. While impaired memory also occurred in socially-anxious adults, this impairment was unrelated to brain-based PE activity. Thus, social anxiety in adolescence may relate to altered neural correlates of PEs that contribute to impaired learning about social feedback. Small samples necessitate replication. Nevertheless, results suggest that the relationship between learning and fronto-striatal function may attenuate as development progresses.

  20. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  1. Anger under control: neural correlates of frustration as a function of trait aggression.

    Science.gov (United States)

    Pawliczek, Christina M; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  2. Anger under control: neural correlates of frustration as a function of trait aggression.

    Directory of Open Access Journals (Sweden)

    Christina M Pawliczek

    Full Text Available Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21 and one reporting low (n=18 trait aggression. Using functional magnetic resonance imaging (fMRI at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression.

  3. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    Science.gov (United States)

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed two extreme groups, one including individuals reporting high (n=21) and one reporting low (n=18) trait aggression. Using functional magnetic resonance imaging (fMRI) at 3T, all participants were put through a frustration task comprising unsolvable anagrams of German nouns. Despite similar behavioral performance, males with high trait aggression reported higher ratings of negative affect and anger after the frustration task. Moreover, they showed relatively decreased activation in the frontal brain regions and the dorsal anterior cingulate cortex (dACC) as well as relatively less amygdala activation in response to frustration. Our findings indicate distinct frontal and limbic processing mechanisms following frustration modulated by trait aggression. In response to a frustrating event, HA individuals show some of the personality characteristics and neural processing patterns observed in abnormally aggressive populations. Highlighting the impact of aggressive traits on the behavioral and neural responses to frustration in non-psychiatric extreme groups can facilitate further characterization of neural dysfunctions underlying psychiatric disorders that involve abnormal frustration processing and aggression. PMID:24205247

  4. The mechanisms underlying corrosion product formation and deposition in nuclear power plant circuits through the action of galvanic and thermal electromotive forces

    International Nuclear Information System (INIS)

    Brusakov, V.P.; Sedov, V.M.; Khitrov, Yu.A.; Brusov, K.N.; Razmashkin, N.V.; Versin, V.V.; Rybalchenko, I.L.

    1983-01-01

    From a theoretical standpoint, the processes of formation of corrosion products in nuclear power plant circuits, deposition of corrosion products on the circuit surfaces, formation of an equilibrium concentration of corrosion products in the coolant, and distribution of radionuclides resulting from corrosion in different parts of the circuit are considered. It is shown that the main driving forces for the mass-transfer processes in the circuits are the thermal and galvanic electromotive forces (EMF) of the microcouples. On the basis of the theoretical concepts developed the authors have obtained analytical dependences for calculating the individual stages of the process of corrosion product transfer in the circuits. The mechanisms underlying the processes which occur as a result of thermal and galvanic EMFs are considered, together with the factors influencing these processes. The results of verification of the dependences by computational methods are given and they are compared with operational data from nuclear and conventional thermal power plants and with experimental data. (author)

  5. Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation

    Science.gov (United States)

    Saproo, Sameer; Shih, Victor; Jangraw, David C.; Sajda, Paul

    2016-12-01

    Objective. We investigated the neural correlates of workload buildup in a fine visuomotor task called the boundary avoidance task (BAT). The BAT has been known to induce naturally occurring failures of human-machine coupling in high performance aircraft that can potentially lead to a crash—these failures are termed pilot induced oscillations (PIOs). Approach. We recorded EEG and pupillometry data from human subjects engaged in a flight BAT simulated within a virtual 3D environment. Main results. We find that workload buildup in a BAT can be successfully decoded from oscillatory features in the electroencephalogram (EEG). Information in delta, theta, alpha, beta, and gamma spectral bands of the EEG all contribute to successful decoding, however gamma band activity with a lateralized somatosensory topography has the highest contribution, while theta band activity with a fronto-central topography has the most robust contribution in terms of real-world usability. We show that the output of the spectral decoder can be used to predict PIO susceptibility. We also find that workload buildup in the task induces pupil dilation, the magnitude of which is significantly correlated with the magnitude of the decoded EEG signals. These results suggest that PIOs may result from the dysregulation of cortical networks such as the locus coeruleus (LC)—anterior cingulate cortex (ACC) circuit. Significance. Our findings may generalize to similar control failures in other cases of tight man-machine coupling where gains and latencies in the control system must be inferred and compensated for by the human operators. A closed-loop intervention using neurophysiological decoding of workload buildup that targets the LC-ACC circuit may positively impact operator performance in such situations.

  6. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase

    Directory of Open Access Journals (Sweden)

    Saul S. Siller

    2011-09-01

    Fragile X syndrome (FXS, caused by loss of the fragile X mental retardation 1 (FMR1 product (FMRP, is the most common cause of inherited intellectual disability and autism spectrum disorders. FXS patients suffer multiple behavioral symptoms, including hyperactivity, disrupted circadian cycles, and learning and memory deficits. Recently, a study in the mouse FXS model showed that the tetracycline derivative minocycline effectively remediates the disease state via a proposed matrix metalloproteinase (MMP inhibition mechanism. Here, we use the well-characterized Drosophila FXS model to assess the effects of minocycline treatment on multiple neural circuit morphological defects and to investigate the MMP hypothesis. We first treat Drosophila Fmr1 (dfmr1 null animals with minocycline to assay the effects on mutant synaptic architecture in three disparate locations: the neuromuscular junction (NMJ, clock neurons in the circadian activity circuit and Kenyon cells in the mushroom body learning and memory center. We find that minocycline effectively restores normal synaptic structure in all three circuits, promising therapeutic potential for FXS treatment. We next tested the MMP hypothesis by assaying the effects of overexpressing the sole Drosophila tissue inhibitor of MMP (TIMP in dfmr1 null mutants. We find that TIMP overexpression effectively prevents defects in the NMJ synaptic architecture in dfmr1 mutants. Moreover, co-removal of dfmr1 similarly rescues TIMP overexpression phenotypes, including cellular tracheal defects and lethality. To further test the MMP hypothesis, we generated dfmr1;mmp1 double null mutants. Null mmp1 mutants are 100% lethal and display cellular tracheal defects, but co-removal of dfmr1 allows adult viability and prevents tracheal defects. Conversely, co-removal of mmp1 ameliorates the NMJ synaptic architecture defects in dfmr1 null mutants, despite the lack of detectable difference in MMP1 expression or gelatinase activity between the single

  8. Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning.

    Science.gov (United States)

    Sheridan, Margaret A; Peverill, Matthew; Finn, Amy S; McLaughlin, Katie A

    2017-12-01

    Childhood adversity is associated with increased risk for psychopathology. Neurodevelopmental pathways underlying this risk remain poorly understood. A recent conceptual model posits that childhood adversity can be deconstructed into at least two underlying dimensions, deprivation and threat, that are associated with distinct neurocognitive consequences. This model argues that deprivation (i.e., a lack of cognitive stimulation and learning opportunities) is associated with poor executive function (EF), whereas threat is not. We examine this hypothesis in two studies measuring EF at multiple levels: performance on EF tasks, neural recruitment during EF, and problems with EF in daily life. In Study 1, deprivation (low parental education and child neglect) was associated with greater parent-reported problems with EF in adolescents (N = 169; 13-17 years) after adjustment for levels of threat (community violence and abuse), which were unrelated to EF. In Study 2, low parental education was associated with poor working memory (WM) performance and inefficient neural recruitment in the parietal and prefrontal cortex during high WM load among adolescents (N = 51, 13-20 years) after adjusting for abuse, which was unrelated to WM task performance and neural recruitment during WM. These findings constitute strong preliminary evidence for a novel model of the neurodevelopmental consequences of childhood adversity.

  9. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  10. Regional cerebral glucose metabolic changes in oculopalatal myoclonus: implication for neural pathways, underlying the disorder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Moon, So Young; Kim, Ji Soo; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Palatal myoclonus (PM) is characterized by rhythmic involuntary jerky movements of the soft palate of the throat. When associated with eye movements, it is called oculopalatal myoclonus (OPM). Ordinary PM is characterized by hypertrophic olivary degeneration, a trans-synaptic degeneration following loss of neuronal input to the inferior olivary nucleus due to an interruption of the Guillain-Mollaret triangle usually by a hemorrhage. However, the neural pathways underlying the disorder are uncertain. In an attempt to understand the pathologic neural pathways, we examined the metabolic correlates of this tremulous condition. Brain FDG PET scans were acquired in 8 patients with OPM (age, 49.9{+-}4.6 y: all males: 7 with pontine hemorrhage, 1 with diffuse brainstem infarction) and age-matched 50 healthy males (age, 50.7{+-} 9.0) and the regional glucose metabolism compared using SPM99. For group analysis, the hemispheres containing lesions were assigned to the right side of the brain. Patients with OPM had significant hypometabolism in the ipsilateral (to the lesion) brainstem and superior temporal and parahippocampal gyri (P < 0.05 corrected, k = 100). By contrast, there was significant hypermetabolism in the contralateral middle and inferior temporal gyri, thalamus, middle frontal gyrus and precuneus (P < 0.05 corrected, k=l00). Our data demonstrate the distinct metabolic changes between several ipsilateral and contralateral brain regions (hypometabolism vs. hypermetabolism) in patients with OPM. This may provide clues for understanding the neural pathways underlying the disorder.

  11. Activity-dependent neural plasticity from bench to bedside.

    Science.gov (United States)

    Ganguly, Karunesh; Poo, Mu-Ming

    2013-10-30

    Much progress has been made in understanding how behavioral experience and neural activity can modify the structure and function of neural circuits during development and in the adult brain. Studies of physiological and molecular mechanisms underlying activity-dependent plasticity in animal models have suggested potential therapeutic approaches for a wide range of brain disorders in humans. Physiological and electrical stimulations as well as plasticity-modifying molecular agents may facilitate functional recovery by selectively enhancing existing neural circuits or promoting the formation of new functional circuits. Here, we review the advances in basic studies of neural plasticity mechanisms in developing and adult nervous systems and current clinical treatments that harness neural plasticity, and we offer perspectives on future development of plasticity-based therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    Science.gov (United States)

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  13. Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue

    Science.gov (United States)

    Hottowy, Paweł; Skoczeń, Andrzej; Gunning, Deborah E.; Kachiguine, Sergei; Mathieson, Keith; Sher, Alexander; Wiącek, Piotr; Litke, Alan M.; Dąbrowski, Władysław

    2012-12-01

    Objective. Modern multielectrode array (MEA) systems can record the neuronal activity from thousands of electrodes, but their ability to provide spatio-temporal patterns of electrical stimulation is very limited. Furthermore, the stimulus-related artifacts significantly limit the ability to record the neuronal responses to the stimulation. To address these issues, we designed a multichannel integrated circuit for a patterned MEA-based electrical stimulation and evaluated its performance in experiments with isolated mouse and rat retina. Approach. The Stimchip includes 64 independent stimulation channels. Each channel comprises an internal digital-to-analogue converter that can be configured as a current or voltage source. The shape of the stimulation waveform is defined independently for each channel by the real-time data stream. In addition, each channel is equipped with circuitry for reduction of the stimulus artifact. Main results. Using a high-density MEA stimulation/recording system, we effectively stimulated individual retinal ganglion cells (RGCs) and recorded the neuronal responses with minimal distortion, even on the stimulating electrodes. We independently stimulated a population of RGCs in rat retina, and using a complex spatio-temporal pattern of electrical stimulation pulses, we replicated visually evoked spiking activity of a subset of these cells with high fidelity. Significance. Compared with current state-of-the-art MEA systems, the Stimchip is able to stimulate neuronal cells with much more complex sequences of electrical pulses and with significantly reduced artifacts. This opens up new possibilities for studies of neuronal responses to electrical stimulation, both in the context of neuroscience research and in the development of neuroprosthetic devices.

  14. Organization of the Drosophila larval visual circuit

    Science.gov (United States)

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  15. What ethologically based models have taught us about the neural systems underlying fear and anxiety

    Directory of Open Access Journals (Sweden)

    N.S. Canteras

    2012-04-01

    Full Text Available Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.

  16. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Lena eUlm

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  17. The impact of abacus training on working memory and underlying neural correlates in young adults.

    Science.gov (United States)

    Dong, Shanshan; Wang, Chunjie; Xie, Ye; Hu, Yuzheng; Weng, Jian; Chen, Feiyan

    2016-09-22

    Abacus-based mental calculation (AMC) activates the frontoparietal areas largely overlapping with the working memory (WM) network. Given the critical role of WM in cognition, how to improve WM capability has attracted intensive attention in past years. However, it is still unclear whether WM could be enhanced by AMC training. The current research thus explored the impact of AMC training on verbal and visuospatial WM, as well as the underlying neural basis. Participants were randomly assigned to an abacus group and a control group. Their verbal WM was evaluated by digit/letter memory span (DMS/LMS) tests, and visuospatial WM was assessed by a visuospatial n-back task. Neural activity during the n-back task was examined using functional MRI. Our results showed reliable improvements of both verbal and visuospatial WM in the abacus group after 20-day AMC training but not in the control. In addition, the n-back task-induced activations in the right frontoparietal circuitry and left occipitotemporal junction (OTJ) declined as a result of training. Notably, the decreases in activity were positively correlated with performance gains across trained participants. These results suggest AMC training not only improves calculating skills but also have the potential to promote individuals' WM capabilities, which is associated with the functional plasticity of the common neural substrates. Copyright © 2016 IBRO. All rights reserved.

  18. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  19. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.

    Science.gov (United States)

    Okabe, Naohiko; Shiromoto, Takashi; Himi, Naoyuki; Lu, Feng; Maruyama-Nakamura, Emi; Narita, Kazuhiko; Iwachidou, Nobuhisa; Yagita, Yoshiki; Miyamoto, Osamu

    2016-12-17

    Motor map reorganization is believed to be one mechanism underlying rehabilitation-induced functional recovery. Although the ipsilesional secondary motor area has been known to reorganize motor maps and contribute to rehabilitation-induced functional recovery, it is unknown how the secondary motor area is reorganized by rehabilitative training. In the present study, using skilled forelimb reaching tasks, we investigated neural network remodeling in the rat rostral forelimb area (RFA) of the secondary motor area during 4weeks of rehabilitative training. Following photothrombotic stroke in the caudal forelimb area (CFA), rehabilitative training led to task-specific recovery and motor map reorganization in the RFA. A second injury to the RFA resulted in reappearance of motor deficits. Further, when both the CFA and RFA were destroyed simultaneously, rehabilitative training no longer improved task-specific recovery. In neural tracer studies, although rehabilitative training did not alter neural projection to the RFA from other brain areas, rehabilitative training increased neural projection from the RFA to the lower spinal cord, which innervates the muscles in the forelimb. Double retrograde tracer studies revealed that rehabilitative training increased the neurons projecting from the RFA to both the upper cervical cord, which innervates the muscles in the neck, trunk, and part of the proximal forelimb, and the lower cervical cord. These results suggest that neurons projecting to the upper cervical cord provide new connections to the denervated forelimb area of the spinal cord, and these new connections may contribute to rehabilitation-induced task-specific recovery and motor map reorganization in the secondary motor area. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients

    Directory of Open Access Journals (Sweden)

    Stephanie eLefebvre

    2015-06-01

    Full Text Available Motor skill learning is critical in post-stroke motor recovery, but little is known about its underlying neural substrates. Recently, using a new visuomotor skill learning paradigm involving a speed/accuracy trade-off in healthy individuals we identified three subpopulations based on their behavioral trajectories: fitters (in whom improvement in speed or accuracy coincided with deterioration in the other parameter, shifters (in whom speed and/or accuracy improved without degradation of the other parameter, and non-learners. We aimed to identify the neural substrates underlying the first stages of motor skill learning in chronic hemiparetic stroke patients and to determine whether specific neural substrates were recruited in shifters versus fitters. During functional magnetic resonance imaging (fMRI, 23 patients learned the visuomotor skill with their paretic upper limb. In the whole-group analysis, correlation between activation and motor skill learning was restricted to the dorsal prefrontal cortex of the damaged hemisphere (DLPFCdamh: r=-0.82 and the dorsal premotor cortex (PMddamh: r=0.70; the correlations was much lesser (-0.160.25 in the other regions of interest. In a subgroup analysis, significant activation was restricted to bilateral posterior parietal cortices of the fitters and did not correlate with motor skill learning. Conversely, in shifters significant activation occurred in the primary sensorimotor cortexdamh and supplementary motor areadamh and in bilateral PMd where activation changes correlated significantly with motor skill learning (r=0.91. Finally, resting-state activity acquired before learning showed a higher functional connectivity in the salience network of shifters compared with fitters (qFDR<0.05. These data suggest a neuroplastic compensatory reorganization of brain activity underlying the first stages of motor skill learning with the paretic upper limb in chronic hemiparetic stroke patients, with a key role of

  1. VLSI Cells Placement Using the Neural Networks

    International Nuclear Information System (INIS)

    Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah

    2008-01-01

    The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network

  2. At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists.

    Science.gov (United States)

    Abler, Birgit; Hahlbrock, Roman; Unrath, Alexander; Grön, Georg; Kassubek, Jan

    2009-09-01

    Treatment with dopamine receptor agonists has been associated with impulse control disorders and pathological gambling (PG) secondary to medication in previously unaffected patients with Parkinson's disease or restless legs syndrome (RLS). In a within-subjects design, we investigated the underlying neurobiology in RLS patients using functional magnetic resonance imaging. We scanned 12 female RLS patients without a history of PG. All patients were scanned twice: once whilst taking their regular medication with low dose dopamine receptor agonists and once after a washout phase interval. They performed an established gambling game task involving expectation and receipt or omission of monetary rewards at different levels of probabilities. Upon expectation of rewards, reliable ventral striatal activation was detected only when patients were on, but not when patients were off medication. Upon receipt or omission of rewards, the observed ventral striatal signal under medication differed markedly from its predicted pattern which by contrast was apparent when patients were off medication. Orbitofrontal activation was not affected by medication. Chronic dopamine receptor agonist medication changed the neural signalling of reward expectation predisposing the dopaminergic reward system to mediate an increased appetitive drive. Even without manifest PG, chronic medication with dopamine receptor agonists led to markedly changed neural processing of negative consequences probably mediating dysfunctional learning of contingencies. Intact orbitofrontal functioning, potentially moderating impulse control, may explain why none of the patients actually developed PG. Our results support the notion of a general medication effect in patients under dopamine receptor agonists in terms of a sensitization towards impulse control disorders.

  3. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  4. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain

    Directory of Open Access Journals (Sweden)

    Li eShen

    2015-10-01

    Full Text Available Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA. However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron’s best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.

  6. Oxide layers of Zr-1% Nb under PWR primary circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor E-mail: nagyg@sunserv.kfki.hu; Kerner, Zsolt; Battistig, Gabor; Pinter-Csordas, Anna; Balogh, Janos; Pajkossy, Tamas

    2001-07-01

    Oxide layers were grown on Zr-1% Nb under conditions simulating those in VVER-type pressurised water reactors (PWRs), viz. in borate solutions in an autoclave at 290 deg. C. The layers were characterised by various methods: their respective thickness values were determined by weight gain measurements, Rutherford backscattering (RBS), nuclear reaction analysis (NRA) and scanning electron microscopy (SEM); the electrical properties were tested by electrochemical impedance spectroscopy. The results show that the oxide layer on Zr-1% Nb is homogeneous and somewhat thicker than that on Zircaloy-4.

