WorldWideScience

Sample records for underlying network topology

  1. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    Directory of Open Access Journals (Sweden)

    Aaron M. Prescott

    2016-08-01

    underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses.

  2. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    Science.gov (United States)

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  3. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  4. Robustness Analysis of Real Network Topologies Under Multiple Failure Scenarios

    DEFF Research Database (Denmark)

    Manzano, M.; Marzo, J. L.; Calle, E.

    2012-01-01

    on topological characteristics. Recently approaches also consider the services supported by such networks. In this paper we carry out a robustness analysis of five real backbone telecommunication networks under defined multiple failure scenarios, taking into account the consequences of the loss of established......Nowadays the ubiquity of telecommunication networks, which underpin and fulfill key aspects of modern day living, is taken for granted. Significant large-scale failures have occurred in the last years affecting telecommunication networks. Traditionally, network robustness analysis has been focused...... connections. Results show which networks are more robust in response to a specific type of failure....

  5. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    Science.gov (United States)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  6. Topology Control in Aerial Multi-Beam Directional Networks

    Science.gov (United States)

    2017-04-24

    Topology Control in Aerial Multi-Beam Directional Networks Brian Proulx, Nathaniel M. Jones, Jennifer Madiedo, Greg Kuperman {brian.proulx, njones...significant interference. Topology control (i.e., selecting a subset of neighbors to communicate with) is vital to reduce the interference. Good topology ...underlying challenges to topology control in multi-beam direction networks. Two topology control algorithms are developed: a centralized algorithm

  7. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  8. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  9. Finding quasi-optimal network topologies for information transmission in active networks.

    Science.gov (United States)

    Baptista, Murilo S; de Carvalho, Josué X; Hussein, Mahir S

    2008-01-01

    This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

  10. Finding quasi-optimal network topologies for information transmission in active networks.

    Directory of Open Access Journals (Sweden)

    Murilo S Baptista

    Full Text Available This work clarifies the relation between network circuit (topology and behaviour (information transmission and synchronization in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.

  11. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  12. OPTIMAL NETWORK TOPOLOGY DESIGN

    Science.gov (United States)

    Yuen, J. H.

    1994-01-01

    This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.

  13. Optimal Network-Topology Design

    Science.gov (United States)

    Li, Victor O. K.; Yuen, Joseph H.; Hou, Ting-Chao; Lam, Yuen Fung

    1987-01-01

    Candidate network designs tested for acceptability and cost. Optimal Network Topology Design computer program developed as part of study on topology design and analysis of performance of Space Station Information System (SSIS) network. Uses efficient algorithm to generate candidate network designs consisting of subsets of set of all network components, in increasing order of total costs and checks each design to see whether it forms acceptable network. Technique gives true cost-optimal network and particularly useful when network has many constraints and not too many components. Program written in PASCAL.

  14. A method of network topology optimization design considering application process characteristic

    Science.gov (United States)

    Wang, Chunlin; Huang, Ning; Bai, Yanan; Zhang, Shuo

    2018-03-01

    Communication networks are designed to meet the usage requirements of users for various network applications. The current studies of network topology optimization design mainly considered network traffic, which is the result of network application operation, but not a design element of communication networks. A network application is a procedure of the usage of services by users with some demanded performance requirements, and has obvious process characteristic. In this paper, we first propose a method to optimize the design of communication network topology considering the application process characteristic. Taking the minimum network delay as objective, and the cost of network design and network connective reliability as constraints, an optimization model of network topology design is formulated, and the optimal solution of network topology design is searched by Genetic Algorithm (GA). Furthermore, we investigate the influence of network topology parameter on network delay under the background of multiple process-oriented applications, which can guide the generation of initial population and then improve the efficiency of GA. Numerical simulations show the effectiveness and validity of our proposed method. Network topology optimization design considering applications can improve the reliability of applications, and provide guidance for network builders in the early stage of network design, which is of great significance in engineering practices.

  15. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  16. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Hong Kezhu

    2007-01-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  17. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Kezhu Hong

    2007-04-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  18. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  19. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  20. Tensor Network Wavefunctions for Topological Phases

    Science.gov (United States)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for

  1. Optimization-based topology identification of complex networks

    International Nuclear Information System (INIS)

    Tang Sheng-Xue; Chen Li; He Yi-Gang

    2011-01-01

    In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)

  2. Tight Network Topology Dependent Bounds on Rounds of Communication

    OpenAIRE

    Chattopadhyay, Arkadev; Langberg, Michael; Li, Shi; Rudra, Atri

    2016-01-01

    We prove tight network topology dependent bounds on the round complexity of computing well studied $k$-party functions such as set disjointness and element distinctness. Unlike the usual case in the CONGEST model in distributed computing, we fix the function and then vary the underlying network topology. This complements the recent such results on total communication that have received some attention. We also present some applications to distributed graph computation problems. Our main contri...

  3. Network-topology-adaptive quantum conference protocols

    International Nuclear Information System (INIS)

    Zhang Sheng; Wang Jian; Tang Chao-Jing; Zhang Quan

    2011-01-01

    As an important application of the quantum network communication, quantum multiparty conference has made multiparty secret communication possible. Previous quantum multiparty conference schemes based on quantum data encryption are insensitive to network topology. However, the topology of the quantum network significantly affects the communication efficiency, e.g., parallel transmission in a channel with limited bandwidth. We have proposed two distinctive protocols, which work in two basic network topologies with efficiency higher than the existing ones. We first present a protocol which works in the reticulate network using Greeberger—Horne—Zeilinger states and entanglement swapping. Another protocol, based on quantum multicasting with quantum data compression, which can improve the efficiency of the network, works in the star-like network. The security of our protocols is guaranteed by quantum key distribution and one-time-pad encryption. In general, the two protocols can be applied to any quantum network where the topology can be equivalently transformed to one of the two structures we propose in our protocols. (general)

  4. Topological Rankings in Communication Networks

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard; Træholt, Chresten

    2015-01-01

    In the theory of communication the central problem is to study how agents exchange information. This problem may be studied using the theory of connected spaces in topology, since a communication network can be modelled as a topological space such that agents can communicate if and only...... if they belong to the same path connected component of that space. In order to study combinatorial properties of such a communication network, notions from algebraic topology are applied. This makes it possible to determine the shape of a network by concrete invariants, e.g. the number of connected components...

  5. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  6. Topological Taxonomy of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Carlo Giudicianni

    2018-04-01

    Full Text Available Water Distribution Networks (WDNs can be regarded as complex networks and modeled as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental properties and the relationship between them. The crucial aim is to understand and describe the topology of WDNs and their structural organization to provide a novel tool of analysis which could help to find new solutions to several arduous problems of WDNs. The aim is to understand the role of the topological structure in the WDNs functioning. The methodology is applied to 21 existing networks and 13 literature networks. The comparison highlights some topological peculiarities and the possibility to define a set of best design parameters for ex-novo WDNs that could also be used to build hypothetical benchmark networks retaining the typical structure of real WDNs. Two well-known types of network ((a square grid; and (b random graph are used for comparison, aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology and some performance requirements of WDNs is discussed.

  7. Network topology descriptions in hybrid networks

    NARCIS (Netherlands)

    Grosso, P.; Brown, A.; Cedeyn, A.; Dijkstra, F.; van der Ham, J.; Patil, A.; Primet, P.; Swany, M.; Zurawski, J.

    2010-01-01

    The NML-WG goal is to define a schema for describing topologies of hybrid networks. This schema is in first instance intended for: • lightpath provisioning applications to exchange topology information intra and inter domain; • reporting performance metrics. This document constitutes Deliverable 1

  8. Topology determines force distributions in one-dimensional random spring networks

    Science.gov (United States)

    Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max

    2018-02-01

    Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z ) . Despite the universal properties of such (N ,z ) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.

  9. Real-space mapping of topological invariants using artificial neural networks

    Science.gov (United States)

    Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.

    2018-03-01

    Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.

  10. Topological Indices of Textual Identity Networks.

    Science.gov (United States)

    Leazer, Gregory H.; Furner, Jonathan

    1999-01-01

    Reports on a continuing investigation of intertextual networks. Describes how intertextual networks can be modeled as directed graphs and extends this to matrix representations. Discusses topological index values of these networks and speculates how topological index values might be used in the estimation of retrieval values in information…

  11. Inferring network topology from complex dynamics

    International Nuclear Information System (INIS)

    Shandilya, Srinivas Gorur; Timme, Marc

    2011-01-01

    Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.

  12. Transportation Network Topologies

    Science.gov (United States)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which

  13. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  14. Machine Learning Topological Invariants with Neural Networks

    Science.gov (United States)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  15. Network topology mapper

    Science.gov (United States)

    Quist, Daniel A [Los Alamos, NM; Gavrilov, Eugene M [Los Alamos, NM; Fisk, Michael E [Jemez, NM

    2008-01-15

    A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.

  16. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  17. SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY

    Directory of Open Access Journals (Sweden)

    J. Jaslin Deva Gifty

    2016-03-01

    Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.

  18. Coverings, Networks and Weak Topologies

    Czech Academy of Sciences Publication Activity Database

    Dow, A.; Junnila, H.; Pelant, Jan

    2006-01-01

    Roč. 53, č. 2 (2006), s. 287-320 ISSN 0025-5793 R&D Projects: GA ČR GA201/97/0216 Institutional research plan: CEZ:AV0Z10190503 Keywords : Banach spaces * weak topologies * networks topologies Subject RIV: BA - General Mathematics

  19. Discovering the Network Topology: An Efficient Approach for SDN

    Directory of Open Access Journals (Sweden)

    Leonardo OCHOA-ADAY

    2016-11-01

    Full Text Available Network topology is a physical description of the overall resources in the network. Collecting this information using efficient mechanisms becomes a critical task for important network functions such as routing, network management, quality of service (QoS, among many others. Recent technologies like Software-Defined Networks (SDN have emerged as promising approaches for managing the next generation networks. In order to ensure a proficient topology discovery service in SDN, we propose a simple agents-based mechanism. This mechanism improves the overall efficiency of the topology discovery process. In this paper, an algorithm for a novel Topology Discovery Protocol (SD-TDP is described. This protocol will be implemented in each switch through a software agent. Thus, this approach will provide a distributed solution to solve the problem of network topology discovery in a more simple and efficient way.

  20. Chimeras in a network of three oscillator populations with varying network topology

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    this system as a model system, we discuss for the first time the influence of network topology on the existence of so-called chimera states. In this context, the network with three populations represents an interesting case because the populations may either be connected as a triangle, or as a chain, thereby......-like. By showing that chimera states only exist for a bounded set of parameter values, we demonstrate that their existence depends strongly on the underlying network structures, and conclude that chimeras exist on networks with a chain-like character....

  1. On topological properties of sierpinski networks

    International Nuclear Information System (INIS)

    Imran, Muhammad; Sabeel-e-Hafi; Gao, Wei; Reza Farahani, Mohammad

    2017-01-01

    Sierpinski graphs constitute an extensively studied class of graphs of fractal nature applicable in topology, mathematics of Tower of Hanoi, computer science, and elsewhere. A large number of properties like physico-chemical properties, thermodynamic properties, chemical activity, biological activity, etc. are determined by the chemical applications of graph theory. These properties can be characterized by certain graph invariants referred to as topological indices. In QRAR/QSPR study these graph invariants has played a vital role. In this paper, we study the molecular topological properties of Sierpinski networks and derive the analytical closed formulas for the atom-bond connectivity (ABC) index, geometric-arithmetic (GA) index, and fourth and fifth version of these topological indices for Sierpinski networks denoted by S(n, k).

  2. Context-Based Topology Control for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pragasen Mudali

    2016-01-01

    Full Text Available Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.

  3. Robust quantum network architectures and topologies for entanglement distribution

    Science.gov (United States)

    Das, Siddhartha; Khatri, Sumeet; Dowling, Jonathan P.

    2018-01-01

    Entanglement distribution is a prerequisite for several important quantum information processing and computing tasks, such as quantum teleportation, quantum key distribution, and distributed quantum computing. In this work, we focus on two-dimensional quantum networks based on optical quantum technologies using dual-rail photonic qubits for the building of a fail-safe quantum internet. We lay out a quantum network architecture for entanglement distribution between distant parties using a Bravais lattice topology, with the technological constraint that quantum repeaters equipped with quantum memories are not easily accessible. We provide a robust protocol for simultaneous entanglement distribution between two distant groups of parties on this network. We also discuss a memory-based quantum network architecture that can be implemented on networks with an arbitrary topology. We examine networks with bow-tie lattice and Archimedean lattice topologies and use percolation theory to quantify the robustness of the networks. In particular, we provide figures of merit on the loss parameter of the optical medium that depend only on the topology of the network and quantify the robustness of the network against intermittent photon loss and intermittent failure of nodes. These figures of merit can be used to compare the robustness of different network topologies in order to determine the best topology in a given real-world scenario, which is critical in the realization of the quantum internet.

  4. Distribution network topology identification based on synchrophasor

    Directory of Open Access Journals (Sweden)

    Stefania Conti

    2018-03-01

    Full Text Available A distribution system upgrade moving towards Smart Grid implementation is necessary to face the proliferation of distributed generators and electric vehicles, in order to satisfy the increasing demand for high quality, efficient, secure, reliable energy supply. This perspective requires taking into account system vulnerability to cyber attacks. An effective attack could destroy stored information about network structure, historical data and so on. Countermeasures and network applications could be made impracticable since most of them are based on the knowledge of network topology. Usually, the location of each link between nodes in a network is known. Therefore, the methods used for topology identification determine if a link is open or closed. When no information on the location of the network links is available, these methods become totally unfeasible. This paper presents a method to identify the network topology using only nodal measures obtained by means of phasor measurement units.

  5. Complex brain networks: From topological communities to clustered

    Indian Academy of Sciences (India)

    Complex brain networks: From topological communities to clustered dynamics ... Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. ... Pramana – Journal of Physics | News.

  6. Static analysis of topology-dependent broadcast networks

    DEFF Research Database (Denmark)

    Nanz, Sebastian; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    changing network topology is a crucial ingredient. In this paper, we develop a static analysis that automatically constructs an abstract transition system, labelled by actions and connectivity information, to yield a mobility-preserving finite abstraction of the behaviour of a network expressed......Broadcast semantics poses significant challenges over point-to-point communication when it comes to formal modelling and analysis. Current approaches to analysing broadcast networks have focused on fixed connectivities, but this is unsuitable in the case of wireless networks where the dynamically...... in a process calculus with asynchronous local broadcast. Furthermore, we use model checking based on a 3-valued temporal logic to distinguish network behaviour which differs under changing connectivity patterns. (C) 2009 Elsevier Inc. All rights reserved....

  7. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  8. Inferring topologies of complex networks with hidden variables.

    Science.gov (United States)

    Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing

    2012-10-01

    Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.

  9. Scheduling and Topology Design in Networks with Directional Antennas

    Science.gov (United States)

    2017-05-19

    Scheduling and Topology Design in Networks with Directional Antennas Thomas Stahlbuhk, Nathaniel M. Jones, Brooke Shrader Lincoln Laboratory...controllers must choose which pairs of nodes should communicate in order to establish a topology over which traffic can be sent. Additionally...interacting effects of topology design and transmission scheduling in wireless networks, in particular focusing on networks where nodes are divided into

  10. Impact of network topology on self-organized criticality

    Science.gov (United States)

    Hoffmann, Heiko

    2018-02-01

    The general mechanisms behind self-organized criticality (SOC) are still unknown. Several microscopic and mean-field theory approaches have been suggested, but they do not explain the dependence of the exponents on the underlying network topology of the SOC system. Here, we first report the phenomena that in the Bak-Tang-Wiesenfeld (BTW) model, sites inside an avalanche area largely return to their original state after the passing of an avalanche, forming, effectively, critically arranged clusters of sites. Then, we hypothesize that SOC relies on the formation process of these clusters, and present a model of such formation. For low-dimensional networks, we show theoretically and in simulation that the exponent of the cluster-size distribution is proportional to the ratio of the fractal dimension of the cluster boundary and the dimensionality of the network. For the BTW model, in our simulations, the exponent of the avalanche-area distribution matched approximately our prediction based on this ratio for two-dimensional networks, but deviated for higher dimensions. We hypothesize a transition from cluster formation to the mean-field theory process with increasing dimensionality. This work sheds light onto the mechanisms behind SOC, particularly, the impact of the network topology.

  11. Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dorier, Matthieu; Mubarak, Misbah; Ross, Rob; Li, Jianping Kelvin; Carothers, Christopher D.; Ma, Kwan-Liu

    2016-09-12

    Two-tiered direct network topologies such as Dragonflies have been proposed for future post-petascale and exascale machines, since they provide a high-radix, low-diameter, fast interconnection network. Such topologies call for redesigning MPI collective communication algorithms in order to attain the best performance. Yet as increasingly more applications share a machine, it is not clear how these topology-aware algorithms will react to interference with concurrent jobs accessing the same network. In this paper, we study three topology-aware broadcast algorithms, including one designed by ourselves. We evaluate their performance through event-driven simulation for small- and large-sized broadcasts (in terms of both data size and number of processes). We study the effect of different routing mechanisms on the topology-aware collective algorithms, as well as their sensitivity to network contention with other jobs. Our results show that while topology-aware algorithms dramatically reduce link utilization, their advantage in terms of latency is more limited.

  12. Topology of molecular interaction networks

    NARCIS (Netherlands)

    Winterbach, W.; Van Mieghem, P.; Reinders, M.; Wang, H.; De Ridder, D.

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over

  13. Mechanized extraction of topology anti-patterns in wireless networks

    NARCIS (Netherlands)

    Woehrle, M.; Bakhshi, R.; Mousavi, M.R.; Derrick, J.; Gnesi, S.; Latella, D.; Treharne, H.

    2012-01-01

    Exhaustive and mechanized formal verification of wireless networks is hampered by the huge number of possible topologies and the large size of the actual networks. However, the generic communication structure in such networks allows for reducing the root causes of faults to faulty (sub-)topologies,

  14. Characterizing the topology of probabilistic biological networks.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software

  15. Symmetric Topological Phases and Tensor Network States

    Science.gov (United States)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  16. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Zou Xiaotao

    2009-01-01

    Full Text Available Abstract A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  17. Continuous Learning of a Multilayered Network Topology in a Video Camera Network

    Directory of Open Access Journals (Sweden)

    Xiaotao Zou

    2009-01-01

    Full Text Available A multilayered camera network architecture with nodes as entry/exit points, cameras, and clusters of cameras at different layers is proposed. Unlike existing methods that used discrete events or appearance information to infer the network topology at a single level, this paper integrates face recognition that provides robustness to appearance changes and better models the time-varying traffic patterns in the network. The statistical dependence between the nodes, indicating the connectivity and traffic patterns of the camera network, is represented by a weighted directed graph and transition times that may have multimodal distributions. The traffic patterns and the network topology may be changing in the dynamic environment. We propose a Monte Carlo Expectation-Maximization algorithm-based continuous learning mechanism to capture the latent dynamically changing characteristics of the network topology. In the experiments, a nine-camera network with twenty-five nodes (at the lowest level is analyzed both in simulation and in real-life experiments and compared with previous approaches.

  18. Radiation-Induced Topological Disorder in Irradiated Network Structures

    International Nuclear Information System (INIS)

    Hobbs, Linn W.

    2002-12-01

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  19. Topology influences performance in the associative memory neural networks

    International Nuclear Information System (INIS)

    Lu Jianquan; He Juan; Cao Jinde; Gao Zhiqiang

    2006-01-01

    To explore how topology affects performance within Hopfield-type associative memory neural networks (AMNNs), we studied the computational performance of the neural networks with regular lattice, random, small-world, and scale-free structures. In this Letter, we found that the memory performance of neural networks obtained through asynchronous updating from 'larger' nodes to 'smaller' nodes are better than asynchronous updating in random order, especially for the scale-free topology. The computational performance of associative memory neural networks linked by the above-mentioned network topologies with the same amounts of nodes (neurons) and edges (synapses) were studied respectively. Along with topologies becoming more random and less locally disordered, we will see that the performance of associative memory neural network is quite improved. By comparing, we show that the regular lattice and random network form two extremes in terms of patterns stability and retrievability. For a network, its patterns stability and retrievability can be largely enhanced by adding a random component or some shortcuts to its structured component. According to the conclusions of this Letter, we can design the associative memory neural networks with high performance and minimal interconnect requirements

  20. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  1. Development of Active External Network Topology Module for Floodlight SDN Controller

    Directory of Open Access Journals (Sweden)

    A. A. Noskov

    2015-01-01

    Full Text Available Traditional network architecture is inflexible and complicated. This observation has led to a paradigm shift towards software-defined networking (SDN, where network management level is separated from data forwarding level. This change was made possible by control plane transfer from the switching equipment to software modules that run on a dedicated server, called the controller (or network operating system, or network applications, that work with this controller. Methods of representation, storage and communication interfaces with network topology elements are the most important aspects of network operating systems available to SDN user because performance of some key controller modules is heavily dependent on internal representation of the network topology. Notably, firewall and routing modules are examples of such modules. This article describes the methods used for presentation and storage of network topologies, as well as interface to the corresponding Floodlight modules. An alternative algorithm has been suggested and developed for message exchange conveying network topology alterations between the controller and network applications. Proposed algorithm makes implementation of module alerting based on subscription to the relevant events. API for interaction between controller and network applications has been developed. This algorithm and API formed the base for Topology Tracker module capable to inform network applications about the changes that had occurred in the network topology and also stores compact representation of the network to speed up the interaction process.

  2. Inferring topologies via driving-based generalized synchronization of two-layer networks

    Science.gov (United States)

    Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua

    2016-05-01

    The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.

  3. Brain network analysis: separating cost from topology using cost-integration.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.

  4. Brain Network Analysis: Separating Cost from Topology Using Cost-Integration

    Science.gov (United States)

    Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew

    2011-01-01

    A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437

  5. Low-dimensional morphospace of topological motifs in human fMRI brain networks

    Directory of Open Access Journals (Sweden)

    Sarah E. Morgan

    2018-06-01

    Full Text Available We present a low-dimensional morphospace of fMRI brain networks, where axes are defined in a data-driven manner based on the network motifs. The morphospace allows us to identify the key variations in healthy fMRI networks in terms of their underlying motifs, and we observe that two principal components (PCs can account for 97% of the motif variability. The first PC of the motif distribution is correlated with efficiency and inversely correlated with transitivity. Hence this axis approximately conforms to the well-known economical small-world trade-off between integration and segregation in brain networks. Finally, we show that the economical clustering generative model proposed by Vértes et al. (2012 can approximately reproduce the motif morphospace of the real fMRI brain networks, in contrast to other generative models. Overall, the motif morphospace provides a powerful way to visualize the relationships between network properties and to investigate generative or constraining factors in the formation of complex human brain functional networks. Motifs have been described as the building blocks of complex networks. Meanwhile, a morphospace allows networks to be placed in a common space and can reveal the relationships between different network properties and elucidate the driving forces behind network topology. We combine the concepts of motifs and morphospaces to create the first motif morphospace of fMRI brain networks. Crucially, the morphospace axes are defined by the motifs, in a data-driven manner. We observe strong correlations between the networks’ positions in morphospace and their global topological properties, suggesting that motif morphospaces are a powerful way to capture the topology of networks in a low-dimensional space and to compare generative models of brain networks. Motif morphospaces could also be used to study other complex networks’ topologies.

  6. Shuffle-Exchange Mesh Topology for Networks-on-Chip

    OpenAIRE

    Sabbaghi-Nadooshan, Reza; Modarressi, Mehdi; Sarbazi-Azad, Hamid

    2010-01-01

    The mesh topology has been used in a variety of interconnection network applications especially for NoC designs due to its desirable properties in VLSI implementation. In this chapter, we proposed a new topology based on the shuffle-exchange topology, the 2D

  7. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Directory of Open Access Journals (Sweden)

    Stojan Jovanović

    2016-06-01

    Full Text Available The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  8. Interplay between Graph Topology and Correlations of Third Order in Spiking Neuronal Networks.

    Science.gov (United States)

    Jovanović, Stojan; Rotter, Stefan

    2016-06-01

    The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology-random networks of Erdős-Rényi type and networks with highly interconnected hubs-we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.

  9. Topology Identification of General Dynamical Network with Distributed Time Delays

    International Nuclear Information System (INIS)

    Zhao-Yan, Wu; Xin-Chu, Fu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators) are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method. (general)

  10. Robust network topologies for generating switch-like cellular responses.

    Directory of Open Access Journals (Sweden)

    Najaf A Shah

    2011-06-01

    Full Text Available Signaling networks that convert graded stimuli into binary, all-or-none cellular responses are critical in processes ranging from cell-cycle control to lineage commitment. To exhaustively enumerate topologies that exhibit this switch-like behavior, we simulated all possible two- and three-component networks on random parameter sets, and assessed the resulting response profiles for both steepness (ultrasensitivity and extent of memory (bistability. Simulations were used to study purely enzymatic networks, purely transcriptional networks, and hybrid enzymatic/transcriptional networks, and the topologies in each class were rank ordered by parametric robustness (i.e., the percentage of applied parameter sets exhibiting ultrasensitivity or bistability. Results reveal that the distribution of network robustness is highly skewed, with the most robust topologies clustering into a small number of motifs. Hybrid networks are the most robust in generating ultrasensitivity (up to 28% and bistability (up to 18%; strikingly, a purely transcriptional framework is the most fragile in generating either ultrasensitive (up to 3% or bistable (up to 1% responses. The disparity in robustness among the network classes is due in part to zero-order ultrasensitivity, an enzyme-specific phenomenon, which repeatedly emerges as a particularly robust mechanism for generating nonlinearity and can act as a building block for switch-like responses. We also highlight experimentally studied examples of topologies enabling switching behavior, in both native and synthetic systems, that rank highly in our simulations. This unbiased approach for identifying topologies capable of a given response may be useful in discovering new natural motifs and in designing robust synthetic gene networks.

  11. Default cascades in complex networks: topology and systemic risk.

    Science.gov (United States)

    Roukny, Tarik; Bersini, Hugues; Pirotte, Hugues; Caldarelli, Guido; Battiston, Stefano

    2013-09-26

    The recent crisis has brought to the fore a crucial question that remains still open: what would be the optimal architecture of financial systems? We investigate the stability of several benchmark topologies in a simple default cascading dynamics in bank networks. We analyze the interplay of several crucial drivers, i.e., network topology, banks' capital ratios, market illiquidity, and random vs targeted shocks. We find that, in general, topology matters only--but substantially--when the market is illiquid. No single topology is always superior to others. In particular, scale-free networks can be both more robust and more fragile than homogeneous architectures. This finding has important policy implications. We also apply our methodology to a comprehensive dataset of an interbank market from 1999 to 2011.

  12. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions

    Science.gov (United States)

    2017-01-01

    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. Availability: weilab.math.msu.edu/TDL/ PMID:28749969

  13. Optimal topologies for maximizing network transmission capacity

    Science.gov (United States)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  14. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  15. Research on social communication network evolution based on topology potential distribution

    Science.gov (United States)

    Zhao, Dongjie; Jiang, Jian; Li, Deyi; Zhang, Haisu; Chen, Guisheng

    2011-12-01

    Aiming at the problem of social communication network evolution, first, topology potential is introduced to measure the local influence among nodes in networks. Second, from the perspective of topology potential distribution the method of network evolution description based on topology potential distribution is presented, which takes the artificial intelligence with uncertainty as basic theory and local influence among nodes as essentiality. Then, a social communication network is constructed by enron email dataset, the method presented is used to analyze the characteristic of the social communication network evolution and some useful conclusions are got, implying that the method is effective, which shows that topology potential distribution can effectively describe the characteristic of sociology and detect the local changes in social communication network.

  16. Extending Topological Approaches to Microseismic-Derived 3D Fracture Networks

    Science.gov (United States)

    Urbancic, T.; Bosman, K.; Baig, A.; Ardakani, E. P.

    2017-12-01

    Fracture topology is important for determining the fluid-flow characteristics of a fracture network. In most unconventional petroleum applications, flow through subsurface fracture networks is the primary source of production, as matrix permeability is often in the nanodarcy range. Typical models of reservoir discrete fracture networks (DFNs) are constructed using fracture orientation and average spacing, without consideration of how the connectivity of the fracture network aids the percolation of hydrocarbons back to the wellbore. Topological approaches to DFN characterization have been developed and extensively used in analysis of outcrop data and aerial photography. Such study of the surface expression of fracture networks is straight-forward, and the physical form of the observed fractures is directly reflected in the parameters used to describe the topology. However, this analysis largely ignores the three-dimensional nature of natural fracture networks, which is difficult to define accurately in geological studies. SMTI analysis of microseismic event distributions can produce DFNs, where each event is represented by a penny-shaped crack with radius and orientation determined from the frequency content of the waveforms and assessment of the slip instability of the potential fracture planes, respectively. Analysis of the geometric relationships between a set of fractures can provide details of intersections between fractures, and thus the topological characteristics of the fracture network. Extension of existing 2D topology approaches to 3D fracture networks is non-trivial. In the 2D case, a fracture intersection is a single point (node), and branches connect adjacent nodes along fractures. For the 3D case, intersection "nodes" become lines, and connecting nodes to find branches becomes more complicated. There are several parameters defined in 2D topology to quantify the connectivity of the fracture network. Equivalent quantities must be defined and calibrated

  17. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  18. Characterizing Topology of Probabilistic Biological Networks.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-09-06

    Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.

  19. Designing Structure-Dependent MPC-Based AGC Schemes Considering Network Topology

    Directory of Open Access Journals (Sweden)

    Young-Sik Jang

    2015-04-01

    Full Text Available This paper presents the important features of structure-dependent model predictive control (MPC-based approaches for automatic generation control (AGC considering network topology. Since power systems have various generators under different topologies, it is necessary to reflect the characteristics of generators in power networks and the control system structures in order to improve the dynamic performance of AGC. Specifically, considering control system structures is very important because not only can the topological problems be reduced, but also a computing system for AGC in a bulk-power system can be realized. Based on these considerations, we propose new schemes in the proposed controller for minimizing inadvertent line flows and computational burden, which strengthen the advantages of MPC-based approach for AGC. Analysis and simulation results in the IEEE 39-bus model system show different dynamic behaviors among structure-dependent control schemes and possible improvements in computational burden via the proposed control scheme while system operators in each balancing area consider physical load reference ramp constraints among generators.

  20. Topologically determined optimal stochastic resonance responses of spatially embedded networks

    International Nuclear Information System (INIS)

    Gosak, Marko; Marhl, Marko; Korosak, Dean

    2011-01-01

    We have analyzed the stochastic resonance phenomenon on spatial networks of bistable and excitable oscillators, which are connected according to their location and the amplitude of external forcing. By smoothly altering the network topology from a scale-free (SF) network with dominating long-range connections to a network where principally only adjacent oscillators are connected, we reveal that besides an optimal noise intensity, there is also a most favorable interaction topology at which the best correlation between the response of the network and the imposed weak external forcing is achieved. For various distributions of the amplitudes of external forcing, the optimal topology is always found in the intermediate regime between the highly heterogeneous SF network and the strong geometric regime. Our findings thus indicate that a suitable number of hubs and with that an optimal ratio between short- and long-range connections is necessary in order to obtain the best global response of a spatial network. Furthermore, we link the existence of the optimal interaction topology to a critical point indicating the transition from a long-range interactions-dominated network to a more lattice-like network structure.

  1. Observations and analysis of self-similar branching topology in glacier networks

    Science.gov (United States)

    Bahr, D.B.; Peckham, S.D.

    1996-01-01

    Glaciers, like rivers, have a branching structure which can be characterized by topological trees or networks. Probability distributions of various topological quantities in the networks are shown to satisfy the criterion for self-similarity, a symmetry structure which might be used to simplify future models of glacier dynamics. Two analytical methods of describing river networks, Shreve's random topology model and deterministic self-similar trees, are applied to the six glaciers of south central Alaska studied in this analysis. Self-similar trees capture the topological behavior observed for all of the glaciers, and most of the networks are also reasonably approximated by Shreve's theory. Copyright 1996 by the American Geophysical Union.

  2. Topology optimization under stochastic stiffness

    Science.gov (United States)

    Asadpoure, Alireza

    Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations

  3. Characterization of Static/Dynamic Topological Routing For Grid Networks

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Cuevas, Ruben; Riaz, M. Tahir

    2009-01-01

    Grid or 2D Mesh structures are becoming one of the most attractive network topologies to study. They can be used in many different fields raging from future broadband networks to multiprocessors structures. In addition, the high requirements of future services and applications demand more flexible...... and adaptive networks. Topological routing in grid networks is a simple and efficient alternative to traditional routing techniques, e.g. routing tables, and the paper extends this kind of routing providing a "Dynamic" attribute. This new property attempts to improve the overall network performance for future...

