WorldWideScience

Sample records for underlying model structure

  1. Empirical Analysis of Farm Credit Risk under the Structure Model

    Science.gov (United States)

    Yan, Yan

    2009-01-01

    The study measures farm credit risk by using farm records collected by Farm Business Farm Management (FBFM) during the period 1995-2004. The study addresses the following questions: (1) whether farm's financial position is fully described by the structure model, (2) what are the determinants of farm capital structure under the structure model, (3)…

  2. Constitutive model and electroplastic analysis of structures under cyclic loading

    International Nuclear Information System (INIS)

    Wang, X.; Lei, Y; Du, Q.

    1989-01-01

    Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments

  3. Finite element modeling of Balsa wood structures under severe loadings

    International Nuclear Information System (INIS)

    Toson, B.; Pesque, J.J.; Viot, P.

    2014-01-01

    In order to compute, in various situations, the requirements for transporting packages using Balsa wood as an energy absorber, a constitutive model is needed that takes into account all of the specific characteristics of the wood, such as its anisotropy, compressibility, softening, densification, and strain rate dependence. Such a model must also include the treatment of rupture of the wood when it is in traction. The complete description of wood behavior is not sufficient: robustness is also necessary because this model has to work in presence of large deformations and of many other external nonlinear phenomena in the surrounding structures. We propose such a constitutive model that we have developed using the commercial finite element package ABAQUS. The necessary data were acquired through an extensive compilation of the existing literature with the augmentation of personal measurements. Numerous validation tests are presented that represent different impact situations that a transportation cask might endure. (authors)

  4. Modeling of fracture of protective concrete structures under impact loads

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S. [Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation)

    2015-10-27

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  5. Modeling of fracture of protective concrete structures under impact loads

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  6. Modeling amorphization of tetrahedral structures under local approaches

    International Nuclear Information System (INIS)

    Jesurum, C.E.; Pulim, V.; Berger, B.; Hobbs, L.W.

    1997-01-01

    Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO 2 , SiC and Si 3 N 4 ) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions

  7. Sandpile models with and without an underlying spatial structure

    International Nuclear Information System (INIS)

    Christensen, K.; Olami, Z.

    1993-01-01

    We present a simple mean-field model for the sandpile model introduced by Bak, Tang, and Wiesenfeld (BTW) [Phys. Rev. Lett. 59, 381 (1987)]. In the mean-field model we are able to pinpoint the process of self-organization as well as the emerging scale invariance displayed as a power-law distribution of avalanche sizes. We discuss the BTW sandpile model on a lattice and show that the dynamical behavior can be expressed as a transport problem. This implies that the average avalanche size scales with the system size, and additional heuristic arguments related to the transport properties more than indicate the origin of the power-law behavior. We review recent work in which scaling relations and additional constraints between the various critical exponents are addressed. We demonstrate that some of the proposed relations are inconsistent. We present a coherent ''theory'' in which the scaling relations along with additional constraints leave only one exponent unknown

  8. Computer simulation of model cohesive powders: Plastic consolidation, structural changes and elasticity under isotropic loads

    OpenAIRE

    Gilabert, Francisco; Roux, Jean-Noël; Castellanos, Antonio

    2008-01-01

    International audience; The quasistatic behavior of a simple 2D model of a cohesive powder under isotropic loads is investigated by Discrete Element simulations. The loose packing states, as studied in a previous paper, undergo important structural changes under growing confining pressure P, while solid fraction \\Phi irreversibly increases by large amounts. The system state goes through three stages, with different forms of the plastic consolidation curve \\Phi(P*), under growing reduced press...

  9. Inelastic response of PCRV structure model with star-type support under horizontal loads

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamaguchi, T.; Takeda, T.

    1978-01-01

    The report presents the test results of scaled models for prestressed concrete reactor vessel (PCRV) structure with star-shaped support under horizontal loads. A scale factor of 1 / 70 to a proto-type PCRV structure for large HTGR is used for both static and dynamic loading test models, while a 1 / 15 scaled model is used for static loading tests. The static behaviors such as a load-deflection envelope of the 1 / 70 model are predicted well by an inelastic analysis in consideration with appearance of concrete cracks and reinforcing bar yielding. It is also ascertained by the test results of the 1 / 15 model under static alternative loads that the same analysis procedure can be applicable to the evaluation of the elastic and inelastic behaviors of PCRV structure with support. Based on the static loading test results of both scaled models, a tri-linearized load-deflection envelope and an equivalent linearized mathematical model for hysteresis loop are assumed in a dynamic analysis. A dynamic response analysis of the 1 / 70 model subjected to earthquake-like base motion is conducted by the similar manner above-mentioned and the calculated results show a good correlation with the test results

  10. Facial first impressions and partner preference models: Comparable or distinct underlying structures?

    Science.gov (United States)

    South Palomares, Jennifer K; Sutherland, Clare A M; Young, Andrew W

    2017-12-17

    Given the frequency of relationships nowadays initiated online, where impressions from face photographs may influence relationship initiation, it is important to understand how facial first impressions might be used in such contexts. We therefore examined the applicability of a leading model of verbally expressed partner preferences to impressions derived from real face images and investigated how the factor structure of first impressions based on potential partner preference-related traits might relate to a more general model of facial first impressions. Participants rated 1,000 everyday face photographs on 12 traits selected to represent (Fletcher, et al. 1999, Journal of Personality and Social Psychology, 76, 72) verbal model of partner preferences. Facial trait judgements showed an underlying structure that largely paralleled the tripartite structure of Fletcher et al.'s verbal preference model, regardless of either face gender or participant gender. Furthermore, there was close correspondence between the verbal partner preference model and a more general tripartite model of facial first impressions derived from a different literature (Sutherland et al., 2013, Cognition, 127, 105), suggesting an underlying correspondence between verbal conceptual models of romantic preferences and more general models of facial first impressions. © 2017 The British Psychological Society.

  11. Modelling of space-charge accumulation process in dielectrics of MDS structures under irradiation

    International Nuclear Information System (INIS)

    Gurtov, V.A.; Nazarov, A.I.; Travkov, I.V.

    1990-01-01

    Results of numerical modelling of radiation-induced space charge (RISC) accumulation in MOS structure silicon dioxide are given. Diffusion-drift model which takes account of trap heterogeneous distribution within dielectric volume and channeling of carriers captured at traps represents basis for calculations. Main physical processes affecting RISC accumulation are picked out and character of capture filling in dielectric volume under stress in MOS structure shutter during irradiation on the basis of comparison of experimental results for different thickness oxides with calculation data are predicted

  12. Concrete structures vulnerability under impact: characterization, modeling, and validation - Concrete slabs vulnerability under impact: characterization, modeling, and validation

    International Nuclear Information System (INIS)

    Xuan Dung Vu

    2013-01-01

    Concrete is a material whose behavior is complex, especially in cases of extreme loads. The objective of this thesis is to carry out an experimental characterization of the behavior of concrete under impact-generated stresses (confined compression and dynamic traction) and to develop a robust numerical tool to reliably model this behavior. In the experimental part, we have studied concrete samples from the VTT center (Technical Research Center of Finland). At first, quasi-static triaxial compressions with the confinement varies from 0 MPa (unconfined compression test) to 600 MPa were realized. The stiffness of the concrete increases with confinement pressure because of the reduction of porosity. Therefore, the maximum shear strength of the concrete is increased. The presence of water plays an important role when the degree of saturation is high and the concrete is subjected to high confinement pressure. Beyond a certain level of confinement pressure, the maximum shear strength of concrete decreases with increasing water content. The effect of water also influences the volumetric behavior of concrete. When all free pores are closed as a result of compaction, the low compressibility of the water prevents the deformation of the concrete, whereby the wet concrete is less deformed than the dry concrete for the same mean stress. The second part of the experimental program concerns dynamic tensile tests at different loading velocities, and different moisture conditions of concrete. The results show that the tensile strength of concrete C50 may increase up to 5 times compared to its static strength for a strain rate of about 100 s -1 . In the numerical part, we are interested in improving an existing constitutive coupled model of concrete behavior called PRM (Pontiroli-Rouquand-Mazars) to predict the concrete behavior under impact. This model is based on a coupling between a damage model which is able to describe the degradation mechanisms and cracking of the concrete at

  13. Evaluation of Reinforced Concrete Structural Members under Uniform Loads Using Truss Model

    Directory of Open Access Journals (Sweden)

    Houshang Dabbagh

    2016-03-01

    Full Text Available Truss model is an analytical approach to predict the strength of reinforced concrete members with geometric or statical discontinuous regions. This study investigates the use of truss model to predict the structural behavior of reinforced concrete members with discontinuity areas under monotonic loading. The estimated failure load and its corresponding deformation are the main objective of this research. Twenty and three samples including short shear walls, short columns and deep beams tested by other researchers throughout the literature have been selected. Then their truss models as well as their three dimensional finite element models are analyzed using ABAQUS software. The comparison of experimental and analytical results shows fair correlation between them. Also, the structural response of samples estimated by truss model analysis is fairly acceptable.

  14. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  15. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    International Nuclear Information System (INIS)

    Glenn, Autumn L.; Bulusu, Kartik V.; Shu Fangjun; Plesniak, Michael W.

    2012-01-01

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T ≈ 0.20–0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  16. Secondary flow structures under stent-induced perturbations for cardiovascular flow in a curved artery model

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, Autumn L.; Bulusu, Kartik V. [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States); Shu Fangjun [Department of Mechanical and Aerospace Engineering, New Mexico State University, MSC 3450, P.O. Box 30001, Las Cruces, NM 88003-8001 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.edu [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street, NW., Washington, DC 20052 (United States)

    2012-06-15

    Secondary flows within curved arteries with unsteady forcing result from amplified centrifugal instabilities and are expected to be driven by the rapid accelerations and decelerations inherent in physiological waveforms. These secondary flows may also affect the function of curved arteries through pro-atherogenic wall shear stresses, platelet residence time and other vascular response mechanisms. Planar PIV measurements were performed under multi-harmonic non-zero-mean and physiological carotid artery waveforms at various locations in a rigid bent-pipe curved artery model. Results revealed symmetric counter-rotating vortex pairs that developed during the acceleration phases of both multi-harmonic and physiological waveforms. An idealized stent model was placed upstream of the bend, which initiated flow perturbations under physiological inflow conditions. Changes in the secondary flow structures were observed during the systolic deceleration phase (t/T Almost-Equal-To 0.20-0.50). Proper Orthogonal Decomposition (POD) analysis of the flow morphologies under unsteady conditions indicated similarities in the coherent secondary-flow structures and correlation with phase-averaged velocity fields. A regime map was created that characterizes the kaleidoscope of vortical secondary flows with multiple vortex pairs and interesting secondary flow morphologies. This regime map in the curved artery model was created by plotting the secondary Reynolds number against another dimensionless acceleration-based parameter marking numbered regions of vortex pairs.

  17. Parameters of Models of Structural Transformations in Alloy Steel Under Welding Thermal Cycle

    Science.gov (United States)

    Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.

    2017-05-01

    A mathematical model of structural transformations in an alloy steel under the thermal cycle of multipass welding is suggested for computer implementation. The minimum necessary set of parameters for describing the transformations under heating and cooling is determined. Ferritic-pearlitic, bainitic and martensitic transformations under cooling of a steel are considered. A method for deriving the necessary temperature and time parameters of the model from the chemical composition of the steel is described. Published data are used to derive regression models of the temperature ranges and parameters of transformation kinetics in alloy steels. It is shown that the disadvantages of the active visual methods of analysis of the final phase composition of steels are responsible for inaccuracy and mismatch of published data. The hardness of a specimen, which correlates with some other mechanical properties of the material, is chosen as the most objective and reproducible criterion of the final phase composition. The models developed are checked by a comparative analysis of computational results and experimental data on the hardness of 140 alloy steels after cooling at various rates.

  18. Testing the simplex assumption underlying the Sport Motivation Scale: a structural equation modeling analysis.

    Science.gov (United States)

    Li, F; Harmer, P

    1996-12-01

    Self-determination theory (Deci & Ryan, 1985) suggests that motivational orientation or regulatory styles with respect to various behaviors can be conceptualized along a continuum ranging from low (a motivation) to high (intrinsic motivation) levels of self-determination. This pattern is manifested in the rank order of correlations among these regulatory styles (i.e., adjacent correlations are expected to be higher than those more distant) and is known as a simplex structure. Using responses from the Sport Motivation Scale (Pelletier et al., 1995) obtained from a sample of 857 college students (442 men, 415 women), the present study tested the simplex structure underlying SMS subscales via structural equation modeling. Results confirmed the simplex model structure, indicating that the various motivational constructs are empirically organized from low to high self-determination. The simplex pattern was further found to be invariant across gender. Findings from this study support the construct validity of the SMS and have important implications for studies focusing on the influence of motivational orientation in sport.

  19. Heuristic algorithms for feature selection under Bayesian models with block-diagonal covariance structure.

    Science.gov (United States)

    Foroughi Pour, Ali; Dalton, Lori A

    2018-03-21

    Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.

  20. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  1. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Modelling of stiffness and damping change in reinforced concrete structures under seismic actions

    International Nuclear Information System (INIS)

    Koenig, G.; Oetes, A.

    1985-01-01

    Restoring force and energy dissipation properties of ductile reinforced concrete structures during seismic excitation are investigated. Interpreting the results of earthquake simulation experiments with large scale reinforced concrete structural members mainly subjected to cyclic bending the various types of the force-deflection response and energy dissipation capability will be identified. Two alternative concepts are suggested for modelling: A rigorous model which considers the numerous deformation and dissipation mechanisms using a step by step algorithm for analysis and a simplified practical model which employs a modified spectrum analysis technique and a simple updating procedure for changing stiffness and damping properties of the members. (orig.)

  3. MODELING A ROCKET ELASTIC STRUCTURE AS A BECK’S COLUMN UNDER FOLLOWER FORCE

    OpenAIRE

    Brejão, Leandro Forne; Brasil, Reyolando M. L. R. F.

    2017-01-01

    It is intended, in this paper, to develop a mathematical model of an elastic space rocket structure as a Beck’s column excited by a follower (or circulatory) force. This force represents the rocket motor thrust that should be always in the direction of the tangent to the structure deformed axis at the base of the vehicle. We present a simplified two degree of freedom rigid bars discrete model. Its system of two second order nonlinear ordinary differential equations of motion are derived via L...

  4. Risk management under a two-factor model of the term structure of interest rates

    OpenAIRE

    Manuel Moreno

    1997-01-01

    This paper presents several applications to interest rate risk management based on a two-factor continuous-time model of the term structure of interest rates previously presented in Moreno (1996). This model assumes that default free discount bond prices are determined by the time to maturity and two factors, the long-term interest rate and the spread (difference between the long-term rate and the short-term (instantaneous) riskless rate). Several new measures of ``generalized duration" are p...

  5. Numerical calculation models of the elastoplastic response of a structure under seismic action

    International Nuclear Information System (INIS)

    Edjtemai, Nima.

    1982-06-01

    Two digital calculation models developed in this work have made it possible to analyze the exact dynamic behaviour of ductile structures with one or several degrees of liberty, during earthquakes. With the first model, response spectra were built in the linear and non-linear fields for different absorption and ductility values and two types of seismic accelerograms. The comparative study of these spectra made it possible to check the validity of certain hypotheses suggested for the construction of elastoplastic spectra from corresponding linear spectra. A simplified method of non-linear seismic calculation based on the modal analysis and the spectra of elastoplastic response was then applied to structures with a varying number of degrees of liberty. The results obtained in this manner were compared with those provided by an exact calculation provided by the second digital model developed by us [fr

  6. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    Science.gov (United States)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  7. Development of electrical analogue model for studying seepage flow under hydraulic structures - case study: Sukkur barrage

    International Nuclear Information System (INIS)

    Gabriel, H.F.; Umar, I.A.; Khan, G.D.

    2003-01-01

    For the solution of groundwater problem many types of models are used, but electrical analogue model is preferred due to its close response with its prototype hydrological system. This model is easy to construct and is reusable. In the model voltage is correlated to groundwater head electric current to flow and capacitance to groundwater storage. The analogy of the model is derived based on Kirchhoffs law and Finite difference form of Laplace equation. The network is consisting of square and rectangular meshes. Scaling factor for voltage and resistors are selected. All the equipment needed for assembling the model are prepared. Terminal strips and their connectivity are checked. Calculated resistors with accurate values after cutting and molding are inserted in the terminal strips and desired section is completed. A network of resistors in X and Z direction is used to represent the aquifer. Two stabilized power supply are used to provide the electrical potential. The worst condition is maintained by supplying the maximum head at upstream and dry condition at downstream. After the development of the model conclusion derived shows that the model are in a position to express the groundwater potential for seepage distribution under the floor with high degree of accuracy. Moreover there is a very good proportion between sample and the actual prototype in existence. The actual model when tested by model show very clear results for the sheet pile in relation to floor length to control seepage or uplift pressure caused. The existence design of Sukkur barrage and its overestimation and underestimation with reference to their sheet pile have been specifically determined. (author)

  8. anisotropic crack modelling of reinforced concrete structures with an enhanced kinematics: application to bidimensional elements under cyclic loading

    International Nuclear Information System (INIS)

    Kishta, Ejona

    2016-01-01

    Civil engineering buildings, massive and unique, are mostly made of reinforced or prestressed concrete. Sustainability, tightness and safety are the major pillars of a building's performance. Cracking is a major phenomenon which impacts the buildings' behaviour under different loadings in terms of sustainability and structural capacity. Development of numerical models which describe accurately the response of quasi-brittle materials under complex loading remains an important research topic for the scientific community. The objective of this work is the development of a numerical model which represents explicitly cracking of reinforced concrete structures. Concrete and reinforced concrete degradation process, characterised by the appearance of several anisotropic crack families, is described by means of an anisotropic damage model accounting for oriented crack families. The kinematics of this model is enriched with a displacement jump in order to reproduce the development of cracks in the material during loading. This displacement jump is identified as the crack opening. The developed model is validated on simulations of plain concrete structures exhibiting model as well as mixed-mode failure. The performances of the enriched model are shown by the simulation of reinforced concrete structures such as a shear wall submitted to cyclic loading. (author) [fr

  9. Evaluation of Different Software Packages in Flow Modeling under Bridge Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Dastorani

    2007-01-01

    Full Text Available This study is an independent and a comparative research concerning the accuracy, capability and suitability of three well-known packages ofISIS, MIKE11 and HEC-RAS as hydraulic river modeling software packages for modeling the flow through bridges. The research project was designed to assess the ability of each software package to model the flow through bridge structures. It was carried out using the data taken from experiments completed by a 22-meter laboratory flume at theUniversityofBirmingham. The flume has a compound cross section containing a main channel and two flood plains on either side. For this study a smooth main channel and a smooth floodplain have been assumed. Two types of bridges are modeled in this research; a multiple opening semi-circular arch bridge and a single opening straight deck bridge. For each bridge, two different simulations were carried out using two different upstream boundaries as low flow and high flow simulations. According to the results, all three packages were able to model arch and US BPR bridges but in some cases they presented different results. The highest water elevation upstream the bridge (maximum afflux was the main parameter to be compared to the measured values.ISISand HEC-RAS (especially HEC-RAS seem to be more efficient to model arch bridge. However, in some cases, MIKE 11 produced considerably higher results than those of the other two packages. To model USBPR bridge, all three packages produced reasonable results. However, the results by HEC-RAS are the best when the outputs are compared to the experimental data.

  10. Factor Structure and Market Integration under Two-Factor Monopolistic Competition Model

    Directory of Open Access Journals (Sweden)

    Evgeny Vladimirovich Zhelobodko

    2013-09-01

    Full Text Available The authors study the impact of trade liberalization on the market of a differentiated good and consumers’ welfare. The economy involves two factors of production: labor and capital. The researchers find that consumers always gain from trade liberalization. The article also establishes that the behavior of equilibrium price is independent of factor endowments’ structure in the countries involved into trade. The equilibrium price decreases (increases, remains unchanged under trade liberalization if and only if the inverse demand elasticity is increasing (decreasing, constant with respect to the individual consumption level. Furthermore, firms’ size which are measured as output increases (decreases when autarky changes to free trade if and only if the country is relatively richer (poorer in capital than its trading partner, regardless of the demand-side properties of the economy. Finally, the behavior of capital price (which equals firms’ profits in equilibrium is more complicated in the general case, but can be fully characterized for two limiting cases: (i when the structure of factor endowments in both countries is the same, and (ii when the Foreign country is a periphery country, i.e. it has zero endowment of capital

  11. Gaussian Mixture Random Coefficient model based framework for SHM in structures with time-dependent dynamics under uncertainty

    Science.gov (United States)

    Avendaño-Valencia, Luis David; Fassois, Spilios D.

    2017-12-01

    The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.

  12. Flame structure, spectroscopy and emissions quantification of rapeseed biodiesel under model gas turbine conditions

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Hochgreb, Simone

    2017-01-01

    Highlights: • Rapeseed biodiesel shows extended flame reaction zone with no soot formation. • RME spray flame shows higher droplet number density and volume flux than diesel. • RME droplet size and velocity distribution are similar to diesel. • Blending 50% RME with diesel reduces soot formation non-linearly. • RME shows lower NO_x and higher CO emissions level compared to diesel. - Abstract: The spray combustion characteristics of rapeseed biodiesel/methyl esters (RME) and 50% RME/diesel blend were investigated and compared with conventional diesel fuel, using a model swirl flame burner. The detailed database with well-characterised boundary conditions can be used as validation targets for flame modelling. An airblast, swirl-atomized liquid fuel spray was surrounded by air preheated to 350 °C at atmospheric pressure. The reacting droplet distribution within the flame was determined using phase Doppler particle anemometry. For both diesel and RME, peak droplet concentrations are found on the outside of the flame region, with large droplets migrating to the outside via swirl, and smaller droplets located around the centreline region. However, droplet concentrations and sizes are larger for RME, indicating a longer droplet evaporation timescale. This delayed droplet vaporisation leads to a different reaction zone relative to diesel, with an extended core reaction. In spite of the longer reaction zone, RME flames displayed no sign of visible soot radiation, unlike the case of diesel spray flame. Blending 50% RME with diesel results in significant reduction in soot radiation. Finally, RME emits 22% on average lower NO_x emissions compared to diesel under lean burning conditions.

  13. A dynamic growth model of vegetative soya bean plants: model structure and behaviour under varying root temperature and nitrogen concentration

    Science.gov (United States)

    Lim, J. T.; Wilkerson, G. G.; Raper, C. D. Jr; Gold, H. J.

    1990-01-01

    A differential equation model of vegetative growth of the soya bean plant (Glycine max (L.) Merrill cv. Ransom') was developed to account for plant growth in a phytotron system under variation of root temperature and nitrogen concentration in nutrient solution. The model was tested by comparing model outputs with data from four different experiments. Model predictions agreed fairly well with measured plant performance over a wide range of root temperatures and over a range of nitrogen concentrations in nutrient solution between 0.5 and 10.0 mmol NO3- in the phytotron environment. Sensitivity analyses revealed that the model was most sensitive to changes in parameters relating to carbohydrate concentration in the plant and nitrogen uptake rate.

  14. Structural biomechanics of the craniomaxillofacial skeleton under maximal masticatory loading: Inferences and critical analysis based on a validated computational model.

    Science.gov (United States)

    Pakdel, Amir R; Whyne, Cari M; Fialkov, Jeffrey A

    2017-06-01

    The trend towards optimizing stabilization of the craniomaxillofacial skeleton (CMFS) with the minimum amount of fixation required to achieve union, and away from maximizing rigidity, requires a quantitative understanding of craniomaxillofacial biomechanics. This study uses computational modeling to quantify the structural biomechanics of the CMFS under maximal physiologic masticatory loading. Using an experimentally validated subject-specific finite element (FE) model of the CMFS, the patterns of stress and strain distribution as a result of physiological masticatory loading were calculated. The trajectories of the stresses were plotted to delineate compressive and tensile regimes over the entire CMFS volume. The lateral maxilla was found to be the primary vertical buttress under maximal bite force loading, with much smaller involvement of the naso-maxillary buttress. There was no evidence that the pterygo-maxillary region is a buttressing structure, counter to classical buttress theory. The stresses at the zygomatic sutures suggest that two-point fixation of zygomatic complex fractures may be sufficient for fixation under bite force loading. The current experimentally validated biomechanical FE model of the CMFS is a practical tool for in silico optimization of current practice techniques and may be used as a foundation for the development of design criteria for future technologies for the treatment of CMFS injury and disease. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    Science.gov (United States)

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  16. Multiscale models of metal behaviour and structural change under the action of high-current electron irradiation

    International Nuclear Information System (INIS)

    Mayer, A E; Krasnikov, V S; Mayer, P N; Pogorelko, V V

    2017-01-01

    We present our models of the tensile fracture of metals in the solid and molten states, the melting and the plastic deformation of the solid metals. Also we discuss implementation of these models for simulation of the high current electron beam impact on metals. The models are constructed in the following way: the atomistic simulations are used at the first stage for investigation of dynamics and kinetics of structural defects in material (voids, dislocations, melting cites); equations describing evolution of such defects are constructed, verified, and their parameters are identified by means of comparison with the atomistic simulation result; finally, the defects evolution equations are incorporated into the continuum model of the substance behaviour on the macroscopic scale. The obtained continuum models with accounting of defects subsystems are tested in comparison with the experimental results known from literature. The proposed models not only allow one to describe the metal behaviour under the conditions of intensive electron irradiation, but they also allow one to determine the structural changes in the irradiated material. (paper)

  17. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  18. Extension of One-Dimensional Models for Hyperelastic String Structures under Coulomb Friction with Adhesion

    Directory of Open Access Journals (Sweden)

    Vladimir Shiryaev

    2018-04-01

    Full Text Available A stretching behavior of knitted and woven textiles is modeled. In our work, the yarns are modeled as one-dimensional hyperelastic strings with frictional contact. Capstan law known for Coulomb’s friction of yarns is extended to an additional adhesion due to gluing of filaments on the yarn surface or some chemical reaction. Two-step Newton’s method is applied for the solution of the large stretching with sliding evolution in the contact nodes. The approach is illustrated on a hysteresis of knitted textile and on the force-strain curve for a woven pattern and both compared with experimental effective curves.

  19. Parameter Identification of Piecewise Linear Plasticity Metal Models Used in Numerical Modeling of Structures Under Plastic Deformation and Failure

    Directory of Open Access Journals (Sweden)

    A. V. Shmeliov

    2016-01-01

    Full Text Available The article describes the models of metallic materials used in the calculation of deformation and destruction of engineering structures. The reliability of material models can adequately assess the strength characteristics of the designs of new technology in its designing and certification.The article deals with contingencies and true mechanical properties of materials and presents equations of their relationship. It notes that in the software systems mechanical characteristics of materials are given in the true sense.The paper considers the linear and exponential models of materials, their characteristics, and methods to implement them. It considers the models of Johnson-Cook Steinberg-Guinan, Zerilli-Armstrong, Cowper-Symonds, Gurson-Tvergaard that take into account the strain rate and temperature of the material. Describes their applications, advantages and disadvantages. Considers single- and multi-parameter criteria of materials fracture, the prospects for their use. Gives a rational justification for using a piecewise linear plasticity material model *MAT_PIECEWISE_LINEAR_PLASTICITY (024, LS-DYNA software package for the engineering industry, and presents its main parameters.A technique to identify parameters of piecewise linear plasticity metal material models has been developed. The technique consists of the stages, based on the equations of transition from the conventional stress and strain values to the true ones. Taking into consideration the stressstrain state in the neck of the sample is a distinctive feature of the technique.Tensile tests of the round material samples have been conducted. To test the developed technique in the software package ANSYS LS-DYNA PC have been made tensile sample modeling and results comparison to show high convergence.Further improvement of the technique can be achieved through the development of a statistical approach to the analysis of the results of a series of tests. This will allow a kind of

  20. Exploration and Modeling of Structural changes in Waste Glass Under Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Pantano, Carlos; Ryan, Joseph; Strachan, Denis

    2013-11-10

    Vitrification is currently the world-wide treatment of choice for the disposition of high-level nuclear wastes. In glasses, radionuclides are atomistically bonded into the solid, resulting in a highly durable product, with borosilicate glasses exhibiting particularly excellent durability in water. Considering that waste glass is designed to retain the radionuclides within the waste form for long periods, it is important to understand the long-term stability of these materials when they react in the environment, especially in the presence of water. Based on a number of previous studies, there is general consensus regarding the mechanisms controlling the initial rate of nuclear waste glass dissolution. Agreement regarding the cause of the observed decrease in dissolution rate at extended times, however, has been elusive. Two general models have been proposed to explain this behavior, and it has been concluded that both concepts are valid and must be taken into account when considering the decrease in dissolution rate. Furthermore, other processes such as water diffusion, ion exchange, and precipitation of mineral phases onto the glass surface may occur in parallel with dissolution of the glass and can influence long-term performance. Our proposed research will address these issues through a combination of aqueous-phase dissolution/reaction experiments and probing of the resulting surface layers with state-of-the-art analytical methods. These methods include solid-state nuclear magnetic resonance (SSNMR) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The resulting datasets will then be coupled with computational chemistry and reaction-rate modeling to address the most persistent uncertainties in the understanding of glass corrosion, which indeed have limited the performance of the best corrosion models to date. With an improved understanding of corrosion mechanisms, models can be developed and improved that, while still conservative, take advantage of

  1. Structural Modification of Platinum Model Systems under High Pressure CO Annealing

    DEFF Research Database (Denmark)

    McCarthy, David Norman; Strebel, Christian Ejersbo; Johansson, Tobias Peter

    2012-01-01

    relation between surface atom coordination, and the desorption temperature of CO. Investigation of these structural features was then made for CO dosing pressures in the mbar range. Intriguingly, from the mbar pressure experiments it was observed that elevated CO pressures enhanced the annealing of the Pt......Using temperature-programmed desorption experiments, we have studied the coordination dependent adsorption of CO on a platinum (Pt) single crystal, and mass-selected Pt nanoparticles in the size range of 3 to 11 nm, for CO dosing pressures in 10–7 mbar and mbar ranges. From low pressure CO...... adsorption experiments on the Pt(111) crystal, we establish a clear link between the degree of presputtering of the surface prior to CO adsorption, and the amount of CO bound at high temperature. It was found that for rougher surfaces, i.e., with more undercoordinated surface atoms, a feature appears...

  2. Survival under uncertainty an introduction to probability models of social structure and evolution

    CERN Document Server

    Volchenkov, Dimitri

    2016-01-01

    This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work – including anthropology, demography, migration, geopolitics, management, and bioecology, among other things – evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity – for social systems an...

  3. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    International Nuclear Information System (INIS)

    Ahmed, K.; Bai, X.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model results were shown to agree well with theoretical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agreement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  4. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel

    2017-03-01

    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  5. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    Science.gov (United States)

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  6. A coupled hydraulic and structure-dynamic model for prediction of RCCA drop time under hypothetical FA deformation

    International Nuclear Information System (INIS)

    Ren, Mingmin; Dressel, Bernd

    2009-01-01

    The ability of the RCCA (Rod Control Cluster Assemblies) in a pressurized water reactor (PWR) to be fully inserted into the core and to reach the dashpot within a required time limit is one of the important safety requirements for quick shutdown. This kind of quick shutdown in a PWR is initiated by allowing the control rod with the drive rod together to fall into the core by gravity. During normal operation, the RCCA drop time is mainly influenced by the weight of control assembly, hydraulic resistance in the CRDM (Control Rod Drive Mechanism), control rod guide assembly and guide thimbles and by the mechanical friction forces between the RCCA and its surroundings. In the case of an accident, e.g. earthquake, an additional influence of horizontal vibrations of the RCCA and its surroundings has to be considered [1]. A coupled hydraulic and structure-dynamic model is presented in this paper for prediction of RCCA drop time down to dashpot under hypothetical fuel assembly (FA) deformations. This coupled model was verified by RCCA static and dynamic drop tests with a deformed FA and by RCCA drop tests under operational conditions. (orig.)