  7. Imaging ATUM ultrathin section libraries with WaferMapper: A multi-scale approach to EM reconstruction of neural circuits

    Directory of Open Access Journals (Sweden)

    Kenneth Jeffrey Hayworth

    2014-06-01

    Full Text Available The automated tape-collecting ultramicrotome (ATUM makes it possible to collect large numbers of ultrathin sections quickly—the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day. We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library that may contain many thousands of sections. Using WaferMapper, it is possible to map all the sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments.

  8. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits.

    Science.gov (United States)

    Hayworth, Kenneth J; Morgan, Josh L; Schalek, Richard; Berger, Daniel R; Hildebrand, David G C; Lichtman, Jeff W

    2014-01-01

    The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly-the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments.

  9. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases.

    Science.gov (United States)

    Tian, Li; Hui, Chin Wai; Bisht, Kanchan; Tan, Yunlong; Sharma, Kaushik; Chen, Song; Zhang, Xiangyang; Tremblay, Marie-Eve

    2017-10-03

    Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neural and Behavioral Correlates of Alcohol-Induced Aggression Under Provocation.

    Science.gov (United States)

    Gan, Gabriela; Sterzer, Philipp; Marxen, Michael; Zimmermann, Ulrich S; Smolka, Michael N

    2015-12-01

    Although alcohol consumption is linked to increased aggression, its neural correlates have not directly been studied in humans so far. Based on a comprehensive neurobiological model of alcohol-induced aggression, we hypothesized that alcohol-induced aggression would go along with increased amygdala and ventral striatum reactivity and impaired functioning of the prefrontal cortex (PFC) under alcohol. We measured neural and behavioral correlates of alcohol-induced aggression in a provoking vs non-provoking condition with a variant of the Taylor aggression paradigm (TAP) allowing to differentiate between reactive (provoked) and proactive (unprovoked) aggression. In a placebo-controlled cross-over design with moderate alcohol intoxication (~0.6 g/kg), 35 young healthy adults performed the TAP during functional magnetic resonance imaging (fMRI). Analyses revealed that provoking vs non-provoking conditions and alcohol vs placebo increased aggression and decreased brain responses in the anterior cingulate cortex/dorso-medial PFC (provokingalcoholalcohol specifically increased proactive (unprovoked) but not reactive (provoked) aggression (alcohol × provocation interaction). However, investigation of inter-individual differences revealed (1) that pronounced alcohol-induced proactive aggression was linked to higher levels of aggression under placebo, and (2) that pronounced alcohol-induced reactive aggression was related to increased amygdala and ventral striatum reactivity under alcohol, providing evidence for their role in human alcohol-induced reactive aggression. Our findings suggest that in healthy young adults a liability for alcohol-induced aggression in a non-provoking context might depend on overall high levels of aggression, but on alcohol-induced increased striatal and amygdala reactivity when triggered by provocation.

  11. A neural network underlying intentional emotional facial expression in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Kelly A. Gola

    2017-01-01

    Full Text Available Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  12. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    Science.gov (United States)

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A neural network underlying intentional emotional facial expression in neurodegenerative disease.

    Science.gov (United States)

    Gola, Kelly A; Shany-Ur, Tal; Pressman, Peter; Sulman, Isa; Galeana, Eduardo; Paulsen, Hillary; Nguyen, Lauren; Wu, Teresa; Adhimoolam, Babu; Poorzand, Pardis; Miller, Bruce L; Rankin, Katherine P

    2017-01-01

    Intentional facial expression of emotion is critical to healthy social interactions. Patients with neurodegenerative disease, particularly those with right temporal or prefrontal atrophy, show dramatic socioemotional impairment. This was an exploratory study examining the neural and behavioral correlates of intentional facial expression of emotion in neurodegenerative disease patients and healthy controls. One hundred and thirty three participants (45 Alzheimer's disease, 16 behavioral variant frontotemporal dementia, 8 non-fluent primary progressive aphasia, 10 progressive supranuclear palsy, 11 right-temporal frontotemporal dementia, 9 semantic variant primary progressive aphasia patients and 34 healthy controls) were video recorded while imitating static images of emotional faces and producing emotional expressions based on verbal command; the accuracy of their expression was rated by blinded raters. Participants also underwent face-to-face socioemotional testing and informants described participants' typical socioemotional behavior. Patients' performance on emotion expression tasks was correlated with gray matter volume using voxel-based morphometry (VBM) across the entire sample. We found that intentional emotional imitation scores were related to fundamental socioemotional deficits; patients with known socioemotional deficits performed worse than controls on intentional emotion imitation; and intentional emotional expression predicted caregiver ratings of empathy and interpersonal warmth. Whole brain VBMs revealed a rightward cortical atrophy pattern homologous to the left lateralized speech production network was associated with intentional emotional imitation deficits. Results point to a possible neural mechanisms underlying complex socioemotional communication deficits in neurodegenerative disease patients.

  14. Tracting the neural basis of music: Deficient structural connectivity underlying acquired amusia.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Särkämö, Teppo; Leo, Vera; Rodríguez-Fornells, Antoni; Saunavaara, Jani; Parkkola, Riitta; Soinila, Seppo

    2017-12-01

    Acquired amusia provides a unique opportunity to investigate the fundamental neural architectures of musical processing due to the transition from a functioning to defective music processing system. Yet, the white matter (WM) deficits in amusia remain systematically unexplored. To evaluate which WM structures form the neural basis for acquired amusia and its recovery, we studied 42 stroke patients longitudinally at acute, 3-month, and 6-month post-stroke stages using DTI [tract-based spatial statistics (TBSS) and deterministic tractography (DT)] and the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Non-recovered amusia was associated with structural damage and subsequent degeneration in multiple WM tracts including the right inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and frontal aslant tract (FAT), as well as in the corpus callosum (CC) and its posterior part (tapetum). In a linear regression analysis, the volume of the right IFOF was the main predictor of MBEA performance across time. Overall, our results provide a comprehensive picture of the large-scale deficits in intra- and interhemispheric structural connectivity underlying amusia, and conversely highlight which pathways are crucial for normal music perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The manipulative skill: Cognitive devices and their neural correlates underlying Machiavellian's decision making.

    Science.gov (United States)

    Bereczkei, Tamas

    2015-10-01

    Until now, Machiavellianism has mainly been studied in personality and social psychological framework, and little attention has been paid to the underlying cognitive and neural equipment. In light of recent findings, Machiavellian social skills are not limited to emotion regulation and "cold-mindedness" as many authors have recently stated, but linked to specific cognitive abilities. Although Machiavellians appear to have a relatively poor mindreading ability and emotional intelligence, they can efficiently exploit others which is likely to come from their flexible problem solving processes in changing environmental circumstances. The author proposed that Machiavellians have specialized cognitive domains of decision making, such as monitoring others' behavior, task orientation, reward seeking, inhibition of cooperative feelings, and choosing victims. He related the relevant aspects of cognitive functions to their neurological substrates, and argued why they make Machiavellians so successful in interpersonal relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Neural mechanisms underlying paradoxical performance for monetary incentives are driven by loss aversion.

    Science.gov (United States)

    Chib, Vikram S; De Martino, Benedetto; Shimojo, Shinsuke; O'Doherty, John P

    2012-05-10

    Employers often make payment contingent on performance in order to motivate workers. We used fMRI with a novel incentivized skill task to examine the neural processes underlying behavioral responses to performance-based pay. We found that individuals' performance increased with increasing incentives; however, very high incentive levels led to the paradoxical consequence of worse performance. Between initial incentive presentation and task execution, striatal activity rapidly switched between activation and deactivation in response to increasing incentives. Critically, decrements in performance and striatal deactivations were directly predicted by an independent measure of behavioral loss aversion. These results suggest that incentives associated with successful task performance are initially encoded as a potential gain; however, when actually performing a task, individuals encode the potential loss that would arise from failure. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    Reza Esmaeilabadi

    2016-06-01

    Full Text Available Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  18. Neural connectivity patterns underlying symbolic number processing indicate mathematical achievement in children.

    Science.gov (United States)

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M

    2014-03-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis to investigate the neural substrates for symbolic number processing in young children. We hypothesized that, as children solidify the mapping between symbols and underlying magnitudes, important developmental changes occur in the neural communication between the right parietal region, important for the representation of non-symbolic numerical magnitudes, and other brain regions known to be critical for processing numerical symbols. To test this hypothesis, we scanned children between 4 and 6 years of age while they performed a magnitude comparison task with Arabic numerals (numerical, symbolic), dot arrays (numerical, non-symbolic), and lines (non-numerical). We then identified the right parietal seed region that showed greater blood-oxygen-level-dependent signal in the numerical versus the non-numerical conditions. A psychophysiological interaction method was used to find patterns of effective connectivity arising from this parietal seed region specific to symbolic compared to non-symbolic number processing. Two brain regions, the left supramarginal gyrus and the right precentral gyrus, showed significant effective connectivity from the right parietal cortex. Moreover, the degree of this effective connectivity to the left supramarginal gyrus was correlated with age, and the degree of the connectivity to the right precentral gyrus predicted performance on a standardized symbolic math test. These findings suggest that effective connectivity underlying symbolic number processing may be critical as children master the associations between numerical symbols and magnitudes, and that these connectivity patterns may serve as an

  19. Dissociable attentional and affective circuits in medication-naïve children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Posner, Jonathan; Rauh, Virginia; Gruber, Allison; Gat, Inbal; Wang, Zhishun; Peterson, Bradley S

    2013-07-30

    Current neurocognitive models of attention-deficit/hyperactivity disorder (ADHD) suggest that neural circuits involving both attentional and affective processing make independent contributions to the phenomenology of the disorder. However, a clear dissociation of attentional and affective circuits and their behavioral correlates has yet to be shown in medication-naïve children with ADHD. Using resting-state functional connectivity MRI (rs-fcMRI) in a cohort of medication naïve children with (N=22) and without (N=20) ADHD, we demonstrate that children with ADHD have reduced connectivity in two neural circuits: one underlying executive attention (EA) and the other emotional regulation (ER). We also demonstrate a double dissociation between these two neural circuits and their behavioral correlates such that reduced connectivity in the EA circuit correlates with executive attention deficits but not with emotional lability, while on the other hand, reduced connectivity in the ER circuit correlates with emotional lability but not with executive attention deficits. These findings suggest potential avenues for future research such as examining treatment effects on these two neural circuits as well as the potential prognostic and developmental significance of disturbances in one circuit vs the other. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Study Under AC Stimulation on Excitement Properties of Weighted Small-World Biological Neural Networks with Side-Restrain Mechanism

    International Nuclear Information System (INIS)

    Yuan Wujie; Luo Xiaoshu; Jiang Pinqun

    2007-01-01

    In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.

  1. Mapping Common Aphasia Assessments to Underlying Cognitive Processes and Their Neural Substrates.

    Science.gov (United States)

    Lacey, Elizabeth H; Skipper-Kallal, Laura M; Xing, Shihui; Fama, Mackenzie E; Turkeltaub, Peter E

    2017-05-01

    Understanding the relationships between clinical tests, the processes they measure, and the brain networks underlying them, is critical in order for clinicians to move beyond aphasia syndrome classification toward specification of individual language process impairments. To understand the cognitive, language, and neuroanatomical factors underlying scores of commonly used aphasia tests. Twenty-five behavioral tests were administered to a group of 38 chronic left hemisphere stroke survivors and a high-resolution magnetic resonance image was obtained. Test scores were entered into a principal components analysis to extract the latent variables (factors) measured by the tests. Multivariate lesion-symptom mapping was used to localize lesions associated with the factor scores. The principal components analysis yielded 4 dissociable factors, which we labeled Word Finding/Fluency, Comprehension, Phonology/Working Memory Capacity, and Executive Function. While many tests loaded onto the factors in predictable ways, some relied heavily on factors not commonly associated with the tests. Lesion symptom mapping demonstrated discrete brain structures associated with each factor, including frontal, temporal, and parietal areas extending beyond the classical language network. Specific functions mapped onto brain anatomy largely in correspondence with modern neural models of language processing. An extensive clinical aphasia assessment identifies 4 independent language functions, relying on discrete parts of the left middle cerebral artery territory. A better understanding of the processes underlying cognitive tests and the link between lesion and behavior may lead to improved aphasia diagnosis, and may yield treatments better targeted to an individual's specific pattern of deficits and preserved abilities.

  2. Neural networks underlying language and social cognition during self-other processing in Autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Sartin, Emma B; Stevens, Carl; Deshpande, Hrishikesh D; Klein, Christopher; Klinger, Mark R; Klinger, Laura Grofer

    2017-07-28

    The social communication impairments defining autism spectrum disorders (ASD) may be built upon core deficits in perspective-taking, language processing, and self-other representation. Self-referential processing entails the ability to incorporate self-awareness, self-judgment, and self-memory in information processing. Very few studies have examined the neural bases of integrating self-other representation and semantic processing in individuals with ASD. The main objective of this functional MRI study is to examine the role of language and social brain networks in self-other processing in young adults with ASD. Nineteen high-functioning male adults with ASD and 19 age-sex-and-IQ-matched typically developing (TD) control participants made "yes" or "no" judgments of whether an adjective, presented visually, described them (self) or their favorite teacher (other). Both ASD and TD participants showed significantly increased activity in the medial prefrontal cortex (MPFC) during self and other processing relative to letter search. Analyses of group differences revealed significantly reduced activity in left inferior frontal gyrus (LIFG), and left inferior parietal lobule (LIPL) in ASD participants, relative to TD controls. ASD participants also showed significantly weaker functional connectivity of the anterior cingulate cortex (ACC) with several brain areas while processing self-related words. The LIFG and IPL are important regions functionally at the intersection of language and social roles; reduced recruitment of these regions in ASD participants may suggest poor level of semantic and social processing. In addition, poor connectivity of the ACC may suggest the difficulty in meeting the linguistic and social demands of this task in ASD. Overall, this study provides new evidence of the altered recruitment of the neural networks underlying language and social cognition in ASD. Published by Elsevier Ltd.

  3. [Glutamate signaling and neural plasticity].

    Science.gov (United States)

    Watanabe, Masahiko

    2013-07-01

    Proper functioning of the nervous system relies on the precise formation of neural circuits during development. At birth, neurons have redundant synaptic connections not only to their proper targets but also to other neighboring cells. Then, functional neural circuits are formed during early postnatal development by the selective strengthening of necessary synapses and weakening of surplus connections. Synaptic connections are also modified so that projection fields of active afferents expand at the expense of lesser ones. We have studied the molecular mechanisms underlying these activity-dependent prunings and the plasticity of synaptic circuitry using gene-engineered mice defective in the glutamatergic signaling system. NMDA-type glutamate receptors are critically involved in the establishment of the somatosensory pathway ascending from the brainstem trigeminal nucleus to the somatosensory cortex. Without NMDA receptors, whisker-related patterning fails to develop, whereas lesion-induced plasticity occurs normally during the critical period. In contrast, mice lacking the glutamate transporters GLAST or GLT1 are selectively impaired in the lesion-induced critical plasticity of cortical barrels, although whisker-related patterning itself develops normally. In the developing cerebellum, multiple climbing fibers initially innervating given Purkinje cells are eliminated one by one until mono-innervation is achieved. In this pruning process, P/Q-type Ca2+ channels expressed on Purkinje cells are critically involved by the selective strengthening of single main climbing fibers against other lesser afferents. Therefore, the activation of glutamate receptors that leads to an activity-dependent increase in the intracellular Ca2+ concentration plays a key role in the pruning of immature synaptic circuits into functional circuits. On the other hand, glutamate transporters appear to control activity-dependent plasticity among afferent fields, presumably through adjusting

  4. Computational Assessment of Neural Probe and Brain Tissue Interface under Transient Motion

    Directory of Open Access Journals (Sweden)

    Michael Polanco

    2016-06-01

    Full Text Available The functional longevity of a neural probe is dependent upon its ability to minimize injury risk during the insertion and recording period in vivo, which could be related to motion-related strain between the probe and surrounding tissue. A series of finite element analyses was conducted to study the extent of the strain induced within the brain in an area around a neural probe. This study focuses on the transient behavior of neural probe and brain tissue interface with a viscoelastic model. Different stages of the interface from initial insertion of neural probe to full bonding of the probe by astro-glial sheath formation are simulated utilizing analytical tools to investigate the effects of relative motion between the neural probe and the brain while friction coefficients and kinematic frequencies are varied. The analyses can provide an in-depth look at the quantitative benefits behind using soft materials for neural probes.

  5. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Modulating conscious movement intention by noninvasive brain stimulation and the underlying neural mechanisms.

    Science.gov (United States)

    Douglas, Zachary H; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M; He, Biyu J

    2015-05-06

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60-70 ms earlier. Slow brain waves recorded ∼2-3 s before movement onset, as well as hundreds of milliseconds after movement onset, independently correlated with the modulation of conscious intention by brain stimulation. These brain activities together accounted for 81% of interindividual variability in the modulation of movement intention by brain stimulation. A computational model using coupled leaky integrator units with biophysically plausible assumptions about the effect of tDCS captured the effects of stimulation on both neural activity and behavior. These results reveal a temporally extended brain process underlying conscious movement intention that spans seconds around movement commencement. Copyright © 2015 Douglas et al.

  7. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons.

    Science.gov (United States)

    Bader, Rüdiger; Colomb, Julien; Pankratz, Bettina; Schröck, Anne; Stocker, Reinhard F; Pankratz, Michael J

    2007-06-10

    The hugin gene of Drosophila encodes a neuropeptide with homology to mammalian neuromedin U. The hugin-expressing neurons are localized exclusively to the subesophageal ganglion of the central nervous system and modulate feeding behavior in response to nutrient signals. These neurons send neurites to the protocerebrum, the ventral nerve cord, the ring gland, and the pharynx and may interact with the gustatory sense organs. In this study, we have investigated the morphology of the hugin neurons at a single-cell level by using clonal analysis. We show that single cells project to only one of the four major targets. In addition, the neurites of the different hugin cells overlap in a specific brain region lateral to the foramen of the esophagus, which could be a new site of neuropeptide release for feeding regulation. Our study reveals novel complexity in the morphology of individual hugin neurons, which has functional implication for how they coordinate feeding behavior and growth.

  8. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  9. Fast and Accurate Icepak-PSpice Co-Simulation of IGBTs under Short-Circuit with an Advanced PSpice Model

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    A basic problem in the IGBT short-circuit failure mechanism study is to obtain realistic temperature distribution inside the chip, which demands accurate electrical simulation to obtain power loss distribution as well as detailed IGBT geometry and material information. This paper describes an unp...

  10. The insula: a critical neural substrate for craving and drug seeking under conflict and risk

    Science.gov (United States)

    Naqvi, Nasir H.; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-01-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking—the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. PMID:24690001

  11. Neural and computational processes underlying dynamic changes in self-esteem

    Science.gov (United States)

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  12. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  13. Feline Neural Progenitor Cells I: Long-Term Expansion under Defined Culture Conditions

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-01-01

    Full Text Available Neural progenitor cells (NPCs of feline origin (cNPCs have demonstrated utility in transplantation experiments, yet are difficult to grow in culture beyond the 1 month time frame. Here we use an enriched, serum-free base medium (Ultraculture and report the successful long-term propagation of these cells. Primary cultures were derived from fetal brain tissue and passaged in DMEM/F12-based or Ultraculture-based proliferation media, both in the presence of EGF + bFGF. Cells in standard DMEM/F12-based medium ceased to proliferate by 1-month, whereas the cells in the Ultraculture-based medium continued to grow for at least 5 months (end of study with no evidence of senescence. The Ultraculture-based cultures expressed lower levels of progenitor and lineage-associated markers under proliferation conditions but retained multipotency as evidenced by the ability to differentiate into neurons and glia following growth factor removal in the presence of FBS. Importantly, later passage cNPCs did not develop chromosomal aberrations.

