WorldWideScience

Sample records for underlying mechanisms leading

  1. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  2. Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Luo, Zhenhua; Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.; Russel, Jennifer; Hoffman, Mark

    2010-01-01

    The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain).

  3. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NARCIS (Netherlands)

    Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B.

    2016-01-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material

  4. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Science.gov (United States)

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  5. Variability of filtration and food assimilation rates, respiratory activity and multixenobiotic resistance (MXR mechanism in the mussel Perna perna under lead influence

    Directory of Open Access Journals (Sweden)

    M. L. PESSATTI

    Full Text Available The economic importance that myticulture is conquering in Santa Catarina State (South of Brazil explains the crescent search for new coastal sites for farming. Physiological and biochemical studies of the mussel Perna perna are important to the establishment of methodologies for program assessment and environmental monitoring, allowing to infer about site quality and possible influences of xenobiotic agents on coastal areas. In order to evaluate effects caused by lead poisoning (1.21 mumol.L-1, the mussels were maintained at constant temperature (25ºC and fed with Chaetoceros gracilis for 15 days. The control group was acclimatized in sea water 30‰. At the end of this period time, physiological measurements were carried out along with statistic analysis for filtration rates, lead assimilation and overall respiratory activity. The mechanism of multixenobiotic resistance (MXR was particularly evaluated in standardized gill fragments using rhodamine B accumulation and its quantification under fluorescence optical microscopy. Regarding the control group, results had shown that the mussels maintenance in a lead-poisoned environment caused higher filtration rates (1.04 and 2.3 and L.h-1.g-1; p < 0.05 and lower assimilation rates (71.96% and 54.1%, respectively. Also it was confirmed a lesser rhodamine B accumulation in the assays under influence of lead, suggesting that this metal induces the MXR mechanism expression in mussel P. perna. These results indicate that such physiological and biochemical alterations in the mussels can modify the energy fluxes of its metabolism, resulting in possible problems on the coastal systems used as cultivating sites.

  6. Variability of filtration and food assimilation rates, respiratory activity and multixenobiotic resistance (MXR mechanism in the mussel Perna perna under lead influence

    Directory of Open Access Journals (Sweden)

    PESSATTI M. L.

    2002-01-01

    Full Text Available The economic importance that myticulture is conquering in Santa Catarina State (South of Brazil explains the crescent search for new coastal sites for farming. Physiological and biochemical studies of the mussel Perna perna are important to the establishment of methodologies for program assessment and environmental monitoring, allowing to infer about site quality and possible influences of xenobiotic agents on coastal areas. In order to evaluate effects caused by lead poisoning (1.21 mumol.L-1, the mussels were maintained at constant temperature (25ºC and fed with Chaetoceros gracilis for 15 days. The control group was acclimatized in sea water 30?. At the end of this period time, physiological measurements were carried out along with statistic analysis for filtration rates, lead assimilation and overall respiratory activity. The mechanism of multixenobiotic resistance (MXR was particularly evaluated in standardized gill fragments using rhodamine B accumulation and its quantification under fluorescence optical microscopy. Regarding the control group, results had shown that the mussels maintenance in a lead-poisoned environment caused higher filtration rates (1.04 and 2.3 and L.h-1.g-1; p < 0.05 and lower assimilation rates (71.96% and 54.1%, respectively. Also it was confirmed a lesser rhodamine B accumulation in the assays under influence of lead, suggesting that this metal induces the MXR mechanism expression in mussel P. perna. These results indicate that such physiological and biochemical alterations in the mussels can modify the energy fluxes of its metabolism, resulting in possible problems on the coastal systems used as cultivating sites.

  7. Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming

    Science.gov (United States)

    Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja

    2018-05-01

    El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.

  8. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  9. Narrow Lead Aprons under Medical Fluoroscopy Procedures

    International Nuclear Information System (INIS)

    Ben-Shlomo, A.

    2014-01-01

    Lead aprons are the major protective item of the medical staff whose work involves x-ray exposure. Heart catheterization and angiography procedures represent the most common exposures of the medical staff. The lead equivalent thickness of lead aprons worn by the medical staff is defined by many national standards. The frontal side of the aprons should be 0.25 mm lead equivalent at working conditions under 100 kV, 0.35 mm for working conditions above 100 kV, and 0.5 mm for heart catheterization and angiography. The back side of the body needs less protection and usually is covered by 0.25 mm of lead equivalent. The lead equivalent thickness is defined at the 80 kV level

  10. Lead free solder mechanics and reliability

    CERN Document Server

    Pang, John Hock Lye

    2012-01-01

    Lead-free solders are used extensively as interconnection materials in electronic assemblies and play a critical role in the global semiconductor packaging and electronics manufacturing industry. Electronic products such as smart phones, notebooks and high performance computers rely on lead-free solder joints to connect IC chip components to printed circuit boards. Lead Free Solder: Mechanics and Reliability provides in-depth design knowledge on lead-free solder elastic-plastic-creep and strain-rate dependent deformation behavior and its application in failure assessment of solder joint reliability. It includes coverage of advanced mechanics of materials theory and experiments, mechanical properties of solder and solder joint specimens, constitutive models for solder deformation behavior; numerical modeling and simulation of solder joint failure subject to thermal cycling, mechanical bending fatigue, vibration fatigue and board-level drop impact tests. This book also: Discusses the mechanical prope...

  11. Mechanism of lead removal by waste materials

    International Nuclear Information System (INIS)

    Qaiser, S.; Saleemi, A.R.; Ahmed, M.M.

    2007-01-01

    Heavy metal ions are priority pollutants, due to their toxicity and mobility in natural water ecosystems. The discharge of heavy metals into aquatic ecosystems has become a matter of concern in Pakistan over the last few decades. These contaminants are introduced into the aquatic systems significantly as a result of various industrial operations. The metals of concern include lead, chromium, zinc, copper, nickel and uranium. Lead is one of the most hazardous and toxic metals. It is used as industrial raw material in the manufacture of storage batteries, pigments, leaded glass, fuels, photographic materials, matches and explosives. Conventional methods for treatment of dissolved lead include precipitation, adsorption, coagulation/notation, sedimentation, reverse osmosis and ion exchange. Each process has its merits and limitations in applications. Adsorption by activated carbon and ion exchange using commercial ion exchange resins are very expensive processes, especially for a developing country like Pakistan. The present research was conducted to identify some waste materials, which can be utilized to remove lead from industrial wastewater. Natural wastes in the form of leaves and ash have considerable amounts of CaO, MgO, Na/sub 2/O, SiO/sub 2/ and Al/sub 2/O/sub 3/ which can be utilized for precipitation and adsorption. Utilization of waste materials to remove lead from industrial wastewater is the basic theme of this research. The waste materials used in this research were maple leaves, pongamia pinata leaves, coal ash and maple ago leave ash. Parameters studied were reaction time, precipitant dose, pH and temperature. It was found that maple leaves ash has maximum lead removal capacity 19.24 mg g/sup -1/ followed by coal ash 13.2 mg g/sup -1/. The optimal pH was 5 for maple leaves and pongamia Pinata leaves; and 4 for coal ash and maple leaves ash. Removal capacity decreased with increase in temperature. The major removal mechanisms were adsorption and

  12. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization.

    Science.gov (United States)

    Rodríguez-Sánchez, Viridiana; Guzmán-Moreno, Jesús; Rodríguez-González, Vicente; Flores-de la Torre, Juan Armando; Ramírez-Santoyo, Rosa María; Vidales-Rodríguez, Luz Elena

    2017-08-01

    The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO 3 ) 2 in solid and 1.0-4.0 mM of Pb(NO 3 ) 2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.

  13. Fracture mechanisms in lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Freiman, S.W.; Chuck, L.; Mecholsky, J.J.; Shelleman, D.L.

    1986-01-01

    Lead Zirconate Titanate (PZT) ceramics can be formed over a wide range of PbTiO 3 /PbZrO 3 ratios and exist in a number of crystal structures. This study involved the use of various fracture mechanics techniques to determine critical fracture toughness, K /SUB IC/ , as a function of composition, microstructure, temperature, and electrical and thermal history. The results of these experiments indicate that variations in K /SUB IC/ are related to phase transformations in the material as well as to other toughening mechanisms such as twinning and microcracking. In addition, the strength and fracture toughness of selected PZT ceramics were determined using specimens in which a crack was introduced by a Vicker's hardness indentor. The variation of K /SUB IC/ with composition and microstructure was related to the extent of twin-crack interaction. Comparison of the plot of strength as a function of indentation load with that predicted from indentation fracture models indicates the presence of internal stresses which contribute to failure. The magnitude of these internal stresses has been correlated with electrical properties of the ceramic. Fractographic analysis was used to determine the magnitude of internal stresses in specimens failing from ''natural flaws.''

  14. Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life.

    Science.gov (United States)

    Tarry-Adkins, Jane L; Chen, Jian-Hua; Jones, Richard H; Smith, Noel H; Ozanne, Susan E

    2010-08-01

    Low birth weight is associated with glucose intolerance, insulin resistance, and type 2 diabetes (T2D) in later life. Good evidence indicates that the environment plays an important role in this relationship. However, the mechanisms underlying these relationships are defined poorly. Islets are particularly susceptible to oxidative stress, and this condition combined with fibrosis is thought to be instrumental in T2D pathogenesis. Here we use our maternal low-protein (LP) rat model to determine the effect of early diet on oxidative stress and fibrosis in pancreatic islets of male offspring at 3 and 15 mo of age. Islet xanthine oxidase (XO) expression was increased in 15-mo LP offspring, which suggests increased oxidative-stress. Manganese superoxide-dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), and heme oxygenase-1 (HO-1) (antioxidant enzymes) were reduced significantly in LP offspring, which indicated impairment of oxidative defense. Expression of fibrosis markers collagen I and collagen III also increased in 15-mo LP offspring. Angiotensin II receptor type I (AT(II)R(1)), induced by hyperglycemia and oxidative-stress, was significantly up-regulated in 15-mo LP offspring. Lipid peroxidation was also increased in 15-mo LP animals. We conclude that maternal protein restriction causes age-associated increased oxidative stress, impairment of oxidative defense, and fibrosis. These findings provide mechanisms by which suboptimal early nutrition can lead to T2D development later in life.