  4. Virtual network embedding in cross-domain network based on topology and resource attributes

    Science.gov (United States)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  5. Architecture of transcriptional regulatory circuits is knitted over the topology of bio-molecular interaction networks

    DEFF Research Database (Denmark)

    Soberano de Oliveira, Ana Paula; Patil, Kiran Raosaheb; Nielsen, Jens

    2008-01-01

    is to use the topology of bio-molecular interaction networks in order to constrain the solution space. Such approaches systematically integrate the existing biological knowledge with the 'omics' data. Results: Here we introduce a hypothesis-driven method that integrates bio-molecular network topology......Background: Uncovering the operating principles underlying cellular processes by using 'omics' data is often a difficult task due to the high-dimensionality of the solution space that spans all interactions among the bio-molecules under consideration. A rational way to overcome this problem...... with transcriptome data, thereby allowing the identification of key biological features (Reporter Features) around which transcriptional changes are significantly concentrated. We have combined transcriptome data with different biological networks in order to identify Reporter Gene Ontologies, Reporter Transcription...

  6. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-06-01

    The network representation of the interactions between proteins and genes allows for a holistic perspective of the complex machinery underlying the living cell. However, the large number of interacting entities within the cell makes network construction a daunting and arduous task, prone to errors and missing information. Fortunately, the structure of biological networks is not different from that of other complex systems, such as social networks, the world-wide web or power grids, for which growth models have been proposed to better understand their structure and function. This means that we can design tools based on these models in order to exploit the topology of biological interactomes with the aim to construct more complete and reliable maps of the cell. In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable and biologically meaningful information that enriches the datasets to which we have access today.

  7. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  8. Artificial Epigenetic Networks: Automatic Decomposition of Dynamical Control Tasks Using Topological Self-Modification.

    Science.gov (United States)

    Turner, Alexander P; Caves, Leo S D; Stepney, Susan; Tyrrell, Andy M; Lones, Michael A

    2017-01-01

    This paper describes the artificial epigenetic network, a recurrent connectionist architecture that is able to dynamically modify its topology in order to automatically decompose and solve dynamical problems. The approach is motivated by the behavior of gene regulatory networks, particularly the epigenetic process of chromatin remodeling that leads to topological change and which underlies the differentiation of cells within complex biological organisms. We expected this approach to be useful in situations where there is a need to switch between different dynamical behaviors, and do so in a sensitive and robust manner in the absence of a priori information about problem structure. This hypothesis was tested using a series of dynamical control tasks, each requiring solutions that could express different dynamical behaviors at different stages within the task. In each case, the addition of topological self-modification was shown to improve the performance and robustness of controllers. We believe this is due to the ability of topological changes to stabilize attractors, promoting stability within a dynamical regime while allowing rapid switching between different regimes. Post hoc analysis of the controllers also demonstrated how the partitioning of the networks could provide new insights into problem structure.

  9. Inferring epidemic network topology from surveillance data.

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    Full Text Available The transmission of infectious diseases can be affected by many or even hidden factors, making it difficult to accurately predict when and where outbreaks may emerge. One approach at the moment is to develop and deploy surveillance systems in an effort to detect outbreaks as timely as possible. This enables policy makers to modify and implement strategies for the control of the transmission. The accumulated surveillance data including temporal, spatial, clinical, and demographic information, can provide valuable information with which to infer the underlying epidemic networks. Such networks can be quite informative and insightful as they characterize how infectious diseases transmit from one location to another. The aim of this work is to develop a computational model that allows inferences to be made regarding epidemic network topology in heterogeneous populations. We apply our model on the surveillance data from the 2009 H1N1 pandemic in Hong Kong. The inferred epidemic network displays significant effect on the propagation of infectious diseases.

  10. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  11. Distributed Energy-Efficient Topology Control Algorithm in Home M2M Networks

    OpenAIRE

    Lee, Chao-Yang; Yang, Chu-Sing

    2012-01-01

    Because machine-to-machine (M2M) technology enables machines to communicate with each other without human intervention, it could play a big role in sensor network systems. Through wireless sensor network (WSN) gateways, various information can be collected by sensors for M2M systems. For home M2M networks, this study proposes a distributed energy-efficient topology control algorithm for both topology construction and topology maintenance. Topology control is an effective method of enhancing e...

  12. Characterizing granular networks using topological metrics

    Science.gov (United States)

    Dijksman, Joshua A.; Kovalcinova, Lenka; Ren, Jie; Behringer, Robert P.; Kramar, Miroslav; Mischaikow, Konstantin; Kondic, Lou

    2018-04-01

    We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, fNR. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNR and topological metrics are useful measures to consider when quantifying the state of a granular system.

  13. Network topology exploration of mesh-based coarse-grain reconfigurable architectures

    NARCIS (Netherlands)

    Bansal, N.; Gupta, S.; Dutt, N.D.; Nicolau, A.; Gupta, R.

    2004-01-01

    Several coarse-grain reconfigurable architectures proposed recently consist of a large number of processing elements (PEs) connected in a mesh-like network topology. We study the effects of three aspects of network topology exploration on the performance of applications on these architectures: (a)

  14. Effects of network topology on wealth distributions

    International Nuclear Information System (INIS)

    Garlaschelli, Diego; Loffredo, Maria I

    2008-01-01

    We focus on the problem of how the wealth is distributed among the units of a networked economic system. We first review the empirical results documenting that in many economies the wealth distribution is described by a combination of the log-normal and power-law behaviours. We then focus on the Bouchaud-Mezard model of wealth exchange, describing an economy of interacting agents connected through an exchange network. We report analytical and numerical results showing that the system self-organizes towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular, we show that if the network displays a homogeneous density of links, the wealth distribution displays either the log-normal or the power-law form. This means that the first-order topological properties alone (such as the scale-free property) are not enough to explain the emergence of the empirically observed mixed form of the wealth distribution. In order to reproduce this nontrivial pattern, the network has to be heterogeneously divided into regions with a variable density of links. We show new results detailing how this effect is related to the higher-order correlation properties of the underlying network. In particular, we analyse assortativity by degree and the pairwise wealth correlations, and discuss the effects that these properties have on each other

  15. Feedback topology and XOR-dynamics in Boolean networks with varying input structure.

    Science.gov (United States)

    Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  16. Feedback topology and XOR-dynamics in Boolean networks with varying input structure

    Science.gov (United States)

    Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.

    2009-08-01

    We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.

  17. Routing in Networks with Random Topologies

    Science.gov (United States)

    Bambos, Nicholas

    1997-01-01

    We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.

  18. Molecular network topology and reliability for multipurpose diagnosis

    Directory of Open Access Journals (Sweden)

    Jalil MA

    2011-10-01

    Full Text Available MA Jalil1, N Moongfangklang2,3, K Innate4, S Mitatha3, J Ali5, PP Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, University of Technology Malaysia, Johor Bahru, Malaysia; 2School of Information and Communication Technology, Phayao University, Phayao, Thailand; 3Hybrid Computing Research Laboratory, Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Nanoscale Science and Engineering Research Alliance, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 5Institute of Advanced Photonics Science, Nanotechnology Research Alliance, University of Technology Malaysia, Johor Bahru, MalaysiaAbstract: This investigation proposes the use of molecular network topology for drug delivery and diagnosis network design. Three modules of molecular network topologies, such as bus, star, and ring networks, are designed and manipulated based on a micro- and nanoring resonator system. The transportation of the trapping molecules by light in the network is described and the theoretical background is reviewed. The quality of the network is analyzed and calculated in terms of signal transmission (ie, signal to noise ratio and crosstalk effects. Results obtained show that a bus network has advantages over star and ring networks, where the use of mesh networks is possible. In application, a thin film network can be fabricated in the form of a waveguide and embedded in artificial bone, which can be connected to the required drug targets. The particular drug/nutrient can be transported to the required targets via the particular network used.Keywords: molecular network, network reliability, network topology, drug network, multi-access network

  19. Topological Embedding Feature Based Resource Allocation in Network Virtualization

    Directory of Open Access Journals (Sweden)

    Hongyan Cui

    2014-01-01

    Full Text Available Virtualization provides a powerful way to run multiple virtual networks on a shared substrate network, which needs accurate and efficient mathematical models. Virtual network embedding is a challenge in network virtualization. In this paper, considering the degree of convergence when mapping a virtual network onto substrate network, we propose a new embedding algorithm based on topology mapping convergence-degree. Convergence-degree means the adjacent degree of virtual network’s nodes when they are mapped onto a substrate network. The contributions of our method are as below. Firstly, we map virtual nodes onto the substrate nodes with the maximum convergence-degree. The simulation results show that our proposed algorithm largely enhances the network utilization efficiency and decreases the complexity of the embedding problem. Secondly, we define the load balance rate to reflect the load balance of substrate links. The simulation results show our proposed algorithm achieves better load balance. Finally, based on the feature of star topology, we further improve our embedding algorithm and make it suitable for application in the star topology. The test result shows it gets better performance than previous works.

  20. Topology for efficient information dissemination in ad-hoc networking

    Science.gov (United States)

    Jennings, E.; Okino, C. M.

    2002-01-01

    In this paper, we explore the information dissemination problem in ad-hoc wirless networks. First, we analyze the probability of successful broadcast, assuming: the nodes are uniformly distributed, the available area has a lower bould relative to the total number of nodes, and there is zero knowledge of the overall topology of the network. By showing that the probability of such events is small, we are motivated to extract good graph topologies to minimize the overall transmissions. Three algorithms are used to generate topologies of the network with guaranteed connectivity. These are the minimum radius graph, the relative neighborhood graph and the minimum spanning tree. Our simulation shows that the relative neighborhood graph has certain good graph properties, which makes it suitable for efficient information dissemination.

  1. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2017-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  2. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2018-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  3. An Improved Topology-Potential-Based Community Detection Algorithm for Complex Network

    Directory of Open Access Journals (Sweden)

    Zhixiao Wang

    2014-01-01

    Full Text Available Topology potential theory is a new community detection theory on complex network, which divides a network into communities by spreading outward from each local maximum potential node. At present, almost all topology-potential-based community detection methods ignore node difference and assume that all nodes have the same mass. This hypothesis leads to inaccuracy of topology potential calculation and then decreases the precision of community detection. Inspired by the idea of PageRank algorithm, this paper puts forward a novel mass calculation method for complex network nodes. A node’s mass obtained by our method can effectively reflect its importance and influence in complex network. The more important the node is, the bigger its mass is. Simulation experiment results showed that, after taking node mass into consideration, the topology potential of node is more accurate, the distribution of topology potential is more reasonable, and the results of community detection are more precise.

  4. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

    Directory of Open Access Journals (Sweden)

    Hui He

    2013-01-01

    Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  5. Statistical mechanics of polymer networks of any topology

    International Nuclear Information System (INIS)

    Duplantier, B.

    1989-01-01

    The statistical mechanics is considered of any polymer network with a prescribed topology, in dimension d, which was introduced previously. The basic direct renormalization theory of the associated continuum model is established. It has a very simple multiplicative structure in terms of the partition functions of the star polymers constituting the vertices of the network. A calculation is made to O(ε 2 ), where d = 4 -ε, of the basic critical dimensions σ L associated with any L=leg vertex (L ≥ 1). From this infinite series of critical exponents, any topology-dependent critical exponent can be derived. This is applied to the configuration exponent γ G of any network G to O(ε 2 ), including L-leg star polymers. The infinite sets of contact critical exponents θ between multiple points of polymers or between the cores of several star polymers are also deduced. As a particular case, the three exponents θ 0 , θ 1 , θ 2 calculated by des Cloizeaux by field-theoretic methods are recovered. The limiting exact logarithmic laws are derived at the upper critical dimension d = 4. The results are generalized to the series of topological exponents of polymer networks near a surface and of tricritical polymers at the Θ-point. Intersection properties of networks of random walks can be studied similarly. The above factorization theory of the partition function of any polymer network over its constituting L-vertices also applies to two dimensions, where it can be related to conformal invariance. The basic critical exponents σ L and thus any topological polymer exponents are then exactly known. Principal results published elsewhere are recalled

  6. Evaluating the Limits of Network Topology Inference Via Virtualized Network Emulation

    Science.gov (United States)

    2015-06-01

    virtualized environment. First, we automatically build topological ground truth according to various network generation models and create emulated Cisco ...to various network generation models and create emulated Cisco router networks by leveraging and modifying existing emulation software. We then au... markets , to verifying compliance with policy, as in recent “network neutrality” rules established in the United States. The Internet is a network of

  7. Node vulnerability of water distribution networks under cascading failures

    International Nuclear Information System (INIS)

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes

  8. Deciphering the imprint of topology on nonlinear dynamical network stability

    International Nuclear Information System (INIS)

    Nitzbon, J; Schultz, P; Heitzig, J; Kurths, J; Hellmann, F

    2017-01-01

    Coupled oscillator networks show complex interrelations between topological characteristics of the network and the nonlinear stability of single nodes with respect to large but realistic perturbations. We extend previous results on these relations by incorporating sampling-based measures of the transient behaviour of the system, its survivability, as well as its asymptotic behaviour, its basin stability. By combining basin stability and survivability we uncover novel, previously unknown asymptotic states with solitary, desynchronized oscillators which are rotating with a frequency different from their natural one. They occur almost exclusively after perturbations at nodes with specific topological properties. More generally we confirm and significantly refine the results on the distinguished role tree-shaped appendices play for nonlinear stability. We find a topological classification scheme for nodes located in such appendices, that exactly separates them according to their stability properties, thus establishing a strong link between topology and dynamics. Hence, the results can be used for the identification of vulnerable nodes in power grids or other coupled oscillator networks. From this classification we can derive general design principles for resilient power grids. We find that striving for homogeneous network topologies facilitates a better performance in terms of nonlinear dynamical network stability. While the employed second-order Kuramoto-like model is parametrised to be representative for power grids, we expect these insights to transfer to other critical infrastructure systems or complex network dynamics appearing in various other fields. (paper)

  9. Design and implementation of a topology control scheme for wireless mesh networks

    CSIR Research Space (South Africa)

    Mudali, P

    2009-09-01

    Full Text Available The Wireless Mesh Network (WMN) backbone is usually comprised of stationary nodes but the transient nature of wireless links results in changing network topologies. Topology Control (TC) aims to preserve network connectivity in ad hoc and mesh...

  10. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    OpenAIRE

    Marais, Jaco; Malekian, Reza; Ye, Ning; Wang, Ruchuan

    2016-01-01

    This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh) to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This thr...

  11. Topological probability and connection strength induced activity in complex neural networks

    International Nuclear Information System (INIS)

    Du-Qu, Wei; Bo, Zhang; Dong-Yuan, Qiu; Xiao-Shu, Luo

    2010-01-01

    Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied. (general)

  12. Small Worlds in the Tree Topologies of Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Qiao, Li; Lingguo, Cui; Baihai, Zhang

    2010-01-01

    In this study, the characteristics of small worlds are investigated in the context of the tree topologies of wireless sensor networks. Tree topologies, which construct spatial graphs with larger characteristic path lengths than random graphs and small clustering coefficients, are ubiquitous...... in wireless sensor networks. Suffering from the link rewiring or the link addition, the characteristic path length of the tree topology reduces rapidly and the clustering coefficient increases greatly. The variety of characteristic path length influences the time synchronization characteristics of wireless...... sensor networks greatly. With the increase of the link rewiring or the link addition probability, the time synchronization error decreases drastically. Two novel protocols named LEACH-SW and TREEPSI-SW are proposed to improve the performances of the sensor networks, in which the small world...

  13. Topology identification of the complex networks with non-delayed and delayed coupling

    International Nuclear Information System (INIS)

    Guo Wanli; Chen Shihua; Sun Wen

    2009-01-01

    In practical situation, there exists many uncertain information in complex networks, such as the topological structures. So the topology identification is an important issue in the research of the complex networks. Based on LaSalle's invariance principle, in this Letter, an adaptive controlling method is proposed to identify the topology of a weighted general complex network model with non-delayed and delayed coupling. Finally, simulation results show that the method is effective.

  14. Topological Effects and Performance Optimization in Transportation Continuous Network Design

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    2014-01-01

    Full Text Available Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.

  15. Impact of network topology on synchrony of oscillatory power grids

    Energy Technology Data Exchange (ETDEWEB)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Faculty of Physics, Georg August Universität Göttingen, Göttingen (Germany)

    2014-03-15

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  16. A Technique for Presenting a Deceptive Dynamic Network Topology

    Science.gov (United States)

    2013-03-01

    more complicated network topologies in our experiments. We used a Watts- Strogatz [35] model to generate a synthetic topology for experimentation due...generated Watts- Strogatz model except for the intelligent router and the web server. The actual router used does not impact the results of our experiment...library for the Python [43] programming language. NetworkX provides two features useful for this experiment. It was used to generate a Watts- Strogatz model

  17. Topology design and performance analysis of an integrated communication network

    Science.gov (United States)

    Li, V. O. K.; Lam, Y. F.; Hou, T. C.; Yuen, J. H.

    1985-01-01

    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix.

  18. Adaptive approach to global synchronization of directed networks with fast switching topologies

    International Nuclear Information System (INIS)

    Qin Buzhi; Lu Xinbiao

    2010-01-01

    Global synchronization of directed networks with switching topologies is investigated. It is found that if there exists at least one directed spanning tree in the network with the fixed time-average topology and the time-average topology is achieved sufficiently fast, the network will reach global synchronization for appreciate coupling strength. Furthermore, this appreciate coupling strength may be obtained by local adaptive approach. A sufficient condition about the global synchronization is given. Numerical simulations verify the effectiveness of the adaptive strategy.

  19. Optimal Coordination of Distance and Directional Overcurrent Relays Considering Different Network Topologies

    Directory of Open Access Journals (Sweden)

    Y. Damchi

    2015-09-01

    Full Text Available Most studies in relay coordination have focused solely on coordination of overcurrent relays while distance relays are used as the main protection of transmission lines. Since, simultaneous coordination of these two types of relays can provide a better protection, in this paper, a new approach is proposed for simultaneous coordination of distance and directional overcurrent relays (D&DOCRs. Also, pursued by most of the previously published studies, the settings of D&DOCRs are usually determined based on a main network topology which may result in mis-coordination of relays when changes occur in the network topology. In the proposed method, in order to have a robust coordination, network topology changes are taken into account in the coordination problem. In the new formulation, coordination constraints for different network topologies are added to those of the main topology. A complex nonlinear optimization problem is derived to find the desirable relay settings. Then, the problem is solved using hybridized genetic algorithm (GA with linear programming (LP method (HGA. The proposed method is evaluated using the IEEE 14-bus test system. According to the results, a feasible and robust solution is obtained for D&DOCRs coordination while all constraints, which are due to different network topologies, are satisfied.

  20. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  1. Dynamical networks with topological self-organization

    Science.gov (United States)

    Zak, M.

    2001-01-01

    Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.

  2. Regime-dependent topological properties of biofuels networks

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, K.; Zilberman, D.

    2013-01-01

    Roč. 86, č. 2 (2013), 40-1-40-12 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : topology * biofuels * correlations Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-regime-dependent topological properties of biofuels networks.pdf

  3. Probability of Interference-Optimal and Energy-Efficient Analysis for Topology Control in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-11-01

    Full Text Available Because wireless sensor networks (WSNs have been widely used in recent years, how to reduce their energy consumption and interference has become a major issue. Topology control is a common and effective approach to improve network performance, such as reducing the energy consumption and network interference, improving the network connectivity, etc. Many topology control algorithms reduce network interference by dynamically adjusting the node transmission range. However, reducing the network interference by adjusting the transmission range is probabilistic. Therefore, in this paper, we analyze the probability of interference-optimality for the WSNs and prove that the probability of interference-optimality increases with the increasing of the original transmission range. Under a specific transmission range, the probability reaches the maximum value when the transmission range is 0.85r in homogeneous networks and 0.84r in heterogeneous networks. In addition, we also prove that when the network is energy-efficient, the network is also interference-optimal with probability 1 both in the homogeneous and heterogeneous networks.

  4. The Topological Analysis of Urban Transit System as a Small-World Network

    OpenAIRE

    Zhaosheng Yang; Huxing Zhou; Peng Gao; Hong Chen; Nan Zhang

    2011-01-01

    This paper proposes a topological analysis of urban transit system based on a functional representation network constructed from the urban transit system in Beijing. The representation gives a functional view on nodes named a transit line. Statistical measures are computed and introduced in complex network analysis. It shows that the urban transit system forms small-world networks and exhibits properties different from random networks and regular networks. Furthermore, the topological propert...

  5. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Jaco Marais

    2016-01-01

    Full Text Available This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This threshold is at a relatively low number of nodes (50 and the use of network topologies such as tree or mesh helps alleviate this problem and results in lower network delays. Further simulations found that the successful transmission of application layer packets in a 70-end node tree network can be improved by 212% when end nodes only transmit data to their nearest router node. The relationship between packet success rate and different packet sizes was also investigated and reducing the packet size with a factor of 16 resulted in either 156% or 300% increases in the amount of successfully received packets depending on the network setup.

  6. Coherence Resonance and Noise-Induced Synchronization in Hindmarsh-Rose Neural Network with Different Topologies

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu

    2007-01-01

    In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh-Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network.

  7. LARGE-SCALE TOPOLOGICAL PROPERTIES OF MOLECULAR NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    Bio-molecular networks lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as gene duplications and single gene mutations. As a result individual connections in these networks are characterized by a large degree of randomness. One may wonder which connectivity patterns are indeed random, while which arose due to the network growth, evolution, and/or its fundamental design principles and limitations? Here we introduce a general method allowing one to construct a random null-model version of a given network while preserving the desired set of its low-level topological features, such as, e.g., the number of neighbors of individual nodes, the average level of modularity, preferential connections between particular groups of nodes, etc. Such a null-model network can then be used to detect and quantify the non-random topological patterns present in large networks. In particular, we measured correlations between degrees of interacting nodes in protein interaction and regulatory networks in yeast. It was found that in both these networks, links between highly connected proteins are systematically suppressed. This effect decreases the likelihood of cross-talk between different functional modules of the cell, and increases the overall robustness of a network by localizing effects of deleterious perturbations. It also teaches us about the overall computational architecture of such networks and points at the origin of large differences in the number of neighbors of individual nodes.

  8. Optimization of communication network topology for navigation sharing among distributed satellites

    Science.gov (United States)

    Dang, Zhaohui; Zhang, Yulin

    2013-01-01

    Navigation sharing among distributed satellites is quite important for coordinated motion and collision avoidance. This paper proposes optimization methods of the communication network topology to achieve navigation sharing. The whole communication network constructing by inter-satellite links are considered as a topology graph. The aim of this paper is to find the communication network topology with minimum communication connections' number (MCCN) in different conditions. It has found that the communication capacity and the number of channels are two key parameters affecting the results. The model of MCCN topology for navigation sharing is established and corresponding method is designed. Two main scenarios, viz., homogeneous case and heterogeneous case, are considered. For the homogeneous case where each member has the same communication capacity, it designs a construction method (Algorithm 1) to find the MCCN topology. For the heterogeneous case, it introduces a modified genetic algorithm (Algorithm 2) to find the MCCN topology. When considering the fact that the number of channels is limited, the Algorithm 2 is further modified by adding a penalized term in the fitness function. The effectiveness of these algorithms is all proved in theoretical. Three examples are further tested to illustrate the methods developed in this paper.

  9. UPGRADE FOR HARDWARE/SOFTWARE SERVER AND NETWORK TOPOLOGY IN INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Oleksii O. Kaplun

    2011-02-01

    Full Text Available The network modernization, educational information systems software and hardware updates problem is actual in modern term of information technologies prompt development. There are server applications and network topology of Institute of Information Technology and Learning Tools of National Academy of Pedagogical Sciences of Ukraine analysis and their improvement methods expound in the article. The article materials represent modernization results implemented to increase network efficiency and reliability, decrease response time in Institute’s network information systems. The article gives diagrams of network topology before upgrading and after finish of optimization and upgrading processes.

  10. Stabilization Strategies of Supply Networks with Stochastic Switched Topology

    Directory of Open Access Journals (Sweden)

    Shukai Li

    2013-01-01

    Full Text Available In this paper, a dynamical supply networks model with stochastic switched topology is presented, in which the stochastic switched topology is dependent on a continuous time Markov process. The goal is to design the state-feedback control strategies to stabilize the dynamical supply networks. Based on Lyapunov stability theory, sufficient conditions for the existence of state feedback control strategies are given in terms of matrix inequalities, which ensure the robust stability of the supply networks at the stationary states and a prescribed H∞ disturbance attenuation level with respect to the uncertain demand. A numerical example is given to illustrate the effectiveness of the proposed method.

  11. Effects of behavioral patterns and network topology structures on Parrondo’s paradox

    Science.gov (United States)

    Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang

    2016-11-01

    A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.

  12. Local, distributed topology control for large-scale wireless ad-hoc networks

    NARCIS (Netherlands)

    Nieberg, T.; Hurink, Johann L.

    In this document, topology control of a large-scale, wireless network by a distributed algorithm that uses only locally available information is presented. Topology control algorithms adjust the transmission power of wireless nodes to create a desired topology. The algorithm, named local power

  13. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    Directory of Open Access Journals (Sweden)

    Mingrui eXia

    2016-04-01

    Full Text Available White matter (WM tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption and topological contributions to the brain’s network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain’s hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  14. Energy efficient topology control algorithm for wireless mesh networks

    CSIR Research Space (South Africa)

    Aron, FO

    2008-08-01

    Full Text Available The control of the topology of a network makes it possible for the network nodes to reduce their power of transmission while ensuring that network connectivity is preserved. This paper explains the need for energy consumption control in Wireless...

  15. Topological networks for quantum communication between distant qubits

    Science.gov (United States)

    Lang, Nicolai; Büchler, Hans Peter

    2017-11-01

    Efficient communication between qubits relies on robust networks, which allow for fast and coherent transfer of quantum information. It seems natural to harvest the remarkable properties of systems characterized by topological invariants to perform this task. Here, we show that a linear network of coupled bosonic degrees of freedom, characterized by topological bands, can be employed for the efficient exchange of quantum information over large distances. Important features of our setup are that it is robust against quenched disorder, all relevant operations can be performed by global variations of parameters, and the time required for communication between distant qubits approaches linear scaling with their distance. We demonstrate that our concept can be extended to an ensemble of qubits embedded in a two-dimensional network to allow for communication between all of them.

  16. Data center networks topologies, architectures and fault-tolerance characteristics

    CERN Document Server

    Liu, Yang; Veeraraghavan, Malathi; Lin, Dong; Hamdi, Mounir

    2013-01-01

    This SpringerBrief presents a survey of data center network designs and topologies and compares several properties in order to highlight their advantages and disadvantages. The brief also explores several routing protocols designed for these topologies and compares the basic algorithms to establish connections, the techniques used to gain better performance, and the mechanisms for fault-tolerance. Readers will be equipped to understand how current research on data center networks enables the design of future architectures that can improve performance and dependability of data centers. This con

  17. Robust spatial memory maps in flickering neuronal networks: a topological model

    Science.gov (United States)

    Dabaghian, Yuri; Babichev, Andrey; Memoli, Facundo; Chowdhury, Samir; Rice University Collaboration; Ohio State University Collaboration

    It is widely accepted that the hippocampal place cells provide a substrate of the neuronal representation of the environment--the ``cognitive map''. However, hippocampal network, as any other network in the brain is transient: thousands of hippocampal neurons die every day and the connections formed by these cells constantly change due to various forms of synaptic plasticity. What then explains the remarkable reliability of our spatial memories? We propose a computational approach to answering this question based on a couple of insights. First, we propose that the hippocampal cognitive map is fundamentally topological, and hence it is amenable to analysis by topological methods. We then apply several novel methods from homology theory, to understand how dynamic connections between cells influences the speed and reliability of spatial learning. We simulate the rat's exploratory movements through different environments and study how topological invariants of these environments arise in a network of simulated neurons with ``flickering'' connectivity. We find that despite transient connectivity the network of place cells produces a stable representation of the topology of the environment.

  18. Enabling Controlling Complex Networks with Local Topological Information.

    Science.gov (United States)

    Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene

    2018-03-15

    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.

  19. Expected Number of Fixed Points in Boolean Networks with Arbitrary Topology.

    Science.gov (United States)

    Mori, Fumito; Mochizuki, Atsushi

    2017-07-14

    Boolean network models describe genetic, neural, and social dynamics in complex networks, where the dynamics depend generally on network topology. Fixed points in a genetic regulatory network are typically considered to correspond to cell types in an organism. We prove that the expected number of fixed points in a Boolean network, with Boolean functions drawn from probability distributions that are not required to be uniform or identical, is one, and is independent of network topology if only a feedback arc set satisfies a stochastic neutrality condition. We also demonstrate that the expected number is increased by the predominance of positive feedback in a cycle.

  20. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    OpenAIRE

    Giovanni Francesco Santonastaso; Armando Di Nardo; Michele Di Natale; Carlo Giudicianni; Roberto Greco

    2018-01-01

    Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, ma...

  1. Effects of topologies on signal propagation in feedforward networks

    Science.gov (United States)

    Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu

    2018-01-01

    We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.

  2. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Jesurum, C.E.; Pulim, V.

    1997-01-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  3. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.W. [Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA (United States); Jesurum, C.E. [Massachusetts Institute of Technology, Dept. of Mathematics, Cambridge, MA (United States); Pulim, V. [Massachusetts Institute of Technology, Lab. for Computer Science, Cambridge, MA (United States)

    1997-07-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  4. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ben-Yi Wang

    2018-05-01

    Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

  5. Network neighborhood analysis with the multi-node topological overlap measure.

    Science.gov (United States)

    Li, Ai; Horvath, Steve

    2007-01-15

    The goal of neighborhood analysis is to find a set of genes (the neighborhood) that is similar to an initial 'seed' set of genes. Neighborhood analysis methods for network data are important in systems biology. If individual network connections are susceptible to noise, it can be advantageous to define neighborhoods on the basis of a robust interconnectedness measure, e.g. the topological overlap measure. Since the use of multiple nodes in the seed set may lead to more informative neighborhoods, it can be advantageous to define multi-node similarity measures. The pairwise topological overlap measure is generalized to multiple network nodes and subsequently used in a recursive neighborhood construction method. A local permutation scheme is used to determine the neighborhood size. Using four network applications and a simulated example, we provide empirical evidence that the resulting neighborhoods are biologically meaningful, e.g. we use neighborhood analysis to identify brain cancer related genes. An executable Windows program and tutorial for multi-node topological overlap measure (MTOM) based analysis can be downloaded from the webpage (http://www.genetics.ucla.edu/labs/horvath/MTOM/).

  6. Cooperative learning neural network output feedback control of uncertain nonlinear multi-agent systems under directed topologies

    Science.gov (United States)

    Wang, W.; Wang, D.; Peng, Z. H.

    2017-09-01

    Without assuming that the communication topologies among the neural network (NN) weights are to be undirected and the states of each agent are measurable, the cooperative learning NN output feedback control is addressed for uncertain nonlinear multi-agent systems with identical structures in strict-feedback form. By establishing directed communication topologies among NN weights to share their learned knowledge, NNs with cooperative learning laws are employed to identify the uncertainties. By designing NN-based κ-filter observers to estimate the unmeasurable states, a new cooperative learning output feedback control scheme is proposed to guarantee that the system outputs can track nonidentical reference signals with bounded tracking errors. A simulation example is given to demonstrate the effectiveness of the theoretical results.

  7. Implementing a Topology Management Algorithm for Mobile Ad-Hoc Networks

    Directory of Open Access Journals (Sweden)

    Mrinal K. Naskar

    2008-01-01

    Full Text Available In this paper, we propose to maintain the topology of a MANET by suitably selecting multiple coordinators among the nodes constituting the MANET. The maintenance of topology in a mobile ad–hoc network is of primary importance because the routing techniques can only work if we have a connected network. Thus of the burning issues at present is to device algorithms which ensure that the network topology is always maintained. The basic philosophy behind our algorithm is to isolate two coordinators amongst the system based on positional data. Once elected, they are entrusted with the responsibility to emit signals of different frequencies while the other nodes individually decide the logic they need to follow in order to maintain the topology, thereby greatly reducing the overhead. As far as our knowledge goes, we are the first ones to introduce the concept of multiple coordinators which not only reduces the workload of the coordinator, but also eliminates the need of different signal ranges thereby ensuring greater efficiency. We have simulated the algorithm with the help of a number of robots using embedded systems. The results we have obtained have been quite encouraging.