  14. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  15. The insula: a critical neural substrate for craving and drug seeking under conflict and risk.

    Science.gov (United States)

    Naqvi, Nasir H; Gaznick, Natassia; Tranel, Daniel; Bechara, Antoine

    2014-05-01

    Drug addiction is characterized by the inability to control drug use when it results in negative consequences or conflicts with more adaptive goals. Our previous work showed that damage to the insula disrupted addiction to cigarette smoking-the first time that the insula was shown to be a critical neural substrate for addiction. Here, we review those findings, as well as more recent studies that corroborate and extend them, demonstrating the role of the insula in (1) incentive motivational processes that drive addictive behavior, (2) control processes that moderate or inhibit addictive behavior, and (3) interoceptive processes that represent bodily states associated with drug use. We then describe a theoretical framework that attempts to integrate these seemingly disparate findings. In this framework, the insula functions in the recall of interoceptive drug effects during craving and drug seeking under specific conditions where drug taking is perceived as risky and/or where there is conflict between drug taking and more adaptive goals. We describe this framework in an evolutionary context and discuss its implications for understanding the mechanisms of behavior change in addiction treatments. © 2014 New York Academy of Sciences.

  16. Association of contextual cues with morphine reward increases neural and synaptic plasticity in the ventral hippocampus of rats

    NARCIS (Netherlands)

    Alvandi, M.S.; Bourmpoula, M.; Homberg, J.R.; Fathollahi, Y.

    2017-01-01

    Drug addiction is associated with aberrant memory and permanent functional changes in neural circuits. It is known that exposure to drugs like morphine is associated with positive emotional states and reward-related memory. However, the underlying mechanisms in terms of neural plasticity in the

  17. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry.

    Science.gov (United States)

    Wang, Andi; Wang, Junbao; Liu, Ying; Zhou, Yan

    2017-01-01

    The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.

  18. Electrochemical studies of the film formation on lithium in propylene carbonate solutions under open-circuit conditions

    Energy Technology Data Exchange (ETDEWEB)

    Geronov, Y.; Schwager, F.; Muller, R.H.

    1981-11-01

    The nature of protective surface layers formed on lithium in propylene carbonate solutions of LiClO/sub 4/ and LiAsF/sub 6/ at open circuit has been investigated by electrochemical pulse measurements. The results are consistent with the fast formation of a compact thin layer resulting from the reaction with residual water. This layer acts as a solid ionic conductor. Slow corrosion or decomposition processes produce a thicker porous overlayer.

  19. Neural network underlying ictal pouting ("chapeau de gendarme") in frontal lobe epilepsy.

    Science.gov (United States)

    Souirti, Zouhayr; Landré, Elisabeth; Mellerio, Charles; Devaux, Bertrand; Chassoux, Francine

    2014-08-01

    In order to determine the anatomical neural network underlying ictal pouting (IP), with the mouth turned down like a "chapeau de gendarme", in frontal lobe epilepsy (FLE), we reviewed the video-EEG recordings of 36 patients with FLE who became seizure-free after surgery. We selected the cases presenting IP, defined as a symmetrical and sustained (>5s) lowering of labial commissures with contraction of chin, mimicking an expression of fear, disgust, or menace. Ictal pouting was identified in 11 patients (8 males; 16-48 years old). We analyzed the clinical semiology, imaging, and electrophysiological data associated with IP, including FDG-PET in 10 and SEEG in 9 cases. In 37 analyzed seizures (2-7/patient), IP was an early symptom, occurring during the first 10s in 9 cases. The main associated features consisted of fear, anguish, vegetative disturbances, behavioral disorders (sudden agitation, insults, and fighting), tonic posturing, and complex motor activities. The epileptogenic zone assessed by SEEG involved the mesial frontal areas, especially the anterior cingulate cortex (ACC) in 8 patients, whereas lateral frontal onset with an early spread to the ACC was seen in the other patient. Ictal pouting associated with emotional changes and hypermotor behavior had high localizing value for rostroventral "affective" ACC, whereas less intense facial expressions were related to the dorsal "cognitive" ACC. Fluorodeoxyglucose positron emission tomography demonstrated the involvement of both the ACC and lateral cortex including the anterior insula in all cases. We propose that IP is sustained by reciprocal mesial and lateral frontal interactions involved in emotional and cognitive processes, in which the ACC plays a pivotal role. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Neural mechanisms underlying migrating motor complex formation in mouse isolated colon

    Science.gov (United States)

    Brierley, Stuart M; Nichols, Kim; Grasby, Dallas J; Waterman, Sally A

    2001-01-01

    Little is known about the intrinsic enteric reflex pathways associated with migrating motor complex (MMC) formation. Acetylcholine (ACh) mediates the rapid component of the MMC, however a non-cholinergic component also exists. The present study investigated the possible role of endogenous tachykinins (TKs) in the formation of colonic MMCs and the relative roles of excitatory and inhibitory pathways.MMCs were recorded from the circular muscle at four sites (proximal, proximal-mid, mid-distal and distal) along the mouse colon using force transducers.The tachykinin (NK1 and NK2) receptor antagonists SR-140 333 (250 nM) and SR-48 968 (250 nM) reduced the amplitude of MMCs at all recording sites, preferentially abolishing the long duration contraction. Residual MMCs were abolished by the subsequent addition of atropine (1 μM).The neuronal nitric oxide synthase inhibitor, Nωnitro-L-arginine (L-NOARG, 100 μM), increased MMC amplitude in the distal region, whilst reducing the amplitude in the proximal region. In preparations where MMCs did not migrate to the distal colon, addition of L-NOARG resulted in the formation of MMCs. Subsequent addition of apamin (250 nM) or suramin (100 μM) further increased MMC amplitude in the distal region, whilst suramin increased MMC amplitude in the mid-distal region. Apamin but not suramin reduced MMC amplitude in the proximal region. Subsequent addition of SR-140 333 and SR-48 968 reduced MMC amplitude at all sites. Residual MMCs were abolished by atropine (1 μM).In conclusion, TKs, ACh, nitric oxide (NO) and ATP are involved in the neural mechanisms underlying the formation of MMCs in the mouse colon. Tachykinins mediate the long duration component of the MMC via NK1 and NK2 receptors. Inhibitory pathways may be involved in determining whether MMCs are formed. PMID:11159701

  1. Neural correlates of erotic stimulation under different levels of female sexual hormones.

    Directory of Open Access Journals (Sweden)

    Birgit Abler

    Full Text Available Previous studies have demonstrated variable influences of sexual hormonal states on female brain activation and the necessity to control for these in neuroimaging studies. However, systematic investigations of these influences, particularly those of hormonal contraceptives as compared to the physiological menstrual cycle are scarce. In the present study, we investigated the hormonal modulation of neural correlates of erotic processing in a group of females under hormonal contraceptives (C group; N = 12, and a different group of females (nC group; N = 12 not taking contraceptives during their mid-follicular and mid-luteal phases of the cycle. We used functional magnetic resonance imaging to measure hemodynamic responses as an estimate of brain activation during three different experimental conditions of visual erotic stimulation: dynamic videos, static erotic pictures, and expectation of erotic pictures. Plasma estrogen and progesterone levels were assessed in all subjects. No strong hormonally modulating effect was detected upon more direct and explicit stimulation (viewing of videos or pictures with significant activations in cortical and subcortical brain regions previously linked to erotic stimulation consistent across hormonal levels and stimulation type. Upon less direct and less explicit stimulation (expectation, activation patterns varied between the different hormonal conditions with various, predominantly frontal brain regions showing significant within- or between-group differences. Activation in the precentral gyrus during the follicular phase in the nC group was found elevated compared to the C group and positively correlated with estrogen levels. From the results we conclude that effects of hormonal influences on brain activation during erotic stimulation are weak if stimulation is direct and explicit but that female sexual hormones may modulate more subtle aspects of sexual arousal and behaviour as involved in sexual

  2. CMOS-based Stochastically Spiking Neural Network for Optimization under Uncertainties

    Science.gov (United States)

    2017-03-01

    the digital representation of xin are updated in each clock cycle for F(xin) = u in Fig. 6(b). Thereby, with a random uniform distribution of u...network, and enables power-performance trade-off. Circuit in Fig. 8(a) is triggered by a spike, and produces a pulse controlled by a digital weight-bits...sign(dx/dt) for input variable x. Circuit schematic in Fig. 9(b) computes sign of derivative of its input. Based on clock signals CLK/CLKB

  3. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    Directory of Open Access Journals (Sweden)

    Leon Chua

    2012-03-01

    Full Text Available A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

  4. Neural mechanisms underlying subsequent memory for personal beliefs:An fMRI study.

    Science.gov (United States)

    Wing, Erik A; Iyengar, Vijeth; Hess, Thomas M; LaBar, Kevin S; Huettel, Scott A; Cabeza, Roberto

    2018-04-01

    Many fMRI studies have examined the neural mechanisms supporting emotional memory for stimuli that generate emotion rather automatically (e.g., a picture of a dangerous animal or of appetizing food). However, far fewer studies have examined how memory is influenced by emotion related to social and political issues (e.g., a proposal for large changes in taxation policy), which clearly vary across individuals. In order to investigate the neural substrates of affective and mnemonic processes associated with personal opinions, we employed an fMRI task wherein participants rated the intensity of agreement/disagreement to sociopolitical belief statements paired with neural face pictures. Following the rating phase, participants performed an associative recognition test in which they distinguished identical versus recombined face-statement pairs. The study yielded three main findings: behaviorally, the intensity of agreement ratings was linked to greater subjective emotional arousal as well as enhanced high-confidence subsequent memory. Neurally, statements that elicited strong (vs. weak) agreement or disagreement were associated with greater activation of the amygdala. Finally, a subsequent memory analysis showed that the behavioral memory advantage for statements generating stronger ratings was dependent on the medial prefrontal cortex (mPFC). Together, these results both underscore consistencies in neural systems supporting emotional arousal and suggest a modulation of arousal-related encoding mechanisms when emotion is contingent on referencing personal beliefs.

  5. Fission product chemistry and aerosol behaviour in the primary circuit of a pressurised water reactor under severe accident conditions

    International Nuclear Information System (INIS)

    Bowsher, B.R.

    1985-09-01

    Three key accident sequences are considered covering a representative range of different environments of pressure, flow, temperature history and degree of zircaloy oxidation, and their principle thermal hydraulic and physical characteristics affecting chemistry behaviour are identified. Inventories, chemical forms and timing of fission product release are summarized together with the major sources of structural materials and their release characteristics. Chemistry of each main fission product species is reviewed from available experimental and/or theoretical data. Studies modelling primary circuit fission product behaviour are reviewed. Requirements for further study are assessed. (UK)

  6. Compact electro-thermal modeling of a SiC MOSFET power module under short-circuit conditions

    DEFF Research Database (Denmark)

    Ceccarelli, Lorenzo; Reigosa, Paula Diaz; Bahman, Amir Sajjad

    2017-01-01

    A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure...... of the module, including stray elements in the multi-chip layout, self-heating effect, drain leakage current and threshold voltage mismatch. A lumped-parameter thermal network is extracted in order to estimate the internal temperature of the chips. The case study is a half-bridge power module from CREE with 1...

  7. The neural basis of loss aversion in decision-making under risk.

    Science.gov (United States)

    Tom, Sabrina M; Fox, Craig R; Trepel, Christopher; Poldrack, Russell A

    2007-01-26

    People typically exhibit greater sensitivity to losses than to equivalent gains when making decisions. We investigated neural correlates of loss aversion while individuals decided whether to accept or reject gambles that offered a 50/50 chance of gaining or losing money. A broad set of areas (including midbrain dopaminergic regions and their targets) showed increasing activity as potential gains increased. Potential losses were represented by decreasing activity in several of these same gain-sensitive areas. Finally, individual differences in behavioral loss aversion were predicted by a measure of neural loss aversion in several regions, including the ventral striatum and prefrontal cortex.

  8. Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2014-12-01

    Full Text Available An artificial neural network (ANN constitutive model is developed for high strength armor steel tempered at 500 °C, 600 °C and 650 °C based on high strain rate data generated from split Hopkinson pressure bar (SHPB experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500–650 °C, strains (0.05–0.2 and strain rates (1000–5500/s are employed to formulate J–C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R and average absolute relative error (AARE. R and AARE for the J–C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.

  9. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  10. Developmental Pathway Genes and Neural Plasticity Underlying Emotional Learning and Stress-Related Disorders

    Science.gov (United States)

    Maheau, Marissa E.; Ressler, Kerry J.

    2017-01-01

    The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk…

  11. Electrochemical Migration Behavior of Copper-Clad Laminate and Electroless Nickel/Immersion Gold Printed Circuit Boards under Thin Electrolyte Layers

    Directory of Open Access Journals (Sweden)

    Pan Yi

    2017-02-01

    Full Text Available The electrochemical migration (ECM behavior of copper-clad laminate (PCB-Cu and electroless nickel/immersion gold printed circuit boards (PCB-ENIG under thin electrolyte layers of different thicknesses containing 0.1 M Na2SO4 was studied. Results showed that, under the bias voltage of 12 V, the reverse migration of ions occurred. For PCB-Cu, both copper dendrites and sulfate precipitates were found on the surface of FR-4 (board material between two plates. Moreover, the Cu dendrite was produced between the two plates and migrated toward cathode. Compared to PCB-Cu, PCB-ENIG exhibited a higher tendency of ECM failure and suffered from seriously short circuit failure under high relative humidity (RH environment. SKP results demonstrated that surface potentials of the anode plates were greater than those of the cathode plates, and those potentials of the two plates exhibited a descending trend as the RH increased. At the end of the paper, an electrochemical migration corrosion failure model of PCB was proposed.

  12. Abnormal Signal Analysis for a Change of the R-C Passive Elements in a Equivalent Circuit Modeling under a High Temperature Accident Condition

    International Nuclear Information System (INIS)

    Koo, Kil-Mo; Song, Yong-Mann; Ahan, Kwang-Il; Ha, Jea-Joo

    2007-01-01

    An electrical signal should be checked to see whether it lies within its expected electrical range when there is a doubtful condition. The normal signal level for pressure, flow, level and resistance temperature detector sensors is 4 - 20mA for most instruments as an industrial process control standard. In the case of an abnormal signal level from an instrument under a severe accident condition, it is necessary to obtain a more accurate signal validation to operate a system in a control room in NPPs. Diagnostics and analysis for some abnormal signals have been performed through an important equivalent circuits modeling for passive elements under severe accident conditions. Unlike the design basis accidents, there are some inherent uncertainties for the instrumentation capabilities under severe accident conditions. In this paper, to implement a diagnostic analysis for an equivalent circuits modeling, a kind of linked LabVIEW program for each PSpice and MULTISim code is introduced as a one body order system, which can obtain some abnormal signal patterns by a special function such as an advanced simulation tool for each PSpice and Multi-SIM code as a means of a function for a PC based ASSA (abnormal signal simulation analyzer) module

  13. Abnormal Signal Analysis for a Change of the R-C Passive Elements in a Equivalent Circuit Modeling under a High Temperature Accident Condition

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Kil-Mo; Song, Yong-Mann; Ahan, Kwang-Il; Ha, Jea-Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    An electrical signal should be checked to see whether it lies within its expected electrical range when there is a doubtful condition. The normal signal level for pressure, flow, level and resistance temperature detector sensors is 4 - 20mA for most instruments as an industrial process control standard. In the case of an abnormal signal level from an instrument under a severe accident condition, it is necessary to obtain a more accurate signal validation to operate a system in a control room in NPPs. Diagnostics and analysis for some abnormal signals have been performed through an important equivalent circuits modeling for passive elements under severe accident conditions. Unlike the design basis accidents, there are some inherent uncertainties for the instrumentation capabilities under severe accident conditions. In this paper, to implement a diagnostic analysis for an equivalent circuits modeling, a kind of linked LabVIEW program for each PSpice and MULTISim code is introduced as a one body order system, which can obtain some abnormal signal patterns by a special function such as an advanced simulation tool for each PSpice and Multi-SIM code as a means of a function for a PC based ASSA (abnormal signal simulation analyzer) module.

  14. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    Science.gov (United States)

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  15. An auditory feature detection circuit for sound pattern recognition.

    Science.gov (United States)

    Schöneich, Stefan; Kostarakos, Konstantinos; Hedwig, Berthold

    2015-09-01

    From human language to birdsong and the chirps of insects, acoustic communication is based on amplitude and frequency modulation of sound signals. Whereas frequency processing starts at the level of the hearing organs, temporal features of the sound amplitude such as rhythms or pulse rates require processing by central auditory neurons. Besides several theoretical concepts, brain circuits that detect temporal features of a sound signal are poorly understood. We focused on acoustically communicating field crickets and show how five neurons in the brain of females form an auditory feature detector circuit for the pulse pattern of the male calling song. The processing is based on a coincidence detector mechanism that selectively responds when a direct neural response and an intrinsically delayed response to the sound pulses coincide. This circuit provides the basis for auditory mate recognition in field crickets and reveals a principal mechanism of sensory processing underlying the perception of temporal patterns.

  16. Development of larval motor circuits in Drosophila.

    Science.gov (United States)

    Kohsaka, Hiroshi; Okusawa, Satoko; Itakura, Yuki; Fushiki, Akira; Nose, Akinao

    2012-04-01

    How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  17. Neural Control of the Lower Urinary Tract

    Science.gov (United States)

    de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki

    2015-01-01

    This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273

  18. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    OpenAIRE

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Mill?n-Calenti, Jos? Carlos; Del Percio, Claudio; Buj?n, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expre...

  19. Anger under Control: Neural Correlates of Frustration as a Function of Trait Aggression

    OpenAIRE

    Pawliczek, Christina M.; Derntl, Birgit; Kellermann, Thilo; Gur, Ruben C.; Schneider, Frank; Habel, Ute

    2013-01-01

    Antisocial behavior and aggression are prominent symptoms in several psychiatric disorders including antisocial personality disorder. An established precursor to aggression is a frustrating event, which can elicit anger or exasperation, thereby prompting aggressive responses. While some studies have investigated the neural correlates of frustration and aggression, examination of their relation to trait aggression in healthy populations are rare. Based on a screening of 550 males, we formed tw...

  20. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    Czech Academy of Sciences Publication Activity Database

    Valach, F.; Bochníček, Josef; Hejda, Pavel; Revallo, M.

    2014-01-01

    Roč. 53, č. 4 (2014), s. 589-598 ISSN 0273-1177 R&D Projects: GA AV ČR(CZ) IAA300120608; GA MŠk OC09070 Institutional support: RVO:67985530 Keywords : geomagnetic activity * interplanetary magnetic field * artificial neural network * ejection of coronal mass * X-ray flares Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.358, year: 2014

  1. Neural Systems Underlying Perceptual Adjustment to Non-Standard Speech Tokens.

    Science.gov (United States)

    Myers, Emily B; Mesite, Laura M

    2014-10-01

    It has long been noted that listeners use top-down information from context to guide perception of speech sounds. A recent line of work employing a phenomenon termed 'perceptual learning for speech' shows that listeners use top-down information to not only resolve the identity of perceptually ambiguous speech sounds, but also to adjust perceptual boundaries in subsequent processing of speech from the same talker. Even so, the neural mechanisms that underlie this process are not well understood. Of particular interest is whether this type of adjustment comes about because of a retuning of sensitivities to phonetic category structure early in the neural processing stream or whether the boundary shift results from decision-related or attentional mechanisms further downstream. In the current study, neural activation was measured using fMRI as participants categorized speech sounds that were perceptually shifted as a result of exposure to these sounds in lexically-unambiguous contexts. Sensitivity to lexically-mediated shifts in phonetic categorization emerged in right hemisphere frontal and middle temporal regions, suggesting that the perceptual learning for speech phenomenon relies on the adjustment of perceptual criteria downstream from primary auditory cortex. By the end of the session, this same sensitivity was seen in left superior temporal areas, which suggests that a rapidly-adapting system may be accompanied by more slowly evolving shifts in regions of the brain related to phonetic processing.