  15. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  16. Microchannel boiling mechanisms leading to burnout

    International Nuclear Information System (INIS)

    Landram, C.S.; Riddle, R.A.

    1994-01-01

    The authors are analyzing the thermal performance of microchannel heat sinks to extend their applied heat loads beyond coolant single-phase limits. This is the first investigation of boiling in the narrow (50-μm) microchannels having typically high-aspect-ratio (of order 10/1) flow cross-sections. The prescription of local, wall-coolant, interfacial, two-phase correlations first required development of a validated, approximate, thermal-model accounting for conjugate heat transfer. The strongest mechanism for heat transfer in two-phase microchannel flow was found to be saturated boiling in a channel region near the heated base. When this region dried out, burnout occurred, both in the computations and in the experiment

  17. Lead intoxication under environmental hypoxia impairs oral health.

    Science.gov (United States)

    Terrizzi, Antonela R; Fernandez-Solari, Javier; Lee, Ching M; Martínez, María Pilar; Conti, María Ines

    2014-01-01

    We have reported that chronic lead intoxication under hypoxic environment induces alveolar bone loss that can lead to periodontal damage with the subsequent loss of teeth. The aim of the present study was to assess the modification of oral inflammatory parameters involved in the pathogenesis of periodontitis in the same experimental model. In gingival tissue, hypoxia increased inducible nitric oxid synthase (iNOS) activity (p lead decreased prostaglandin E2 (PGE2) content (p lead and PGE2 content was increased by both lead and hypoxia (p lead under hypoxic conditions. Results suggest a wide participation of inflammatory markers that mediate alveolar bone loss induced by these environmental conditions. The lack of information regarding oral health in lead-contaminated populations that coexist with hypoxia induced us to evaluate the alteration of inflammatory parameters in rat oral tissues to elucidate the link between periodontal damage and these environmental conditions.

  18. Periodic capacity management under a lead-time performance constraint

    NARCIS (Netherlands)

    Büyükkaramikli, N.C.; Bertrand, J.W.M.; Ooijen, van H.P.G.

    2013-01-01

    In this paper, we study a production system that operates under a lead-time performance constraint which guarantees the completion of an order before a pre-determined lead-time with a certain probability. The demand arrival times and the service requirements for the orders are random. To reduce the

  19. Mechanisms of leading edge protrusion in interstitial migration

    Science.gov (United States)

    Wilson, Kerry; Lewalle, Alexandre; Fritzsche, Marco; Thorogate, Richard; Duke, Tom; Charras, Guillaume

    2013-01-01

    While the molecular and biophysical mechanisms underlying cell protrusion on two-dimensional substrates are well understood, our knowledge of the actin structures driving protrusion in three-dimensional environments is poor, despite relevance to inflammation, development and cancer. Here we report that, during chemotactic migration through microchannels with 5 μm × 5 μm cross-sections, HL60 neutrophil-like cells assemble an actin-rich slab filling the whole channel cross-section at their front. This leading edge comprises two distinct F-actin networks: an adherent network that polymerizes perpendicular to cell-wall interfaces and a ‘free’ network that grows from the free membrane at the cell front. Each network is polymerized by a distinct nucleator and, due to their geometrical arrangement, the networks interact mechanically. On the basis of our experimental data, we propose that, during interstitial migration, medial growth of the adherent network compresses the free network preventing its retrograde movement and enabling new polymerization to be converted into forward protrusion. PMID:24305616

  20. Metacognitive mechanisms underlying lucid dreaming.

    Science.gov (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.

  1. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators

    International Nuclear Information System (INIS)

    Schmitz, Andreas

    2013-01-01

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb 1-x Ca x Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric properties

  2. Effects of lead on the killing mechanisms of polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Silberstein, C.F.

    1984-01-01

    The effects of lead on the killing mechanisms of rat polymorphonuclear leukocytes (PMN) were investigated, using male Long-Evans rats exposed to 1% lead acetate in the drinking water for varying periods of time to achieve blood lead levels ranging from 20-200 μg/dl. Studies of PMN bacterial and fungal killing activity, chemotaxis and phagocytosis demonstrated that: 1) bactericidal activity of PMN from rats exposed to lead was not altered; 2) chemotactic activity remained within normal limits; 3) the phagocytic ability of the PMN also remained unaltered. In addition to these normal findings, one major abnormality was demonstrated: a significant decrease in the ability of PMN from rats exposed to lead to kill Candida albicans. This defect was not related to age or to length of exposure. It could not be produced by addition of lead to the test system in vitro. Further investigation revealed significant decreases in PMN glucose-6-phosphate dehydrogenase, catalase, and myeloperoxidase activities. These data support two possible mechanisms for the abnormal fungicidal activity of PMN from lead-exposed rats: decrease in ability to reduce oxygen to active metabolites, or reduction in myeloperoxidase activity due to diminshed synthesis of the heme moiety required for its function

  3. Numerical simulation of lead devices for seismic isolation and vibration control on their damping characteristics. Development of lead material model under cyclic large deformation

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi; Borst, Rene de

    2004-01-01

    In order to predict the mechanical properties of lead devices for seismic isolation and vibration control, especially damping behavior under cyclic loading using numerical simulation, cyclic shear loading tests and uniaxial tensile loading tests were performed, and a new material model was proposed with the use of the both test results. Until now, it has been difficult to evaluate mechanical properties of lead material under cyclic loading by uniaxial tensile loading test because local deformations appeared with the small tensile strain. Our shear cyclic loading tests for lead material enabled practical evaluation of its mechanical properties under cyclic large strain which makes it difficult to apply uniaxial test. The proposed material model was implemented into a finite element program, and it was applied to numerical simulation of mechanical properties of lead dampers and rubber bearings with a lead plug. The numerical simulations and the corresponding laboratory loading tests showed good agreement, which proved the applicability of the proposed model. (author)

  4. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  5. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  6. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  7. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  8. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  9. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  10. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  11. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  12. Mechanisms by Which Dehydration May Lead to Chronic Kidney Disease.

    Science.gov (United States)

    Roncal-Jimenez, C; Lanaspa, M A; Jensen, T; Sanchez-Lozada, L G; Johnson, R J

    2015-01-01

    Dehydration, a condition that characterizes excessive loss of body water, is well known to be associated with acute renal dysfunction; however, it has largely been considered reversible and to be associated with no long-term effects on the kidney. Recently, an epidemic of chronic kidney disease has emerged in Central America in which the major risk factor seems to be recurrent heat-associated dehydration. This has led to studies investigating whether recurrent dehydration may lead to permanent kidney damage. Three major potential mechanisms have been identified, including the effects of vasopressin on the kidney, the activation of the aldose reductase-fructokinase pathway, and the effects of chronic hyperuricemia. The discovery of these pathways has also led to the recognition that mild dehydration may be a risk factor in progression of all types of chronic kidney diseases. Furthermore, there is some evidence that increasing hydration, particularly with water, may actually prevent CKD. Thus, a whole new area of investigation is developing that focuses on the role of water and osmolarity and their influence on kidney function and health. © 2015 S. Karger AG, Basel.

  13. Performance of bismuth tape current leads under vibration; Bi tepu sei denryu rido no shindo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, E.; Kurihara, M. [Railway Techniical Research Institute, Tokyo (Japan)

    2000-02-25

    The superconducting magnets on Maglev vehicles when running vibrate mechanically due to electromagnetic disturbance from the ground coils. Therefore, the current leads fixed on the superconducting coil, which is vibration at about 98 m/s{sup 2} (=10g), are also required to endure the vibration. We executed dynamic vibration tests for two types of current leads (straight and arc types) which had a multi-stacked configuration of Ag-sheathed Bi2223 tapes impregnated with epoxy resin in a concaved reinforcing gutter. We evaluated the straight-type lead for an operating current of 700 A after every vibration test in liquid nitrogen for one hour under the dynamic strain deformation of 50-100 {mu} on the surface of the reinforcing material covering the current lead. We could not detect degradation of the current lead by vibration through the total cycles of 3.9 x 10{sup 6} after continuous vibration tests. We also executed vibration tests for arc-type current leads which were combined with an actual energized superconducting coil for a Maglev. Large accelerations of these current leads occurred at frequencies of 308 and 375 Hz. In spite of the maximum acceleration of 600-700 m/s{sup 2} generated by actuating the excessive force on a superconducting coil for two seconds, which occurred on these current leads carrying 500 A, the superconductivity of the current leads did not shift to normal conductivity. There was no damage to either type of current lead during these vibration tests. So we confirmed the good prospect for the application of these current leads to actual Maglev superconducting magnets. (author)

  14. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  15. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  16. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  17. Endurance of lead-free assembly under board level drop test and thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-06-12

    The reliability of lead-free electronic assemblies under board level drop test and thermal cycling was investigated. TSOP (thin small outline package) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) on the reliability performance were studied. The results show that the assemblies with ENIG finishes reveal better reliability performance than its OSP counterparts under drop test, however, the OSP samples outperform those with ENIG finishes under thermal cycling. The failure mechanism is different under these two test conditions: the solder joints fracture into the intermetallic compounds (IMCs) layer under drop test, and cracks initiate in the bulk solder under thermal cycling. The surface finishes have an effect on the failure mode. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface.

  18. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  19. Physiological mechanisms underlying animal social behaviour.

    Science.gov (United States)

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  20. The void nucleation mechanism within lead phase during spallation of leaded brass

    Science.gov (United States)

    Yang, Yang; Wang, Can; Chen, Xingzhi; Chen, Kaiguo; Hu, Haibo; Fu, Yanan

    2018-07-01

    The incipient spall behaviours of Cu-34%Zn-3%Pb leaded brass samples with annealed and cryogenic-treated conditions were loaded using one-stage light gas gun experiments. The effect of Pb-phase on dynamic damage nucleation in leaded brass specimens was investigated by means of optical microscopy, scanning electron microscopy and x-ray computer tomography. It was found that the voids of incipient spall were mainly nucleated in the interior of the lead (no tensile stress would be produced within lead according to the impact theory) instead of nucleated at the phase interface as expected by quasi-static damage fracture theory. A nucleation model is proposed in the present work that is the asymmetry high compression zones in the centre of the lead-phase were formed by the rarefaction wave convergence effects of matrix/quasi-spherical lead interface, which caused adiabatic temperature rise that exceeded melting point of lead due to severe plastic deformation, finally led to local melting and void nucleation. In addition, the spall strength and damage rate increased with the increase in the Pb-phase number.