  8. Custom Topology Generation for Network-on-Chip

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Sparsø, Jens

    2007-01-01

    This paper compares simulated annealing and tabu search for generating custom topologies for applications with periodic behaviour executing on a network-on-chip. The approach differs from previous work by starting from a fixed mapping of IP-cores to routers and performing design space exploration...... around an initial topology. The tabu search has been modified from its normally encountered form to allow easier escaping from local minima. A number of synthetic benchmarks are used for tuning the parameters of both heuristics and for testing the quality of the solutions each heuristic produces...

  9. Topology Design for Directional Range Extension Networks with Antenna Blockage

    Science.gov (United States)

    2017-03-19

    this is equivalent to the Hamiltonian Path Problem, which is NP- hard . More work on computationally efficient topology formation and maintenance... formation and maintenance of low-degree air topologies. 1 I. INTRODUCTION Tactical military networks both on land and at sea often have restricted...constraints on the number of antenna beams that a pod can support, a string topology formation and maintenance algorithm may be the best design choice

  10. Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology.

    Science.gov (United States)

    Wang, Yujuan; Song, Yongduan; Ren, Wei

    2017-07-06

    This paper presents a distributed adaptive finite-time control solution to the formation-containment problem for multiple networked systems with uncertain nonlinear dynamics and directed communication constraints. By integrating the special topology feature of the new constructed symmetrical matrix, the technical difficulty in finite-time formation-containment control arising from the asymmetrical Laplacian matrix under single-way directed communication is circumvented. Based upon fractional power feedback of the local error, an adaptive distributed control scheme is established to drive the leaders into the prespecified formation configuration in finite time. Meanwhile, a distributed adaptive control scheme, independent of the unavailable inputs of the leaders, is designed to keep the followers within a bounded distance from the moving leaders and then to make the followers enter the convex hull shaped by the formation of the leaders in finite time. The effectiveness of the proposed control scheme is confirmed by the simulation.

  11. Fault-tolerant topology in the wireless sensor networks for energy depletion and random failure

    International Nuclear Information System (INIS)

    Liu Bin; Dong Ming-Ru; Yin Rong-Rong; Yin Wen-Xiao

    2014-01-01

    Nodes in the wireless sensor networks (WSNs) are prone to failure due to energy depletion and poor environment, which could have a negative impact on the normal operation of the network. In order to solve this problem, in this paper, we build a fault-tolerant topology which can effectively tolerate energy depletion and random failure. Firstly, a comprehensive failure model about energy depletion and random failure is established. Then an improved evolution model is presented to generate a fault-tolerant topology, and the degree distribution of the topology can be adjusted. Finally, the relation between the degree distribution and the topological fault tolerance is analyzed, and the optimal value of evolution model parameter is obtained. Then the target fault-tolerant topology which can effectively tolerate energy depletion and random failure is obtained. The performances of the new fault tolerant topology are verified by simulation experiments. The results show that the new fault tolerant topology effectively prolongs the network lifetime and has strong fault tolerance. (general)

  12. Big data analytics for the virtual network topology reconfiguration use case

    OpenAIRE

    Gifre Renom, Lluís; Morales Alcaide, Fernando; Velasco Esteban, Luis Domingo; Ruiz Ramírez, Marc

    2016-01-01

    ABNO's OAM Handler is extended with big data analytics capabilities to anticipate traffic changes in volume and direction. Predicted traffic is used to trigger virtual network topology re-optimization. When the virtual topology needs to be reconfigured, predicted and current traffic matrices are used to find the optimal topology. A heuristic algorithm to adapt current virtual topology to meet both actual demands and expected traffic matrix is proposed. Experimental assessment is carried ou...

  13. Topology control of tactical wireless sensor networks using energy efficient zone routing

    Directory of Open Access Journals (Sweden)

    Preetha Thulasiraman

    2016-02-01

    Full Text Available The US Department of Defense (DoD routinely uses wireless sensor networks (WSNs for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE, Low Energy Adaptive Cluster Head routing (LEACH, and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.

  14. Identifying partial topology of complex dynamical networks via a pinning mechanism

    Science.gov (United States)

    Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an

    2018-04-01

    In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.

  15. Capacity Extension of Software Defined Data Center Networks With Jellyfish Topology

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    We present a performance analysis of Jellyfish topology with Software-Defined commodity switches for Data Center networks. Our results show up to a 2-fold performance gain when compared to a Spanning Tree Protocol implementation.......We present a performance analysis of Jellyfish topology with Software-Defined commodity switches for Data Center networks. Our results show up to a 2-fold performance gain when compared to a Spanning Tree Protocol implementation....

  16. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  17. Topology-induced critical current enhancement in Josephson networks

    International Nuclear Information System (INIS)

    Silvestrini, P.; Russo, R.; Corato, V.; Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M.; Cirillo, M.; Trombettoni, A.; Sodano, P.

    2007-01-01

    We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays

  18. Topology-induced critical current enhancement in Josephson networks

    Energy Technology Data Exchange (ETDEWEB)

    Silvestrini, P. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy)], E-mail: p.silvestrini@cib.na.cnr.it; Russo, R. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Corato, V. [Dipartimento d' Ingegneria dell' Informazione, Seconda Universita di Napoli, Aversa (Italy); Ruggiero, B.; Granata, C.; Rombetto, S.; Russo, M. [Istituto di Cibernetica ' E. Caianiello' del CNR, Pozzuoli (Italy); Cirillo, M. [Dipartimento di Fisica and INFM, Universita di Roma ' Tor Vergata' , 00173 Roma (Italy); Trombettoni, A. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Sodano, P. [International School for Advanced Studies and Sezione INFN, Via Beirut 2/4, 34104 Trieste (Italy); Dipartimento di Fisica, Universita di Perugia, 06123 Perugia, and Sezione INFN, Perugia (Italy); Progetto Lagrange, Fondazione C.R.T. e Fondazione I.S.I., Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10124 Torino (Italy)

    2007-10-29

    We investigate the properties of Josephson junction networks with inhomogeneous architecture. The networks are shaped as 'square comb' planar lattices on which Josephson junctions link superconducting islands arranged in the plane to generate the pertinent topology. Compared to the behavior of reference linear arrays, the temperature dependencies of the Josephson currents of the branches of the network exhibit relevant differences. The observed phenomena evidence new and surprising behavior of superconducting Josephson arrays.

  19. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  20. Topology control with IPD network creation games

    International Nuclear Information System (INIS)

    Scholz, Jan C; Greiner, Martin O W

    2007-01-01

    Network creation games couple a two-players game with the evolution of network structure. A vertex player may increase its own payoff with a change of strategy or with a modification of its edge-defined neighbourhood. By referring to the iterated prisoners dilemma (IPD) game we show that this evolutionary dynamics converges to network-Nash equilibria, where no vertex is able to improve its payoff. The resulting network structure exhibits a strong dependence on the parameter of the payoff matrix. Degree distributions and cluster coefficients are also strongly affected by the specific interactions chosen for the neighbourhood exploration. This allows network creation games to be seen as a promising artificial-social-systems approach for a distributive topology control of complex networked systems

  1. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Giovanni Francesco Santonastaso

    2018-01-01

    Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.

  2. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  3. Modeling and dynamical topology properties of VANET based on complex networks theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com [School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2015-01-15

    Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a

  4. Comparing the Reliability of Regular Topologies on a Backbone Network. A Case Study

    DEFF Research Database (Denmark)

    Cecilio, Sergio Labeage; Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir

    2009-01-01

    The aim of this paper is to compare the reliability of regular topologies on a backbone network. The study is focused on a large-scale fiberoptic network. Different regular topological solutions as single ring, double ring or 4-Regular grid are applied to the case study, and compared in terms...

  5. Invertebrate diversity classification using self-organizing map neural network: with some special topological functions

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2014-06-01

    Full Text Available In present study we used self-organizing map (SOM neural network to conduct the non-supervisory clustering of invertebrate orders in rice field. Four topological functions, i.e., cossintopf, sincostopf, acossintopf, and expsintopf, established on the template in toolbox of Matlab, were used in SOM neural network learning. Results showed that clusters were different when using different topological functions because different topological functions will generate different spatial structure of neurons in neural network. We may chose these functions and results based on comparison with the practical situation.

  6. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    Science.gov (United States)

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  7. Topological isomorphisms of human brain and financial market networks

    Directory of Open Access Journals (Sweden)

    Petra E Vértes

    2011-09-01

    Full Text Available Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the timeseries of 90 stocks from the New York Stock Exchange over a three-year period, and the fMRI-derived timeseries acquired from 90 brain regions over the course of a 10 min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimised for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph theoretically-mediated interface between systems neuroscience and the statistical physics of financial markets.

  8. Topological isomorphisms of human brain and financial market networks.

    Science.gov (United States)

    Vértes, Petra E; Nicol, Ruth M; Chapman, Sandra C; Watkins, Nicholas W; Robertson, Duncan A; Bullmore, Edward T

    2011-01-01

    Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets - the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular - more highly optimized for information processing - than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets.

  9. A note on the consensus finding problem in communication networks with switching topologies

    KAUST Repository

    Haskovec, Jan

    2014-05-07

    In this note, we discuss the problem of consensus finding in communication networks of agents with dynamically switching topologies. In particular, we consider the case of directed networks with unbalanced matrices of communication rates. We formulate sufficient conditions for consensus finding in terms of strong connectivity of the underlying directed graphs and prove that, given these conditions, consensus is found asymptotically. Moreover, we show that this consensus is an emergent property of the system, being encoded in its dynamics and not just an invariant of its initial configuration. © 2014 © 2014 Taylor & Francis.

  10. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  11. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  12. Analysis of topological relationships and network properties in the interactions of human beings.

    Directory of Open Access Journals (Sweden)

    Ye Yuan

    Full Text Available In the animal world, various kinds of collective motions have been found and proven to be efficient ways of carrying out some activities such as searching for food and avoiding predators. Many scholars research the interactions of collective behaviors of human beings according to the rules of collective behaviors of animals. Based on the Lennard-Jones potential function and a self-organization process, our paper proposes a topological communication model to simulate the collective behaviors of human beings. In the results of simulations, we find various types of collective behavior and fission behavior and discover the threshold for the emergence of collective behavior, which is the range five to seven for the number of topology K. According to the analysis of network properties of the model, the in-degree of individuals is always equal to the number of topology. In the stable state, the out-degrees of individuals distribute around the value of the number of topology K, except that the out-degree of a single individual is approximately double the out-degrees of the other individuals. In addition, under different initial conditions, some features of different kinds of networks emerge from the model. We also find the leader and herd mentality effects in the characteristics of the behaviors of human beings in our model. Thus, this work could be used to discover how to promote the emergence of beneficial group behaviors and prevent the emergence of harmful behaviors.

  13. Topological Origin of the Network Dilation Anomaly in Ion-Exchanged Glasses

    Science.gov (United States)

    Wang, Mengyi; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Bauchy, Mathieu

    2017-11-01

    Ion exchange is commonly used to strengthen oxide glasses. However, the resulting stuffed glasses usually do not reach the molar volume of as-melted glasses of similar composition—a phenomenon known as the network dilation anomaly. This behavior seriously limits the potential for the chemical strengthening of glasses and its origin remains one of the mysteries of glass science. Here, based on molecular dynamics simulations of sodium silicate glasses coupled with topological constraint theory, we show that the topology of the atomic network controls the extent of ion-exchange-induced dilation. We demonstrate that isostatic glasses do not show any network dilation anomaly. This is found to arise from the combined absence of floppy modes of deformation and internal eigenstress in isostatic atomic networks.

  14. Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaojuan Luo

    2012-01-01

    Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.

  15. Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2016-01-01

    As infrastructure systems evolve, their design, maintenance, and optimal performance require mature tools from system reliability theory, as well as principles to handle emerging system features, such as controllability. This paper conducts a comparative study of the connectivity reliability (CR) and topological controllability (TC) of infrastructure systems in terms of three aspects: topology, robustness, and node importance. Taking eight city-level power transmission networks and thousands of artificial networks as examples, this paper reveals that a dense and homogeneous network topology is better to satisfy CR and TC requirements, than more common sparse and heterogeneous networks when node attributes are generic. It is observed that the average degree's impact on CR is more significant than on TC, while degree heterogeneity is more significant on TC. When node attributes are accounted for, for generators the reliability-based node importance measure may underestimate some important nodes in terms of TC, and vice versa—an issue not observed for substation nodes. The findings in this paper suggest a potential new direction to enhance reliability-based design by integrating it with emerging controllability-based measures relevant in the future as infrastructure networks increase reliance on information systems. - Highlights: • Compares connectivity reliability (CR) and topological controllability (TC) metrics. • Develops a controllability index and a controllability-based node importance metric. • CR is more sensitive to degree while TC is more sensitive to degree heterogeneity. • CR-based importance measures match TC-based measures for substation nodes. • CR- and TC-based measures are complementary to identify important generator nodes.

  16. Guaranteed cost control of mobile sensor networks with Markov switching topologies.

    Science.gov (United States)

    Zhao, Yuan; Guo, Ge; Ding, Lei

    2015-09-01

    This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. M-Polynomials and Topological Indices of Dominating David Derived Networks

    Directory of Open Access Journals (Sweden)

    Kang Shin Min

    2018-03-01

    Full Text Available There is a strong relationship between the chemical characteristics of chemical compounds and their molecular structures. Topological indices are numerical values associated with the chemical molecular graphs that help to understand the physical features, chemical reactivity, and biological activity of chemical compound. Thus, the study of the topological indices is important. M-polynomial helps to recover many degree-based topological indices for example Zagreb indices, Randic index, symmetric division idex, inverse sum index etc. In this article we compute M-polynomials of dominating David derived networks of the first type, second type and third type of dimension n and find some topological properties by using these M-polynomials. The results are plotted using Maple to see the dependence of topological indices on the involved parameters.

  18. Disrupted topological organization of structural networks revealed by probabilistic diffusion tractography in Tourette syndrome children.

    Science.gov (United States)

    Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang

    2017-08-01

    Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017

  19. Topology Recognition and Leader Election in Colored Networks

    OpenAIRE

    Dereniowski, Dariusz; Pelc, Andrzej

    2016-01-01

    Topology recognition and leader election are fundamental tasks in distributed computing in networks. The first of them requires each node to find a labeled isomorphic copy of the network, while the result of the second one consists in a single node adopting the label 1 (leader), with all other nodes adopting the label 0 and learning a path to the leader. We consider both these problems in networks whose nodes are equipped with not necessarily distinct labels called colors, and ports at each n...

  20. Systemic risk on different interbank network topologies

    Science.gov (United States)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  1. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    Science.gov (United States)

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.

  2. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    Science.gov (United States)

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo

  3. A Network Topology Control and Identity Authentication Protocol with Support for Movable Sensor Nodes.

    Science.gov (United States)

    Zhang, Ying; Chen, Wei; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming

    2015-12-01

    It is expected that in the near future wireless sensor network (WSNs) will be more widely used in the mobile environment, in applications such as Autonomous Underwater Vehicles (AUVs) for marine monitoring and mobile robots for environmental investigation. The sensor nodes' mobility can easily cause changes to the structure of a network topology, and lead to the decline in the amount of transmitted data, excessive energy consumption, and lack of security. To solve these problems, a kind of efficient Topology Control algorithm for node Mobility (TCM) is proposed. In the topology construction stage, an efficient clustering algorithm is adopted, which supports sensor node movement. It can ensure the balance of clustering, and reduce the energy consumption. In the topology maintenance stage, the digital signature authentication based on Error Correction Code (ECC) and the communication mechanism of soft handover are adopted. After verifying the legal identity of the mobile nodes, secure communications can be established, and this can increase the amount of data transmitted. Compared to some existing schemes, the proposed scheme has significant advantages regarding network topology stability, amounts of data transferred, lifetime and safety performance of the network.

  4. Minimum Interference Planar Geometric Topology in Wireless Sensor Networks

    Science.gov (United States)

    Nguyen, Trac N.; Huynh, Dung T.

    The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an O(sqrt {Δ}) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.

  5. Employing Deceptive Dynamic Network Topology Through Software-Defined Networking

    Science.gov (United States)

    2014-03-01

    actions. From [64] . . . . . 37 xi THIS PAGE INTENTIONALLY LEFT BLANK xii List of Acronyms and Abbreviations ACL Access Control List API Application...can be extremely useful in topology mapping through various latency-based geolocation methods [35], [36], [37]. PING 1 7 2 . 2 0 . 5 . 2 ( 1 7 2 . 2 0...defined northbound Applica- tion Programming Interfaces ( APIs ). Figure 3.1: Software-Defined Network Architecture. From [8] 29 3.3 SDN OpenFlow

  6. Sampling Algorithms of Pure Network Topologies: Stability and Separability of Metric Embeddings

    National Research Council Canada - National Science Library

    Airoldi, Edoardo M

    2005-01-01

    ... has become a central theme for KDD. The intuition behind the plethora of approaches relies upon a few basic types of networks, which are identified by specific local and global topological properties, and which the authors term "pure" topology types...

  7. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    KAUST Repository

    Cannistraci, Carlo

    2013-06-21

    Motivation: Most functions within the cell emerge thanks to protein-protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (topological prediction) is difficult but essential when prior biological knowledge is absent or unreliable.Methods: Network embedding emphasizes the relations between network proteins embedded in a low-dimensional space, in which protein pairs that are closer to each other represent good candidate interactions. To achieve network denoising, which boosts prediction performance, we first applied minimum curvilinear embedding (MCE), and then adopted shortest path (SP) in the reduced space to assign likelihood scores to candidate interactions. Furthermore, we introduce (i) a new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two automatic strategies for selecting the appropriate embedding dimension; and (iii) two new randomized procedures for evaluating predictions.Results: We compared our method against several unsupervised and supervisedly tuned embedding approaches and node neighbourhood techniques. Despite its computational simplicity, ncMCE-SP was the overall leader, outperforming the current methods in topological link prediction.Conclusion: Minimum curvilinearity is a valuable non-linear framework that we successfully applied to the embedding of protein networks for the unsupervised prediction of novel PPIs. The rationale for our approach is that biological and evolutionary information is imprinted in the non-linear patterns hidden behind the protein network topology, and can be exploited for predicting new protein links. The predicted PPIs represent good candidates for testing in high-throughput experiments or for exploitation in systems biology tools such as those used for network-based inference and prediction of disease-related functional modules. The

  8. A Topology Evolution Model Based on Revised PageRank Algorithm and Node Importance for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaogang Qi

    2015-01-01

    Full Text Available Wireless sensor network (WSN is a classical self-organizing communication network, and its topology evolution currently becomes one of the attractive issues in this research field. Accordingly, the problem is divided into two subproblems: one is to design a new preferential attachment method and the other is to analyze the dynamics of the network topology evolution. To solve the first subproblem, a revised PageRank algorithm, called Con-rank, is proposed to evaluate the node importance upon the existing node contraction, and then a novel preferential attachment is designed based on the node importance calculated by the proposed Con-rank algorithm. To solve the second one, we firstly analyze the network topology evolution dynamics in a theoretical way and then simulate the evolution process. Theoretical analysis proves that the network topology evolution of our model agrees with power-law distribution, and simulation results are well consistent with our conclusions obtained from the theoretical analysis and simultaneously show that our topology evolution model is superior to the classic BA model in the average path length and the clustering coefficient, and the network topology is more robust and can tolerate the random attacks.

  9. On the topology of optical transport networks

    International Nuclear Information System (INIS)

    Cardenas, J P; Santiago, A; Losada, J C; Benito, R M; Mouronte, M L

    2010-01-01

    Synchronous Digital Hierarchy (SDH) is the standard technology for information transmission in broadband optical networks. Unlike systems with unplanned growth, such as those of natural origin or the Internet network, the SDH systems are strictly planned as rings, meshes, stars or tree-branches structures designed to connect different equipments. In spite of that, we have found that the SDH network operated by Telefonica in Spain shares remarkable topological properties with other real complex networks as a product of its evolution since 1992. In fact, we have found power-law scaling in the degree distribution (N·P(k) = k -γ ) and small-world networks properties. The complexity found in SDH systems was reproduced by two models of complex networks, one of them considers real planning directives that take into account geographical and technological variables and the other one is based in the compatibility among SDH equipments.

  10. ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies

    National Research Council Canada - National Science Library

    Matteucci, Matteo

    2006-01-01

    In this paper we present ELeaRNT an evolutionary strategy which evolves rich neural network topologies in order to find an optimal domain specific non linear function approximator with a good generalization performance...

  11. Network synchronization: optimal and pessimal scale-free topologies

    International Nuclear Information System (INIS)

    Donetti, Luca; Hurtado, Pablo I; Munoz, Miguel A

    2008-01-01

    By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability

  12. Learning and innovative elements of strategy adoption rules expand cooperative network topologies.

    Science.gov (United States)

    Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter

    2008-04-09

    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.

  13. DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.

    Energy Technology Data Exchange (ETDEWEB)

    MASLOV,S.SNEPPEN,K.

    2003-11-17

    interesting property of many biological networks that was recently brought to attention of the scientific community [3, 4, 5] is an extremely broad distribution of node connectivities defined as the number of immediate neighbors of a given node in the network. While the majority of nodes have just a few edges connecting them to other nodes in the network, there exist some nodes, that we will refer to as ''hubs'', with an unusually large number of neighbors. The connectivity of the most connected hub in such a network is typically several orders of magnitude larger than the average connectivity in the network. Often the distribution of connectivities of individual nodes can be approximated by a scale-free power law form [3] in which case the network is referred to as scale-free. Among biological networks distributions of node connectivities in metabolic [4], protein interaction [5], and brain functional [6] networks can be reasonably approximated by a power law extending for several orders of magnitude. The set of connectivities of individual nodes is an example of a low-level (single-node) topological property of a network. While it answers the question about how many neighbors a given node has, it gives no information about the identity of those neighbors. It is clear that most functional properties of networks are defined at a higher topological level in the exact pattern of connections of nodes to each other. However, such multi-node connectivity patterns are rather difficult to quantify and compare between networks. In this work we concentrate on multi-node topological properties of protein networks. These networks (as any other biological networks) lack the top-down design. Instead, selective forces of biological evolution shape them from raw material provided by random events such as mutations within individual genes, and gene duplications. As a result their connections are characterized by a large degree of randomness. One may wonder which

  14. A model for phosphate glass topology considering the modifying ion sub-network

    DEFF Research Database (Denmark)

    Hermansen, Christian; Mauro, J.C.; Yue, Yuanzheng

    2014-01-01

    In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent with availa......In the present paper we establish a temperature dependent constraint model of alkali phosphate glasses considering the structural and topological role of the modifying ion sub-network constituted by alkali ions and their non-bonding oxygen coordination spheres. The model is consistent...... with available structural data by NMR and molecular dynamics simulation and dynamic data such glass transition temperature (Tg) and liquid fragility (m). Alkali phosphate glasses are exemplary systems for developing constraint model since the modifying cation network plays an important role besides the primary...... phosphate network. The proposed topological model predicts the changing trend of the Tg and m with increasing alkali oxide content for alkali phosphate glasses, including an anomalous minimum at around 20 mol% alkali oxide content. We find that the minimum in Tg and m is caused by increased connectivity...

  15. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  16. Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Science.gov (United States)

    He, Jing

    2012-01-01

    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network.…

  17. Functional Topology of Evolving Urban Drainage Networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs ((A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  18. Topology control

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.; Wagner, D.; Wattenhofer, R.

    2007-01-01

    Information between two nodes in a network is sent based on the network topology, the structure of links connecting pairs of nodes of a network. The task of topology control is to choose a connecting subset from all possible links such that the overall network performance is good. For instance, a

  19. Topological Characterization of Fractured Coal

    Science.gov (United States)

    Jing, Yu; Armstrong, Ryan T.; Ramandi, Hamed L.; Mostaghimi, Peyman

    2017-12-01

    Coal transport properties are highly dependent on the underlying fractured network, known as cleats, which are characterized by geometrical and topological properties. X-ray microcomputed tomography (micro-CT) has been widely applied to obtain 3-D digital representations of the cleat network. However, segmentation of 3-D data is often problematic due to image noise, which will result in inaccurate estimation of coal properties (e.g., porosity and specific surface area). To circumvent this issue, a discrete fracture network (DFN) model is proposed. We develop a characterization framework to determine if the developed DFN models can preserve the topological properties of the coal cleat network found in micro-CT data. We compute the Euler characteristic, fractal dimension, and percolation quantities to analyze the topology locally and globally and compare the results between micro-CT data (before denoising), filtered micro-CT data (after denoising), and the DFN model. We find that micro-CT data with noise have extensive connectivity while filtered micro-CT data and DFN models have similar topology both globally and locally. It is concluded that the topology of the DFN models are closer to that of the realistic cleat network that do not have segmentation-induced pores. In addition, micro-CT imaging always struggles with the trade-off between sample size and resolution, while the presented DFN models are not restricted by imaging resolution and thus can be constructed with extended domain size. Overall, the presented DFN model is a reliable alternative with realistic cleat topology, extended domain size and favorable data format for direct numerical simulations.

  20. Evidence for fish dispersal from spatial analysis of stream network topology

    Science.gov (United States)

    Hitt, N.P.; Angermeier, P.L.

    2008-01-01

    Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.

  1. Network synchronization: optimal and pessimal scale-free topologies

    Energy Technology Data Exchange (ETDEWEB)

    Donetti, Luca [Departamento de Electronica y Tecnologia de Computadores and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hurtado, Pablo I; Munoz, Miguel A [Departamento de Electromagnetismo y Fisica de la Materia and Instituto Carlos I de Fisica Teorica y Computacional Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)], E-mail: mamunoz@onsager.ugr.es

    2008-06-06

    By employing a recently introduced optimization algorithm we construct optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency toward disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting 'pessimal networks' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.

  2. A study of topologies and protocols for fiber optic local area network

    Science.gov (United States)

    Yeh, C.; Gerla, M.; Rodrigues, P.

    1985-01-01

    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways.

  3. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  4. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.

    Science.gov (United States)

    Li, Ning; Cürüklü, Baran; Bastos, Joaquim; Sucasas, Victor; Fernandez, Jose Antonio Sanchez; Rodriguez, Jonathan

    2017-05-04

    The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC) algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV's parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC) algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the transmission power

  5. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks

    Directory of Open Access Journals (Sweden)

    Ning Li

    2017-05-01

    Full Text Available The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs project is to make autonomous underwater vehicles (AUVs, remote operated vehicles (ROVs and unmanned surface vehicles (USVs more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV’s parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the

  6. Distributed topology control algorithm to conserve energy in heterogeneous wireless mesh networks

    CSIR Research Space (South Africa)

    Aron, FO

    2008-07-01

    Full Text Available in performance with the resulting topology being a sub-network of the one generated by [11]. Li and Halpern [13] further propose the small minimum energy communication network (SMECN). In this algorithm, each node u initially broadcasts a “hello” message... algorithm that runs in each node is presented as follows:- Phase1: Establishing the accessible neighbourhood topology. In this stage, node u broadcasts a “hello” message using its full power, max uP . The nodes that receive the “hello” message form...

  7. Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Editor)

    2004-01-01

    The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.

  8. Optimization of Network Topology in Computer-Aided Detection Schemes Using Phased Searching with NEAT in a Time-Scaled Framework.

    Science.gov (United States)

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    In the field of computer-aided mammographic mass detection, many different features and classifiers have been tested. Frequently, the relevant features and optimal topology for the artificial neural network (ANN)-based approaches at the classification stage are unknown, and thus determined by trial-and-error experiments. In this study, we analyzed a classifier that evolves ANNs using genetic algorithms (GAs), which combines feature selection with the learning task. The classifier named "Phased Searching with NEAT in a Time-Scaled Framework" was analyzed using a dataset with 800 malignant and 800 normal tissue regions in a 10-fold cross-validation framework. The classification performance measured by the area under a receiver operating characteristic (ROC) curve was 0.856 ± 0.029. The result was also compared with four other well-established classifiers that include fixed-topology ANNs, support vector machines (SVMs), linear discriminant analysis (LDA), and bagged decision trees. The results show that Phased Searching outperformed the LDA and bagged decision tree classifiers, and was only significantly outperformed by SVM. Furthermore, the Phased Searching method required fewer features and discarded superfluous structure or topology, thus incurring a lower feature computational and training and validation time requirement. Analyses performed on the network complexities evolved by Phased Searching indicate that it can evolve optimal network topologies based on its complexification and simplification parameter selection process. From the results, the study also concluded that the three classifiers - SVM, fixed-topology ANN, and Phased Searching with NeuroEvolution of Augmenting Topologies (NEAT) in a Time-Scaled Framework - are performing comparably well in our mammographic mass detection scheme.

  9. Analysis on the urban street network of Korea: Connections between topology and meta-information

    Science.gov (United States)

    Lee, Byoung-Hwa; Jung, Woo-Sung

    2018-05-01

    Cities consist of infrastructure that enables transportation, which can be considered as topology in abstract terms. Once cities are physically organized in terms of infrastructure, people interact with each other to form the values, which can be regarded as the meta-information of the cities. The topology and meta-information coevolve together as the cities are developed. In this study, we investigate the relationship between the topology and meta-information for a street network, which has aspects of both a complex network and planar graph. The degree of organization of a street structure determines the efficiency and productivity of the city in that they act as blood vessels to transport people, goods, and information. We analyze the topological aspect of a street network using centralities including the betweenness, closeness, straightness, and information. We classify the cities into several groups that share common meta-information based on the centrality, indicating that the topological factor of the street structure is closely related to meta-information through coevolution. We also obtain the coevolution in the planned cities using the regularity. Another footprint is the relation between the street segment length and the population, which shows the sublinear scaling.

  10. Topological structure of the space of phenotypes: the case of RNA neutral networks.

    Directory of Open Access Journals (Sweden)

    Jacobo Aguirre

    Full Text Available The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence and phenotype (approximated by the secondary structure fold are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.

  11. Early-warning signals of topological collapse in interbank networks

    NARCIS (Netherlands)

    Squartini, Tiziano; Van Lelyveld, Iman; Garlaschelli, Diego

    2013-01-01

    The financial crisis clearly illustrated the importance of characterizing the level of 'systemic' risk associated with an entire credit network, rather than with single institutions. However, the interplay between financial distress and topological changes is still poorly understood. Here we analyze

  12. Finite-time consensus for leader-following multi-agent systems over switching network topologies

    International Nuclear Information System (INIS)

    Sun Feng-Lan; Zhu Wei

    2013-01-01

    Finite-time consensus problem of the leader-following multi-agent system under switching network topologies is studied in this paper. Based on the graph theory, matrix theory, homogeneity with dilation, and LaSalle's invariance principle, the control protocol of each agent using local information is designed, and the detailed analysis of the leader-following finite-time consensus is provided. Some examples and simulation results are given to illustrate the effectiveness of the obtained theoretical results

  13. Probing the topological properties of complex networks modeling short written texts.

    Directory of Open Access Journals (Sweden)

    Diego R Amancio

    Full Text Available In recent years, graph theory has been widely employed to probe several language properties. More specifically, the so-called word adjacency model has been proven useful for tackling several practical problems, especially those relying on textual stylistic analysis. The most common approach to treat texts as networks has simply considered either large pieces of texts or entire books. This approach has certainly worked well-many informative discoveries have been made this way-but it raises an uncomfortable question: could there be important topological patterns in small pieces of texts? To address this problem, the topological properties of subtexts sampled from entire books was probed. Statistical analyses performed on a dataset comprising 50 novels revealed that most of the traditional topological measurements are stable for short subtexts. When the performance of the authorship recognition task was analyzed, it was found that a proper sampling yields a discriminability similar to the one found with full texts. Surprisingly, the support vector machine classification based on the characterization of short texts outperformed the one performed with entire books. These findings suggest that a local topological analysis of large documents might improve its global characterization. Most importantly, it was verified, as a proof of principle, that short texts can be analyzed with the methods and concepts of complex networks. As a consequence, the techniques described here can be extended in a straightforward fashion to analyze texts as time-varying complex networks.

  14. Protection of Passive Optical Networks by Using Ring Topology and Tunable Splitters

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2013-01-01

    Full Text Available This article proposes an innovative method for protecting of passive optical networks (PONs, especially the central optical unit – optical line termination (OLT. PON networks are typically used in modern high-speed access networks, but there are also several specific applications, such as in business, army or science sector, which require a complex protection and backup system against failures and malfunctions. A standard tree or star topologies, which are usually used for PON networks, are significantly vulnerable mainly against the malfunctions and failures of OLT unit or feeder optical cable. The method proposed in this paper is focused on forming PON network with ring topology using passive optical splitters. The main idea is based on the possibility of placing both OLT units (primary and secondary on the opposite sides of the ring, which can potentially increase the resistance of network. This method is described in the article and scenarios and calculations using symmetric or tunable asymmetric passive optical splitters are included as well.