  7. Impact of Diagnosticity on the Adequacy of Models for Cognitive Diagnosis under a Linear Attribute Structure: A Simulation Study

    Science.gov (United States)

    de La Torre, Jimmy; Karelitz, Tzur M.

    2009-01-01

    Compared to unidimensional item response models (IRMs), cognitive diagnostic models (CDMs) based on latent classes represent examinees' knowledge and item requirements using discrete structures. This study systematically examines the viability of retrofitting CDMs to IRM-based data with a linear attribute structure. The study utilizes a procedure…

  8. Micromechanical modelling of heterogeneous materials in transient conditions: contributions for the study of the ageing of structural components under service

    International Nuclear Information System (INIS)

    Masson, R.

    2010-01-01

    The modelling of the mechanical behaviour of structural materials is increasingly based on microstructural parameters. Within this framework, homogenisation methods have the advantage of providing deductive methods which, starting from the properties and space distribution of each constituent, deduce the effective properties of the heterogeneous material. Nevertheless, many applications make still difficult the use of homogenisation methods. It is in particular the case of structural materials presenting elastic-viscoplastic behaviours and subjected to both non-monotone and ageing loadings. To progress on the treatment by homogenisation of these useful situations constitutes precisely the main idea of the various contributions presented in this work.For linear elasticity, new expressions for the computation of the Eshelby tensor are first of all established in order to improve the efficiency of homogenisation methods usually used. Always for linear behaviours but now viscoelastic, various approximations associated with the use of the theorem of correspondence are studied and compared. The equivalence of one of these approximations (the so-called 'collocation method') with an internal variables formulation of the effective behaviour is shown. This internal variables formulation leads to exact results in some situations and strongly simplifies the treatment of ageing linear viscoelastic behaviours. In the case of elastic-viscoplastic behaviours, is added to the previous difficulty (viscoelastic coupling) that of the treatment of nonlinear behaviour. Comparisons made between various families of estimates make it possible to determine the effects of the various approximations needed to deal with these nonlinearities. An improvement is also proposed and implemented in a particular case while the extension of this internal variable formulation to nonlinear behaviours is discussed. Finally, full-field computations of microstructures are also tackled by considering the

  9. Role of band 3 in the erythrocyte membrane structural changes under thermal fluctuations -multi scale modeling considerations.

    Science.gov (United States)

    Pajic-Lijakovic, Ivana

    2015-12-01

    An attempt was made to discuss and connect various modeling approaches on various time and space scales which have been proposed in the literature in order to shed further light on the erythrocyte membrane rearrangement caused by the cortex-lipid bilayer coupling under thermal fluctuations. Roles of the main membrane constituents: (1) the actin-spectrin cortex, (2) the lipid bilayer, and (3) the trans membrane protein band 3 and their course-consequence relations were considered in the context of the cortex non linear stiffening and corresponding anomalous nature of energy dissipation. The fluctuations induce alternating expansion and compression of the membrane parts in order to ensure surface and volume conservation. The membrane structural changes were considered within two time regimes. The results indicate that the cortex non linear stiffening and corresponding anomalous nature of energy dissipation are related to the spectrin flexibility distribution and the rate of its changes. The spectrin flexibility varies from purely flexible to semi flexible. It is influenced by: (1) the number of band 3 molecules attached to single spectrin filaments, and (2) phosphorylation of the actin-junctions. The rate of spectrin flexibility changes depends on the band 3 molecules rearrangement.

  10. Detection of Q-Matrix Misspecification Using Two Criteria for Validation of Cognitive Structures under the Least Squares Distance Model

    Science.gov (United States)

    Romero, Sonia J.; Ordoñez, Xavier G.; Ponsoda, Vincente; Revuelta, Javier

    2014-01-01

    Cognitive Diagnostic Models (CDMs) aim to provide information about the degree to which individuals have mastered specific attributes that underlie the success of these individuals on test items. The Q-matrix is a key element in the application of CDMs, because contains links item-attributes representing the cognitive structure proposed for solve…

  11. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  12. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    Science.gov (United States)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  13. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    Science.gov (United States)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  15. Investigation of signal models and methods for evaluating structures of processing telecommunication information exchange systems under acoustic noise conditions

    Science.gov (United States)

    Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.

    2018-05-01

    The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.

  16. Physical factors underlying the association between lower walking performance and falls in older people: a structural equation model.

    Science.gov (United States)

    Shimada, Hiroyuki; Tiedemann, Anne; Lord, Stephen R; Suzukawa, Megumi; Makizako, Hyuma; Kobayashi, Kumiko; Suzuki, Takao

    2011-01-01

    The purpose of this study was to determine the interrelationships between lower limb muscle performance, balance, gait and falls in older people using structural equation modeling. Study participants were two hundred and thirteen people aged 65 years and older (mean age, 80.0 ± 7.1 years), who used day-care services in Japan. The outcome measures were the history of falls three months retrospectively and physical risk factors for falling, including performance in the chair stand test (CST), one-leg standing test (OLS), tandem walk test, 6m walking time, and the timed up-and-go (TUG) test. Thirty-nine (18.3%) of the 213 participants had fallen at least one or more times during the preceding 3 months. The fall group had significantly slower 6m walking speed and took significantly longer to undertake the TUG test than the non-fall group. In a structural equation model, performance in the CST contributed significantly to gait function, and low gait function was significantly and directly associated with falls in older people. This suggests that task-specific strength exercise as well as general mobility retraining should be important components of exercise programs designed to reduce falls in older people. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    Science.gov (United States)

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the

  18. Transport properties of LiF under strong compression: modeling using advanced electronic structure methods and classical molecular dynamics

    Science.gov (United States)

    Mattsson, Thomas R.; Jones, Reese; Ward, Donald; Spataru, Catalin; Shulenburger, Luke; Benedict, Lorin X.

    2015-06-01

    Window materials are ubiquitous in shock physics and with high energy density drivers capable of reaching multi-Mbar pressures the use of LiF is increasing. Velocimetry and temperature measurements of a sample through a window are both influenced by the assumed index of refraction and thermal conductivity, respectively. We report on calculations of index of refraction using the many-body theory GW and thermal ionic conductivity using linear response theory and model potentials. The results are expected to increase the accuracy of a broad range of high-pressure shock- and ramp compression experiments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. 3D Modelling and monitoring of denervated muscle under Functional Electrical Stimulation treatment and associated bone structural changes

    Directory of Open Access Journals (Sweden)

    Paolo Gargiulo

    2011-03-01

    Full Text Available A novel clinical rehabilitation method for patients who have permanent and non recoverable muscle denervation in the legs was developed in the frame of the European Project RISE. The technique is based on FES and the project results shows, in these severely disabled patients, restoration of muscle tissue and function. This study propose novel methods based on image processing technique and medical modelling to monitor growth in denervated muscle treated with FES. Geometrical and structural changes in muscle and bone are studied and modelled. Secondary effects on the bone mineral density produced by the stimulation treatment and due the elicited muscle contraction are also investigated. The restoration process in DDM is an important object of discussion since there isn’t yet a complete understanding of the mechanisms regulating growth in denervated muscle. This study approaches the problem from a macroscopic point of view, developing 3-dimensional models of the whole stimulated muscles and following changes in volume, geometry and density very accurately. The method is based on the acquisition of high resolution Spiral CT scans from patients who have long-term flaccid paraplegia and the use of special image processing tools allowing tissue discriminations and muscle segmentation. Three patients were measured at different points of time during 4 years of electrical stimulation treatment. In this study is quantitatively demonstrated the influences of FES treatment on the different quadriceps bellies. The rectus femoris muscle is positioned in the middle of the quadriceps and responds (in general better to stimulation. In a patient with abundant adipose tissue surrounding the quadriceps, rectus femoris almost doubled the volume during the FES treatment while in the other bellies the changes measured were minimal. The analysis of the density shows clearly a restoration of the muscular structure in the growing muscle. The remarkable increase of

  20. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  1. Haldane model under nonuniform strain

    Science.gov (United States)

    Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.

    2017-10-01

    We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.

  2. Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO2 under pressure

    Science.gov (United States)

    Casali, R. A.; Lasave, J.; Caravaca, M. A.; Koval, S.; Ponce, C. A.; Migoni, R. L.

    2013-04-01

    The pressure dependences of the structural, thermoelastic and vibrational properties of SnO2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl2-type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO2. A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure Pc. A zone-center phonon of B1g symmetry in the rutile phase involves such rotation and softens on approaching Pc. It becomes an Ag mode which stabilizes with increasing pressure in the CaCl2 phase. This behavior, together with the softening of the shear modulus (C11-C12)/2 related to the orthorhombic distortion, allows a precise determination of a value for Pc. An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model.

  3. Ab initio and shell model studies of structural, thermoelastic and vibrational properties of SnO2 under pressure

    International Nuclear Information System (INIS)

    Casali, R A; Ponce, C A; Lasave, J; Koval, S; Migoni, R L; Caravaca, M A

    2013-01-01

    The pressure dependences of the structural, thermoelastic and vibrational properties of SnO 2 in its rutile phase are studied, as well as the pressure-induced transition to a CaCl 2 -type phase. These studies have been performed by means of ab initio (AI) density functional theory calculations using the localized basis code SIESTA. The results are employed to develop a shell model (SM) for application in future studies of nanostructured SnO 2 . A good agreement of the SM results for the pressure dependences of the above properties with the ones obtained from present and previous AI calculations as well as from experiments is achieved. The transition is characterized by a rotation of the Sn-centered oxygen octahedra around the tetragonal axis through the Sn. This rotation breaks the tetragonal symmetry of the lattice and an orthorhombic distortion appears above the critical pressure P c . A zone-center phonon of B 1g symmetry in the rutile phase involves such rotation and softens on approaching P c . It becomes an A g mode which stabilizes with increasing pressure in the CaCl 2 phase. This behavior, together with the softening of the shear modulus (C 11 −C 12 )/2 related to the orthorhombic distortion, allows a precise determination of a value for P c . An additional determination is provided by the splitting of the basal plane lattice parameters. Both the AI and the experimentally observed softening of the B 1g mode are incomplete, indicating a small discontinuity at the transition. However, all results show continuous changes in volume and lattice parameters, indicating a second-order transition. All these results indicate that there should be sufficient confidence for the future employment of the shell model. (paper)

  4. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  5. A micromechanical approach To numerical modeling of yielding of open-cell porous structures under compressive loads

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.

    2016-01-01

    Today, interconnected open-cell porous structures made of titanium and its alloys are replacing the prevalent solid metals used in bone substitute implants. The advent of additive manufacturing techniques has enabled manufacturing of open-cell structures with arbitrary micro-structural geometry.

  6. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  7. Modeling Floor Effects in Standardized Vocabulary Test Scores in a Sample of Low SES Hispanic Preschool Children under the Multilevel Structural Equation Modeling Framework

    Directory of Open Access Journals (Sweden)

    Leina Zhu

    2017-12-01

    Full Text Available Researchers and practitioners often use standardized vocabulary tests such as the Peabody Picture Vocabulary Test-4 (PPVT-4; Dunn and Dunn, 2007 and its companion, the Expressive Vocabulary Test-2 (EVT-2; Williams, 2007, to assess English vocabulary skills as an indicator of children's school readiness. Despite their psychometric excellence in the norm sample, issues arise when standardized vocabulary tests are used to asses children from culturally, linguistically and ethnically diverse backgrounds (e.g., Spanish-speaking English language learners or delayed in some manner. One of the biggest challenges is establishing the appropriateness of these measures with non-English or non-standard English speaking children as often they score one to two standard deviations below expected levels (e.g., Lonigan et al., 2013. This study re-examines the issues in analyzing the PPVT-4 and EVT-2 scores in a sample of 4-to-5-year-old low SES Hispanic preschool children who were part of a larger randomized clinical trial on the effects of a supplemental English shared-reading vocabulary curriculum (Pollard-Durodola et al., 2016. It was found that data exhibited strong floor effects and the presence of floor effects made it difficult to differentiate the invention group and the control group on their vocabulary growth in the intervention. A simulation study is then presented under the multilevel structural equation modeling (MSEM framework and results revealed that in regular multilevel data analysis, ignoring floor effects in the outcome variables led to biased results in parameter estimates, standard error estimates, and significance tests. Our findings suggest caution in analyzing and interpreting scores of ethnically and culturally diverse children on standardized vocabulary tests (e.g., floor effects. It is recommended appropriate analytical methods that take into account floor effects in outcome variables should be considered.

  8. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  9. Tax evasion under behavioral structures

    Directory of Open Access Journals (Sweden)

    Gabriela S. Pantoja

    2014-01-01

    Full Text Available We study the strategic interactions between the fiscal authority and the taxpayer regarding tax evasion and auditing. We fit this interaction into a Bayesian game and introduce the concept of behavioral consistency, which helps reducing the number of available strategies and models the stylized fact according to which the choice to evade is subject to behavioral patterns.

  10. Modelling of large-scale structures arising under developed turbulent convection in a horizontal fluid layer (with application to the problem of tropical cyclone origination

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2000-01-01

    Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.

  11. Vertical structure of currents in Algeciras Bay (Strait of Gibraltar): implications on oil spill modeling under different typical scenarios

    Science.gov (United States)

    Megías Trujillo, Bárbara; Caballero de Frutos, Isabel; López Comi, Laura; Tejedor Alvarez, Begoña.; Izquierdo González, Alfredo; Gonzales Mejías, Carlos Jose; Alvarez Esteban, Óscar; Mañanes Salinas, Rafael; Comerma, Eric

    2010-05-01

    Algeciras Bay constitutes a physical environment of special characteristics, due to its bathymetric configuration and geographical location, at the eastern boundary of the Strait of Gibraltar. Hence, the Bay is subject to the complex hydrodynamics of the Strait of Gibraltar, characterized by a mesotidal, semidiurnal regime and the high density-stratification of the water column due to the presence of the upper Atlantic and the lower Mediterranean (more salty and cold) water layers. In addition, this environment is affected by powerful Easterly and Westerly winds episodes. The intense maritime traffic of oil tankers sailing across the Strait and inside the Bay, together with the presence of an oil refinery at its northern coast, imply high risks of oil spilling inside these waters, and unfortunately it has constituted a matter of usual occurrence through the last decades. The above paragraph clearly manifests the necessity of a detailed knowledge on the Bay's hydrodynamics, and the related system of currents, for a correct management and contingency planning in case of oil spilling in this environment. In order to evaluate the range of affectation of oil spills in the Bay's waters and coasts, the OILMAP oil spill model was used, the currents fields being provided by the three-dimensional, nonlinear, finite-differences, sigma-coordinates, UCA 3D hydrodynamic model. Numerical simulations were carried out for a grid domain extended from the western Strait boundary to the Alboran Sea, having a horizontal spatial resolution of 500 m and 50 sigma-levels in the vertical dimension. The system was forced by the tidal constituents M2 (main semidiurnal) and Z0 (constant or zero-frequency), considering three different typical wind conditions: Easterlies, Westerlies and calm (no wind). The most remarkable results from the numerical 3D simulations of Algeciras Bay's hydrodynamics were: a) the occurrence of opposite tidal currents between the upper Atlantic and lower Mediterranean

  12. Option Pricing with a Levy-Type Stochastic Dynamic Model for Stock Price Process Under Semi-Markovian Structural Perturbations

    Science.gov (United States)

    2015-11-30

    models ( Beckers 1980, Dupire 1997), the volatility depends on time and stock price through a deterministic func- tional. In both cases, in addition to...T1 ≤ T2 ≤ · · · ≤ Tn−1 are the regime switch- ing times caused by the semi-Markov process prior to t. For notational convenience, we denote θ−1 = θ0...of interest are currently being investigated: (1) an evaluation of the effects of the backward recurrence time, the sojourn time distribution and the

  13. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  14. Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loading

    International Nuclear Information System (INIS)

    Dunne, F.P.E.; Hayhurst, D.R.

    1994-01-01

    Highly efficient cycle jumping algorithms have been developed for the calculation of stress and damage histories for both cyclic mechanical and cycle thermal loading. The techniques have been shown to be suitable for cyclic plasticity; creep-cyclic plasticity interaction; and creep dominated material behaviour. The cycle jumping algorithms have been validated by comparison of the predictions made using both the cycle jumping technique, and the full calculation involving the integration of the equations around all cycles. Excellent agreement has been achieved, and significant reductions in computer processing time of up to 90% have been obtained by using the cycle jumping technique. A further cycle jumping technique has been developed for full component analysis, using a viscoplastic damage finite element solver, which enables stress redistribution to be modelled. The behaviour and lifetime of a slag tap component has been predicted when subjected to cyclic thermal loading. Cyclic plasticity damage and micro-crack initiation is predicted to occur at the water cooling duct after 2.974 cycles, with damage and micro-crack evolution arresting after 60.000. (author). 18 refs., 13 figs., 4 photos

  15. Chemical model reduction under uncertainty

    KAUST Repository

    Najm, Habib; Galassi, R. Malpica; Valorani, M.

    2016-01-01

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  16. Chemical model reduction under uncertainty

    KAUST Repository

    Najm, Habib

    2016-01-05

    We outline a strategy for chemical kinetic model reduction under uncertainty. We present highlights of our existing deterministic model reduction strategy, and describe the extension of the formulation to include parametric uncertainty in the detailed mechanism. We discuss the utility of this construction, as applied to hydrocarbon fuel-air kinetics, and the associated use of uncertainty-aware measures of error between predictions from detailed and simplified models.

  17. Modelling microstructural evolution under irradiation

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Microstructural evolution of materials under irradiation is characterised by some unique features that are not typically present in other application environments. While much understanding has been achieved by experimental studies, the ability to model this microstructural evolution for complex materials states and environmental conditions not only enhances understanding, it also enables prediction of materials behaviour under conditions that are difficult to duplicate experimentally. Furthermore, reliable models enable designing materials for improved engineering performance for their respective applications. Thus, development and application of mesoscale microstructural model are important for advancing nuclear materials technologies. In this chapter, the application of the Potts model to nuclear materials will be reviewed and demonstrated, as an example of microstructural evolution processes. (author)

  18. Metallic glasses: structural models

    International Nuclear Information System (INIS)

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  19. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  20. Riparian vegetation structure under desertification scenarios

    Science.gov (United States)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  1. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude and variable amplitude fatigue...

  2. Analysis of flexible structures under lateral impact

    International Nuclear Information System (INIS)

    Ramirez, D. F.; Razavi, H.

    2012-01-01

    Three methods for analysis of flexible structures under lateral impact are presented. The first proposed method (Method A) consists of: (1) modifying an available deceleration on a rigid target with conservation principles to account for structural flexibility; and (2) transient nonlinear analysis of the structure with the corrected forcing function. The second proposed method (Method B) is similar to Method A in obtaining the forcing function but it solves the equations of motion of an idealized two-degree-of-freedom system instead of directly using conservation principles. The last method simply provides the maximum force in the structure using the conservation of energy and linear momentum. A coupled simulation is also performed in LS-DYNA and compared against the proposed methods. A case study is presented to illustrate the applicability of all three methods and the LS-DYNA simulation. (authors)

  3. Numerical modeling of materials under extreme conditions

    CERN Document Server

    Brown, Eric

    2014-01-01

    The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.

  4. Multiplant strategy under core-periphery structure

    OpenAIRE

    Tsubota, Kenmei

    2012-01-01

    A typical implicit assumption on monopolistic competition models for trade and economic geography is that firms can produce and sell only at one place. This paper fallows endogenous determination of the number of plants in a new economic geography model and examine the stable outcomes of organization choice between single-plant and multi-plant in two regions. We explicitly consider the firms' trade-off between larger economies of scale under single plant configuration and the saving in interr...

  5. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads

  6. Multi-axial model of anisotropic damage: numerical management of failure and application to the ruin of reinforced concrete structures under impact

    International Nuclear Information System (INIS)

    Leroux, A.

    2012-01-01

    The objective of this research thesis is to develop the most precise possible numeric modelling of reinforced concrete behaviour with application to the design of structures of protection of nuclear plants against violent dynamic loadings (explosions, impacts). After a discussion of existing models, of their benefits and weaknesses, a multi-axial model of anisotropic damage is proposed and implemented with the finite element method. A new procedure of failure management is also proposed which allows the induced anisotropic damage to be taken into account. Impact tests on concrete beams and concrete cubes with longitudinal steel have been performed in order to validate the model [fr

  7. Effect of support conditions on structural response under dynamic loading

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.

    2008-01-01

    In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)

  8. ECONGAS - model structure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ``Internationalization and structural change in the gas market`` aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab.

  9. ECONGAS - model structure

    International Nuclear Information System (INIS)

    1997-01-01

    This report documents a numerical simulation model of the natural gas market in Germany, France, the Netherlands and Belgium. It is a part of a project called ''Internationalization and structural change in the gas market'' aiming to enhance the understanding of the factors behind the current and upcoming changes in the European gas market, especially the downstream part of the gas chain. The model takes European border prices of gas as given, adds transmission and distribution cost and profit margins as well as gas taxes to calculate gas prices. The model includes demand sub-models for households, chemical industry, other industry, the commercial sector and electricity generation. Demand responses to price changes are assumed to take time, and the long run effects are significantly larger than the short run effects. For the household sector and the electricity sector, the dynamics are modeled by distinguishing between energy use in the old and new capital stock. In addition to prices and the activity level (GDP), the model includes the extension of the gas network as a potentially important variable in explaining the development of gas demand. The properties of numerical simulation models are often described by dynamic multipliers, which describe the behaviour of important variables when key explanatory variables are changed. At the end, the report shows the results of a model experiment where the costs in transmission and distribution were reduced. 6 refs., 9 figs., 1 tab

  10. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads. Indeed, depending on the limit state condition to be specified, these limit state probabilities can indicate which particular load combination provides the dominant contribution to the overall limit state probability. On the other hand, some of the load combinations contribute very little to the overall limit state probability. These observations provide insight into the complex problem of which load combinations must be considered for design, for which limit states and at what level of limit state probabilities. (orig.)

  11. Modeling of microstructural evolution under irradiation

    International Nuclear Information System (INIS)

    Odette, G.R.

    1979-01-01

    Microstructural evolution under irradiation is an extremely complex phenomenon involving numerous interacting mechanisms which alter both the microstructure and microchemistry of structural alloys. Predictive procedures which correlate primary irradiation and material variables to microstructural response are needed to extrapolate from the imperfect data base, which will be available, to fusion reactor conditions. Clearly, a marriage between models and experiments is needed. Specific steps to achieving such a marriage in the form of composite correlation model analysis are outlined and some preliminary results presented. The strongly correlated nature of microstructural evolution is emphasized and it is suggested that rate theory models, resting on the principle of material balances and focusing on coupled point defect-microchemical segregation processes, may be a practical approach to correlation model development. (orig.)

  12. Modeling of porous concrete elements under load

    Directory of Open Access Journals (Sweden)

    Demchyna B.H.

    2017-12-01

    Full Text Available It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a “catastrophic failure”. Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  13. Modeling of porous concrete elements under load

    Science.gov (United States)

    Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.

    2017-12-01

    It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  14. Concrete structures under impact and impulsive loading

    International Nuclear Information System (INIS)

    Plauk, G.

    1982-05-01

    This book contains papers contributed to the RILEM/CEB/IABSE/IASS-Interassociation Symposium on 'Concrete Structures under Impact and Impulsive Loading'. The essential aim of this symposium is to provide an international forum for the exchange of information on existing and current research relating to impact problems as well as to identify areas to which further research activities should be directed. The subject of the symposium is far ranging. Fifty five papers were proposed and arranged in six technical sessions, a task which sometimes posed difficulties for the Organization Committee and the Advisory Group, because some of the papers touched several topics and were difficult to integrate. However, we are confident that these minor difficulties were solved to the satisfaction of everyone involved. Each session of the symposium is devoted to a major subject area and introduced by a distinguished Introductory Reporter. The large international attendance, some 21 countries are represented, and the large number of excellent papers will certainly produce a lively discussion after each session and thus help to further close the gaps in our knowledge about the behaviour of structures and materials under impact and impulsive loading. (orig./RW)

  15. Behaviour of cellular structures with fluid fillers under impact loading

    Directory of Open Access Journals (Sweden)

    Matej Vesenjak

    2007-03-01

    Full Text Available The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications.

  16. Structural behavior of supercritical fluids under confinement

    Science.gov (United States)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features

  17. A modeling and control framework for operating large-scale electric power systems under present and newly evolving competitive industry structures

    Directory of Open Access Journals (Sweden)

    Marija D. Ilić

    1995-01-01

    Full Text Available This paper introduces a systematic, structure-based modeling framework for analysis and control of electric power systems for processes evolving over the mid-term and long-term time horizons. Much simpler models than the detailed dynamics specifically for control design at different hierarchical levels are obtained by applying both temporal and spatial separation. These simple models, or the aggregate models, represent the net effect of interactions among interconnected regions on specific hierarchical levels. They are exact, since no assumptions on weak interconnections among the subsystems are made. Moreover they are easily understood in terms of power flows among the regions. The approach is essential for improving present performance of the system. It is also potentially useful in a competitive utility environment in which it is critical to study the interplay between technical and economic processes.

  18. Nonlinear system identification of smart structures under high impact loads

    Science.gov (United States)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-05-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.

  19. Factor structure underlying components of allostatic load.

    Directory of Open Access Journals (Sweden)

    Jeanne M McCaffery

    Full Text Available Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental demands (e.g., stress engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation. Here, we employ confirmatory factor analysis to test: 1 whether a single common factor underlies variation in physiological systems associated with allostatic load; and 2 whether allostatic load parameters continue to load on a single common factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny County, PA (30-54 years old, 82% non-Hispanic white, 52% female who were free of confounding medications. Model fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study (metabolic, inflammatory and vagal measures. Further, this common factor reflecting covariation among allostatic load components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized. Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the metabolic syndrome.

  20. Structural Analysis of Cabinet Support under Static and Seismic Loads

    International Nuclear Information System (INIS)

    Jung, Kwangsub; Lee, Sangjin; Oh, Jinho

    2014-01-01

    The cabinet support consists of frames including steel channels and steel square tubes. Four tap holes for screw bolts are located on the support frame of a steel channel to fix the cabinet on the support. The channels and square tubes are assembled by welded joints. The cabinet supports are installed on the outer walls of the reactor concrete island. The KEPIC code, MNF, is used for the design of the cabinet support. In this work, the structural integrity of the cabinet support is analyzed under consideration of static and seismic loads. A 3-D finite element model of the cabinet support was developed. The structural integrity of the cabinet support under postulated service loading conditions was evaluated through a static analysis, modal analysis, and response spectrum analysis. From the structural analysis results, it was concluded that the structural integrity of the cabinet support is guaranteed

  1. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  2. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  3. Structural modifications of spinels under radiation

    International Nuclear Information System (INIS)

    Quentin, A.

    2010-12-01

    This work is devoted to the study of spinel structure materials under radiation. For that purpose, samples of polycrystalline ZnAl 2 O 4 and monocrystalline MgAl 2 O 4 were irradiated by different heavy ions with different energies. Samples of ZnAl 2 O 4 were studied par electron transmission microscopy, and by grazing incidence X-Ray diffraction and Rietveld analysis. Samples of MgAl 2 O 4 were studied by optical spectroscopy. Most of the results concern amorphization and crystalline structure modification of ZnAl 2 O 4 especially the inversion. We were able to determine a stopping power threshold for amorphization, between 11 keV/nm and 12 keV/nm, and also the amorphization process, which is a multiple impacts process. We studied the evolution of the amorphous phase by TEM and showed a nano-patterning phenomenon. Concerning the inversion, we determined that it did happen by a single impact process, and the saturation value did not reach the random cation distribution value. Inversion and amorphization have different, but close, stopping power threshold. However, amorphization seems to be conditioned by a pre-damage of the material which consists in inversion. (author)

  4. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body

    International Nuclear Information System (INIS)

    Bongue Boma, M.

    2007-12-01

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  5. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  6. Assessing the performance of reinforced concrete structures under impact loads

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ozbolt, Josko; Hofmann, J.

    2011-01-01

    Reinforced concrete (RC) structures housing nuclear facilities must qualify against much stringent requirements of operating and accidental loads than conventional structures. One such accidental load that must be considered while assessing the performance of safety related RC structures is impact load. It is known that the behavior of concrete/reinforced concrete structures is strongly influenced by the loading rate. The RC structural members subjected to impact loads behave quite differently as compared to the same subjected to quasi-static loading due to the strain-rate influence on strength, stiffness, and ductility as well as to the activation of inertia forces. Moreover, for concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend significantly on loading rate. In general, there is a tendency that with the increase of loading rate the failure mode changes from mode-I to mixed mode. In order to assess the performance of existing structures against impact loads that may be generated mainly due to man-made accidental conditions, it is important to have models that can realistically predict the impact behavior of concrete structures. The present paper focuses on a relatively new approach for 3D finite element analysis of RC structures under impact loads. The approach uses rate sensitive micro-plane model as constitutive law for concrete, while the strain-rate influence is captured by the activation energy. Inertia forces are implicitly accounted for through dynamic finite element analysis. It is shown with the help of different examples that the approach can very well simulate the behavior of RC structural elements under high rate loading. (author)

  7. Optimal design under uncertainty of a passive defense structure against snow avalanches: from a general Bayesian framework to a simple analytical model

    Directory of Open Access Journals (Sweden)

    N. Eckert

    2008-10-01

    Full Text Available For snow avalanches, passive defense structures are generally designed by considering high return period events. In this paper, taking inspiration from other natural hazards, an alternative method based on the maximization of the economic benefit of the defense structure is proposed. A general Bayesian framework is described first. Special attention is given to the problem of taking the poor local information into account in the decision-making process. Therefore, simplifying assumptions are made. The avalanche hazard is represented by a Peak Over Threshold (POT model. The influence of the dam is quantified in terms of runout distance reduction with a simple relation derived from small-scale experiments using granular media. The costs corresponding to dam construction and the damage to the element at risk are roughly evaluated for each dam height-hazard value pair, with damage evaluation corresponding to the maximal expected loss. Both the classical and the Bayesian risk functions can then be computed analytically. The results are illustrated with a case study from the French avalanche database. A sensitivity analysis is performed and modelling assumptions are discussed in addition to possible further developments.

  8. Consistency of the MLE under mixture models

    OpenAIRE

    Chen, Jiahua

    2016-01-01

    The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...

  9. Chemical model reduction under uncertainty

    KAUST Repository

    Malpica Galassi, Riccardo; Valorani, Mauro; Najm, Habib N.; Safta, Cosmin; Khalil, Mohammad; Ciottoli, Pietro P.