  2. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fractionating the neural correlates of individual working memory components underlying arithmetic problem solving skills in children.

    Science.gov (United States)

    Metcalfe, Arron W S; Ashkenazi, Sarit; Rosenberg-Lee, Miriam; Menon, Vinod

    2013-10-01

    Baddeley and Hitch's multi-component working memory (WM) model has played an enduring and influential role in our understanding of cognitive abilities. Very little is known, however, about the neural basis of this multi-component WM model and the differential role each component plays in mediating arithmetic problem solving abilities in children. Here, we investigate the neural basis of the central executive (CE), phonological (PL) and visuo-spatial (VS) components of WM during a demanding mental arithmetic task in 7-9 year old children (N=74). The VS component was the strongest predictor of math ability in children and was associated with increased arithmetic complexity-related responses in left dorsolateral and right ventrolateral prefrontal cortices as well as bilateral intra-parietal sulcus and supramarginal gyrus in posterior parietal cortex. Critically, VS, CE and PL abilities were associated with largely distinct patterns of brain response. Overlap between VS and CE components was observed in left supramarginal gyrus and no overlap was observed between VS and PL components. Our findings point to a central role of visuo-spatial WM during arithmetic problem-solving in young grade-school children and highlight the usefulness of the multi-component Baddeley and Hitch WM model in fractionating the neural correlates of arithmetic problem solving during development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between "seen" trials and "not seen" trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both "seen" and "not seen" trials. There was no statistical difference in the ERP peak latencies between the "seen" and "not seen" trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between "seen" and "not seen" trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks

  5. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder.

    Science.gov (United States)

    Gong, Liang; Yin, Yingying; He, Cancan; Ye, Qing; Bai, Feng; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun

    2017-01-01

    Neuroimaging studies have demonstrated that major depressive disorder (MDD) patients show blunted activity responses to reward-related tasks. However, whether abnormal reward circuits affect cognition and depression in MDD patients remains unclear. Seventy-five drug-naive MDD patients and 42 cognitively normal (CN) subjects underwent a resting-state functional magnetic resonance imaging scan. The bilateral nucleus accumbens (NAc) were selected as seeds to construct reward circuits across all subjects. A multivariate linear regression analysis was employed to investigate the neural substrates of cognitive function and depression severity on the reward circuits in MDD patients. The common pathway underlying cognitive deficits and depression was identified with conjunction analysis. Compared with CN subjects, MDD patients showed decreased reward network connectivity that was primarily located in the prefrontal-striatal regions. Importantly, distinct and common neural pathways underlying cognition and depression were identified, implying the independent and synergistic effects of cognitive deficits and depression severity on reward circuits. This study demonstrated that disrupted topological organization within reward circuits was significantly associated with cognitive deficits and depression severity in MDD patients. These findings suggest that in addition to antidepressant treatment, normalized reward circuits should be a focus and a target for improving depression and cognitive deficits in MDD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Pattern Classification with Memristive Crossbar Circuits

    Science.gov (United States)

    2016-03-31

    Pattern Classification with Memristive Crossbar Circuits Dmitri B. Strukov Department of Electrical and Computer Engineering Department UC Santa...pattern classification ; deep learning; convolutional neural network networks. Introduction Deep-learning convolutional neural networks (DLCNN), which...the best classification performances on a variety of benchmark tasks [1]. The major challenge in building fast and energy- efficient networks of this

  7. Neural Correlates of Choking Under Pressure: Athletes High in Sports Anxiety Monitor Errors More When Performance Is Being Evaluated.

    Science.gov (United States)

    Masaki, Hiroaki; Maruo, Yuya; Meyer, Alexandria; Hajcak, Greg

    2017-01-01

    We investigated the relationship between performance-related anxiety and the neural response to errors. Using the sport anxiety scale, we selected university athletes high in sports anxiety and low in sports anxiety. The two groups performed a spatial Stroop task while their performance was being evaluated by an experimenter and also during a control (i.e., no evaluation) condition. The error-related negativity was significantly larger during the evaluation than control condition among athletes who reported high performance-related anxiety. These results suggest that performance evaluation may make errors particularly aversive or salient for individuals who fail to perform well under pressure.

  8. Exponential synchronization of delayed neutral-type neural networks with Lévy noise under non-Lipschitz condition

    Science.gov (United States)

    Ma, Shuo; Kang, Yanmei

    2018-04-01

    In this paper, the exponential synchronization of stochastic neutral-type neural networks with time-varying delay and Lévy noise under non-Lipschitz condition is investigated for the first time. Using the general Itô's formula and the nonnegative semi-martingale convergence theorem, we derive general sufficient conditions of two kinds of exponential synchronization for the drive system and the response system with adaptive control. Numerical examples are presented to verify the effectiveness of the proposed criteria.

  9. Robust Finite-Time Stabilization of Fractional-Order Neural Networks With Discontinuous and Continuous Activation Functions Under Uncertainty.

    Science.gov (United States)

    Ding, Zhixia; Zeng, Zhigang; Wang, Leimin

    2017-03-10

    This paper is concerned with robust finite-time stabilization for a class of fractional-order neural networks (FNNs) with two types of activation functions (i.e., discontinuous and continuous activation function) under uncertainty. It is worth noting that there exist few results about FNNs with discontinuous activation functions, which is mainly because classical solutions and theories of differential equations cannot be applied in this case. Especially, there is no relevant finite-time stabilization research for such system, and this paper makes up for the gap. The existence of global solution under the framework of Filippov for such system is guaranteed by limiting discontinuous activation functions. According to set-valued analysis and Kakutani's fixed point theorem, we obtain the existence of equilibrium point. In particular, based on differential inclusion theory and fractional Lyapunov stability theory, several new sufficient conditions are given to ensure finite-time stabilization via a novel discontinuous controller, and the upper bound of the settling time for stabilization is estimated. In addition, we analyze the finite-time stabilization of FNNs with Lipschitz-continuous activation functions under uncertainty. The results of this paper improve corresponding ones of integer-order neural networks with discontinuous and continuous activation functions. Finally, three numerical examples are given to show the effectiveness of the theoretical results.

  10. Temporal neural mechanisms underlying conscious access to different levels of facial stimulus contents.

    Science.gov (United States)

    Hsu, Shen-Mou; Yang, Yu-Fang

    2018-04-01

    An important issue facing the empirical study of consciousness concerns how the contents of incoming stimuli gain access to conscious processing. According to classic theories, facial stimuli are processed in a hierarchical manner. However, it remains unclear how the brain determines which level of stimulus content is consciously accessible when facing an incoming facial stimulus. Accordingly, with a magnetoencephalography technique, this study aims to investigate the temporal dynamics of the neural mechanism mediating which level of stimulus content is consciously accessible. Participants were instructed to view masked target faces at threshold so that, according to behavioral responses, their perceptual awareness alternated from consciously accessing facial identity in some trials to being able to consciously access facial configuration features but not facial identity in other trials. Conscious access at these two levels of facial contents were associated with a series of differential neural events. Before target presentation, different patterns of phase angle adjustment were observed between the two types of conscious access. This effect was followed by stronger phase clustering for awareness of facial identity immediately during stimulus presentation. After target onset, conscious access to facial identity, as opposed to facial configural features, was able to elicit more robust late positivity. In conclusion, we suggest that the stages of neural events, ranging from prestimulus to stimulus-related activities, may operate in combination to determine which level of stimulus contents is consciously accessed. Conscious access may thus be better construed as comprising various forms that depend on the level of stimulus contents accessed. NEW & NOTEWORTHY The present study investigates how the brain determines which level of stimulus contents is consciously accessible when facing an incoming facial stimulus. Using magnetoencephalography, we show that prestimulus

  11. Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers

    Directory of Open Access Journals (Sweden)

    Mauricio R Delgado

    2011-05-01

    Full Text Available Money is a secondary reinforcer commonly used across a range of disciplines in experimental paradigms investigating reward learning and decision-making. The effectiveness of monetary reinforcers during aversive learning and its neural basis, however, remains a topic of debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary losses depends on similar neural systems as more traditional aversive conditioning that involves primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer (shock and a socially defined secondary reinforcer (money during aversive learning and its associated neural circuitry. During a two-part experiment, participants first played a gambling game where wins and losses were based on performance to gain an experimental bank. Participants were then exposed to two separate aversive conditioning sessions. In one session, a primary reinforcer (mild shock served as an unconditioned stimulus (US and was paired with one of two colored squares, the conditioned stimuli (CS+ and CS-, respectively. In another session, a secondary reinforcer (loss of money served as the US and was paired with one of two different CS. Skin conductance responses were greater for CS+ compared to CS- trials irrespective of type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with reward-related processing, was found to be involved in the acquisition of aversive conditioned response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a follow-up case study with a patient with bilateral amygdala damage. Taken together, these results suggest that learning about potential monetary losses may depend on reinforcement learning related systems, rather than on typical structures involved in more biologically based

  12. Effect of abacus training on executive function development and underlying neural correlates in Chinese children.

    Science.gov (United States)

    Wang, Chunjie; Weng, Jian; Yao, Yuan; Dong, Shanshan; Liu, Yuqiu; Chen, Feiyan

    2017-10-01

    Executive function (EF) refers to a set of cognitive abilities involved in self-regulated behavior. Given the critical role of EF in cognition, strategies for improving EF have attracted intensive attention in recent years. Previous studies have explored the effects of abacus-based mental calculation (AMC) training on several cognitive abilities. However, it remains unclear whether AMC training affects EF and its neural correlates. In this study, participants were randomly assigned to AMC or control groups upon starting primary school. The AMC group received 2 h AMC training every week, while the control group did not have any abacus experience. Neural activity during an EF task was examined using functional MRI for both groups in their 4 th and 6 th grades. Our results showed that the AMC group performed better and faster than the control group in both grades. They also had lower activation in the frontoparietal reigons than the control group in the 6 th grade. From the 4 th to the 6 th grade, the AMC group showed activation decreases in the frontoparietal regions, while the control group exhibited an opposite pattern. Furthermore, voxel-wise regression analyses revealed that better performance was associated with lower task-relevant brain activity in the AMC group but associated with greater task-relevant brain activity in the control group. These results suggest that long-term AMC training, with calculation ability as its original target, may improve EF and enhance neural efficiency of the frontoparietal regions during development. Hum Brain Mapp 38:5234-5249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.

    Science.gov (United States)

    Resendez, Shanna L; Jennings, Josh H; Ung, Randall L; Namboodiri, Vijay Mohan K; Zhou, Zhe Charles; Otis, James M; Nomura, Hiroshi; McHenry, Jenna A; Kosyk, Oksana; Stuber, Garret D

    2016-03-01

    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, owing to the light-scattering properties of the brain, as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head-fixed behavioral tasks. These limitations can now be circumvented by using miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here we describe steps to conduct such imaging studies using mice. However, we anticipate that the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state and other aspects of complex behavioral tasks. This protocol takes 6-11 weeks to complete.

  14. Psychological processes in chronic pain: Influences of reward and fear learning as key mechanisms - Behavioral evidence, neural circuits, and maladaptive changes.

    Science.gov (United States)

    Nees, Frauke; Becker, Susanne

    2017-09-07

    In the understanding of chronic pain, hypotheses derived from psychological theories, together with insights from physiological assessments and brain imaging, highlight the importance of mechanistically driven approaches. Physical system changes, for example following injury, can result in alterations of psychological processes and are accompanied by changes in corticolimbic circuits, which have been shown to be essential in emotional learning and memory, as well as reward processing and related behavior. In the present review, we thus highlight the importance of motivational, reward/pain relief, and fear learning processes in the context of chronic pain and discuss the potential of a mechanistic understanding of chronic pain within a clinical perspective, for example for the development of therapeutic strategies. We argue that changes in these mechanisms are not only characteristic for chronic pain, reflecting consequences of the disorder, but are also critically involved in the transition from acute to chronic pain states. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Performance Comparison of BPL, EtherLoop and SHDSL technology performance on existing pilot cable circuits under the presence of induced voltage

    International Nuclear Information System (INIS)

    Che, Y X; Ong, H S; Lai, L C; Ong, X J; Do, N Q; Karuppiah, S

    2013-01-01

    Pilot cable is originally used for utility protection. Then, pilot cable is further utilized for SCADA communication with low frequency PSK modem in the early 1990. However, the quality of pilot cable communication drops recently. Pilot cable starts to deteriorate due to aging and other unknown factors. It is also believed that the presence of induced voltage causes interference to existing modem communication which operates at low frequency channel. Therefore, BPL (Broadband Power Line), EtherLoop and SHDSL (Symmetrical High-speed Digital Subscriber Line) modem technology are proposed as alternative communication solutions for pilot cable communication. The performance of the 3 selected technologies on existing pilot cable circuits under the presence of induced voltage are measured and compared. Total of 11 pilot circuits with different length and level of induced voltage influence are selected for modem testing. The performance of BPL, EtherLoop and SHDSL modem technology are measured by the delay, bandwidth, packet loss and the long term usability SCADA (Supervisory Control and Data Acquisition) application. The testing results are presented and discussed in this paper. The results show that the 3 selected technologies are dependent on distance and independent on the level of induced voltage.

  16. Violence exposure and neural systems underlying working memory for emotional stimuli in youth.

    Science.gov (United States)

    Jenness, Jessica L; Rosen, Maya L; Sambrook, Kelly A; Dennison, Meg J; Lambert, Hilary K; Sheridan, Margaret A; McLaughlin, Katie A

    2017-11-16

    Violence exposure during childhood is common and associated with poor cognitive and academic functioning. However, little is known about how violence exposure influences cognitive processes that might contribute to these disparities, such as working memory, or their neural underpinnings, particularly for cognitive processes that occur in emotionally salient contexts. We address this gap in a sample of 54 participants aged 8 to 19 years (50% female), half with exposure to interpersonal violence. Participants completed a delayed match to sample task for emotional faces while undergoing functional magnetic resonance imaging scanning. Violence-exposed youth performed worse than controls on happy and neutral, but not angry, trials. In whole-brain analysis, violence-exposed youth had reduced activation in the left middle frontal gyrus and right intraparietal sulcus during encoding and the left superior temporal sulcus and temporal-parietal junction during retrieval compared to control youth. Reduced activation in the left middle frontal gyrus during encoding and the left superior temporal sulcus during retrieval mediated the association between violence exposure and task performance. Violence exposure influences the frontoparietal network that supports working memory as well as regions involved in facial processing during working memory for emotional stimuli. Reduced neural recruitment in these regions may explain atypical patterns of cognitive processing seen among violence-exposed youth, particularly within emotional contexts.

  17. Identifying temporal and causal contributions of neural processes underlying the Implicit Association Test (IAT

    Directory of Open Access Journals (Sweden)

    Chad Edward Forbes

    2012-11-01

    Full Text Available The Implicit Association Test (IAT is a popular behavioral measure that assesses the associative strength between outgroup members and stereotypical and counterstereotypical traits. Less is known, however, about the degree to which the IAT reflects automatic processing. Two studies examined automatic processing contributions to a gender-IAT using a data driven, social neuroscience approach. Performance on congruent (e.g., categorizing male names with synonyms of strength and incongruent (e.g., categorizing female names with synonyms of strength IAT blocks were separately analyzed using EEG (event-related potentials, or ERPs, and coherence; Study 1 and lesion (Study 2 methodologies. Compared to incongruent blocks, performance on congruent IAT blocks was associated with more positive ERPs that manifested in frontal and occipital regions at automatic processing speeds, occipital regions at more controlled processing speeds and was compromised by volume loss in the anterior temporal lobe, insula and medial PFC. Performance on incongruent blocks was associated with volume loss in supplementary motor areas, cingulate gyrus and a region in medial PFC similar to that found for congruent blocks. Greater coherence was found between frontal and occipital regions to the extent individuals exhibited more bias. This suggests there are separable neural contributions to congruent and incongruent blocks of the IAT but there is also a surprising amount of overlap. Given the temporal and regional neural distinctions, these results provide converging evidence that stereotypic associative strength assessed by the IAT indexes automatic processing to a degree.

  18. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans.

    Science.gov (United States)

    Abitbol, Raphaëlle; Lebreton, Maël; Hollard, Guillaume; Richmond, Barry J; Bouret, Sébastien; Pessiglione, Mathias

    2015-02-04

    A major challenge for decision theory is to account for the instability of expressed preferences across time and context. Such variability could arise from specific properties of the brain system used to assign subjective values. Growing evidence has identified the ventromedial prefrontal cortex (VMPFC) as a key node of the human brain valuation system. Here, we first replicate this observation with an fMRI study in humans showing that subjective values of painting pictures, as expressed in explicit pleasantness ratings, are specifically encoded in the VMPFC. We then establish a bridge with monkey electrophysiology, by comparing single-unit activity evoked by visual cues between the VMPFC and the orbitofrontal cortex. At the neural population level, expected reward magnitude was only encoded in the VMPFC, which also reflected subjective cue values, as expressed in Pavlovian appetitive responses. In addition, we demonstrate in both species that the additive effect of prestimulus activity on evoked activity has a significant impact on subjective values. In monkeys, the factor dominating prestimulus VMPFC activity was trial number, which likely indexed variations in internal dispositions related to fatigue or satiety. In humans, prestimulus VMPFC activity was externally manipulated through changes in the musical context, which induced a systematic bias in subjective values. Thus, the apparent stochasticity of preferences might relate to the VMPFC automatically aggregating the values of contextual features, which would bias subsequent valuation because of temporal autocorrelation in neural activity. Copyright © 2015 the authors 0270-6474/15/352308-13$15.00/0.

  19. Tuning to the significant: neural and genetic processes underlying affective enhancement of visual perception and memory.

    Science.gov (United States)

    Markovic, Jelena; Anderson, Adam K; Todd, Rebecca M

    2014-02-01

    Emotionally arousing events reach awareness more easily and evoke greater visual cortex activation than more mundane events. Recent studies have shown that they are also perceived more vividly and that emotionally enhanced perceptual vividness predicts memory vividness. We propose that affect-biased attention (ABA) - selective attention to emotionally salient events - is an endogenous attentional system tuned by an individual's history of reward and punishment. We present the Biased Attention via Norepinephrine (BANE) model, which unifies genetic, neuromodulatory, neural and behavioural evidence to account for ABA. We review evidence supporting BANE's proposal that a key mechanism of ABA is locus coeruleus-norepinephrine (LC-NE) activity, which interacts with activity in hubs of affective salience networks to modulate visual cortex activation and heighten the subjective vividness of emotionally salient stimuli. We further review literature on biased competition and look at initial evidence for its potential as a neural mechanism behind ABA. We also review evidence supporting the role of the LC-NE system as a driving force of ABA. Finally, we review individual differences in ABA and memory including differences in sensitivity to stimulus category and valence. We focus on differences arising from a variant of the ADRA2b gene, which codes for the alpha2b adrenoreceptor as a way of investigating influences of NE availability on ABA in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Anything goes? Regulation of the neural processes underlying response inhibition in TBI patients.