  1. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    Science.gov (United States)

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  2. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  3. EDXS and XRD Analyses of Coleus with Different Concentration Selenium Supplements Under Lead Stress

    Directory of Open Access Journals (Sweden)

    QIN Hui-yuan

    2014-04-01

    Full Text Available In order to study the changes of the morphologies and element composition in Coleus hlumei Benth(Coleusroots and leaves under1.0 mmol·L-1 Pb2+ stress with selenium ( Setreatments, and to preliminarily investigate the relief mechanism of Se level on lead toxicity from the perspective of spectroscopy, Coleus was cultivated in nutrient solutions with different concentrations of Se. The results showed that the content of C, K and Ca elements in roots decreased, while 0, Mg, Al, Si, Fe and Pb elements increased under Pb stress with Se treatments. In addi-tion, the content of C, Mg, Al, Si, K, Ca and Fe elements in leaves decreased, while 0 and Cl elements increased. The element species and its contents in roots were changed obviously under Pb stress with Se treatments, and crystalline solid and crystal phase in roots were correspond-ingly changed.

  4. Raman study of lead zirconate titanate under uniaxial stress

    International Nuclear Information System (INIS)

    Tallant, David R.; Simpson, Regina L.; Grazier, J. Mark; Zeuch, David H.; Olson, Walter R.; Tuttle, Bruce A.

    2000-01-01

    The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions

  5. Pannus-Related Mechanical Valve Dysfunction Leading to Hemodynamic Shock

    Directory of Open Access Journals (Sweden)

    Manabu Shiraishi

    2012-02-01

    Full Text Available Mechanical prosthetic valve dysfunction caused by pannus formation is rare. Pannus restricts movement of prosthetic valve leaflets, resulting in severe aortic regurgitation. We describe the case of a 77-year-old woman who presented to the emergency room with increasing dyspnea, ischemia, and shock secondary to mechanical aortic valve dysfunction. Transesophageal echocardiography showed a blockade of the leaflets of the mechanical aortic valve, with severe aortic regurgitation. She underwent emergent cardiac surgery for aortic valve replacement. Pannus formation should be considered as a potential cause of acute severe aortic regurgitation in a patient with a small-sized mechanical aortic prosthesis in the supra-annular position. On a pathological exam, extensive pannus was found on the ventricular side of the prosthetic valve, extending from the ring into the central orifice. [Arch Clin Exp Surg 2012; 1(1.000: 50-53

  6. Basic Mechanisms Leading to Fatigue Failure of Structural Materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika

    2016-01-01

    Roč. 69, č. 2 (2016), s. 289-294 ISSN 0972-2815. [International Conference on CREEP , FATIGUE and CREEP -FATIGUE INTERACTION /7./. Kalpakkam, 19.01.2016-22.01.2016] R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Damage mechanism * Fatigue crack initiation * Austenitic steel * Oxide cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  7. Molecular and cellular mechanisms that lead to Candida biofilm formation

    NARCIS (Netherlands)

    ten Cate, J.M.; Klis, F.M.; Pereira-Cenci, T.; Crielaard, W.; de Groot, P.W.J.

    2009-01-01

    Fungal infections in the oral cavity are mainly caused by C. albicans, but other Candida species are also frequently identified. They are increasing in prevalence, especially in denture-wearers and aging people, and may lead to invasive infections, which have a high mortality rate. Attachment to

  8. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  9. Investigation of Mechanical Breakdowns Leading to Lock Closures

    Science.gov (United States)

    2017-06-01

    anchorage, anchor bolts, anchor bars, pins, etc. 2 Gate cracks or structural failure 2 Barge accidents 1 Electrical and power control issues 0... structural failure 7 ERDC/CERL TR-17-17 9 Cause Occurrences Barge accidents 5 Electrical and power control issues 1 Gate noise 4 Gate vibrations 4...Engineers Washington, DC 20314-1000 Under Project “ Structural Monitoring System for Lock Structures to Prevent Failure” ERDC/CERL TR-17-17 ii Abstract

  10. Mechanisms of collective cell movement lacking a leading or free front edge in vivo.

    Science.gov (United States)

    Uechi, Hiroyuki; Kuranaga, Erina

    2017-08-01

    Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.

  11. Age differences in the underlying mechanisms of stereotype threat effects.

    Science.gov (United States)

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  13. Mechanism of electric fatigue crack growth in lead zirconate titanate

    International Nuclear Information System (INIS)

    Westram, Ilona; Oates, William S.; Lupascu, Doru C.; Roedel, Juergen; Lynch, Christopher S.

    2007-01-01

    A series of experiments was performed with through-thickness cracks in ferroelectric double cantilever beam (DCB) specimens. Cyclic electric fields of different amplitudes were applied which resulted in cyclic crack propagation perpendicular to the electric field direction. Crack propagation was observed optically and three regimes were identified: a pop-in from a notch, steady-state crack growth and a decrease of the crack growth rate with increasing cycle number. Crack growth only occurred if the applied field exceeded the coercive field strength of the material. Furthermore, the crack extended during each field reversal and the crack growth rate increased with increasing field. Based on the experimental observations, a mechanistic understanding was developed and contrasted with a nonlinear finite element analysis which quantified the stress intensity in the DCB specimens. The driving forces for crack formation at the notch and subsequent fatigue crack growth were computed based on the distribution of residual stresses due to ferroelectric switching. The finite element results are in good agreement with the experimental observations and support the proposed mechanism

  14. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  15. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  16. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  17. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  18. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.

    1986-01-01

    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  19. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  20. Mechanisms underlying selecting objects for action

    Directory of Open Access Journals (Sweden)

    Melanie eWulff

    2015-04-01

    Full Text Available We assessed the factors which affect the selection of objects for action, focusing on the role of action knowledge and its modulation by distracters. 14 neuropsychological patients and 10 healthy aged-matched controls selected pairs of objects commonly used together among distracters in two contexts: with real objects and with pictures of the same objects presented sequentially on a computer screen. Across both tasks, semantically related distracters led to slower responses and more errors than unrelated distracters and the object actively used for action was selected prior to the object that would be passively held during the action. We identified a sub-group of patients (N=6 whose accuracy was 2SD below the controls performances in the real object task. Interestingly, these impaired patients were more affected by the presence of unrelated distracters during both tasks than intact patients and healthy controls. Note the impaired had lesions to left parietal, right anterior temporal and bilateral pre-motor regions. We conclude that: (1 motor procedures guide object selection for action, (2 semantic knowledge affects action-based selection, (3 impaired action decision is associated with the inability to ignore distracting information and (4 lesions to either the dorsal or ventral visual stream can lead to deficits in making action decisions. Overall, the data indicate that impairments in everyday tasks can be evaluated using a simulated computer task. The implications for rehabilitation are discussed.

  1. V1 mechanisms underlying chromatic contrast detection

    Science.gov (United States)

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  2. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  3. Antioxidant responses in gills and digestive gland of oyster Crassostrea madrasensis (Preston) under lead exposure

    Digital Repository Service at National Institute of Oceanography (India)

    Shenai-Tirodkar, P.S.; Gauns, M.; Mujawar, M.W.A.; Ansari, Z.A.

    madrasensis against lead (Pb) exposure under laboratory conditions. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) and oxidative damage parameter lipid peroxidation (LPO) were measured in the gills...

  4. Crack assessment of pipe under combined thermal and mechanical load

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae

    2009-01-01

    In this paper, J-integral and transient C(t)-integral, which were key parameters in low temperature and high temperature fracture mechanics, under combined thermal and mechanical load were estimated via 3-dimensional finite element analyses. Various type of thermal and mechanical load, material hardening were considered to decrease conservatism in existing solutions. As a results, V-factor and redistribution time for combined thermal and mechanical load were proposed to calculate J-integral and C(t)-integral, respectively.

  5. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes.

    Science.gov (United States)

    Pena, A E; Kuntaegowdanahalli, S S; Abbas, J J; Patrick, J; Horch, K W; Jung, R

    2017-12-01

    A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in testing other lead systems.

  6. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes

    Science.gov (United States)

    Pena, A. E.; Kuntaegowdanahalli, S. S.; Abbas, J. J.; Patrick, J.; Horch, K. W.; Jung, R.

    2017-12-01

    Objective. A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Approach. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Main results. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. Significance. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in

  7. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, H.P.; Streppel, K.R.; van der Beek, A.J.; van der Woude, L.H.V.; van Harten, W.H.; van Mechelen, W.

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  8. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  9. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  10. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  11. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  12. Mechanical and thermo-mechanical response of a lead-core bearing device subjected to different loading conditions

    Directory of Open Access Journals (Sweden)

    Zhelyazov Todor

    2018-01-01

    Full Text Available The contribution is focused on the numerical modelling, simulation and analysis of a lead-core bearing device for passive seismic isolation. An accurate finite element model of a lead-core bearing device is presented. The model is designed to analyse both mechanical and thermo-mechanical responses of the seismic isolator to different loading conditions. Specifically, the mechanical behaviour in a typical identification test is simulated. The response of the lead-core bearing device to circular sinusoidal paths is analysed. The obtained shear displacement – shear force relationship is compared to experimental data found in literature sources. The hypothesis that heating of the lead-core during cyclic loading affects the degrading phenomena in the bearing device is taken into account. Constitutive laws are defined for each material: lead, rubber and steel. Both predefined constitutive laws (in the used general–purpose finite element code and semi-analytical procedures aimed at a more accurate modelling of the constitutive relations are tested. The results obtained by finite element analysis are to be further used to calibrate a macroscopic model of the lead-core bearing device seen as a single-degree-of-freedom mechanical system.