    2017-01-01

    A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis

  10. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  11. Chemical model reduction under uncertainty

    KAUST Repository

    Malpica Galassi, Riccardo

    2017-03-06

    A general strategy for analysis and reduction of uncertain chemical kinetic models is presented, and its utility is illustrated in the context of ignition of hydrocarbon fuel–air mixtures. The strategy is based on a deterministic analysis and reduction method which employs computational singular perturbation analysis to generate simplified kinetic mechanisms, starting from a detailed reference mechanism. We model uncertain quantities in the reference mechanism, namely the Arrhenius rate parameters, as random variables with prescribed uncertainty factors. We propagate this uncertainty to obtain the probability of inclusion of each reaction in the simplified mechanism. We propose probabilistic error measures to compare predictions from the uncertain reference and simplified models, based on the comparison of the uncertain dynamics of the state variables, where the mixture entropy is chosen as progress variable. We employ the construction for the simplification of an uncertain mechanism in an n-butane–air mixture homogeneous ignition case, where a 176-species, 1111-reactions detailed kinetic model for the oxidation of n-butane is used with uncertainty factors assigned to each Arrhenius rate pre-exponential coefficient. This illustration is employed to highlight the utility of the construction, and the performance of a family of simplified models produced depending on chosen thresholds on importance and marginal probabilities of the reactions.

  12. Portfolio optimization with structured products under return constraint

    Directory of Open Access Journals (Sweden)

    Baweja Meena

    2015-01-01

    Full Text Available A new approach for optimizing risk in a portfolio of financial instruments involving structured products is presented. This paper deals with a portfolio selection model which uses optimization methodology to minimize conditional Value-at-Risk (CVaR under return constraint. It focuses on minimizing CVaR rather than on minimizing value-at-Risk VaR, as portfolios with low CVaR necessarily have low VaR as well. We consider a simple investment problem where besides stocks and bonds, the investor can also include structured products into the investment portfolio. Due to possible intermediate payments from structured product, we have to deal with a re-investment problem modeled as a linear optimization problem.

  13. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  14. Nonlinear system identification of smart structures under high impact loads

    International Nuclear Information System (INIS)

    Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon

    2013-01-01

    The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure–MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure–MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes. (paper)

  15. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  16. PRODUCT STRUCTURE DIGITAL MODEL

    Directory of Open Access Journals (Sweden)

    V.M. Sineglazov

    2005-02-01

    Full Text Available  Research results of representation of product structure made by means of CADDS5 computer-aided design (CAD system, Product Data Management Optegra (PDM system and Product Life Cycle Management Wind-chill system (PLM, are examined in this work. Analysis of structure component development and its storage in various systems is carried out. Algorithms of structure transformation required for correct representation of the structure are considered. Management analysis of electronic mockup presentation of the product structure is carried out for Windchill system.

  17. Response of masonry structure under impact load

    International Nuclear Information System (INIS)

    Makovicka, D.

    1993-01-01

    The paper deals with interaction of a short gaseous impact wave with a plate structure. Analyses of dynamic bending, depending on the parameters of the structure and the impact wave (i.e. the stress and displacement field produced by the resulting incident and reflected wave) have been made by FEM. The calculated data was based on the real material properties of this structure. Pressures greater than computed limit pressures result in the failure of the structure. The calculated and experimental data are compared. (author)

  18. Concurrent Structural Fatigue Damage Prognosis Under Uncertainty

    Science.gov (United States)

    2014-04-30

    Piascik, R.S., "Local Crack Closure Measurements: Development and Application of a Measurement System Using Computer Vision and a Far-Field Microscope...aircraft structural health monitoring. Structural Health Monitoring, 2002. 1(1): p. 41-61. 16. Constantin , N., S. Sorohan, and M. Gavan, Efficient and

  19. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  20. Superconductivity and structure of gallium under nanoconfinement

    Energy Technology Data Exchange (ETDEWEB)

    Charnaya, E V; Tien, Cheng; Lee, Min Kai [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Kumzerov, Yu A [A F Ioffe Physico-Technical Institute RAS, St Petersburg, 194021 (Russian Federation)

    2009-11-11

    Superconductivity and crystalline structure were studied for two nanocomposites consisting of gallium loaded porous glasses with different pore sizes. The superconducting transition temperatures were found to differ from those in known bulk gallium modifications. The transition temperatures 7.1 and 6.7 K were ascribed to two new confined gallium structures, iota- and kappa-Ga, observed by synchrotron radiation x-ray powder diffraction. The evolution of superconductivity on decreasing the pore filling with gallium was also studied.

  1. Capital Structure Arbitrage under a Risk-Neutral Calibration

    Directory of Open Access Journals (Sweden)

    Peter J. Zeitsch

    2017-01-01

    Full Text Available By reinterpreting the calibration of structural models, a reassessment of the importance of the input variables is undertaken. The analysis shows that volatility is the key parameter to any calibration exercise, by several orders of magnitude. To maximize the sensitivity to volatility, a simple formulation of Merton’s model is proposed that employs deep out-of-the-money option implied volatilities. The methodology also eliminates the use of historic data to specify the default barrier, thereby leading to a full risk-neutral calibration. Subsequently, a new technique for identifying and hedging capital structure arbitrage opportunities is illustrated. The approach seeks to hedge the volatility risk, or vega, as opposed to the exposure from the underlying equity itself, or delta. The results question the efficacy of the common arbitrage strategy of only executing the delta hedge.

  2. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  3. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  4. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  5. Concrete structures under impact loading: general aspects

    Directory of Open Access Journals (Sweden)

    Cornelia Baeră

    2016-09-01

    Full Text Available Dynamic loading conditions distress the structural integrity of a structure differently than the static ones. Such actions transfer high rate strains and instant energy waves to the structure, inducing the possibility of imminent collapse and casualties as a direct consequence. In the latest years, considering the dramatic increase of terrorist threats and global warming, the structural safety criteria imply more than ever the need to withstand this kind of loading (e.g., missiles and blast, projectiles, strong winds, tornados and earthquakes in addition to the static ones. The aim of this paper is to provide a general overview with regard to impact loading in terms of defining the phenomenon from physical and mechanical perspective, its complex local or global effect on the targeted structure, relevant material characteristics, main research approaches, namely theoretical studies and experimental procedures developed for improving the predictability of the dynamic loads and their effects. New directions in developing superior cementitious composites, with better characteristics in terms of dynamic loading performance are also emphasized.

  6. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  7. Anatomic Pathology Structured Report Under FHIR

    Directory of Open Access Journals (Sweden)

    T. Schrader

    2016-06-01

    A first FHIR based structured report was created and validated against a public available FHIR server (http:// spark.furore.com/fhir. FHIR allows to create different document structures for any type of document: a document only with inside resources or a document with inside and outside (linked resources. Our example consists of resources embedded in the main document file and linked resources. The FHIR document allows a great flexibility related to the document resources as well as data files. It is possible FHIR documents as XML, JSON (JavaScript Object Notation or RDF (Resource Description Framework. Due to these various possibilities FHIR documents can be used in a web based application context easily.

  8. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  9. A model for phase stability under irradiation

    International Nuclear Information System (INIS)

    Abromeit, C.

    The combination of two theoretical models leads to modified criteria of stability of precipitates under heavy particle irradiation. The size of existing or under irradiation newly formed precipitates is limited by a stable radius. Precipitate surface energy effects are included in a consistent manner

  10. Quadratic Term Structure Models in Discrete Time

    OpenAIRE

    Marco Realdon

    2006-01-01

    This paper extends the results on quadratic term structure models in continuos time to the discrete time setting. The continuos time setting can be seen as a special case of the discrete time one. Recursive closed form solutions for zero coupon bonds are provided even in the presence of multiple correlated underlying factors. Pricing bond options requires simple integration. Model parameters may well be time dependent without scuppering such tractability. Model estimation does not require a r...

  11. A Structured VAR under Changing Monetary Policy

    DEFF Research Database (Denmark)

    Juselius, Katarina

    The empirical analysis is mainly concerned with the aggregate demand for money relation as part of a small macroeconomic system. Using the theory of cointegrated VAR models for I(2) data the long-run relationships in the data are first investigated, and the ML-estimates of the corresponding coint...... the effects of capital liberalization on the determination of money, income, prices, and interest rates in a small open economy...

  12. Bayesian Model Selection under Time Constraints

    Science.gov (United States)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  13. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  14. Design methods for structures under thermal ratchet

    International Nuclear Information System (INIS)

    Branca, T.R.; McLean, J.L.

    1975-01-01

    Previous work on the thermal ratchet analysis of a simple pipe is extended to the case of an intersection of a pipe with a spherical shell. The chosen nozzle configuration is subjected to an internal pressure which remains constant, and a cyclic thermal transient which is representative of the type of transient that might be expected for components of a LMFBR. A number of cross-sections through the nozzle were examined, each yielding a different combination of elastic primary and secondary stress. These stresses, together with their associated cyclic strain growth, as determined from an elastic-plastic-creep analysis of the nozzle, were then plotted on a Miller or Bree-type diagram. Thus, a number of points, one for each cross-section considered, were available for comparison with the data obtained from the ratchet analysis of simple pipe sections. Both the elastic and inelastic analyses on the nozzle were performed using the finite element method of structural analysis of the ANSYS computer code. The pipe ratchetting cases were computed using the Oak Ridge National Laboratory PLACRE code. For a simple pipe ratchet case, a brief comparison is given between the version of ANSYS used in this study, the ANSYS version used in previous work and PLACRE code. The three programs did not yield identical results. Further study is needed to resolve the discrepancies that were observed. The results of the comparison between the nozzle ratchet and pipe ratchet solutions indicate that reasonable predictions can be made for the nozzle ratchet strains based on elastic parameters and design curves developed from pipe ratchetting solutions. (author)

  15. Prediction of the behavior of structural materials under irradiation through modeling of the microstructure. Progress report, November 1, 1980-October 31, 1981. Final report

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1981-10-01

    The research carried out over the period of about three years falls into three categories: effects of point-defect interactions on the formation of voids, dislocation loops, and network dislocations, during irradiation, and the consequences on the mechanical properties of structural materials; the development of a new mathematical tool to describe the evolution of systems far from a thermodynamic equilibrium state; and the development and exploration of a new technique to measure mechanically and non-destructively the creep damage, or the grain-boundary cavity formation, which is the cause of high-temperature stress rupture

  16. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).

  17. Structure-Based Turbulence Model

    National Research Council Canada - National Science Library

    Reynolds, W

    2000-01-01

    .... Maire carried out this work as part of his Phi) research. During the award period we began to explore ways to simplify the structure-based modeling so that it could be used in repetitive engineering calculations...

  18. Probabilistic modeling of timber structures

    DEFF Research Database (Denmark)

    Köhler, Jochen; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2007-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) [Joint Committee of Structural Safety. Probabilistic Model Code, Internet...... Publication: www.jcss.ethz.ch; 2001] and of the COST action E24 ‘Reliability of Timber Structures' [COST Action E 24, Reliability of timber structures. Several meetings and Publications, Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm; 2005]. The present proposal is based on discussions...... and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for timber components. The recommended probabilistic model for these basic properties...

  19. Structural assessment of TAPS core shroud under accident loads

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1996-09-01

    Over the last few years, the Core Shroud of Boiling Water Reactors (BWRs) operating in foreign countries, have developed cracks at weld locations. As a first step for assessment of structural safety of Tarapur Atomic Power Station (TAPS) core shroud, its detailed stress analysis was done for postulated accident loads. This report is concerned with structural assessment of core shroud, of BWR at TAPS, subjected to loads resulting from main steam line break (MSLB), recirculation line break (RLB) and safe shut down earthquake. The stress analysis was done for core shroud in healthy condition and without any crack since, visual examination conducted till now, do not indicate presence of any flaw. Dynamic structural analysis for MSLB and RLB events was done using dynamic load factor (DLF) method. The complete core shroud and its associated components were modelled and analysed using 3D plate/shell elements. Since, the components of core shroud are submerged in water, hence, hydrodynamic added mass was also considered for evaluation of natural frequencies. It was concluded that from structural point of view, adequate safety margin is available under all the accident loads. Nonlinear analysis was done to evaluate buckling/collapse load. The collapse/buckling load have sufficient margin against the allowable limits. The displacements are low hence, the insertion of control rod may not be affected. (author)

  20. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  1. Structuring very large domain models

    DEFF Research Database (Denmark)

    Störrle, Harald

    2010-01-01

    View/Viewpoint approaches like IEEE 1471-2000, or Kruchten's 4+1-view model are used to structure software architectures at a high level of granularity. While research has focused on architectural languages and with consistency between multiple views, practical questions such as the structuring a...

  2. AN EFFICIENT STRUCTURAL REANALYSIS MODEL FOR ...

    African Journals Online (AJOL)

    be required if complete and exact analysis would be carried out. This paper ... qualities even under significantly large design modifications. A numerical example has been presented to show potential capabilities of theproposed model. INTRODUCTION ... equilibrium conditions in the structural system and the subsequent ...

  3. Numerical simulation, statistical and hybrid turbulence modelling in a tube bundle under crossflow at high Reynolds number in the context of fluid-structure interaction

    International Nuclear Information System (INIS)

    Marcel, T.

    2011-01-01

    The prediction of fluid-elastic instabilities that develop in a tube bundle is of major importance for the design of modern heat exchangers in nuclear reactors, to prevent accidents associated with such instabilities. The fluid-elastic instabilities, or flutter, cause material fatigue, shocks between beams and damage to the solid walls. These issues are very complex for scientific applications involving the nuclear industry. This work is a collaboration between EDF, CEA and IMFT. It aims to improve the numerical simulation of the fluid-structure interaction in the tube bundle, in particular in the range of critical parameters contribute to the onset of damping negative system and the fluid-elastic instability. (author) [fr

  4. Fatgraph models of RNA structure

    Directory of Open Access Journals (Sweden)

    Huang Fenix

    2017-01-01

    Full Text Available In this review paper we discuss fatgraphs as a conceptual framework for RNA structures. We discuss various notions of coarse-grained RNA structures and relate them to fatgraphs.We motivate and discuss the main intuition behind the fatgraph model and showcase its applicability to canonical as well as noncanonical base pairs. Recent discoveries regarding novel recursions of pseudoknotted (pk configurations as well as their translation into context-free grammars for pk-structures are discussed. This is shown to allow for extending the concept of partition functions of sequences w.r.t. a fixed structure having non-crossing arcs to pk-structures. We discuss minimum free energy folding of pk-structures and combine these above results outlining how to obtain an inverse folding algorithm for PK structures.

  5. Electronic structure and optical properties of AIN under high pressure

    International Nuclear Information System (INIS)

    Li Zetao; Dang Suihu; Li Chunxia

    2011-01-01

    We have calculated the electronic structure and optical properties of Wurtzite structure AIN under different high pressure with generalized gradient approximation (GGA) in this paper. The total energy, density of state, energy band structure and optical absorption and reflection properties under high pressure are calculated. By comparing the changes of the energy band structure, we obtained AIN phase transition pressure for 16.7 GPa, which is a direct band structure transforming to an indirect band structure. Meanwhile, according to the density of states distribution and energy band structure, we analyzed the optical properties of AIN under high-pressure, the results showed that the absorption spectra moved from low-energy to high-energy. (authors)

  6. Prediction of the behavior of structural materials under irradiation through modeling of the microstructure. Progress report, April 1, 1978-August 30, 1979

    International Nuclear Information System (INIS)

    Wolfer, W.G.

    1979-08-01

    The development of the radiation-induced microstructure occurs in several stages: formation of small defect clusters, formation of dislocation loops, nucleation and growth of voids, and regeneration of the dislocation network. With the exception of the latter, these processes can be modeled with rate equations of similar form. However, instead of using one rate equation for each defect cluster of a given size, the discrete formulation is transformed in a continuous one leading to Fokker-Planck equations. It is shown by comparing the steady-state nucleation rates of both formulations that the Fokker-Planck equation derived is the correct continuous description. A path-integral solution for the Fokker-Planck equation was derived to provide the basis for a numerical solution procedure, capable of dealing with the vastly different time scales involved in cluster formation, nucleation, and growth

  7. Handbook of structural equation modeling

    CERN Document Server

    Hoyle, Rick H

    2012-01-01

    The first comprehensive structural equation modeling (SEM) handbook, this accessible volume presents both the mechanics of SEM and specific SEM strategies and applications. The editor, contributors, and editorial advisory board are leading methodologists who have organized the book to move from simpler material to more statistically complex modeling approaches. Sections cover the foundations of SEM; statistical underpinnings, from assumptions to model modifications; steps in implementation, from data preparation through writing the SEM report; and basic and advanced applications, inclu

  8. Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Peizhen Li

    2017-12-01

    Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.

  9. Structure of a financial cross-correlation matrix under attack

    Science.gov (United States)

    Lim, Gyuchang; Kim, SooYong; Kim, Junghwan; Kim, Pyungsoo; Kang, Yoonjong; Park, Sanghoon; Park, Inho; Park, Sang-Bum; Kim, Kyungsik

    2009-09-01

    We investigate the structure of a perturbed stock market in terms of correlation matrices. For the purpose of perturbing a stock market, two distinct methods are used, namely local and global perturbation. The former involves replacing a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series while the latter reconstructs the cross-correlation matrix just after replacing the original return series with Gaussian-distributed time series. Concerning the local case, it is a technical study only and there is no attempt to model reality. The term ‘global’ means the overall effect of the replacement on other untouched returns. Through statistical analyses such as random matrix theory (RMT), network theory, and the correlation coefficient distributions, we show that the global structure of a stock market is vulnerable to perturbation. However, apart from in the analysis of inverse participation ratios (IPRs), the vulnerability becomes dull under a small-scale perturbation. This means that these analysis tools are inappropriate for monitoring the whole stock market due to the low sensitivity of a stock market to a small-scale perturbation. In contrast, when going down to the structure of business sectors, we confirm that correlation-based business sectors are regrouped in terms of IPRs. This result gives a clue about monitoring the effect of hidden intentions, which are revealed via portfolios taken mostly by large investors.

  10. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  11. Models of bounded rationality under certainty

    NARCIS (Netherlands)

    Rasouli, S.; Timmermans, H.J.P.; Rasouli, S.; Timmermans, H.J.P.

    2015-01-01

    Purpose This chapter reviews models of decision-making and choice under conditions of certainty. It allows readers to position the contribution of the other chapters in this book in the historical development of the topic area. Theory Bounded rationality is defined in terms of a strategy to simplify

  12. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  13. Estimating true evolutionary distances under the DCJ model.

    Science.gov (United States)

    Lin, Yu; Moret, Bernard M E

    2008-07-01

    Modern techniques can yield the ordering and strandedness of genes on each chromosome of a genome; such data already exists for hundreds of organisms. The evolutionary mechanisms through which the set of the genes of an organism is altered and reordered are of great interest to systematists, evolutionary biologists, comparative genomicists and biomedical researchers. Perhaps the most basic concept in this area is that of evolutionary distance between two genomes: under a given model of genomic evolution, how many events most likely took place to account for the difference between the two genomes? We present a method to estimate the true evolutionary distance between two genomes under the 'double-cut-and-join' (DCJ) model of genome rearrangement, a model under which a single multichromosomal operation accounts for all genomic rearrangement events: inversion, transposition, translocation, block interchange and chromosomal fusion and fission. Our method relies on a simple structural characterization of a genome pair and is both analytically and computationally tractable. We provide analytical results to describe the asymptotic behavior of genomes under the DCJ model, as well as experimental results on a wide variety of genome structures to exemplify the very high accuracy (and low variance) of our estimator. Our results provide a tool for accurate phylogenetic reconstruction from multichromosomal gene rearrangement data as well as a theoretical basis for refinements of the DCJ model to account for biological constraints. All of our software is available in source form under GPL at http://lcbb.epfl.ch.

  14. Probabilistic Modeling of Timber Structures

    DEFF Research Database (Denmark)

    Köhler, J.D.; Sørensen, John Dalsgaard; Faber, Michael Havbro

    2005-01-01

    The present paper contains a proposal for the probabilistic modeling of timber material properties. It is produced in the context of the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS) and of the COST action E24 'Reliability of Timber Structures'. The present...... proposal is based on discussions and comments from participants of the COST E24 action and the members of the JCSS. The paper contains a description of the basic reference properties for timber strength parameters and ultimate limit state equations for components and connections. The recommended...

  15. Outlier Detection in Structural Time Series Models

    DEFF Research Database (Denmark)

    Marczak, Martyna; Proietti, Tommaso

    investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...

  16. Reliability analysis of structures under periodic proof tests in service

    Science.gov (United States)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  17. Modeling Delamination of Interfacial Corner Cracks in Multilayered Structures

    DEFF Research Database (Denmark)

    Veluri, Badrinath (Badri); Jensen, Henrik Myhre

    2013-01-01

    Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress...

  18. Fiber Bundle Model Under Heterogeneous Loading

    Science.gov (United States)

    Roy, Subhadeep; Goswami, Sanchari

    2018-03-01

    The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.

  19. Structural integrity of a reinforced concrete structure and a pipe outlet under hydrogen detonation conditions

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Silde, A.; Calonius, K.

    2002-05-01

    Structural integrity of a reinforced concrete wall and a pipe penetration under detonation conditions in a selected reactor building room of Olkiluoto BWR were studied. Hydrogen leakage from the pressurised containment to the sur rounding reactor building is possible during a severe accident. Leaked hydrogen tends to accumulate in the reactor building rooms where the leak is located leading to a stable stratification and locally very high hydrogen concentration. If ignited, a possibility to flame acceleration and detonation cannot be ruled out. The structure may survive the peak detonation transient because the eigenperiod of the structure is considerably longer than the duration of the peak detonation. However, the relatively slowly decreasing static type pressure after a peak detonation damages the wall more severely. Elastic deformations in reinforcement are recoverable and cracks in these areas will close after the pressure decrease. But there will be remarkable compression crushing and the static type slowly decreasing over pressure clearly exceeds the loading capacity of the wall. Structural integrity of a pipe outlet was considered also under detonation conditions. The effect of drag forces was taken into account. Damping and strain rate dependence of yield strength were not taken into consideration. The boundary condition at the end of the pipe line model was varied in order to find out the effect of the stiffness of the pipeline outside the calculation model. The calculation model where the lower pipe end is free to move axially, is conservative from the pipe penetration integrity point of view. Even in this conservative study, the highest peak value for the maximum plastic deformation is 3.5%. This is well below the success criteria found in literature. (au)

  20. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  1. Modelling sulfamethoxazole degradation under different redox conditions

    Science.gov (United States)

    Sanchez-Vila, X.; Rodriguez-Escales, P.

    2015-12-01

    Sulfamethoxazole (SMX) is a low adsorptive, polar, sulfonamide antibiotic, widely present in aquatic environments. Degradation of SMX in subsurface porous media is spatially and temporally variable, depending on various environmental factors such as in situ redox potential, availability of nutrients, local soil characteristics, and temperature. It has been reported that SMX is better degraded under anoxic conditions and by co-metabolism processes. In this work, we first develop a conceptual model of degradation of SMX under different redox conditions (denitrification and iron reducing conditions), and second, we construct a mathematical model that allows reproducing different experiments of SMX degradation reported in the literature. The conceptual model focuses on the molecular behavior and contemplates the formation of different metabolites. The model was validated using the experimental data from Barbieri et al. (2012) and Mohatt et al. (2011). It adequately reproduces the reversible degradation of SMX under the presence of nitrite as an intermediate product of denitrification. In those experiments degradation was mediated by the transient formation of a diazonium cation, which was considered responsible of the substitution of the amine radical by a nitro radical, forming the 4-nitro-SMX. The formation of this metabolite is a reversible process, so that once the concentration of nitrite was back to zero due to further advancement of denitrification, the concentration of SMX was fully recovered. The forward reaction, formation of 4-nitro SMX, was modeled considering a kinetic of second order, whereas the backward reaction, dissociation of 4-nitro-SMX back to the original compound, could be modeled with a first order degradation reaction. Regarding the iron conditions, SMX was degraded due to the oxidation of iron (Fe2+), which was previously oxidized from goethite due to the degradation of a pool of labile organic carbon. As the oxidation of iron occurred on the

  2. The integrity of cracked structures under thermal loading

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    Previous work by Dowling and Townley on the load-carrying capacity of a cracked structure is extended so that quantitative predictions can be made about failure under thermal loading. Residual stresses can be dealt with in the same way as thermal stresses. It is shown that the tolerance of the structure to thermal stress can be quantified in terms of a parameter which defines the state of the structure. This state parameter can be deduced from the calculated performance of the structure when subjected to an external load. (author)

  3. Track structure in biological models.

    Science.gov (United States)

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  4. Structure and modeling of turbulence

    International Nuclear Information System (INIS)

    Novikov, E.A.

    1995-01-01

    The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)

  5. A model for adatom structures

    Science.gov (United States)

    Kappus, W.

    1981-06-01

    A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.

  6. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    Science.gov (United States)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the

  7. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  8. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  9. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    2003-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  10. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    1999-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  11. Detecting Structural Breaks using Hidden Markov Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...

  12. Structural analysis of reinforced concrete structures under monotonous and cyclic loadings: numerical aspects

    International Nuclear Information System (INIS)

    Lepretre, C.; Millard, A.; Nahas, G.

    1989-01-01

    The structural analysis of reinforced concrete structures is usually performed either by means of simplified methods of strength of materials type i.e. global methods, or by means of detailed methods of continuum mechanics type, i.e. local methods. For this second type, some constitutive models are available for concrete and rebars in a certain number of finite element systems. These models are often validated on simple homogeneous tests. Therefore, it is important to appraise the validity of the results when applying them to the analysis of a reinforced concrete structure, in order to be able to make correct predictions of the actual behaviour, under normal and faulty conditions. For this purpose, some tests have been performed at I.N.S.A. de Lyon on reinforced concrete beams, subjected to monotonous and cyclic loadings, in order to generate reference solutions to be compared with the numerical predictions given by two finite element systems: - CASTEM, developed by C.E.A./.D.E.M.T. - ELEFINI, developed by I.N.S.A. de Lyon

  13. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  14. Safety margins associated with containment structures under dynamic loading

    International Nuclear Information System (INIS)

    Lu, S.C.

    1978-01-01

    A technical basis for assessing the true safety margins of containment structures involved with MARK I boiling water reactor reevaluation activities is presented. It is based on the results of a plane-strain, large displacement, elasto-plastic, finite-element analysis of a thin cylindrical shell subjected to external and internal pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure, and subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  15. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  16. Verification of the karst flow model under laboratory controlled conditions

    Science.gov (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko

    2016-04-01

    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  17. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  18. Modelling human eye under blast loading.

    Science.gov (United States)

    Esposito, L; Clemente, C; Bonora, N; Rossi, T

    2015-01-01

    Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues.

  19. Structural phase transitions in boron carbide under stress

    International Nuclear Information System (INIS)

    Korotaev, P; Pokatashkin, P; Yanilkin, A

    2016-01-01

    Structural transitions in boron carbide B 4 C under stress were studied by means of first-principles molecular dynamics in the framework of density functional theory. The behavior depends strongly on degree of non-hydrostatic stress. Under hydrostatic stress continuous bending of the three-atom C–B–C chain was observed up to 70 GPa. The presence of non-hydrostatic stress activates abrupt reversible chain bending, which is displacement of the central boron atom in the chain with the formation of weak bonds between this atom and atoms in the nearby icosahedra. Such structural change can describe a possible reversible phase transition in dynamical loading experiments. High non-hydrostatic stress achieved in uniaxial loading leads to disordering of the initial structure. The formation of carbon chains is observed as one possible transition route. (paper)

  20. Flavor structure of warped extra dimension models

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit

    2005-01-01

    We recently showed that warped extra-dimensional models with bulk custodial symmetry and few TeV Kaluza-Klein (KK) masses lead to striking signals at B factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B physics. We also briefly study other new physics signatures that arise in rare K decays (K→πνν), in rare top decays [t→cγ(Z,gluon)], and the possibility of CP asymmetries in D 0 decays to CP eigenstates such as K S π 0 and others. Finally we demonstrate that with light KK masses, ∼3 TeV, the above class of models with anarchic 5D Yukawas has a 'CP problem' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal

  1. Flavor Structure of Warped Extra Dimension Models

    International Nuclear Information System (INIS)

    Agashe, Kaustubh; Perez, Gilad; Soni, Amarjit

    2004-01-01

    We recently showed, in HEP-PH--0406101, that warped extra dimensional models with bulk custodial symmetry and few TeV KK masses lead to striking signals at B-factories. In this paper, using a spurion analysis, we systematically study the flavor structure of models that belong to the above class. In particular we find that the profiles of the zero modes, which are similar in all these models, essentially control the underlying flavor structure. This implies that our results are robust and model independent in this class of models. We discuss in detail the origin of the signals in B-physics. We also briefly study other NP signatures that arise in rare K decays (K → πνν), in rare top decays [t → cγ(Z, gluon)] and the possibility of CP asymmetries in D 0 decays to CP eigenstates such as K s π 0 and others. Finally we demonstrate that with light KK masses, ∼ 3 TeV, the above class of models with anarchic 5D Yukawas has a ''CP problem'' since contributions to the neutron electric dipole moment are roughly 20 times larger than the current experimental bound. Using AdS/CFT correspondence, these extra-dimensional models are dual to a purely 4D strongly coupled conformal Higgs sector thus enhancing their appeal

  2. Generalized latent variable modeling multilevel, longitudinal, and structural equation models

    CERN Document Server

    Skrondal, Anders; Rabe-Hesketh, Sophia

    2004-01-01

    This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.

  3. Kinematic models of extensional structures

    International Nuclear Information System (INIS)

    Groshong, R.H. Jr.

    1990-01-01

    This paper discusses kinematic models that can relate faults of different types and different positions within a single dynamic system and thereby offer the potential to explain the disparate seismic activity characteristic of extensional terrains. The major styles are full grabens, half grabens, domino blocks, and glide-block systems. Half grabens, the most likely models for Basin and Range structure, are formed above a master fault of decreasing dip with depth and a hangingwall that deforms as it passes over the curved fault. Second-order normal faults, typically domino style, accommodate the required hangingwall deformation. According to the author low-angle detachment faults are consistent with the evidence of seismicity only on high-angle faults if the hangingwall of the detachment is broken by multiple half-graben systems

  4. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ 1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  5. Double diffusivity model under stochastic forcing

    Science.gov (United States)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2017-05-01

    The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into

  6. Behavior of auxetic structures under compression and impact forces

    Science.gov (United States)

    Yang, Chulho; Vora, Hitesh D.; Chang, Young

    2018-02-01

    In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke’s law but still show the properties of negative Poisson’s ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex® and SemiFlex®), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson’s ratio, and efficiency in shock absorption. Auxetic structures showed better shock

  7. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    of the investigation, fatigue test series with a total of 540 fatigue tests have been carried through on various types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel or high-strength steel. The fatigue tests......Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and the fracture mechanics analyses have been carried out using load histories, which are realistic in relation to the types of structures studied, i.e. primarily bridges, offshore structures and chimneys. In general, the test series carried through show a significant difference between constant amplitude...

  8. Structural response of a nuclear power plant steel containment under H2 detonation

    International Nuclear Information System (INIS)

    Maresca, G.; Milella, P.P.; Pino, G.