  15. Toward a Robust Method of Presenting a Rich, Interconnected Deceptive Network Topology

    Science.gov (United States)

    2015-03-01

    SDN Software - Defined Networking SNOS Systemic Network Obfuscation System SSH Secure Shell TCP Transmission Control Protocol TTL time to...same DeTracer functionality directly on routers. One particularly interesting research area would be the use of Software - Defined Networking ( SDN ) to...Hughes, “Employing deceptive dynamic network topology through software - defined networking ,” M.S. thesis, Dept. Comput. Sci., Naval

  16. Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs.

    Science.gov (United States)

    Cagnolo, Luciano; Salvo, Adriana; Valladares, Graciela

    2011-03-01

    1. Biological communities are organized in complex interaction networks such as food webs, which topology appears to be non-random. Gradients, compartments, nested subsets and even combinations of these structures have been shown in bipartite networks. However, in most studies only one pattern is tested against randomness and mechanistic hypotheses are generally lacking. 2. Here we examined the topology of regional, coexisting plant-herbivore and host-parasitoid food webs to discriminate between the mentioned network patterns. We also evaluated the role of species body size, local abundance, regional frequency and phylogeny as determinants of network topology. 3. We found both food webs to be compartmented, with interaction range boundaries imposed by host phylogeny. Species degree within compartments was mostly related to their regional frequency and local abundance. Only one compartment showed an internal nested structure in the distribution of interactions between species, but species position within this compartment was unrelated to species size or abundance. 4. These results suggest that compartmentalization may be more common than previously considered, and that network structure is a result of multiple, hierarchical, non-exclusive processes. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

  17. Effect of the social influence on topological properties of user-object bipartite networks

    Science.gov (United States)

    Liu, Jian-Guo; Hu, Zhaolong; Guo, Qiang

    2013-11-01

    Social influence plays an important role in analyzing online users' collective behaviors [Salganik et al., Science 311, 854 (2006)]. However, the effect of the social influence from the viewpoint of theoretical model is missing. In this paper, by taking into account the social influence and users' preferences, we develop a theoretical model to analyze the topological properties of user-object bipartite networks, including the degree distribution, average nearest neighbor degree and the bipartite clustering coefficient, as well as topological properties of the original user-object networks and their unipartite projections. According to the users' preferences and the global ranking effect, we analyze the theoretical results for two benchmark data sets, Amazon and Bookcrossing, which are approximately consistent with the empirical results. This work suggests that this model is feasible to analyze topological properties of bipartite networks in terms of the social influence and the users' preferences.

  18. Robustness of Dengue Complex Network under Targeted versus Random Attack

    Directory of Open Access Journals (Sweden)

    Hafiz Abid Mahmood Malik

    2017-01-01

    Full Text Available Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO, 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia.

  19. Fault-Tolerant Topology Selection for TTEthernet Networks

    DEFF Research Database (Denmark)

    Gavrilut, Voica Maria; Tamas-Selicean, Domitian; Pop, Paul

    2015-01-01

    Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements (PEs) interconnected in a network. In this paper, we are interested in the TTEthernet protocol, which is a deterministic, synchronized and congestion-free net......Many safety-critical real-time applications are implemented using distributed architectures, composed of heterogeneous processing elements (PEs) interconnected in a network. In this paper, we are interested in the TTEthernet protocol, which is a deterministic, synchronized and congestion......-free network protocol based on the IEEE 802.3 Ethernet standard and compliant with ARINC 664p7. TTEthernet supports three types of traffic: static time-triggered (TT) traffic and dynamic traffic, which is further subdivided into Rate Constrained (RC) traffic that has bounded end-to-end latencies, and Best...... a fault-tolerant network topology, consisting of redundant physical links and network switches, such that the architecture cost is minimized, the applications are fault-tolerant to a given number of permanent faults occurring in the communication network, and the timing constraints of the TT and RC...

  20. Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.

    Science.gov (United States)

    Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S

    2017-03-08

    Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across

  1. Comparison of Communication Architectures and Network Topologies for Distributed Propulsion Controls (Preprint)

    Science.gov (United States)

    2013-05-01

    Interconnection ( OSI ) network model for the engine control application. Figure 1 summarizes the OSI network model, which is comprised by 7 layers [21]. In...59th International Instrumentation Symposium; http://www.isa.org Approved for public release; distribution unlimited. 7 Figure 1: OSI Network...21st International Conference on, pages 3–7. IEEE, 2011. [9] LAN Network Topologies. http://www.firewall.cx/networking-topics/general- networking/103

  2. Study on the evolutionary optimisation of the topology of network control systems

    Science.gov (United States)

    Zhou, Zude; Chen, Benyuan; Wang, Hong; Fan, Zhun

    2010-08-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition of performance parameters, the normalised indices for the evaluation of the topology optimisation are proposed. The topology optimisation problem is formulated as a multi-objective optimisation problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices: traffic localisation, traffic balance and utilisation rate balance of switches. In addition, a new performance index with its estimation process is proposed.

  3. Online Expansion Technology for Dynamic Topology Changing ZigBee Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Md. Emdadul Haque

    2014-03-01

    Full Text Available In ZigBee, the router capable devices have restriction to accept a number of devices as children devices. A router capable device can not allow any new device to join as a child device if it reaches to the maximum capacity of children or depth limit. According to ZigBee specification each device has a permanent 64-bit MAC address. If a device joins a ZigBee network, it receives a short 16-bit MAC address from the parent device. If a device can not join a network, it isolates from the network and becomes an orphan node even though address spaces are available in the network. The orphan problem becomes worse when the topology of the network changes dynamically. In this paper we propose an online expansion technology to connect the maximum number of devices specially for dynamic topology changing ZigBee wireless sensor networks. The proposed technology shares available address spaces of the router devices to reduce the number of orphan nodes in the network.

  4. Evolution of cooperation under social pressure in multiplex networks.

    Science.gov (United States)

    Pereda, María

    2016-09-01

    In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.

  5. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    Science.gov (United States)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  6. Machine learning topological states

    Science.gov (United States)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-11-01

    Artificial neural networks and machine learning have now reached a new era after several decades of improvement where applications are to explode in many fields of science, industry, and technology. Here, we use artificial neural networks to study an intriguing phenomenon in quantum physics—the topological phases of matter. We find that certain topological states, either symmetry-protected or with intrinsic topological order, can be represented with classical artificial neural networks. This is demonstrated by using three concrete spin systems, the one-dimensional (1D) symmetry-protected topological cluster state and the 2D and 3D toric code states with intrinsic topological orders. For all three cases, we show rigorously that the topological ground states can be represented by short-range neural networks in an exact and efficient fashion—the required number of hidden neurons is as small as the number of physical spins and the number of parameters scales only linearly with the system size. For the 2D toric-code model, we find that the proposed short-range neural networks can describe the excited states with Abelian anyons and their nontrivial mutual statistics as well. In addition, by using reinforcement learning we show that neural networks are capable of finding the topological ground states of nonintegrable Hamiltonians with strong interactions and studying their topological phase transitions. Our results demonstrate explicitly the exceptional power of neural networks in describing topological quantum states, and at the same time provide valuable guidance to machine learning of topological phases in generic lattice models.

  7. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  8. Topological data analysis of contagion maps for examining spreading processes on networks.

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J

    2015-07-21

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  9. Topological data analysis of contagion maps for examining spreading processes on networks

    Science.gov (United States)

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-07-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  10. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio

    2013-10-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  11. Exploitation of genetic interaction network topology for the prediction of epistatic behavior

    KAUST Repository

    Alanis Lobato, Gregorio; Cannistraci, Carlo; Ravasi, Timothy

    2013-01-01

    Genetic interaction (GI) detection impacts the understanding of human disease and the ability to design personalized treatment. The mapping of every GI in most organisms is far from complete due to the combinatorial amount of gene deletions and knockdowns required. Computational techniques to predict new interactions based only on network topology have been developed in network science but never applied to GI networks.We show that topological prediction of GIs is possible with high precision and propose a graph dissimilarity index that is able to provide robust prediction in both dense and sparse networks.Computational prediction of GIs is a strong tool to aid high-throughput GI determination. The dissimilarity index we propose in this article is able to attain precise predictions that reduce the universe of candidate GIs to test in the lab. © 2013 Elsevier Inc.

  12. Topological data analysis of contagion maps for examining spreading processes on networks

    KAUST Repository

    Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.

    2015-01-01

    Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.

  13. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    Science.gov (United States)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  14. Geography versus topology in the European Ownership Network

    International Nuclear Information System (INIS)

    Vitali, Stefania; Battiston, Stefano

    2011-01-01

    In this paper, we investigate the network of ownership relationships among European firms and its embedding in the geographical space. We carry out a detailed analysis of geographical distances between pairs of nodes, connected by edges or by shortest paths of varying length. In particular, we study the relation between geographical distance and network distance in comparison with a random spatial network model. While the distribution of geographical distance can be fairly well reproduced, important deviations appear in the network distance and in the size of the largest strongly connected component. Our results show that geographical factors allow us to capture several features of the network, while the deviations quantify the effect of additional economic factors at work in shaping the topology. The analysis is relevant to other types of geographically embedded networks and sheds light on the link formation process in the presence of spatial constraints.

  15. Influence of network topology on the swelling of polyelectrolyte nanogels

    OpenAIRE

    Rizzi, Leandro G.; Levin, Yan

    2016-01-01

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density, however it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration $C_s$ and the fraction $f$ of ionizable groups in a polyelectrolyte network formed by cross-links of functionality $z$. Our results indicate that the network wit...

  16. AlignNemo: a local network alignment method to integrate homology and topology.

    Directory of Open Access Journals (Sweden)

    Giovanni Ciriello

    Full Text Available Local network alignment is an important component of the analysis of protein-protein interaction networks that may lead to the identification of evolutionary related complexes. We present AlignNemo, a new algorithm that, given the networks of two organisms, uncovers subnetworks of proteins that relate in biological function and topology of interactions. The discovered conserved subnetworks have a general topology and need not to correspond to specific interaction patterns, so that they more closely fit the models of functional complexes proposed in the literature. The algorithm is able to handle sparse interaction data with an expansion process that at each step explores the local topology of the networks beyond the proteins directly interacting with the current solution. To assess the performance of AlignNemo, we ran a series of benchmarks using statistical measures as well as biological knowledge. Based on reference datasets of protein complexes, AlignNemo shows better performance than other methods in terms of both precision and recall. We show our solutions to be biologically sound using the concept of semantic similarity applied to Gene Ontology vocabularies. The binaries of AlignNemo and supplementary details about the algorithms and the experiments are available at: sourceforge.net/p/alignnemo.

  17. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    Science.gov (United States)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  18. Analysis of Degree 5 Chordal Rings for Network Topologies

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Pedersen, Jens Myrup; Bujnowski, Sławomir

    2011-01-01

    This paper presents an analysis of degree 5 chordal rings, from a network topology point of view. The chordal rings are mainly evaluated with respect to average distance and diameter. We derive approximation expressions for the related ideal graphs, and show that these matches the real chordal...

  19. Topology and computational performance of attractor neural networks

    International Nuclear Information System (INIS)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive

  20. Congestion management through topological corrections: A case study of Central Western Europe

    International Nuclear Information System (INIS)

    Han, Jinil; Papavasiliou, Anthony

    2015-01-01

    The integration of an increasing amount of renewable generation within Europe is posing operational challenges that require various balancing actions. System operators therefore need to rely increasingly on the active control of the transmission network. Transmission topology control is a fast and economical option to add flexibility to the transmission system. We model the current methodology for controlling congestion in the Central Western European (CWE) market and quantify the benefits of topology control. We also compare the results with a nodal pricing model. Our computational results suggest that topology control can significantly reduce congestion management costs under the current market coupling regime whereas the benefits of topology control are limited under nodal pricing. Topology control emerges as an attractive and implementable means of managing congestion as it provides a significant percentage of the cost savings that would be achieved by overhauling the existing European market design and shifting to a nodal pricing regime. - Highlights: • We present the congestion management model in the CWE region. • The benefits of topology control in the CWE region are quantified. • Topology control significantly reduce congestion under the current market coupling. • The benefits of topology control are limited under the nodal pricing regime. • Network topology control is a promising option for mitigating congestion in Europe.

  1. Effects of Some Topological Ingredients on the Evolutionary Ultimatum Game

    International Nuclear Information System (INIS)

    Deng Lili; Zhang Jianxiong; Tang Wansheng; Zhang Wei

    2012-01-01

    This study aims at figuring out the crucial topological ingredients which affect the outcomes of the ultimatum game located on different networks, encompassing the regular network, the random network, the small-world network, and the scale-free network. With the aid of random interchanging algorithm, we investigate the relations between the outcomes of the ultimatum game and some topological ingredients, including the average range, the clustering coefficient and the heterogeneity, and so forth. It is found that for the regular, random and small-work networks, the average range and the clustering coefficient have evident impacts on the ultimatum game, while for the scale-free network, the original degree heterogeneity and the underlying rich-club characterizations are the mainly important topological ingredients that influence the outcomes of ultimatum game substantially.

  2. A TORC2-Akt feedforward topology underlies HER3 resiliency in HER2-amplified cancers

    Science.gov (United States)

    Amin, Dhara N.; Ahuja, Deepika; Yaswen, Paul; Moasser, Mark M.

    2015-01-01

    The requisite role of HER3 in HER2-amplified cancers is beyond what would be expected as a dimerization partner or effector substrate and it exhibits a substantial degree of resiliency that mitigates the effects of HER2-inhibitor therapies. To better understand the roots of this resiliency, we conducted an in-depth chemical-genetic interrogation of the signaling network downstream of HER3. A unique attribute of these tumors is the deregulation of TORC2. The upstream signals that ordinarily maintain TORC2 signaling are lost in these tumors, and instead TORC2 is driven by Akt. We find that in these cancers HER3 functions as a buffering arm of an Akt-TORC2 feed-forward loop that functions as a self-perpetuating module. This network topology alters the role of HER3 from a conditionally engaged ligand-driven upstream physiologic signaling input to an essential component of a concentric signaling throughput highly competent at preservation of homeostasis. The competence of this signaling topology is evident in its response to perturbation at any of its nodes. Thus a critical pathophysiological event in the evolution of HER2-amplified cancers is the loss of the input signals that normally drive TORC2 signaling, repositioning it under Akt dependency and fundamentally altering the role of HER3. This reprogramming of the downstream network topology is a key aspect in the pathogenesis of HER2-amplified cancers and constitutes a formidable barrier in the targeted therapy of these cancers. PMID:26438156

  3. Topology dependent epidemic spreading velocity in weighted networks

    International Nuclear Information System (INIS)

    Duan, Wei; Qiu, Xiaogang; Quax, Rick; Lees, Michael; Sloot, Peter M A

    2014-01-01

    Many diffusive processes occur on structured networks with weighted links, such as disease spread by airplane transport or information diffusion in social networks or blogs. Understanding the impact of weight-connectivity correlations on epidemic spreading in weighted networks is crucial to support decision-making on disease control and other diffusive processes. However, a real understanding of epidemic spreading velocity in weighted networks is still lacking. Here we conduct a numerical study of the velocity of a Reed–Frost epidemic spreading process in various weighted network topologies as a function of the correlations between edge weights and node degrees. We find that a positive weight-connectivity correlation leads to a faster epidemic spreading compared to an unweighted network. In contrast, we find that both uncorrelated and negatively correlated weight distributions lead to slower spreading processes. In the case of positive weight-connectivity correlations, the acceleration of spreading velocity is weak when the heterogeneity of weight distribution increases. (paper)

  4. Topology Counts: Force Distributions in Circular Spring Networks

    Science.gov (United States)

    Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max

    2018-02-01

    Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.

  5. Topology Counts: Force Distributions in Circular Spring Networks.

    Science.gov (United States)

    Heidemann, Knut M; Sageman-Furnas, Andrew O; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max

    2018-02-09

    Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.

  6. Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies

    International Nuclear Information System (INIS)

    Yang Dong-Sheng; Liu Zhen-Wei; Liu Zhao-Bing; Zhao Yan

    2012-01-01

    The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time-varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method. (general)

  7. Synchronization and Control of Halo-Chaos in Beam Transport Network with Small World Topology

    International Nuclear Information System (INIS)

    Liu Qiang; Fang Jinqing; Li Yong

    2007-01-01

    The synchronous conditions of two kinds of the small-world (SW) network are studied. The small world topology can affect on dynamical behaviors of the beam transport network (BTN) largely, if the BTN is constructed with the SW topology, the global linear coupling and special linear feedback can realize the synchronization control of beam halo-chaos as well as periodic state in the BTN with the SW topology, respectively. This important result can provide an effective way for the experimental study and the engineering design of the BTN in the high-current accelerator driven radioactive clean nuclear power systems, and may have potential use in prospective applications for halo-chaos secure communication.

  8. Impact of Network Coding on Delay and Throughput in Practical Wireless Chain Topologies

    DEFF Research Database (Denmark)

    Hundebøll, Martin; Rein, Stephan Alexander; Fitzek, Frank

    2013-01-01

    In this paper, we present results from a practical evaluation of network coding in a setup consisting of eight nodes deployed in a chain topology. With the tradition pure relaying, delay increases dramatically as the network gets congested, and here network coding helps to moderate this increase ...

  9. Topological resilience in non-normal networked systems

    Science.gov (United States)

    Asllani, Malbor; Carletti, Timoteo

    2018-04-01

    The network of interactions in complex systems strongly influences their resilience and the system capability to resist external perturbations or structural damages and to promptly recover thereafter. The phenomenon manifests itself in different domains, e.g., parasitic species invasion in ecosystems or cascade failures in human-made networks. Understanding the topological features of the networks that affect the resilience phenomenon remains a challenging goal for the design of robust complex systems. We hereby introduce the concept of non-normal networks, namely networks whose adjacency matrices are non-normal, propose a generating model, and show that such a feature can drastically change the global dynamics through an amplification of the system response to exogenous disturbances and eventually impact the system resilience. This early stage transient period can induce the formation of inhomogeneous patterns, even in systems involving a single diffusing agent, providing thus a new kind of dynamical instability complementary to the Turing one. We provide, first, an illustrative application of this result to ecology by proposing a mechanism to mute the Allee effect and, second, we propose a model of virus spreading in a population of commuters moving using a non-normal transport network, the London Tube.

  10. Topological Gyroscopic Metamaterials

    Science.gov (United States)

    Nash, Lisa Michelle

    Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.

  11. Topology of Innovation Spaces in the Knowledge Networks Emerging through Questions-And-Answers

    Science.gov (United States)

    Andjelković, Miroslav; Tadić, Bosiljka; Mitrović Dankulov, Marija; Rajković, Milan; Melnik, Roderick

    2016-01-01

    The communication processes of knowledge creation represent a particular class of human dynamics where the expertise of individuals plays a substantial role, thus offering a unique possibility to study the structure of knowledge networks from online data. Here, we use the empirical evidence from questions-and-answers in mathematics to analyse the emergence of the network of knowledge contents (or tags) as the individual experts use them in the process. After removing extra edges from the network-associated graph, we apply the methods of algebraic topology of graphs to examine the structure of higher-order combinatorial spaces in networks for four consecutive time intervals. We find that the ranking distributions of the suitably scaled topological dimensions of nodes fall into a unique curve for all time intervals and filtering levels, suggesting a robust architecture of knowledge networks. Moreover, these networks preserve the logical structure of knowledge within emergent communities of nodes, labeled according to a standard mathematical classification scheme. Further, we investigate the appearance of new contents over time and their innovative combinations, which expand the knowledge network. In each network, we identify an innovation channel as a subgraph of triangles and larger simplices to which new tags attach. Our results show that the increasing topological complexity of the innovation channels contributes to network’s architecture over different time periods, and is consistent with temporal correlations of the occurrence of new tags. The methodology applies to a wide class of data with the suitable temporal resolution and clearly identified knowledge-content units. PMID:27171149

  12. A note on the consensus finding problem in communication networks with switching topologies

    KAUST Repository

    Haskovec, Jan

    2014-01-01

    In this note, we discuss the problem of consensus finding in communication networks of agents with dynamically switching topologies. In particular, we consider the case of directed networks with unbalanced matrices of communication rates. We

  13. Topological derivatives of eigenvalues and neural networks in identification of imperfections

    International Nuclear Information System (INIS)

    Grzanek, M; Nowakowski, A; Sokolowski, J

    2008-01-01

    Numerical method for identification of imperfections is devised for elliptic spectral problems. The neural networks are employed for numerical solution. The topological derivatives of eigenvalues are used in the learning procedure of the neural networks. The topological derivatives of eigenvalues are determined by the methods of asymptotic analysis in singularly perturbed geometrical domains. The convergence of the numerical method in a probabilistic setting is analysed. The method is presented for the identification of small singular perturbations of the boundary of geometrical domain, however the framework is general and can be used for numerical solutions of inverse problems in the presence of small imperfections in the interior of the domain. Some numerical results are given for elliptic spectral problem in two spatial dimensions.

  14. Different alterations in brain functional networks according to direct and indirect topological connections in patients with schizophrenia.

    Science.gov (United States)

    Park, Chang-Hyun; Lee, Seungyup; Kim, Taewon; Won, Wang Yeon; Lee, Kyoung-Uk

    2017-10-01

    Schizophrenia displays connectivity deficits in the brain, but the literature has shown inconsistent findings about alterations in global efficiency of brain functional networks. We supposed that such inconsistency at the whole brain level may be due to a mixture of different portions of global efficiency at sub-brain levels. Accordingly, we considered measuring portions of global efficiency in two aspects: spatial portions by considering sub-brain networks and topological portions by considering contributions to global efficiency according to direct and indirect topological connections. We proposed adjacency and indirect adjacency as new network parameters attributable to direct and indirect topological connections, respectively, and applied them to graph-theoretical analysis of brain functional networks constructed from resting state fMRI data of 22 patients with schizophrenia and 22 healthy controls. Group differences in the network parameters were observed not for whole brain and hemispheric networks, but for regional networks. Alterations in adjacency and indirect adjacency were in opposite directions, such that adjacency increased, but indirect adjacency decreased in patients with schizophrenia. Furthermore, over connections in frontal and parietal regions, increased adjacency was associated with more severe negative symptoms, while decreased adjacency was associated with more severe positive symptoms of schizophrenia. This finding indicates that connectivity deficits associated with positive and negative symptoms of schizophrenia may involve topologically different paths in the brain. In patients with schizophrenia, although changes in global efficiency may not be clearly shown, different alterations in brain functional networks according to direct and indirect topological connections could be revealed at the regional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inferring a Drive-Response Network from Time Series of Topological Measures in Complex Networks with Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Xinbo Ai

    2014-11-01

    Full Text Available Topological measures are crucial to describe, classify and understand complex networks. Lots of measures are proposed to characterize specific features of specific networks, but the relationships among these measures remain unclear. Taking into account that pulling networks from different domains together for statistical analysis might provide incorrect conclusions, we conduct our investigation with data observed from the same network in the form of simultaneously measured time series. We synthesize a transfer entropy-based framework to quantify the relationships among topological measures, and then to provide a holistic scenario of these measures by inferring a drive-response network. Techniques from Symbolic Transfer Entropy, Effective Transfer Entropy, and Partial Transfer Entropy are synthesized to deal with challenges such as time series being non-stationary, finite sample effects and indirect effects. We resort to kernel density estimation to assess significance of the results based on surrogate data. The framework is applied to study 20 measures across 2779 records in the Technology Exchange Network, and the results are consistent with some existing knowledge. With the drive-response network, we evaluate the influence of each measure by calculating its strength, and cluster them into three classes, i.e., driving measures, responding measures and standalone measures, according to the network communities.

  16. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  17. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2009-05-01

    Full Text Available Abstract Background The identification of network motifs as statistically over-represented topological patterns has become one of the most promising topics in the analysis of complex networks. The main focus is commonly made on how they operate by means of their internal organization. Yet, their contribution to a network's global architecture is poorly understood. However, this requires switching from the abstract view of a topological pattern to the level of its instances. Here, we show how a recently proposed metric, the pairwise disconnectivity index, can be adapted to survey if and which kind of topological patterns and their instances are most important for sustaining the connectivity within a network. Results The pairwise disconnectivity index of a pattern instance quantifies the dependency of the pairwise connections between vertices in a network on the presence of this pattern instance. Thereby, it particularly considers how the coherence between the unique constituents of a pattern instance relates to the rest of a network. We have applied the method exemplarily to the analysis of 3-vertex topological pattern instances in the transcription networks of a bacteria (E. coli, a unicellular eukaryote (S. cerevisiae and higher eukaryotes (human, mouse, rat. We found that in these networks only very few pattern instances break lots of the pairwise connections between vertices upon the removal of an instance. Among them network motifs do not prevail. Rather, those patterns that are shared by the three networks exhibit a conspicuously enhanced pairwise disconnectivity index. Additionally, these are often located in close vicinity to each other or are even overlapping, since only a small number of genes are repeatedly present in most of them. Moreover, evidence has gathered that the importance of these pattern instances is due to synergistic rather than merely additive effects between their constituents. Conclusion A new method has been proposed

  18. Network module detection: Affinity search technique with the multi-node topological overlap measure.

    Science.gov (United States)

    Li, Ai; Horvath, Steve

    2009-07-20

    Many clustering procedures only allow the user to input a pairwise dissimilarity or distance measure between objects. We propose a clustering method that can input a multi-point dissimilarity measure d(i1, i2, ..., iP) where the number of points P can be larger than 2. The work is motivated by gene network analysis where clusters correspond to modules of highly interconnected nodes. Here, we define modules as clusters of network nodes with high multi-node topological overlap. The topological overlap measure is a robust measure of interconnectedness which is based on shared network neighbors. In previous work, we have shown that the multi-node topological overlap measure yields biologically meaningful results when used as input of network neighborhood analysis. We adapt network neighborhood analysis for the use of module detection. We propose the Module Affinity Search Technique (MAST), which is a generalized version of the Cluster Affinity Search Technique (CAST). MAST can accommodate a multi-node dissimilarity measure. Clusters grow around user-defined or automatically chosen seeds (e.g. hub nodes). We propose both local and global cluster growth stopping rules. We use several simulations and a gene co-expression network application to argue that the MAST approach leads to biologically meaningful results. We compare MAST with hierarchical clustering and partitioning around medoid clustering. Our flexible module detection method is implemented in the MTOM software which can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/MTOM/

  19. On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies.

    Science.gov (United States)

    Garcia-Sanchez, Antonio-Javier; Losilla, Fernando; Rodenas-Herraiz, David; Cruz-Martinez, Felipe; Garcia-Sanchez, Felipe

    2016-05-05

    Wireless Multimedia Sensor Networks (WMSNs) are a special type of Wireless Sensor Network (WSN) where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES) mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks.

  20. On the Feasibility of Wireless Multimedia Sensor Networks over IEEE 802.15.5 Mesh Topologies

    Directory of Open Access Journals (Sweden)

    Antonio-Javier Garcia-Sanchez

    2016-05-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a special type of Wireless Sensor Network (WSN where large amounts of multimedia data are transmitted over networks composed of low power devices. Hierarchical routing protocols typically used in WSNs for multi-path communication tend to overload nodes located within radio communication range of the data collection unit or data sink. The battery life of these nodes is therefore reduced considerably, requiring frequent battery replacement work to extend the operational life of the WSN system. In a wireless sensor network with mesh topology, any node may act as a forwarder node, thereby enabling multiple routing paths toward any other node or collection unit. In addition, mesh topologies have proven advantages, such as data transmission reliability, network robustness against node failures, and potential reduction in energy consumption. This work studies the feasibility of implementing WMSNs in mesh topologies and their limitations by means of exhaustive computer simulation experiments. To this end, a module developed for the Synchronous Energy Saving (SES mode of the IEEE 802.15.5 mesh standard has been integrated with multimedia tools to thoroughly test video sequences encoded using H.264 in mesh networks.

  1. Dynamics in small worlds of tree topologies of wireless sensor networks

    DEFF Research Database (Denmark)

    Li, Qiao; Zhang, Baihai; Fan, Zhun

    2012-01-01

    Tree topologies, which construct spatial graphs with large characteristic path lengths and small clustering coefficients, are ubiquitous in deployments of wireless sensor networks. Small worlds are investigated in tree-based networks. Due to link additions, characteristic path lengths reduce...... rapidly and clustering coefficients increase greatly. A tree abstract, Cayley tree, is considered for the study of the navigation algorithm, which runs automatically in the small worlds of tree-based networks. In the further study, epidemics in the small worlds of tree-based wireless sensor networks...

  2. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  3. Effect of dataset selection on the topological interpretation of protein interaction networks

    Directory of Open Access Journals (Sweden)

    Robertson David L

    2005-09-01

    Full Text Available Abstract Background Studies of the yeast protein interaction network have revealed distinct correlations between the connectivity of individual proteins within the network and the average connectivity of their neighbours. Although a number of biological mechanisms have been proposed to account for these findings, the significance and influence of the specific datasets included in these studies has not been appreciated adequately. Results We show how the use of different interaction data sets, such as those resulting from high-throughput or small-scale studies, and different modelling methodologies for the derivation pair-wise protein interactions, can dramatically change the topology of these networks. Furthermore, we show that some of the previously reported features identified in these networks may simply be the result of experimental or methodological errors and biases. Conclusion When performing network-based studies, it is essential to define what is meant by the term "interaction" and this must be taken into account when interpreting the topologies of the networks generated. Consideration must be given to the type of data included and appropriate controls that take into account the idiosyncrasies of the data must be selected

  4. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Shi, Hai-Bin [The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Jiang, Long-Feng [The First Affiliated Hospital of Nanjing Medical University, Department of Infectious Diseases, Nanjing (China); Li, Lan [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Rong [University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD (United States); Beijing Institute of Technology, Advanced Innovation Center for Intelligent Robots and Systems, Beijing (China)

    2018-01-15

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  5. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Shi, Hai-Bin; Jiang, Long-Feng; Li, Lan; Chen, Rong

    2018-01-01

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  6. Multi-planed unified switching topologies

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip; Sugawara, Yutaka

    2017-07-04

    An apparatus and method for extending the scalability and improving the partitionability of networks that contain all-to-all links for transporting packet traffic from a source endpoint to a destination endpoint with low per-endpoint (per-server) cost and a small number of hops. An all-to-all wiring in the baseline topology is decomposed into smaller all-to-all components in which each smaller all-to-all connection is replaced with star topology by using global switches. Stacking multiple copies of the star topology baseline network creates a multi-planed switching topology for transporting packet traffic. Point-to-point unified stacking method using global switch wiring methods connects multiple planes of a baseline topology by using the global switches to create a large network size with a low number of hops, i.e., low network latency. Grouped unified stacking method increases the scalability (network size) of a stacked topology.

  7. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  8. Topology Discovery Using Cisco Discovery Protocol

    OpenAIRE

    Rodriguez, Sergio R.

    2009-01-01

    In this paper we address the problem of discovering network topology in proprietary networks. Namely, we investigate topology discovery in Cisco-based networks. Cisco devices run Cisco Discovery Protocol (CDP) which holds information about these devices. We first compare properties of topologies that can be obtained from networks deploying CDP versus Spanning Tree Protocol (STP) and Management Information Base (MIB) Forwarding Database (FDB). Then we describe a method of discovering topology ...

  9. Inference of neuronal network spike dynamics and topology from calcium imaging data

    Directory of Open Access Journals (Sweden)

    Henry eLütcke

    2013-12-01

    Full Text Available Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP occurrence ('spike trains' from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties.

  10. Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate Frameworks

    OpenAIRE

    Tan, J. C.; Bennett, T. D.; Cheetham, A. K.

    2010-01-01

    The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. ...

  11. Hypergraph topological quantities for tagged social networks

    Science.gov (United States)

    Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido

    2009-09-01

    Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.

  12. Effects in the network topology due to node aggregation: Empirical evidence from the domestic maritime transportation in Greece

    Science.gov (United States)

    Tsiotas, Dimitrios; Polyzos, Serafeim

    2018-02-01

    This article studies the topological consistency of spatial networks due to node aggregation, examining the changes captured between different network representations that result from nodes' grouping and they refer to the same socioeconomic system. The main purpose of this study is to evaluate what kind of topological information remains unalterable due to node aggregation and, further, to develop a framework for linking the data of an empirical network with data of its socioeconomic environment, when the latter are available for hierarchically higher levels of aggregation, in an effort to promote the interdisciplinary research in the field of complex network analysis. The research question is empirically tested on topological and socioeconomic data extracted from the Greek Maritime Network (GMN) that is modeled as a non-directed multilayer (bilayer) graph consisting of a port-layer, where nodes represent ports, and a prefecture-layer, where nodes represent coastal and insular prefectural groups of ports. The analysis highlights that the connectivity (degree) of the GMN is the most consistent aspect of this multilayer network, which preserves both the topological and the socioeconomic information through node aggregation. In terms of spatial analysis and regional science, such effects illustrate the effectiveness of the prefectural administrative division for the functionality of the Greek maritime transportation system. Overall, this approach proposes a methodological framework that can enjoy further applications about the grouping effects induced on the network topology, providing physical, technical, socioeconomic, strategic or political insights.