  13. Examples of processing problematic waste and material. A-3. Processing of lead by mechanical decontamination at UKAEA Harwell

    International Nuclear Information System (INIS)

    2006-01-01

    The UKAEA and its contractor (NNC) have decontaminated lead blocks arising from the decommissioning of a metallurgical site that comprised three concrete shielded remote handling cells and 36 lead shielded enclosures. The primary decommissioning and dismantling work entailed the dismantling of the 36 lead enclosures, which were expected to yield over 1000 t of lead shielding bricks as waste. During the initial dismantling of the lead shielded enclosures, all the lead bricks were monitored for radioactive contamination; clean items were segregated and set aside for detailed clearance and assurance checks. The contaminated blocks were sent for assessment and decontamination treatment, as necessary. The decontamination process utilized a purpose built partitioned containment tent, ventilated with a HEPA filtration system, so that the receipt, decontamination and radiological monitoring of individual items could be segregated in order to minimize any cross-contamination. The dismantled lead blocks comprised a range of standard thicknesses (2, 4, 9 and 10 in, or 3, 8, 13 and 15 cm) and incorporated a variety of chevron, concave and convex shapes, which are utilized to avoid weaknesses within the assembled shielding. The primary technical issues for the mechanical processing of the contaminated lead blocks were consideration of the individual lead brick shapes (i.e. the bricks were contoured) and the individual weight of the bricks, which had a range of 10-75 kg. The preferred option was a manual dry cutting technique using a handheld rotary industrial planer (the selected planer is normally associated with the joinery trade). The dry cutting option considered the malleability of the lead, which under certain circumstances during dry cutting could give rise to localized heating effects, leading to melted lead over the cutting surface, resulting in limited effectiveness in the removal of the contaminated layer. To mitigate this effect the planer was set to take cuts

  14. The behavior of the planetary rings under the Kozai Mechanism

    Science.gov (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  15. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  16. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  17. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  18. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide

    Science.gov (United States)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-11-01

    The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.

  19. A Postulated Mechanism That Leads to Materialization and Dematerialization of Matter and to Antigravity.

    Science.gov (United States)

    Bearden, Thomas E.

    This document presents a discussion of the postulated mechanism that leads to the materialization and dematerialization of matter and to antigravity. The mechanism also explains why an orbital electron does not radiate energy, in contradiction to classical electromagnetic theory. One of the paradoxes of special relativity is explained. A new model…

  20. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  1. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most research...... in joint action has investigated only one of these mechanisms at a time – low-level processes underlying joint coordination, or high-level cognitive mechanisms that give insight into how people think about another. In real interactions, interplay between these two mechanisms modulates how we interact...

  2. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  3. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  4. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  5. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  6. Amount of fear extinction changes its underlying mechanisms.

    Science.gov (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-07-03

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  7. Mechanical and fatigue properties of martensitic Fe-13Cr steel in contact with lead and lead-bismuth melts

    Energy Technology Data Exchange (ETDEWEB)

    Yaskiv, O.I., E-mail: oleh.yaskiv@ipm.lviv.ua; Fedirko, V.M.

    2014-01-15

    Highlights: •We investigated the influence of Pb and Pb-Bi melts on mechanical properties of Fe-13Cr steel at high temperatures. •We revealed the temperature interval of liquid metal embrittlement of Fe-13Cr steel. •Pb-Bi has more negative impact as compared with Pb for both plasticity and fatigue. -- Abstract: The influence of stagnant liquid-metal environments (Pb and Pb-Bi) on mechanical (strength and plasticity) and fatigue properties (low cycle fatigue) of martensitic Fe-13Cr steel in temperature interval of 250–600 °S have been investigated. Heavy liquid metals facilitate decreasing in ultimate strength by 10–20% against that in vacuum. The increase of temperature enhances this effect. Fe-13Cr steel is susceptible to liquid-metal embrittlement in the temperature interval of 350–450 °S, which manifests itself more substantially in lead-bismuth eutectic. The decrease of plasticity in Pb is 11% at 450 °S and in Pb-Bi is 30% in temperature interval 350–400 °S. Liquid metal environments significantly reduce fatigue life of Fe-13Cr steel. Pb-Bi has a more negative impact. In particular, with increasing total strain amplitude (up to 1.0%), the decrease in the cycle number to fracture by more than two orders of magnitude occurs.

  8. Mechanical performances of lead-free solder joint connections with applications in the aerospace domain

    Directory of Open Access Journals (Sweden)

    Georgiana PADURARU

    2016-03-01

    Full Text Available The paper presents some theoretical and experimental aspects regarding the tribological performances of lead-free solder joint connections, with application in the aerospace domain. In order to highlight the mechanical and tribological properties of solder joint in correlation with different pad finishes, there were made some mechanical determinations using a dedicated Share Test System. The theoretical model highlights the link between the experimental results and the influence of gravitational acceleration on the mechanical and functional integrity of the electronic assemblies that works in vibration environment. The paper novelty is provided by the interdisciplinary experiment that offers results that can be used in the mechanical, tribological, electronical and aerospace domains.

  9. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C).

    Science.gov (United States)

    Lu, Xingwen; Ning, Xun-An; Chen, Da; Chuang, Kui-Hao; Shih, Kaimin; Wang, Fei

    2018-06-01

    This study quantitatively determined the extraction of lead from CRT funnel glass and examined the mechanisms of thermally reducing lead in the products of sintering Pb-glass with carbon in the pre-heated furnace. The experimentally derived results indicate that a 90.3 wt% lead extraction efficiency can be achieved with 20 wt% of C addition at 950 °C for 3 min under air. The formation of viscous semi-liquid glass blocked the oxygen supply between the interaction of C and Pb-glass, and was highly effective for the extraction of metallic Pb. A maximum of 87.3% lead recover was obtained with a C to Na 2 CO 3 ratio of 1/3 at 1200 °C. The decrease of C/Na 2 CO 3 ratio enhanced the metallic lead recovery by increasing the glass viscosity for effective sedimentation of metallic lead in the bottom. However, with the further increase of temperature and treatment time, re-vitrification of lead back to silicate-glass matrix was detected in both Pb-glass/C and Pb-glass/C/Na 2 CO 3 systems. The findings indicated that with proper controls, using C as an inexpensive reagent can effectively reduce treatment time and energy, which is crucial to a waste-to-resource technology for economically recovering lead from the waste CRT glass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    Muzeau, B.

    2008-06-01

    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO 2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO 2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g -1 and 33 MBq.g -1 , was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m -2 .d -1 , even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  11. Under-Ice Phytoplankton Blooms Inhibited by Spring Convective Mixing in Refreezing Leads

    Science.gov (United States)

    Lowry, Kate E.; Pickart, Robert S.; Selz, Virginia; Mills, Matthew M.; Pacini, Astrid; Lewis, Kate M.; Joy-Warren, Hannah L.; Nobre, Carolina; van Dijken, Gert L.; Grondin, Pierre-Luc; Ferland, Joannie; Arrigo, Kevin R.

    2018-01-01

    Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84-95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.

  12. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms?

    Directory of Open Access Journals (Sweden)

    Xiaoqin Huang

    2017-05-01

    Full Text Available The occurrence of depression is higher in patients with chronic liver disease (CLD than that in the general population. The mechanism described in previous studies mainly focused on inflammation and stress, which not only exists in CLD, but also emerges in common chronic diseases, leaving the specific mechanism unknown. This review was to summarize the prevalence and risk factors of depression in CLD including chronic hepatitis B, chronic hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease, and to point out the possible underlying mechanism of this potential link. Clarifying the origins of this common comorbidity (depression and CLD may provide more information to understand both diseases.

  13. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  14. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar

    Institute of Scientific and Technical Information of China (English)

    Tong Chi; Jiane Zuo; Fenglin Liu

    2017-01-01

    Cadmium (Cd) and lead (Pb) in water and soil could be adsorbed by biochar produced fiom corn straw.Biochar pyrolyzed under 400℃ for 2 h could reach the ideal removal efficiencies (99.24% and 98.62% for Cd and Pb,respectively) from water with the biochar dosage of 20 g· L-1 and imtial concentration of 20 mg·L-1.The pH value of 4-7 was the optimal range for adsorption reaction.The adsorption mechanism was discussed on the basis of a range of characterizations,including X-ray diffraction (XRD),X-my photoelectron spectroscopy (XPS),Fourier transform infrared spectroscopy (FTIR) and Raman analysis;it was concluded as surface complexation with active sorption sites (-OH-COO-) coordination with π electrons (C =C,C =O) and precipitation with morganic anions (OH-,CO32-,SO42-) for both Cd and Pb.The sorption isotherms fit Langmuir model better than Freundlich model,and the saturated sorption capacities for Cd and Pb were 38.91 mg.g-1 and 28.99 mg· g-1,respectively.When mixed with soil,biochar could effectively increase alkalinity and reduce bioavailability of heavy metals.Thus,biochar derived from corn straw would be a green material for both removal of heavy metals and amelioration of soil.

  15. Planning and leading of the technological processes by mechanical working with microsoft project

    Science.gov (United States)

    Nae, I.; Grigore, N.

    2016-08-01

    Nowadays, fabrication systems and methods are being modified; new processing technologies come up, flow sheets develop a minimum number of phases, the flexibility of the technologies grows up, new methods and instruments of monitoring and leading the processing operations also come up. The technological course (route, entry, scheme, guiding) referring to the series of the operation, putting and execution phases of a mark in order to obtain the final product from the blank is represented by a sequence of activities realized by a logic manner, on a well determined schedule, with a determined budget and resources. Also, a project can be defined as a series of specific activities, methodical structured which they aim to finish a specific objective, within a fixed schedule and budget. Within the homogeneity between the project and the technological course, this research is presenting the defining of the technological course of mechanical chip removing process using Microsoft Project. Under these circumstances, this research highlights the advantages of this method: the celerity using of other technological alternatives in order to pick the optimal process, the job scheduling being constrained by any kinds, the standardization of some processing technological operations.