    1993-01-01

    To get a better understanding of the containment wall behaviour under a detonation a simple but complete model is analysed in order to study the fluid-structure interaction during the explosion. The structure is represented by a single degree of freedom (SDOF) elastic-plastic system. This system is coupled to a monodimensional model of the containment atmosphere excited by hydrogen bursting. The atmosphere modeling allows to represent the shock propagation and the reflected wave effects. In the model a cylindrical geometry is used as reference. The obtained results are compared with data adopted in Italy to assess the structural integrity of the Alto Lazio NPP steel containment in the case of a severe accident. The limits of the model as well as the possible extensions are discussed in the paper together with a possible application in an experimental program directed to the assessment of failure criteria under severe accident conditions. (orig./HP)

  9. Quasi-static structural optimization under the seismic loads

    International Nuclear Information System (INIS)

    Choi, W. S.; Lee, K. M.; Kim, T. W.

    2001-01-01

    For preliminaries to optimization of SMART under the seismic loads, a quasi-static structural optimization for elastic structures under dynamic loads is presented. An equivalent static load (ESL) set is defined as a static load set, which generates the same displacement field as that from a dynamic load at a certain time. Multiple ESL sets calculated at all the time intervals are employed to represent the various states of the structure under the dynamic load. They can cover all the critical states that might happen at arbitrary times. The continuous characteristics of a dynamic load are considered by multiple static load sets. The calculated sets of ESLs are utilized as a multiple loading condition in the optimization process. A design cycle is defined as a circulated process between an analysis domain and a design domain. The analysis domain gives the loading condition needed in the design domain. The design domain gives a new updated design to be verified by the analysis domain in the next design cycle. The design cycles are iterated until the design converges. Structural optimization with dynamic loads is tangible by the proposed method. Standard example problems are solved to verify the validity of the method

  10. Analysis Of Masonry Infilled RC Frame Structures Under Lateral Loading

    Directory of Open Access Journals (Sweden)

    Barnaure Mircea

    2015-03-01

    Full Text Available Partition walls are often made of masonry in Romania. Although they are usually considered non-structural elements in the case of reinforced concrete framed structures, the infill panels contribute significantly to the seismic behaviour of the building. Their impact is difficult to assess, mainly because the interaction between the bounding frame and the infill is an intricate issue. This paper analyses the structural behaviour of a masonry infilled reinforced concrete frame system subjected to in - plane loading. Three numerical models are proposed and their results are compared in terms of stiffness and strength of the structure. The role of the openings in the infill panel on the behaviour is analysed and discussed. The effect of gaps between the frame and the infill on the structural behaviour is also investigated. Comparisons are made with the in-force Romanian and European regulations provisions.

  11. Band structure of CdTe under high pressure

    International Nuclear Information System (INIS)

    Jayam, Sr. Gerardin; Nirmala Louis, C.; Amalraj, A.

    2005-01-01

    The band structures and density of states of cadmium telluride (CdTe) under various pressures ranging from normal to 4.5 Mbar are obtained. The electronic band structure at normal pressure of CdTe (ZnS structure) is analyzed and the direct band gap value is found to be 1.654 eV. CdTe becomes metal and superconductor under high pressure but before that it undergoes structural phase transition from ZnS phase to NaCl phase. The equilibrium lattice constant, bulk modulus and the phase transition pressure at which the compounds undergo structural phase transition from ZnS to NaCl are predicted from the total energy calculations. The density of states at the Fermi level (N(E F )) gets enhanced after metallization, which leads to the superconductivity in CdTe. In our calculation, the metallization pressure (P M = 1.935 Mbar) and the corresponding reduced volume ((V/V 0 ) M = 0.458) are estimated. Metallization occurs via direct closing of band gap at Γ point. (author)

  12. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...... and variable amplitude fatigue test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner’s rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from...

  13. Modelling of Performance of Caisson Type Breakwaters under Extreme Waves

    Science.gov (United States)

    Güney Doǧan, Gözde; Özyurt Tarakcıoǧlu, Gülizar; Baykal, Cüneyt

    2016-04-01

    Many coastal structures are designed without considering loads of tsunami-like waves or long waves although they are constructed in areas prone to encounter these waves. Performance of caisson type breakwaters under extreme swells is tested in Middle East Technical University (METU) Coastal and Ocean Engineering Laboratory. This paper presents the comparison of pressure measurements taken along the surface of caisson type breakwaters and obtained from numerical modelling of them using IH2VOF as well as damage behavior of the breakwater under the same extreme swells tested in a wave flume at METU. Experiments are conducted in the 1.5 m wide wave flume, which is divided into two parallel sections (0.74 m wide each). A piston type of wave maker is used to generate the long wave conditions located at one end of the wave basin. Water depth is determined as 0.4m and kept constant during the experiments. A caisson type breakwater is constructed to one side of the divided flume. The model scale, based on the Froude similitude law, is chosen as 1:50. 7 different wave conditions are applied in the tests as the wave period ranging from 14.6 s to 34.7 s, wave heights from 3.5 m to 7.5 m and steepness from 0.002 to 0.015 in prototype scale. The design wave parameters for the breakwater were 5m wave height and 9.5s wave period in prototype. To determine the damage of the breakwater which were designed according to this wave but tested under swell waves, video and photo analysis as well as breakwater profile measurements before and after each test are performed. Further investigations are carried out about the acting wave forces on the concrete blocks of the caisson structures via pressure measurements on the surfaces of these structures where the structures are fixed to the channel bottom minimizing. Finally, these pressure measurements will be compared with the results obtained from the numerical study using IH2VOF which is one of the RANS models that can be applied to simulate

  14. Soil Retaining Structures : Development of models for structural analysis

    NARCIS (Netherlands)

    Bakker, K.J.

    2000-01-01

    The topic of this thesis is the development of models for the structural analysis of soil retaining structures. The soil retaining structures being looked at are; block revetments, flexible retaining walls and bored tunnels in soft soil. Within this context typical structural behavior of these

  15. Structural Evaluation on HIC Transport Packaging under Accident Conditions

    International Nuclear Information System (INIS)

    Chung, Sung Hwan; Kim, Duck Hoi; Jung, Jin Se; Yang, Ke Hyung; Lee, Heung Young

    2005-01-01

    HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  16. Static reliability of concrete structures under extreme temperature, radiation, moisture and force loading

    International Nuclear Information System (INIS)

    Stepanek, P.; Stastnik, S.; Salajka, V.; Hradil, P.; Skolar, J.; Chlanda, V.

    2003-01-01

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. (author)

  17. Modeling cascading failures in interdependent infrastructures under terrorist attacks

    International Nuclear Information System (INIS)

    Wu, Baichao; Tang, Aiping; Wu, Jie

    2016-01-01

    An attack strength degradation model has been introduced to further capture the interdependencies among infrastructures and model cascading failures across infrastructures when terrorist attacks occur. A medium-sized energy system including oil network and power network is selected for exploring the vulnerabilities from independent networks to interdependent networks, considering the structural vulnerability and the functional vulnerability. Two types of interdependencies among critical infrastructures are involved in this paper: physical interdependencies and geographical interdependencies, shown by tunable parameters based on the probabilities of failures of nodes in the networks. In this paper, a tolerance parameter α is used to evaluation of the overloads of the substations based on power flow redistribution in power transmission systems under the attack. The results of simulation show that the independent networks or interdependent networks will be collapsed when only a small fraction of nodes are attacked under the attack strength degradation model, especially for the interdependent networks. The methodology introduced in this paper with physical interdependencies and geographical interdependencies involved in can be applied to analyze the vulnerability of the interdependent infrastructures further, and provides the insights of vulnerability of interdependent infrastructures to mitigation actions for critical infrastructure protections. - Highlights: • An attack strength degradation model based on the specified locations has been introduced. • Interdependencies considering both physical and geographical have been analyzed. • The structural vulnerability and the functional vulnerability have been considered.

  18. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    International Nuclear Information System (INIS)

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  19. Structural and electronic properties of carbon nanotubes under hydrostatic pressures

    International Nuclear Information System (INIS)

    Zhang Ying; Cao Juexian; Yang Wei

    2008-01-01

    We studied the structural and electronic properties of carbon nanotubes under hydrostatic pressures based on molecular dynamics simulations and first principles band structure calculations. It is found that carbon nanotubes experience a hard-to-soft transition as external pressure increases. The bulk modulus of soft phase is two orders of magnitude smaller than that of hard phase. The band structure calculations show that band gap of (10, 0) nanotube increases with the increase of pressure at low pressures. Above a critical pressure (5.70GPa), band gap of (10, 0) nanotube drops rapidly and becomes zero at 6.62GPa. Moreover, the calculated charge density shows that a large pressure can induce an sp 2 -to-sp 3 bonding transition, which is confirmed by recent experiments on deformed carbon nanotubes

  20. Probabilistic SSME blades structural response under random pulse loading

    Science.gov (United States)

    Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.

    1987-01-01

    The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.

  1. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    algorithms to perform the global optimization. The efficiency of the proposed models is examined on a set of well–defined discrete multi material and thickness optimization problems originating from the literature. The inclusion of manufacturing limitations along with structural considerations in the early...... mixed integer 0–1 programming problems. The manufacturing constraints have been treated by developing explicit models with favorable properties. In this thesis we have developed and implemented special purpose global optimization methods and heuristic techniques for solving this class of problems......This thesis considers discrete multi material and thickness optimization of laminated composite structures including local failure criteria and manufacturing constraints. Our models closely follow an immediate extension of the Discrete Material Optimization scheme, which allows simultaneous...

  2. Models and structures: mathematical physics

    International Nuclear Information System (INIS)

    2003-01-01

    This document gathers research activities along 5 main directions. 1) Quantum chaos and dynamical systems. Recent results concern the extension of the exact WKB method that has led to a host of new results on the spectrum and wave functions. Progress have also been made in the description of the wave functions of chaotic quantum systems. Renormalization has been applied to the analysis of dynamical systems. 2) Combinatorial statistical physics. We see the emergence of new techniques applied to various such combinatorial problems, from random walks to random lattices. 3) Integrability: from structures to applications. Techniques of conformal field theory and integrable model systems have been developed. Progress is still made in particular for open systems with boundary conditions, in connection to strings and branes physics. Noticeable links between integrability and exact WKB quantization to 2-dimensional disordered systems have been highlighted. New correlations of eigenvalues and better connections to integrability have been formulated for random matrices. 4) Gravities and string theories. We have developed aspects of 2-dimensional string theory with a particular emphasis on its connection to matrix models as well as non-perturbative properties of M-theory. We have also followed an alternative path known as loop quantum gravity. 5) Quantum field theory. The results obtained lately concern its foundations, in flat or curved spaces, but also applications to second-order phase transitions in statistical systems

  3. Structural modelling of economic growth: Technological changes

    Directory of Open Access Journals (Sweden)

    Sukharev Oleg

    2016-01-01

    Full Text Available Neoclassical and Keynesian theories of economic growth assume the use of Cobb-Douglas modified functions and other aggregate econometric approaches to growth dynamics modelling. In that case explanations of economic growth are based on the logic of the used mathematical ratios often including the ideas about aggregated values change and factors change a priori. The idea of assessment of factor productivity is the fundamental one among modern theories of economic growth. Nevertheless, structural parameters of economic system, institutions and technological changes are practically not considered within known approaches, though the latter is reflected in the changing parameters of production function. At the same time, on the one hand, the ratio of structural elements determines the future value of the total productivity of the factors and, on the other hand, strongly influences the rate of economic growth and its mode of innovative dynamics. To put structural parameters of economic system into growth models with the possibility of assessment of such modes under conditions of interaction of new and old combinations is an essential step in the development of the theory of economic growth/development. It allows forming stimulation policy of economic growth proceeding from the structural ratios and relations recognized for this economic system. It is most convenient in such models to use logistic functions demonstrating the resource change for old and new combination within the economic system. The result of economy development depends on starting conditions, and on institutional parameters of velocity change of resource borrowing in favour of a new combination and creation of its own resource. Model registration of the resource is carried out through the idea of investments into new and old combinations.

  4. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Hybrid modelling of soil-structure interaction for embedded structures

    International Nuclear Information System (INIS)

    Gupta, S.; Penzien, J.

    1981-01-01

    The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)

  6. An analytically solvable model for rapid evolution of modular structure.

    Directory of Open Access Journals (Sweden)

    Nadav Kashtan

    2009-04-01

    Full Text Available Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here, a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying goals.

  7. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  8. Structural integrity analysis of an INPP building under external loading

    International Nuclear Information System (INIS)

    Dundulis, G.; Karalevicius, R.; Uspuras, E.; Kulak, R.F.; Marchertas, A.

    2005-01-01

    After the terrorist attacks in New York and Washington D. C. using civil airplanes, the evaluation of civil airplane crashes into civil and NPP structures has become very important. The interceptions of many terrorists' communications reveal that the use of commandeered commercial aircraft is still a major part of their plans for destruction. Aircraft crash or other flying objects in the territory of the Ignalina Nuclear Power Plant (INPP) represents a concern to the plant. Aircraft traveling at high velocity have a destructive potential. The aircraft crash may damage the roof and walls of buildings, pipelines, electric motors, cases of power supplies, power cables of electricity transmission and other elements and systems, which are important for safety. Therefore, the evaluation of the structural response to an of aircraft crash is important and was selected for analysis. The structural integrity analysis due to the effects of an aircraft crash on an NPP building structure is the subject of this paper. The finite element method was used for the structural analysis of a typical Ignalina NPP building. The structural integrity analysis was performed for a portion of the ALS using the dynamic loading of an aircraft crash impact model. The computer code NEPTUNE was used for this analysis. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. (authors)

  9. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  10. Structural evaluation of electrosleeved tubes under severe accident transients

    International Nuclear Information System (INIS)

    Majumdar, S.

    1999-01-01

    A flow stress model was developed for predicting failure of Electrosleeved PWR steam generator tubing under severe accident transients. The Electrosleeve, which is nanocrystalline pure nickel, loses its strength at temperatures greater than 400 C during severe accidents because of grain growth. A grain growth model and the Hall-Petch relationship were used to calculate the loss of flow stress as a function of time and temperature during the accident. Available tensile test data as well as high temperature failure tests on notched Electrosleeved tube specimens were used to derive the basic parameters of the failure model. The model was used to predict the failure temperatures of Electrosleeved tubes with axial cracks in the parent tube during postulated severe accident transients

  11. Structural model for fluctuations in financial markets

    Science.gov (United States)

    Anand, Kartik; Khedair, Jonathan; Kühn, Reimer

    2018-05-01

    In this paper we provide a comprehensive analysis of a structural model for the dynamics of prices of assets traded in a market which takes the form of an interacting generalization of the geometric Brownian motion model. It is formally equivalent to a model describing the stochastic dynamics of a system of analog neurons, which is expected to exhibit glassy properties and thus many metastable states in a large portion of its parameter space. We perform a generating functional analysis, introducing a slow driving of the dynamics to mimic the effect of slowly varying macroeconomic conditions. Distributions of asset returns over various time separations are evaluated analytically and are found to be fat-tailed in a manner broadly in line with empirical observations. Our model also allows us to identify collective, interaction-mediated properties of pricing distributions and it predicts pricing distributions which are significantly broader than their noninteracting counterparts, if interactions between prices in the model contain a ferromagnetic bias. Using simulations, we are able to substantiate one of the main hypotheses underlying the original modeling, viz., that the phenomenon of volatility clustering can be rationalized in terms of an interplay between the dynamics within metastable states and the dynamics of occasional transitions between them.

  12. Structures under crash and impact continuum mechanics, discretization and experimental characterization

    CERN Document Server

    Hiermaier, Stefan

    2007-01-01

    Required reading for those in the relevant areas of work, this book examines the testing and modeling of materials and structures under dynamic loading conditions.Readers get an in-depth analysis of the current mathematical modeling and simulation tools available for a variety of materials, alongside discussions of the benefits and limitations these tools pose in industrial design.The models discussed are also available in commercial codes such as LS-DYNA and AOTODYN.Following a logical and well organized structure, this volume uniquely combines experimental procedures with numerical simulatio

  13. Basic concept on the responses of structural members and structures under impact or impulsive loadings

    International Nuclear Information System (INIS)

    Takeda, J.I.; Tachikawa, H.; Fujimoto, K.

    1982-01-01

    The responses of structural members and structures subjected to impact or impulsive loadings are generated by the interaction between acting bodies and structures, and the interaction is affected by many factors, e.g. the relations of masses, sizes, rigidities, etc. between acting bodies and structures and especially by relative velocity. The development of the responses of structural members and structures are controlled by the constitutive equations and failure criteria of constituent materials, the relationships of cowork system between the constituent materials and existing stress waves. Furthermore, the first two are influenced by rate effects and they all widely change by the speeds of impact and impulsive loadings. This paper deals with the physical meaning of the responses of structures under impact and impulsive loadings. (orig.) [de

  14. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  15. Structure functions from chiral soliton models

    International Nuclear Information System (INIS)

    Weigel, H.; Reinhardt, H.; Gamberg, L.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions g 1 and g 2 in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them from the scale characteristic for the NJL-model to the scale of the data

  16. Structural analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    ITER (International Thermonuclear Experimental Reactor) is intended to be an experimental thermonuclear tokamak reactor testing the basic physics performance and technologies essential to future fusion reactors. The magnet system of ITER consists essentially of 4 sub-systems, i.e. toroidal field coils (TFCs), poloidal field coils (PFCs), power supplies, and cryogenic supplies. These subsystems do not contain significant radioactivity inventories, but the large energy inventory is a potential accident initiator. The aim of the structural analyses is to prevent accidents from propagating into vacuum vessel, tritium system and cooling system, which all contain significant amounts of radioactivity. As part of design process 3 conditions are defined for PF and TF coils, at which mechanical behaviour has to be analyzed in some detail, viz: normal operating conditions, upset conditions and fault conditions. This paper describes the work carried out by ECN to create a detailed finite element model of 16 TFCs as well as results of some fault condition analyses made with the model. Due to fault conditions, either electrical or mechanical, magnetic loading of TFCs becomes abnormal and further mechanical failure of parts of the overall structure might occur (e.g. failure of coil, gravitational supports, intercoil structure). The analyses performed consist of linear elastic stress analyses and electro-magneto-structural analyses (coupled field analyses). 8 refs.; 5 figs.; 5 tabs

  17. CARIBBEAN OFFSHORE CORPORATE STRUCTURES UNDER A SWOT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ana-Maria GEAMÃNU

    2015-04-01

    Full Text Available Tax havens have long been under the attention of numerous Governments and International Organizations which triggered the concern of an uneven playing field in the taxation area. As a result numerous amendments have been made to both their commercial and tax legislations in order to be in line with the internationally agreed tax standards. The aim of this article is to conduct a SWOT analysis on the offshore corporate structures found in the Caribbean landscape. Based on a selection process of the most commonly recognized tax havens in the Caribbean region and an analysis of their offshore companies at the level of incorporation, administration, activities conducted and costs, a set of frequently met characteristics have been identified which stand at the basis of the SWOT analysis. The results stand to present a comprehensive four dimension framework of the offshore corporate structures in regards to their strengths, weaknesses, opportunities and threats.

  18. Structure of high-density amorphous ice under pressure

    International Nuclear Information System (INIS)

    Klotz, S.; Hamel, G.; Loveday, J.S.; Nelmes, R.J.; Guthrie, M.; Soper, A.K.

    2002-01-01

    We report in situ neutron diffraction studies of high-density amorphous ice (HDA) at 100 K at pressures up to 2.2 GPa. We find that the compression is achieved by a strong contraction (∼20%) of the second neighbor coordination shell, so that at 2.2 GPa it closely approaches the first coordination shell, which itself remains intact in both structure and size. The hydrogen bond orientations suggest an absence of hydrogen bonding between first and second shells and that HDA has increasingly interpenetrating hydrogen bond networks under pressure

  19. Probabilistic analysis of flaw distribution on structure under cyclic load

    International Nuclear Information System (INIS)

    Kwak, Sang Log; Choi, Young Hwan; Kim, Hho Jung

    2003-01-01

    Flaw geometries, applied stress, and material properties are major input variables for the fracture mechanics analysis. Probabilistic approach can be applied for the consideration of uncertainties within these input variables. But probabilistic analysis requires many assumptions due to the lack of initial flaw distributions data. In this study correlations are examined between initial flaw distributions and in-service flaw distributions on structures under cyclic load. For the analysis, LEFM theories and Monte Carlo simulation are applied. Result shows that in-service flaw distributions are determined by initial flaw distributions rather than fatigue crack growth rate. So initial flaw distribution can be derived from in-service flaw distributions

  20. Structural behavior of human lumbar intervertebral disc under direct shear.

    Science.gov (United States)

    Schmidt, Hendrik; Häussler, Kim; Wilke, Hans-Joachim; Wolfram, Uwe

    2015-03-18

    The intervertebral disc (IVD) is a complex, flexible joint between adjacent vertebral bodies that provides load transmission while permitting movements of the spinal column. Finite element models can be used to help clarify why and how IVDs fail or degenerate. To do so, it is of importance to validate those models against controllable experiments. Due to missing experimental data, shear properties are not used thus far in validating finite element models. This study aimed to investigate the structural shear properties of human lumbar IVDs in posteroanterior (PA) and laterolateral (LL) loading directions. Fourteen lumbar IVDs (median age: 49 years) underwent direct shear in PA and LL loading directions. A custom-build shear device was used in combination with a materials testing machine to load the specimens until failure. Shear stiffness, ultimate shear force and displacement, and work to failure were determined. Each specimen was tested until complete or partial disruption. Median stiffness in PA direction was 490 N/mm and in LL direction 568 N/mm. Median ultimate shear force in the PA direction was 2,877 N and in the LL direction 3,199 N. Work to failure was 12 Nm in the PA and 9 Nm in the LL direction. This study was an experiment to subject IVDs to direct shear. The results could help us to understand the structure and function of IVDs with regard to mechanical spinal stability, and they can be used to validate finite element models of the IVD.

  1. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  2. Plant cell plasma membrane structure and properties under clinostatting

    Science.gov (United States)

    Polulakh, Yu. A.; Zhadko, S. I.; Klimchuk, D. A.; Baraboy, V. A.; Alpatov, A. N.; Sytnik, K. M.

    Structural-functional organization of plasma membrane of pea roots seedling was investigated by methods of chemiluminescence, fluorescence probes, chromatography and freeze-fracture studies under normal conditions and clinostatting. Phase character of lipid peroxidation intensity was fixed. The initial phase of this process is characterized by lipid peroxidation decreasing with its next induction. The primary changes depending on free-radical mechanisms of lipid peroxidation were excellently revealed by chemiluminescence. Plasmalemma microviscosity increased on the average of 15-20 % under microgravity at the initial stages of its phenomenon. There were major changes of phosphatidilcholine and phosphatidilethanolamine contents. The total quantity of phospholipids remained rather stable. Changes of phosphatide acid concentration point to degradation and phospholipids biosynthesis. There were increases of unsaturated fatty acids mainly at the expense of linoleic and linolenic acids and also a decrease of saturated fatty acid content at the expense of palmitic and stearic acids. Unsaturation index of fatty acids increased as well. On the whole fatty acid composition was variable in comparison with phospholipids. Probably it is one of mechanisms of maintaining of microviscosity within definite limits. Considerable structural changes in organization of plasmalemma protein-lipid complex were not revealed by the freeze-fracture studies.

  3. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  4. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A V; Bezmenov, K V; Demchenko, P F; Mokhov, I I; Petoukhov, V K [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  5. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  6. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  7. Inelastic behavior of materials and structures under monotonic and cyclic loading

    CERN Document Server

    Brünig, Michael

    2015-01-01

    This book presents studies on the inelastic behavior of materials and structures under monotonic and cyclic loads. It focuses on the description of new effects like purely thermal cycles or cases of non-trivial damages. The various models are based on different approaches and methods and scaling aspects are taken into account. In addition to purely phenomenological models, the book also presents mechanisms-based approaches. It includes contributions written by leading authors from a host of different countries.

  8. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  9. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    Science.gov (United States)

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  10. Modeling the Propagation of Mobile Phone Virus under Complex Network

    Science.gov (United States)

    Yang, Wei; Wei, Xi-liang; Guo, Hao; An, Gang; Guo, Lei

    2014-01-01

    Mobile phone virus is a rogue program written to propagate from one phone to another, which can take control of a mobile device by exploiting its vulnerabilities. In this paper the propagation model of mobile phone virus is tackled to understand how particular factors can affect its propagation and design effective containment strategies to suppress mobile phone virus. Two different propagation models of mobile phone viruses under the complex network are proposed in this paper. One is intended to describe the propagation of user-tricking virus, and the other is to describe the propagation of the vulnerability-exploiting virus. Based on the traditional epidemic models, the characteristics of mobile phone viruses and the network topology structure are incorporated into our models. A detailed analysis is conducted to analyze the propagation models. Through analysis, the stable infection-free equilibrium point and the stability condition are derived. Finally, considering the network topology, the numerical and simulation experiments are carried out. Results indicate that both models are correct and suitable for describing the spread of two different mobile phone viruses, respectively. PMID:25133209

  11. Linking advanced fracture models to structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, Matteo

    2001-07-01

    Shell structures with defects occur in many situations. The defects are usually introduced during the welding process necessary for joining different parts of the structure. Higher utilization of structural materials leads to a need for accurate numerical tools for reliable prediction of structural response. The direct discretization of the cracked shell structure with solid finite elements in order to perform an integrity assessment of the structure in question leads to large size problems, and makes such analysis infeasible in structural application. In this study a link between local material models and structural analysis is outlined. An ''ad hoc'' element formulation is used in order to connect complex material models to the finite element framework used for structural analysis. An improved elasto-plastic line spring finite element formulation, used in order to take cracks into account, is linked to shell elements which are further linked to beam elements. In this way one obtain a global model of the shell structure that also accounts for local flexibilities and fractures due to defects. An important advantage with such an approach is a direct fracture mechanics assessment e.g. via computed J-integral or CTOD. A recent development in this approach is the notion of two-parameter fracture assessment. This means that the crack tip stress tri-axiality (constraint) is employed in determining the corresponding fracture toughness, giving a much more realistic capacity of cracked structures. The present thesis is organized in six research articles and an introductory chapter that reviews important background literature related to this work. Paper I and II address the performance of shell and line spring finite elements as a cost effective tool for performing the numerical calculation needed to perform a fracture assessment. In Paper II a failure assessment, based on the testing of a constraint-corrected fracture mechanics specimen under tension, is

  12. Dynamic malware containment under an epidemic model with alert

    Science.gov (United States)

    Zhang, Tianrui; Yang, Lu-Xing; Yang, Xiaofan; Wu, Yingbo; Tang, Yuan Yan

    2017-03-01

    Alerting at the early stage of malware invasion turns out to be an important complement to malware detection and elimination. This paper addresses the issue of how to dynamically contain the prevalence of malware at a lower cost, provided alerting is feasible. A controlled epidemic model with alert is established, and an optimal control problem based on the epidemic model is formulated. The optimality system for the optimal control problem is derived. The structure of an optimal control for the proposed optimal control problem is characterized under some conditions. Numerical examples show that the cost-efficiency of an optimal control strategy can be enhanced by adjusting the upper and lower bounds on admissible controls.

  13. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  14. Structural studies on serum albumins under green light irradiation.

    Science.gov (United States)

    Comorosan, Sorin; Polosan, Silviu; Popescu, Irinel; Ionescu, Elena; Mitrica, Radu; Cristache, Ligia; State, Alina Elena

    2010-10-01

    This paper presents two new experimental results: the protective effect of green light (GL) on ultraviolet (UV) denaturation of proteins, and the effect of GL on protein macromolecular structures. The protective effect of GL was revealed on two serum albumins, bovine (BSA) and human (HSA), and recorded by electrophoresis, absorption, and circular dichroism spectra. The effect of GL irradiation on protein structure was recorded by using fluorescence spectroscopy and electrophoresis. These new effects were modeled by quantum-chemistry computation using Gaussian 03 W, leading to good fit between theoretical and experimental absorption and circular dichroism spectra. A mechanism for these phenomena is suggested, based on a double-photon absorption process. This nonlinear effect may lead to generation of long-lived Rydberg macromolecular systems, capable of long-range interactions. These newly suggested systems, with macroscopic quantum coherence behaviors, may block the UV denaturation processes.

  15. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    International Nuclear Information System (INIS)

    Porter, V.L.

    1994-01-01

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  16. Modeling and identification in structural dynamics

    OpenAIRE

    Jayakumar, Paramsothy

    1987-01-01

    Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...

  17. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  18. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  20. Model of personal consumption under conditions of modern economy

    Science.gov (United States)

    Rakhmatullina, D. K.; Akhmetshina, E. R.; Ignatjeva, O. A.

    2017-12-01

    In the conditions of the modern economy, in connection with the development of production, the expansion of the market for goods and services, its differentiation, active use of marketing tools in the sphere of sales, changes occur in the system of values and consumer needs. Motives that drive the consumer are transformed, stimulating it to activity. The article presents a model of personal consumption that takes into account modern trends in consumer behavior. The consumer, making a choice, seeks to maximize the overall utility from consumption, physiological and socio-psychological satisfaction, in accordance with his expectations, preferences and conditions of consumption. The system of his preferences is formed under the influence of factors of a different nature. It is also shown that the structure of consumer spending allows us to characterize and predict its further behavior in the market. Based on the proposed model and analysis of current trends in consumer behavior, conclusions and recommendations have been made that can be used by legislative and executive government bodies, business organizations, research centres and other structures to form a methodological and analytical tool for preparing a forecast model of consumption.

  1. Ice films follow structure zone model morphologies

    International Nuclear Information System (INIS)

    Cartwright, Julyan H.E.; Escribano, Bruno; Sainz-Diaz, C. Ignacio

    2010-01-01

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10 -4 Pa to 10 2 Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  2. Ice films follow structure zone model morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E. [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Escribano, Bruno, E-mail: bruno.escribano.salazar@gmail.co [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain); Sainz-Diaz, C. Ignacio [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18071 Granada (Spain)

    2010-04-02

    Ice films deposited at temperatures of 6-220 K and at low pressures in situ in a cryo-environmental scanning electron microscope show pronounced morphologies at the mesoscale consistent with the structure zone model of film growth. Water vapour was injected directly inside the chamber at ambient pressures ranging from 10{sup -4} Pa to 10{sup 2} Pa. Several different substrates were used to exclude the influence of their morphology on the grown films. At the lowest temperatures the ice, which under these conditions is amorphous on the molecular scale, shows the mesoscale morphologies typical of the low-temperature zones of the structure zone model (SZM), including cauliflower, transition, spongelike and matchstick morphologies. Our experiments confirm that the SZM is independent of the chemical nature of the adsorbate, although the intermolecular interactions in water (hydrogen bonds) are different to those in ceramics or metals. At higher temperatures, on the other hand, where the ice is hexagonal crystalline on the molecular scale, it displays a complex palmlike morphology on the mesoscale.

  3. Reinforced concrete structures under impact and impulsive loading: recent development, problems and trends

    International Nuclear Information System (INIS)

    Plauk, G.; Herter, J.

    1984-01-01

    Nuclear plant facilities and other reinforced concrete structures have to be regarded as to their safety in design and construction with respect to impact and impulsive loading in order to avoid serious damage to mankind and environment. The paper gives a survey on theoretical and experimental developments currently in progress, in particular regarding airplane crash. Some new results arising out of several research programs relevant to particular problems of impact loading have been reviewed and are presented. Experimental investigation for determination of material properties of plain concrete, reinforcing steel as well as steel-concrete bond under high strain-rates are treated in this paper including theoretical approaches for the respective material laws. An outline of soft missile impact tests performed on structural members, e.g. beams and plates, to determine the load deformation or fracture behaviour is given. Furthermore, numerical models and calculations to analyse structural components and structures under impact loading were discussed. (Author) [pt

  4. Modeling, Analysis, and Optimization Issues for Large Space Structures

    Science.gov (United States)

    Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)

    1983-01-01

    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.