  13. Exploitation of complex network topology for link prediction in biological interactomes

    KAUST Repository

    Alanis Lobato, Gregorio

    2014-01-01

    In this work, we propose three novel and powerful approaches for the prediction of interactions in biological networks and conclude that it is possible to mine the topology of these complex system representations and produce reliable

  14. Effects of the underlying topology on perturbation spreading in the Axelrod model for cultural dissemination

    Science.gov (United States)

    Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung

    2011-10-01

    We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.

  15. Fault Detection for Wireless Networked Control Systems with Stochastic Switching Topology and Time Delay

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2014-01-01

    Full Text Available This paper deals with the fault detection problem for a class of discrete-time wireless networked control systems described by switching topology with uncertainties and disturbances. System states of each individual node are affected not only by its own measurements, but also by other nodes’ measurements according to a certain network topology. As the topology of system can be switched in a stochastic way, we aim to design H∞ fault detection observers for nodes in the dynamic time-delay systems. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are acquired to guarantee the existence of the filters satisfying the H∞ performance constraint, and observer gains are derived by solving linear matrix inequalities. Finally, an illustrated example is provided to verify the effectiveness of the theoretical results.

  16. Synchronization propensity in networks of dynamical systems: A purely topological indicator

    OpenAIRE

    Fasani, S.; Rinaldi, S.

    2012-01-01

    Synchronization in networks of identical dynamical systems is enhanced by the number of manifolds in which synchrony of groups of systems is conserved or reinforced. Since the number of these invariant manifolds depends only on the coupling architecture of the network, it can be proposed as a purely topological indicator of synchronization propensity. The proposal is empirically validated through the detailed study of an ecological application.

  17. Influence of network topology on the swelling of polyelectrolyte nanogels.

    Science.gov (United States)

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  18. Distributed reconfigurable control strategies for switching topology networked multi-agent systems.

    Science.gov (United States)

    Gallehdari, Z; Meskin, N; Khorasani, K

    2017-11-01

    In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2008-05-01

    Full Text Available Abstract Background Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging. Results The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes, an edge (i.e., reactions, interactions, as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness of this network to the presence (absence of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network. Conclusion Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations from a network. The greatest potential value of

  20. Testing statistical self-similarity in the topology of river networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2010-01-01

    Recent work has demonstrated that the topological properties of real river networks deviate significantly from predictions of Shreve's random model. At the same time the property of mean self-similarity postulated by Tokunaga's model is well supported by data. Recently, a new class of network model called random self-similar networks (RSN) that combines self-similarity and randomness has been introduced to replicate important topological features observed in real river networks. We investigate if the hypothesis of statistical self-similarity in the RSN model is supported by data on a set of 30 basins located across the continental United States that encompass a wide range of hydroclimatic variability. We demonstrate that the generators of the RSN model obey a geometric distribution, and self-similarity holds in a statistical sense in 26 of these 30 basins. The parameters describing the distribution of interior and exterior generators are tested to be statistically different and the difference is shown to produce the well-known Hack's law. The inter-basin variability of RSN parameters is found to be statistically significant. We also test generator dependence on two climatic indices, mean annual precipitation and radiative index of dryness. Some indication of climatic influence on the generators is detected, but this influence is not statistically significant with the sample size available. Finally, two key applications of the RSN model to hydrology and geomorphology are briefly discussed.

  1. Foreign currency exchange network topology across the 2008 credit crisis

    Science.gov (United States)

    Sharif, Shamshuritawati; Ap, Nuraisah Che; Ruslan, Nuraimi

    2017-05-01

    A stable world currency exchange rate is a very important aspect to be considered for a developed country, i.e Malaysia. A better understanding about the currencies itself is needed nowadays. This project is about to understanding the fluctuation and to identify the most influential world currencies in the three different cases; before credit crisis, during credit crisis and after credit crisis. A network topology approach is use to examine the interrelationship between currencies based on correlation analysis. With this point of view, those relationships can be measured by a correlation structure among the currencies. The network can be analyse by filtering the important information using minimum spanning tree (MST) and interpret it using degree centrality as the centrality measure. This topology will give a useful guide to understand the behaviour and determine the most influential currency in the network as a part of a complex system. All currencies are compared among the three different cases; before credit crisis, during credit crisis and after credit crisis period. The result of this project shows that Unites State Dollar (USD), Brazilian Real (BRL), United Kingdom Pound (EUR) and Danish Krone (DKK) are the most influential currencies before the credit crisis period. With respect to during the credit crisis, New Zealand Dollar (NZD) dominates the network and it is followed by Singapore Dollar (SGD) for after the credit crisis period.

  2. Relating Topological Determinants of Complex Networks to Their Spectral Properties: Structural and Dynamical Effects

    Science.gov (United States)

    Castellano, Claudio; Pastor-Satorras, Romualdo

    2017-10-01

    The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.

  3. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  4. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  5. Topology-based hierarchical scheduling using deficit round robin

    DEFF Research Database (Denmark)

    Yu, Hao; Yan, Ying; Berger, Michael Stubert

    2009-01-01

    according to the topology. The mapping process could be completed through the network management plane or by manual configuration. Based on the knowledge of the network, the scheduler can manage the traffic on behalf of other less advanced nodes, avoid potential traffic congestion, and provide flow...... protection and isolation. Comparisons between hierarchical scheduling, flow-based scheduling, and class-based scheduling schemes have been carried out under a symmetric tree topology. Results have shown that the hierarchical scheduling scheme provides better flow protection and isolation from attack...

  6. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks

    International Nuclear Information System (INIS)

    Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo

    2015-01-01

    Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug–target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively

  7. Common neighbours and the local-community-paradigm for topological link prediction in bipartite networks

    Science.gov (United States)

    Daminelli, Simone; Thomas, Josephine Maria; Durán, Claudio; Vittorio Cannistraci, Carlo

    2015-11-01

    Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug-target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively

  8. Robust Topology Optimization Based on Stochastic Collocation Methods under Loading Uncertainties

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A robust topology optimization (RTO approach with consideration of loading uncertainties is developed in this paper. The stochastic collocation method combined with full tensor product grid and Smolyak sparse grid transforms the robust formulation into a weighted multiple loading deterministic problem at the collocation points. The proposed approach is amenable to implementation in existing commercial topology optimization software package and thus feasible to practical engineering problems. Numerical examples of two- and three-dimensional topology optimization problems are provided to demonstrate the proposed RTO approach and its applications. The optimal topologies obtained from deterministic and robust topology optimization designs under tensor product grid and sparse grid with different levels are compared with one another to investigate the pros and cons of optimization algorithm on final topologies, and an extensive Monte Carlo simulation is also performed to verify the proposed approach.

  9. Topology of foreign exchange markets using hierarchical structure methods

    Science.gov (United States)

    Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.

    2007-08-01

    This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.

  10. Adaptive Duty-Cycling to Enhance Topology Control Schemes in Wireless Sensor Networks

    OpenAIRE

    Cha, Myungsu; Kim, Mihui; Kim, Dongsoo S.; Choo, Hyunseung

    2014-01-01

    To prolong the network lifetime, various scheduling approaches that schedule wireless devices of nodes to switch between active and sleep states have been studied. Topology control schemes are one of the scheduling approaches that can extend the network lifetime and reduce the additional communication delays at the same time. However, they do not guarantee that all nodes have the same lifetime. They reduce the network coverage and prevent seamless communications. This paper proposes an adapti...

  11. Brain structural network topological alterations of the left prefrontal and limbic cortex in psychogenic erectile dysfunction.

    Science.gov (United States)

    Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing

    2018-05-01

    Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.

  12. Quadratic stabilisability of multi-agent systems under switching topologies

    Science.gov (United States)

    Guan, Yongqiang; Ji, Zhijian; Zhang, Lin; Wang, Long

    2014-12-01

    This paper addresses the stabilisability of multi-agent systems (MASs) under switching topologies. Necessary and/or sufficient conditions are presented in terms of graph topology. These conditions explicitly reveal how the intrinsic dynamics of the agents, the communication topology and the external control input affect stabilisability jointly. With the appropriate selection of some agents to which the external inputs are applied and the suitable design of neighbour-interaction rules via a switching topology, an MAS is proved to be stabilisable even if so is not for each of uncertain subsystem. In addition, a method is proposed to constructively design a switching rule for MASs with norm-bounded time-varying uncertainties. The switching rules designed via this method do not rely on uncertainties, and the switched MAS is quadratically stabilisable via decentralised external self-feedback for all uncertainties. With respect to applications of the stabilisability results, the formation control and the cooperative tracking control are addressed. Numerical simulations are presented to demonstrate the effectiveness of the proposed results.

  13. Study on the evolutionary optimization of the topology of network control systems

    DEFF Research Database (Denmark)

    Zhou, Z.; Chen, B.; Wang, H.

    2010-01-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology...... control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative...

  14. Calculating degree-based topological indices of dominating David derived networks

    Science.gov (United States)

    Ahmad, Muhammad Saeed; Nazeer, Waqas; Kang, Shin Min; Imran, Muhammad; Gao, Wei

    2017-12-01

    An important area of applied mathematics is the Chemical reaction network theory. The behavior of real world problems can be modeled by using this theory. Due to applications in theoretical chemistry and biochemistry, it has attracted researchers since its foundation. It also attracts pure mathematicians because it involves interesting mathematical structures. In this report, we compute newly defined topological indices, namely, Arithmetic-Geometric index (AG1 index), SK index, SK1 index, and SK2 index of the dominating David derived networks [1, 2, 3, 4, 5].

  15. A fault-tolerant small world topology control model in ad hoc networks for search and rescue

    Science.gov (United States)

    Tan, Mian; Fang, Ling; Wu, Yue; Zhang, Bo; Chang, Bowen; Holme, Petter; Zhao, Jing

    2018-02-01

    Due to their self-organized, multi-hop and distributed characteristics, ad hoc networks are useful in search and rescue. Topology control models need to be designed for energy-efficient, robust and fast communication in ad hoc networks. This paper proposes a topology control model which specializes for search and rescue-Compensation Small World-Repeated Game (CSWRG)-which integrates mobility models, constructing small world networks and a game-theoretic approach to the allocation of resources. Simulation results show that our mobility models can enhance the communication performance of the constructed small-world networks. Our strategy, based on repeated game, can suppress selfish behavior and compensate agents that encounter selfish or faulty neighbors. This model could be useful for the design of ad hoc communication networks.

  16. Localized and Energy-Efficient Topology Control in Wireless Sensor Networks Using Fuzzy-Logic Control Approaches

    Directory of Open Access Journals (Sweden)

    Yuanjiang Huang

    2014-01-01

    Full Text Available The sensor nodes in the Wireless Sensor Networks (WSNs are prone to failures due to many reasons, for example, running out of battery or harsh environment deployment; therefore, the WSNs are expected to be able to maintain network connectivity and tolerate certain amount of node failures. By applying fuzzy-logic approach to control the network topology, this paper aims at improving the network connectivity and fault-tolerant capability in response to node failures, while taking into account that the control approach has to be localized and energy efficient. Two fuzzy controllers are proposed in this paper: one is Learning-based Fuzzy-logic Topology Control (LFTC, of which the fuzzy controller is learnt from a training data set; another one is Rules-based Fuzzy-logic Topology Control (RFTC, of which the fuzzy controller is obtained through designing if-then rules and membership functions. Both LFTC and RFTC do not rely on location information, and they are localized. Comparing them with other three representative algorithms (LTRT, List-based, and NONE through extensive simulations, our two proposed fuzzy controllers have been proved to be very energy efficient to achieve desired node degree and improve the network connectivity when sensor nodes run out of battery or are subject to random attacks.

  17. Integration Strategy Is a Key Step in Network-Based Analysis and Dramatically Affects Network Topological Properties and Inferring Outcomes

    Science.gov (United States)

    Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu

    2014-01-01

    An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127

  18. Using Pareto optimality to explore the topology and dynamics of the human connectome.

    Science.gov (United States)

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Betzel, Richard F; van den Heuvel, Martijn P; Griffa, Alessandra; Hagmann, Patric; Thiran, Jean-Philippe; Sporns, Olaf

    2014-10-05

    Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.

  19. Topological Vulnerability Evaluation Model Based on Fractal Dimension of Complex Networks.

    Directory of Open Access Journals (Sweden)

    Li Gou

    Full Text Available With an increasing emphasis on network security, much more attentions have been attracted to the vulnerability of complex networks. In this paper, the fractal dimension, which can reflect space-filling capacity of networks, is redefined as the origin moment of the edge betweenness to obtain a more reasonable evaluation of vulnerability. The proposed model combining multiple evaluation indexes not only overcomes the shortage of average edge betweenness's failing to evaluate vulnerability of some special networks, but also characterizes the topological structure and highlights the space-filling capacity of networks. The applications to six US airline networks illustrate the practicality and effectiveness of our proposed method, and the comparisons with three other commonly used methods further validate the superiority of our proposed method.

  20. Topological Reorganization of the Default Mode Network in Severe Male Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Liting Chen

    2018-06-01

    Full Text Available Impaired spontaneous regional activity and altered topology of the brain network have been observed in obstructive sleep apnea (OSA. However, the mechanisms of disrupted functional connectivity (FC and topological reorganization of the default mode network (DMN in patients with OSA remain largely unknown. We explored whether the FC is altered within the DMN and examined topological changes occur in the DMN in patients with OSA using a graph theory analysis of resting-state functional magnetic resonance imaging data and evaluated the relationship between neuroimaging measures and clinical variables. Resting-state data were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers (GSs. We specifically selected 20 DMN subregions to construct the DMN architecture. The disrupted FC and topological properties of the DMN in patients with OSA were characterized using graph theory. The OSA group showed significantly decreased FC of the anterior–posterior DMN and within the posterior DMN, and also showed increased FC within the DMN. The DMN exhibited small-world topology in both OSA and GS groups. Compared to GSs, patients with OSA showed a decreased clustering coefficient (Cp and local efficiency, and decreased nodal centralities in the left posterior cingulate cortex and dorsal medial prefrontal cortex, and increased nodal centralities in the ventral medial prefrontal cortex and the right parahippocampal cortex. Finally, the abnormal DMN FC was significantly related to Cp, path length, global efficiency, and Montreal cognitive assessment score. OSA showed disrupted FC within the DMN, which may have contributed to the observed topological reorganization. These findings may provide further evidence of cognitive deficits in patients with OSA.

  1. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks.

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-09-25

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  2. An algebraic topological method for multimodal brain networks comparison

    Directory of Open Access Journals (Sweden)

    Tiago eSimas

    2015-07-01

    Full Text Available Understanding brain connectivity is one of the most important issues in neuroscience. Nonetheless, connectivity data can reflect either functional relationships of brain activities or anatomical connections between brain areas. Although both representations should be related, this relationship is not straightforward. We have devised a powerful method that allows different operations between networks that share the same set of nodes, by embedding them in a common metric space, enforcing transitivity to the graph topology. Here, we apply this method to construct an aggregated network from a set of functional graphs, each one from a different subject. Once this aggregated functional network is constructed, we use again our method to compare it with the structural connectivity to identify particular brain regions that differ in both modalities (anatomical and functional. Remarkably, these brain regions include functional areas that form part of the classical resting state networks. We conclude that our method -based on the comparison of the aggregated functional network- reveals some emerging features that could not be observed when the comparison is performed with the classical averaged functional network.

  3. Small Strain Topological Effects of Biopolymer Networks with Rigid Cross-Links

    NARCIS (Netherlands)

    Zagar, G.; Onck, P. R.; Van der Giessen, E.; Garikipati, K; Arruda, EM

    2010-01-01

    Networks of cross-linked filamentous biopolymers form topological structures characterized by L, T and X cross-link types of connectivity 2, 3 and 4, respectively. The distribution of cross-links over these three types proofs to be very important for the initial elastic shear stiffness of isotropic

  4. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    Science.gov (United States)

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  5. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation

    Directory of Open Access Journals (Sweden)

    Qing Chen

    2017-02-01

    Full Text Available This article investigates the dynamic topology control problemof satellite cluster networks (SCNs in Earth observation (EO missions by applying a novel metric of stability for inter-satellite links (ISLs. The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  6. Effects of threshold on the topology of gene co-expression networks.

    Science.gov (United States)

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  7. Abe homotopy classification of topological excitations under the topological influence of vortices

    International Nuclear Information System (INIS)

    Kobayashi, Shingo; Kobayashi, Michikazu; Kawaguchi, Yuki; Nitta, Muneto; Ueda, Masahito

    2012-01-01

    Topological excitations are usually classified by the nth homotopy group π n . However, for topological excitations that coexist with vortices, there are cases in which an element of π n cannot properly describe the charge of a topological excitation due to the influence of the vortices. This is because an element of π n corresponding to the charge of a topological excitation may change when the topological excitation circumnavigates a vortex. This phenomenon is referred to as the action of π 1 on π n . In this paper, we show that topological excitations coexisting with vortices are classified by the Abe homotopy group κ n . The nth Abe homotopy group κ n is defined as a semi-direct product of π 1 and π n . In this framework, the action of π 1 on π n is understood as originating from noncommutativity between π 1 and π n . We show that a physical charge of a topological excitation can be described in terms of the conjugacy class of the Abe homotopy group. Moreover, the Abe homotopy group naturally describes vortex-pair creation and annihilation processes, which also influence topological excitations. We calculate the influence of vortices on topological excitations for the case in which the order parameter manifold is S n /K, where S n is an n-dimensional sphere and K is a discrete subgroup of SO(n+1). We show that the influence of vortices on a topological excitation exists only if n is even and K includes a nontrivial element of O(n)/SO(n).

  8. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    Science.gov (United States)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  9. Series of topological phase transitions in TiTe2 under strain

    KAUST Repository

    Zhang, Qingyun

    2013-10-21

    First-principles calculations are performed to investigate the topological properties of TiTe2 under hydrostatic pressure, uniaxial strain, and biaxial strain. It is found that the system is unusually accessible to strain effects and the first compound that under hydrostatic pressure (up to experimentally reasonable 30 GPa) is subject to a series of four topological phase transitions, which are related to band inversions at different points of the Brillouin zone. Therefore, TiTe2 enables experimental access to all these transitions in a single compound.

  10. Series of topological phase transitions in TiTe2 under strain

    KAUST Repository

    Zhang, Qingyun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    First-principles calculations are performed to investigate the topological properties of TiTe2 under hydrostatic pressure, uniaxial strain, and biaxial strain. It is found that the system is unusually accessible to strain effects and the first compound that under hydrostatic pressure (up to experimentally reasonable 30 GPa) is subject to a series of four topological phase transitions, which are related to band inversions at different points of the Brillouin zone. Therefore, TiTe2 enables experimental access to all these transitions in a single compound.

  11. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    Directory of Open Access Journals (Sweden)

    Lemke Ney

    2009-09-01

    Full Text Available Abstract Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing

  12. Graph theoretical analysis reveals disrupted topological properties of whole brain functional networks in temporal lobe epilepsy.

    Science.gov (United States)

    Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang

    2014-09-01

    Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Will electrical cyber-physical interdependent networks undergo first-order transition under random attacks?

    Science.gov (United States)

    Ji, Xingpei; Wang, Bo; Liu, Dichen; Dong, Zhaoyang; Chen, Guo; Zhu, Zhenshan; Zhu, Xuedong; Wang, Xunting

    2016-10-01

    Whether the realistic electrical cyber-physical interdependent networks will undergo first-order transition under random failures still remains a question. To reflect the reality of Chinese electrical cyber-physical system, the "partial one-to-one correspondence" interdependent networks model is proposed and the connectivity vulnerabilities of three realistic electrical cyber-physical interdependent networks are analyzed. The simulation results show that due to the service demands of power system the topologies of power grid and its cyber network are highly inter-similar which can effectively avoid the first-order transition. By comparing the vulnerability curves between electrical cyber-physical interdependent networks and its single-layer network, we find that complex network theory is still useful in the vulnerability analysis of electrical cyber-physical interdependent networks.

  14. Backoff-stage synchronization in three-hop string-topology wireless networks with hidden nodes

    Science.gov (United States)

    Sanada, Kosuke; Sekiya, Hiroo; Komuro, Nobuyoshi; Sakata, Shiro

    In IEEE 802.11 wireless multi-hop networks, each node works individually and their individual operations generate entire network dynamics. It is important to clarify the network dynamics in wireless multi-hop networks for designing and constructing multi-hop communication networks. This paper presents the network-dynamics investigations for three-hop string-topology wireless network in detail. From the investigations, a “backoff-stage synchronization” phenomenon, which is mutuality between hidden nodes, is found. The mechanism of the backoff-stage synchronization is expressed and the sufficient conditions for the synchronization occurrence are given. This phenomenon gives some impacts on the IEEE 802.11 multi-hop-network communications.

  15. Wake topology of under-actuated rajiform batoid robots

    Science.gov (United States)

    Valdivia Y Alvarado, Pablo; Weymouth, Gabriel; Thekoodan, Dilip; Patrikalakis, Nicholas

    2011-11-01

    Under-actuated continuous soft robots are designed to have modes of vibration that match desired body motions using minimal actuation. The desired modes of vibration are enabled by flexible continuous bodies with heterogenous material distributions. Errors or intentional approximations in the manufactured material distributions alter the achieved body motions and influence the resulting locomotion performance. An under-actuated continuous soft robot designed to mimic rajiform batoids such as stingrays is used to investigate the influence that fin kinematics variations have on wake topology, and the trade-offs that simplifying the body material structure has on achievable swimming performance. Pectoral fin kinematics in rajiform batoids are defined by traveling waves along the fin cord with particular amplitude envelopes along both the fin cord and span. Digital particle image velocimetry (DPIV) analysis of a prototype's wake structure and immersed-boundary numerical simulations are used to clarify the role of traveling wave wavelength, fin flapping frequency, and amplitude envelope characteristics on the resulting wake topology and swimming performance.

  16. The relations between network-operation and topological-property in a scale-free and small-world network with community structure

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2017-10-01

    It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.

  17. Topological structure and mechanics of glassy polymer networks.

    Science.gov (United States)

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  18. The role of global trade and transport network topology in the human-mediated dispersal of alien species.

    Science.gov (United States)

    Banks, Natalie Clare; Paini, Dean Ronald; Bayliss, Kirsty Louise; Hodda, Michael

    2015-02-01

    More people and goods are moving further and more frequently via many different trade and transport networks under current trends of globalisation. These networks can play a major role in the unintended introduction of exotic species to new locations. With the continuing rise in global trade, more research attention is being focused on the role of networks in the spread of invasive species. This represents an emerging field of research in invasion science and the substantial knowledge being generated within other disciplines can provide ecologists with new tools with which to study invasions. For the first time, we synthesise studies from several perspectives, approaches and disciplines to derive the fundamental characteristics of network topology determining the likelihood of spread of organisms via trade and transport networks. These characteristics can be used to identify critical points of vulnerability within these networks and enable the development of more effective strategies to prevent invasions. © 2014 John Wiley & Sons Ltd/CNRS.

  19. Evolutionary Topology of a Currency Network in Asia

    Science.gov (United States)

    Feng, Xiaobing; Wang, Xiaofan

    Although recently there are extensive research on currency network using minimum spanning trees approach, the knowledge about the actual evolution of a currency web in Asia is still limited. In the paper, we study the structural evolution of an Asian network using daily exchange rate data. It was found that the correlation between Asian currencies and US Dollar, the previous regional key currency has become weaker and the intra-Asia interactions have increased. This becomes more salient after the exchange rate reform of China. Different from the previous studies, we further reveal that it is the trade volume, national wealth gap and countries growth cycle that has contributed to the evolutionary topology of the minimum spanning tree. These findings provide a valuable platform for theoretical modeling and further analysis.

  20. Temperature-controlled two new Co(II) compounds with distinct topological networks: Syntheses, crystal structures and catalytic properties

    Science.gov (United States)

    Meng, Qing-Hua; Long, Xu; Liu, Jing-Li; Zhang, Shuan; Zhang, Guang-Hui

    2018-04-01

    Two new Co(II) coordination compounds, namely [Co2(bptc)(bpp)2]n (1) and [Co(bptc)0.5(bpp)]n (2) (H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, bpp = 1,3-di(4-pyridyl)propane), have been hydrothermally synthesized from the same reactants via tuning the reaction temperature. Single crystal X-ray diffraction analyses revealed that both 1 and 2 feature 2D sheet motifs. Topological analyses revealed that compounds 1 and 2 show distinct topological networks. Under the weak Van der Waals interactions, the 2D sheet motifs of compounds 1 and 2 are further packed into 2D→3D interdigitated supramolecular frameworks. Moreover, the two Co(II) compounds show high catalytic activities for degradation of methyl orange (MO) in a Fenten-like process.

  1. On the Hardness of Topology Inference

    Science.gov (United States)

    Acharya, H. B.; Gouda, M. G.

    Many systems require information about the topology of networks on the Internet, for purposes like management, efficiency, testing of new protocols and so on. However, ISPs usually do not share the actual topology maps with outsiders; thus, in order to obtain the topology of a network on the Internet, a system must reconstruct it from publicly observable data. The standard method employs traceroute to obtain paths between nodes; next, a topology is generated such that the observed paths occur in the graph. However, traceroute has the problem that some routers refuse to reveal their addresses, and appear as anonymous nodes in traces. Previous research on the problem of topology inference with anonymous nodes has demonstrated that it is at best NP-complete. In this paper, we improve upon this result. In our previous research, we showed that in the special case where nodes may be anonymous in some traces but not in all traces (so all node identifiers are known), there exist trace sets that are generable from multiple topologies. This paper extends our theory of network tracing to the general case (with strictly anonymous nodes), and shows that the problem of computing the network that generated a trace set, given the trace set, has no general solution. The weak version of the problem, which allows an algorithm to output a "small" set of networks- any one of which is the correct one- is also not solvable. Any algorithm guaranteed to output the correct topology outputs at least an exponential number of networks. Our results are surprisingly robust: they hold even when the network is known to have exactly two anonymous nodes, and every node as well as every edge in the network is guaranteed to occur in some trace. On the basis of this result, we suggest that exact reconstruction of network topology requires more powerful tools than traceroute.

  2. Energy Management Dynamic Control Topology In MANET

    Science.gov (United States)

    Madhusudan, G.; Kumar, TNR

    2017-08-01

    Topology management via per-node transmission power adjustment has been shown effective in extending network lifetime. The existing algorithms constructs static topologies which fail to take the residual energy of network nodes, and cannot balance energy consumption efficiently. To address this problem, a Light Weighted Distributed Topology Control algorithm EMDCT(Energy Management Dynamic Control Topology ) is proposed in this paper. Based on the link metric of the network, both the energy consumption rate level and residual energy levels at the two end nodes are considered. EMDCT generates a Dynamic Topology that changes with the variation of node energy without the aid of location information, each node determines its transmission power according to local network information, which reduces the overhead complexity of EMDCT greatly. The experiment results show that EMDCT preserves network connectivity and manitains minimum-cost property of the network also it can extend network lifetime more remarkably.

  3. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  4. Correlation and network topologies in global and local stock indices

    Science.gov (United States)

    Nobi, Ashadun; Lee, Sungmin; Kim, Doo Hwan; Lee, Jae Woo

    2014-07-01

    We examined how the correlation and network structure of the global indices and local Korean indices have changed during years 2000-2012. The average correlations of the global indices increased with time, while the local indices showed a decreasing trend except for drastic changes during the crises. A significant change in the network topologies was observed due to the financial crises in both markets. The Jaccard similarities identified the change in the market state due to a crisis in both markets. The dynamic change of the Jaccard index can be used as an indicator of systemic risk or precursors of the crisis.

  5. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Science.gov (United States)

    Gui, Jinsong; Zhou, Kai; Xiong, Naixue

    2016-01-01

    Multi-Input Multi-Output (MIMO) can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs), clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO), which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude. PMID:27681731

  6. A Cluster-Based Dual-Adaptive Topology Control Approach in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2016-09-01

    Full Text Available Multi-Input Multi-Output (MIMO can improve wireless network performance. Sensors are usually single-antenna devices due to the high hardware complexity and cost, so several sensors are used to form virtual MIMO array, which is a desirable approach to efficiently take advantage of MIMO gains. Also, in large Wireless Sensor Networks (WSNs, clustering can improve the network scalability, which is an effective topology control approach. The existing virtual MIMO-based clustering schemes do not either fully explore the benefits of MIMO or adaptively determine the clustering ranges. Also, clustering mechanism needs to be further improved to enhance the cluster structure life. In this paper, we propose an improved clustering scheme for virtual MIMO-based topology construction (ICV-MIMO, which can determine adaptively not only the inter-cluster transmission modes but also the clustering ranges. Through the rational division of cluster head function and the optimization of cluster head selection criteria and information exchange process, the ICV-MIMO scheme effectively reduces the network energy consumption and improves the lifetime of the cluster structure when compared with the existing typical virtual MIMO-based scheme. Moreover, the message overhead and time complexity are still in the same order of magnitude.

  7. Experimental demonstration of topologically protected efficient sound propagation in an acoustic waveguide network

    Science.gov (United States)

    Wei, Qi; Tian, Ye; Zuo, Shu-Yu; Cheng, Ying; Liu, Xiao-Jun

    2017-03-01

    Acoustic topological states support sound propagation along the boundary in a one-way direction with inherent robustness against defects and disorders, leading to the revolution of the manipulation on acoustic waves. A variety of acoustic topological states relying on circulating fluid, chiral coupling, or temporal modulation have been proposed theoretically. However, experimental demonstration has so far remained a significant challenge, due to the critical limitations such as structural complexity and high losses. Here, we experimentally demonstrate an acoustic anomalous Floquet topological insulator in a waveguide network. The acoustic gapless edge states can be found in the band gap when the waveguides are strongly coupled. The scheme features simple structure and high-energy throughput, leading to the experimental demonstration of efficient and robust topologically protected sound propagation along the boundary. The proposal may offer a unique, promising application for design of acoustic devices in acoustic guiding, switching, isolating, filtering, etc.

  8. Network-based statistical comparison of citation topology of bibliographic databases

    Science.gov (United States)

    Šubelj, Lovro; Fiala, Dalibor; Bajec, Marko

    2014-01-01

    Modern bibliographic databases provide the basis for scientific research and its evaluation. While their content and structure differ substantially, there exist only informal notions on their reliability. Here we compare the topological consistency of citation networks extracted from six popular bibliographic databases including Web of Science, CiteSeer and arXiv.org. The networks are assessed through a rich set of local and global graph statistics. We first reveal statistically significant inconsistencies between some of the databases with respect to individual statistics. For example, the introduced field bow-tie decomposition of DBLP Computer Science Bibliography substantially differs from the rest due to the coverage of the database, while the citation information within arXiv.org is the most exhaustive. Finally, we compare the databases over multiple graph statistics using the critical difference diagram. The citation topology of DBLP Computer Science Bibliography is the least consistent with the rest, while, not surprisingly, Web of Science is significantly more reliable from the perspective of consistency. This work can serve either as a reference for scholars in bibliometrics and scientometrics or a scientific evaluation guideline for governments and research agencies. PMID:25263231

  9. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...

  10. Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    Directory of Open Access Journals (Sweden)

    St Laurent Georges

    2010-03-01

    Full Text Available Abstract Background Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors. Methods In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology. Results Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4

  11. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    Science.gov (United States)

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (Pdisorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  12. A Brief Historical Introduction to Euler's Formula for Polyhedra, Topology, Graph Theory and Networks

    Science.gov (United States)

    Debnath, Lokenath

    2010-01-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…

  13. Self-organized topology of recurrence-based complex networks

    International Nuclear Information System (INIS)

    Yang, Hui; Liu, Gang

    2013-01-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks

  14. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Science.gov (United States)

    Rzucidlo, Justyna K; Roseman, Paige L; Laurienti, Paul J; Dagenbach, Dale

    2013-01-01

    Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI) data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  15. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  16. Analyzing Bullwhip Effect in Supply Networks under Exogenous Uncertainty

    Directory of Open Access Journals (Sweden)

    Mitra Darvish

    2014-05-01

    Full Text Available This paper explains a model for analyzing and measuring the propagation of order amplifications (i.e. bullwhip effect for a single-product supply network topology considering exogenous uncertainty and linear and time-invariant inventory management policies for network entities. The stream of orders placed by each entity of the network is characterized assuming customer demand is ergodic. In fact, we propose an exact formula in order to measure the bullwhip effect in the addressed supply network topology considering the system in Markovian chain framework and presenting a matrix of network member relationships and relevant order sequences. The formula turns out using a mathematical method called frequency domain analysis. The major contribution of this paper is analyzing the bullwhip effect considering exogenous uncertainty in supply networks and using the Fourier transform in order to simplify the relevant calculations. We present a number of numerical examples to assess the analytical results accuracy in quantifying the bullwhip effect.