  16. Mechanisms of microstructure formation under the influence of ultrasonic vibrations

    Science.gov (United States)

    Rakita, Milan

    Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized

  17. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  18. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  19. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus

    Science.gov (United States)

    Wang, Yanan; Qin, Qing-Hua

    2010-03-01

    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  20. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  1. INFLUENCE OF MECHANICAL ALLOYING AND LEAD CONTENT ON MICROSTRUCTURE, HARDNESS AND TRIBOLOGICAL BEHAVIOR OF 6061 ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Paidpilli

    2017-03-01

    Full Text Available In the present work, one batch of prealloyed 6061Al powder was processed by mixing and another one was ball milled with varying amount of lead content (0-15 vol. %. These powders were compacted at 300MPa and sintered at 590˚C under N2. The instrumented hardness and the young’s modulus of as-sintered 6061Al-Pb alloys were examined as a function of lead content and processing route. The wear test under dry sliding condition has been performed at varying loads (10-40 N using pin-on-disc tribometer. The microstructure and worn surfaces have been investigated using SEM to evaluate the change in topographical features due to mechanical alloying and lead content. The mechanically alloyed materials showed improved wear characteristics as compared to as-mixed counterpart alloys. Delamination of 6061Al-Pb alloys decreases up to an optimum lead composition in both as-mixed and ball-milled 6061Al-Pb alloys. The results indicated minimum wear rate for as-mixed and ball-milled 6061Al alloy at 5 and 10 vol. % Pb, respectively.

  2. Electrical Transport Mechanisms and Photoconduction in Undoped Crystalline Flash-Evaporated Lead Iodide Thin Films

    Science.gov (United States)

    Al-Daraghmeh, Tariq M.; Saleh, Mahmoud H.; Ahmad, Mais Jamil A.; Bulos, Basim N.; Shehadeh, Khawla M.; Jafar, Mousa M. Abdul-Gader

    2018-03-01

    The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures T_{{s}} = 150 °C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal-semiconductor-metal (MSM-) structures. The as-measured constant- temperature direct-current (dc)-voltage ( I( {V;T} ) - V ) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures ( T = 18 - 90°C). Their dc electrical resistance R_{{dc}} (T ) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy E_{{act}} ≈ 0.90 - 0.98 {eV} , slightly less than half of room-temperature bandgap energy E_{{g}} ( ≈ 2.3 {eV} ) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated {PbI}_{{x}} thin films were homogeneous and almost stoichiometric ( x ≈ 1.87 ), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at T_{s} ≳ 150°C. Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on-off visible-light illumination reveal a feeble photoresponse for long wavelengths ( λ > 570 {nm} ), but a strong response to blue light of photon energy E_{{ph}} ≈ 2.73 {eV} ( > E_{{g}} ), due to photogenerated electron-hole (e-h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current-time I( {T,V} ) - t curves of the studied lateral PbI2 MSM-structures at low ambient temperatures ( T < 50°C), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on V and T , with thermally generated charge carriers in the PbI2 mask photogenerated

  3. Thermo-mechanical tests on W7-X current lead flanges

    International Nuclear Information System (INIS)

    Dhard, Chandra Prakash; Rummel, Thomas; Zacharias, Daniel; Bykov, Victor; Moennich, Thomas; Buscher, Klaus-Peter

    2013-01-01

    Highlights: • There are significant mechanical loads on the cryostat and radial flanges for W7-X current leads. • These are due to evacuation of W7-X cryostat, cool-down of cold mass, electro-magnetic forces and self weight of leads. • The actual mechanical loads were reduced to simplify the experimental set-up. • The tests were carried out on mock-up flanges test assembly at ambient temperature and at 77 K. • The thermo-mechanical tests on W7-X current lead flanges validate the design and joints of these flanges to the leads. -- Abstract: Fourteen pieces of high temperature superconducting current leads (CL) arranged in seven pairs, will be installed on the outer vessel of Wendelstein 7-X (W7-X) stellarator. In order to support the CL, it is provided with two glass fiber reinforce plastic (GFRP) flanges, namely, the lower cryostat flange (CF) remaining at room temperature and upper radial flange (RF) at about 5 K. Both the flanges i.e. CF and RF experience high mechanical loads with respect to the CL, due to the evacuation of W7-X cryostat, cool-down of cold mass including the CL, electro-magnetic forces due to current and plasma operations and self weight of CL. In order to check the integrity of these flanges for such mechanical loads, thermo-mechanical tests were carried out on these flanges at room temperatures and at liquid nitrogen (LN2) temperatures. The details of test set-up, results and modeling are described in the paper

  4. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    , especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  5. Mechanisms underlying reduced fertility in anovular dairy cows.

    Science.gov (United States)

    Santos, J E P; Bisinotto, R S; Ribeiro, E S

    2016-07-01

    Resumption of ovulation after parturition is a coordinated process that involves recoupling of the GH/insulin-like growth factor 1 axis in the liver, increase in follicular development and steroidogenesis, and removal of negative feedback from estradiol in the hypothalamus. Infectious diseases and metabolic disorders associated with extensive negative energy balance during early lactation disrupt this pathway and delay first ovulation postpartum. Extended periods of anovulation postpartum exert long-lasting effects on fertility in dairy cows including the lack of spontaneous estrus, reduced pregnancy per artificial insemination (P/AI), and increased risk of pregnancy loss. Concentrations of progesterone in anovular cows subjected to synchronized programs for AI are insufficient to optimize follicular maturation, oocyte competence, and subsequent fertility to AI. Ovulation of first wave follicles, which develop under low concentrations of progesterone, reduces embryo quality in the first week after fertilization and P/AI in dairy cows. Although the specific mechanisms by which anovulation and low concentrations of progesterone impair oocyte quality have not been defined, studies with persistent follicles support the involvement of premature resumption of meiosis and degradation of maternal RNA. Suboptimal concentrations of progesterone before ovulation also increase the synthesis of PGF2α in response to oxytocin during the subsequent estrous cycle, which explains the greater incidence of short luteal phases after the first AI postpartum in anovular cows compared with estrous cyclic herd mates. It is suggested that increased spontaneous luteolysis early in the estrous cycle is one of the mechanisms that contributes to early embryonic losses in anovular cows. Anovulation also leads to major shifts in gene expression in elongated conceptuses during preimplantation stages of pregnancy. Transcripts involved with control of energy metabolism and DNA repair were

  6. Bioaccumulation of lead nitrate in freshwater crayfish (Astacus leptodactylus) tissues under aquaculture conditions.

    Science.gov (United States)

    Naghshbandi, N; Zare, S; Heidari, R; Soleimani Palcheglu, S

    2007-09-15

    The aim of this research was to evaluate the amount of lead in the tissue of Astacus leptodactylus especially in their muscle which the consumed part of their body. In this study the crayfish was exposed to intermediate concentration of lead nitrate (500 microg L(-1)) for periods up to 3 weeks. In the first, second and third weeks bioaccumulation in various tissues was under investigation. The data of toxicological analysis obtained by the method of atomic absorption revealed that the levels of bioaccumulation of metal are different in various tissues of this crayfish. The accumulation of the lead in gills was the highest and in muscles was lowest degree. The amount of heavy metals in the tissues of crayfish was as follow. Gills>exoskeleton>hepatopancreas (digestive glands)>digestive tract>green gland>testis and ovary>muscles.

  7. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhanglian; Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-05

    Highlights: • Cesium was phase separated from lead borosilicate glass under a reductive atmosphere. • The phase separation occurred on the glass surface that was in contact with the gas. • The leachability of cesium was enhanced by the phase separation. • The degree of such enhancement varied depending on the heat treatment conditions. - Abstract: A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700 °C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000 °C and subsequently annealed below 700 °C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste.

  8. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress.

    Science.gov (United States)

    Gan, Haiyun; Yu, Chuanhe; Devbhandari, Sujan; Sharma, Sushma; Han, Junhong; Chabes, Andrei; Remus, Dirk; Zhang, Zhiguo

    2017-10-19

    The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  10. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.

    Science.gov (United States)

    Shahin, Antoine J; Backer, Kristina C; Rosenblum, Lawrence D; Kerlin, Jess R

    2018-02-14

    Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ ( illusion-fa ), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ ( illusion-ba ), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba , and a reduced N1 when they perceived illusion-fa , mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex. SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show

  11. Behavioural evidence for separate mechanisms of audiovisual temporal binding as a function of leading sensory modality.

    Science.gov (United States)

    Cecere, Roberto; Gross, Joachim; Thut, Gregor

    2016-06-01

    The ability to integrate auditory and visual information is critical for effective perception and interaction with the environment, and is thought to be abnormal in some clinical populations. Several studies have investigated the time window over which audiovisual events are integrated, also called the temporal binding window, and revealed asymmetries depending on the order of audiovisual input (i.e. the leading sense). When judging audiovisual simultaneity, the binding window appears narrower and non-malleable for auditory-leading stimulus pairs and wider and trainable for visual-leading pairs. Here we specifically examined the level of independence of binding mechanisms when auditory-before-visual vs. visual-before-auditory input is bound. Three groups of healthy participants practiced audiovisual simultaneity detection with feedback, selectively training on auditory-leading stimulus pairs (group 1), visual-leading stimulus pairs (group 2) or both (group 3). Subsequently, we tested for learning transfer (crossover) from trained stimulus pairs to non-trained pairs with opposite audiovisual input. Our data confirmed the known asymmetry in size and trainability for auditory-visual vs. visual-auditory binding windows. More importantly, practicing one type of audiovisual integration (e.g. auditory-visual) did not affect the other type (e.g. visual-auditory), even if trainable by within-condition practice. Together, these results provide crucial evidence that audiovisual temporal binding for auditory-leading vs. visual-leading stimulus pairs are independent, possibly tapping into different circuits for audiovisual integration due to engagement of different multisensory sampling mechanisms depending on leading sense. Our results have implications for informing the study of multisensory interactions in healthy participants and clinical populations with dysfunctional multisensory integration. © 2016 The Authors. European Journal of Neuroscience published by Federation

  12. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    International Nuclear Information System (INIS)

    Facheris, G.