  5. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  6. The Response of Simple Polymer Structures Under Dynamic Loading

    Science.gov (United States)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  7. Disrupted white matter structure underlies cognitive deficit in hypertensive patients

    International Nuclear Information System (INIS)

    Li, Xin; Ma, Chao; Zhang, Junying; Chen, Yaojing; Zhang, Zhanjun; Sun, Xuan; Chen, Kewei

    2016-01-01

    Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. (orig.)

  8. On the underlying gauge group structure of D=11 supergravity

    International Nuclear Information System (INIS)

    Bandos, I.A.; Azcarraga, J.A. de; Izquierdo, J.M.; Picon, M.; Varela, O.

    2004-01-01

    The underlying gauge group structure of D=11 supergravity is revisited. It may be described by a one-parametric family of Lie supergroups Σ-bar (s)x-bar SO(1,10), s 0. The family of superalgebras E-bar (s) associated to Σ-bar (s) is given by a family of extensions of the M-algebra {Pa,Qα,Zab,Za1...a5} by an additional fermionic central charge Qα'. The Chevalley-Eilenberg four-cocycle ω4∼Πα-bar Πβ-bar Πa-bar ΠbΓabαβ on the standard D=11 supersymmetry algebra may be trivialized on E-bar (s), and this implies that the three-form field A3 of D=11 supergravity may be expressed as a composite of the Σ-bar (s) one-form gauge fields ea, ψα, Bab, Ba1...a5 and ηα. Two superalgebras of E-bar (s) recover the two earlier D'Auria and Fre decompositions of A3. Another member of E-bar (s) allows for a simpler composite structure for A3 that does not involve the Ba1...a5 field. Σ-bar (s) is a deformation of Σ-bar (0), which is singularized by having an enhanced Sp(32) (rather than just SO(1,10)) automorphism symmetry and by being an expansion of OSp(1 vertical bar 32)

  9. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    KAUST Repository

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna

    2014-01-01

    of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (~10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody

  10. Mathematical Modeling: A Structured Process

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  11. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  12. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  13. Probabilistic models for structured sparsity

    DEFF Research Database (Denmark)

    Andersen, Michael Riis

    sparse solutions to linear inverse problems. In this part, the sparsity promoting prior known as the spike-and-slab prior (Mitchell and Beauchamp, 1988) is generalized to the structured sparsity setting. An expectation propagation algorithm is derived for approximate posterior inference. The proposed...

  14. Modelling the harmonized tertiary Institutions Salary Structure ...

    African Journals Online (AJOL)

    This paper analyses the Harmonized Tertiary Institution Salary Structure (HATISS IV) used in Nigeria. The irregularities in the structure are highlighted. A model that assumes a polynomial trend for the zero step salary, and exponential trend for the incremental rates, is suggested for the regularization of the structure.

  15. Structural Equation Modeling of Multivariate Time Series

    Science.gov (United States)

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  16. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  17. Residual Structures in Latent Growth Curve Modeling

    Science.gov (United States)

    Grimm, Kevin J.; Widaman, Keith F.

    2010-01-01

    Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…

  18. A Teaching Model for Truss Structures

    Science.gov (United States)

    Bigoni, Davide; Dal Corso, Francesco; Misseroni, Diego; Tommasini, Mirko

    2012-01-01

    A classroom demonstration model has been designed, machined and successfully tested in different learning environments to facilitate understanding of the mechanics of truss structures, in which struts are subject to purely axial load and deformation. Gaining confidence with these structures is crucial for the development of lattice models, which…

  19. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  20. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  1. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  2. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  3. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  4. Structural attributes of stand overstory and light under the canopy

    Directory of Open Access Journals (Sweden)

    Alice Angelini

    2015-02-01

    Full Text Available  This paper reviews the literature relating to the relationship between light availability in the understory and the main qualitative and quantitative attributes of stand overstory usually considered in forest management and planning (species composition, density, tree sizes, etc. as well as their changes as consequences of harvesting. The paper is divided in two sections: the first one reviews studies which investigated the influence of species composition on understory light conditions; the second part examines research on the relationships among stand parameters determined from dendrometric field data and the radiation on understory layer. The objective was to highlight which are the most significant stand traits and management features to build more practical models for predicting light regimes in any forest stand and, in more general terms, to support forest managers in planning and designing silvicultural treatments that retain structure in different way in order to meet different objectives.

  5. Modeling heat stress under different environmental conditions.

    Science.gov (United States)

    Carabaño, M J; Logar, B; Bormann, J; Minet, J; Vanrobays, M-L; Díaz, C; Tychon, B; Gengler, N; Hammami, H

    2016-05-01

    Renewed interest in heat stress effects on livestock productivity derives from climate change, which is expected to increase temperatures and the frequency of extreme weather events. This study aimed at evaluating the effect of temperature and humidity on milk production in highly selected dairy cattle populations across 3 European regions differing in climate and production systems to detect differences and similarities that can be used to optimize heat stress (HS) effect modeling. Milk, fat, and protein test day data from official milk recording for 1999 to 2010 in 4 Holstein populations located in the Walloon Region of Belgium (BEL), Luxembourg (LUX), Slovenia (SLO), and southern Spain (SPA) were merged with temperature and humidity data provided by the state meteorological agencies. After merging, the number of test day records/cows per trait ranged from 686,726/49,655 in SLO to 1,982,047/136,746 in BEL. Values for the daily average and maximum temperature-humidity index (THIavg and THImax) ranges for THIavg/THImax were largest in SLO (22-74/28-84) and shortest in SPA (39-76/46-83). Change point techniques were used to determine comfort thresholds, which differed across traits and climatic regions. Milk yield showed an inverted U-shaped pattern of response across the THI scale with a HS threshold around 73 THImax units. For fat and protein, thresholds were lower than for milk yield and were shifted around 6 THI units toward larger values in SPA compared with the other countries. Fat showed lower HS thresholds than protein traits in all countries. The traditional broken line model was compared with quadratic and cubic fits of the pattern of response in production to increasing heat loads. A cubic polynomial model allowing for individual variation in patterns of response and THIavg as heat load measure showed the best statistical features. Higher/lower producing animals showed less/more persistent production (quantity and quality) across the THI scale. The

  6. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  7. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  8. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...

  9. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  10. Oriented matroids—combinatorial structures underlying loop quantum gravity

    Science.gov (United States)

    Brunnemann, Johannes; Rideout, David

    2010-10-01

    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator (Ashtekar A and Lewandowski J 1998 Adv. Theor. Math. Phys. 1 388) in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in three-dimensional Riemannian space and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)). Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence, the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of Brunnemann and Rideout (2008 Class. Quantum Grav. 25 065001 and 065002), and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3 (Ziegler G M 1998 Electron. J. Comb.; Björner A et al 1999 Oriented Matroids (Cambridge: Cambridge University Press)), and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.

  11. Study on Collapse Mechanism of Steel Frame Structure under High Temperature and Blast Loading

    Science.gov (United States)

    Baoxin, Qi; Yan, Shi; Bi, Jialiang

    2018-03-01

    Numerical simulation analysis for collapsing process and mechanism of steel frame structures under the combined effects of fire and explosion is performed in this paper. First of all, a new steel constitutive model considering fire (high temperature softening effect) and blast (strain rate effect) is established. On the basis of the traditional Johnson-Cook model and the Perzyna model, the relationship between strain and scaled distance as well as the EOUROCODE3 standard heating curve taking into account the temperature effect parameters is introduced, and a modified Johnson-Cook constitutive model is established. Then, the influence of considering the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the steel column for the same scaled distance under the combined effects of fire and blast; the damage will be serious with decreasing of the scaled distance of the steel column under the same temperature under the combined effects of fire and blast; in the case of the combined effects of fire and blast happening in the side-spans, the partial progressive collapse occurs as the scaled distance is less than or equal to 1.28; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.

  12. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  13. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  14. Quantitative structure - mesothelioma potency model ...

    Science.gov (United States)

    Cancer potencies of mineral and synthetic elongated particle (EP) mixtures, including asbestos fibers, are influenced by changes in fiber dose composition, bioavailability, and biodurability in combination with relevant cytotoxic dose-response relationships. A unique and comprehensive rat intra-pleural (IP) dose characterization data set with a wide variety of EP size, shape, crystallographic, chemical, and bio-durability properties facilitated extensive statistical analyses of 50 rat IP exposure test results for evaluation of alternative dose pleural mesothelioma response models. Utilizing logistic regression, maximum likelihood evaluations of thousands of alternative dose metrics based on hundreds of individual EP dimensional variations within each test sample, four major findings emerged: (1) data for simulations of short-term EP dose changes in vivo (mild acid leaching) provide superior predictions of tumor incidence compared to non-acid leached data; (2) sum of the EP surface areas (ÓSA) from these mildly acid-leached samples provides the optimum holistic dose response model; (3) progressive removal of dose associated with very short and/or thin EPs significantly degrades resultant ÓEP or ÓSA dose-based predictive model fits, as judged by Akaike’s Information Criterion (AIC); and (4) alternative, biologically plausible model adjustments provide evidence for reduced potency of EPs with length/width (aspect) ratios 80 µm. Regar

  15. Tree-Structured Digital Organisms Model

    Science.gov (United States)

    Suzuki, Teruhiko; Nobesawa, Shiho; Tahara, Ikuo

    Tierra and Avida are well-known models of digital organisms. They describe a life process as a sequence of computation codes. A linear sequence model may not be the only way to describe a digital organism, though it is very simple for a computer-based model. Thus we propose a new digital organism model based on a tree structure, which is rather similar to the generic programming. With our model, a life process is a combination of various functions, as if life in the real world is. This implies that our model can easily describe the hierarchical structure of life, and it can simulate evolutionary computation through mutual interaction of functions. We verified our model by simulations that our model can be regarded as a digital organism model according to its definitions. Our model even succeeded in creating species such as viruses and parasites.

  16. Structure activity relationships to assess new chemicals under TSCA

    Energy Technology Data Exchange (ETDEWEB)

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  17. Structured statistical models of inductive reasoning.

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  18. Robust Optimization Model for Production Planning Problem under Uncertainty

    Directory of Open Access Journals (Sweden)

    Pembe GÜÇLÜ

    2017-01-01

    Full Text Available Conditions of businesses change very quickly. To take into account the uncertainty engendered by changes has become almost a rule while planning. Robust optimization techniques that are methods of handling uncertainty ensure to produce less sensitive results to changing conditions. Production planning, is to decide from which product, when and how much will be produced, with a most basic definition. Modeling and solution of the Production planning problems changes depending on structure of the production processes, parameters and variables. In this paper, it is aimed to generate and apply scenario based robust optimization model for capacitated two-stage multi-product production planning problem under parameter and demand uncertainty. With this purpose, production planning problem of a textile company that operate in İzmir has been modeled and solved, then deterministic scenarios’ and robust method’s results have been compared. Robust method has provided a production plan that has higher cost but, will result close to feasible and optimal for most of the different scenarios in the future.

  19. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  20. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  1. A first course in structural equation modeling

    CERN Document Server

    Raykov, Tenko

    2012-01-01

    In this book, authors Tenko Raykov and George A. Marcoulides introduce students to the basics of structural equation modeling (SEM) through a conceptual, nonmathematical approach. For ease of understanding, the few mathematical formulas presented are used in a conceptual or illustrative nature, rather than a computational one.Featuring examples from EQS, LISREL, and Mplus, A First Course in Structural Equation Modeling is an excellent beginner's guide to learning how to set up input files to fit the most commonly used types of structural equation models with these programs. The basic ideas and methods for conducting SEM are independent of any particular software.Highlights of the Second Edition include: Review of latent change (growth) analysis models at an introductory level Coverage of the popular Mplus program Updated examples of LISREL and EQS A CD that contains all of the text's LISREL, EQS, and Mplus examples.A First Course in Structural Equation Modeling is intended as an introductory book for students...

  2. Capital Structure: Target Adjustment Model and a Mediation Moderation Model with Capital Structure as Mediator

    OpenAIRE

    Abedmajid, Mohammed

    2015-01-01

    This study consists of two models. Model one is conducted to check if there is a target adjustment toward optimal capital structure, in the context of Turkish firm listed on the stock market, over the period 2003-2014. Model 2 captures the interaction between firm size, profitability, market value and capital structure using the moderation mediation model. The results of model 1 have shown that there is a partial adjustment of the capital structure to reach target levels. The results of...

  3. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  4. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  5. Intelligent-based Structural Damage Detection Model

    International Nuclear Information System (INIS)

    Lee, Eric Wai Ming; Yu, K.F.

    2010-01-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  6. Intelligent-based Structural Damage Detection Model

    Science.gov (United States)

    Lee, Eric Wai Ming; Yu, Kin Fung

    2010-05-01

    This paper presents the application of a novel Artificial Neural Network (ANN) model for the diagnosis of structural damage. The ANN model, denoted as the GRNNFA, is a hybrid model combining the General Regression Neural Network Model (GRNN) and the Fuzzy ART (FA) model. It not only retains the important features of the GRNN and FA models (i.e. fast and stable network training and incremental growth of network structure) but also facilitates the removal of the noise embedded in the training samples. Structural damage alters the stiffness distribution of the structure and so as to change the natural frequencies and mode shapes of the system. The measured modal parameter changes due to a particular damage are treated as patterns for that damage. The proposed GRNNFA model was trained to learn those patterns in order to detect the possible damage location of the structure. Simulated data is employed to verify and illustrate the procedures of the proposed ANN-based damage diagnosis methodology. The results of this study have demonstrated the feasibility of applying the GRNNFA model to structural damage diagnosis even when the training samples were noise contaminated.

  7. A stochastic global identification framework for aerospace structures operating under varying flight states

    Science.gov (United States)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing

  8. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  9. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  10. Structural classification and a binary structure model for superconductors

    Institute of Scientific and Technical Information of China (English)

    Dong Cheng

    2006-01-01

    Based on structural and bonding features, a new classification scheme of superconductors is proposed to classify conductors can be partitioned into two parts, a superconducting active component and a supplementary component.Partially metallic covalent bonding is found to be a common feature in all superconducting active components, and the electron states of the atoms in the active components usually make a dominant contribution to the energy band near the Fermi surface. Possible directions to explore new superconductors are discussed based on the structural classification and the binary structure model.

  11. LYRA, a webserver for lymphocyte receptor structural modeling

    DEFF Research Database (Denmark)

    Klausen, Michael Schantz; Anderson, Mads Valdemar; Jespersen, Martin Closter

    2015-01-01

    the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA......The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements...... a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts...

  12. Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal

    OpenAIRE

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of appl...

  13. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  14. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  15. A unifying model of genome evolution under parsimony.

    Science.gov (United States)

    Paten, Benedict; Zerbino, Daniel R; Hickey, Glenn; Haussler, David

    2014-06-19

    Parsimony and maximum likelihood methods of phylogenetic tree estimation and parsimony methods for genome rearrangements are central to the study of genome evolution yet to date they have largely been pursued in isolation. We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph G, a finite set of AVGs describe all parsimonious interpretations of G, and this set can be explored with a few sampling moves. This theoretical study describes a model in which the inference of genome rearrangements and phylogeny can be unified under parsimony.

  16. Structural modeling for multicell composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  17. Interface stability of granular filter structures under currents

    NARCIS (Netherlands)

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  18. Observations and Modeling of Atmospheric Radiance Structure

    National Research Council Canada - National Science Library

    Wintersteiner, Peter

    2001-01-01

    The overall purpose of the work that we have undertaken is to provide new capabilities for observing and modeling structured radiance in the atmosphere, particularly the non-LTE regions of the atmosphere...

  19. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  20. Global model structures for ∗-modules

    DEFF Research Database (Denmark)

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  1. Structural changes and intermolecular interactions of filled ice Ic structure for hydrogen hydrate under high pressure

    International Nuclear Information System (INIS)

    Machida, S; Hirai, H; Kawamura, T; Yamamoto, Y; Yagi, T

    2010-01-01

    High-pressure experiments of hydrogen hydrate were performed using a diamond anvil cell under conditions of 0.1-44.2 GPa and at room temperature. Also, high pressure Raman studies of solid hydrogen were performed in the pressure range of 0.1-43.7 GPa. X-ray diffractometry (XRD) for hydrogen hydrate revealed that a known high-pressure structure, filled ice Ic structure, of hydrogen hydrate transformed to a new high-pressure structure at approximately 35-40 GPa. A comparison of the Raman spectroscopy of a vibron for hydrogen molecules between hydrogen hydrate and solid hydrogen revealed that the extraction of hydrogen molecules from hydrogen hydrate occurred above 20 GPa. Also, the Raman spectra of a roton revealed that the rotation of hydrogen molecules in hydrogen hydrate was suppressed at around 20 GPa and that the rotation recovered under higher pressure. These results indicated that remarkable intermolecular interactions in hydrogen hydrate between neighboring hydrogen molecules and between guest hydrogen molecules and host water molecules might occur. These intermolecular interactions could produce the stability of hydrogen hydrate.

  2. A simple model for the dynamic analysis of deteriorating structures

    International Nuclear Information System (INIS)

    Andreaus, U.; Ceradini, G.; D'Asdia, P.

    1983-01-01

    A simple model exhibiting a multi-linear constitutive law is presented which describes the behaviour of structural members and subassemblages under severe cyclic loading. The proposed model allows for: 1) pinched form of force-displacement diagrams due to, e.g., cracks in reinforced concrete members and masonry panels; 2) slippage effects due to lack of bond of steel bars in reinforced concrete and clearances in steel bolted connections; 3) post-buckling behaviour of subassemblages with unstable members; 4) cumulative damage affecting strength and/or stiffness at low cycle fatigue. The parameters governing the model behaviour have to be estimated on the basis of experimental results. The model is well suitable for analysis under statically applied cyclic displacements and forces, and under earthquake excitation. An X-type bracing system is then worked out where the member behaviour is schematized according to the proposed model. (orig.)

  3. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  4. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  5. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  6. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    2009-01-01

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  7. Modelling point patterns with linear structures

    DEFF Research Database (Denmark)

    Møller, Jesper; Rasmussen, Jakob Gulddahl

    processes whose realizations contain such linear structures. Such a point process is constructed sequentially by placing one point at a time. The points are placed in such a way that new points are often placed close to previously placed points, and the points form roughly line shaped structures. We...... consider simulations of this model and compare with real data....

  8. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de [Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany); Schreiber, Falk [Monash University, Melbourne, VIC (Australia); Martin-Luther-University Halle-Wittenberg, Halle (Germany)

    2015-01-26

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.

  9. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  10. Effect of Thermal Fields on the Structure of Corrosion-Resistant Steels Under Different Modes of Laser Treatment

    Science.gov (United States)

    Tarasova, T. V.; Gusarov, A. V.; Protasov, K. E.; Filatova, A. A.

    2017-11-01

    The influence of temperature fields on the structure and properties of corrosion-resistant chromium steels under different modes of laser treatment is investigated. A model of heat transfer under laser impact on target is used to plot thermal fields and cycles and cooling rates. It is shown that the model used for computing thermal fields gives tentative geometric sizes of the fusion zones under laser treatment and selective laser fusion. The cooling rate is shown to have decisive influence on the structure of corrosion-resistant steels after laser treatment with surface fusion in devices for pulsed, continuous, and selective laser melting.

  11. Structural Identifiability of Dynamic Systems Biology Models.

    Science.gov (United States)

    Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis

    2016-10-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.

  12. Numerical Modelling of Structures with Uncertainties

    Directory of Open Access Journals (Sweden)

    Kahsin Maciej

    2017-04-01

    Full Text Available The nature of environmental interactions, as well as large dimensions and complex structure of marine offshore objects, make designing, building and operation of these objects a great challenge. This is the reason why a vast majority of investment cases of this type include structural analysis, performed using scaled laboratory models and complemented by extended computer simulations. The present paper focuses on FEM modelling of the offshore wind turbine supporting structure. Then problem is studied using the modal analysis, sensitivity analysis, as well as the design of experiment (DOE and response surface model (RSM methods. The results of modal analysis based simulations were used for assessing the quality of the FEM model against the data measured during the experimental modal analysis of the scaled laboratory model for different support conditions. The sensitivity analysis, in turn, has provided opportunities for assessing the effect of individual FEM model parameters on the dynamic response of the examined supporting structure. The DOE and RSM methods allowed to determine the effect of model parameter changes on the supporting structure response.

  13. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna

    2014-01-01

    Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful...... applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (∼10 min...... on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together....

  14. Antibody structural modeling with prediction of immunoglobulin structure (PIGS)

    KAUST Repository

    Marcatili, Paolo

    2014-11-06

    © 2014 Nature America, Inc. All rights reserved. Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (~10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.

  15. Analysis of a Model for the Morphological Structure of Renal Arterial Tree: Fractal Structure

    Directory of Open Access Journals (Sweden)

    Aurora Espinoza-Valdez

    2013-01-01

    experimental data measurements of the rat kidneys. The fractal dimension depends on the probability of sprouting angiogenesis in the development of the arterial vascular tree of the kidney, that is, of the distribution of blood vessels in the morphology generated by the analytical model. The fractal dimension might determine whether a suitable renal vascular structure is capable of performing physiological functions under appropriate conditions. The analysis can describe the complex structures of the development vasculature in kidney.

  16. Intelligent structural optimization: Concept, Model and Methods

    International Nuclear Information System (INIS)

    Lu, Dagang; Wang, Guangyuan; Peng, Zhang

    2002-01-01

    Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented

  17. Optimization and anti-optimization of structures under uncertainty

    National Research Council Canada - National Science Library

    Elishakoff, Isaac; Ohsaki, Makoto

    2010-01-01

    The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years...

  18. Transient modelling of a natural circulation loop under variable pressure

    International Nuclear Information System (INIS)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian; Instituto de Engenharia Nuclear

    2017-01-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  19. Transient modelling of a natural circulation loop under variable pressure

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2017-07-01

    The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the

  20. Pricing Participating Products under a Generalized Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Tak Kuen Siu

    2008-01-01

    Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.

  1. Measurement Model Specification Error in LISREL Structural Equation Models.

    Science.gov (United States)

    Baldwin, Beatrice; Lomax, Richard

    This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…

  2. Pricing Decision under Dual-Channel Structure considering Fairness and Free-Riding Behavior

    Directory of Open Access Journals (Sweden)

    Yongmei Liu

    2014-01-01

    Full Text Available Under dual-channel structure, the free-riding behavior based on different service levels between online channel and offline channel cannot be avoided, which would lead to channel unfairness. This study implies that the dual-channel supply chain is built up by online channel controlled by manufacturer and traditional channel controlled by retailer, respectively. Under this channel structure, we rebuild the linear demand function considering free-riding behavior and modify the pricing model based on channel fairness. Then the influences of fair factor and free-riding behavior on manufacturer and retailer pricing and performance are discussed. Finally, we propose some numerical analysis to provide some valuable recommendations for manufacturer and retailer improving channel management performance.

  3. Remote sensing approach to structural modelling

    International Nuclear Information System (INIS)

    El Ghawaby, M.A.

    1989-01-01

    Remote sensing techniques are quite dependable tools in investigating geologic problems, specially those related to structural aspects. The Landsat imagery provides discrimination between rock units, detection of large scale structures as folds and faults, as well as small scale fabric elements such as foliation and banding. In order to fulfill the aim of geologic application of remote sensing, some essential surveying maps might be done from images prior to the structural interpretation: land-use, land-form drainage pattern, lithological unit and structural lineament maps. Afterwards, the field verification should lead to interpretation of a comprehensive structural model of the study area to apply for the target problem. To deduce such a model, there are two ways of analysis the interpreter may go through: the direct and the indirect methods. The direct one is needed in cases where the resources or the targets are controlled by an obvious or exposed structural element or pattern. The indirect way is necessary for areas where the target is governed by a complicated structural pattern. Some case histories of structural modelling methods applied successfully for exploration of radioactive minerals, iron deposits and groundwater aquifers in Egypt are presented. The progress in imagery, enhancement and integration of remote sensing data with the other geophysical and geochemical data allow a geologic interpretation to be carried out which become better than that achieved with either of the individual data sets. 9 refs

  4. Analytical solutions for the study of immersed unanchored structures under seismic loading

    International Nuclear Information System (INIS)

    Mege, Romain

    2011-01-01

    In the nuclear energy industry, most of the major components are anchored to the civil works using numerous types of supports devices. These anchorages are big issues of the nuclear plant design: the implantation of the components has to be fixed definitely, stress concentration in the surroundings of the anchorage, and for immersed structure, possible loss of the impermeability. Thereby, under certain safety regulations, some structures lay directly on the ground. This is the case for in air or underwater structure, such as fuel storage racks. This solution gives more flexibility in the use of the components and a decrease of the stress. However, one has to evaluate precisely the behavior of this sliding structure, and in particular, the cumulated sliding displacement during a seismic event in order to prevent any impact with other components. During a seismic event, the unanchored structure can slide, rotate and tilt. The aim of this paper is to present analytical solutions to estimate the sliding amplitudes of different simplified systems which represent a given dynamic behavior. These simplified models are: a sliding mass and a complex sliding structure defined by its eigenmodes. Each simplified system corresponds to a different set of assumptions made on the flexibility of the structure. Two analytical solutions are presented in this article: single sliding mass and a vertical sliding beam. In each model, the fluid-structure interaction between the immersed body and the pool is modeled as hydrodynamic masses. The sliding is represented by Coulomb friction. The seismic loading can be any 3D seismic accelerogram. The analytical solutions are obtained considering the different phases of the movement and the continuity between each phase. The results are then compared to the values computed with the commercial Finite Element package ANSYS TM . The analytical curves show a good fit of the computational results. (author)

  5. Impact damages modeling in laminated composite structures

    Directory of Open Access Journals (Sweden)

    Kreculj Dragan D.

    2014-01-01

    Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.

  6. Scale modeling of reinforced concrete structures subjected to seismic loading

    International Nuclear Information System (INIS)

    Dove, R.C.

    1983-01-01

    Reinforced concrete, Category I structures are so large that the possibility of seismicly testing the prototype structures under controlled conditions is essentially nonexistent. However, experimental data, from which important structural properties can be determined and existing and new methods of seismic analysis benchmarked, are badly needed. As a result, seismic experiments on scaled models are of considerable interest. In this paper, the scaling laws are developed in some detail so that assumptions and choices based on judgement can be clearly recognized and their effects discussed. The scaling laws developed are then used to design a reinforced concrete model of a Category I structure. Finally, how scaling is effected by various types of damping (viscous, structural, and Coulomb) is discussed

  7. Topological representation of the porous structure and its evolution of reservoir sandstone under excavation-induced loads

    Directory of Open Access Journals (Sweden)

    Ju Yang

    2017-01-01

    Full Text Available The porous structure of a reservoir rock greatly influences its evolutive deformation and fracture behavior during excavation of natural resources reservoirs. Most numerical models for porous structures have been used to predict the quasi-static mechanical properties, but few are available to accurately characterize the evolution process of the porous structure and its influence on the macroscopic properties of reservoir rocks. This study reports a novel method to characterize the porous structure of sandstone using its topological parameters and to determine the laws that govern the evolutive deformation and failure of the topological structure under various uniaxial compressive loads. A numerical model of the porous sandstone was established based on the pore characteristics that were acquired using computed tomography imaging techniques. The analytical method that integrates the grassfire algorithm and the maximum inscribed sphere algorithm was proposed to create the 3-D topological model of the deformed porous structure, through which the topological parameters of the structure were measured and identified. The evolution processes of the porous structure under various loads were characterized using its equivalent topological model and parameters. This study opens a new way to characterize the dynamic evolution of the pore structure of reservoir sandstone under excavation disturbance.

  8. On the Use of Structural Equation Models in Marketing Modeling

    NARCIS (Netherlands)

    Steenkamp, J.E.B.M.; Baumgartner, H.

    2000-01-01

    We reflect on the role of structural equation modeling (SEM) in marketing modeling and managerial decision making. We discuss some benefits provided by SEM and alert marketing modelers to several recent developments in SEM in three areas: measurement analysis, analysis of cross-sectional data, and

  9. Tuned mass absorbers on damped structures under random load

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2008-01-01

    the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent......A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... for the response variance of a structure with initial damping in terms of the mass ratio and both damping ratios. Within this format the optimal tuning of the absorber turns out to be independent of the structural damping, and a simple explicit expression is obtained for the equivalent total damping....

  10. MODELING OF THE BEHAVIOUR REOLOGICHESKIH TEL UNDER DIFFERENT LAW NAGRUZHENIYA

    Directory of Open Access Journals (Sweden)

    V. V. Bendyukov

    2014-01-01

    Full Text Available The Offered model of the behaviour reologicheskogo bodies (the viscous-elasticity of the materia, designs or systems under controlling influence of the load, acting on given law for some time.

  11. Modelling comonotonic group-life under dependent decrement causes

    OpenAIRE

    Wang, Dabuxilatu

    2011-01-01

    Comonotonicity had been a extreme case of dependency between random variables. This article consider an extension of single life model under multiple dependent decrement causes to the case of comonotonic group-life.

  12. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem

    2014-01-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial

  13. Emulating a flexible space structure: Modeling

    Science.gov (United States)

    Waites, H. B.; Rice, S. C.; Jones, V. L.

    1988-01-01

    Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.

  14. Power mos devices: structures and modelling procedures

    Energy Technology Data Exchange (ETDEWEB)

    Rossel, P.; Charitat, G.; Tranduc, H.; Morancho, F.; Moncoqut

    1997-05-01

    In this survey, the historical evolution of power MOS transistor structures is presented and currently used devices are described. General considerations on current and voltage capabilities are discussed and configurations of popular structures are given. A synthesis of different modelling approaches proposed last three years is then presented, including analytical solutions, for basic electrical parameters such as threshold voltage, on-resistance, saturation and quasi-saturation effects, temperature influence and voltage handling capability. The numerical solutions of basic semiconductor devices is then briefly reviewed along with some typical problems which can be solved this way. A compact circuit modelling method is finally explained with emphasis on dynamic behavior modelling

  15. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  16. Time series modelling of overflow structures

    DEFF Research Database (Denmark)

    Carstensen, J.; Harremoës, P.

    1997-01-01

    The dynamics of a storage pipe is examined using a grey-box model based on on-line measured data. The grey-box modelling approach uses a combination of physically-based and empirical terms in the model formulation. The model provides an on-line state estimate of the overflows, pumping capacities...... and available storage capacity in the pipe as well as predictions of future states. A linear overflow relation is found, differing significantly from the traditional modelling approach. This is due to complicated overflow structures in a hydraulic sense where the overflow is governed by inertia from the inflow...... to the overflow structures. The capacity of a pump draining the storage pipe has been estimated for two rain events, revealing that the pump was malfunctioning during the first rain event. The grey-box modelling approach is applicable for automated on-line surveillance and control. (C) 1997 IAWQ. Published...

  17. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model.