  17. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  18. Correlations in the degeneracy of structurally controllable topologies for networks

    Science.gov (United States)

    Campbell, Colin; Aucott, Steven; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2017-04-01

    Many dynamic systems display complex emergent phenomena. By directly controlling a subset of system components (nodes) via external intervention it is possible to indirectly control every other component in the system. When the system is linear or can be approximated sufficiently well by a linear model, methods exist to identify the number and connectivity of a minimum set of external inputs (constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes and edges that are always, sometimes, or never a part of an MCT. We study the relationships between the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We show that the properties introduced in this report can be used to predict key components of biological networks, with potentially broad applications to network medicine.

  19. A preliminary investigation on the topology of Chinese climate networks

    International Nuclear Information System (INIS)

    Ge-Li, Wang; Tsonis, Anastasios A

    2009-01-01

    Complex networks have been studied across many fields of science in recent years. In this paper, we give a brief introduction of networks, then follow the original works by Tsonis et al (2004, 2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks. Results show that the Chinese climate network exhibits a characteristic of regular, almost fully connected networks, which means that most nodes in this case have the same number of links, and so-called super nodes with a very large number of links do not exist there. In other words, though former results show that nodes in the extratropical region provide a property of scale-free networks, they still have other different local fine structures inside. We also detect the community of the Chinese climate network by using a Bayesian technique; the effective number of communities of the Chinese climate network is about four in this network. More importantly, this technique approaches results in divisions which have connections with physics and dynamics; the division into communities may highlight the aspects of the dynamics of climate variability. (geophysics, astronomy and astrophysics)

  20. Energy-Aware Topology Control Strategy for Human-Centric Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Roc Meseguer

    2014-02-01

    Full Text Available The adoption of mobile and ubiquitous solutions that involve participatory or opportunistic sensing increases every day. This situation has highlighted the relevance of optimizing the energy consumption of these solutions, because their operation depends on the devices’ battery lifetimes. This article presents a study that intends to understand how the prediction of topology control messages in human-centric wireless sensor networks can be used to help reduce the energy consumption of the participating devices. In order to do that, five research questions have been defined and a study based on simulations was conducted to answer these questions. The obtained results help identify suitable mobile computing scenarios where the prediction of topology control messages can be used to save energy of the network nodes. These results also allow estimating the percentage of energy saving that can be expected, according to the features of the work scenario and the participants behavior. Designers of mobile collaborative applications that involve participatory or opportunistic sensing, can take advantage of these findings to increase the autonomy of their solutions.

  1. Topology of the Italian airport network: A scale-free small-world network with a fractal structure?

    International Nuclear Information System (INIS)

    Guida, Michele; Maria, Funaro

    2007-01-01

    In this paper, for the first time we analyze the structure of the Italian Airport Network (IAN) looking at it as a mathematical graph and investigate its topological properties. We find that it has very remarkable features, being like a scale-free network, since both the degree and the 'betweenness centrality' distributions follow a typical power-law known in literature as a Double Pareto Law. From a careful analysis of the data, the Italian Airport Network turns out to have a self-similar structure. In short, it is characterized by a fractal nature, whose typical dimensions can be easily determined from the values of the power-law scaling exponents. Moreover, we show that, according to the period examined, these distributions exhibit a number of interesting features, such as the existence of some 'hubs', i.e. in the graph theory's jargon, nodes with a very large number of links, and others most probably associated with geographical constraints. Also, we find that the IAN can be classified as a small-world network because the average distance between reachable pairs of airports grows at most as the logarithm of the number of airports. The IAN does not show evidence of 'communities' and this result could be the underlying reason behind the smallness of the value of the clustering coefficient, which is related to the probability that two nearest neighbors of a randomly chosen airport are connected

  2. Topological and functional properties of the small GTPases protein interaction network.

    Directory of Open Access Journals (Sweden)

    Anna Delprato

    Full Text Available Small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran regulate key cellular processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. A great deal of experimental evidence supports the existence of signaling cascades and feedback loops within and among the small GTPase subfamilies suggesting that these proteins function in a coordinated and cooperative manner. The interplay occurs largely through association with bi-partite regulatory and effector proteins but can also occur through the active form of the small GTPases themselves. In order to understand the connectivity of the small GTPases signaling routes, a systems-level approach that analyzes data describing direct and indirect interactions was used to construct the small GTPases protein interaction network. The data were curated from the Search Tool for the Retrieval of Interacting Genes (STRING database and include only experimentally validated interactions. The network method enables the conceptualization of the overall structure as well as the underlying organization of the protein-protein interactions. The interaction network described here is comprised of 778 nodes and 1943 edges and has a scale-free topology. Rac1, Cdc42, RhoA, and HRas are identified as the hubs. Ten sub-network motifs are also identified in this study with themes in apoptosis, cell growth/proliferation, vesicle traffic, cell adhesion/junction dynamics, the nicotinamide adenine dinucleotide phosphate (NADPH oxidase response, transcription regulation, receptor-mediated endocytosis, gene silencing, and growth factor signaling. Bottleneck proteins that bridge signaling paths and proteins that overlap in multiple small GTPase networks are described along with the functional annotation of all proteins in the network.

  3. The topology of a causal network for the Chinese financial system

    Science.gov (United States)

    Gao, Bo; Ren, Ruo-en

    2013-07-01

    The paper builds a causal network for the Chinese financial system based on the Granger causality of company risks, studies its different topologies in crisis and bull period, and applies the centrality to explain individual risk and prevent systemic risk. The results show that this causal network possesses both small-world phenomenon and scale-free property, and has a little different average distance, clustering coefficient, and degree distribution in different periods, and financial institutions with high centrality not only have large individual risk, but also are important for systemic risk immunization.

  4. Community detection with consideration of non-topological information

    International Nuclear Information System (INIS)

    Zou Sheng-Rong; Peng Yu-Jing; Liu Ai-Fen; Xu Xiu-Lian; He Da-Ren

    2011-01-01

    In a network described by a graph, only topological structure information is considered to determine how the nodes are connected by edges. Non-topological information denotes that which cannot be determined directly from topological information. This paper shows, by a simple example where scientists in three research groups and one external group form four communities, that in some real world networks non-topological information (in this example, the research group affiliation) dominates community division. If the information has some influence on the network topological structure, the question arises as to how to find a suitable algorithm to identify the communities based only on the network topology. We show that weighted Newman algorithm may be the best choice for this example. We believe that this idea is general for real-world complex networks. (interdisciplinary physics and related areas of science and technology)

  5. The Effects of Topology on Throughput Capacity of Large Scale Wireless Networks

    Directory of Open Access Journals (Sweden)

    Qiuming Liu

    2017-03-01

    Full Text Available In this paper, we jointly consider the inhomogeneity and spatial dimension in large scale wireless networks. We study the effects of topology on the throughput capacity. This problem is inherently difficult since it is complex to handle the interference caused by simultaneous transmission. To solve this problem, we, according to the inhomogeneity of topology, divide the transmission into intra-cluster transmission and inter-cluster transmission. For the intra-cluster transmission, a spheroidal percolation model is constructed. The spheroidal percolation model guarantees a constant rate when a power control strategy is adopted. We also propose a cube percolation mode for the inter-cluster transmission. Different from the spheroidal percolation model, a constant transmission rate can be achieved without power control. For both transmissions, we propose a routing scheme with five phases. By comparing the achievable rate of each phase, we get the rate bottleneck, which is the throughput capacity of the network.

  6. Classification of data patterns using an autoassociative neural network topology

    Science.gov (United States)

    Dietz, W. E.; Kiech, E. L.; Ali, M.

    1989-01-01

    A diagnostic expert system based on neural networks is developed and applied to the real-time diagnosis of jet and rocket engines. The expert system methodologies are based on the analysis of patterns of behavior of physical mechanisms. In this approach, fault diagnosis is conceptualized as the mapping or association of patterns of sensor data to patterns representing fault conditions. The approach addresses deficiencies inherent in many feedforward neural network models and greatly reduces the number of networks necessary to identify the existence of a fault condition and estimate the duration and severity of the identified fault. The network topology used in the present implementation of the diagnostic system is described, as well as the training regimen used and the response of the system to inputs representing both previously observed and unknown fault scenarios. Noise effects on the integrity of the diagnosis are also evaluated.

  7. Correlation and network topologies in global and local stock indices

    DEFF Research Database (Denmark)

    Nobi, A.; Lee, S.; Kim, D. H.

    2014-01-01

    the crises. A significant change in the network topologies was observed due to the financial crises in both markets. The Jaccard similarities identified the change in the market state due to a crisis in both markets. The dynamic change of the Jaccard index can be used as an indicator of systemic risk......We examined how the correlation and network structure of the global indices and local Korean indices have changed during years 2000-2012. The average correlations of the global indices increased with time, while the local indices showed a decreasing trend except for drastic changes during...... or precursors of the crisis. (C) 2014 Elsevier B.V. All rights reserved....

  8. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-10-01

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Interdependent networks - Topological percolation research and application in finance

    Science.gov (United States)

    Zhou, Di

    This dissertation covers the two major parts of my Ph.D. research: i) developing a theoretical framework of complex networks and applying simulation and numerical methods to study the robustness of the network system, and ii) applying statistical physics concepts and methods to quantitatively analyze complex systems and applying the theoretical framework to study real-world systems. In part I, we focus on developing theories of interdependent networks as well as building computer simulation models, which includes three parts: 1) We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the networks significantly changes the critical density of failures, which can trigger the total disruption of the two-network system. Specifically, we find that the assortativity within a single network decreases the robustness of the entire system. 2) We study the percolation behavior of two interdependent scale-free (SF) networks under random failure of 1-p fraction of nodes. We find that as the coupling strength q between the two networks reduces from 1 (fully coupled) to 0 (no coupling), there exist two critical coupling strengths q1 and q2 , which separate the behaviors of the giant component as a function of p into three different regions, and for q2 relationship both analytically and numerically. We study a starlike network of n Erdos-Renyi (ER), SF networks and a looplike network of n ER networks, and we find for starlike networks, their phase transition regions change with n, but for looplike networks the phase regions change with average degree k . In part II, we apply concepts and methods developed in statistical physics to study economic systems. We analyze stock market indices and foreign exchange daily returns for 60 countries over the period of 1999-2012. We build a multi-layer network model based on different correlation measures, and introduce a

  10. Secure Adaptive Topology Control for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yen-Chieh Ouyang

    2010-02-01

    Full Text Available This paper presents a secure decentralized clustering algorithm for wireless ad-hoc sensor networks. The algorithm operates without a centralized controller, operates asynchronously, and does not require that the location of the sensors be known a priori. Based on the cluster-based topology, secure hierarchical communication protocols and dynamic quarantine strategies are introduced to defend against spam attacks, since this type of attacks can exhaust the energy of sensor nodes and will shorten the lifetime of a sensor network drastically. By adjusting the threshold of infected percentage of the cluster coverage, our scheme can dynamically coordinate the proportion of the quarantine region and adaptively achieve the cluster control and the neighborhood control of attacks. Simulation results show that the proposed approach is feasible and cost effective for wireless sensor networks.

  11. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  12. Network topologies and dynamics leading to endotoxin tolerance and priming in innate immune cells.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    Full Text Available The innate immune system, acting as the first line of host defense, senses and adapts to foreign challenges through complex intracellular and intercellular signaling networks. Endotoxin tolerance and priming elicited by macrophages are classic examples of the complex adaptation of innate immune cells. Upon repetitive exposures to different doses of bacterial endotoxin (lipopolysaccharide or other stimulants, macrophages show either suppressed or augmented inflammatory responses compared to a single exposure to the stimulant. Endotoxin tolerance and priming are critically involved in both immune homeostasis and the pathogenesis of diverse inflammatory diseases. However, the underlying molecular mechanisms are not well understood. By means of a computational search through the parameter space of a coarse-grained three-node network with a two-stage Metropolis sampling approach, we enumerated all the network topologies that can generate priming or tolerance. We discovered three major mechanisms for priming (pathway synergy, suppressor deactivation, activator induction and one for tolerance (inhibitor persistence. These results not only explain existing experimental observations, but also reveal intriguing test scenarios for future experimental studies to clarify mechanisms of endotoxin priming and tolerance.

  13. Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties

    Directory of Open Access Journals (Sweden)

    Adam J. Schwarz

    2012-01-01

    Full Text Available Network analysis of functional imaging data reveals emergent features of the brain as a function of its topological properties. However, the brain is not a homogeneous network, and the dependence of functional connectivity parameters on neuroanatomical substrate and parcellation scale is a key issue. Moreover, the extent to which these topological properties depend on underlying neurochemical changes remains unclear. In the present study, we investigated both global statistical properties and the local, voxel-scale distribution of connectivity parameters of the rat brain. Different neurotransmitter systems were stimulated by pharmacological challenge (d-amphetamine, fluoxetine, and nicotine to discriminate between stimulus-specific functional connectivity and more general features of the rat brain architecture. Although global connectivity parameters were similar, mapping of local connectivity parameters at high spatial resolution revealed strong neuroanatomical dependence of functional connectivity in the rat brain, with clear differentiation between the neocortex and older brain regions. Localized foci of high functional connectivity independent of drug challenge were found in the sensorimotor cortices, consistent with the high neuronal connectivity in these regions. Conversely, the topological properties and node roles in subcortical regions varied with neurochemical state and were dependent on the specific dynamics of the different functional processes elicited.

  14. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    Science.gov (United States)

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  15. Governmentalizing Gramsci: Topologies of power and passive revolution in Cambodia’s garment production network

    OpenAIRE

    Arnold, D.; Hess, M.

    2017-01-01

    This article takes a fresh look at the multiple power relations between state, capital and labor in global production networks. Moving beyond debates about public vs. private governance, it brings together Antonio Gramsci’s concepts of hegemony and the integral state with Michel Foucault’s concepts of governmentality and the “dipositive” in order to analyze the power topologies that permeate global production networks. Using the Cambodian garment production network as example, we scrutinize t...

  16. Network topology of an experimental futures exchange

    Science.gov (United States)

    Wang, S. C.; Tseng, J. J.; Tai, C. C.; Lai, K. H.; Wu, W. S.; Chen, S. H.; Li, S. P.

    2008-03-01

    Many systems of different nature exhibit scale free behaviors. Economic systems with power law distribution in the wealth are one of the examples. To better understand the working behind the complexity, we undertook an experiment recording the interactions between market participants. A Web server was setup to administer the exchange of futures contracts whose liquidation prices were coupled to event outcomes. After free registration, participants started trading to compete for the money prizes upon maturity of the futures contracts at the end of the experiment. The evolving `cash' flow network was reconstructed from the transactions between players. We show that the network topology is hierarchical, disassortative and small-world with a power law exponent of 1.02±0.09 in the degree distribution after an exponential decay correction. The small-world property emerged early in the experiment while the number of participants was still small. We also show power law-like distributions of the net incomes and inter-transaction time intervals. Big winners and losers are associated with high degree, high betweenness centrality, low clustering coefficient and low degree-correlation. We identify communities in the network as groups of the like-minded. The distribution of the community sizes is shown to be power-law distributed with an exponent of 1.19±0.16.

  17. Amorphous topological insulators constructed from random point sets

    Science.gov (United States)

    Mitchell, Noah P.; Nash, Lisa M.; Hexner, Daniel; Turner, Ari M.; Irvine, William T. M.

    2018-04-01

    The discovery that the band structure of electronic insulators may be topologically non-trivial has revealed distinct phases of electronic matter with novel properties1,2. Recently, mechanical lattices have been found to have similarly rich structure in their phononic excitations3,4, giving rise to protected unidirectional edge modes5-7. In all of these cases, however, as well as in other topological metamaterials3,8, the underlying structure was finely tuned, be it through periodicity, quasi-periodicity or isostaticity. Here we show that amorphous Chern insulators can be readily constructed from arbitrary underlying structures, including hyperuniform, jammed, quasi-crystalline and uniformly random point sets. While our findings apply to mechanical and electronic systems alike, we focus on networks of interacting gyroscopes as a model system. Local decorations control the topology of the vibrational spectrum, endowing amorphous structures with protected edge modes—with a chirality of choice. Using a real-space generalization of the Chern number, we investigate the topology of our structures numerically, analytically and experimentally. The robustness of our approach enables the topological design and self-assembly of non-crystalline topological metamaterials on the micro and macro scale.

  18. Stability of whole brain and regional network topology within and between resting and cognitive states.

    Directory of Open Access Journals (Sweden)

    Justyna K Rzucidlo

    Full Text Available BACKGROUND: Graph-theory based analyses of resting state functional Magnetic Resonance Imaging (fMRI data have been used to map the network organization of the brain. While numerous analyses of resting state brain organization exist, many questions remain unexplored. The present study examines the stability of findings based on this approach over repeated resting state and working memory state sessions within the same individuals. This allows assessment of stability of network topology within the same state for both rest and working memory, and between rest and working memory as well. METHODOLOGY/PRINCIPAL FINDINGS: fMRI scans were performed on five participants while at rest and while performing the 2-back working memory task five times each, with task state alternating while they were in the scanner. Voxel-based whole brain network analyses were performed on the resulting data along with analyses of functional connectivity in regions associated with resting state and working memory. Network topology was fairly stable across repeated sessions of the same task, but varied significantly between rest and working memory. In the whole brain analysis, local efficiency, Eloc, differed significantly between rest and working memory. Analyses of network statistics for the precuneus and dorsolateral prefrontal cortex revealed significant differences in degree as a function of task state for both regions and in local efficiency for the precuneus. Conversely, no significant differences were observed across repeated sessions of the same state. CONCLUSIONS/SIGNIFICANCE: These findings suggest that network topology is fairly stable within individuals across time for the same state, but also fluid between states. Whole brain voxel-based network analyses may prove to be a valuable tool for exploring how functional connectivity changes in response to task demands.

  19. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Science.gov (United States)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  20. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    Science.gov (United States)

    Long, Haiming; Zhang, Ji; Tang, Nengyu

    2017-01-01

    This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  1. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    Directory of Open Access Journals (Sweden)

    Haiming Long

    Full Text Available This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR and the systemic risk contribution (ΔCoVaR using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  2. The influence of passenger flow on the topology characteristics of urban rail transit networks

    Science.gov (United States)

    Hu, Yingyue; Chen, Feng; Chen, Peiwen; Tan, Yurong

    2017-05-01

    Current researches on the network characteristics of metro networks are generally carried out on topology networks without passenger flows running on it, thus more complex features of the networks with ridership loaded on it cannot be captured. In this study, we incorporated the load of metro networks, passenger volume, into the exploration of network features. Thus, the network can be examined in the context of operation, which is the ultimate purpose of the existence of a metro network. To this end, section load was selected as an edge weight to demonstrate the influence of ridership on the network, and a weighted calculation method for complex network indicators and robustness were proposed to capture the unique behaviors of a metro network with passengers flowing in it. The proposed method was applied on Beijing Subway. Firstly, the passenger volume in terms of daily origin and destination matrix was extracted from exhausted transit smart card data. Using the established approach and the matrix as weighting, common indicators of complex network including clustering coefficient, betweenness and degree were calculated, and network robustness were evaluated under potential attacks. The results were further compared to that of unweighted networks, and it suggests indicators of the network with consideration of passenger volumes differ from that without ridership to some extent, and networks tend to be more vulnerable than that without load on it. The significance sequence for the stations can be changed. By introducing passenger flow weighting, actual operation status of the network can be reflected more accurately. It is beneficial to determine the crucial stations and make precautionary measures for the entire network’s operation security.

  3. The effect of the neural activity on topological properties of growing neural networks.

    Science.gov (United States)

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  4. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    Science.gov (United States)

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease

  5. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-11-01

    Full Text Available Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging, we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging.

  6. The topology and dynamics of complex networks

    Science.gov (United States)

    Dezso, Zoltan

    We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.

  7. Modeling the quantum to classical crossover in topologically disordered networks

    International Nuclear Information System (INIS)

    Schijven, P; Kohlberger, J; Blumen, A; Mülken, O

    2012-01-01

    We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)

  8. Chiral topological phases from artificial neural networks

    Science.gov (United States)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  9. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  10. Proceedings of the International Symposium on Topological Aspects of Critical Systems and Networks

    Science.gov (United States)

    Yakubo, Kousuke; Amitsuka, Hiroshi; Ishikawa, Goo; Machino, Kazuo; Nakagaki, Toshiyuki; Tanda, Satoshi; Yamada, Hideto; Kichiji, Nozomi

    2007-07-01

    I. General properties of networks. Physics of network security / Y.-C. Lai, X. Wand and C. H. Lai. Multi-state interacting particle systems on scale-free networks / N. Masuda and N. Konno. Homotopy Reduction of Complex Networks 18 / Y. Hiraoka and T. Ichinomiya. Analysis of the Susceptible-Infected-Susceptible Model on Complex Network / T. Ichinomiya -- II. Complexity in social science. Innovation and Development in a Random Lattice / J. Lahtinen. Long-tailed distributions in biological systems: revisit to Lognormals / N. Kobayashi ... [et al.]. Two-class structure of income distribution in the USA:exponential bulk and power-law tail / V. M. Yakovenko and A. Christian Silva. Power Law distributions in two community currencies / N. Kichiji and M. Nishibe -- III. Patterns in biological objects. Stoichiometric network analysis of nonlinear phenomena in rection mechanism for TWC converters / M. Marek ... [et al.]. Collective movement and morphogenesis of epithelial cells / H. Haga and K. Kawabata. Indecisive behavior of amoeba crossing an environmental barrier / S. Takagi ... [et al.]. Effects of amount of food on path selection in the transport network of an amoeboid organism / T. Nakagaki ... [et al.]. Light scattering study in double network gels / M. Fukunaya ... [et al.].Blood flow velocity in the choroid in punctate inner choroidopathy and Vogt-Koyanagi-Harada disease; amd multifractal analysis of choroidal blood flow in age-related macular degeneration / K. Yoshida ... [et al.]. Topological analysis of placental arteries: correlation with neonatal growth / H. Yamada and K. Yakubo -- IV. Criticality in pure and applied physics. Droplets in Disordered Metallic Quantum Critical Systems / A. H. Castro Neto and B. A. Jones. Importance of static disorder and inhomogeneous cooperative dynamics in heavy-fermion metals / O. O. Bernal. Competition between spin glass and Antiferromagnetic phases in heavy fermion materials / S. Sullow. Emergent Phases via Fermi surface

  11. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  12. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology

    KAUST Repository

    Marinaro, Giovanni; La Rocca, Rosanna; Toma, Andrea; Barberio, Marianna; Cancedda, Laura; Di Fabrizio, Enzo M.; Decuzzi, Paolo C W; Gentile, Francesco T.

    2015-01-01

    The human brain is a tightly interweaving network of neural cells where the complexity of the network is given by the large number of its constituents and its architecture. The topological structure of neurons in the brain translates into its increased computational capabilities, low energy consumption, and nondeterministic functions, which differentiate human behavior from artificial computational schemes. In this manuscript, we fabricated porous silicon chips with a small pore size ranging from 8 to 75 nm and large fractal dimensions up to Df ∼ 2.8. In culturing neuroblastoma N2A cells on the described substrates, we found that those cells adhere more firmly to and proliferate on the porous surfaces compared to the conventional nominally flat silicon substrates, which were used as controls. More importantly, we observed that N2A cells on the porous substrates create highly clustered, small world topology patterns. We conjecture that neurons with a similar architecture may elaborate information more efficiently than in random or regular grids. Moreover, we hypothesize that systems of neurons on nano-scale geometry evolve in time to form networks in which the propagation of information is maximized. This journal is

  13. Topological Measurements of DWI Tractography for Alzheimer’s Disease Detection

    Directory of Open Access Journals (Sweden)

    Nicola Amoroso

    2017-01-01

    Full Text Available Neurodegenerative diseases affect brain morphology and connectivity, making complex networks a suitable tool to investigate and model their effects. Because of its stereotyped pattern Alzheimer’s disease (AD is a natural benchmark for the study of novel methodologies. Several studies have investigated the network centrality and segregation changes induced by AD, especially with a single subject approach. In this work, a holistic perspective based on the application of multiplex network concepts is introduced. We define and assess a diagnostic score to characterize the brain topology and measure the disease effects on a mixed cohort of 52 normal controls (NC and 47 AD patients, from Alzheimer’s Disease Neuroimaging Initiative (ADNI. The proposed topological score allows an accurate NC-AD classification: the average area under the curve (AUC is 95% and the 95% confidence interval is 92%–99%. Besides, the combination of topological information and structural measures, such as the hippocampal volumes, was also investigated. Topology is able to capture the disease signature of AD and, as the methodology is general, it can find interesting applications to enhance our insight into disease with more heterogeneous patterns.

  14. Analysis and Reduction of Complex Networks Under Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Knio, Omar M

    2014-04-09

    This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.

  15. Many-to-Many Multicast Routing Schemes under a Fixed Topology

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2013-01-01

    Full Text Available Many-to-many multicast routing can be extensively applied in computer or communication networks supporting various continuous multimedia applications. The paper focuses on the case where all users share a common communication channel while each user is both a sender and a receiver of messages in multicasting as well as an end user. In this case, the multicast tree appears as a terminal Steiner tree (TeST. The problem of finding a TeST with a quality-of-service (QoS optimization is frequently NP-hard. However, we discover that it is a good idea to find a many-to-many multicast tree with QoS optimization under a fixed topology. In this paper, we are concerned with three kinds of QoS optimization objectives of multicast tree, that is, the minimum cost, minimum diameter, and maximum reliability. All of three optimization problems are distributed into two types, the centralized and decentralized version. This paper uses the dynamic programming method to devise an exact algorithm, respectively, for the centralized and decentralized versions of each optimization problem.

  16. Augmented Topological Descriptors of Pore Networks for Material Science.

    Science.gov (United States)

    Ushizima, D; Morozov, D; Weber, G H; Bianchi, A G C; Sethian, J A; Bethel, E W

    2012-12-01

    One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.

  17. Electronic topological transitions in Zn under compression

    Science.gov (United States)

    Kechin, Vladimir V.

    2001-01-01

    The electronic structure of hcp Zn under pressure up to 10 GPa has been calculated self-consistently by means of the scalar relativistic tight-binding linear muffin-tin orbital method. The calculations show that three electronic topological transitions (ETT's) occur in Zn when the c/a axial ratio diminishes under compression. One transition occurs at c/a~=1.82 when the ``needles'' appear around the symmetry point K of the Brillouin zone. The other two transitions occur at c/a~=3, when the ``butterfly'' and ``cigar'' appear simultaneously both around the L point. It has been shown that these ETT's are responsible for a number of anomalies observed in Zn at compression.

  18. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  19. Algebraic topology of spin glasses

    International Nuclear Information System (INIS)

    Koma, Tohru

    2011-01-01

    We study the topology of frustration in d-dimensional Ising spin glasses with d ≥ 2 with nearest-neighbor interactions. We prove the following. For any given spin configuration, the domain walls on the unfrustration network are all transverse to a frustrated loop on the unfrustration network, where a domain wall is defined to be a connected element of the collection of all the (d - 1)-cells which are dual to the bonds having an unfavorable energy, and the unfrustration network is the collection of all the unfrustrated plaquettes. These domain walls are topologically nontrivial because they are all related to the global frustration of a loop on the unfrustration network. Taking account of the thermal stability for the domain walls, we can explain the numerical results that three- or higher-dimensional systems exhibit a spin glass phase, whereas two-dimensional ones do not. Namely, in two dimensions, the thermal fluctuations of the topologically nontrivial domain walls destroy the order of the frozen spins on the unfrustration network, whereas they do not in three or higher dimensions. This may be interpreted as a global topological effect of the frustrations.

  20. GH32 family activity: a topological approach through protein contact networks.

    Science.gov (United States)

    Cimini, Sara; Di Paola, Luisa; Giuliani, Alessandro; Ridolfi, Alessandra; De Gara, Laura

    2016-11-01

    The application of Protein Contact Networks methodology allowed to highlight a novel response of border region between the two domains to substrate binding. Glycoside hydrolases (GH) are enzymes that mainly hydrolyze the glycosidic bond between two carbohydrates or a carbohydrate and a non-carbohydrate moiety. These enzymes are involved in many fundamental and diverse biological processes in plants. We have focused on the GH32 family, including enzymes very similar in both sequence and structure, each having however clear specificities of substrate preferences and kinetic properties. Structural and topological differences among proteins of the GH32 family have been here identified by means of an emerging approach (Protein Contact network, PCN) based on the formalization of 3D structures as contact networks among amino-acid residues. The PCN approach proved successful in both reconstructing the already known functional domains and in identifying the structural counterpart of the properties of GH32 enzymes, which remain uncertain, like their allosteric character. The main outcome of the study was the discovery of the activation upon binding of the border (cleft) region between the two domains. This reveals the allosteric nature of the enzymatic activity for all the analyzed forms in the GH32 family, a character yet to be highlighted in biochemical studies. Furthermore, we have been able to recognize a topological signature (graph energy) of the different affinity of the enzymes towards small and large substrates.

  1. The effects of topology on the structural, dynamic and mechanical properties of network-forming materials

    International Nuclear Information System (INIS)

    Wilson, Mark

    2012-01-01

    The effects of network topology on the static structural, mechanical and dynamic properties of MX 2 network-forming liquids (with tetrahedral short-range order) are discussed. The network topology is controlled via a single model parameter (the anion polarizability) which effectively constrains the inter-tetrahedral linkages in a physically transparent manner. Critically, it is found to control the balance between the stability of corner- and edge-sharing tetrahedra. A potential rigidity transformation is investigated. The vibrational density of states is investigated, using an instantaneous normal model analysis, as a function of both anion polarizability and temperature. A low frequency peak is seen to appear and is shown to be correlated with the fraction of cations which are linked through solely edge-sharing structural motifs. A modified effective mean atom coordination number is proposed which allows the appearance of the low frequency feature to be understood in terms of a mean field rigidity percolation threshold. (paper)

  2. Quantum magnetotransport properties of topological insulators under strain

    KAUST Repository

    Tahir, M.

    2012-08-15

    We present a detailed theoretical investigation of the quantum magnetotransport properties of topological insulators under strain. We consider an external magnetic field perpendicular to the surface of the topological insulator in the presence of strain induced by the substrate. The strain effects mix the lower and upper surface states of neighboring Landau levels into two unequally spaced energy branches. Analytical expressions are derived for the collisional conductivity for elastic impurity scattering in the first Born approximation. We also calculate the Hall conductivity using the Kubo formalism. Evidence for the beating of Shubnikov–de Haas oscillations is found from the temperature and magnetic field dependence of the collisional and Hall conductivities. In the regime of a strong magnetic field, the beating pattern is replaced by a splitting of the magnetoresistance peaks due to finite strain energy. These results are in excellent agreement with recent HgTe transport experiments.

  3. The effect of network topologies on the spreading of technological developments

    International Nuclear Information System (INIS)

    Kocsis, Gergely; Kun, Ferenc

    2008-01-01

    We study an agent-based model, as a special type of opinion dynamics, of the spreading of innovations in socio-economic systems varying the topology of agents' social contacts. The agents are organized on a square lattice where the connections are rewired with a certain probability. We show that the degree polydispersity and long range connections of agents can facilitate, but can also hinder the spreading of new technologies, depending on the amount of advantages provided by the innovation. We determine the critical fraction of innovative agents required to initiate spreading and to obtain a significant technological progress. As the fraction of innovative agents approaches the critical value, the spreading process slows down analogously to the critical slowing down observed at continuous phase transitions. The characteristic timescale at the critical point proved to have the same scaling as the average shortest path of the underlying social network. The model captures some relevant features of the spreading of innovations in telecommunication technologies

  4. Topology control algorithm for wireless sensor networks based on Link forwarding

    Science.gov (United States)

    Pucuo, Cairen; Qi, Ai-qin

    2018-03-01

    The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.

  5. Motif formation and industry specific topologies in the Japanese business firm network

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  6. Topological Characteristics of the Hong Kong Stock Market: A Test-based P-threshold Approach to Understanding Network Complexity

    Science.gov (United States)

    Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo

    2017-02-01

    In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.

  7. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  8. Detecting and diagnosing SSME faults using an autoassociative neural network topology

    Science.gov (United States)

    Ali, M.; Dietz, W. E.; Kiech, E. L.