    2014-01-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  13. Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Facheris, G.

    2014-07-01

    The improvement of the reliability and of the safety in the design of components belonging to the primary cooling circuit of a light water nuclear reactor is nowadays one of the most important research topics in nuclear industry. One of the most important damage mechanisms leading the crack initiation in this class of components is the low cycle fatigue (LCF) driven by thermal strain fluctuations caused by the complex thermo-mechanical loading conditions typical for the primary circuit (e.g. operating thermal transients, thermal stratification, turbulent mixing of cold and hot water flows, etc.). The cyclic application of the resulting plastic deformation to the steel grades commonly used for the fabrication of piping parts (e.g. austenitic stainless steels) is associated with a continuous evolution of the mechanical response of the material. As an additional complication, the cyclic behavior of stainless steels is influenced by temperature, strain amplitude and cyclic accumulation of inelastic strain (i.e. ratcheting). The accurate prediction of the structural response of components belonging to the primary cooling circuit requires the development of a reliable constitutive model that must be characterized by a reduced complexity to allow its application in an industrial context. In this framework, the main goal of the current dissertation is to formulate, calibrate and implement in a commercial Finite Element code, a constitutive model that is suitable for the stainless stain grade 316L subjected to complex loading conditions. As a first task, a characterization of the mechanical behavior of 316L subjected to uniaxial and multiaxial strain-controlled conditions (including LCF and ratcheting) is carried out performing several tests in the laboratories of the Paul Scherrer Institute (PSI, Villigen, Switzerland) and of Politecnico di Milano (Italy). The uniaxial experiments demonstrate that, prescribing a strain-controlled ratcheting path, a harder material response

  14. Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design

    International Nuclear Information System (INIS)

    Clark, Heather F.; Hausladen, Debra M.; Brabander, Daniel J.

    2008-01-01

    Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 μg/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed that the lead concentration increased from an initial range of 150±40 μg/g to an average of 336 μg/g over 4 years. The percent distribution of lead in the fine grain soil (<100 μm) and the trace metal signature of the raised beds support the conclusion that the mechanism of recontamination is wind-transported particles. Scanning electron microscopy and sequential extraction were used to characterize the speciation of lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (<100 μm) accounts for 82% of the daily exposure. This study indicates that urban lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale

  15. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  16. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr:Ti = 0.54:0.46) ceramics

    International Nuclear Information System (INIS)

    Mehta, K.; Virkar, A.V.

    1990-01-01

    Fracture toughness, K IC , of a single-phase commercial lead zirconate titanate (PZT) ceramic of tetragonal structure was measured using the single edge notched beam method above and below the Curie temperature. Domain switching (poling) under electrical and mechanical loading was examined using x-ray diffraction. Surface grinding, electrical poling, and mechanical poling caused crystallographic texture. Similar texture, indicative of domain switching, was also observed on fracture surfaces of some samples fractured at room temperature. At room temperature, the highest K IC measured was 1.85 MPa · m 1/2 , while above the Curie temperature it was about 1.0 MPa · m 1/2 . Cracks emanating from Vickers indents in poled samples were different in the poling and the transverse directions. The difference in crack sizes is explained on the basis of domain switching during crack growth. These results indicate that ferroelastic domain switching (twinning) is a viable toughening mechanism in the PZT materials tested

  17. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  18. Chemical durability of lead borosilicate glass matrix under simulated geological conditions

    International Nuclear Information System (INIS)

    Yalmali, Vrunda S.; Deshingkar, D.S.; Wattal, P.K.

    2002-03-01

    The lead borosilicate glass has been developed for vitrification of High Level Waste (HLW) stored at Trombay. This waste is contains especially high contents of sodium, uranium sulphate and iron. The glasses containing HLW are to be ultimately disposed into deep geological repositories. Long term leach rates under simulated geological conditions need to be evaluated for glass matrix. Studies were taken up to estimate the lead borosilicate glass WTR-62 matrix for chemical durability in presence of synthetic ground water. The leachant selected was based on composition of ground water sample near proposed repository site. In the first phase of these tests, the experiments were conducted for short duration of one and half month. The leaching experiments were conducted in presence of a) distilled water b) synthetic ground water c) synthetic ground water containing granite, bentonite and ferric oxide and d) synthetic ground water containing humic acid at 100 0 C. The leachate samples were analysed by pHmetry , ion chromatography and UV -VIS spectrophotometry. The normalised leach rates for lead borosilicate WTR- 62 glass matrix based on silica, boron and sulphate analyses of leachates were of the order of 10 -3 to 10 -5 gms/cm 2 /day for 45 days test period in presence of synthetic ground water as well as in presence of other materials likely to be present along with synthetic ground water. These rates are comparable to those of sodium borsilicate glass matrices reported in literature. It is known that the leach rates of glass matrix decrease with longer test durations due to formation of leached layer on its surface. The observed leach rates of lead borosilicate WTR- 62 glass matrix for 45 day tests under simulated geological conditions were found to be sufficiently encouraging to take up long term tests for evaluating its performances under repository conditions. (author)

  19. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  20. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    M. (1995). Bearing Strength of Autoclave and oven cured kevlar / epoxy laminates under static and dynamic loading. Compostes, 451-456. Kretsis, G...Joints in Glass Fibre/ Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...elongating the pulse width. The responses are read by the strain gages bonded on the incident and transmission bar with Vishay AE-10 epoxy . The gages

  1. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  2. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  3. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  4. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  5. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    Science.gov (United States)

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    . Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...... in protein quality control. In SCA3 patients polyQ expanded ataxin-3 forms intranuclear inclusions in various brain areas, but why the polyQ expansion of ataxin-3 leads to neuronal dysfunction is still not well understood. This thesis describes molecular biological investigations of ataxin-3 biology, aimed...... at furthering our understanding of SCA3 disease mechanisms. In manuscript I, we investigated if post-translational modifications of ataxin-3 were changed by the polyQ expansion. The ubiquitin chain topology and ubiquitination pattern of ataxin-3 were unaltered by the polyQ expansion. In contrast...

  7. An investigation of dose changes for therapeutic kilovoltage x-ray beams with underlying lead shielding

    International Nuclear Information System (INIS)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Baldock, Clive

    2007-01-01

    Kilovoltage x-ray beams are used to treat cancer on or close to the skin surface. Many clinical cases use high atomic number materials as shielding to reduce dose to underlying healthy tissues. In this work, we have investigated the effect on both the surface dose and depth doses in a water phantom with lead shielding at depth in the phantom. The EGSnrc Monte Carlo code was used to simulate the water phantom and to calculate the surface doses and depth doses using primary x-ray beam spectra derived from an analytical model. The x-ray beams were in the energy range of 75-135 kVp with field sizes of 2, 5 and 8 cm diameter. The lead sheet was located beneath the water surface at depths ranging from 0.5-7.5 cm. The surface dose decreased as the lead was positioned closer to the water surface and as the field size was increased. The variation in surface dose as a function of x-ray beam energy was only small but the maximum reduction occurred for the 100 kVp x-ray beam. For the 8 cm diameter field with the lead at 1 cm depth and using the 100 kVp x-ray beam, the surface dose was reduced to 0.898 of the surface dose in the water phantom only. Measured surface dose changes, using a Farmer-type ionization chamber, agreed with the Monte Carlo calculated doses. Calculated depth doses in water with a lead sheet positioned below the surface showed that the dose fall-off increased as the lead was positioned closer to the water surface as compared to the depth dose in the water phantom only. Monte Carlo calculations of the total x-ray beam spectrum at the water surface showed that the total fluence decreased due to a reduction in backscatter from within the water and very little backscatter from the lead. The mean energy of the x-ray spectrum varied less than 1 keV, with the lead at 1 cm beneath the water phantom surface. As the Monte Carlo calculations showed good agreement with the measured results, this method can be used to verify surface dose changes in clinical situations

  8. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  10. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  11. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  12. Reliability of lead-free solder joints with different PCB surface finishes under thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yanghua [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xia_yanghua@hotmail.com; Xie Xiaoming [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2008-04-24

    The reliability of lead-free electronic assemblies under thermal cycling was investigated. Thin small outline package (TSOP) devices with FeNi leads were reflow soldered on FR4 PCB (printed circuit board) with Sn3.0Ag0.5Cu (wt%) solder. The effects of different PCB finishes (organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG)) were studied. The results show that OSP finish reveals better performance than its ENIG counterparts. The crack originates at the fringe of heel fillet in both cases. The propagation of crack in the ENIG case is along the device/solder interface, while in the case of OSP, the crack extends parallel to the solder/PCB interface. When the OSP finishes are employed, many Cu6Sn5 precipitates form inside the bulk solder and have a strengthening effect on the solder joint, resulting in better reliability performance as compared to those with ENIG finishes.

  13. Atrial Arrhythmias in Obstructive Sleep Apnea: Underlying Mechanisms and Implications in the Clinical Setting

    Directory of Open Access Journals (Sweden)

    David Filgueiras-Rama

    2013-01-01

    Full Text Available Obstructive sleep apnea (OSA is a common disorder characterized by repetitive interruption of ventilation during sleep caused by recurrent upper airway collapse, which leads to intermittent hypoxia. The disorder is commonly undiagnosed despite its relationship with substantial cardiovascular morbidity and mortality. Moreover, the effects of the disorder appear to be particularly dangerous in young subjects. In the last decade, substantial clinical evidence has identified OSA as independent risk factor for both bradyarrhythmias and tachyarrhythmias. To date the mechanisms leading to such arrhythmias have not been completely understood. However, recent data from animal models and new molecular analyses have increased our knowledge of the field, which might lead to future improvement in current therapeutic strategies mainly based on continuous positive airway pressure. This paper aims at providing readers a brief and specific revision of current knowledge about the mechanisms underlying atrial arrhythmias in OSA and their clinical and therapeutic implications.

  14. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  15. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms.

    Science.gov (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi

    2017-03-01

    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa.