    Science.gov (United States)

    Suresh, Krithika; Taylor, Jeremy M G; Spratt, Daniel E; Daignault, Stephanie; Tsodikov, Alexander

    2017-11-01

    Dynamic prediction incorporates time-dependent marker information accrued during follow-up to improve personalized survival prediction probabilities. At any follow-up, or "landmark", time, the residual time distribution for an individual, conditional on their updated marker values, can be used to produce a dynamic prediction. To satisfy a consistency condition that links dynamic predictions at different time points, the residual time distribution must follow from a prediction function that models the joint distribution of the marker process and time to failure, such as a joint model. To circumvent the assumptions and computational burden associated with a joint model, approximate methods for dynamic prediction have been proposed. One such method is landmarking, which fits a Cox model at a sequence of landmark times, and thus is not a comprehensive probability model of the marker process and the event time. Considering an illness-death model, we derive the residual time distribution and demonstrate that the structure of the Cox model baseline hazard and covariate effects under the landmarking approach do not have simple form. We suggest some extensions of the landmark Cox model that should provide a better approximation. We compare the performance of the landmark models with joint models using simulation studies and cognitive aging data from the PAQUID study. We examine the predicted probabilities produced under both methods using data from a prostate cancer study, where metastatic clinical failure is a time-dependent covariate for predicting death following radiation therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling and control of flexible space structures

    Science.gov (United States)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  19. Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends.

    Science.gov (United States)

    Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)

  20. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  1. Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

    Science.gov (United States)

    Bordoli, Lorenza; Schwede, Torsten

    2012-01-01

    Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

  2. Submerged Fixed Floating Structure under the Action of Surface Current

    Directory of Open Access Journals (Sweden)

    Zhen Cui

    2018-01-01

    Full Text Available The implementation of floating structures has increased with the construction of new sluices for flood control. The overturning moment of floating structure and its influencing factors are the important parameters that determine the structural safety. It is essential to understand the overturning characteristics of these structures in currents. Based on hydrodynamic theory and equilibrium analysis, the hydraulic characteristics of a floating structure are discussed by means of theoretical analysis and experiments. A formula for the overturning moment is developed in terms of the time-averaged pressure on the structure. The corresponding parametric study aims to assess the effects of flow velocities, vertical positions, shape ratios and water levels on the overturning moment. The experimental results show that hydrodynamic factors have a significant influence on the overturning of the structure. Furthermore, a relationship is obtained between the overturning moment and the contributing parameters according to dimensional analysis and the linear fitting method of multidimensional ordinary least squares (OLS. The results predicted by the formula agree with the experimental results, demonstrating the potential for general applicability.

  3. Rate Dependent Multicontinuum Progressive Failure Analysis of Woven Fabric Composite Structures under Dynamic Impact

    Directory of Open Access Journals (Sweden)

    James Lua

    2004-01-01

    Full Text Available Marine composite materials typically exhibit significant rate dependent response characteristics when subjected to extreme dynamic loading conditions. In this work, a strain-rate dependent continuum damage model is incorporated with multicontinuum technology (MCT to predict damage and failure progression for composite material structures. MCT treats the constituents of a woven fabric composite as separate but linked continua, thereby allowing a designer to extract constituent stress/strain information in a structural analysis. The MCT algorithm and material damage model are numerically implemented with the explicit finite element code LS-DYNA3D via a user-defined material model (umat. The effects of the strain-rate hardening model are demonstrated through both simple single element analyses for woven fabric composites and also structural level impact simulations of a composite panel subjected to various impact conditions. Progressive damage at the constituent level is monitored throughout the loading. The results qualitatively illustrate the value of rate dependent material models for marine composite materials under extreme dynamic loading conditions.

  4. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex....... The continuous relaxation of the mixed integer programming problems is being solved by an implementation of a primal–dual interior point method for nonlinear programming that updates the barrier parameter adaptively. The method is chosen for its excellent convergence properties and the ability of the method...... design phase results in structures with better structural performance reducing the need of manually post–processing the found designs....

  5. Harvesting Energy from Vibrations of the Underlying Structure

    DEFF Research Database (Denmark)

    Han, Bo; Vssilaras, S; Papadias, C.B.

    2013-01-01

    to the long-term structural health of a building or bridge, but at the same time they can be exploited as a power source to power the wireless sensors that are monitoring this structural health. This paper presents a new energy harvesting method based on a vibration driven electromagnetic harvester. By using......The use of wireless sensors for structural health monitoring offers several advantages such as small size, easy installation and minimal intervention on existing structures. However the most significant concern about such wireless sensors is the lifetime of the system, which depends heavily...... on the type of power supply. No matter how energy efficient the operation of a battery operated sensor is, the energy of the battery will be exhausted at some point. In order to achieve a virtually unlimited lifetime, the sensor node should be able to recharge its battery in an easy way. Energy harvesting...

  6. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  7. Selected Aspects of Computer Modeling of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Szczecina M.

    2016-03-01

    Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.

  8. On modeling of structured multiphase mixtures

    International Nuclear Information System (INIS)

    Dobran, F.

    1987-01-01

    The usual modeling of multiphase mixtures involves a set of conservation and balance equations of mass, momentum, energy and entropy (the basic set) constructed by an averaging procedure or postulated. The averaged models are constructed by averaging, over space or time segments, the local macroscopic field equations of each phase, whereas the postulated models are usually motivated by the single phase multicomponent mixture models. In both situations, the resulting equations yield superimposed continua models and are closed by the constitutive equations which place restrictions on the possible material response during the motion and phase change. In modeling the structured multiphase mixtures, the modeling of intrinsic motion of grains or particles is accomplished by adjoining to the basic set of field equations the additional balance equations, thereby placing restrictions on the motion of phases only within the imposed extrinsic and intrinsic sources. The use of the additional balance equations has been primarily advocated in the postulatory theories of multiphase mixtures and are usually derived through very special assumptions of the material deformation. Nevertheless, the resulting mixture models can predict a wide variety of complex phenomena such as the Mohr-Coulomb yield criterion in granular media, Rayleigh bubble equation, wave dispersion and dilatancy. Fundamental to the construction of structured models of multiphase mixtures are the problems pertaining to the existence and number of additional balance equations to model the structural characteristics of a mixture. Utilizing a volume averaging procedure it is possible not only to derive the basic set of field equation discussed above, but also a very general set of additional balance equations for modeling of structural properties of the mixture

  9. Oxide glass structure evolution under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A.H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-01-01

    Highlights: • Structure of SHI irradiated glass is similar to the one of a hyper quenched glass. • D2 Raman band associated to 3 members ring is only observed in irradiated glass. • Irradiated state seems slightly different to an equilibrated liquid quenched rapidly. - Abstract: The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach ( 11 B, 23 Na, 27 Al and 29 Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks

  10. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  11. Predicted crystal structures of molybdenum under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing; Zhang, Guang Biao [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Yuan Xu, E-mail: wangyx@henu.edu.cn [Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang 550018 (China)

    2013-04-15

    Highlights: ► A double-hexagonal close-packed (dhcp) structure of molybdenum is predicted. ► Calculated acoustic velocity confirms the bcc–dhcp phase transition at 660 GPa. ► The valence electrons of dhcp Mo are mostly localized in the interstitial sites. -- Abstract: The high-pressure structures of molybdenum (Mo) at zero temperature have been extensively explored through the newly developed particle swarm optimization (PSO) algorithm on crystal structural prediction. All the experimental and earlier theoretical structures were successfully reproduced in certain pressure ranges, validating our methodology in application to Mo. A double-hexagonal close-packed (dhcp) structure found by Mikhaylushkin et al. (2008) [12] is confirmed by the present PSO calculations. The lattice parameters and physical properties of the dhcp phase were investigated based on first principles calculations. The phase transition occurs only from bcc phase to dhcp phase at 660 GPa and at zero temperature. The calculated acoustic velocities also indicate a transition from the bcc to dhcp phases for Mo. More intriguingly, the calculated density of states (DOS) shows that the dhcp structure remains metallic. The calculated electron density difference (EDD) reveals that its valence electrons are localized in the interstitial regions.

  12. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  13. Results of the benchmark for blade structural models, part A

    DEFF Research Database (Denmark)

    Lekou, D.J.; Chortis, D.; Belen Fariñas, A.

    2013-01-01

    A benchmark on structural design methods for blades was performed within the InnWind.Eu project under WP2 “Lightweight Rotor” Task 2.2 “Lightweight structural design”. The present document is describes the results of the comparison simulation runs that were performed by the partners involved within...... Task 2.2 of the InnWind.Eu project. The benchmark is based on the reference wind turbine and the reference blade provided by DTU [1]. "Structural Concept developers/modelers" of WP2 were provided with the necessary input for a comparison numerical simulation run, upon definition of the reference blade...

  14. Testing ion structure models with x-ray Thomson scattering

    Directory of Open Access Journals (Sweden)

    Wünsch K.

    2013-11-01

    Full Text Available We investigate the influence of various ionic structure models on the interpretation of the X-ray Thomson scattering signal. For the calculation of the ion structure, classical hypernetted chain equations are used applying different effective inter-particle potentials. It is shown that the different models lead to significant discrepancies in the theoretically predicted weight of the Rayleigh peak, in particular for small k-values where correlation effects are important. Here, we propose conditions which might allow for an experimental verification of the theories under consideration of experimental constraints of k-vector blurring.

  15. Design and Modeling of Structural Joints in Precast Concrete Structures

    DEFF Research Database (Denmark)

    Sørensen, Jesper Harrild

    and in the onsite construction speed. The challenges appear in the on-site assembly phase, where structural integrity has to be ensured by in-situ cast connections in narrow zones. These connections are essential for the overall structural behavior and for this reason, strong and ductile connections...... is the orientation of the U-bar loops and the use of a double T-headed rebar in the overlapping area of the Ubars. The investigation covers several independent research topics, which in combination provides a broad knowledge of the behavior of keyed shear connections. As the first topic, the structural behavior...... the loop connection in such a way, that the tensile capacity is governed by yielding of the U-bars and not by a brittle failure of the grout. This is important in order to obtain a ductile response when the connection is loaded in shear. The main focus of the thesis is test and modeling of keyed shear...

  16. The WITCH Model. Structure, Baseline, Solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Bosetti, V.; Massetti, E.; Tavoni, M.

    2007-07-01

    WITCH - World Induced Technical Change Hybrid - is a regionally disaggregated hard link hybrid global model with a neoclassical optimal growth structure (top down) and an energy input detail (bottom up). The model endogenously accounts for technological change, both through learning curves affecting prices of new vintages of capital and through R and D investments. The model features the main economic and environmental policies in each world region as the outcome of a dynamic game. WITCH belongs to the class of Integrated Assessment Models as it possesses a climate module that feeds climate changes back into the economy. In this paper we provide a thorough discussion of the model structure and baseline projections. We report detailed information on the evolution of energy demand, technology and CO2 emissions. Finally, we explicitly quantifiy the role of free riding in determining the emissions scenarios. (auth)

  17. A simplified model of choice behavior under uncertainty

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lin

    2016-08-01

    Full Text Available The Iowa Gambling Task (IGT has been standardized as a clinical assessment tool (Bechara, 2007. Nonetheless, numerous research groups have attempted to modify IGT models to optimize parameters for predicting the choice behavior of normal controls and patients. A decade ago, most researchers considered the expected utility (EU model (Busemeyer and Stout, 2002 to be the optimal model for predicting choice behavior under uncertainty. However, in recent years, studies have demonstrated the prospect utility (PU models (Ahn et al., 2008 to be more effective than the EU models in the IGT. Nevertheless, after some preliminary tests, we propose that Ahn et al. (2008 PU model is not optimal due to some incompatible results between our behavioral and modeling data. This study aims to modify Ahn et al. (2008 PU model to a simplified model and collected 145 subjects’ IGT performance as the benchmark data for comparison. In our simplified PU model, the best goodness-of-fit was found mostly while α approaching zero. More specifically, we retested the key parameters α, λ , and A in the PU model. Notably, the power of influence of the parameters α, λ, and A has a hierarchical order in terms of manipulating the goodness-of-fit in the PU model. Additionally, we found that the parameters λ and A may be ineffective when the parameter α is close to zero in the PU model. The present simplified model demonstrated that decision makers mostly adopted the strategy of gain-stay-loss-shift rather than foreseeing the long-term outcome. However, there still have other behavioral variables that are not well revealed under these dynamic uncertainty situations. Therefore, the optimal behavioral models may not have been found. In short, the best model for predicting choice behavior under dynamic-uncertainty situations should be further evaluated.

  18. A new model for friction under shock conditions

    Directory of Open Access Journals (Sweden)

    Dambakizi F.

    2011-01-01

    Full Text Available This article is aimed at the developpement of a new model for friction under shock conditions. Thanks to a subgrid model and a specific Coulomb friction law, it takes into account the interface temperature and deformation but also the influence of asperities when the contact pressure is relatively low (≤ 3 GPa.

  19. Galactic models with variable spiral structure

    International Nuclear Information System (INIS)

    James, R.A.; Sellwood, J.A.

    1978-01-01

    A series of three-dimensional computer simulations of disc galaxies has been run in which the self-consistent potential of the disc stars is supplemented by that arising from a small uniform Population II sphere. The models show variable spiral structure, which is more pronounced for thin discs. In addition, the thin discs form weak bars. In one case variable spiral structure associated with this bar has been seen. The relaxed discs are cool outside resonance regions. (author)

  20. Sensitivity of Reliability Estimates in Partially Damaged RC Structures subject to Earthquakes, using Reduced Hysteretic Models

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.; Skjærbæk, P. S.

    The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation.......The subject of the paper is the investigation of the sensitivity of structural reliability estimation by a reduced hysteretic model for a reinforced concrete frame under an earthquake excitation....

  1. Damage Model of Reinforced Concrete Members under Cyclic Loading

    Science.gov (United States)

    Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai

    2018-06-01

    Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.

  2. Statistical Analysis and Modelling of Olkiluoto Structures

    International Nuclear Information System (INIS)

    Hellae, P.; Vaittinen, T.; Saksa, P.; Nummela, J.

    2004-11-01

    Posiva Oy is carrying out investigations for the disposal of the spent nuclear fuel at the Olkiluoto site in SW Finland. The investigations have focused on the central part of the island. The layout design of the entire repository requires characterization of notably larger areas and must rely at least at the current stage on borehole information from a rather sparse network and on the geophysical soundings providing information outside and between the holes. In this work, the structural data according to the current version of the Olkiluoto bedrock model is analyzed. The bedrock model relies much on the borehole data although results of the seismic surveys and, for example, pumping tests are used in determining the orientation and continuation of the structures. Especially in the analysis, questions related to the frequency of structures and size of the structures are discussed. The structures observed in the boreholes are mainly dipping gently to the southeast. About 9 % of the sample length belongs to structures. The proportion is higher in the upper parts of the rock. The number of fracture and crushed zones seems not to depend greatly on the depth, whereas the hydraulic features concentrate on the depth range above -100 m. Below level -300 m, the hydraulic conductivity occurs in connection of fractured zones. Especially the hydraulic features, but also fracture and crushed zones often occur in groups. The frequency of the structure (area of structures per total volume) is estimated to be of the order of 1/100m. The size of the local structures was estimated by calculating the intersection of the zone to the nearest borehole where the zone has not been detected. Stochastic models using the Fracman software by Golder Associates were generated based on the bedrock model data complemented with the magnetic ground survey data. The seismic surveys (from boreholes KR5, KR13, KR14, and KR19) were used as alternative input data. The generated models were tested by

  3. Exploring Social Structures in Extended Team Model

    DEFF Research Database (Denmark)

    Zahedi, Mansooreh; Ali Babar, Muhammad

    2013-01-01

    Extended Team Model (ETM) as a type of offshore outsourcing is increasingly becoming popular mode of Global Software Development (GSD). There is little knowledge about the social structures in ETM and their impact on collaboration. Within a large interdisciplinary project to develop the next...... generation of GSD technologies, we are exploring the role of social structures to support collaboration. This paper reports some details of our research design and initial findings about the mechanisms to support social structures and their impact on collaboration in an ETM....

  4. Evolving the structure of hidden Markov Models

    DEFF Research Database (Denmark)

    won, K. J.; Prugel-Bennett, A.; Krogh, A.

    2006-01-01

    A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....

  5. Principles and practice of structural equation modeling

    CERN Document Server

    Kline, Rex B

    2015-01-01

    Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex

  6. Models of protein-ligand crystal structures: trust, but verify.

    Science.gov (United States)

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  7. Optimization and anti-optimization of structures under uncertainty

    National Research Council Canada - National Science Library

    Elishakoff, Isaac; Ohsaki, Makoto

    2010-01-01

    ..., architecture, civil, mechanical or ocean engineering, invariably adopt the either/or style. Namely, they devote themselves either to linear or to nonlinear analysis of the structure they are dealing with, they are engaged in analyzing it either in the elastic or in the inelastic range; they deal either with its static or with its dynamic behavior. Al...

  8. Occupational structure in the Czech lands under the second serfdom

    Czech Academy of Sciences Publication Activity Database

    Klein, Alexander; Ogilvie, S.

    2016-01-01

    Roč. 69, č. 2 (2016), s. 493-521 ISSN 0013-0117 R&D Projects: GA ČR GA13-13848S Institutional support: RVO:67985998 Keywords : occupational structure * Czech lands * Bohemia Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 1.233, year: 2016

  9. Structural performance of HEPA filters under simulated tornado conditions

    International Nuclear Information System (INIS)

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m 3 /s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits

  10. Structures of water molecules in carbon nanotubes under electric fields

    International Nuclear Information System (INIS)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-01-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate

  11. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)

    Macromolecule polymers are significant types of chemical amendments because of their special structure, useful functions and low cost. Macromolecule polymers as soil amendment provide new territory for studying China's agricultural practices and for soil and water conservation, because polymers have the ability to ...

  12. Profit Tax Evasion Under Oligopoly With Endogenous Market Structure

    OpenAIRE

    Goerke, Laszlo; Runkel, Marco

    2006-01-01

    This note investigates the impact of profit tax evasion on firms' output decisions in a Cournot oligopoly setting in which the market structure is determined endogenously. It is shown that tax evasion intensifies market entry and raises aggregate output, while production of each incumbent firm decreases. Therefore, tax evasion choices affect activity decisions and an evadable profit tax distorts the market outcome.

  13. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  14. Structural analysis under the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Majumdar, S.

    1985-01-01

    Structural design procedures followed in the Blanket Comparison and Selection Study are briefly reviewed. The American Society of Mechanical Engineers Boilers and Pressure Vessels Code, Section III, Code Case N47 has been used as a design guide. Its relevance to fusion reactor applications, however, is open to question and needs to be evaluated in the future. The primary structural problem encountered in tokamak blanket designs is the high thermal stress due to surface heat flux, with fatigue being an additional concern for pulsed systems. The conflicting requirements of long erosion life and high surface heat flux capability imply that some form of stress relief in the first-wall region will be necessary. Simplified stress and fatigue crack growth analyses are presented to show that the use of orthogonally grooved first wall may be a potential solution for mitigating the thermal stress problem. A comparison of three structural alloys on the basis of both grooved and nongrooved first-wall designs is also presented. Other structural problems encountered in tokamak designs include stresses due to plasma disruptions, and magnetohydrodynamic (MHD) pressure drop in liquid-metal-cooled systems. In particular, it is shown that the maximum stress in the side wall of a uniform duct generated by MHD pressure drop cannot be reduced by increasing the wall thickness or by decreasing the span. In contract to tokamak blankets, tandem mirror blankets are far less severely stressed because of a much lower surface heat flux, coolant pressure, and also because of their axisymmetric geometry. Both blankets, however, will require detailed structural dynamics analysis to verify their ability to withstand seismic loadings if the heavy 17Li-83Pb is used as a coolant

  15. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  16. Robust nonlinear control of nuclear reactors under model uncertainty

    International Nuclear Information System (INIS)

    Park, Moon Ghu

    1993-02-01

    A nonlinear model-based control method is developed for the robust control of a nuclear reactor. The nonlinear plant model is used to design a unique control law which covers a wide operating range. The robustness is a crucial factor for the fully automatic control of reactor power due to time-varying, uncertain parameters, and state estimation error, or unmodeled dynamics. A variable structure control (VSC) method is introduced which consists of an adaptive performance specification (fime control) after the tracking error reaches the narrow boundary-layer by a time-optimal control (coarse control). Variable structure control is a powerful method for nonlinear system controller design which has inherent robustness to parameter variations or external disturbances using the known uncertainty bounds, and it requires very low computational efforts. In spite of its desirable properties, conventional VSC presents several important drawbacks that limit its practical applicability. One of the most undesirable phenomena is chattering, which implies extremely high control activity and may excite high-frequency unmodeled dynamics. This problem is due to the neglected actuator time-delay or sampling effects. The problem was partially remedied by replacing chattering control by a smooth control inter-polation in a boundary layer neighnboring a time-varying sliding surface. But, for the nuclear reactor systems which has very fast dynamic response, the sampling effect may destroy the narrow boundary layer when a large uncertainty bound is used. Due to the very short neutron life time, large uncertainty bound leads to the high gain in feedback control. To resolve this problem, a derivative feedback is introduced that gives excellent performance by reducing the uncertainty bound. The stability of tracking error dynamics is guaranteed by the second method of Lyapunov using the two-level uncertainty bounds that are obtained from the knowledge of uncertainty bound and the estimated

  17. A Structural Modeling Approach to a Multilevel Random Coefficients Model.

    Science.gov (United States)

    Rovine, Michael J.; Molenaar, Peter C. M.

    2000-01-01

    Presents a method for estimating the random coefficients model using covariance structure modeling and allowing one to estimate both fixed and random effects. The method is applied to real and simulated data, including marriage data from J. Belsky and M. Rovine (1990). (SLD)

  18. Comparisons of Multilevel Modeling and Structural Equation Modeling Approaches to Actor-Partner Interdependence Model.

    Science.gov (United States)

    Hong, Sehee; Kim, Soyoung

    2018-01-01

    There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.

  19. Modelling and analysing oriented fibrous structures

    International Nuclear Information System (INIS)

    Rantala, M; Lassas, M; Siltanen, S; Sampo, J; Takalo, J; Timonen, J

    2014-01-01

    A mathematical model for fibrous structures using a direction dependent scaling law is presented. The orientation of fibrous nets (e.g. paper) is analysed with a method based on the curvelet transform. The curvelet-based orientation analysis has been tested successfully on real data from paper samples: the major directions of fibrefibre orientation can apparently be recovered. Similar results are achieved in tests on data simulated by the new model, allowing a comparison with ground truth

  20. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  1. Cross flow response of a cylindrical structure under local shear flow

    Directory of Open Access Journals (Sweden)

    Yoo-Chul Kim

    2009-12-01

    Full Text Available The VIV (Vortex-Induced Vibration analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

  2. Exploiting risk-reward structures in decision making under uncertainty.

    Science.gov (United States)

    Leuker, Christina; Pachur, Thorsten; Hertwig, Ralph; Pleskac, Timothy J

    2018-06-01

    People often have to make decisions under uncertainty-that is, in situations where the probabilities of obtaining a payoff are unknown or at least difficult to ascertain. One solution to this problem is to infer the probability from the magnitude of the potential payoff and thus exploit the inverse relationship between payoffs and probabilities that occurs in many domains in the environment. Here, we investigated how the mind may implement such a solution: (1) Do people learn about risk-reward relationships from the environment-and if so, how? (2) How do learned risk-reward relationships impact preferences in decision-making under uncertainty? Across three experiments (N = 352), we found that participants can learn risk-reward relationships from being exposed to choice environments with a negative, positive, or uncorrelated risk-reward relationship. They were able to learn the associations both from gambles with explicitly stated payoffs and probabilities (Experiments 1 & 2) and from gambles about epistemic events (Experiment 3). In subsequent decisions under uncertainty, participants often exploited the learned association by inferring probabilities from the magnitudes of the payoffs. This inference systematically influenced their preferences under uncertainty: Participants who had been exposed to a negative risk-reward relationship tended to prefer the uncertain option over a smaller sure option for low payoffs, but not for high payoffs. This pattern reversed in the positive condition and disappeared in the uncorrelated condition. This adaptive change in preferences is consistent with the use of the risk-reward heuristic. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. ERDBEBEN, Structure Displacements and Forces Under Earthquake Conditions

    International Nuclear Information System (INIS)

    Brandhuber, F.

    1977-01-01

    1 - Nature of physical problem solved: ERDBEBEN calculates the displacements and forces of a structure, excited by an earthquake. 2 - Method of solution: The mathematical method is the 'response spectrum modal analysis'. Before calculation, the user of ERDBEBEN has to idealize the structure with finite elements and to calculate its eigenfrequencies with the program NASTRAN (level 15). The superposition of the Eigen-forms will be done by the 'root mean square method'. 3 - Restrictions on the complexity of the problem: The length of the arrays can be variable (parameter card). Only the number of the different types of finite elements cannot be more than 5. The program calculates the element forces only for beam and spring elements

  4. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  5. Analysis of ADU structure obtained under different precipitation conditions

    International Nuclear Information System (INIS)

    Ramella, Jose L.; Esteban, Adolfo; Mendez De Leo, Lucia P.; Sassone, Ariel; Novara, Oscar E.; Boero, Norma L.; Leyva, Ana G.

    1999-01-01

    ADU is the nominal name for ammonium poly uranate. It is a very complex compound of polymeric structure, which may have, according to precipitation conditions, different chemical composition and crystallographic structure. ADU is used as uranium oxide precursor in the manufacture of fuel elements. In former papers it was proved that if ultrasound is applied during precipitation and digestion the characteristics of the final product (U 3 O 8 UO 2 ) improve. By studying ADU thermal decomposition obtained by ultrasonic application, it was intended to obtain its composition. Therefore, differential thermal gravimetric and differential thermal analyses were performed. Samples were taken from special points and analyzed by X-ray diffraction, infra-red spectroscopy and scanning. An experiment was also designed to identify the products released during heating. Results and conclusions obtained are presented in this work. (author)

  6. Fiscal reaction under endogenous structural changes in Brazil

    Directory of Open Access Journals (Sweden)

    Andrei G. Simonassi

    2014-01-01

    Full Text Available Regarding the importance of fiscal policy in smoothing the impact of shocks such as the international financial and economic crises, the paper analyzes the sustainability of the Brazilian fiscal policy by taking into consideration the possibility of multiple endogenous structural breaks on the coefficients of government reaction function. From monthly data in the period 1991–2008, tests on the reliable estimates dictate the occurrence of structural change in May 1994, and another in February 2003. There has been a situation of fiscal solvency in Brazil, but only from May 1994 the hitherto innocuous actions of government to formulate policies on public debt turn out to be significant, as it rose twofold after February 2003. This reinforces the existence of a more flexible alternative to implement strategic policy in Brazil, if an eventual alternative for increasing public spending is a way of hindering the effects of international financial crises without compromising the fiscal targets.

  7. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  8. Structure and morphology of mythimna pupa under diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Wanxia; Yuan Qingxi; Zhu Peiping; Wang Junyue; Liu Yijin; Chen Bo; Shu Hang; Hu Tiandou; Wu Ziyu; Ge Siqin

    2007-01-01

    As a technique of X-ray phase contrast imaging, the diffraction enhanced imaging (DEI) attracts much interest due to its high resolution and contrast. The top images of DEI were used to study the growth of a complete metamorphic mythimna in the period of pupa. Clear images about the pupa structure were obtained. The entire growth process of the pupa was observed, including the evolvement of part of organs and tissues from larva to imago. (authors)

  9. The Value of Distributed Generation under Different Tariff Structures

    OpenAIRE

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-01-01

    Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing stru...

  10. Continuous Time Structural Equation Modeling with R Package ctsem

    Directory of Open Access Journals (Sweden)

    Charles C. Driver

    2017-04-01

    Full Text Available We introduce ctsem, an R package for continuous time structural equation modeling of panel (N > 1 and time series (N = 1 data, using full information maximum likelihood. Most dynamic models (e.g., cross-lagged panel models in the social and behavioural sciences are discrete time models. An assumption of discrete time models is that time intervals between measurements are equal, and that all subjects were assessed at the same intervals. Violations of this assumption are often ignored due to the difficulty of accounting for varying time intervals, therefore parameter estimates can be biased and the time course of effects becomes ambiguous. By using stochastic differential equations to estimate an underlying continuous process, continuous time models allow for any pattern of measurement occasions. By interfacing to OpenMx, ctsem combines the flexible specification of structural equation models with the enhanced data gathering opportunities and improved estimation of continuous time models. ctsem can estimate relationships over time for multiple latent processes, measured by multiple noisy indicators with varying time intervals between observations. Within and between effects are estimated simultaneously by modeling both observed covariates and unobserved heterogeneity. Exogenous shocks with different shapes, group differences, higher order diffusion effects and oscillating processes can all be simply modeled. We first introduce and define continuous time models, then show how to specify and estimate a range of continuous time models using ctsem.

  11. Modelling oil price volatility with structural breaks

    International Nuclear Information System (INIS)

    Salisu, Afees A.; Fasanya, Ismail O.

    2013-01-01

    In this paper, we provide two main innovations: (i) we analyze oil prices of two prominent markets namely West Texas Intermediate (WTI) and Brent using the two recently developed tests by Narayan and Popp (2010) and Liu and Narayan, 2010 both of which allow for two structural breaks in the data series; and (ii) the latter method is modified to include both symmetric and asymmetric volatility models. We identify two structural breaks that occur in 1990 and 2008 which coincidentally correspond to the Iraqi/Kuwait conflict and the global financial crisis, respectively. We find evidence of persistence and leverage effects in the oil price volatility. While further extensions can be pursued, the consideration of asymmetric effects as well as structural breaks should not be jettisoned when modelling oil price volatility. - Highlights: ► We analyze oil price volatility using NP (2010) and LN (2010) tests. ► We modify the LN (2010) to account for leverage effects in oil price. ► We find two structural breaks that reflect major global crisis in the oil market. ► We find evidence of persistence and leverage effects in oil price volatility. ► Leverage effects and structural breaks are fundamental in oil price modelling.

  12. Dynamic Pricing in Cloud Manufacturing Systems under Combined Effects of Consumer Structure, Negotiation, and Demand

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2017-01-01

    Full Text Available In this study, we proposed a game-theory based framework to model the dynamic pricing process in the cloud manufacturing (CMfg system. We considered a service provider (SP, a broker agent (BA, and a dynamic service demander (SD population that is composed of price takers and bargainers in this study. The pricing processes under linear demand and constant elasticity demand were modeled, respectively. The combined effects of SD population structure, negotiation, and demand forms on the SP’s and the BA’s equilibrium prices and expected revenues were examined. We found that the SP’s optimal wholesale price, the BA’s optimal reservation price, and posted price all increase with the proportion of price takers under linear demand but decrease with it under constant elasticity demand. We also found that the BA’s optimal reservation price increases with bargainers’ power no matter under what kind of demand. Through analyzing the participants’ revenues, we showed that a dynamic SD population with a high ratio of price takers would benefit the SP and the BA.

  13. A size-structured model of bacterial growth and reproduction.

    Science.gov (United States)

    Ellermeyer, S F; Pilyugin, S S

    2012-01-01

    We consider a size-structured bacterial population model in which the rate of cell growth is both size- and time-dependent and the average per capita reproduction rate is specified as a model parameter. It is shown that the model admits classical solutions. The population-level and distribution-level behaviours of these solutions are then determined in terms of the model parameters. The distribution-level behaviour is found to be different from that found in similar models of bacterial population dynamics. Rather than convergence to a stable size distribution, we find that size distributions repeat in cycles. This phenomenon is observed in similar models only under special assumptions on the functional form of the size-dependent growth rate factor. Our main results are illustrated with examples, and we also provide an introductory study of the bacterial growth in a chemostat within the framework of our model.