    1989-01-01

    An effort is underway at the University of Tennessee Space Institute to develop diagnostic expert system methodologies based on the analysis of patterns of behavior of physical mechanisms. In this approach, fault diagnosis is conceptualized as the mapping or association of patterns of sensor data to patterns representing fault conditions. Neural networks are being investigated as a means of storing and retrieving fault scenarios. Neural networks offer several powerful features in fault diagnosis, including (1) general pattern matching capabilities, (2) resistance to noisy input data, (3) the ability to be trained by example, and (4) the potential for implementation on parallel computer architectures. This paper presents (1) an autoassociative neural network topology, i.e. the network input and output is identical when properly trained, and hence learning is unsupervised; (2) the training regimen used; and (3) the response of the system to inputs representing both previously observed and unkown fault scenarios. The effects of noise on the integrity of the diagnosis are also evaluated.

  9. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    Science.gov (United States)

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  10. Dynamical Response of Networks Under External Perturbations: Exact Results

    Science.gov (United States)

    Chinellato, David D.; Epstein, Irving R.; Braha, Dan; Bar-Yam, Yaneer; de Aguiar, Marcus A. M.

    2015-04-01

    We give exact statistical distributions for the dynamic response of influence networks subjected to external perturbations. We consider networks whose nodes have two internal states labeled 0 and 1. We let nodes be frozen in state 0, in state 1, and the remaining nodes change by adopting the state of a connected node with a fixed probability per time step. The frozen nodes can be interpreted as external perturbations to the subnetwork of free nodes. Analytically extending and to be smaller than 1 enables modeling the case of weak coupling. We solve the dynamical equations exactly for fully connected networks, obtaining the equilibrium distribution, transition probabilities between any two states and the characteristic time to equilibration. Our exact results are excellent approximations for other topologies, including random, regular lattice, scale-free and small world networks, when the numbers of fixed nodes are adjusted to take account of the effect of topology on coupling to the environment. This model can describe a variety of complex systems, from magnetic spins to social networks to population genetics, and was recently applied as a framework for early warning signals for real-world self-organized economic market crises.

  11. Online Particle Detection by Neural Networks Based on Topologic Calorimetry Information

    CERN Document Server

    Ciodaro, T; The ATLAS collaboration; Damazio, D; de Seixas, JM

    2011-01-01

    This paper presents the last results from the Ringer algorithm, which is based on artificial neural networks for the electron identification at the online filtering system of the ATLAS particle detector, in the context of the LHC experiment at CERN. The algorithm performs topological feature extraction over the ATLAS calorimetry information (energy measurements). Later, the extracted information is presented to a neural network classifier. Studies showed that the Ringer algorithm achieves high detection efficiency, while keeping the false alarm rate low. Optimizations, guided by detailed analysis, reduced the algorithm execution time in 59%. Also, the payload necessary to store the Ringer algorithm information represents less than 6.2 percent of the total filtering system amount

  12. Exploring the morphospace of communication efficiency in complex networks.

    Directory of Open Access Journals (Sweden)

    Joaquín Goñi

    Full Text Available Graph theoretical analysis has played a key role in characterizing global features of the topology of complex networks, describing diverse systems such as protein interactions, food webs, social relations and brain connectivity. How system elements communicate with each other depends not only on the structure of the network, but also on the nature of the system's dynamics which are constrained by the amount of knowledge and resources available for communication processes. Complementing widely used measures that capture efficiency under the assumption that communication preferentially follows shortest paths across the network ("routing", we define analytic measures directed at characterizing network communication when signals flow in a random walk process ("diffusion". The two dimensions of routing and diffusion efficiency define a morphospace for complex networks, with different network topologies characterized by different combinations of efficiency measures and thus occupying different regions of this space. We explore the relation of network topologies and efficiency measures by examining canonical network models, by evolving networks using a multi-objective optimization strategy, and by investigating real-world network data sets. Within the efficiency morphospace, specific aspects of network topology that differentially favor efficient communication for routing and diffusion processes are identified. Charting regions of the morphospace that are occupied by canonical, evolved or real networks allows inferences about the limits of communication efficiency imposed by connectivity and dynamics, as well as the underlying selection pressures that have shaped network topology.

  13. Topological Organization of Functional Brain Networks in Healthy Children: Differences in Relation to Age, Sex, and Intelligence

    OpenAIRE

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then ...

  14. Topological patterns in street networks of self-organized urban settlements

    Science.gov (United States)

    Buhl, J.; Gautrais, J.; Reeves, N.; Solé, R. V.; Valverde, S.; Kuntz, P.; Theraulaz, G.

    2006-02-01

    Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.

  15. Maxwell rigidity and topological constraints in amorphous phase-change networks

    International Nuclear Information System (INIS)

    Micoulaut, M.; Otjacques, C.; Raty, J.-Y.; Bichara, C.

    2011-01-01

    By analyzing first-principles molecular-dynamics simulations of different telluride amorphous networks, we develop a method for the enumeration of radial and angular topological constraints, and show that the phase diagram of the most popular system Ge-Sb-Te can be split into two compositional elastic phases: a tellurium rich flexible phase and a stressed rigid phase that contains most of the materials used in phase-change applications. This sound atomic scale insight should open new avenues for the understanding of phase-change materials and other complex amorphous materials from the viewpoint of rigidity.

  16. Modeling Internet Topology Dynamics

    NARCIS (Netherlands)

    Haddadi, H.; Uhlig, S.; Moore, A.; Mortier, R.; Rio, M.

    Despite the large number of papers on network topology modeling and inference, there still exists ambiguity about the real nature of the Internet AS and router level topology. While recent findings have illustrated the inaccuracies in maps inferred from BGP peering and traceroute measurements,

  17. Critical conducting networks in disordered solids: ac universality from topological arguments

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, Jens

    2001-01-01

    This paper advocates an unconventional description of charge transport processes in disordered solids, which brings together the ideas of fractal geometry, percolation theory, and topology of manifolds. We demonstrate that the basic features of ac conductivity in disordered materials as seen...... in various experiments are reproduced with remarkable accuracy by the conduction properties of percolating fractal networks near the threshold of percolation. The universal character of ac conductivity in three embedding dimensions is discussed in connection with the available experimental data. An important...

  18. Topological representation of the porous structure and its evolution of reservoir sandstone under excavation-induced loads

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2017-01-01

    Full Text Available The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.

  19. Topological and Graph-Coloring Conditions on the Parameter-Independent Stability of Second-Order Networked Systems

    NARCIS (Netherlands)

    Koerts, Filip; Bürger, Mathias; van der Schaft, Abraham; De Persis, Claudio

    2017-01-01

    In this paper, we study parameter-independent stability in qualitatively heterogeneous passive networked systems containing damped and undamped nodes. Given the graph topology and a set of damped nodes, we ask if output consensus is achieved for all system parameter values. For given parameter

  20. Structure Identification of Uncertain Complex Networks Based on Anticipatory Projective Synchronization.

    Directory of Open Access Journals (Sweden)

    Liu Heng

    Full Text Available This paper investigates a method to identify uncertain system parameters and unknown topological structure in general complex networks with or without time delay. A complex network, which has uncertain topology and unknown parameters, is designed as a drive network, and a known response complex network with an input controller is designed to identify the drive network. Under the proposed input controller, the drive network and the response network can achieve anticipatory projective synchronization when the system is steady. Lyapunov theorem and Barbǎlat's lemma guarantee the stability of synchronization manifold between two networks. When the synchronization is achieved, the system parameters and topology in response network can be changed to equal with the parameters and topology in drive network. A numerical example is given to show the effectiveness of the proposed method.

  1. Topology Detection for Output-Coupling Weighted Complex Dynamical Networks with Coupling and Transmission Delays

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2017-01-01

    Full Text Available Topology detection for output-coupling weighted complex dynamical networks with two types of time delays is investigated in this paper. Different from existing literatures, coupling delay and transmission delay are simultaneously taken into account in the output-coupling network. Based on the idea of the state observer, we build the drive-response system and apply LaSalle’s invariance principle to the error dynamical system of the drive-response system. Several convergent criteria are deduced in the form of algebraic inequalities. Some numerical simulations for the complex dynamical network, with node dynamics being chaotic, are given to verify the effectiveness of the proposed scheme.

  2. Bribery games on interdependent complex networks.

    Science.gov (United States)

    Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim

    2018-08-07

    Bribe demands present a social conflict scenario where decisions have wide-ranging economic and ethical consequences. Nevertheless, such incidents occur daily in many countries across the globe. Harassment bribery constitute a significant sub-set of such bribery incidents where a government official demands a bribe for providing a service to a citizen legally entitled to it. We employ an evolutionary game-theoretic framework to analyse the evolution of corrupt and honest strategies in structured populations characterized by an interdependent complex network. The effects of changing network topology, average number of links and asymmetry in size of the citizen and officer population on the proliferation of incidents of bribery are explored. A complex network topology is found to be beneficial for the dominance of corrupt strategies over a larger region of phase space when compared with the outcome for a regular network, for equal citizen and officer population sizes. However, the extent of the advantage depends critically on the network degree and topology. A different trend is observed when there is a difference between the citizen and officer population sizes. Under those circumstances, increasing randomness of the underlying citizen network can be beneficial to the fixation of honest officers up to a certain value of the network degree. Our analysis reveals how the interplay between network topology, connectivity and strategy update rules can affect population level outcomes in such asymmetric games. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Topology in WebRTC Services

    OpenAIRE

    Husøy, Tarjei Klinge

    2015-01-01

    Bandwidth efficient, low latency, cheap - pick two. This has been the traditional trade-off for video conferencing providers, where the network topology has limited achievable performance in many conversation types. Consumers have also suffered under this scheme, as only the biggest companies have been capable of delivering a system that performs in a wide enough range of conversations to grow sustainable. This has limited innovation and made it hard for new providers to enter the market. ...

  4. Robust node estimation and topology discovery for large-scale networks

    KAUST Repository

    Alouini, Mohamed-Slim

    2017-02-23

    Various examples are provided for node estimation and topology discovery for networks. In one example, a method includes receiving a packet having an identifier from a first node; adding the identifier to another transmission packet based on a comparison between the first identifier and existing identifiers associated with the other packet; adjusting a transmit probability based on the comparison; and transmitting the other packet based on a comparison between the transmit probability and a probability distribution. In another example, a system includes a network device that can adds an identifier received in a packet to a list including existing identifiers and adjust a transmit probability based on a comparison between the identifiers; and transmit another packet based on a comparison between the transmit probability and a probability distribution. In another example, a method includes determining a quantity of sensor devices based on a plurality of identifiers received in a packet.

  5. Robust node estimation and topology discovery for large-scale networks

    KAUST Repository

    Alouini, Mohamed-Slim; Douik, Ahmed S.; Aly, Salah A.; Al-Naffouri, Tareq Y.

    2017-01-01

    Various examples are provided for node estimation and topology discovery for networks. In one example, a method includes receiving a packet having an identifier from a first node; adding the identifier to another transmission packet based on a comparison between the first identifier and existing identifiers associated with the other packet; adjusting a transmit probability based on the comparison; and transmitting the other packet based on a comparison between the transmit probability and a probability distribution. In another example, a system includes a network device that can adds an identifier received in a packet to a list including existing identifiers and adjust a transmit probability based on a comparison between the identifiers; and transmit another packet based on a comparison between the transmit probability and a probability distribution. In another example, a method includes determining a quantity of sensor devices based on a plurality of identifiers received in a packet.

  6. Network topology of olivine-basalt partial melts

    Science.gov (United States)

    Skemer, Philip; Chaney, Molly M.; Emmerich, Adrienne L.; Miller, Kevin J.; Zhu, Wen-lu

    2017-07-01

    The microstructural relationship between melt and solid grains in partially molten rocks influences many physical properties, including permeability, rheology, electrical conductivity and seismic wave speeds. In this study, the connectivity of melt networks in the olivine-basalt system is explored using a systematic survey of 3-D X-ray microtomographic data. Experimentally synthesized samples with 2 and 5 vol.% melt are analysed as a series of melt tubules intersecting at nodes. Each node is characterized by a coordination number (CN), which is the number of melt tubules that intersect at that location. Statistically representative volumes are described by coordination number distributions (CND). Polyhedral grains can be packed in many configurations yielding different CNDs, however widely accepted theory predicts that systems with small dihedral angles, such as olivine-basalt, should exhibit a predominant CN of four. In this study, melt objects are identified with CN = 2-8, however more than 50 per cent are CN = 4, providing experimental verification of this theoretical prediction. A conceptual model that considers the role of heterogeneity in local grain size and melt fraction is proposed to explain the formation of nodes with CN ≠ 4. Correctly identifying the melt network topology is essential to understanding the relationship between permeability and porosity, and hence the transport properties of partial molten mantle rocks.

  7. An improved genetic algorithm with dynamic topology

    International Nuclear Information System (INIS)

    Cai Kai-Quan; Tang Yan-Wu; Zhang Xue-Jun; Guan Xiang-Min

    2016-01-01

    The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. (paper)

  8. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  9. Dynamics of the cell-cycle network under genome-rewiring perturbations

    International Nuclear Information System (INIS)

    Katzir, Yair; Elhanati, Yuval; Braun, Erez; Averbukh, Inna

    2013-01-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein–DNA and protein–protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes

  10. Quantum transport in topological semimetals under magnetic fields

    Science.gov (United States)

    Lu, Hai-Zhou; Shen, Shun-Qing

    2017-06-01

    Topological semimetals are three-dimensional topological states of matter, in which the conduction and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topological semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are competitions between the positive magnetoresistivity induced by the weak anti-localization effect and negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals, we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of the scattering potential of disorder. The high-field positive magnetoconductivity may not be a compelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling, the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the Weyl nodes although the density of states vanishes there.

  11. Quantification of interaction and topological parameters of polyisoprene star polymers under good solvent conditions

    KAUST Repository

    Rai, Durgesh K.

    2016-05-05

    Mass fractal scaling, reflected in the mass fractal dimension df, is independently impacted by topology, reflected in the connectivity dimension c, and by tortuosity, reflected in the minimum dimension dmin. The mass fractal dimension is related to these other dimensions by df=cdmin. Branched fractal structures have a higher mass fractal dimension compared to linear structures due to a higher c, and extended structures have a lower dimension compared to convoluted self-avoiding and Gaussian walks due to a lower dmin. It is found, in this work, that macromolecules in thermodynamic equilibrium display a fixed mass fractal dimension df under good solvent conditions, regardless of chain topology. These equilibrium structures accommodate changes in chain topology such as branching c by a decrease in chain tortuosity dmin. Symmetric star polymers are used to understand the structure of complex macromolecular topologies. A recently published hybrid Unified scattering function accounts for interarm correlations in symmetric star polymers along with polymer-solvent interaction for chains of arbitrary scaling dimension. Dilute solutions of linear, three-arm and six-arm polyisoprene stars are studied under good solvent conditions in deuterated p-xylene. Reduced chain tortuosity can be viewed as steric straightening of the arms. Steric effects for star topologies are quantified, and it is found that steric straightening of arms is more significant for lower-molecular-weight arms. The observation of constant df is explained through a modification of Flory-Krigbaum theory for branched polymers.

  12. Photoinduced Topological Phase Transitions in Topological Magnon Insulators.

    Science.gov (United States)

    Owerre, S A

    2018-03-13

    Topological magnon insulators are the bosonic analogs of electronic topological insulators. They are manifested in magnetic materials with topologically nontrivial magnon bands as realized experimentally in a quasi-two-dimensional (quasi-2D) kagomé ferromagnet Cu(1-3, bdc), and they also possess protected magnon edge modes. These topological magnetic materials can transport heat as well as spin currents, hence they can be useful for spintronic applications. Moreover, as magnons are charge-neutral spin-1 bosonic quasiparticles with a magnetic dipole moment, topological magnon materials can also interact with electromagnetic fields through the Aharonov-Casher effect. In this report, we study photoinduced topological phase transitions in intrinsic topological magnon insulators in the kagomé ferromagnets. Using magnonic Floquet-Bloch theory, we show that by varying the light intensity, periodically driven intrinsic topological magnetic materials can be manipulated into different topological phases with different sign of the Berry curvatures and the thermal Hall conductivity. We further show that, under certain conditions, periodically driven gapped topological magnon insulators can also be tuned to synthetic gapless topological magnon semimetals with Dirac-Weyl magnon cones. We envision that this work will pave the way for interesting new potential practical applications in topological magnetic materials.

  13. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  14. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  15. APHiD: Hierarchical Task Placement to Enable a Tapered Fat Tree Topology for Lower Power and Cost in HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Michelogiannakis, George; Ibrahim, Khaled Z.; Shalf, John; Wilke, Jeremiah J.; Knight, Samuel; Kenny, Joseph P.

    2017-05-14

    The power and procurement cost of bandwidth in system-wide networks has forced a steady drop in the byte/flop ratio. This trend of computation becoming faster relative to the network is expected to hold. In this paper, we explore how cost-oriented task placement enables reducing the cost of system-wide networks by enabling high performance even on tapered topologies where more bandwidth is provisioned at lower levels. We describe APHiD, an efficient hierarchical placement algorithm that uses new techniques to improve the quality of heuristic solutions and reduces the demand on high-level, expensive bandwidth in hierarchical topologies. We apply APHiD to a tapered fat-tree, demonstrating that APHiD maintains application scalability even for severely tapered network configurations. Using simulation, we show that for tapered networks APHiD improves performance by more than 50% over random placement and even 15% in some cases over costlier, state-of-the-art placement algorithms.

  16. Topology-selective jamming of fully-connected, code-division random-access networks

    Science.gov (United States)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  17. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  18. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Liu, Li; Dinu, Valentin

    2018-01-01

    Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes

  19. Disrupted topological properties of brain white matter networks in left temporal lobe epilepsy: a diffusion tensor imaging study.

    Science.gov (United States)

    Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R

    2014-10-24

    Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  1. Complexity of generic biochemical circuits: topology versus strength of interactions

    Science.gov (United States)

    Tikhonov, Mikhail; Bialek, William

    2016-12-01

    The historical focus on network topology as a determinant of biological function is still largely maintained today, illustrated by the rise of structure-only approaches to network analysis. However, biochemical circuits and genetic regulatory networks are defined both by their topology and by a multitude of continuously adjustable parameters, such as the strength of interactions between nodes, also recognized as important. Here we present a class of simple perceptron-based Boolean models within which comparing the relative importance of topology versus interaction strengths becomes a quantitatively well-posed problem. We quantify the intuition that for generic networks, optimization of interaction strengths is a crucial ingredient of achieving high complexity, defined here as the number of fixed points the network can accommodate. We propose a new methodology for characterizing the relative role of parameter optimization for topologies of a given class.

  2. An Overview of Power Topologies for Micro-hydro Turbines

    DEFF Research Database (Denmark)

    Nababan, Sabar; Muljadi, E.; Blaabjerg, Frede

    2012-01-01

    This paper is an overview of different power topologies of micro-hydro turbines. The size of micro-hydro turbine is typically under 100kW. Conventional topologies of micro-hydro power are stand-alone operation used in rural electrical network in developing countries. Recently, many of micro-hydro...... power generations are connected to the distribution network through power electronics (PE). This turbines are operated in variable frequency operation to improve efficiency of micro-hydro power generation, improve the power quality, and ride through capability of the generation. In this paper our...... discussion is limited to the distributed generation. Like many other renewable energy sources, the objectives of micro-hydro power generation are to reduce the use of fossil fuel, to improve the reliability of the distribution system (grid), and to reduce the transmission losses. The overview described...

  3. Performance assessment of topologically diverse power systems subjected to hurricane events

    International Nuclear Information System (INIS)

    Winkler, James; Duenas-Osorio, Leonardo; Stein, Robert; Subramanian, Devika

    2010-01-01

    Large tropical cyclones cause severe damage to major cities along the United States Gulf Coast annually. A diverse collection of engineering and statistical models are currently used to estimate the geographical distribution of power outage probabilities stemming from these hurricanes to aid in storm preparedness and recovery efforts. Graph theoretic studies of power networks have separately attempted to link abstract network topology to transmission and distribution system reliability. However, few works have employed both techniques to unravel the intimate connection between network damage arising from storms, topology, and system reliability. This investigation presents a new methodology combining hurricane damage predictions and topological assessment to characterize the impact of hurricanes upon power system reliability. Component fragility models are applied to predict failure probability for individual transmission and distribution power network elements simultaneously. The damage model is calibrated using power network component failure data for Harris County, TX, USA caused by Hurricane Ike in September of 2008, resulting in a mean outage prediction error of 15.59% and low standard deviation. Simulated hurricane events are then applied to measure the hurricane reliability of three topologically distinct transmission networks. The rate of system performance decline is shown to depend on their topological structure. Reliability is found to correlate directly with topological features, such as network meshedness, centrality, and clustering, and the compact irregular ring mesh topology is identified as particularly favorable, which can influence regional lifeline policy for retrofit and hardening activities to withstand hurricane events.

  4. Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  5. Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability.

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  6. Topology Control with Anisotropic and Sector Turning Antennas in Ad-hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    V. Černý

    2011-01-01

    Full Text Available During the last several years, technological advances have allowed the development of small, cheap, embedded, independent and rather powerful radio devices that can self-organise into data networks. Such networks are usually called ad-hoc networks or, sometimes, depending on the application field, sensor networks. One of the first standards for ad-hoc networks to impose itself as a fully industrial framework for data gathering and control over such devices is IEEE 802.15.4 and, on top of it, its pair network architecture: ZigBee. In the case of multiple radio devices clamped into a small geographical area, the lack of radio bandwidth becomes a major problem, leading to multiple data losses and unnecessary power drain from the batteries of these small devices. This problem is usually perceived as interference. The deployment of appropriate topology control mechanisms (TC can solve interference. All of these algorithms calculate TC on the basis of isotropic antenna radiation patterns in the horizontal plane.

  7. Enhancing neural-network performance via assortativity

    International Nuclear Information System (INIS)

    Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.

    2011-01-01

    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.

  8. Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach.

    Science.gov (United States)

    Akiki, Teddy J; Averill, Christopher L; Wrocklage, Kristen M; Scott, J Cobb; Averill, Lynnette A; Schweinsburg, Brian; Alexander-Bloch, Aaron; Martini, Brenda; Southwick, Steven M; Krystal, John H; Abdallah, Chadi G

    2018-08-01

    Disruption in the default mode network (DMN) has been implicated in numerous neuropsychiatric disorders, including posttraumatic stress disorder (PTSD). However, studies have largely been limited to seed-based methods and involved inconsistent definitions of the DMN. Recent advances in neuroimaging and graph theory now permit the systematic exploration of intrinsic brain networks. In this study, we used resting-state functional magnetic resonance imaging (fMRI), diffusion MRI, and graph theoretical analyses to systematically examine the DMN connectivity and its relationship with PTSD symptom severity in a cohort of 65 combat-exposed US Veterans. We employed metrics that index overall connectivity strength, network integration (global efficiency), and network segregation (clustering coefficient). Then, we conducted a modularity and network-based statistical analysis to identify DMN regions of particular importance in PTSD. Finally, structural connectivity analyses were used to probe whether white matter abnormalities are associated with the identified functional DMN changes. We found decreased DMN functional connectivity strength to be associated with increased PTSD symptom severity. Further topological characterization suggests decreased functional integration and increased segregation in subjects with severe PTSD. Modularity analyses suggest a spared connectivity in the posterior DMN community (posterior cingulate, precuneus, angular gyrus) despite overall DMN weakened connections with increasing PTSD severity. Edge-wise network-based statistical analyses revealed a prefrontal dysconnectivity. Analysis of the diffusion networks revealed no alterations in overall strength or prefrontal structural connectivity. DMN abnormalities in patients with severe PTSD symptoms are characterized by decreased overall interconnections. On a finer scale, we found a pattern of prefrontal dysconnectivity, but increased cohesiveness in the posterior DMN community and relative sparing

  9. Chimera states: Effects of different coupling topologies

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  10. Becoming-Topologies of Education: Deformations, Networks and the Database Effect

    Science.gov (United States)

    Thompson, Greg; Cook, Ian

    2015-01-01

    This article uses topological approaches to suggest that education is becoming-topological. Analyses presented in a recent double-issue of "Theory, Culture & Society" are used to demonstrate the utility of topology for education. In particular, the article explains education's topological character through examining the global…

  11. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    Science.gov (United States)

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-03-07

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  12. Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Zhong, Zhaoxi; Zhao, Tengda; Luo, Jia; Guo, Zhihua; Guo, Meng; Li, Ping; Sun, Jing; He, Yong; Li, Zhanjiang

    2014-06-03

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder defined by recurrent thoughts, intrusive and distressing impulses, or images and ritualistic behaviors. Although focal diverse regional abnormalities white matter integrity in specific brain regions have been widely studied in populations with OCD, alterations in the structural connectivities among them remain poorly understood. The aim was to investigate the abnormalities in the topological efficiency of the white matter networks and the correlation between the network metrics and Yale-Brown Obsessive-Compulsive Scale scores in unmedicated OCD patients, using diffusion tensor tractography and graph theoretical approaches. This study used diffusion tensor imaging and deterministic tractography to map the white matter structural networks in 26 OCD patients and 39 age- and gender-matched healthy controls; and then applied graph theoretical methods to investigate abnormalities in the global and regional properties of the white matter network in these patients. The patients and control participants both showed small-world organization of the white matter networks. However, the OCD patients exhibited significant abnormal global topology, including decreases in global efficiency (t = -2.32, p = 0.02) and increases in shortest path length, Lp (t = 2.30, p = 0.02), the normalized weighted shortest path length, λ (t = 2.08, p=0.04), and the normalized clustering coefficient, γ (t = 2.26, p = 0.03), of their white matter structural networks compared with healthy controls. Further, the OCD patients showed a reduction in nodal efficiency predominately in the frontal regions, the parietal regions and caudate nucleus. The normalized weighted shortest path length of the network metrics was significantly negatively correlated with obsessive subscale of the Yale-Brown Obsessive-Compulsive Scale (r = -0.57, p = 0.0058). These findings demonstrate the abnormal topological efficiency in the white matter networks

  13. Two-terminal reliability of a mobile ad hoc network under the asymptotic spatial distribution of the random waypoint model

    International Nuclear Information System (INIS)

    Chen, Binchao; Phillips, Aaron; Matis, Timothy I.

    2012-01-01

    The random waypoint (RWP) mobility model is frequently used in describing the movement pattern of mobile users in a mobile ad hoc network (MANET). As the asymptotic spatial distribution of nodes under a RWP model exhibits central tendency, the two-terminal reliability of the MANET is investigated as a function of the source node location. In particular, analytical expressions for one and two hop connectivities are developed as well as an efficient simulation methodology for two-terminal reliability. A study is then performed to assess the effect of nodal density and network topology on network reliability.

  14. Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI is proposing to develop a set of topology control algorithms for a formation flying spacecraft that can be used to design and evaluate candidate formation...

  15. Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree

    International Nuclear Information System (INIS)

    Sauret, V.; Bailey, A.G.

    1999-01-01

    Detailed information on biological branching networks (optical nerves, airways or blood vessels) is often required to improve the analysis of 3D medical imaging data. A semi-automated algorithm has been developed to obtain the full 3D topology and dimensions (direction cosine, length, diameter, branching and gravity angles) of branching networks using their CT images. It has been tested using CT images of a simple Perspex branching network and applied to the CT images of a human cast of the airway tree. The morphology and topology of the computer derived network were compared with the manually measured dimensions. Good agreement was found. The airways dimensions also compared well with previous values quoted in literature. This algorithm can provide complete data set analysis much more quickly than manual measurements. Its use is limited by the CT resolution which means that very small branches are not visible. New data are presented on the branching angles of the airway tree. (author)

  16. Topological network entanglement as order parameter for the emergence of geometry

    International Nuclear Information System (INIS)

    Diamantini, M Cristina; Trugenberger, Carlo A

    2017-01-01

    We show that, in discrete models of quantum gravity, emergent geometric space can be viewed as the entanglement pattern in a mixed quantum state of the ‘universe’, characterized by a universal topological network entanglement. As a concrete example we analyze the recently proposed model in which geometry emerges due to the condensation of 4-cycles in random regular bipartite graphs, driven by the combinatorial Ollivier–Ricci curvature. Using this model we show that the emergence of geometric order decreases the entanglement entropy of random configurations. The lowest geometric entanglement entropy is realized in four dimensions. (paper)

  17. Synchronisation of networked Kuramoto oscillators under stable Lévy noise

    Science.gov (United States)

    Kalloniatis, Alexander C.; Roberts, Dale O.

    2017-01-01

    We study the Kuramoto model on several classes of network topologies examining the dynamics under the influence of Lévy noise. Such noise exhibits heavier tails than Gaussian and allows us to understand how 'shocks' influence the individual oscillator and collective system behaviour. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered. We perform numerical simulations for Erdős-Rényi (ER) and Barabási-Albert (BA) scale free networks of size N = 1000 while varying the Lévy index α for the noise. We find that synchrony now assumes a surprising variety of forms, not seen for Gaussian-type noise, and changing with α: a noise-generated drift, a smooth α dependence of the point of cross-over of ER and BA networks in the degree of synchronisation, and a severe loss of synchronisation at low values of α. We also show that this robustness of the BA network across most values of α can also be understood as a consequence of the Laplacian of the graph working within the fractional Fokker-Planck equation of the linearised system, close to synchrony, with both eigenvalues and eigenvectors alternately contributing in different regimes of α.

  18. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  19. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  20. Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI is proposing to develop, test and deliver a set of topology control algorithms and software for a formation flying spacecraft that can be used to design and...

  1. Automatic discovery of the communication network topology for building a supercomputer model

    Science.gov (United States)

    Sobolev, Sergey; Stefanov, Konstantin; Voevodin, Vadim

    2016-10-01

    The Research Computing Center of Lomonosov Moscow State University is developing the Octotron software suite for automatic monitoring and mitigation of emergency situations in supercomputers so as to maximize hardware reliability. The suite is based on a software model of the supercomputer. The model uses a graph to describe the computing system components and their interconnections. One of the most complex components of a supercomputer that needs to be included in the model is its communication network. This work describes the proposed approach for automatically discovering the Ethernet communication network topology in a supercomputer and its description in terms of the Octotron model. This suite automatically detects computing nodes and switches, collects information about them and identifies their interconnections. The application of this approach is demonstrated on the "Lomonosov" and "Lomonosov-2" supercomputers.

  2. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  3. Regions, Networks and Fluids: Anaemia and Social Topology

    NARCIS (Netherlands)

    Mol, A.M.; Law, John

    1994-01-01

    This is a paper about the topological presuppositions that frame the performance of social similarity and difference. It argues that 'the social' does not exist as a single spatial type, but rather performs itself in a recursive and topologically heterogeneous manner. Using material drawn from a

  4. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Science.gov (United States)

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  5. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    Full Text Available Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.

  6. A binary-decision-diagram-based two-bit arithmetic logic unit on a GaAs-based regular nanowire network with hexagonal topology

    International Nuclear Information System (INIS)

    Zhao Hongquan; Kasai, Seiya; Shiratori, Yuta; Hashizume, Tamotsu

    2009-01-01

    A two-bit arithmetic logic unit (ALU) was successfully fabricated on a GaAs-based regular nanowire network with hexagonal topology. This fundamental building block of central processing units can be implemented on a regular nanowire network structure with simple circuit architecture based on graphical representation of logic functions using a binary decision diagram and topology control of the graph. The four-instruction ALU was designed by integrating subgraphs representing each instruction, and the circuitry was implemented by transferring the logical graph structure to a GaAs-based nanowire network formed by electron beam lithography and wet chemical etching. A path switching function was implemented in nodes by Schottky wrap gate control of nanowires. The fabricated circuit integrating 32 node devices exhibits the correct output waveforms at room temperature allowing for threshold voltage variation.

  7. Persistent homology of complex networks

    International Nuclear Information System (INIS)

    Horak, Danijela; Maletić, Slobodan; Rajković, Milan

    2009-01-01

    Long-lived topological features are distinguished from short-lived ones (considered as topological noise) in simplicial complexes constructed from complex networks. A new topological invariant, persistent homology, is determined and presented as a parameterized version of a Betti number. Complex networks with distinct degree distributions exhibit distinct persistent topological features. Persistent topological attributes, shown to be related to the robust quality of networks, also reflect the deficiency in certain connectivity properties of networks. Random networks, networks with exponential connectivity distribution and scale-free networks were considered for homological persistency analysis

  8. Pathways of topological rank analysis (PoTRA: a novel method to detect pathways involved in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chaoxing Li

    2018-04-01

    Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several

  9. A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuanjiang Huang

    2014-03-01

    Full Text Available Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT, FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  10. Survey of Network-Based Approaches to Research of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Anida Sarajlić

    2014-01-01

    Full Text Available Cardiovascular diseases (CVDs are the leading health problem worldwide. Investigating causes and mechanisms of CVDs calls for an integrative approach that would take into account its complex etiology. Biological networks generated from available data on biomolecular interactions are an excellent platform for understanding interconnectedness of all processes within a living cell, including processes that underlie diseases. Consequently, topology of biological networks has successfully been used for identifying genes, pathways, and modules that govern molecular actions underlying various complex diseases. Here, we review approaches that explore and use relationships between topological properties of biological networks and mechanisms underlying CVDs.