    Science.gov (United States)

    Moreno-López, Laura; Manktelow, Anne E; Sahakian, Barbara J; Menon, David K; Stamatakis, Emmanuel A

    2017-02-01

    Despite evidence for beneficial use of methylphenidate in response inhibition, no studies so far have investigated the effects of this drug in the neurobiology of inhibitory control in traumatic brain injury (TBI), even though impulsive behaviours are frequently reported in this patient group. We investigated the neural basis of response inhibition in a group of TBI patients using functional magnetic resonance imaging and a stop-signal paradigm. In a randomised double-blinded crossover study, the patients received either a single 30mg dose of methylphenidate or placebo and performed the stop-signal task. Activation in the right inferior frontal gyrus (RIFG), an area associated with response inhibition, was significantly lower in patients compared to healthy controls. Poor response inhibition in this group was associated with greater connectivity between the RIFG and a set of regions considered to be part of the default mode network (DMN), a finding that suggests the interplay between DMN and frontal executive networks maybe compromised. A single dose of methylphenidate rendered activity and connectivity profiles of the patients RIFG near normal. The results of this study indicate that the neural circuitry involved in response inhibition in TBI patients may be partially restored with methylphenidate. Given the known mechanisms of action of methylphenidate, the effect we observed may be due to increased dopamine and noradrenaline levels. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  1. Bad and worse: neural systems underlying reappraisal of high- and low-intensity negative emotions.

    Science.gov (United States)

    Silvers, Jennifer A; Weber, Jochen; Wager, Tor D; Ochsner, Kevin N

    2015-02-01

    One of the most effective strategies for regulating emotional responses is cognitive reappraisal. While prior work has made great strides in characterizing reappraisal's neural mechanisms and behavioral outcomes, the key issue of how regulation varies as a function of emotional intensity remains unaddressed. We compared the behavioral and neural correlates of reappraisal of high- and low-intensity emotional responses using functional magnetic resonance imaging (fMRI). We found that successful reappraisal of both high- and low-intensity emotions depends upon recruitment of dorsomedial (dmPFC) as well as left dorsolateral (dlPFC) and ventrolateral (vlPFC) prefrontal cortex. However, reappraisal of high-intensity emotions more strongly activated left dlPFC, and in addition, activated right lateral and dorsomedial PFC regions not recruited by low-intensity reappraisal. No brain regions were more strongly recruited during reappraisal of low when compared with high-intensity emotions. Taken together, these results suggest that reappraisal of high-intensity emotion requires greater cognitive resources as evidenced by quantitative and qualitative differences in prefrontal recruitment. These data have implications for understanding how and when specific PFC systems are needed to regulate different types of emotional responses. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Gender Differences in Behavioral and Neural Responses to Unfairness Under Social Pressure.

    Science.gov (United States)

    Zheng, Li; Ning, Reipeng; Li, Lin; Wei, Chunli; Cheng, Xuemei; Zhou, Chu; Guo, Xiuyan

    2017-10-18

    Numerous studies have revealed the key role of social pressure on individuals' decision-making processes. However, the impact of social pressure on unfairness-related decision-making processes remains unclear. In the present study, we investigated how social pressure modulated men's and women's responses in an ultimatum game. Twenty women and eighteen men played the ultimatum game as responders in the scanner, where fair and unfair offers were tendered by proposers acting alone (low pressure) or by proposers endorsed by three supporters (high pressure). Results showed that men rejected more, whereas women accepted more unfair offers in the high versus low pressure context. Neurally, pregenual anterior cingulate cortex activation in women positively predicted their acceptance rate difference between contexts. In men, stronger right anterior insula activation and increased connectivity between right anterior insula and dorsal anterior cingulate cortex were observed when they receiving unfair offers in the high than low pressure context. Furthermore, more bilateral anterior insula and left dorsolateral prefrontal cortex activations were found when men rejected (relative to accepted) unfair offers in the high than low pressure context. These findings highlighted gender differences in the modulation of behavioral and neural responses to unfairness by social pressure.

  3. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  4. Prediction of composite fatigue life under variable amplitude loading using artificial neural network trained by genetic algorithm

    Science.gov (United States)

    Rohman, Muhamad Nur; Hidayat, Mas Irfan P.; Purniawan, Agung

    2018-04-01

    Neural networks (NN) have been widely used in application of fatigue life prediction. In the use of fatigue life prediction for polymeric-base composite, development of NN model is necessary with respect to the limited fatigue data and applicable to be used to predict the fatigue life under varying stress amplitudes in the different stress ratios. In the present paper, Multilayer-Perceptrons (MLP) model of neural network is developed, and Genetic Algorithm was employed to optimize the respective weights of NN for prediction of polymeric-base composite materials under variable amplitude loading. From the simulation result obtained with two different composite systems, named E-glass fabrics/epoxy (layups [(±45)/(0)2]S), and E-glass/polyester (layups [90/0/±45/0]S), NN model were trained with fatigue data from two different stress ratios, which represent limited fatigue data, can be used to predict another four and seven stress ratios respectively, with high accuracy of fatigue life prediction. The accuracy of NN prediction were quantified with the small value of mean square error (MSE). When using 33% from the total fatigue data for training, the NN model able to produce high accuracy for all stress ratios. When using less fatigue data during training (22% from the total fatigue data), the NN model still able to produce high coefficient of determination between the prediction result compared with obtained by experiment.

  5. Frontolimbic neural circuit changes in emotional processing and inhibitory control associated with clinical improvement following transference-focused psychotherapy in borderline personality disorder.

    Science.gov (United States)

    Perez, David L; Vago, David R; Pan, Hong; Root, James; Tuescher, Oliver; Fuchs, Benjamin H; Leung, Lorene; Epstein, Jane; Cain, Nicole M; Clarkin, John F; Lenzenweger, Mark F; Kernberg, Otto F; Levy, Kenneth N; Silbersweig, David A; Stern, Emily

    2016-01-01

    Borderline personality disorder (BPD) is characterized by self-regulation deficits, including impulsivity and affective lability. Transference-focused psychotherapy (TFP) is an evidence-based treatment proven to reduce symptoms across multiple cognitive-emotional domains in BPD. This pilot study aimed to investigate neural activation associated with, and predictive of, clinical improvement in emotional and behavioral regulation in BPD following TFP. BPD subjects (n = 10) were scanned pre- and post-TFP treatment using a within-subjects design. A disorder-specific emotional-linguistic go/no-go functional magnetic resonance imaging paradigm was used to probe the interaction between negative emotional processing and inhibitory control. Analyses demonstrated significant treatment-related effects with relative increased dorsal prefrontal (dorsal anterior cingulate, dorsolateral prefrontal, and frontopolar cortices) activation, and relative decreased ventrolateral prefrontal cortex and hippocampal activation following treatment. Clinical improvement in constraint correlated positively with relative increased left dorsal anterior cingulate cortex activation. Clinical improvement in affective lability correlated positively with left posterior-medial orbitofrontal cortex/ventral striatum activation, and negatively with right amygdala/parahippocampal activation. Post-treatment improvements in constraint were predicted by pre-treatment right dorsal anterior cingulate cortex hypoactivation, and pre-treatment left posterior-medial orbitofrontal cortex/ventral striatum hypoactivation predicted improvements in affective lability. These preliminary findings demonstrate potential TFP-associated alterations in frontolimbic circuitry and begin to identify neural mechanisms associated with a psychodynamically oriented psychotherapy. © 2015 The Authors. Psychiatry and Clinical Neurosciences © 2015 Japanese Society of Psychiatry and Neurology.

  6. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  7. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Estimation of lost circulation amount occurs during under balanced drilling using drilling data and neural network

    Directory of Open Access Journals (Sweden)

    Pouria Behnoud far

    2017-09-01

    Full Text Available Lost circulation can cause an increase in time and cost of operation. Pipe sticking, formation damage and uncontrolled flow of oil and gas may be consequences of lost circulation. Dealing with this problem is a key factor to conduct a successful drilling operation. Estimation of lost circulation amount is necessary to find a solution. Lost circulation is influenced by different parameters such as mud weight, pump pressure, depth etc. Mud weight, pump pressure and flow rate of mud should be designed to prevent induced fractures and have the least amount of lost circulation. Artificial neural network is useful to find the relations of parameters with lost circulation. Genetic algorithm is applied on the achieved relations to determine the optimum mud weight, pump pressure, and flow rate. In an Iranian oil field, daily drilling reports of wells which are drilled using UBD technique are studied. Asmari formation is the most important oil reservoir of the studied field and UBD is used only in this interval. Three wells with the most, moderate and without lost circulation are chosen. In this article, the effect of mud weight, depth, pump pressure and flow rate of pump on lost circulation in UBD of Asmari formation in one of the Southwest Iranian fields is studied using drilling data and artificial neural network. In addition, the amount of lost circulation is predicted precisely with respect to two of the studied parameters using the presented correlations and the optimum mud weight, pump pressure and flow rate are calculated to minimize the lost circulation amount.

  9. Circuit Training.

    Science.gov (United States)

    Nelson, Jane B.

    1998-01-01

    Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)

  10. Affective Circuits

    DEFF Research Database (Denmark)

    to the intersecting streams of goods, people, ideas, and money as they circulate between African migrants and their kin who remain back home. They also show the complex ways that emotions become entangled in these exchanges. Examining how these circuits operate in domains of social life ranging from child fosterage...

  11. Neural circuits of eye movements during performance of the visual exploration task, which is similar to the responsive search score task, in schizophrenia patients and normal subjects

    International Nuclear Information System (INIS)

    Nemoto, Yasundo; Matsuda, Tetsuya; Matsuura, Masato

    2004-01-01

    Abnormal exploratory eye movements have been studied as a biological marker for schizophrenia. Using functional MRI (fMRI), we investigated brain activations of 12 healthy and 8 schizophrenic subjects during performance of a visual exploration task that is similar to the responsive search score task to clarify the neural basis of the abnormal exploratory eye movement. Performance data, such as the number of eye movements, the reaction time, and the percentage of correct answers showed no significant differences between the two groups. Only the normal subjects showed activations at the bilateral thalamus and the left anterior medial frontal cortex during the visual exploration tasks. In contrast, only the schizophrenic subjects showed activations at the right anterior cingulate gyms during the same tasks. The activation at the different locations between the two groups, the left anterior medial frontal cortex in normal subjects and the right anterior cingulate gyrus in schizophrenia subjects, was explained by the feature of the visual tasks. Hypoactivation at the bilateral thalamus supports a dysfunctional filtering theory of schizophrenia. (author)

  12. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  13. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    Science.gov (United States)

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Neural correlates and network connectivity underlying narrative production and comprehension: a combined fMRI and PET study.

    Science.gov (United States)

    AbdulSabur, Nuria Y; Xu, Yisheng; Liu, Siyuan; Chow, Ho Ming; Baxter, Miranda; Carson, Jessica; Braun, Allen R

    2014-08-01

    The neural correlates of narrative production and comprehension remain poorly understood. Here, using positron emission tomography (PET), functional magnetic resonance imaging (fMRI), contrast and functional network connectivity analyses we comprehensively characterize the neural mechanisms underlying these complex behaviors. Eighteen healthy subjects told and listened to fictional stories during scanning. In addition to traditional language areas (e.g., left inferior frontal and posterior middle temporal gyri), both narrative production and comprehension engaged regions associated with mentalizing and situation model construction (e.g., dorsomedial prefrontal cortex, precuneus and inferior parietal lobules) as well as neocortical premotor areas, such as the pre-supplementary motor area and left dorsal premotor cortex. Narrative comprehension alone showed marked bilaterality, activating right hemisphere homologs of perisylvian language areas. Narrative production remained predominantly left lateralized, uniquely activating executive and motor-related regions essential to language formulation and articulation. Connectivity analyses revealed strong associations between language areas and the superior and middle temporal gyri during both tasks. However, only during storytelling were these same language-related regions connected to cortical and subcortical motor regions. In contrast, during story comprehension alone, they were strongly linked to regions supporting mentalizing. Thus, when employed in a more complex, ecologically-valid context, language production and comprehension show both overlapping and idiosyncratic patterns of activation and functional connectivity. Importantly, in each case the language system is integrated with regions that support other cognitive and sensorimotor domains. Copyright © 2014. Published by Elsevier Ltd.

  15. Disturbed neural circuits in a subtype of chronic catatonic schizophrenia demonstrated by F-18-FDG-PET and F-18-DOPA-PET

    International Nuclear Information System (INIS)

    Lauer, M.; Beckmann, H.; Stoeber, G.; Schirrmeister, H.; Gerhard, A.; Ellitok, E.; Reske, S.N.

    2001-01-01

    Permanent verbal, visual scenic and coenaestetic hallucinations are the most prominent psychopathological symptoms aside from psychomotor disorders in speech-sluggish catatonia, a subtype of chronic catatonic schizophrenia according to Karl Leonhard. These continuous hallucinations serve as an excellent paradigm for the investigation of the assumed functional disturbances of cortical circuits in schizophrenia. Data from positron emission tomography (F-18-FDG-PET and F-18-DOPA-PET) from three patients with this rare phenotype were available (two cases of simple speech-sluggish catatonia, one case of a combined speech-prompt/speech-sluggish subtype) and were compared with a control collective. During their permanent hallucinations, all catatonic patients showed a clear bitemporal hypometabolism in the F-18-FDG-PET. Both patients with the simple speech-sluggish catatonia showed an additional bilateral thalamic hypermetabolism and an additional bilateral hypometabolism of the frontal cortex, especially on the left side. In contrast, the patient with the combined speech-prompt/speech-sluggish catatonia showed a bilateral thalamic hypo-metabolism combined with a bifrontal cortical hypermetabolism. However, the left/right ratio of the frontal cortex also showed a lateralization effect with a clear relative hypometabolism of the left frontal cortex. The F-18-DOPA-PET of both schizophrenic patients with simple speech-sluggish catatonia showed a normal F-18-DOPA storage in the striatum, whereas in the right putamen of the patient with the combined form a higher right/left ratio in F-DOPA storage was discernible, indicating an additional lateralized influence of the dopaminergic system in this subtype of chronic catatonic schizophrenia. (author)

  16. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  17. Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus.

    Science.gov (United States)

    Bravo, Fernando; Cross, Ian; Hawkins, Sarah; Gonzalez, Nadia; Docampo, Jorge; Bruno, Claudio; Stamatakis, Emmanuel Andreas

    2017-07-28

    We frequently infer others' intentions based on non-verbal auditory cues. Although the brain underpinnings of social cognition have been extensively studied, no empirical work has yet examined the impact of musical structure manipulation on the neural processing of emotional valence during mental state inferences. We used a novel sound-based theory-of-mind paradigm in which participants categorized stimuli of different sensory dissonance level in terms of positive/negative valence. Whilst consistent with previous studies which propose facilitated encoding of consonances, our results demonstrated that distinct levels of consonance/dissonance elicited differential influences on the right angular gyrus, an area implicated in mental state attribution and attention reorienting processes. Functional and effective connectivity analyses further showed that consonances modulated a specific inhibitory interaction from associative memory to mental state attribution substrates. Following evidence suggesting that individuals with autism may process social affective cues differently, we assessed the relationship between participants' task performance and self-reported autistic traits in clinically typical adults. Higher scores on the social cognition scales of the AQ were associated with deficits in recognising positive valence in consonant sound cues. These findings are discussed with respect to Bayesian perspectives on autistic perception, which highlight a functional failure to optimize precision in relation to prior beliefs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Neural computations underlying arbitration between model-based and model-free learning

    Science.gov (United States)

    Lee, Sang Wan; Shimojo, Shinsuke; O’Doherty, John P.

    2014-01-01

    SUMMARY There is accumulating neural evidence to support the existence of two distinct systems for guiding action-selection in the brain, a deliberative “model-based” and a reflexive “model-free” system. However, little is known about how the brain determines which of these systems controls behavior at one moment in time. We provide evidence for an arbitration mechanism that allocates the degree of control over behavior by model-based and model-free systems as a function of the reliability of their respective predictions. We show that inferior lateral prefrontal and frontopolar cortex encode both reliability signals and the output of a comparison between those signals, implicating these regions in the arbitration process. Moreover, connectivity between these regions and model-free valuation areas is negatively modulated by the degree of model-based control in the arbitrator, suggesting that arbitration may work through modulation of the model-free valuation system when the arbitrator deems that the model-based system should drive behavior. PMID:24507199

  20. Neural correlates of exemplar novelty processing under different spatial attention conditions.

    Science.gov (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens Max; Düzel, Emrah; Schoenfeld, Mircea Ariel

    2009-11-01

    The detection of novel events and their identification is a basic prerequisite in a rapidly changing environment. Recently, the processing of novelty has been shown to rely on the hippocampus and to be associated with activity in reward-related areas. The present study investigated the influence of spatial attention on neural processing of novel relative to frequently presented standard and target stimuli. Never-before-seen Mandelbrot-fractals absent of semantic content were employed as stimulus material. Consistent with current theories, novelty activated a widespread network of brain areas including the hippocampus. No activity, however, could be observed in reward-related areas with the novel stimuli absent of a semantic meaning employed here. In the perceptual part of the novelty-processing network a region in the lingual gyrus was found to specifically process novel events when they occurred outside the focus of spatial attention. These findings indicate that the initial detection of unexpected novel events generally occurs in specialized perceptual areas within the ventral visual stream, whereas activation of reward-related areas appears to be restricted to events that do possess a semantic content indicative of the biological relevance of the stimulus.

  1. Reduced Fidelity of Neural Representation Underlies Episodic Memory Decline in Normal Aging.

    Science.gov (United States)

    Zheng, Li; Gao, Zhiyao; Xiao, Xiaoqian; Ye, Zhifang; Chen, Chuansheng; Xue, Gui

    2017-06-07

    Emerging studies have emphasized the importance of the fidelity of cortical representation in forming enduring episodic memory. No study, however, has examined whether there are age-related reductions in representation fidelity that can explain memory declines in normal aging. Using functional MRI and multivariate pattern analysis, we found that older adults showed reduced representation fidelity in the visual cortex, which accounted for their decreased memory performance even after controlling for the contribution of reduced activation level. This reduced fidelity was specifically due to older adults' poorer item-specific representation, not due to their lower activation level and variance, greater variability in neuro-vascular coupling, or decreased selectivity of categorical representation (i.e., dedifferentiation). Older adults also showed an enhanced subsequent memory effect in the prefrontal cortex based on activation level, and their prefrontal activation was associated with greater fidelity of representation in the visual cortex and better memory performance. The fidelity of cortical representation thus may serve as a promising neural index for better mechanistic understanding of the memory declines and its compensation in normal aging. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Closed-form nonlinear frequency of flexoelectric nanobeams with surface and nonlocal effects under closed circuit electric field

    Science.gov (United States)

    Barati, Mohammad Reza

    2018-02-01

    Nonlocal and surface effects on nonlinear vibration characteristics of a flexoelectric nanobeams under magnetic field are examined. Eringen’s nonlocal elasticity as well as surface elasticity theories are employed to describe the size-dependency of the flexoelectric nanobeam. Also, flexoelectricity is an important size-dependent phenomena for piezoelectric structures at nanoscale, related to the strain gradient-electric polarization coupling. After the derivation of governing equation via Hamilton’s principle, Galerkin method is employed to satisfy boundary conditions. Also, analytical procedures are implemented to obtain the closed-form nonlinear frequency of flexoelectric nanobeam. It is showed that magnetic field intensity, flexoelectric parameter, nonlocal parameter, elastic foundation and applied voltage on the top surface of the nanobeam have great influences on nonlinear vibration frequency.