    Science.gov (United States)

    Qamar, Hafiz Misbah-Ud-Din; Qayyum, Rahila; Salma, Umme; Khan, Shamim; Khan, Taous; Shah, Abdul Jabbar

    2018-12-01

    Rumex acetosa L. (Polygonaceae) is well known in traditional medicine for its therapeutic efficacy as an antihypertensive. The study investigates antihypertensive potential of crude methanol extract (Ra.Cr) and fractions of Rumex acetosa in normotensive and hypertensive rat models and probes the underlying vascular mechanisms. Ra.Cr and its fractions were tested in vivo on normotensive and hypertensive Sprague-Dawley rats under anaesthesia for blood pressure lowering effect. In vitro experiments on rat and Oryctolagus cuniculus rabbit aortae were employed to probe the underlying vasorelaxant mechanism. In normotensive rats under anaesthesia, Ra.Cr caused fall in MAP (40 mmHg) at 50 mg/kg with % fall of 27.88 ± 4.55. Among the fractions tested, aqueous fraction was more potent at the dose of 50 mg/kg with % fall of 45.63 ± 2.84. In hypertensive rats under similar conditions, extract and fractions showed antihypertensive effect at same doses while aqueous fraction being more potent, exhibited 68.53 ± 4.45% fall in MAP (70 mmHg). In isolated rat aortic rings precontracted with phenylephrine (PE), Ra.Cr and fractions induced endothelium-dependent vasorelaxation, which was partially blocked in presence of l-NAME, indomethacin and atropine. In isolated rabbit aortic rings pre-contracted with PE and K + -(80 mM), Ra.Cr induced vasorelaxation and shifted Ca 2+ concentration-response curves to the right and suppressed PE peak formation, similar to verapamil, in Ca 2+ -free medium. The data indicate that l-NAME and atropine-sensitive endothelial-derived NO and COX enzyme inhibitors and Ca 2+ entry blocking-mediated vasodilator effect of the extract explain its antihypertensive potential.

  17. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    CERN Document Server

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  18. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  20. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  1. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex.

    Science.gov (United States)

    Suraneni, Praveen; Fogelson, Ben; Rubinstein, Boris; Noguera, Philippe; Volkmann, Niels; Hanein, Dorit; Mogilner, Alex; Li, Rong

    2015-03-01

    Cells employ protrusive leading edges to navigate and promote their migration in diverse physiological environments. Classical models of leading-edge protrusion rely on a treadmilling dendritic actin network that undergoes continuous assembly nucleated by the Arp2/3 complex, forming ruffling lamellipodia. Recent work demonstrated, however, that, in the absence of the Arp2/3 complex, fibroblast cells adopt a leading edge with filopodia-like protrusions (FLPs) and maintain an ability to move, albeit with altered responses to different environmental signals. We show that formin-family actin nucleators are required for the extension of FLPs but are insufficient to produce a continuous leading edge in fibroblasts lacking Arp2/3 complex. Myosin II is concentrated in arc-like regions of the leading edge in between FLPs, and its activity is required for coordinated advancement of these regions with formin-generated FLPs. We propose that actomyosin contraction acting against membrane tension advances the web of arcs between FLPs. Predictions of this model are verified experimentally. The dependence of myosin II in leading-edge advancement helps explain the previously reported defect in directional movement in the Arpc3-null fibroblasts. We provide further evidence that this defect is cell autonomous during chemotaxis. © 2015 Suraneni et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Underlying mechanism in the water chemistry of nuclear systems

    International Nuclear Information System (INIS)

    Walton, G.N.

    1978-01-01

    The equilibrium between dissolved hydrogen and oxygen in the molecular decomposition of water, and the equilibrium between hydrogen ions and hydroxyl ions in the ionic dissociation of water, both constitute important underlying mechanisms in the corrosion behaviour of water. The two equilibria, and the rates of the reactions involved in water and steam, will be compared and contrasted as a function of temperature, pressure and radiation. The effects of the equilibria on the hydrolysis and solubility of ferrous and ferric ions, and the ions of other metals, will be discussed in relation to the control of conditions in the coolant circuits of nuclear reactors. A third mechanism to discussed is the electrochemical exchange reactions that can contribute to the contamination of circuits. (author)

  3. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  4. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  5. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  6. Cardiac implantable electronic device lead extraction using the lead-locking device system: keeping it simple, safe, and inexpensive with mechanical tools and local anesthesia.

    Science.gov (United States)

    Manolis, Antonis S; Georgiopoulos, Georgios; Metaxa, Sofia; Koulouris, Spyridon; Tsiachris, Dimitris

    2017-10-01

    We have previously reported our successful approach for percutaneous cardiac implantable electronic device (CIED) lead extraction using inexpensive tools, which we have continued over the years. Herein we report the results of the systematic use of a unique stylet, the lead-locking device (LLD), which securely locks the entire lead lumen, aided with non-powered telescoping sheaths in 54 patients to extract 98 CIED leads. This prospective observational clinical study included 38 men and 16 women aged 68.9±13.1 years undergoing lead extraction for device infection (n=46), lead malfunction (n=5), or prior to defibrillator implant (n=3). Leads were in place for 6.7±4.3 years. Infections were more commonly due to Staphylococcus species (n=40). There were 78 pacing (31 ventricular, 37 atrial, 4 VDD, and 6 coronary sinus leads) and 20 defibrillating leads. Using simple traction (6 leads) and the LLD stylets (92 leads) aided with telescoping sheaths (15 patients), 96 (98%) leads in 52 (96.3%) patients were successfully removed, with all but one leads removed using a subclavian approach; in 1 patient, the right femoral approach was also required. In 2 patients, distal fragments from one ventricular pacing and one defibrillating lead could not be removed. Finally, lead removal was completely (52/54) (96.3%) or partially (2/54) (3.7%) successful in 54 patients for 96 of 98 leads (98%) without major complications. Percutaneous lead extraction can be successful with mechanical tools using the LLD locking stylet aided with non-powered telescoping sheaths through a simplified, safe, and inexpensive procedure using local anesthesia.

  7. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    Science.gov (United States)

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  8. The philosophy and assumptions underlying exposure limits for ionising radiation, inorganic lead, asbestos and noise

    International Nuclear Information System (INIS)

    Akber, R.

    1996-01-01

    Full text: A review of the literature relating to exposure to, and exposure limits for, ionising radiation, inorganic lead, asbestos and noise was undertaken. The four hazards were chosen because they were insidious and ubiquitous, were potential hazards in both occupational and environmental settings and had early and late effects depending on dose and dose rate. For all four hazards, the effect of the hazard was enhanced by other exposures such as smoking or organic solvents. In the cases of inorganic lead and noise, there were documented health effects which affected a significant percentage of the exposed populations at or below the [effective] exposure limits. This was not the case for ionising radiation and asbestos. None of the exposure limits considered exposure to multiple mutagens/carcinogens in the calculation of risk. Ionising radiation was the only one of the hazards to have a model of all likely exposures, occupational, environmental and medical, as the basis for the exposure limits. The other three considered occupational exposure in isolation from environmental exposure. Inorganic lead and noise had economic considerations underlying the exposure limits and the exposure limits for asbestos were based on the current limit of detection. All four hazards had many variables associated with exposure, including idiosyncratic factors, that made modelling the risk very complex. The scientific idea of a time weighted average based on an eight hour day, and forty hour week on which the exposure limits for lead, asbestos and noise were based was underpinned by neither empirical evidence or scientific hypothesis. The methodology of the ACGIH in the setting of limits later brought into law, may have been unduly influenced by the industries most closely affected by those limits. Measuring exposure over part of an eight hour day and extrapolating to model exposure over the longer term is not the most effective way to model exposure. The statistical techniques used

  9. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    Science.gov (United States)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  10. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation

    Science.gov (United States)

    Georgescu, Roxana E; Schauer, Grant D; Yao, Nina Y; Langston, Lance D; Yurieva, Olga; Zhang, Dan; Finkelstein, Jeff; O'Donnell, Mike E

    2015-01-01

    We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork. DOI: http://dx.doi.org/10.7554/eLife.04988.001 PMID:25871847

  11. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  12. Lead levels in some biological samples of auto-mechanics in Abeokuta, Nigeria.

    Science.gov (United States)

    Babalola, O O; Ojo, L O; Aderemi, M O

    2005-12-01

    Lead levels were determined in the blood, scalp hair and fingernails of 38, all male auto-mechanics (aged 18-45 years) from Abeokuta, South-western Nigeria. The subjects were classified into four sub-groups based on the period of exposure namely: 1-5, 6-10, 11-15, and >16 years. Thirty-two occupationally unexposed subjects (mainly office workers) served as the control. The weight, height and body mass indexes of all subjects were noted, in addition to other information obtained through structured questionnaire. The mean values of blood lead (BPb), hair lead (HPb) and fingernail lead (NPb) of the occupationally exposed subjects (n=38) were 48.50 +/- 9.08 microg/dL, 17.75 +/- 5.16 microg/g, and 5.92 +/- 3.30 microg/g respectively, while the corresponding mean values for these parameters in the control subjects (n = 32) were 33.(,5 +/- 10.09 microg/dL, 14.30 +/- 5.90 microg/g and 5.31 +/- 2.77 microg/g respectively. The differences in BPb and HPb levels of the two groups were statistically significant (P <0.05 and P <0.01 respectively), while that of NPb was not significant. The levels of lead in the biological samples appeared to have no relationship with the number of years on the job. From these results, it was obvious that the higher levels of lead in the biological samples of test subjects, compared with those of the controls were from environmental sources.

  13. RISK FACTORS FOR PANCREATIC CANCER: UNDERLYING MECHANISMS AND POTENTIAL TARGETS

    Directory of Open Access Journals (Sweden)

    Thomas eKolodecik

    2014-01-01

    Full Text Available Purpose of the review:Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer.Recent Findings:Intracellular activation of both pancreatic enzymes and the transcription factor NF-kB are important mechanisms that induce acute pancreatitis. Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogneic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16 can ultimately lead to development of pancreatic cancer. Summary:Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.