  14. Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous

    Directory of Open Access Journals (Sweden)

    Budhi Arta Surya

    2012-01-01

    Full Text Available We revisit the previous works of Leland [12], Leland and Toft [11] andHilberink and Rogers [7] on optimal capital structure and show that thecredit spreads of short-maturity corporate bonds can have nonzero valueswhen the underlying of the firm’s assets value has downward jumps. We givean analytical treatment of this fact under a general Levy process and discusssome numerical examples under pure jump processes.Keywords: Optimal capital structure, credit risk, term structure of creditspread

  15. Mechanical Model Development for Composite Structural Supercapacitors

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  16. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  17. Structured Event-B Models and Proofs

    DEFF Research Database (Denmark)

    Hallerstede, Stefan

    2010-01-01

    Event-B does not provide specific support for the modelling of problems that require some structuring, such as, local variables or sequential ordering of events. All variables need to be declared globally and sequential ordering of events can only be achieved by abstract program counters. This ha...

  18. Damage Detection in Bridge Structure Using Vibration Data under Random Travelling Vehicle Loads

    International Nuclear Information System (INIS)

    Loh, C H; Hung, T Y; Chen, S F; Hsu, W T

    2015-01-01

    Due to the random nature of the road excitation and the inherent uncertainties in bridge-vehicle system, damage identification of bridge structure through continuous monitoring under operating situation become a challenge problem. Methods for system identification and damage detection of a continuous two-span concrete bridge structure in time domain is presented using interaction forces from random moving vehicles as excitation. The signals recorded in different locations of the instrumented bridge are mixed with signals from different internal and external (road roughness) vibration sources. The damage structure is also modelled as the stiffness reduction in one of the beam element. For the purpose of system identification and damage detection three different output-only modal analysis techniques are proposed: The covariance-driven stochastic subspace identification (SSI-COV), the blind source separation algorithms (called Second Order Blind Identification) and the multivariate AR model. The advantages and disadvantages of the three algorithms are discussed. Finally, the null-space damage index, subspace damage indices and mode shape slope change are used to detect and locate the damage. The proposed approaches has been tested in simulation and proved to be effective for structural health monitoring. (paper)

  19. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    Science.gov (United States)

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  20. [Hierarchy structuring for mammography technique by interpretive structural modeling method].

    Science.gov (United States)

    Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2009-10-20

    Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.

  1. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  2. Multiple-lesion track-structure model

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Shinn, J.L.

    1992-03-01

    A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions

  3. Structural Equation Modeling with the Smartpls

    Directory of Open Access Journals (Sweden)

    Christian M. Ringle

    2014-05-01

    Full Text Available The objective of this article is to present a didactic example of Structural Equation Modeling using the software SmartPLS 2.0 M3. The program mentioned uses the method of Partial Least Squares and seeks to address the following situations frequently observed in marketing research: Absence of symmetric distributions of variables measured by a theory still in its beginning phase or with little “consolidation”, formative models, and/or a limited amount of data. The growing use of SmartPLS has demonstrated its robustness and the applicability of the model in the areas that are being studied. 

  4. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  5. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  6. Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data

    Directory of Open Access Journals (Sweden)

    Ayman Abd-Elhamed

    2018-04-01

    Full Text Available In this paper, logical analysis of data (LAD is used to predict the seismic response of building structures employing the captured dynamic responses. In order to prepare the data, computational simulations using a single degree of freedom (SDOF building model under different ground motion records are carried out. The selected excitation records are real and of different peak ground accelerations (PGA. The sensitivity of the seismic response in terms of displacements of floors to the variation in earthquake characteristics, such as soil class, characteristic period, and time step of records, peak ground displacement, and peak ground velocity, have also been considered. The dynamic equation of motion describing the building model and the applied earthquake load are presented and solved incrementally using the Runge-Kutta method. LAD then finds the characteristic patterns which lead to forecast the seismic response of building structures. The accuracy of LAD is compared to that of an artificial neural network (ANN, since the latter is the most known machine learning technique. Based on the conducted study, the proposed LAD model has been proven to be an efficient technique to learn, simulate, and blindly predict the dynamic response behaviour of building structures subjected to earthquake loads.

  7. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    This review covers recent studies on the characterization of the dynamics of lipidic nanostructures formed via self-assembly processes. The focus is placed on two main topics: First, an overview of advanced experimental small-angle X-ray scattering (SAXS) setups combined with various sample...... negatively charged vesicles with calcium ions, and in situ hydration-induced formation of inverted-type liquid-crystalline phases loaded with the local anesthetic bupivacaine are summarized. These in situ time-resolved experiments allow real-time monitoring of the dynamics of the structural changes...

  8. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  9. One-dimensional models of thermal activation under shear stress

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2003-01-01

    Full Text Available - dimensional models presented here may illuminate the study of more realistic models. For the model in which as many dislocations are poised for backward jumps as for forward jumps, the experimental activation volume Vye(C27a) under applied stresses close to C...27a is different from the true activation volume V(C27) evaluated at C27 ?C27a. The relations between the two are developed. A model is then discussed in which fewer dislocations are available for backward than for forward jumps. Finally...

  10. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  11. Generative models versus underlying symmetries to explain biological pattern.

    Science.gov (United States)

    Frank, S A

    2014-06-01

    Mathematical models play an increasingly important role in the interpretation of biological experiments. Studies often present a model that generates the observations, connecting hypothesized process to an observed pattern. Such generative models confirm the plausibility of an explanation and make testable hypotheses for further experiments. However, studies rarely consider the broad family of alternative models that match the same observed pattern. The symmetries that define the broad class of matching models are in fact the only aspects of information truly revealed by observed pattern. Commonly observed patterns derive from simple underlying symmetries. This article illustrates the problem by showing the symmetry associated with the observed rate of increase in fitness in a constant environment. That underlying symmetry reveals how each particular generative model defines a single example within the broad class of matching models. Further progress on the relation between pattern and process requires deeper consideration of the underlying symmetries. © 2014 The Author. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  12. Design of scaled down structural models

    Science.gov (United States)

    Simitses, George J.

    1994-07-01

    In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.

  13. An integrative computational modelling of music structure apprehension

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2014-01-01

    , the computational model, by virtue of its generality, extensiveness and operationality, is suggested as a blueprint for the establishment of cognitively validated model of music structure apprehension. Available as a Matlab module, it can be used for practical musicological uses.......An objectivization of music analysis requires a detailed formalization of the underlying principles and methods. The formalization of the most elementary structural processes is hindered by the complexity of music, both in terms of profusions of entities (such as notes) and of tight interactions...... between a large number of dimensions. Computational modeling would enable systematic and exhaustive tests on sizeable pieces of music, yet current researches cover particular musical dimensions with limited success. The aim of this research is to conceive a computational modeling of music analysis...

  14. A micromagnetic study of domain structure modeling

    International Nuclear Information System (INIS)

    Matsuo, Tetsuji; Mimuro, Naoki; Shimasaki, Masaaki

    2008-01-01

    To develop a mesoscopic model for magnetic-domain behavior, a domain structure model (DSM) was examined and compared with a micromagnetic simulation. The domain structure of this model is given by several domains with uniform magnetization vectors and domain walls. The directions of magnetization vectors and the locations of domain walls are determined so as to minimize the magnetic total energy of the magnetic material. The DSM was modified to improve its representation capability for domain behavior. The domain wall energy is multiplied by a vanishing factor to represent the disappearance of magnetic domain. The sequential quadratic programming procedure is divided into two steps to improve an energy minimization process. A comparison with micromagnetic simulation shows that the modified DSM improves the representation accuracy of the magnetization process

  15. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it: (a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime by means of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo-cortical loop, (e) distinguishes between redundant (structured) and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo-cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code

  16. Effects of reinforcement ratio and arrangement on the structural behavior of a nuclear building under aircraft impact

    International Nuclear Information System (INIS)

    Thai, Duc-Kien; Kim, Seung-Eock; Lee, Hyuk-Kee

    2014-01-01

    Highlights: • Numerical analysis of RC nuclear building model under aircraft impact was conducted. • The analysis result shows similar behavior as compared to the Riera function. • The effects of reinforcement ratio and arrangement were enumerated. • The appropriate number of layer of longitudinal rebar was recommended. - Abstract: This study presents the effectiveness of the rebar ratio and the arrangement of reinforced concrete (RC) structures on the structural behavior of nuclear buildings under aircraft impact using a finite element (FE) approach. A simplified model of a fictitious nuclear building using RC structures was fully modeled. The aircraft model of a Boeing 767-400 was used for impact simulation and was developed and verified with a conventional impact force–time history curve. The IRIS Punching test was used to validate the damage prediction capabilities of the RC wall under impact loading. With regard to the different rebar ratios and rebar arrangements of a nuclear RC building, the structural behavior of a building under aircraft impact was investigated. The structural behavior investigated included plastic deformation, displacement, energy dissipation, perforation/penetration depth and scabbing area. The results showed that the rebar ratio has a significant effect on withstanding aircraft impact and reducing local damage. With four layers of rebar, the RC wall absorbed and dissipated the impact energy more than once with only two layers of rebar for the same rebar ratio

  17. Exploratory structural equation modeling of personality data.

    Science.gov (United States)

    Booth, Tom; Hughes, David J

    2014-06-01

    The current article compares the use of exploratory structural equation modeling (ESEM) as an alternative to confirmatory factor analytic (CFA) models in personality research. We compare model fit, factor distinctiveness, and criterion associations of factors derived from ESEM and CFA models. In Sample 1 (n = 336) participants completed the NEO-FFI, the Trait Emotional Intelligence Questionnaire-Short Form, and the Creative Domains Questionnaire. In Sample 2 (n = 425) participants completed the Big Five Inventory and the depression and anxiety scales of the General Health Questionnaire. ESEM models provided better fit than CFA models, but ESEM solutions did not uniformly meet cutoff criteria for model fit. Factor scores derived from ESEM and CFA models correlated highly (.91 to .99), suggesting the additional factor loadings within the ESEM model add little in defining latent factor content. Lastly, criterion associations of each personality factor in CFA and ESEM models were near identical in both inventories. We provide an example of how ESEM and CFA might be used together in improving personality assessment. © The Author(s) 2014.

  18. Partitioning uncertainty in streamflow projections under nonstationary model conditions

    Science.gov (United States)

    Chawla, Ila; Mujumdar, P. P.

    2018-02-01

    Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them

  19. Effect of biocompatible polymers on the structural integrity of lipid bilayers under external stimuli

    Science.gov (United States)

    Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee

    2010-03-01

    Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.

  20. Fractal model of polarization switching kinetics in ferroelectrics under nonequilibrium conditions of electron irradiation

    Science.gov (United States)

    Maslovskaya, A. G.; Barabash, T. K.

    2018-03-01

    The paper presents the results of the fractal and multifractal analysis of polarization switching current in ferroelectrics under electron irradiation, which allows statistical memory effects to be estimated at dynamics of domain structure. The mathematical model of formation of electron beam-induced polarization current in ferroelectrics was suggested taking into account the fractal nature of domain structure dynamics. In order to realize the model the computational scheme was constructed using the numerical solution approximation of fractional differential equation. Evidences of electron beam-induced polarization switching process in ferroelectrics were specified at a variation of control model parameters.

  1. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  2. Structural identifiability analysis of a cardiovascular system model.

    Science.gov (United States)

    Pironet, Antoine; Dauby, Pierre C; Chase, J Geoffrey; Docherty, Paul D; Revie, James A; Desaive, Thomas

    2016-05-01

    The six-chamber cardiovascular system model of Burkhoff and Tyberg has been used in several theoretical and experimental studies. However, this cardiovascular system model (and others derived from it) are not identifiable from any output set. In this work, two such cases of structural non-identifiability are first presented. These cases occur when the model output set only contains a single type of information (pressure or volume). A specific output set is thus chosen, mixing pressure and volume information and containing only a limited number of clinically available measurements. Then, by manipulating the model equations involving these outputs, it is demonstrated that the six-chamber cardiovascular system model is structurally globally identifiable. A further simplification is made, assuming known cardiac valve resistances. Because of the poor practical identifiability of these four parameters, this assumption is usual. Under this hypothesis, the six-chamber cardiovascular system model is structurally identifiable from an even smaller dataset. As a consequence, parameter values computed from limited but well-chosen datasets are theoretically unique. This means that the parameter identification procedure can safely be performed on the model from such a well-chosen dataset. Thus, the model may be considered suitable for use in diagnosis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Principles underlying the Fourth Power Nature of Structured Shock Waves

    Science.gov (United States)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  4. Reliability prediction for structures under cyclic loads and recurring inspections

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Jr

    2009-06-01

    Full Text Available This work presents a methodology for determining the reliability of fracture control plans for structures subjected to cyclic loads. It considers the variability of the parameters involved in the problem, such as initial flaw and crack growth curve. The probability of detection (POD curve of the field non-destructive inspection method and the condition/environment are used as important factors for structural confidence. According to classical damage tolerance analysis (DTA, inspection intervals are based on detectable crack size and crack growth rate. However, all variables have uncertainties, which makes the final result totally stochastic. The material properties, flight loads, engineering tools and even the reliability of inspection methods are subject to uncertainties which can affect significantly the final maintenance schedule. The present methodology incorporates all the uncertainties in a simulation process, such as Monte Carlo, and establishes a relationship between the reliability of the overall maintenance program and the proposed inspection interval, forming a “cascade” chart. Due to the scatter, it also defines the confidence level of the “acceptable” risk. As an example, the damage tolerance analysis (DTA results are presented for the upper cockpit longeron splice bolt of the BAF upgraded F-5EM. In this case, two possibilities of inspection intervals were found: one that can be characterized as remote risk, with a probability of failure (integrity nonsuccess of 1 in 10 million, per flight hour; and other as extremely improbable, with a probability of nonsuccess of 1 in 1 billion, per flight hour, according to aviation standards. These two results are compared with the classical military airplane damage tolerance requirements.

  5. Discrete Model for the Structure and Strength of Cementitious Materials

    Science.gov (United States)

    Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.

    2017-12-01

    Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.

  6. Modeling and simulating command and control for organizations under extreme situations

    CERN Document Server

    Moon, Il-Chul; Kim, Tag Gon

    2013-01-01

    Commanding and controlling organizations in extreme situations is a challenging task in military, intelligence, and disaster management. Such command and control must be quick, effective, and considerate when dealing with the changing, complex, and risky conditions of the situation. To enable optimal command and control under extremes, robust structures and efficient operations are required of organizations. This work discusses how to design and conduct virtual experiments on resilient organizational structures and operational practices using modeling and simulation. The work illustrates key a

  7. Sensitivity of system stability to model structure

    Science.gov (United States)

    Hosack, G.R.; Li, H.W.; Rossignol, P.A.

    2009-01-01

    A community is stable, and resilient, if the levels of all community variables can return to the original steady state following a perturbation. The stability properties of a community depend on its structure, which is the network of direct effects (interactions) among the variables within the community. These direct effects form feedback cycles (loops) that determine community stability. Although feedback cycles have an intuitive interpretation, identifying how they form the feedback properties of a particular community can be intractable. Furthermore, determining the role that any specific direct effect plays in the stability of a system is even more daunting. Such information, however, would identify important direct effects for targeted experimental and management manipulation even in complex communities for which quantitative information is lacking. We therefore provide a method that determines the sensitivity of community stability to model structure, and identifies the relative role of particular direct effects, indirect effects, and feedback cycles in determining stability. Structural sensitivities summarize the degree to which each direct effect contributes to stabilizing feedback or destabilizing feedback or both. Structural sensitivities prove useful in identifying ecologically important feedback cycles within the community structure and for detecting direct effects that have strong, or weak, influences on community stability. The approach may guide the development of management intervention and research design. We demonstrate its value with two theoretical models and two empirical examples of different levels of complexity. ?? 2009 Elsevier B.V. All rights reserved.

  8. Modelling human behaviours and reactions under dangerous environment

    OpenAIRE

    Kang, J; Wright, D K; Qin, S F; Zhao, Y

    2005-01-01

    This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions...

  9. Numerical solution of dynamic equilibrium models under Poisson uncertainty

    DEFF Research Database (Denmark)

    Posch, Olaf; Trimborn, Timo

    2013-01-01

    We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....

  10. Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models

    Science.gov (United States)

    Fowler, Keirnan J. A.; Peel, Murray C.; Western, Andrew W.; Zhang, Lu; Peterson, Tim J.

    2016-03-01

    Hydrologic models have potential to be useful tools in planning for future climate variability. However, recent literature suggests that the current generation of conceptual rainfall runoff models tend to underestimate the sensitivity of runoff to a given change in rainfall, leading to poor performance when evaluated over multiyear droughts. This research revisited this conclusion, investigating whether the observed poor performance could be due to insufficient model calibration and evaluation techniques. We applied an approach based on Pareto optimality to explore trade-offs between model performance in different climatic conditions. Five conceptual rainfall runoff model structures were tested in 86 catchments in Australia, for a total of 430 Pareto analyses. The Pareto results were then compared with results from a commonly used model calibration and evaluation method, the Differential Split Sample Test. We found that the latter often missed potentially promising parameter sets within a given model structure, giving a false negative impression of the capabilities of the model. This suggests that models may be more capable under changing climatic conditions than previously thought. Of the 282[347] cases of apparent model failure under the split sample test using the lower [higher] of two model performance criteria trialed, 155[120] were false negatives. We discuss potential causes of remaining model failures, including the role of data errors. Although the Pareto approach proved useful, our aim was not to suggest an alternative calibration strategy, but to critically assess existing methods of model calibration and evaluation. We recommend caution when interpreting split sample results.

  11. Modelling of Radiolytical Proceses in Polystyrenic Structures

    International Nuclear Information System (INIS)

    Postolache, C.

    2006-01-01

    The behavior of polystyrene, poly α-methylstyrene and poly β-methylstyrene structures in ionizing fields was analyzed using computational methods. In this study, the primary radiolytic effect was evaluated using a free radical mechanism. Molecular structures were built and geometrical optimized using quantum-chemical methods. Binding energies for different quantum states and peripheral orbitals distribution were determined. Based on obtained results it was proposed an evaluation model of radiolytical processes in polymers in solid phase. Suggested model suppose to distinguish the dominant processes by binding energies values analysis and LUMO peripheral orbital distribution. Computed binding energies analysis of energetically optimized molecular structures in ionized state (charge +1, multiplicity 2) reveals a high similitude of obtained binding energies for ionized states. The same similitude was observed also in case of total binding energies for neutral state (charge 0, multiplicity 1). Analyzed molecular structures can be associated with ionized molecule state right after one electron capture. This fact suggests that the determined stage of radiolitical fragmentation act is intermediate state of ionized molecule. This molecule captured one electron but it had no necessary time for atoms rearrangement in the molecule for new quantum state. This supposition is in accordance with literature, the time period between excitation act and fragmentation act being lower than 10 - 15 seconds. Based on realized model could be explained the behavior differences of polymeric structures in ionizing radiation field. Preferential fracture of main chains in fragmentation poly α-methylstirene can be explained in accordance with proposed model by C-C from main C bonding energies decreasing in the neighboring of quaternary C

  12. Measuring and modelling the structure of chocolate

    Science.gov (United States)

    Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim

    2015-01-01

    The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.

  13. Sustainability assessment of concrete structure durability under reinforcement corrosion

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    In the present paper a parametric study is conducted based on an existing finite element based model. The influence of cover layer, reinforcement diameter and water-to-cement ratio is compared to a possible scatter in the results due to insufficient knowledge about the distribution of the corrosion...... current density along the circumference of the reinforcement. Simulations show that the scatter has a greater influence on the results than changing the parameters wherefore it is concluded that further investigation of the non-uniform deposition of corrosion products is essential to better understand...

  14. Tectonic forward modelling of positive inversion structures

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, C. [Leibniz Univ. Hannover (Germany). Inst. fuer Geologie; Schmidt, C. [Landesamt fuer Bergbau, Energie und Geologie (LBEG), Hannover (Germany)

    2013-08-01

    Positive tectonic inversion structures are common features that were recognized in many deformed sedimentary basins (Lowell, 1995). They are characterized by a two phase fault evolution, where initial normal faulting was followed by reverse faulting along the same fault, accompanied by the development of hanging wall deformation. Analysing the evolution of such inversion structures is important for understanding the tectonics of sedimentary basins and the formation of hydrocarbon traps. We used a 2D tectonic forward modelling approach to simulate the stepwise structural evolution of inversion structures in cross-section. The modelling was performed with the software FaultFold Forward v. 6, which is based on trishear kinematics (Zehnder and Allmendinger, 2000). Key aspect of the study was to derive the controlling factors for the geometry of inversion structures. The simulation results show, that the trishear approach is able to reproduce the geometry of tectonic inversion structures in a realistic way. This implies that inversion structures are simply fault-related folds that initiated as extensional fault-propagation folds, which were subsequently transformed into compressional fault-propagation folds when the stress field changed. The hanging wall deformation is a consequence of the decrease in slip towards the tip line of the fault. Trishear angle and propagation-to-slip ratio are the key controlling factors for the geometry of the fault-related deformation. We tested trishear angles in the range of 30 - 60 and propagation-to-slip ratios between 1 and 2 in increments of 0.1. Small trishear angles and low propagation-to-slip ratios produced tight folds, whereas large trishear angles and high propagation-to-slip ratios led to more open folds with concentric shapes. This has a direct effect on the size and geometry of potential hydrocarbon traps. The 2D simulations can be extended to a pseudo 3D approach, where a set of parallel cross-sections is used to describe

  15. The Structure of Preschoolers' Emotion Knowledge: Model Equivalence and Validity Using a Structural Equation Modeling Approach

    Science.gov (United States)

    Bassett, Hideko Hamada; Denham, Susanne; Mincic, Melissa; Graling, Kelly

    2012-01-01

    Research Findings: A theory-based 2-factor structure of preschoolers' emotion knowledge (i.e., recognition of emotional expression and understanding of emotion-eliciting situations) was tested using confirmatory factor analysis. Compared to 1- and 3-factor models, the 2-factor model showed a better fit to the data. The model was found to be…

  16. Database structure for plasma modeling programs

    International Nuclear Information System (INIS)

    Dufresne, M.; Silvester, P.P.

    1993-01-01

    Continuum plasma models often use a finite element (FE) formulation. Another approach is simulation models based on particle-in-cell (PIC) formulation. The model equations generally include four nonlinear differential equations specifying the plasma parameters. In simulation a large number of equations must be integrated iteratively to determine the plasma evolution from an initial state. The complexity of the resulting programs is a combination of the physics involved and the numerical method used. The data structure requirements of plasma programs are stated by defining suitable abstract data types. These abstractions are then reduced to data structures and a group of associated algorithms. These are implemented in an object oriented language (C++) as object classes. Base classes encapsulate data management into a group of common functions such as input-output management, instance variable updating and selection of objects by Boolean operations on their instance variables. Operations are thereby isolated from specific element types and uniformity of treatment is guaranteed. Creation of the data structures and associated functions for a particular plasma model is reduced merely to defining the finite element matrices for each equation, or the equations of motion for PIC models. Changes in numerical method or equation alterations are readily accommodated through the mechanism of inheritance, without modification of the data management software. The central data type is an n-relation implemented as a tuple of variable internal structure. Any finite element program may be described in terms of five relational tables: nodes, boundary conditions, sources, material/particle descriptions, and elements. Equivalently, plasma simulation programs may be described using four relational tables: cells, boundary conditions, sources, and particle descriptions

  17. Road Impedance Model Study under the Control of Intersection Signal

    Directory of Open Access Journals (Sweden)

    Yunlin Luo

    2015-01-01

    Full Text Available Road traffic impedance model is a difficult and critical point in urban traffic assignment and route guidance. The paper takes a signalized intersection as the research object. On the basis of traditional traffic wave theory including the implementation of traffic wave model and the analysis of vehicles’ gathering and dissipating, the road traffic impedance model is researched by determining the basic travel time and waiting delay time. Numerical example results have proved that the proposed model in this paper has received better calculation performance compared to existing model, especially in flat hours. The values of mean absolute percentage error (MAPE and mean absolute deviation (MAD are separately reduced by 3.78% and 2.62 s. It shows that the proposed model has feasibility and availability in road traffic impedance under intersection signal.

  18. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  19. A Dual System Model of Preferences under Risk

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and…

  20. Line and lattice networks under deterministic interference models

    NARCIS (Netherlands)

    Goseling, Jasper; Gastpar, Michael; Weber, Jos H.

    Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of

  1. Quantifying credit portfolio losses under multi-factor models

    NARCIS (Netherlands)

    G. Colldeforns-Papiol (Gemma); L. Ortiz Gracia (Luis); C.W. Oosterlee (Kees)

    2018-01-01

    textabstractIn this work, we investigate the challenging problem of estimating credit risk measures of portfolios with exposure concentration under the multi-factor Gaussian and multi-factor t-copula models. It is well-known that Monte Carlo (MC) methods are highly demanding from the computational

  2. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  3. UNDER GRADUATE RESEARCH An alternative model of doing ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. UNDER GRADUATE RESEARCH An alternative model of doing science. The main work force is undergraduate students. Using research as a tool in education. Advantages : High risk tolerance. Infinite energy. Uninhibited lateral thinking. Problems: Japanese ...

  4. A flexible model for actuarial risks under dependence

    NARCIS (Netherlands)

    Albers, Willem/Wim; Kallenberg, W.C.M.; Lukocius, V.

    Methods for computing risk measures, such as stop-loss premiums, tacitly assume independence of the underlying individual risks. This can lead to huge errors even when only small dependencies occur. In the present paper, a general model is developed which covers what happens in practice in a

  5. Structural changes in elastically stressed crystallites under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zolnikov, K.P., E-mail: kost@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Korchuganov, A.V. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Kryzhevich, D.S. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); Chernov, V.M. [Tomsk State University, 36 Lenin Ave., Tomsk (Russian Federation); A.A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, 5a Rogova St., Moscow (Russian Federation); Psakhie, S.G. [Institute of Strength Physics and Materials Science SB RAS, 2/4, pr. Akademicheskii, Tomsk (Russian Federation); Tomsk Polytechnic University, 30 Lenin Ave., Tomsk (Russian Federation); Skolkovo Institute of Science and Technology, 100 Novaya St., Skolkovo (Russian Federation)

    2015-06-01

    The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning.

  6. Rheological, structural and chemical evolution of bitumen under gamma irradiation

    International Nuclear Information System (INIS)

    Mouazen, M.; Poulesquen, A.; Bart, F.; Masson, J.; Charlot, M.; Vergnes, B.

    2013-01-01

    Bitumen derived from crude oil by fractional distillation has been used in the nuclear industry as a radioactive waste encapsulation matrix. When subjected to α, β and γ self-irradiation, this organic matrix undergoes radiolysis, generating hydrogen bubbles and modifying the physical and chemical properties of the material. In this paper, the effects of irradiation on bitumen materials, especially in terms of its physical, chemical, structural and rheological properties, were characterized at radiation doses ranging from 1 to 7 MGy. An increase in the shear viscosity and melt yield stress was observed with increasing doses. Similarly, the elastic and viscous moduli (G' and G'') increase with the dose, with a more pronounced increase for G' that reflects enhanced elasticity arising from radiation-induced cross-linking. In addition, a low-frequency plateau is observed for G', reflecting pseudo-solid behavior and leading to an increase of the complex viscosity. This behavior is due to increased interactions between asphaltene particles, and to aromatization of the bitumen by γ-radiations. Cross-linking of bitumen enhances its strength, as confirmed by various techniques (modulated DSC, DTA/TGA, SEC, FTIR and XRD). (authors)

  7. Structural changes in elastically stressed crystallites under irradiation

    International Nuclear Information System (INIS)

    Zolnikov, K.P.; Korchuganov, A.V.; Kryzhevich, D.S.; Chernov, V.M.; Psakhie, S.G.

    2015-01-01

    The response of elastically stressed iron and vanadium crystallites to atomic displacement cascades was investigated by molecular dynamics simulation. Interatomic interaction in vanadium was described by a many-body potential calculated in the Finnis–Sinclair approximation of the embedded atom method. Interatomic interaction in iron was described by a many-body potential constructed in the approximation of valence-electron gas. The crystallite temperature in the calculations was varied from 100 to 600 K. The elastically stressed state in the crystallites was formed through uniaxial tension by 4–8% such that their volume remained unchanged. The energy of a primary knock-on atom was varied from 0.5 to 50 keV. It is shown that the lower the temperature and the higher the strain degree of an initial crystallite, the lower the threshold primary knock-on atom energy for plastic deformation generation in the crystallite. The structural rearrangements induced in the crystallites by an atomic displacement cascade are similar to those induced by mechanical loading. It is found that the rearrangements are realized through twinning

  8. A CHF Model in Narrow Gaps under Saturated Boiling

    International Nuclear Information System (INIS)

    Park, Suki; Kim, Hyeonil; Park, Cheol

    2014-01-01

    Many researchers have paid a great attention to the CHF in narrow gaps due to enormous industrial applications. Especially, a great number of researches on the CHF have been carried out in relation to nuclear safety issues such as in-vessel retention for nuclear power plants during a severe accident. Analytical studies to predict the CHF in narrow gaps have been also reported. Yu et al. (2012) developed an analytical model to predict the CHF on downward facing and inclined heaters based on the model of Kandlikar et al. (2001) for an upward facing heater. A new theoretical model is developed to predict the CHF in narrow gaps under saturated pool boiling. This model is applicable when one side of coolant channels or both sides are heated including the effects of heater orientation. The present model is compared with the experimental CHF data obtained in narrow gaps. A new analytical CHF model is proposed to predict CHF for narrow gaps under saturated pool boiling. This model can be applied to one-side or two-sides heating surface and also consider the effects of heater orientation on CHF. The present model is compared with the experimental data obtained in narrow gaps with one heater. The comparisons indicate that the present model shows a good agreement with the experimental CHF data in the horizontal annular tubes. However, it generally under-predicts the experimental data in the narrow rectangular gaps except the data obtained in the gap thickness of 10 mm and the horizontal downward facing heater

  9. Mechanical modeling of the growth of salt structures

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, Ruben Alberto Mazariegos [Texas A & M Univ., College Station, TX (United States)

    1993-05-01

    A 2D numerical model for studying the morphology and history of salt structures by way of computer simulations is presented. The model is based on conservation laws for physical systems, a fluid marker equation to keep track of the salt/sediments interface, and two constitutive laws for rocksalt. When buoyancy alone is considered, the fluid-assisted diffusion model predicts evolution of salt structures 2.5 times faster than the power-law creep model. Both rheological laws predict strain rates of the order of 4.0 x 10-15 s-1 for similar structural maturity level of salt structures. Equivalent stresses and viscosities predicted by the fluid-assisted diffusion law are 102 times smaller than those predicted by the power-law creep rheology. Use of East Texas Basin sedimentation rates and power-law creep rheology indicate that differential loading is an effective mechanism to induce perturbations that amplify and evolve to mature salt structures, similar to those observed under natural geological conditions.

  10. Switching performance of OBS network model under prefetched real traffic

    Science.gov (United States)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  11. Pore Pressure Under A Gravity Based Structure Under The Influence Of Waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Carstensen, Stefan; Madsen, Mikael Thyge

    2017-01-01

    based foundation. This leads typically to very conservative designs in order to accommodate the uncertainties in the procedure. The experiments shall lead to better prediction models based on for instance CFD model’s with the direct calculation of pressure variations in the seabed and any erosion...