  3. Response characteristics of HPR1000 primary circuit under different working conditions of the atmospheric relief system after SBLOCA

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Danting, E-mail: suidanting@163.com [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China); Lu, Daogang [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China); Shang, Changzhong; Wei, Yuanyuan [China Nuclear Power Design Co., ltd (ShenZhen), Shenzhen (China); Zhang, Xianjie [School of Nuclear Science and Engineering, North China Electric Power University, Beijing (China); Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing (China)

    2017-04-01

    Highlights: • Response of HPR1000 under different VDA conditions after SBLOCA was investigated. • Activation of VDA can trigger ACCU SI earlier with a critical point exists. • VDA capability design should compromise the critical point with reactivity feedback. - Abstract: To cope with SBLOCA in absence of High-Head Safety Injection (HHSI) from design of HPR1000, atmospheric relief system (originally named as VDA in French) is uniquely designed to help to trigger Middle Head Safety Injection (MHSI) or Low Head Safety Injection (LHSI) earlier through cooling primary system quickly after SBLOCA. To make the best use of VDA decay heat removal capability, primary and secondary system of HPR1000 was modeled with RELAP5/SCDAP computer code. After steady-state initialization, a cold leg 30 mm break SBLOCA was simulated with six simulation conditions and five additional cases including availability of ACCU, different VDA discharge locations and area. Response characteristics of primary loop under different VDA working conditions are investigated. Pressurizer pressure decreases rapidly to lower level to trigger the reactor scram, VDA activation and accumulator safety injection sequently. Peak cladding temperature is 899.45 K occurring at 222 s, which is far below the safety limit. Activation of VDA can trigger ACCU SI earlier with a critical point, while positive reactivity will be introduced due to negative moderator temperature effect and Doppler effect. Larger VDA discharge capability will introduce larger reactivity feedback, as well as induce lower core level and SG level. It's suggested that VDA discharge condition should be chosen before the critical point, with the compromise with reactivity feedback introduced due to the negative moderator temperature effect.

  4. Modeling root length density of field grown potatoes under different irrigation strategies and soil textures using artificial neural networks

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Sepaskhah, Ali Reza; Andersen, Mathias Neumann

    2014-01-01

    Root length density (RLD) is a highly wanted parameter for use in crop growth modeling but difficult to measure under field conditions. Therefore, artificial neural networks (ANNs) were implemented to predict the RLD of field grown potatoes that were subject to three irrigation strategies and three...... soil textures with different soil water status and soil densities. The objectives of the study were to test whether soil textural information, soil water status, and soil density might be used by ANN to simulate RLD at harvest. In the study 63 data pairs were divided into data sets of training (80......) of the eight input variables: soil layer intervals (D), percentages of sand (Sa), silt (Si), and clay (Cl), bulk density of soil layers (Bd), weighted soil moisture deficit during the irrigation strategies period (SMD), geometric mean particle size diameter (dg), and geometric standard deviation (σg...

  5. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  6. Neural substrates of cognitive control under the belief of getting neurofeedback training.

    Science.gov (United States)

    Ninaus, Manuel; Kober, Silvia E; Witte, Matthias; Koschutnig, Karl; Stangl, Matthias; Neuper, Christa; Wood, Guilherme

    2013-01-01

    Learning to modulate one's own brain activity is the fundament of neurofeedback (NF) applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI) illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female) performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal areas were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  7. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Science.gov (United States)

    Sihvonen, Aleksi J.; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  8. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery

    Directory of Open Access Journals (Sweden)

    Aleksi J. Sihvonen

    2017-07-01

    Full Text Available Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM and morphometry (VBM study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV and white matter volume (WMV changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients (N = 90, we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA. Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of

  9. Revisiting the Neural Basis of Acquired Amusia: Lesion Patterns and Structural Changes Underlying Amusia Recovery.

    Science.gov (United States)

    Sihvonen, Aleksi J; Ripollés, Pablo; Rodríguez-Fornells, Antoni; Soinila, Seppo; Särkämö, Teppo

    2017-01-01

    Although, acquired amusia is a common deficit following stroke, relatively little is still known about its precise neural basis, let alone to its recovery. Recently, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study which revealed a right lateralized lesion pattern, and longitudinal gray matter volume (GMV) and white matter volume (WMV) changes that were specifically associated with acquired amusia after stroke. In the present study, using a larger sample of stroke patients ( N = 90), we aimed to replicate and extend the previous structural findings as well as to determine the lesion patterns and volumetric changes associated with amusia recovery. Structural MRIs were acquired at acute and 6-month post-stroke stages. Music perception was behaviorally assessed at acute and 3-month post-stroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA). Using these scores, the patients were classified as non-amusic, recovered amusic, and non-recovered amusic. The results of the acute stage VLSM analyses and the longitudinal VBM analyses converged to show that more severe and persistent (non-recovered) amusia was associated with an extensive pattern of lesions and GMV/WMV decrease in right temporal, frontal, parietal, striatal, and limbic areas. In contrast, less severe and transient (recovered) amusia was linked to lesions specifically in left inferior frontal gyrus as well as to a GMV decrease in right parietal areas. Separate continuous analyses of MBEA Scale and Rhythm scores showed extensively overlapping lesion pattern in right temporal, frontal, and subcortical structures as well as in the right insula. Interestingly, the recovered pitch amusia was related to smaller GMV decreases in the temporoparietal junction whereas the recovered rhythm amusia was associated to smaller GMV decreases in the inferior temporal pole. Overall, the results provide a more comprehensive picture of the lesions

  10. TIMING CIRCUIT

    Science.gov (United States)

    Heyd, J.W.

    1959-07-14

    An electronic circuit is described for precisely controlling the power delivered to a load from an a-c source, and is particularly useful as a welder timer. The power is delivered in uniform pulses, produced by a thyratron, the number of pulses being controlled by a one-shot multivibrator. The starting pulse is synchronized with the a-c line frequency so that each multivlbrator cycle begins at about the same point in the a-c cycle.

  11. Efficiency Evaluation of Five-Phase Outer-Rotor Fault-Tolerant BLDC Drives under Healthy and Open-Circuit Faulty Conditions

    Directory of Open Access Journals (Sweden)

    ARASHLOO, R. S.

    2014-05-01

    Full Text Available Fault tolerant motor drives are an interesting subject for many applications such as automotive industries and wind power generation. Among different configurations of these systems, five-phase BLDC drives are gaining more importance which is because of their compactness and high efficiency. Due to replacement of field windings by permanent magnets in their rotor structure, the main sources of power losses in these drives are iron (core losses, copper (winding losses, and inverter unit (semiconductor losses. Although low amplitude of power losses in five-phase BLDC drives is an important aspect for many applications, but their efficiency under faulty conditions is not considered in previous studies. In this paper, the efficiency of an outer-rotor five phase BLDC drive is evaluated under normal and different faulty conditions. Open-circuit fault is considered for one, two adjacent and two non-adjacent faulty phases. Iron core losses are calculated via FEM simulations in Flux-Cedrat software, and moreover, inverter losses and winding copper losses are simulated in MATLAB� environment. Experimental evaluations are conducted to evaluate the efficiency of the entire BLDC drive which verifies the theoretical developments.

  12. Bearing Fault Diagnosis under Variable Speed Using Convolutional Neural Networks and the Stochastic Diagonal Levenberg-Marquardt Algorithm

    Directory of Open Access Journals (Sweden)

    Viet Tra

    2017-12-01

    Full Text Available This paper presents a novel method for diagnosing incipient bearing defects under variable operating speeds using convolutional neural networks (CNNs trained via the stochastic diagonal Levenberg-Marquardt (S-DLM algorithm. The CNNs utilize the spectral energy maps (SEMs of the acoustic emission (AE signals as inputs and automatically learn the optimal features, which yield the best discriminative models for diagnosing incipient bearing defects under variable operating speeds. The SEMs are two-dimensional maps that show the distribution of energy across different bands of the AE spectrum. It is hypothesized that the variation of a bearing’s speed would not alter the overall shape of the AE spectrum rather, it may only scale and translate it. Thus, at different speeds, the same defect would yield SEMs that are scaled and shifted versions of each other. This hypothesis is confirmed by the experimental results, where CNNs trained using the S-DLM algorithm yield significantly better diagnostic performance under variable operating speeds compared to existing methods. In this work, the performance of different training algorithms is also evaluated to select the best training algorithm for the CNNs. The proposed method is used to diagnose both single and compound defects at six different operating speeds.

  13. What's the gist? The influence of schemas on the neural correlates underlying true and false memories.

    Science.gov (United States)

    Webb, Christina E; Turney, Indira C; Dennis, Nancy A

    2016-12-01

    The current study used a novel scene paradigm to investigate the role of encoding schemas on memory. Specifically, the study examined the influence of a strong encoding schema on retrieval of both schematic and non-schematic information, as well as false memories for information associated with the schema. Additionally, the separate roles of recollection and familiarity in both veridical and false memory retrieval were examined. The study identified several novel results. First, while many common neural regions mediated both schematic and non-schematic retrieval success, schematic recollection exhibited greater activation in visual cortex and hippocampus, regions commonly shown to mediate detailed retrieval. More effortful cognitive control regions in the prefrontal and parietal cortices, on the other hand, supported non-schematic recollection, while lateral temporal cortices supported familiarity-based retrieval of non-schematic items. Second, both true and false recollection, as well as familiarity, were mediated by activity in left middle temporal gyrus, a region associated with semantic processing and retrieval of schematic gist. Moreover, activity in this region was greater for both false recollection and false familiarity, suggesting a greater reliance on lateral temporal cortices for retrieval of illusory memories, irrespective of memory strength. Consistent with previous false memory studies, visual cortex showed increased activity for true compared to false recollection, suggesting that visual cortices are critical for distinguishing between previously viewed targets and related lures at retrieval. Additionally, the absence of common visual activity between true and false retrieval suggests that, unlike previous studies utilizing visual stimuli, when false memories are predicated on schematic gist and not perceptual overlap, there is little reliance on visual processes during false memory retrieval. Finally, the medial temporal lobe exhibited an

  14. Neural Mechanisms Underlying Social Intelligence and Their Relationship with the Performance of Sales Managers

    NARCIS (Netherlands)

    R.C. Dietvorst (Roeland)

    2010-01-01

    textabstractIdentifying the drivers of salespeople’s performance, strategies and moral behavior have been under the scrutiny of marketing scholars for many years. The functioning of the drivers of salespeople’s behaviors rests on processes going on in the minds of salespeople. However, research to

  15. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight

    Directory of Open Access Journals (Sweden)

    Daniel Pedrosa Alves

    Full Text Available ABSTRACT: Artificial neural networks (ANN are computational models inspired by the neural systems of living beings capable of learning from examples and using them to solve problems such as non-linear prediction, and pattern recognition, in addition to several other applications. In this study, ANN were used to predict the value of the area under the disease progress curve (AUDPC for the tomato late blight pathosystem. The AUDPC is widely used by epidemiologic studies of polycyclic diseases, especially those regarding quantitative resistance of genotypes. However, a series of six evaluations over time is necessary to obtain the final area value for this pathosystem. This study aimed to investigate the utilization of ANN to construct an AUDPC in the tomato late blight pathosystem, using a reduced number of severity evaluations. For this, four independent experiments were performed giving a total of 1836 plants infected with Phytophthora infestans pathogen. They were assessed every three days, comprised six opportunities and AUDPC calculations were performed by the conventional method. After the ANN were created it was possible to predict the AUDPC with correlations of 0.97 and 0.84 when compared to conventional methods, using 50 % and 67 % of the genotype evaluations, respectively. When using the ANN created in an experiment to predict the AUDPC of the other experiments the average correlation was 0.94, with two evaluations, 0.96, with three evaluations, between the predicted values of the ANN and they were observed in six evaluations. We present in this study a new paradigm for the use of AUDPC information in tomato experiments faced with P. infestans. This new proposed paradigm might be adapted to different pathosystems.

  16. Contribution to the electrothermal simulation in power electronics. Development of a simulation methodology applied to switching circuits under variable operating conditions; Contribution a la simulation electrothermique en electronique de puissance. Developpement d`une methode de simulation pour circuits de commutation soumis a des commandes variables

    Energy Technology Data Exchange (ETDEWEB)

    Vales, P.

    1997-03-19

    In modern hybrid or monolithic integrated power circuits, electrothermal effects can no longer be ignored. A methodology is proposed in order to simulate electrothermal effects in power circuits, with a significant reduction of the computation time while taking into account electrical and thermal time constants which are usually widely different. A supervising program, written in Fortran, uses system call sequences and manages an interactive dialog between a fast thermal simulator and a general electrical simulator. This explicit coupling process between two specific simulators requires a multi-task operating system. The developed software allows for the prediction of the electrothermal power dissipation drift in the active areas of components, and the prediction of thermally-induced coupling effects between adjacent components. An application to the study of hard switching circuits working under variable operating conditions is presented

  17. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  18. Can modular psychological concepts like affect and emotion be assigned to a distinct subset of regional neural circuits?. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Fehr, Thorsten; Herrmann, Manfred

    2015-06-01

    The proposed Quartet Theory of Human Emotions by Koelsch and co-workers [11] adumbrates evidence from various scientific sources to integrate and assign the psychological concepts of 'affect' and 'emotion' to four brain circuits or to four neuronal core systems for affect-processing in the brain. The authors differentiate between affect and emotion and assign several facultative, or to say modular, psychological domains and principles of information processing, such as learning and memory, antecedents of affective activity, emotion satiation, cognitive complexity, subjective quality feelings, degree of conscious appraisal, to different affect systems. Furthermore, they relate orbito-frontal brain structures to moral affects as uniquely human, and the hippocampus to attachment-related affects. An additional feature of the theory describes 'emotional effector-systems' for motor-related processes (e.g., emotion-related actions), physiological arousal, attention and memory that are assumed to be cross-linked with the four proposed affect systems. Thus, higher principles of emotional information processing, but also modular affect-related issues, such as moral and attachment related affects, are thought to be handled by these four different physiological sub-systems that are on the other side assumed to be highly interwoven at both physiological and functional levels. The authors also state that the proposed sub-systems have many features in common, such as the selection and modulation of biological processes related to behaviour, perception, attention and memory. The latter aspect challenges an ongoing discussion about the mind-body problem: To which degree do the proposed sub-systems 'sufficiently' cover the processing of complex modular or facultative emotional/affective and/or cognitive phenomena? There are current models and scientific positions that almost completely reject the idea that modular psychological phenomena are handled by a distinct selection of

  19. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    Science.gov (United States)

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  20. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    Science.gov (United States)

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-11-20

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  1. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation

    Directory of Open Access Journals (Sweden)

    Jewon Lee

    2015-11-01

    Full Text Available This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  2. The neural correlates of subjective utility of monetary outcome and probability weight in economic and in motor decision under risk

    Science.gov (United States)

    Wu, Shih-Wei; Delgado, Mauricio R.; Maloney, Laurence T.

    2011-01-01

    In decision under risk, people choose between lotteries that contain a list of potential outcomes paired with their probabilities of occurrence. We previously developed a method for translating such lotteries to mathematically equivalent motor lotteries. The probability of each outcome in a motor lottery is determined by the subject’s noise in executing a movement. In this study, we used functional magnetic resonance imaging in humans to compare the neural correlates of monetary outcome and probability in classical lottery tasks where information about probability was explicitly communicated to the subjects and in mathematically equivalent motor lottery tasks where probability was implicit in the subjects’ own motor noise. We found that activity in the medial prefrontal cortex (mPFC) and the posterior cingulate cortex (PCC) quantitatively represent the subjective utility of monetary outcome in both tasks. For probability, we found that the mPFC significantly tracked the distortion of such information in both tasks. Specifically, activity in mPFC represents probability information but not the physical properties of the stimuli correlated with this information. Together, the results demonstrate that mPFC represents probability from two distinct forms of decision under risk. PMID:21677166

  3. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  4. From circuits to behaviour in the amygdala

    Science.gov (United States)

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  5. Decision making under uncertainty in a spiking neural network model of the basal ganglia.

    Science.gov (United States)

    Héricé, Charlotte; Khalil, Radwa; Moftah, Marie; Boraud, Thomas; Guthrie, Martin; Garenne, André

    2016-12-01

    The mechanisms of decision-making and action selection are generally thought to be under the control of parallel cortico-subcortical loops connecting back to distinct areas of cortex through the basal ganglia and processing motor, cognitive and limbic modalities of decision-making. We have used these properties to develop and extend a connectionist model at a spiking neuron level based on a previous rate model approach. This model is demonstrated on decision-making tasks that have been studied in primates and the electrophysiology interpreted to show that the decision is made in two steps. To model this, we have used two parallel loops, each of which performs decision-making based on interactions between positive and negative feedback pathways. This model is able to perform two-level decision-making as in primates. We show here that, before learning, synaptic noise is sufficient to drive the decision-making process and that, after learning, the decision is based on the choice that has proven most likely to be rewarded. The model is then submitted to lesion tests, reversal learning and extinction protocols. We show that, under these conditions, it behaves in a consistent manner and provides predictions in accordance with observed experimental data.

  6. Non-invasive neural stimulation

    Science.gov (United States)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  7. Artificial neural/chemical networks

    Science.gov (United States)

    Caulfield, H. John

    2001-11-01

    What strikes the attention of a neural network designer is that the chemicals seem to work not so much on individual neural circuits as on neural cell assemblies. These are large blocks of neural networks that carry out high level tasks using their constituent networks as needed. It follows to us that we might seek ways of achieving that same sort of behavior in an artificial neural network. In what follows, we provide two examples of how that might be done in an artificial system.

  8. Importance of major histocompatibility complex of class I (MHC-I) expression for astroglial reactivity and stability of neural circuits in vitro.

    Science.gov (United States)

    Bombeiro, André Luis; Hell, Rafaela Chitarra Rodrigues; Simões, Gustavo Ferreira; Castro, Mateus Vidigal de; Oliveira, Alexandre Leite Rodrigues de

    2017-04-24

    MHC-I molecules are involved in the antigenic presentation of cytosol-derived peptides to CD8T lymphocytes. In the nervous system, MHC-I expression is low to absent, occurring only during certain phases of development and aging or after injuries. The involvement of MHC-I in synaptic plasticity has been reported and, following lesion, astrocytes become reactive, limiting tissue damage. Such cells also attempt to restore homeostasis by secreting cytokines and neurotrophic factors. Moreover, astrocytes modulate synapse function, by taking up and releasing neurotransmitters and by limiting the synaptic cleft. Thus, the aim of the present study was to evaluate if astrocyte activation and reactivity are related to MHC I expression and if astrogliosis can be downregulated by silencing MHC-I mRNA synthesis. Given that, we evaluated astrocyte reactivity and synaptogenesis in co-cultures of astrocytes and spinal neurons under MHC-I RNA interference. For that, the MHC-I β2-microglobulin subunit (β2m) was knocked-down by siRNA in co-cultures (β2m expression MHC-I expression for generation of astrogliosis, what may, in turn, become a target for future CNS/PNS therapies following injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  10. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  11. A View of the Neural Representation of Second Language Syntax through Artificial Language Learning under Implicit Contexts of Exposure

    Science.gov (United States)

    Morgan-Short, Kara; Deng, ZhiZhou; Brill-Schuetz, Katherine A.; Faretta- Stutenberg, Mandy; Wong, Patrick C. M.; Wong, Francis C. K.