  11. Application of Butterfly Clos-Network in Network-on-Chip

    Directory of Open Access Journals (Sweden)

    Hui Liu

    2014-01-01

    Full Text Available This paper studied the topology of NoC (Network-on-Chip. By combining the characteristics of the Clos network and butterfly network, a new topology named BFC (Butterfly Clos-network network was proposed. This topology integrates several modules, which belongs to the same layer but different dimensions, into a new module. In the BFC network, a bidirectional link is used to complete information exchange, instead of information exchange between different layers in the original network. During the routing period, other nondestination nodes can be used as middle stages to transfer data packets to complete the routing mission. Therefore, this topology has the characteristic of multistage. Simulation analyses show that BFC inherits the rich path diversity of Clos network, and it has a better performance than butterfly network in throughput and delay in a quite congested traffic pattern.

  12. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  13. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  14. Analyzing topological characteristics of neuronal functional networks in the rat brain

    International Nuclear Information System (INIS)

    Lu, Hu; Yang, Shengtao; Song, Yuqing; Wei, Hui

    2014-01-01

    In this study, we recorded spike trains from brain cortical neurons of several behavioral rats in vivo by using multi-electrode recordings. An NFN was constructed in each trial, obtaining a total of 150 NFNs in this study. The topological characteristics of NFNs were analyzed by using the two most important characteristics of complex networks, namely, small-world structure and community structure. We found that the small-world properties exist in different NFNs constructed in this study. Modular function Q was used to determine the existence of community structure in NFNs, through which we found that community-structure characteristics, which are related to recorded spike train data sets, are more evident in the Y-maze task than in the DM-GM task. Our results can also be used to analyze further the relationship between small-world characteristics and the cognitive behavioral responses of rats. - Highlights: • We constructed the neuronal function networks based on the recorded neurons. • We analyzed the two main complex network characteristics, namely, small-world structure and community structure. • NFNs which were constructed based on the recorded neurons in this study exhibit small-world properties. • Some NFNs have community structure characteristics

  15. Analyzing topological characteristics of neuronal functional networks in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hu [School of Computer Science and Communication Engineering, Jiangsu University, Jiangsu 212003 (China); School of Computer Science, Fudan University, Shanghai 200433 (China); Yang, Shengtao [Institutes of Brain Science, Fudan University, Shanghai 200433 (China); Song, Yuqing [School of Computer Science and Communication Engineering, Jiangsu University, Jiangsu 212003 (China); Wei, Hui [School of Computer Science, Fudan University, Shanghai 200433 (China)

    2014-08-28

    In this study, we recorded spike trains from brain cortical neurons of several behavioral rats in vivo by using multi-electrode recordings. An NFN was constructed in each trial, obtaining a total of 150 NFNs in this study. The topological characteristics of NFNs were analyzed by using the two most important characteristics of complex networks, namely, small-world structure and community structure. We found that the small-world properties exist in different NFNs constructed in this study. Modular function Q was used to determine the existence of community structure in NFNs, through which we found that community-structure characteristics, which are related to recorded spike train data sets, are more evident in the Y-maze task than in the DM-GM task. Our results can also be used to analyze further the relationship between small-world characteristics and the cognitive behavioral responses of rats. - Highlights: • We constructed the neuronal function networks based on the recorded neurons. • We analyzed the two main complex network characteristics, namely, small-world structure and community structure. • NFNs which were constructed based on the recorded neurons in this study exhibit small-world properties. • Some NFNs have community structure characteristics.

  16. Altered topology of neural circuits in congenital prosopagnosia.

    Science.gov (United States)

    Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia

    2017-08-21

    Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.

  17. Parallel Processing Performance Evaluation of Mixed T10/T100 Ethernet Topologies on Linux Pentium Systems

    National Research Council Canada - National Science Library

    Decato, Steven

    1997-01-01

    ... performed on relatively inexpensive off the shelf components. Alternative network topologies were implemented using 10 and 100 megabit-per-second Ethernet cards under the Linux operating system on Pentium based personal computer platforms...

  18. Regional vulnerability of longitudinal cortical association connectivity: Associated with structural network topology alterations in preterm children with cerebral palsy.

    Science.gov (United States)

    Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok

    2015-01-01

    Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with

  19. Doubly stochastic coherence in complex neuronal networks

    Science.gov (United States)

    Gao, Yang; Wang, Jianjun

    2012-11-01

    A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular, small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections. At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases considerably with the increase of the network topology randomness. The network topology randomness plays more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in the neuronal network research study.

  20. Dynamic routing and spectrum assignment based on multilayer virtual topology and ant colony optimization in elastic software-defined optical networks

    Science.gov (United States)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-07-01

    Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.

  1. Swelling of polymer networks with topological constraints: Application of the Helmis-Heinrich-Straube model

    Directory of Open Access Journals (Sweden)

    B. Basterra-Beroiz

    2018-08-01

    Full Text Available For the first time since its formulation in 1986, the theoretical approach proposed by Helmis, Heinrich and Straube (HHS model, which considers the contribution of topological restrictions from entanglements to the swelling of polymer networks, is applied to experimental data. The main aspects and key equations are reviewed and their application is illustrated for unfilled rubber compounds. The HHS model is based on real networks and gives new perspectives to the interpretation of experimental swelling data for which the entanglement contributions are usually neglected by considering phantom network models. This investigation applies a reliable constrained-chain approach through a deformation-dependent tube model for defining the elastic contribution of swollen networks, which is one of the main limitations on the applicability of classical (affine Flory-Rehner and (non-affine phantom models. This short communication intends to provide a baseline for the application and validation of this modern approach for a broader class of rubber materials.

  2. Extended topologies of tapped-inductor Z-source inverters

    DEFF Research Database (Denmark)

    Zhu, Miao; Li, Ding; Gao, Feng

    2011-01-01

    In this paper, two distinct types of tapped-inductor Z-source impedance networks are proposed for implementing high performance voltage-type inverters topologies with strong voltage boost inversion abilities and less components' stresses. All proposed topologies can in principle be unified...... into a generic network entity, which is termed hybrid-source tapped-inductor impedance network. The resulting novel Z-source inverters would have a higher output voltage gain and other unique advantages that currently have not yet been investigated. Theoretical analysis for explaining these operating features...

  3. Quantum computation with topological codes from qubit to topological fault-tolerance

    CERN Document Server

    Fujii, Keisuke

    2015-01-01

    This book presents a self-consistent review of quantum computation with topological quantum codes. The book covers everything required to understand topological fault-tolerant quantum computation, ranging from the definition of the surface code to topological quantum error correction and topological fault-tolerant operations. The underlying basic concepts and powerful tools, such as universal quantum computation, quantum algorithms, stabilizer formalism, and measurement-based quantum computation, are also introduced in a self-consistent way. The interdisciplinary fields between quantum information and other fields of physics such as condensed matter physics and statistical physics are also explored in terms of the topological quantum codes. This book thus provides the first comprehensive description of the whole picture of topological quantum codes and quantum computation with them.

  4. Segmentation of radiographic images under topological constraints: application to the femur.

    Science.gov (United States)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  5. Segmentation of radiographic images under topological constraints: application to the femur

    International Nuclear Information System (INIS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-01-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  6. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  7. Topological organization of the human brain functional connectome across the lifespan

    Directory of Open Access Journals (Sweden)

    Miao Cao

    2014-01-01

    Full Text Available Human brain function undergoes complex transformations across the lifespan. We employed resting-state functional MRI and graph-theory approaches to systematically chart the lifespan trajectory of the topological organization of human whole-brain functional networks in 126 healthy individuals ranging in age from 7 to 85 years. Brain networks were constructed by computing Pearson's correlations in blood-oxygenation-level-dependent temporal fluctuations among 1024 parcellation units followed by graph-based network analyses. We observed that the human brain functional connectome exhibited highly preserved non-random modular and rich club organization over the entire age range studied. Further quantitative analyses revealed linear decreases in modularity and inverted-U shaped trajectories of local efficiency and rich club architecture. Regionally heterogeneous age effects were mainly located in several hubs (e.g., default network, dorsal attention regions. Finally, we observed inverse trajectories of long- and short-distance functional connections, indicating that the reorganization of connectivity concentrates and distributes the brain's functional networks. Our results demonstrate topological changes in the whole-brain functional connectome across nearly the entire human lifespan, providing insights into the neural substrates underlying individual variations in behavior and cognition. These results have important implications for disease connectomics because they provide a baseline for evaluating network impairments in age-related neuropsychiatric disorders.

  8. Optimum topology for radial networks by using evolutionary computer programming; Topologia optima de redes radiais utilizando programacao evolucionaria

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Joao Luis [Instituto de Engenhariade Sistemas e Computadores (INESC), Porto (Portugal). E-mail: jpinto@duque.inescn.pt; Proenca, Luis Miguel [Instituto Superior de Linguas e Administracao (ISLA), Gaia (Portugal). E-mail: lproenca@inescn.pt

    1999-07-01

    This paper describes the using of Evolutionary Programming techniques for determination of the radial electric network topology, considering investment costs and losses. The work aims to demonstrate the particular easiness of coding and implementation and the parallelism implicit to the method as well, giving outstanding performance levels. As test example, a 43 bars and 75 alternative lines network has been used by describing an implementation of the algorithm in an Object Oriented platform.

  9. Copula-based modeling of degree-correlated networks

    International Nuclear Information System (INIS)

    Raschke, Mathias; Schläpfer, Markus; Trantopoulos, Konstantinos

    2014-01-01

    Dynamical processes on complex networks such as information exchange, innovation diffusion, cascades in financial networks or epidemic spreading are highly affected by their underlying topologies as characterized by, for instance, degree–degree correlations. Here, we introduce the concept of copulas in order to generate random networks with an arbitrary degree distribution and a rich a priori degree–degree correlation (or ‘association’) structure. The accuracy of the proposed formalism and corresponding algorithm is numerically confirmed, while the method is tested on a real-world network of yeast protein–protein interactions. The derived network ensembles can be systematically deployed as proper null models, in order to unfold the complex interplay between the topology of real-world networks and the dynamics on top of them. (paper)

  10. Gradient networks on uncorrelated random scale-free networks

    International Nuclear Information System (INIS)

    Pan Guijun; Yan Xiaoqing; Huang Zhongbing; Ma Weichuan

    2011-01-01

    Uncorrelated random scale-free (URSF) networks are useful null models for checking the effects of scale-free topology on network-based dynamical processes. Here, we present a comparative study of the jamming level of gradient networks based on URSF networks and Erdos-Renyi (ER) random networks. We find that the URSF networks are less congested than ER random networks for the average degree (k)>k c (k c ∼ 2 denotes a critical connectivity). In addition, by investigating the topological properties of the two kinds of gradient networks, we discuss the relations between the topological structure and the transport efficiency of the gradient networks. These findings show that the uncorrelated scale-free structure might allow more efficient transport than the random structure.

  11. The Topology of Danish Interbank Money Flows

    DEFF Research Database (Denmark)

    Rørdam, Kirsten Bonde; Bech, Morten Linnemann

    This paper presents the first topological analysis of Danish money market flows. We analyze the structure of two networks with different types of transactions. The first network is the money market network, which is driven by banks' behavior on the interbank market, the second is the network...

  12. Photo-responsive surface topology in chiral nematic media

    Science.gov (United States)

    Liu, Danqing; Bastiaansen, Cees W. M.; Toonder, Jaap. M. J.; Broer, Dirk J.

    2012-03-01

    We report on the design and fabrication of 'smart surfaces' that exhibit dynamic changes in their surface topology in response to exposure to light. The principle is based on anisotropic geometric changes of a liquid crystal network upon a change of the molecular order parameter. The photomechanical property of the coating is induced by incorporating an azobenzene moiety into the liquid crystal network. The responsive surface topology consists of regions with two different types of molecular order: planar chiral-nematic areas and homeotropic. Under flood exposure with 365 nm light the surfaces deform from flat to one with a surface relief. The height of the relief structures is of the order of 1 um corresponding to strain difference of around 20%. Furthermore, we demonstrate surface reliefs can form either convex or concave structures upon exposure to UV light corresponding to the decrease or increase molecular order parameter, respectively, related to the isomeric state of the azobenzene crosslinker. The reversible deformation to the initial flat state occurs rapidly after removing the light source.

  13. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  14. A Network-Based Impact Measure for Propagated Losses in a Supply Chain Network Consisting of Resilient Components

    Directory of Open Access Journals (Sweden)

    Jesus Felix Bayta Valenzuela

    2018-01-01

    Full Text Available The topology of a supply chain network affects the impacts of disruptions in it. We formulate a network-based measure of the impact of a disruption loss in a supply chain propagating downstream from an originating node. The measure takes into account the loss profile of the originating node, the structure of the supply network, and the resilience of the network components. We obtain an analytical expression for the impact measure under a beta-distributed initial loss (generalizable to any continuous distribution supported on the interval 0,1, under a breakthrough scenario (in which a fraction of the initial production loss reaches a focal company downstream as opposed to containment upstream or at the originating point. Furthermore, we obtain a closed-form solution for a supply chain network with a k-ary tree topology; a numerical study is performed for a scale-free network and a random network. Our proposed approach enables the evaluation of potential losses for a focal company considering its supply chain network structure, which may help the company to plan or redesign a robust and resilient network in response to different types of disruptions.

  15. Abnormal topological organization of the white matter network in Mandarin speakers with congenital amusia.

    Science.gov (United States)

    Zhao, Yanxin; Chen, Xizhuo; Zhong, Suyu; Cui, Zaixu; Gong, Gaolang; Dong, Qi; Nan, Yun

    2016-05-23

    Congenital amusia is a neurogenetic disorder that mainly affects the processing of musical pitch. Brain imaging evidence indicates that it is associated with abnormal structural and functional connections in the fronto-temporal region. However, a holistic understanding of the anatomical topology underlying amusia is still lacking. Here, we used probabilistic diffusion tensor imaging tractography and graph theory to examine whole brain white matter structural connectivity in 31 Mandarin-speaking amusics and 24 age- and IQ-matched controls. Amusics showed significantly reduced global connectivity, as indicated by the abnormally decreased clustering coefficient (Cp) and increased normalized shortest path length (λ) compared to the controls. Moreover, amusics exhibited enhanced nodal strength in the right inferior parietal lobule relative to controls. The co-existence of the lexical tone deficits was associated with even more deteriorated global network efficiency in amusics, as suggested by the significant correlation between the increments in normalized shortest path length (λ) and the insensitivity in lexical tone perception. Our study is the first to reveal reduced global connectivity efficiency in amusics as well as an increase in the global connectivity cost due to the co-existed lexical tone deficits. Taken together these results provide a holistic perspective on the anatomical substrates underlying congenital amusia.

  16. Regular Topologies for Gigabit Wide-Area Networks. Volume 1

    Science.gov (United States)

    Shacham, Nachum; Denny, Barbara A.; Lee, Diane S.; Khan, Irfan H.; Lee, Danny Y. C.; McKenney, Paul

    1994-01-01

    In general terms, this project aimed at the analysis and design of techniques for very high-speed networking. The formal objectives of the project were to: (1) Identify switch and network technologies for wide-area networks that interconnect a large number of users and can provide individual data paths at gigabit/s rates; (2) Quantitatively evaluate and compare existing and proposed architectures and protocols, identify their strength and growth potentials, and ascertain the compatibility of competing technologies; and (3) Propose new approaches to existing architectures and protocols, and identify opportunities for research to overcome deficiencies and enhance performance. The project was organized into two parts: 1. The design, analysis, and specification of techniques and protocols for very-high-speed network environments. In this part, SRI has focused on several key high-speed networking areas, including Forward Error Control (FEC) for high-speed networks in which data distortion is the result of packet loss, and the distribution of broadband, real-time traffic in multiple user sessions. 2. Congestion Avoidance Testbed Experiment (CATE). This part of the project was done within the framework of the DARTnet experimental T1 national network. The aim of the work was to advance the state of the art in benchmarking DARTnet's performance and traffic control by developing support tools for network experimentation, by designing benchmarks that allow various algorithms to be meaningfully compared, and by investigating new queueing techniques that better satisfy the needs of best-effort and reserved-resource traffic. This document is the final technical report describing the results obtained by SRI under this project. The report consists of three volumes: Volume 1 contains a technical description of the network techniques developed by SRI in the areas of FEC and multicast of real-time traffic. Volume 2 describes the work performed under CATE. Volume 3 contains the source

  17. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    International Nuclear Information System (INIS)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-01-01

    Five Zn(II) and Cd(II) coordination polymers, [Zn 2 (BOABA)(bpp)(OH)]·0.5H 2 O (1), [Cd 3 (BOABA) 2 (bpp) 2 (H 2 O) 6 ]·2H 2 O (2), [Cd 3 (BOABA) 2 (2,2′-bipy) 3 (H 2 O) 4 ]·5.5H 2 O (3), [CdNa(BOABA)(H 2 O)] 2 ·H 2 O (4) and [Cd 2 (BOABA)(bimb)Cl(H 2 O) 2 ]·H 2 O (5) (H 3 BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2′-bipy=2,2′-bipyridine, bimb=1,4-bis(imidazol-1′-yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2′-bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {Cd 2 Na 2 } clusters and BOABA 3– ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {Cd 4 Cl 2 } clusters and BOABA 3– ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d 10 metal(II) coordination polymers based on H 3 BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: ► Five d 10 metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. ► The polymers were structurally characterized by single-crystal X-ray diffraction. ► Polymers 1–5 display different topological structures. ► They show strong fluorescent emission bands in the solid state.

  18. Contact and symplectic topology

    CERN Document Server

    Colin, Vincent; Stipsicz, András

    2014-01-01

    Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

  19. Leveraging Fog Computing for Scalable IoT Datacenter Using Spine-Leaf Network Topology

    Directory of Open Access Journals (Sweden)

    K. C. Okafor

    2017-01-01

    Full Text Available With the Internet of Everything (IoE paradigm that gathers almost every object online, huge traffic workload, bandwidth, security, and latency issues remain a concern for IoT users in today’s world. Besides, the scalability requirements found in the current IoT data processing (in the cloud can hardly be used for applications such as assisted living systems, Big Data analytic solutions, and smart embedded applications. This paper proposes an extended cloud IoT model that optimizes bandwidth while allowing edge devices (Internet-connected objects/devices to smartly process data without relying on a cloud network. Its integration with a massively scaled spine-leaf (SL network topology is highlighted. This is contrasted with a legacy multitier layered architecture housing network services and routing policies. The perspective offered in this paper explains how low-latency and bandwidth intensive applications can transfer data to the cloud (and then back to the edge application without impacting QoS performance. Consequently, a spine-leaf Fog computing network (SL-FCN is presented for reducing latency and network congestion issues in a highly distributed and multilayer virtualized IoT datacenter environment. This approach is cost-effective as it maximizes bandwidth while maintaining redundancy and resiliency against failures in mission critical applications.

  20. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  1. The earthing system of the PRIMA Neutral Beam Test Facility based on the Mesh Common Bonding Network topology

    International Nuclear Information System (INIS)

    Pomaro, Nicola; Boldrin, Marco; Lazzaro, Gabriele

    2015-01-01

    Highlights: • We designed a high performance earthing system for the ITER Neutral Beam Test Facility. • The system is based on the Mesh Common Bonded Network topology. • Careful bonding of all metallic structures allowed to obtain a well meshed system. • Special care was dedicated to improve EMC performance of critical areas like control rooms. • The facility experimental results will be representative also of the ITER situation. - Abstract: PRIMA is a large experimental facility under realization in Padova, aimed at developing and testing the Neutral Beam Injectors for ITER. The operation of these devices involves high RF power and voltage up to 1 MV. Frequent and high voltage electrical breakdowns inside the beam sources occur regularly. The presence of a distributed carefully optimized earthing system is of paramount importance to achieve a satisfying disturbances immunity for equipment and diagnostics. The paper describes the design and the realization of the earthing system of the PRIMA facility, which is based on the MESH-Common Bonding Network (MESH-CBN) topology, as recommended by IEC and IEEE standards for installations with high levels of Electromagnetic Interferences (EMI). The principles of the MESH-CBN approach were adapted to the PRIMA layout, which is composed by several buildings, that are independent for seismic and architectural reasons, but are linked by many electrical conduits and hydraulic pipelines. The availability of huge foundations, with a large number of poles and pillars, was taken into account; building parts dedicated to host control rooms and sensitive equipment were treated with particular care. Moreover, the lightning protection system was integrated and harmonized with the earthing system.

  2. The earthing system of the PRIMA Neutral Beam Test Facility based on the Mesh Common Bonding Network topology

    Energy Technology Data Exchange (ETDEWEB)

    Pomaro, Nicola, E-mail: nicola.pomaro@igi.cnr.it; Boldrin, Marco; Lazzaro, Gabriele

    2015-10-15

    Highlights: • We designed a high performance earthing system for the ITER Neutral Beam Test Facility. • The system is based on the Mesh Common Bonded Network topology. • Careful bonding of all metallic structures allowed to obtain a well meshed system. • Special care was dedicated to improve EMC performance of critical areas like control rooms. • The facility experimental results will be representative also of the ITER situation. - Abstract: PRIMA is a large experimental facility under realization in Padova, aimed at developing and testing the Neutral Beam Injectors for ITER. The operation of these devices involves high RF power and voltage up to 1 MV. Frequent and high voltage electrical breakdowns inside the beam sources occur regularly. The presence of a distributed carefully optimized earthing system is of paramount importance to achieve a satisfying disturbances immunity for equipment and diagnostics. The paper describes the design and the realization of the earthing system of the PRIMA facility, which is based on the MESH-Common Bonding Network (MESH-CBN) topology, as recommended by IEC and IEEE standards for installations with high levels of Electromagnetic Interferences (EMI). The principles of the MESH-CBN approach were adapted to the PRIMA layout, which is composed by several buildings, that are independent for seismic and architectural reasons, but are linked by many electrical conduits and hydraulic pipelines. The availability of huge foundations, with a large number of poles and pillars, was taken into account; building parts dedicated to host control rooms and sensitive equipment were treated with particular care. Moreover, the lightning protection system was integrated and harmonized with the earthing system.

  3. The Effects of Long-term Abacus Training on Topological Properties of Brain Functional Networks.

    Science.gov (United States)

    Weng, Jian; Xie, Ye; Wang, Chunjie; Chen, Feiyan

    2017-08-18

    Previous studies in the field of abacus-based mental calculation (AMC) training have shown that this training has the potential to enhance a wide variety of cognitive abilities. It can also generate specific changes in brain structure and function. However, there is lack of studies investigating the impact of AMC training on the characteristics of brain networks. In this study, utilizing graph-based network analysis, we compared topological properties of brain functional networks between an AMC group and a matched control group. Relative to the control group, the AMC group exhibited higher nodal degrees in bilateral calcarine sulcus and increased local efficiency in bilateral superior occipital gyrus and right cuneus. The AMC group also showed higher nodal local efficiency in right fusiform gyrus, which was associated with better math ability. However, no relationship was significant in the control group. These findings provide evidence that long-term AMC training may improve information processing efficiency in visual-spatial related regions, which extend our understanding of training plasticity at the brain network level.

  4. Entraining the topology and the dynamics of a network of phase oscillators

    Science.gov (United States)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  5. Modelling Dynamic Topologies via Extensions of VDM-RT

    DEFF Research Database (Denmark)

    Nielsen, Claus Ballegård

    Only a few formal methods include descriptions of the network topology that the modelled system is deployed onto. In VDM Real-Time (VDM-RT) this has been enabled for distributed systems that have a static structure. However, when modelling dynamic systems this fixed topology becomes an issue....... Systems with highly distributed and alternating relationships cannot be expressed correctly in a static model. This document describes how VDM-RT can be extended with new language constructs to enable the description of dynamic reconfiguration of the network topology during the runtime execution...... of a model. The extension is developed on the basis of a case study involving a dynamic system that has a constant changing system topology. With a basis in the case study a model is developed that uses the static version of VDM-RT in order to reveal the limitations of the language. The case study...

  6. Topology and robustness in the Drosophila segment polarity network.

    Directory of Open Access Journals (Sweden)

    Nicholas T Ingolia

    2004-06-01

    Full Text Available A complex hierarchy of genetic interactions converts a single-celled Drosophila melanogaster egg into a multicellular embryo with 14 segments. Previously, von Dassow et al. reported that a mathematical model of the genetic interactions that defined the polarity of segments (the segment polarity network was robust (von Dassow et al. 2000. As quantitative information about the system was unavailable, parameters were sampled randomly. A surprisingly large fraction of these parameter sets allowed the model to maintain and elaborate on the segment polarity pattern. This robustness is due to the positive feedback of gene products on their own expression, which induces individual cells in a model segment to adopt different stable expression states (bistability corresponding to different cell types in the segment polarity pattern. A positive feedback loop will only yield multiple stable states when the parameters that describe it satisfy a particular inequality. By testing which random parameter sets satisfy these inequalities, I show that bistability is necessary to form the segment polarity pattern and serves as a strong predictor of which parameter sets will succeed in forming the pattern. Although the original model was robust to parameter variation, it could not reproduce the observed effects of cell division on the pattern of gene expression. I present a modified version that incorporates recent experimental evidence and does successfully mimic the consequences of cell division. The behavior of this modified model can also be understood in terms of bistability in positive feedback of gene expression. I discuss how this topological property of networks provides robust pattern formation and how large changes in parameters can change the specific pattern produced by a network.

  7. Modeling the IPv6 internet AS-level topology

    Science.gov (United States)

    Xiao, Bo; Liu, Lian-dong; Guo, Xiao-chen; Xu, Ke

    2009-02-01

    To measure the IPv6 internet AS-level topology, a network topology discovery system, called Dolphin, was developed. By comparing the measurement result of Dolphin with that of CAIDA’s Scamper, it was found that the IPv6 Internet at AS level, similar to other complex networks, is also scale-free but the exponent of its degree distribution is 1.2, which is much smaller than that of the IPv4 Internet and most other scale-free networks. In order to explain this feature of IPv6 Internet we argue that the degree exponent is a measure of uniformity of the degree distribution. Then, for the purpose of modeling the networks, we propose a new model based on the two major factors affecting the exponent of the EBA model. It breaks the lower bound of degree exponent which is 2 for most models. To verify the validity of this model, both theoretical and experimental analyses have been carried out. Finally, we demonstrate how this model can be successfully used to reproduce the topology of the IPv6 Internet.

  8. Critical phenomena in communication/computation networks with various topologies and suboptimal to optimal resource allocation

    Science.gov (United States)

    Cogoni, Marco; Busonera, Giovanni; Anedda, Paolo; Zanetti, Gianluigi

    2015-01-01

    We generalize previous studies on critical phenomena in communication networks [1,2] by adding computational capabilities to the nodes. In our model, a set of tasks with random origin, destination and computational structure is distributed on a computational network, modeled as a graph. By varying the temperature of a Metropolis Montecarlo, we explore the global latency for an optimal to suboptimal resource assignment at a given time instant. By computing the two-point correlation function for the local overload, we study the behavior of the correlation distance (both for links and nodes) while approaching the congested phase: a transition from peaked to spread g(r) is seen above a critical (Montecarlo) temperature Tc. The average latency trend of the system is predicted by averaging over several network traffic realizations while maintaining a spatially detailed information for each node: a sharp decrease of performance is found over Tc independently of the workload. The globally optimized computational resource allocation and network routing defines a baseline for a future comparison of the transition behavior with respect to existing routing strategies [3,4] for different network topologies.

  9. Impact of the topology of global macroeconomic network on the spreading of economic crises.

    Science.gov (United States)

    Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook

    2011-03-31

    Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more "globalized" random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises.

  10. Selection pressure transforms the nature of social dilemmas in adaptive networks

    Energy Technology Data Exchange (ETDEWEB)

    Van Segbroeck, Sven; Lenaerts, Tom [MLG, Universite Libre de Bruxelles, Boulevard du Triomphe-CP 212, 1050 Brussels (Belgium); Santos, Francisco C [CENTRIA, Departamento de Informatica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pacheco, Jorge M, E-mail: svsegbro@ulb.ac.be, E-mail: fcsantos@fct.unl.pt, E-mail: tlenaert@ulb.ac.be, E-mail: jmpacheco@math.uminho.pt [ATP-Group, CMAF, Complexo Interdisciplinar, P-1649-003 Lisboa Codex (Portugal)

    2011-01-15

    We have studied the evolution of cooperation in structured populations whose topology coevolves with the game strategies of the individuals. Strategy evolution proceeds according to an update rule with a free parameter, which measures the selection pressure. We explore how this parameter affects the interplay between network dynamics and strategy dynamics. A dynamical network topology can influence the strategy dynamics in two ways: (i) by modifying the expected payoff associated with each strategy and (ii) by reshaping the imitation network that underlies the evolutionary process. We show here that the selection pressure tunes the relative contribution of each of these two forces to the final outcome of strategy evolution. The dynamics of the imitation network plays only a minor role under strong selection, but becomes the dominant force under weak selection. We demonstrate how these findings constitute a mechanism supporting cooperative behavior.

  11. Selection pressure transforms the nature of social dilemmas in adaptive networks

    International Nuclear Information System (INIS)

    Van Segbroeck, Sven; Lenaerts, Tom; Santos, Francisco C; Pacheco, Jorge M

    2011-01-01

    We have studied the evolution of cooperation in structured populations whose topology coevolves with the game strategies of the individuals. Strategy evolution proceeds according to an update rule with a free parameter, which measures the selection pressure. We explore how this parameter affects the interplay between network dynamics and strategy dynamics. A dynamical network topology can influence the strategy dynamics in two ways: (i) by modifying the expected payoff associated with each strategy and (ii) by reshaping the imitation network that underlies the evolutionary process. We show here that the selection pressure tunes the relative contribution of each of these two forces to the final outcome of strategy evolution. The dynamics of the imitation network plays only a minor role under strong selection, but becomes the dominant force under weak selection. We demonstrate how these findings constitute a mechanism supporting cooperative behavior.

  12. Resiliently evolving supply-demand networks

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  13. Restorability on 3-connected WDM Networks Under Single and Dual Physical Link Failures

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Jensen, Michael; Riaz, Tahir

    2013-01-01

    This work studies the influence the network interconnection has over restoration techniques. The way physical links are distributed to interconnect network nodes has a great impact on parameters such as path distances when failures occur and restoration is applied. The work focuses on single and ...... to network planning, the trade-off network length vs. performance of the different topological options is studied. The results show how 3-connected graphs could provide a reasonable trade-off between costs, link failure rates, and restored path parameters....

  14. Simplification of Water Distribution Network Simulation by Topological Clustering – Investigation of its Potential Use in Copenhagen's Water Supply Monitoring and Contamination Contingency Plans

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2014-01-01

    Topological clustering was investigated to simplify a complex water distribution network of Copenhagen, Denmark, into recogniz- able water movement patterns. This made it possible to assess the general transport of the water and to suggest strategic sampling locations. Through a topological...... the samples’ comparability over time, and locations, where samples represent the distributed and consumed water in the Nørrebro district....

  15. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  16. Homeostatic structural plasticity can account for topology changes following deafferentation and focal stroke.

    Science.gov (United States)

    Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen

    2014-01-01

    After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.

  17. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  18. Structure-topology-property correlations of sodium phosphosilicate glasses.

    Science.gov (United States)

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  19. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  20. Optimized energy-delay sub-network routing protocol development and implementation for wireless sensor networks

    International Nuclear Information System (INIS)

    Fonda, James W; Zawodniok, Maciej; Jagannathan, S; Watkins, Steve E

    2008-01-01

    The development and the implementation issues of a reactive optimized energy-delay sub-network routing (OEDSR) protocol for wireless sensor networks (WSN) are introduced and its performance is contrasted with the popular ad hoc on-demand distance vector (AODV) routing protocol. Analytical results illustrate the performance of the proposed OEDSR protocol, while experimental results utilizing a hardware testbed under various scenarios demonstrate improvements in energy efficiency of the OEDSR protocol. A hardware platform constructed at the University of Missouri-Rolla (UMR), now the Missouri University of Science and Technology (MST), based on the Generation 4 Smart Sensor Node (G4-SSN) prototyping platform is also described. Performance improvements are shown in terms of end-to-end (E2E) delay, throughput, route-set-up time and drop rates and energy usage is given for three topologies, including a mobile topology. Additionally, results from the hardware testbed provide valuable lessons for network deployments. Under testing OEDSR provides a factor of ten improvement in the energy used in the routing session and extends network lifetime compared to AODV. Depletion experiments show that the time until the first node failure is extended by a factor of three with the network depleting and network lifetime is extended by 6.7%