  12. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  13. Design of lightweight magnesium car body structure under crash and vibration constraints

    Directory of Open Access Journals (Sweden)

    Morteza Kiani

    2014-06-01

    Full Text Available Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality. In this paper, material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight. Through finite element simulations, full frontal, offset frontal, and side crashes of a full car model are evaluated for peak acceleration, intrusion distance, and the internal energy absorbed by the structural parts. In addition, the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints. The wall thicknesses of twenty-two parts are considered as the design variables. Latin Hypercube Sampling is used to sample the design space, while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies. A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints. Using Sequential Quadratic Programming, the design optimization problem is solved with the results verified by finite element simulations. The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design.

  14. A model for scheduling projects under the condition of inflation and under penalty and reward arrangements

    Directory of Open Access Journals (Sweden)

    J.K. Jolayemi

    2014-01-01

    Full Text Available A zero-one mixed integer linear programming model is developed for the scheduling of projects under the condition of inflation and under penalty and reward arrangements. The effects of inflation on time-cost trade-off curves are illustrated and a modified approach to time-cost trade-off analysis presented. Numerical examples are given to illustrate the model and its properties. The examples show that misleading schedules and inaccurate project-cost estimates will be produced if the inflation factor is neglected in an environment of high inflation. They also show that award of penalty or bonus is a catalyst for early completion of a project, just as it can be expected.

  15. Global plastic models for computerized structural analysis

    International Nuclear Information System (INIS)

    Roche, R.L.; Hoffmann, A.

    1977-01-01

    In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text

  16. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  17. Evaluation of calculational and material models for concrete containment structures

    International Nuclear Information System (INIS)

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.

    1984-01-01

    A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measured strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given. (orig.)

  18. New rheological model for concrete structural analysis

    International Nuclear Information System (INIS)

    Chern, J.C.

    1984-01-01

    Long time deformation is of interest in estimating stresses of the prestressed concrete reactor vessel, in predicting cracking due to shrinkage or thermal dilatation, and in the design of leak-tight structures. Many interacting influences exist among creep, shrinkage and cracking for concrete. An interaction which researchers have long observed, is that at simultaneous drying and loading, the deformation of a concrete structure under the combined effect is larger than the sum of the shrinkage deformation of the structure at no load and the deformation of the sealed structure. The excess deformation due to the difference between observed test data and conventional analysis is regarded as the Pickett Effect. A constitutive relation explaining the Pickett Effect and other similar superposition problems, which includes creep, shrinkage (or thermal dilation), cracking, aging was developed with an efficient time-step numerical algorithm. The total deformation in the analysis is the sum of strain due to elastic deformation and creep, cracking and shrinkage with thermal dilatation. Instead of a sudden stress reduction to zero after the attainment of the strength limit, the gradual strain-softening of concrete (a gradual decline of stress at increasing strain) is considered

  19. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  20. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  2. Misleading prioritizations from modelling range shifts under climate change

    Science.gov (United States)

    Sofaer, Helen R.; Jarnevich, Catherine S.; Flather, Curtis H.

    2018-01-01

    AimConservation planning requires the prioritization of a subset of taxa and geographical locations to focus monitoring and management efforts. Integration of the threats and opportunities posed by climate change often relies on predictions from species distribution models, particularly for assessments of vulnerability or invasion risk for multiple taxa. We evaluated whether species distribution models could reliably rank changes in species range size under climate and land use change.LocationConterminous U.S.A.Time period1977–2014.Major taxa studiedPasserine birds.MethodsWe estimated ensembles of species distribution models based on historical North American Breeding Bird Survey occurrences for 190 songbirds, and generated predictions to recent years given c. 35 years of observed land use and climate change. We evaluated model predictions using standard metrics of discrimination performance and a more detailed assessment of the ability of models to rank species vulnerability to climate change based on predicted range loss, range gain, and overall change in range size.ResultsSpecies distribution models yielded unreliable and misleading assessments of relative vulnerability to climate and land use change. Models could not accurately predict range expansion or contraction, and therefore failed to anticipate patterns of range change among species. These failures occurred despite excellent overall discrimination ability and transferability to the validation time period, which reflected strong performance at the majority of locations that were either always or never occupied by each species.Main conclusionsModels failed for the questions and at the locations of greatest interest to conservation and management. This highlights potential pitfalls of multi-taxa impact assessments under global change; in our case, models provided misleading rankings of the most impacted species, and spatial information about range changes was not credible. As modelling methods and

  3. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    Science.gov (United States)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  4. Numerical Flexural Strength Analysis of Thermally Stressed Delaminated Composite Structure under Sinusoidal Loading

    Science.gov (United States)

    Hirwani, C. K.; Biswash, S.; Mehar, K.; Panda, S. K.

    2018-03-01

    In this article, we investigate the thermomechanical deflection characteristics of the debonded composite plate structure using an isoparametric type of higher-order finite element model. The current formulation is derived using higher-order kinematic theory and the displacement variables described as constant along the thickness direction whereas varying nonlinearly for the in-plane directions. The present mid-plane kinematic model mainly obsoletes the use of shear correction factor as in the other lower-order theories. The separation between the adjacent layers is modeled via the sub-laminate technique and the intermittent continuity conditions imposed to avoid the mathematical ill conditions. The governing equation of equilibrium of the damaged plate structure under the combined state of loading are obtained using the variational principle and solved numerically to compute the deflection values. Further, the convergence test has been performed by refining the numbers of elements and validated through comparing the present results with available published values. The usefulness of the proposed formulation has been discussed by solving the different kind of numerical examples including the size, location and position of delamination.

  5. Expansion of IFC model with structural sensors

    Directory of Open Access Journals (Sweden)

    Rio, J.

    2013-06-01

    Full Text Available The instrumentation and structural health monitoring, SHM, of buildings is a growing field in the construction industry. The goal of this research work is to explore ways of modeling SHM systems, and the resulting data collected from buildings, in standard information management system such as Building Information Models, BIM. These models need to be stored in digital databases with structures suitable for the specific building related information. In this work the Industry Foundation Classes, IFC, data model was used. A case study is presented to assess the applicability of the present IFC standard as a tool to build a three-dimensional digital model of a real instrumented building, as well as some of the structural sensors and their results. The interoperability of the digital model was verified by using different modeling, viewing and analysis software tools. Limitations of the current IFC model were explored and extensions to the sensor classes are proposed.La instrumentación y monitorización de la salud estructural de edificios, SHM, es un campo creciente en la industria de la construcción. El objetivo del presente trabajo es estudiar la modelación de sistemas SHM tomados de edificios en un modelo digital BIM e la sua integración de datos. Estos modelos deben almacenarse en bases de datos con una estructura apropiada para albergar información específica relacionada con la construcción. En este trabajo se utilizó el estándar Industry Foundation Classes, IFC. Se presenta un estudio de caso para evaluar la norma IFC como herramienta para modelar un edificio real instrumentado, así como algunos sensores estruturales e sus resultados. La inter-operatividad de lo modelo digital se ha comprobado mediante el uso de diferentes herramientas de software de modelación, visualización y análisis. Se exploran además limitaciones del modelo IFC y se proponen extensiones de las clases de sensores.

  6. Meta-analytic structural equation modelling

    CERN Document Server

    Jak, Suzanne

    2015-01-01

    This book explains how to employ MASEM, the combination of meta-analysis (MA) and structural equation modelling (SEM). It shows how by using MASEM, a single model can be tested to explain the relationships between a set of variables in several studies. This book gives an introduction to MASEM, with a focus on the state of the art approach: the two stage approach of Cheung and Cheung & Chan. Both, the fixed and the random approach to MASEM are illustrated with two applications to real data. All steps that have to be taken to perform the analyses are discussed extensively. All data and syntax files are available online, so that readers can imitate all analyses. By using SEM for meta-analysis, this book shows how to benefit from all available information from all available studies, even if few or none of the studies report about all relationships that feature in the full model of interest.

  7. Modelling of sediment transport and morphological evolution under the combined action of waves and currents

    Science.gov (United States)

    Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro

    2017-09-01

    Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.

  8. Modelling ecosystem service flows under uncertainty with stochiastic SPAN

    Science.gov (United States)

    Johnson, Gary W.; Snapp, Robert R.; Villa, Ferdinando; Bagstad, Kenneth J.

    2012-01-01

    Ecosystem service models are increasingly in demand for decision making. However, the data required to run these models are often patchy, missing, outdated, or untrustworthy. Further, communication of data and model uncertainty to decision makers is often either absent or unintuitive. In this work, we introduce a systematic approach to addressing both the data gap and the difficulty in communicating uncertainty through a stochastic adaptation of the Service Path Attribution Networks (SPAN) framework. The SPAN formalism assesses ecosystem services through a set of up to 16 maps, which characterize the services in a study area in terms of flow pathways between ecosystems and human beneficiaries. Although the SPAN algorithms were originally defined deterministically, we present them here in a stochastic framework which combines probabilistic input data with a stochastic transport model in order to generate probabilistic spatial outputs. This enables a novel feature among ecosystem service models: the ability to spatially visualize uncertainty in the model results. The stochastic SPAN model can analyze areas where data limitations are prohibitive for deterministic models. Greater uncertainty in the model inputs (including missing data) should lead to greater uncertainty expressed in the model’s output distributions. By using Bayesian belief networks to fill data gaps and expert-provided trust assignments to augment untrustworthy or outdated information, we can account for uncertainty in input data, producing a model that is still able to run and provide information where strictly deterministic models could not. Taken together, these attributes enable more robust and intuitive modelling of ecosystem services under uncertainty.

  9. Experiment on Behavior of a New Connector Used in Bamboo (Timber Frame Structure under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Junwen Zhou

    2018-01-01

    Full Text Available Connection is an important part of the bamboo and timber structure, and it directly influences the overall structural performance and safety. Based on a comprehensive analysis of the mechanical performance of several wood connections, a new connector for the bamboo (timber frame joint was proposed in this paper. Three full-scale T-type joint specimens were designed to study the mechanical performance under cyclic loading. The thickness of the hollow steel column was different among three specimens. The specimens were loaded under displacement control with a rate of 10 mm per minute until the specimens reach failure. It was observed that the failures of three specimens were caused by the buckling of flanges in the compression and that the steel of connections does not yield. The load-displacement hysteretic curve for three specimens is relatively plump, and the stiffness of connection degenerates with the increasing of cyclic load. The maximum rotation is 0.049 rad, and the energy dissipation coefficient is 1.77. The thickness of the hollow steel column of the connector has significant impact on the energy dissipation capacity and the strength of the connection. A simplified moment-rotation hysteresis model for the joint was proposed.

  10. A dual system model of preferences under risk.

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and Rottenstreich and Hsee (2001) among others, the DSM incorporates (a) individual differences in disposition to rational versus emotional decision making, (b) the affective nature of outcomes, and (c) different task construals within its framework. The model has good descriptive validity and accounts for (a) violation of nontransparent stochastic dominance, (b) fourfold pattern of risk attitudes, (c) ambiguity aversion, (d) common consequence effect, (e) common ratio effect, (f) isolation effect, and (g) coalescing and event-splitting effects. The DSM is also used to make several novel predictions of conditions under which specific behavior patterns may or may not occur.

  11. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  12. Grain breakage under uniaxial compression, through 3D DEM modelling

    Directory of Open Access Journals (Sweden)

    Nader François

    2017-01-01

    Full Text Available A breakable grain model is presented, using the concept of particles assembly. Grains of polyhedral shapes are generated, formed by joining together tetrahedral subgrains using cohesive bonds. Single grain crushing simulations are performed for multiple values of the intra-granular cohesion to study the effect on the grain’s strength. The same effect of intra-granular cohesion is studied under oedometric compression on samples of around 800 grains, which allows the evaluation of grain breakage model on the macroscopic behaviour. Grain size distribution curves and grain breakage ratios are monitored throughout the simulations.

  13. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  14. Model analyses for sustainable energy supply under CO2 restrictions

    International Nuclear Information System (INIS)

    Matsuhashi, Ryuji; Ishitani, Hisashi.

    1995-01-01

    This paper aims at clarifying key points for realizing sustainable energy supply under restrictions on CO 2 emissions. For this purpose, possibility of solar breeding system is investigated as a key technology for the sustainable energy supply. The authors describe their mathematical model simulating global energy supply and demand in ultra-long term. Depletion of non-renewable resources and constraints on CO 2 emissions are taken into consideration in the model. Computed results have shown that present energy system based on non-renewable resources shifts to a system based on renewable resources in the ultra-long term with appropriate incentives

  15. On the renewal risk model under a threshold strategy

    Science.gov (United States)

    Dong, Yinghui; Wang, Guojing; Yuen, Kam C.

    2009-08-01

    In this paper, we consider the renewal risk process under a threshold dividend payment strategy. For this model, the expected discounted dividend payments and the Gerber-Shiu expected discounted penalty function are investigated. Integral equations, integro-differential equations and some closed form expressions for them are derived. When the claims are exponentially distributed, it is verified that the expected penalty of the deficit at ruin is proportional to the ruin probability.

  16. Calibration under uncertainty for finite element models of masonry monuments

    Energy Technology Data Exchange (ETDEWEB)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  17. Models of protein–ligand crystal structures: trust, but verify

    Science.gov (United States)

    Deller, Marc C.

    2015-01-01

    X-ray crystallography provides the most accurate models of protein–ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein–ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein–ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein–ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein–ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein–ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein–ligand models for their computational and biological studies, and we provide an overview of how this can be achieved. PMID:25665575

  18. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  19. Structural equation modeling and natural systems

    Science.gov (United States)

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  20. Modeling human behaviors and reactions under dangerous environment.

    Science.gov (United States)

    Kang, J; Wright, D K; Qin, S F; Zhao, Y

    2005-01-01

    This paper describes the framework of a real-time simulation system to model human behavior and reactions in dangerous environments. The system utilizes the latest 3D computer animation techniques, combined with artificial intelligence, robotics and psychology, to model human behavior, reactions and decision making under expected/unexpected dangers in real-time in virtual environments. The development of the system includes: classification on the conscious/subconscious behaviors and reactions of different people; capturing different motion postures by the Eagle Digital System; establishing 3D character animation models; establishing 3D models for the scene; planning the scenario and the contents; and programming within Virtools Dev. Programming within Virtools Dev is subdivided into modeling dangerous events, modeling character's perceptions, modeling character's decision making, modeling character's movements, modeling character's interaction with environment and setting up the virtual cameras. The real-time simulation of human reactions in hazardous environments is invaluable in military defense, fire escape, rescue operation planning, traffic safety studies, and safety planning in chemical factories, the design of buildings, airplanes, ships and trains. Currently, human motion modeling can be realized through established technology, whereas to integrate perception and intelligence into virtual human's motion is still a huge undertaking. The challenges here are the synchronization of motion and intelligence, the accurate modeling of human's vision, smell, touch and hearing, the diversity and effects of emotion and personality in decision making. There are three types of software platforms which could be employed to realize the motion and intelligence within one system, and their advantages and disadvantages are discussed.

  1. The transferability of hydrological models under nonstationary climatic conditions

    Directory of Open Access Journals (Sweden)

    C. Z. Li

    2012-04-01

    Full Text Available This paper investigates issues involved in calibrating hydrological models against observed data when the aim of the modelling is to predict future runoff under different climatic conditions. To achieve this objective, we tested two hydrological models, DWBM and SIMHYD, using data from 30 unimpaired catchments in Australia which had at least 60 yr of daily precipitation, potential evapotranspiration (PET, and streamflow data. Nash-Sutcliffe efficiency (NSE, modified index of agreement (d1 and water balance error (WBE were used as performance criteria. We used a differential split-sample test to split up the data into 120 sub-periods and 4 different climatic sub-periods in order to assess how well the calibrated model could be transferred different periods. For each catchment, the models were calibrated for one sub-period and validated on the other three. Monte Carlo simulation was used to explore parameter stability compared to historic climatic variability. The chi-square test was used to measure the relationship between the distribution of the parameters and hydroclimatic variability. The results showed that the performance of the two hydrological models differed and depended on the model calibration. We found that if a hydrological model is set up to simulate runoff for a wet climate scenario then it should be calibrated on a wet segment of the historic record, and similarly a dry segment should be used for a dry climate scenario. The Monte Carlo simulation provides an effective and pragmatic approach to explore uncertainty and equifinality in hydrological model parameters. Some parameters of the hydrological models are shown to be significantly more sensitive to the choice of calibration periods. Our findings support the idea that when using conceptual hydrological models to assess future climate change impacts, a differential split-sample test and Monte Carlo simulation should be used to quantify uncertainties due to

  2. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body; Modelisation de la fissuration pour l'evaluation de la perte d'etancheite des structures en beton arme sous chargements mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Bongue Boma, M

    2007-12-15

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  3. Crack modelling for the assessment of stiffness loss of reinforced concrete structures under mechanical loading - determination of the permeability of the micro-cracked body; Modelisation de la fissuration pour l'evaluation de la perte d'etancheite des structures en beton arme sous chargements mecaniques

    Energy Technology Data Exchange (ETDEWEB)

    Bongue Boma, M

    2007-12-15

    We propose a model describing the evolution of mechanical and permeability properties of concrete under slow mechanical loading. Calling upon the theory of continua with microstructure, the kinematic of the domain is enriched by a variable characterising size and orientation of the crack field. We call upon configurational forces to deal with crack propagation and we determine the balance equations governing both strain and propagation. The geometry of the microstructure is representative of the porous media: the permeability is obtained from the resolution of Stokes equations in an elementary volume. An example has been treated: we considered simple assumptions (uniform crack field, application of linear fracture mechanics...) and we determined the behaviour of a body under tensile loading. Strain, crack propagation and stiffness loss are completely assessed. Finally the evolution of permeability is plotted: once activated, crack propagation is the main cause of water tightness loss. (author)

  4. Monte Carlo simulation methodology for the reliabilty of aircraft structures under damage tolerance considerations

    Science.gov (United States)

    Rambalakos, Andreas

    Current federal aviation regulations in the United States and around the world mandate the need for aircraft structures to meet damage tolerance requirements through out the service life. These requirements imply that the damaged aircraft structure must maintain adequate residual strength in order to sustain its integrity that is accomplished by a continuous inspection program. The multifold objective of this research is to develop a methodology based on a direct Monte Carlo simulation process and to assess the reliability of aircraft structures. Initially, the structure is modeled as a parallel system with active redundancy comprised of elements with uncorrelated (statistically independent) strengths and subjected to an equal load distribution. Closed form expressions for the system capacity cumulative distribution function (CDF) are developed by expanding the current expression for the capacity CDF of a parallel system comprised by three elements to a parallel system comprised with up to six elements. These newly developed expressions will be used to check the accuracy of the implementation of a Monte Carlo simulation algorithm to determine the probability of failure of a parallel system comprised of an arbitrary number of statistically independent elements. The second objective of this work is to compute the probability of failure of a fuselage skin lap joint under static load conditions through a Monte Carlo simulation scheme by utilizing the residual strength of the fasteners subjected to various initial load distributions and then subjected to a new unequal load distribution resulting from subsequent fastener sequential failures. The final and main objective of this thesis is to present a methodology for computing the resulting gradual deterioration of the reliability of an aircraft structural component by employing a direct Monte Carlo simulation approach. The uncertainties associated with the time to crack initiation, the probability of crack detection, the

  5. Comparison of perceived value structural models

    Directory of Open Access Journals (Sweden)

    Sunčana Piri Rajh

    2012-07-01

    Full Text Available Perceived value has been considered an important determinant of consumer shopping behavior and studied as such for a long period of time. According to one research stream, perceived value is a variable determined by perceived quality and perceived sacrifice. Another research stream suggests that the perception of value is a result of the consumer risk perception. This implies the presence of two somewhat independent research streams that are integrated by a third research stream – the one suggesting that perceived value is a result of perceived quality and perceived sacrifices while perceived (performance and financial risk mediates the relationship between perceived quality and perceived sacrifices on the one hand, and perceived value on the other. This paper describes the three approaches (models that have been mentioned. The aim of the paper is to determine which of the observed models show the most acceptable level of fit to the empirical data. Using the survey method, research involving three product categories has been conducted on a sample of Croatian consumers. Collected data was analyzed by the structural equation modeling (SEM method. Research has shown an appropriate level of fit of each observed model to the empirical data. However, the model measuring the effect of perceived risk on perceived value indicates the best level of fit, which implies that perceived performance risk and perceived financial risk are the best predictors of perceived value.

  6. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  7. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    OpenAIRE

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increas...

  8. Experimental Study on the Structural Behavior of HSC Slab under out of plane load

    International Nuclear Information System (INIS)

    Ham, K. W.; Lee, K. J.; Park, D. S.

    2009-01-01

    HSC(Half Steel plate Concrete) Slab is a kind of SC(Steel plate Concrete) structure, so it has a similar advantage of SC structures (short construction period, lower cost and good quality control compared to RC). To apply HSC to the slab of containment building of NPP, several test with different test condition (shear span ratio, shear bar, loading type) were conducted to verify structural behavior of HSC slab structure under out of plane loading

  9. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  10. Morphogenetic, structural and productive traits of buffel grass under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Maria Janiele Ferreira Coutinho

    2015-06-01

    Full Text Available The water restriction conditions in the Brazilian semiarid region are one of the most limiting factors to the establishment and yield of forage grasses. This study aimed to evaluate the effect of different irrigation regimes on morphogenetic, structural and productive traits of buffel grass. Arandomized blocks design, with five treatments and six replications, was used. Treatments consisted of five irrigation regimes, corresponding to the intervals of 2, 4, 6, 8 and 10 days. The traits analyzed were: leaf emergence rate, phyllochron, leaf and stem elongation rate, leaf senescence rate, final leaf length, number of green leaves per tiller, number of tillers, stem height, leaf/stem ratio, leaf area index, dry mass of green leaf and stem, dry mass of green, dead and total forage, root dry mass, dry mass and green dry mass/dead dry mass ratio. The final leaf length and dead forage dry mass were not affected by the irrigation regimes. The leaf/stem ratio followed a quadratic model, maintaining the value of 0.51 up to the irrigation regime of four days. The other morphological, structural and productive traits decreased linearly with increasing irrigation frequencies. The irrigation intervals promoted reductions in the morphological, structural and productive parameters of buffel grass, when grown under greenhouse conditions. The irrigation regime of 2 days stands out as the least restrictive to the development of buffel grass.

  11. Electrical Properties of MWCNT/HDPE Composite-Based MSM Structure Under Neutron Irradiation

    Science.gov (United States)

    Kasani, H.; Khodabakhsh, R.; Taghi Ahmadi, M.; Rezaei Ochbelagh, D.; Ismail, Razali

    2017-04-01

    Because of their low cost, low energy consumption, high performance, and exceptional electrical properties, nanocomposites containing carbon nanotubes are suitable for use in many applications such as sensing systems. In this research work, a metal-semiconductor-metal (MSM) structure based on a multiwall carbon nanotube/high-density polyethylene (MWCNT/HDPE) nanocomposite is introduced as a neutron sensor. Scanning electron microscopy, Fourier-transform infrared, and infrared spectroscopy techniques were used to characterize the morphology and structure of the fabricated device. Current-voltage ( I- V) characteristic modeling showed that the device can be assumed to be a reversed-biased Schottky diode, if the voltage is high enough. To estimate the depletion layer length of the Schottky contact, impedance spectroscopy was employed. Therefore, the real and imaginary parts of the impedance of the MSM system were used to obtain electrical parameters such as the carrier mobility and dielectric constant. Experimental observations of the MSM structure under irradiation from an americium-beryllium (Am-Be) neutron source showed that the current level in the device decreased significantly. Subsequently, current pulses appeared in situ I- V and current-time ( I- t) curve measurements when increasing voltage was applied to the MSM system. The experimentally determined depletion region length as well as the space-charge-limited current mechanism for carrier transport were compared with the range for protons calculated using Monte Carlo n-particle extended (MCNPX) code, yielding the maximum energy of recoiled protons detectable by the device.

  12. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E K; Andersen, S I

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  13. Rocking motion of structures under earthquakes. Overturning of 2-DOF system

    International Nuclear Information System (INIS)

    Kobayashi, Koichi; Watanabe, Tetsuya; Tanaka, Kihachiro; Tomoda, Akinori

    2011-01-01

    In recent years, huge earthquakes happen, for example, The South Hyogo prefecture Earthquake in 1995, The Mid Niigata Prefecture Earthquake in 2004, The Iwate-Miyagi Nairiku Earthquake in 2008. In The Niigataken Chuetsu-oki Earthquake in 2007, hundreds of drums fell down and water spilled out. A lot of studies about rocking behavior of rigid body had been performed from 1960's. However, these studies were only for a specific condition of the structure size or input vibration characteristics. Therefore, generalizes fall condition for earthquake is required. This paper deals with the analytical and the experimental study of the rocking vibration of 1-DOF rocking system, 2-DOF vibration-rocking system and 2-DOF rocking system under earthquakes. In this study, the equation of motion for each rocking systems are developed. The numerical model of 2-DOF rocking system is evaluated by free rocking experiment. In this paper, 'Overturning Map' which can distinguish whether structures falls or not is proposed. The overturning map of each rocking systems excited by the artificial earthquake wave calculated from the design spectrum is shown. As the result, overturning condition of structures is clarified. (author)

  14. Evaluating The Financial Consequences of Different Financing Structure for Nuclear Power Project under Malaysian Market

    International Nuclear Information System (INIS)

    Muhammed Zulfakar Zolkaffly; Faisal Izwan Abdul Rashid; Siti Syarina Mat Sali; Fairuz Suzana Mohd Chachuli; Mohd Azmi Sidid Omar

    2016-01-01

    Full text: In 2010, Malaysia through the Economic Transformation Programme (ETP) has initiated an effort to explore nuclear energy as an option for electricity generation post-2020 in order to meet country's growing energy demand and diversify its energy mix. To date, Malaysia is focusing its efforts on the preparatory activities, pending to make decision to embark on nuclear power project. The development of nuclear power plants is a major undertaking for any country which that requires huge financial implications and commitments. On this note, this paper aims at evaluating the financial consequences of different financing structure for nuclear power project under Malaysian market condition, based on two key financial indicators, namely, Net Present Value (NPV) and Internal Rate of Return (IRR). The computer model FINPLAN developed by the IAEA was used to perform this study. The result shows that different financing structure significantly affect the sensitivity of NPV and IRR, that may be of interest to the investors in exploring viable financing structure for nuclear power project development. (author)

  15. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land

    Science.gov (United States)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2017-04-01

    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  16. Mathematical Modeling of Column-Base Connections under Monotonic Loading

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2014-12-01

    Full Text Available Some considerable damage to steel structures during the Hyogo-ken Nanbu Earthquake occurred. Among them, many exposed-type column bases failed in several consistent patterns, such as brittle base plate fracture, excessive bolt elongation, unexpected early bolt failure, and inferior construction work, etc. The lessons from these phenomena led to the need for improved understanding of column base behavior. Joint behavior must be modeled when analyzing semi-rigid frames, which is associated with a mathematical model of the moment–rotation curve. The most accurate model uses continuous nonlinear functions. This article presents three areas of steel joint research: (1 analysis methods of semi-rigid joints; (2 prediction methods for the mechanical behavior of joints; (3 mathematical representations of the moment–rotation curve. In the current study, a new exponential model to depict the moment–rotation relationship of column base connection is proposed. The proposed nonlinear model represents an approach to the prediction of M–θ curves, taking into account the possible failure modes and the deformation characteristics of the connection elements. The new model has three physical parameters, along with two curve-fitted factors. These physical parameters are generated from dimensional details of the connection, as well as the material properties. The M–θ curves obtained by the model are compared with published connection tests and 3D FEM research. The proposed mathematical model adequately comes close to characterizing M–θ behavior through the full range of loading/rotations. As a result, modeling of column base connections using the proposed mathematical model can give crucial beforehand information, and overcome the disadvantages of time consuming workmanship and cost of experimental studies.

  17. Modeling Equity for Alternative Water Rate Structures

    Science.gov (United States)

    Griffin, R.; Mjelde, J.

    2011-12-01

    The rising popularity of increasing block rates for urban water runs counter to mainstream economic recommendations, yet decision makers in rate design forums are attracted to the notion of higher prices for larger users. Among economists, it is widely appreciated that uniform rates have stronger efficiency properties than increasing block rates, especially when volumetric prices incorporate intrinsic water value. Yet, except for regions where water market purchases have forced urban authorities to include water value in water rates, economic arguments have weakly penetrated policy. In this presentation, recent evidence will be reviewed regarding long term trends in urban rate structures while observing economic principles pertaining to these choices. The main objective is to investigate the equity of increasing block rates as contrasted to uniform rates for a representative city. Using data from four Texas cities, household water demand is established as a function of marginal price, income, weather, number of residents, and property characteristics. Two alternative rate proposals are designed on the basis of recent experiences for both water and wastewater rates. After specifying a reasonable number (~200) of diverse households populating the city and parameterizing each household's characteristics, every household's consumption selections are simulated for twelve months. This procedure is repeated for both rate systems. Monthly water and wastewater bills are also computed for each household. Most importantly, while balancing the budget of the city utility we compute the effect of switching rate structures on the welfares of households of differing types. Some of the empirical findings are as follows. Under conditions of absent water scarcity, households of opposing characters such as low versus high income do not have strong preferences regarding rate structure selection. This changes as water scarcity rises and as water's opportunity costs are allowed to

  18. Electricity pricing model in thermal generating stations under deregulation

    International Nuclear Information System (INIS)

    Reji, P.; Ashok, S.; Moideenkutty, K.M.

    2007-01-01

    In regulated public utilities with competitive power markets, deregulation has replaced the monopoly. Under the deregulated power market, the electricity price primarily depends on market mechanism and power demand. In this market, generators generally follow marginal pricing. Each generator fixes the electricity price based on their pricing strategy and it leads to more price volatility. This paper proposed a model to determine the electricity price considering all operational constraints of the plant and economic variables that influenced the price, for a thermal generating station under deregulation. The purpose of the model was to assist existing stations, investors in the power sector, regulatory authorities, transmission utilities, and new power generators in decision-making. The model could accommodate price volatility in the market and was based on performance incentive/penalty considering plant load factor, availability of the plant and peak/ off peak demand. The model was applied as a case study to a typical thermal utility in India to determine the electricity price. It was concluded that the case study of a thermal generating station in a deregulated environment showed that the electricity price mainly depended on the gross calorific value (GCV) of fuel, mode of operation, price of the fuel, and operating charges. 11 refs., 2 tabs., 1 fig

  19. Modeling thermophysical properties of food under high pressure.

    Science.gov (United States)

    Otero, L; Guignon, B; Aparicio, C; Sanz, P D

    2010-04-01

    A set of well-known generic models to predict the thermophysical properties of food from its composition at atmospheric conditions was adapted to work at any pressure. The suitability of the models was assessed using data from the literature for four different food products, namely tomato paste, potato, pork, and cod. When the composition of the product considered was not known, an alternative was proposed if some thermal data at atmospheric conditions were available. Since knowledge on the initial freezing point and ice content of food are essential for the correct prediction of its thermal properties, models for obtaining these properties under pressure were also included. Our results showed that good predictions under pressure, accurate enough for most engineering calculations can be made, either from composition data or using known thermal data of the food considered at atmospheric conditions. All the equations and coefficients needed to construct the models are given throughout the text, thus readers can compose their own routines. However, these routines can also be downloaded free at http://www.if.csic.es/programas/ifiform.htm as executable programs running in Windows.

  20. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...