    2015-01-01

    The current study aims to make an initial neuroimaging contribution to central implicit-explicit issues in second language (L2) acquisition by considering how implicit and explicit contexts mediate the neural representation of L2. Focusing on implicit contexts, the study employs a longitudinal design to examine the neural representation of L2…

  12. Neural and psychophysiological correlates of human performance under stress and high mental workload.

    Science.gov (United States)

    Mandrick, Kevin; Peysakhovich, Vsevolod; Rémy, Florence; Lepron, Evelyne; Causse, Mickaël

    2016-12-01

    In our anxiogenic and stressful world, the maintenance of an optimal cognitive performance is a constant challenge. It is particularly true in complex working environments (e.g. flight deck, air traffic control tower), where individuals have sometimes to cope with a high mental workload and stressful situations. Several models (i.e. processing efficiency theory, cognitive-energetical framework) have attempted to provide a conceptual basis on how human performance is modulated by high workload and stress/anxiety. These models predict that stress can reduce human cognitive efficiency, even in the absence of a visible impact on the task performance. Performance may be protected under stress thanks to compensatory effort, but only at the expense of a cognitive cost. Yet, the psychophysiological cost of this regulation remains unclear. We designed two experiments involving pupil diameter, cardiovascular and prefrontal oxygenation measurements. Participants performed the Toulouse N-back Task that intensively engaged both working memory and mental calculation processes under the threat (or not) of unpredictable aversive sounds. The results revealed that higher task difficulty (higher n level) degraded the performance and induced an increased tonic pupil diameter, heart rate and activity in the lateral prefrontal cortex, and a decreased phasic pupil response and heart rate variability. Importantly, the condition of stress did not impact the performance, but at the expense of a psychophysiological cost as demonstrated by lower phasic pupil response, and greater heart rate and prefrontal activity. Prefrontal cortex seems to be a central region for mitigating the influence of stress because it subserves crucial functions (e.g. inhibition, working memory) that can promote the engagement of coping strategies. Overall, findings confirmed the psychophysiological cost of both mental effort and stress. Stress likely triggered increased motivation and the recruitment of additional

  13. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara

    2011-03-01

    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

  14. Revealing the Neural Mechanisms Underlying the Beneficial Effects of Tai Chi: A Neuroimaging Perspective.

    Science.gov (United States)

    Yu, Angus P; Tam, Bjorn T; Lai, Christopher W; Yu, Doris S; Woo, Jean; Chung, Ka-Fai; Hui, Stanley S; Liu, Justina Y; Wei, Gao X; Siu, Parco M

    2018-01-01

    Tai Chi Chuan (TCC), a traditional Chinese martial art, is well-documented to result in beneficial consequences in physical and mental health. TCC is regarded as a mind-body exercise that is comprised of physical exercise and meditation. Favorable effects of TCC on body balance, gait, bone mineral density, metabolic parameters, anxiety, depression, cognitive function, and sleep have been previously reported. However, the underlying mechanisms explaining the effects of TCC remain largely unclear. Recently, advances in neuroimaging technology have offered new investigative opportunities to reveal the effects of TCC on anatomical morphologies and neurological activities in different regions of the brain. These neuroimaging findings have provided new clues for revealing the mechanisms behind the observed effects of TCC. In this review paper, we discussed the possible effects of TCC-induced modulation of brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity on health. Moreover, we identified possible links between the alterations in brain and beneficial effects of TCC, such as improved motor functions, pain perception, metabolic profile, cognitive functions, mental health and sleep quality. This paper aimed to stimulate further mechanistic neuroimaging studies in TCC and its effects on brain morphology, functional homogeneity and connectivity, regional activity and macro-scale network activity, which ultimately lead to a better understanding of the mechanisms responsible for the beneficial effects of TCC on human health.

  15. Mixed Stimulus-Induced Mode Selection in Neural Activity Driven by High and Low Frequency Current under Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    Lulu Lu

    2017-01-01

    Full Text Available The electrical activities of neurons are dependent on the complex electrophysiological condition in neuronal system, the three-variable Hindmarsh-Rose (HR neuron model is improved to describe the dynamical behaviors of neuronal activities with electromagnetic induction being considered, and the mode transition of electrical activities in neuron is detected when external electromagnetic radiation is imposed on the neuron. In this paper, different types of electrical stimulus impended with a high-low frequency current are imposed on new HR neuron model, and mixed stimulus-induced mode selection in neural activity is discussed in detail. It is found that mode selection of electrical activities stimulated by high-low frequency current, which also changes the excitability of neuron, can be triggered owing to adding the Gaussian white noise. Meanwhile, the mode selection of the neuron electrical activity is much dependent on the amplitude B of the high frequency current under the same noise intensity, and the high frequency response is selected preferentially by applying appropriate parameters and noise intensity. Our results provide insights into the transmission of complex signals in nerve system, which is valuable in engineering prospective applications such as information encoding.

  16. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    Science.gov (United States)

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  17. Modelling the release of volatile fission product cesium from CANDU fuel under severe accident conditions using artificial neural networks

    International Nuclear Information System (INIS)

    Andrews, W.S.; Lewis, B.J.; Cox, D.S.

    1997-01-01

    An artificial neural network (ANN) model has been developed to predict the release of volatile fission products from CANDU fuel under severe accident conditions. The model was based on data for the release Of 134 Cs measured during three annealing experiments (Hot Cell Experiments 1 and 2, or HCE- 1, HCE-2 and Metallurgical Cell Experiment 1, or MCE- 1) at Chalk River Laboratories. These experiments were comprised of a total of 30 separate tests. The ANN established a correlation among 14 separate input variables and predicted the cumulative fractional release for a set of 386 data points drawn from 29 tests to a normalized error, E n , of 0.104 and an average absolute error, E abs , of 0.064. Predictions for a blind validation set (test HCE2-CM6) had an E n of 0.064 and an E abs of 0.054. A methodology is presented for deploying the ANN model by providing the connection weights. Finally, the performance of an ANN model was compared to a fuel oxidation model developed by Lewis et al. and to the U.S. Nuclear Regulatory Commission's CORSOR-M. (author)

  18. Mechanisms Underlying the Antiproliferative and Prodifferentiative Effects of Psoralen on Adult Neural Stem Cells via DNA Microarray

    Directory of Open Access Journals (Sweden)

    You Ning

    2013-01-01

    Full Text Available Adult neural stem cells (NSCs persist throughout life to replace mature cells that are lost during turnover, disease, or injury. The investigation of NSC creates novel treatments for central nervous system (CNS injuries and neurodegenerative disorders. The plasticity and reparative potential of NSC are regulated by different factors, which are critical for neurological regenerative medicine research. We investigated the effects of Psoralen, which is the mature fruit of Psoralea corylifolia L., on NSC behaviors and the underlying mechanisms. The self-renewal and proliferation of NSC were examined. We detected neuron- and/or astrocyte-specific markers using immunofluorescence and Western blotting, which could evaluate NSC differentiation. Psoralen treatment significantly inhibited neurosphere formation in a dose-dependent manner. Psoralen treatment increased the expression of the astrocyte-specific marker but decreased neuron-specific marker expression. These results suggested that Psoralen was a differentiation inducer in astrocyte. Differential gene expression following Psoralen treatment was screened using DNA microarray and confirmed by quantitative real-time PCR. Our microarray study demonstrated that Psoralen could effectively regulate the specific gene expression profile of NSC. The genes involved in the classification of cellular differentiation, proliferation, and metabolism, the transcription factors belonging to Ets family, and the hedgehog pathway may be closely related to the regulation.

  19. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    Science.gov (United States)

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  20. Finding Risk Groups by Optimizing Artificial Neural Networks on the Area under the Survival Curve Using Genetic Algorithms.

    Directory of Open Access Journals (Sweden)

    Jonas Kalderstam

    Full Text Available We investigate a new method to place patients into risk groups in censored survival data. Properties such as median survival time, and end survival rate, are implicitly improved by optimizing the area under the survival curve. Artificial neural networks (ANN are trained to either maximize or minimize this area using a genetic algorithm, and combined into an ensemble to predict one of low, intermediate, or high risk groups. Estimated patient risk can influence treatment choices, and is important for study stratification. A common approach is to sort the patients according to a prognostic index and then group them along the quartile limits. The Cox proportional hazards model (Cox is one example of this approach. Another method of doing risk grouping is recursive partitioning (Rpart, which constructs a decision tree where each branch point maximizes the statistical separation between the groups. ANN, Cox, and Rpart are compared on five publicly available data sets with varying properties. Cross-validation, as well as separate test sets, are used to validate the models. Results on the test sets show comparable performance, except for the smallest data set where Rpart's predicted risk groups turn out to be inverted, an example of crossing survival curves. Cross-validation shows that all three models exhibit crossing of some survival curves on this small data set but that the ANN model manages the best separation of groups in terms of median survival time before such crossings. The conclusion is that optimizing the area under the survival curve is a viable approach to identify risk groups. Training ANNs to optimize this area combines two key strengths from both prognostic indices and Rpart. First, a desired minimum group size can be specified, as for a prognostic index. Second, the ability to utilize non-linear effects among the covariates, which Rpart is also able to do.

  1. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Neural circuits in auditory and audiovisual memory.

    Science.gov (United States)

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD.

    Directory of Open Access Journals (Sweden)

    Yuanquan Song

    2009-12-01

    Full Text Available In humans, mutations in electron transfer flavoprotein (ETF or electron transfer flavoprotein dehydrogenase (ETFDH lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and fibroblast cells from MADD patients demonstrate similar mitochondrial and metabolic abnormalities, including reduced oxidative phosphorylation, increased aerobic glycolysis, and upregulation of the PPARG-ERK pathway. This metabolic dysfunction is associated with aberrant neural proliferation in xav, in addition to other neural phenotypes and paralysis. Strikingly, a PPARG antagonist attenuates aberrant neural proliferation and alleviates paralysis in xav, while PPARG agonists increase neural proliferation in wild type embryos. These results show that mitochondrial dysfunction, leading to an increase in aerobic glycolysis, affects neurogenesis through the PPARG-ERK pathway, a potential target for therapeutic intervention.

  4. Neural electrical activity and neural network growth.

    Science.gov (United States)

    Gafarov, F M

    2018-02-09

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  6. Different mathematical relations with CMOS VLSI circuits

    International Nuclear Information System (INIS)

    Chible, H.; Ghandour, A.

    2007-01-01

    In this paper, Analog VLSI CMOS circuits that implements different mathematical functions, equations, or relations such as ''Addition, Subtraction, Multiplier, Quadratic, Square Root, Linear, and Hyperbolic Tangent relations'' with limited and wide range variations are presented. These relations and functions are useful for analog neural network hardware and analog signal processing implementation (author)

  7. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  8. Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ⁹-tetrahydrocannabinol administration.

    Science.gov (United States)

    Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L; Deadwyler, Sam A; Hampson, Robert E; Kraft, Robert A

    2015-04-15

    Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain-computer interfaces and nonlinear neuronal models. Neurons involved in memory processing ("Functional Cell Types" or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid type-1 receptor (CB1R) partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain-computer interfaces. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Artificial Neural Network Modelling of Photodegradation in Suspension of Manganese Doped Zinc Oxide Nanoparticles under Visible-Light Irradiation

    Directory of Open Access Journals (Sweden)

    Yadollah Abdollahi

    2014-01-01

    Full Text Available The artificial neural network (ANN modeling of m-cresol photodegradation was carried out for determination of the optimum and importance values of the effective variables to achieve the maximum efficiency. The photodegradation was carried out in the suspension of synthesized manganese doped ZnO nanoparticles under visible-light irradiation. The input considered effective variables of the photodegradation were irradiation time, pH, photocatalyst amount, and concentration of m-cresol while the efficiency was the only response as output. The performed experiments were designed into three data sets such as training, testing, and validation that were randomly splitted by the software’s option. To obtain the optimum topologies, ANN was trained by quick propagation (QP, Incremental Back Propagation (IBP, Batch Back Propagation (BBP, and Levenberg-Marquardt (LM algorithms for testing data set. The topologies were determined by the indicator of minimized root mean squared error (RMSE for each algorithm. According to the indicator, the QP-4-8-1, IBP-4-15-1, BBP-4-6-1, and LM-4-10-1 were selected as the optimized topologies. Among the topologies, QP-4-8-1 has presented the minimum RMSE and absolute average deviation as well as maximum R-squared. Therefore, QP-4-8-1 was selected as final model for validation test and navigation of the process. The model was used for determination of the optimum values of the effective variables by a few three-dimensional plots. The optimum points of the variables were confirmed by further validated experiments. Moreover, the model predicted the relative importance of the variables which showed none of them was neglectable in this work.

  10. Dissecting OCD Circuits: From Animal Models to Targeted Treatments

    Science.gov (United States)

    Ahmari, Susanne E.; Dougherty, Darin D.

    2015-01-01

    Obsessive Compulsive Disorder (OCD) is a chronic, severe mental illness with up to 2–3% prevalence worldwide, which has been classified as one of the world’s 10 leading causes of illness-related disability according to the World Health Organization, largely because of the chronic nature of disabling symptoms 1. Despite the severity and high prevalence of this chronic and disabling disorder, there is still relatively limited understanding of its pathophysiology. However, this is now rapidly changing due to development of powerful technologies that can be used to dissect the neural circuits underlying pathologic behaviors. In this article, we describe recent technical advances that have allowed neuroscientists to start identifying the circuits underlying complex repetitive behaviors using animal model systems. In addition, we review current surgical and stimulation-based treatments for OCD that target circuit dysfunction. Finally, we discuss how findings from animal models may be applied in the clinical arena to help inform and refine targeted brain stimulation-based treatment approaches. PMID:25952989

  11. Neural substrates underlying reconcentration for the preparation of an appropriate cognitive state to prevent future mistakes: a functional magnetic resonance imaging study

    Science.gov (United States)

    Miura, Naoki; Nozawa, Takayuki; Takahashi, Makoto; Yokoyama, Ryoichi; Sasaki, Yukako; Sakaki, Kohei; Kawashima, Ryuta

    2015-01-01

    The ability to reconcentrate on the present situation by recognizing one’s own recent errors is a cognitive mechanism that is crucial for safe and appropriate behavior in a particular situation. However, an individual may not be able to adequately perform a subsequent task even if he/she recognize his/her own error; thus, it is hypothesized that the neural mechanisms underlying the reconcentration process are different from the neural substrates supporting error recognition. The present study performed a functional magnetic resonance imaging (fMRI) analysis to explore the neural substrates associated with reconcentration related to achieving an appropriate cognitive state, and to dissociate these brain regions from the neural substrates involved in recognizing one’s own mistake. This study included 44 healthy volunteers who completed an experimental procedure that was based on the Eriksen flanker task and included feedback regarding the results of the current trial. The hemodynamic response induced by each instance of feedback was modeled using a combination of the successes and failures of the current and subsequent trials in order to identify the neural substrates underlying the ability to reconcentrate for the next situation and to dissociate them from those involved in recognizing current errors. The fMRI findings revealed significant and specific activation in the dorsal aspect of the medial prefrontal cortex (MFC) when participants successfully reconcentrated on the task after recognizing their own error based on feedback. Additionally, this specific activation was clearly dissociated from the activation foci that occurred during error recognition. These findings indicate that the dorsal aspect of the MFC may be a distinct functional region that specifically supports the reconcentration process and that is associated with the prevention of successive errors when a human subject recognizes his/her own mistake. Furthermore, it is likely that this

  12. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  13. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  14. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    Science.gov (United States)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  15. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  16. Current limiter circuit system

    Energy Technology Data Exchange (ETDEWEB)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  17. Development of a signal-analysis algorithm for the ZEUS transition-radiation detector under application of a neural network

    International Nuclear Information System (INIS)

    Wollschlaeger, U.

    1992-07-01

    The aim of this thesis consisted in the development of a procedure for the analysis of the data of the transition-radiation detector at ZEUS. For this a neural network was applied and first studied, which results concerning the separation power between electron an pions can be reached by this procedure. It was shown that neural nets yield within the error limits as well results as standard algorithms (total charge, cluster analysis). At an electron efficiency of 90% pion contaminations in the range 1%-2% were reached. Furthermore it could be confirmed that neural networks can be considered for the here present application field as robust in relatively insensitive against external perturbations. For the application in the experiment beside the separation power also the time-behaviour is of importance. The requirement to keep dead-times small didn't allow the application of standard method. By a simulation the time availabel for the signal analysis was estimated. For the testing of the processing time in a neural network subsequently the corresponding algorithm was implemented into an assembler code for the digital signal processor DSP56001. (orig./HSI) [de

  18. Untangling the neurobiology of coping styles in rodents : Towards neural mechanisms underlying individual differences in disease susceptibility

    NARCIS (Netherlands)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M.

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding

  19. Normative data on development of neural and behavioral mechanisms underlying attention orienting toward social-emotional stimuli: an exploratory study.

    Science.gov (United States)

    Lindstrom, Kara M; Guyer, Amanda E; Mogg, Karin; Bradley, Brendan P; Fox, Nathan A; Ernst, Monique; Nelson, Eric E; Leibenluft, Ellen; Britton, Jennifer C; Monk, Christopher S; Pine, Daniel S; Bar-Haim, Yair

    2009-10-06

    The ability of positive and negative facial signals to influence attention orienting is crucial to social functioning. Given the dramatic developmental change in neural architecture supporting social function, positive and negative facial cues may influence attention orienting differently in relatively young or old individuals. However, virtually no research examines such age-related differences in the neural circuitry supporting attention orienting to emotional faces. We examined age-related correlations in attention-orienting biases to positive and negative face emotions in a healthy sample (N=37; 9-40 years old) using functional magnetic resonance imaging and a dot-probe task. The dot-probe task in an fMRI setting yields both behavioral and neural indices of attention biases towards or away from an emotional cue (happy or angry face). In the full sample, angry-face attention bias scores did not correlate with age, and age did not correlate with brain activation to angry faces. However, age did positively correlate with attention bias towards happy faces; age also negatively correlated with left cuneus and left caudate activation to a happy bias fMRI contrast. Secondary analyses suggested age-related changes in attention bias to happy faces. The tendency in younger children to direct attention away from happy faces (relative to neutral faces) was diminished in the older age groups, in tandem with increasing neural deactivation. Implications for future work on developmental changes in attention-emotion processing are discussed.

  20. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Gergo Kovacs

    2016-01-01

    Full Text Available Rybp (Ring1 and Yy1 Binding Protein is a transcriptional regulator and member of the noncanonical polycomb repressive complex 1 with essential role in early embryonic development. We have previously described that alteration of Rybp dosage in mouse models induced striking neural tube defects (NTDs, exencephaly, and disorganized neurocortex. In this study we further investigated the role of Rybp in neural differentiation by utilising wild type (rybp+/+ and rybp null mutant (rybp-/- embryonic stem cells (ESCs and tried to uncover underlying molecular events that are responsible for the observed phenotypic changes. We found that rybp null mutant ESCs formed less matured neurons, astrocytes, and oligodendrocytes from existing progenitors than wild type cells. Furthermore, lack of rybp coincided with altered gene expression of key neural markers including Pax6 and Plagl1 pinpointing a possible transcriptional circuit among these genes.

  1. Memory and cognitive control circuits in mathematical cognition and learning

    Science.gov (United States)

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  2. Memory and cognitive control circuits in mathematical cognition and learning.

    Science.gov (United States)

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  3. Neural mechanisms mediating degrees of strategic uncertainty.

    Science.gov (United States)

    Nagel, Rosemarie; Brovelli, Andrea; Heinemann, Frank; Coricelli, Giorgio

    2018-01-01

    In social interactions, strategic uncertainty arises when the outcome of one's choice depends on the choices of others. An important question is whether strategic uncertainty can be resolved by assessing subjective probabilities to the counterparts' behavior, as if playing against nature, and thus transforming the strategic interaction into a risky (individual) situation. By means of functional magnetic resonance imaging with human participants we tested the hypothesis that choices under strategic uncertainty are supported by the neural circuits mediating choices under individual risk and deliberation in social settings (i.e. strategic thinking). Participants were confronted with risky lotteries and two types of coordination games requiring different degrees of strategic thinking of the kind 'I think that you think that I think etc.' We found that the brain network mediating risk during lotteries (anterior insula, dorsomedial prefrontal cortex and parietal cortex) is also engaged in the processing of strategic uncertainty in games. In social settings, activity in this network is modulated by the level of strategic thinking that is reflected in the activity of the dorsomedial and dorsolateral prefrontal cortex. These results suggest that strategic uncertainty is resolved by the interplay between the neural circuits mediating risk and higher order beliefs (i.e. beliefs about others' beliefs). © The Author(s) (2017). Published by Oxford University Press.

  4. Inverse relationship of the velocities of perceived time and information processing events in the brain: a potential bioassay for neural functions: a hypothesis.

    Science.gov (United States)

    Rosenberg, R N

    1979-12-01

    The velocity of elapsing time is not a constant but a relativistic component in the space-time continuum as postulated by Albert Einstein in his general and special relativity theories. The hypothesis presented here is that there is a biological corollary to relativity theory. It is postulated that biological time perception is also not a constant but is related by an inverse relationship between the velocities of neural processing events and perceived elapsing time. A careful analysis of this relationship may potentially offer a sensitive bioassay to determine the integrity of regional brain function under normal conditions and in the presence of specific disease processes. The mechanism for the biological basis of this theorem depends on the presence of a neural circuit developed through evolution which monitors overall brain efficiency and is coordinately linked to neural time perceiving circuits. Several test approaches are presented to validate the hypothesis of biologic time relativity compared to the rate of neural processing.

  5. Pharmacologically-mediated reactivation and reconsolidation blockade of the psychostimulant-abuse circuit: A novel treatment strategy

    Science.gov (United States)

    Lee, Tong H.; Szabo, Steven T.; Fowler, J. Corey; Mannelli, Paolo; Mangum, O. Barry; Beyer, Wayne F.; Patkar, Ashwin; Wetsel, William C.

    2012-01-01

    Psychostimulant abuse continues to present legal, socioeconomic and medical challenges as a primary psychiatric disorder, and represents a significant comorbid factor in major psychiatric and medical illnesses. To date, monotherapeutic drug treatments have not proven effective in promoting long-term abstinence in psychostimulant abusers. In contrast to clinical trials utilizing monotherapies, combinations of dopamine (DA) agonists and selective 5-HT3, 5HT2A/2C, or NK1 antagonists have shown robust efficacy in reversing behavioral and neurobiological alterations in animal models of psychostimulant abuse. One important temporal requirement for these treatments is that the 5-HT or NK1 receptor antagonist be given at a critical time window after DA agonist administration. This requirement may reflect a necessary dosing regimen towards normalizing underlying dysfunctional neural circuits and “addiction memory” states. Indeed, chronic psychostimulant abuse can be conceptualized as a consolidated form of dysfunctional memory maintained by repeated drug- or cue-induced reactivation of neural circuit and subsequent reconsolidation. According to this concept, the DA agonist given first may reactivate this memory circuit, thereby rendering it transiently labile. The subsequent antagonist is hypothesized to disrupt reconsolidation necessary for restabilization, thus leading progressively to a therapeutically-mediated abolishment of dysfunctional synaptic plasticity. We propose that long-term abstinence in psychostimulant abusers may be achieved not only by targeting putative mechanistic pathways, but also by optimizing drug treatment regimens designed to disrupt the neural processes underlying the addicted state. PMID:22356892

  6. Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Christiansen, Anne M; Wang, Xia; Song, Seongho; Herman, James P

    2016-07-01

    A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.

  7. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Generation of Regionally Specified Neural Progenitors and Functional Neurons from Human Embryonic Stem Cells under Defined Conditions

    Directory of Open Access Journals (Sweden)

    Agnete Kirkeby

    2012-06-01

    Full Text Available To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.

  9. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    1991-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  10. Electronic Control Circuit

    International Nuclear Information System (INIS)

    Kim, Sang Jin; Kim, Je Hwong; Cha, In Su

    2001-08-01

    This book consists of nine chapters, which are basis of thyristor about its use and classify, structure of thyristor like outside, inside, manufacturing and structure of thyristor sorts of thyristor family and sub thyristor, how to use thyristor such as standard chart, choice of thyristor and way of on and off, electric heat control circuit like control temperature of heating apparatus and cooker, lighting control circuit for light bulb, neon lamp, traffic signal, lamp regulator and strobe, motor control circuit including an inverter circuit transistor and speed control of direct motor by transistor, electric power source circuit and a spark-plug, applied circuit for protection of fire.

  11. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  12. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  13. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    resistive-based memory systems and neural computing. For gateless arrays, we present multiport array structure and readout technique, which for the first time introduces a closed-form solution for the challenging crossbar sneak-paths problem. Moreover, a new adaptive threshold readout methodology is proposed, which employs the memory hierarchy locality property in order to improve the access time to the memristor crossbar. Another fast readout technique based on binary counters is presented for locality-less crossbar systems. On the other hand, for gated arrays, we present new readout technique and circuitry that combines the advantages of the gated and gateless memristor arrays, namely the high-density and low-power consumption. In general, the presented structures and readout methodologies empower much faster and power efficient access to the high-density memristive crossbar, compared to other works presented in the literature. Finally, at the circuit level, we propose novel reactance-less oscillators based on memristor devices, which find promising applications in embedded systems and bio-inspired computing. Altogether, we believe that our contributions to the emerging technology help to push it to the next level, shortening the path towards better futuristic computing systems.

  14. Distinct neural correlates of episodic memory among apolipoprotein E alleles in cognitively normal elderly.

    Science.gov (United States)

    Shu, Hao; Shi, Yongmei; Chen, Gang; Wang, Zan; Liu, Duan; Yue, Chunxian; Ward, B Douglas; Li, Wenjun; Xu, Zhan; Chen, Guangyu; Guo, Qi-Hao; Xu, Jun; Li, Shi-Jiang; Zhang, Zhijun

    2018-02-02

    The apolipoprotein E (APOE) ε4 and ε2 alleles are acknowledged genetic factors modulating Alzheimer's disease (AD) risk and episodic memory (EM) deterioration in an opposite manner. Mounting neuroimaging studies describe EM-related brain activity differences among APOE alleles but remain limited in elucidating the underlying mechanism. Here, we hypothesized that the APOE ε2, ε3, and ε4 alleles have distinct EM neural substrates, as a manifestation of degeneracy, underlying their modulations on EM-related brain activity and AD susceptibility. To test the hypothesis, we identified neural correlates of EM function by correlating intrinsic hippocampal functional connectivity networks with neuropsychological EM performances in a voxelwise manner, with 129 cognitively normal elderly subjects (36 ε2 carriers, 44 ε3 homozygotes, and 49 ε4 carriers). We demonstrated significantly different EM neural correlates among the three APOE allele groups. Specifically, in the ε3 homozygotes, positive EM neural correlates were characterized in the Papez circuit regions; in the ε4 carriers, positive EM neural correlates involved the lateral temporal cortex, premotor cortex/sensorimotor cortex/superior parietal lobule, and cuneus; and in the ε2 carriers, negative EM neural correlates appeared in the bilateral frontopolar, posteromedial, and sensorimotor cortex. Further, in the ε4 carriers, the interaction between age and EM function occurred in the temporoparietal junction and prefrontal cortex. Our findings suggest that the underlying mechanism of APOE polymorphism modulations on EM function and AD susceptibility is genetically related to the neural degeneracy of EM function across APOE alleles.

  15. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device. © 2013 AIP Publishing LLC.

  16. On inappropriately used neuronal circuits as a possible basis of the ``loop-swimming'' behaviour of fish under reduced gravity: a theoretical study

    Science.gov (United States)

    Anken, R. H.; Rahmann, H.

    One hypothesis for the explanation of the so-called ``loop-swimming'' behaviour in fish when being subjected to reduced gravity assumes that the activities of the differently weighted otoliths of the two labyrinths are well compensated on ground but that a functional asymmetry is induced in weightlessness, resulting in a tonus asymmetry of the body and by this generating the ``loop-swimming'' behaviour. The basis of this abnormal behaviour has to be searched for in the central nervous system (cns), where the signal-transduction from the inner ear- related signal internalisation to the signal response takes place. Circuits within the CNS of fish, that could possibly generate the ``loop-swimming'', might be as follows: An asymmetric activation of vestibulospinal circuits would directly result in a tonus asymmetry of the body. An asymmetric activation of the oculomotor nucleus would generate an asymmetrical rotation of the eyes. This would cause in its turn asymmetric images on the two retinas, which were forwarded to the diencephalic accessory optic system (AOS). It is the task of the AOS to stabilize retinal images, thereby involving the cerebellum, which is the main integration center for sensory and motor modalities. With this, the cerebellar output would generate a tonus asymmetry of the body in order to make the body of the fish follow its eyes. Such movements (especially when assuming an open loop control) would end up in the aforementioned ``loop-swimming'' behaviour.

  17. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  18. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  19. Neural Plasticity in Speech Acquisition and Learning

    Science.gov (United States)

    Zhang, Yang; Wang, Yue

    2007-01-01

    Neural plasticity in speech acquisition and learning is concerned with the timeline trajectory and the mechanisms of experience-driven changes in the neural circuits that support or disrupt linguistic function. In this selective review, we discuss the role of phonetic learning in language acquisition, the "critical period" of learning, the agents…

  20. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  1. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case ...... is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality....

  2. Classical circuit theory

    CERN Document Server

    Wing, Omar

    2008-01-01

    Starting with the basic principles of circuits, this book derives their analytic properties in both the time and frequency domains. It develops an algorithmic method to design common and uncommon types of circuits, such as prototype filters, lumped delay lines, constant phase difference circuits, and delay equalizers.

  3. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  4. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  5. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, S.M.; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital

  6. Quasi-Linear Circuit

    Science.gov (United States)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  7. Noise in biological circuits.

    Science.gov (United States)

    Simpson, Michael L; Cox, Chris D; Allen, Michael S; McCollum, James M; Dar, Roy D; Karig, David K; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and review many of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology. (c) 2009 John Wiley & Sons, Inc.

  8. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  9. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility.

    Science.gov (United States)

    de Boer, Sietse F; Buwalda, Bauke; Koolhaas, Jaap M

    2017-03-01

    Considerable individual differences exist in trait-like patterns of behavioral and physiological responses to salient environmental challenges. This individual variation in stress coping styles has an important functional role in terms of health and fitness. Hence, understanding the neural embedding of coping style variation is fundamental for biobehavioral neurosciences in probing individual disease susceptibility. This review outlines individual differences in trait-aggressiveness as an adaptive component of the natural sociobiology of rats and mice, and highlights that these reflect the general style of coping that varies from proactive (aggressive) to reactive (docile). We propose that this qualitative coping style can be disentangled into multiple quantitative behavioral domains, e.g., flexibility/impulse control, emotional reactivity and harm avoidance/reward processing, that each are encoded into selective neural circuitries. Since functioning of all these brain circuitries rely on fine-tuned serotonin signaling, autoinhibitory control mechanisms of serotonergic neuron (re)activity are crucial in orchestrating general coping style. Untangling the precise neuromolecular mechanisms of different coping styles will provide a roadmap for developing better therapeutic strategies of stress-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rett syndrome: genes, synapses, circuits and therapeutics

    Directory of Open Access Journals (Sweden)

    Abhishek eBanerjee

    2012-05-01

    Full Text Available Development of the nervous system proceeds through a set of complex checkpoints which arise from a combination of sequential gene expression and early neural activity sculpted by the environment. Genetic and environmental insults lead to neurodevelopmental disorders which encompass a large group of diseases that result from anatomical and physiological abnormalities during maturation and development of brain circuits. Rett syndrome (RTT is a postnatal neurological disorder of genetic origin, caused by mutations in the X-linked gene MECP2. It features neuropsychiatric abnormalities like motor dysfunctions and mild to severe cognitive impairment. This review discusses several key questions and attempts to evaluate recently developed animal models, cell-type specific function of MeCP2, defects in neural circuit plasticity and possible therapeutic strategies. Finally, we also discuss how genes, proteins and overlapping signaling pathways affect the molecular etiology of apparently unrelated neuropsychiatric disorders, an understanding of which can offer novel therapeutic strategies.

  11. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  12. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  13. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  14. Optimal neural computations require analog processors

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper discusses some of the limitations of hardware implementations of neural networks. The authors start by presenting neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural networks. Further, the focus will be on hardware imposed constraints. They will present recent results for three different alternatives of parallel implementations of neural networks: digital circuits, threshold gate circuits, and analog circuits. The area and the delay will be related to the neurons` fan-in and to the precision of their synaptic weights. The main conclusion is that hardware-efficient solutions require analog computations, and suggests the following two alternatives: (i) cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow the use of the third dimension (e.g. using optical interconnections).

  15. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    Science.gov (United States)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  16. Using noise to probe and characterize gene circuits.

    Science.gov (United States)

    Cox, Chris D; McCollum, James M; Allen, Michael S; Dar, Roy D; Simpson, Michael L

    2008-08-05

    Stochastic fluctuations (or "noise") in the single-cell populations of molecular species are shaped by the structure and biokinetic rates of the underlying gene circuit. The structure of the noise is summarized by its autocorrelation function. In this article, we introduce the noise regulatory vector as a generalized framework for making inferences concerning the structure and biokinetic rates of a gene circuit from its noise autocorrelation function. Although most previous studies have focused primarily on the magnitude component of the noise (given by the zero-lag autocorrelation function), our approach also considers the correlation component, which encodes additional information concerning the circuit. Theoretical analyses and simulations of various gene circuits show that the noise regulatory vector is characteristic of the composition of the circuit. Although a particular noise regulatory vector does not map uniquely to a single underlying circuit, it does suggest possible candidate circuits, while excluding others, thereby demonstrating the probative value of noise in gene circuit analysis.

  17. Artificial Neural Network with Hardware Training and Hardware Refresh

    Science.gov (United States)

    Duong, Tuan A. (Inventor)

    2003-01-01

    A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.

  18. Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy IMRT during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment

    International Nuclear Information System (INIS)

    Marsh, James C.; Ziel, Ellis G; Diaz, Aidnag Z; Turian, Julius V; Wendt, Julie A.; Gobole, Rohit

    2013-01-01

    We compared integral dose with uninvolved brain (ID brain ) during partial brain radiotherapy (PBRT) for high-grade glioma patients using helical tomotherapy (HT) and seven field traditional inverse-planned intensity-modulated radiotherapy (IMRT) with and without selective sparing (SPA) of contralateral hippocampus, neural stem cell compartment (NSC) and limbic circuit. We prepared four PBRT treatment plans for four patients with high-grade gliomas (60Gy in 30 fractions delivered to planning treatment volume (PTV60Gy)). For all plans, a structure denoted 'uninvolved brain' was created, which included all brain tissue not part of PTV or standard (STD) organs at risk (OAR). No dosimetric constraints were included for uninvolved brain. Selective SPA plans were prepared with IMRT and HT; contralateral hippocampus, NSC and limbic circuit were contoured; and dosimetric constraints were entered for these structures without compromising dose to PTV or STD OAR. We compared V100 and D95 for PTV46Gy and PTV60Gy, and ID brain for all plans. There were no significant differences in V100 and D95 for PTV46Gy and PTV60Gy. ID brain was lower in traditional IMRT versus HT plans for STD and SPA plans (mean ID brain 23.64Gy vs. 28Gy and 18.7Gy vs. 24.5Gy, respectively) and in SPA versus STD plans both with IMRT and HT (18.7Gy vs. 23.64Gy and 24.5Gy vs. 28Gy, respectively). n the setting of PBRT for high-grade gliomas, IMRT reduces ID brain compared with HT with or without selective SPA of contralateral hippocampus, limbic circuit and NSC, and the use of selective SPA reduces ID brain compared with STD PBRT delivered with either traditional IMRT or HT.

  19. Electric circuits and signals

    CERN Document Server

    Sabah, Nassir H

    2007-01-01

    Circuit Variables and Elements Overview Learning Objectives Electric Current Voltage Electric Power and Energy Assigned Positive Directions Active and Passive Circuit Elements Voltage and Current Sources The Resistor The Capacitor The Inductor Concluding Remarks Summary of Main Concepts and Results Learning Outcomes Supplementary Topics on CD Problems and Exercises Basic Circuit Connections and Laws Overview Learning Objectives Circuit Terminology Kirchhoff's Laws Voltage Division and Series Connection of Resistors Current Division and Parallel Connection of Resistors D-Y Transformation Source Equivalence and Transformation Reduced-Voltage Supply Summary of Main Concepts and Results Learning Outcomes Supplementary Topics and Examples on CD Problems and Exercises Basic Analysis of Resistive Circuits Overview Learning Objectives Number of Independent Circuit Equations Node-Voltage Analysis Special Considerations in Node-Voltage Analysis Mesh-Current Analysis Special Conside...

  20. Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila.

    Science.gov (United States)

    Yuan, Quan; Song, Yuanquan; Yang, Chung-Hui; Jan, Lily Yeh; Jan, Yuh Nung

    2014-01-01

    Intraspecific male-male aggression, which is important for sexual selection, is regulated by environment, experience and internal states through largely undefined molecular and cellular mechanisms. To understand the basic neural pathway underlying the modulation of this innate behavior, we established a behavioral assay in Drosophila melanogaster and investigated the relationship between sexual experience and aggression. In the presence of mating partners, adult male flies exhibited elevated levels of aggression, which was largely suppressed by prior exposure to females via a sexually dimorphic neural mechanism. The suppression involved the ability of male flies to detect females by contact chemosensation through the pheromone-sensing ion channel ppk29 and was mediated by male-specific GABAergic neurons acting on the GABAA receptor RDL in target cells. Silencing or activating this circuit led to dis-inhibition or elimination of sex-related aggression, respectively. We propose that the GABAergic inhibition represents a critical cellular mechanism that enables prior experience to modulate aggression.

  1. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  2. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  3. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  4. Risk-taking and social exclusion in adolescence: Neural mechanisms underlying peer influences on decision-making

    Science.gov (United States)

    Peake, Shannon J.; Dishion, Thomas J.; Stormshak, Elizabeth A.; Moore, William E.; Pfeifer, Jennifer H.

    2013-01-01

    Social exclusion and risk-taking are both common experiences of concern in adolescence, yet little is known about how the two may be related at behavioral or neural levels. In this fMRI study, adolescents (N=27, 14 male, 14–17 years-old) completed a series of tasks in the scanner assessing risky decision-making before and after an episode of social exclusion. In this particular context, exclusion was associated with greater behavioral risk-taking among adolescents with low self-reported resistance to peer influence (RPI). When making risky decisions after social exclusion, adolescents who had lower RPI exhibited higher levels of activity in right temporoparietal junction (rTPJ), and this response in rTPJ was a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. Lower RPI was also associated with lower levels of activity in lPFC during crashes following social exclusion, but unlike rTPJ this response in lPFC was not a significant mediator of the relationship between RPI and greater risk-taking after social exclusion. The results suggest that mentalizing and/or attentional m