  14. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  15. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  16. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  17. Wind Climate in Kongsfjorden, Svalbard, and Attribution of Leading Wind Driving Mechanisms through Turbulence-Resolving Simulations

    Directory of Open Access Journals (Sweden)

    Igor Esau

    2012-01-01

    Full Text Available This paper presents analysis of wind climate of the Kongsfjorden-Kongsvegen valley, Svalbard. The Kongsfjorden-Kongsvegen valley is relatively densely covered with meteorological observations, which facilitate joint statistical analysis of the turbulent surface layer structure and the structure of the higher atmospheric layers. Wind direction diagrams reveal strong wind channeled in the surface layer up to 300 m to 500 m. The probability analysis links strong wind channeling and cold temperature anomalies in the surface layer. To explain these links, previous studies suggested the katabatic wind flow mechanism as the leading driver responsible for the observed wind climatology. In this paper, idealized turbulence-resolving simulations are used to distinct between different wind driving mechanisms. The simulations were performed with the real surface topography at resolution of about 60 m. These simulations resolve the obstacle-induced turbulence and the turbulence in the non-stratified boundary layer core. The simulations suggest the leading roles of the thermal land-sea breeze circulation and the mechanical wind channeling in the modulation of the valley winds. The characteristic signatures of the developed down-slope gravity-accelerated flow, that is, the katabatic wind, were found to be of lesser significance under typical meteorological conditions in the valley.

  18. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  19. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  20. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    Energy Technology Data Exchange (ETDEWEB)

    Aman, A., E-mail: alexander.aman@ovgu.de [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Majcherek, S. [Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Hirsch, S. [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Schmidt, B. [Chair of Micorsystem Technology, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany)

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  1. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    Science.gov (United States)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  2. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  3. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

  4. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  5. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  6. Calcium and magnesium content in hard tissues of rats under condition of subchronic lead intoxication.

    Science.gov (United States)

    Todorovic, Tatjana; Vujanovic, Dragana; Dozic, Ivan; Petkovic-Curcin, Aleksandra

    2008-03-01

    Lead manifests toxic effects in almost all organs and tissues, especially in: the nervous system, hematopoietic system, kidney and liver. This metal has a special affinity for deposition in hard tissue, i.e., bones and teeth. It is generally believed that the main mechanism of its toxicity relies on its interaction with bioelements, especially with Ca and Mg. This article analyses the influence of Pb poisoning on Ca and Mg content in hard tissues, (mandible, femur, teeth and skull) of female and young rats. Experiments were carried out on 60 female rats, AO breed, and on 80 of their young rats (offspring). Female rats were divided into three groups: the first one was a control group, the second one received 100 mg/kg Pb2+ kg b.wt. per day in drinking water, the third one received 30 mg/kg Pb(2+) kg b.wt. per day in drinking water. Young rats (offspring) were divided into the same respective three groups. Lead, calcium and magnesium content in hard tissues (mandible, femur, teeth-incisors and skull) was determined by flame atomic absorption spectrophotometry in mineralized samples. There was a statistically significant Pb deposition in all analyzed female and young rat hard tissues. Ca and Mg contents were significantly reduced in all female and young rat hard tissues. These results show that Pb poisoning causes a significant reduction in Ca and Mg content in animal hard tissues, which is probably the consequence of competitive antagonism between Pb and Ca and Mg.

  7. Effects of voids on thermal-mechanical reliability of lead-free solder joints

    Directory of Open Access Journals (Sweden)

    Benabou Lahouari

    2014-06-01

    Full Text Available Reliability of electronic packages has become a major issue, particularly in systems used in electrical or hybrid cars where severe operating conditions must be met. Many studies have shown that solder interconnects are critical elements since many failure mechanisms originate from their typical response under thermal cycles. In this study, effects of voids in solder interconnects on the electronic assembly lifetime are estimated based on finite element simulations.

  8. INFRASTRUCTURAL MECHANISMS LEADING TOWARD PRO-ACCOUNTABLE CARE ORGANISATION ORIENTATION: A SURVEY OF HOSPITAL MANAGERS

    Science.gov (United States)

    Wan, Thomas T.H.; Masri, Maysoun Dimachkie; Ortiz, Judith

    2013-01-01

    Organisations across the country are transforming the way they deliver care, in ways similar to the accountable care organisation (ACO) model supported by Medicare. ACOs modalities are varying in size, type, and financing structure. Little is known about how specific infrastructural mechanisms influence hospital managers’ pro-ACO orientation. Using an electronic-survey of hospital managers, this study explores how pro-ACO orientation, as a latent construct, is captured from the perceptions of hospital managers; and identify infrastructural mechanisms leading to the formation of pro-ACO orientation. Of the total hospital respondents, 58% are moving toward the establishment of ACOs; 56% are planning to join in the next two years; 48% are considering joining ACOs; while 25% had already participated in ACOs during 2012. Urban hospitals are more likely than rural hospitals to be engaged in ACO development. The health provider network size is one of the strongest indicators in predicting pro-ACO orientation. PMID:25374609

  9. Fracture Mechanics Analyses of Reinforced Carbon-Carbon Wing-Leading-Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Phillips, Dawn R.; Knight, Norman F., Jr.; Song, Kyongchan

    2010-01-01

    Fracture mechanics analyses of subsurface defects within the joggle regions of the Space Shuttle wing-leading-edge RCC panels are performed. A 2D plane strain idealized joggle finite element model is developed to study the fracture behavior of the panels for three distinct loading conditions - lift-off and ascent, on-orbit, and entry. For lift-off and ascent, an estimated bounding aerodynamic pressure load is used for the analyses, while for on-orbit and entry, thermo-mechanical analyses are performed using the extreme cold and hot temperatures experienced by the panels. In addition, a best estimate for the material stress-free temperature is used in the thermo-mechanical analyses. In the finite element models, the substrate and coating are modeled separately as two distinct materials. Subsurface defects are introduced at the coating-substrate interface and within the substrate. The objective of the fracture mechanics analyses is to evaluate the defect driving forces, which are characterized by the strain energy release rates, and determine if defects can become unstable for each of the loading conditions.

  10. Biochemical mechanism of phytoremediation process of lead and cadmium pollution with Mucor circinelloides and Trichoderma asperellum.

    Science.gov (United States)

    Zhang, Xu; Li, Xinxin; Yang, Huanhuan; Cui, Zhaojie

    2018-08-15

    This study focused on the bioremediation mechanisms of lead (0, 100, 500, 1000 mg kg -1 ) and cadmium (0,10,50,100 mg kg -1 ) contaminated soil using two indigenous fungi selected from mine tailings as the phytostimulation of Arabidopsis thaliana. The two fungal strains were characterized as Mucor circinelloides (MC) and Trichoderma asperellum (TA) by internal transcribed spacer sequencing at the genetic levels. Our research revealed that Cadmium was more toxic to plant growth than lead and meanwhile, MC and TA can strengthen A. thaliana tolerance to cadmium and lead with 40.19-117.50% higher root length and 58.31-154.14% shoot fresh weight of plant compared to non-inoculation. In this study, TA exhibited a higher potential to the inactivation of cadmium; however, MC was more effective in lead passivation. There was a direct correlation between the type of fungi, heavy metal content, heavy metal type and oxidative damage in plant. Both lead and cadmium induced oxidative damage as indicated by increased superoxide dismutase and catalase activities, while the antioxidant levels were significantly higher in fungal inoculated plants compared with those non-inoculated. The analysis of soil enzyme activity and taxonomic richness uncovered that the dominant structures of soil microbial community were altered by exogenous microbial agents. MC enhanced higher microbial diversity and soil enzyme activity than TA. The two indigenous fungi lessened several limiting factors with respect to phytoremediation technology, such as soil chemistry, contamination level and transformation, and metal solubility. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  12. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  13. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  15. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  16. De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure.

    Science.gov (United States)

    Gu, Chun-Sun; Liu, Liang-Qin; Deng, Yan-Ming; Zhang, Yong-Xia; Wang, Zhi-Quan; Yuan, Hai-Yan; Huang, Su-Zhen

    2017-10-01

    Iris lactea var. chinensis (I. lactea var. chinensis) is tolerant to accumulations of cadmium (Cd) and lead (Pb). In this study, the transcriptome of I. lactea var. chinensis was investigated under Cd or Pb stresses. Using the gene ontology database, 31,974 unigenes were classified into biological process, cellular component and molecular function. In total, 13,132 unigenes were involved in enriched Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and the expression levels of 5904 unigenes were significantly changed after exposure to Cd or Pb stresses. Of these, 974 were co-up-regulated and 1281 were co-down-regulated under the two stresses. The transcriptome expression profiles of I. lactea var. chinensis under Cd or Pb stresses obtained in this study provided a resource for identifying common mechanisms in the detoxification of different heavy metals. Furthermore, the identified unigenes may be used for the genetic breeding of heavy-metal tolerant plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Photovoltaic High-Frequency Pulse Charger for Lead-Acid Battery under Maximum Power Point Tracking

    Directory of Open Access Journals (Sweden)

    Hung-I. Hsieh

    2013-01-01

    Full Text Available A photovoltaic pulse charger (PV-PC using high-frequency pulse train for charging lead-acid battery (LAB is proposed not only to explore the charging behavior with maximum power point tracking (MPPT but also to delay sulfating crystallization on the electrode pores of the LAB to prolong the battery life, which is achieved due to a brief pulse break between adjacent pulses that refreshes the discharging of LAB. Maximum energy transfer between the PV module and a boost current converter (BCC is modeled to maximize the charging energy for LAB under different solar insolation. A duty control, guided by a power-increment-aided incremental-conductance MPPT (PI-INC MPPT, is implemented to the BCC that operates at maximum power point (MPP against the random insolation. A 250 W PV-PC system for charging a four-in-series LAB (48 Vdc is examined. The charging behavior of the PV-PC system in comparison with that of CC-CV charger is studied. Four scenarios of charging statuses of PV-BC system under different solar insolation changes are investigated and compared with that using INC MPPT.

  18. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  19. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  20. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    Science.gov (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  1. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  2. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  3. MECHANICAL BEHAVIOR OF PRESTRESSED VISCOELASTIC ADHESIVE AREAS UNDER COMBINING LOADINGS

    Directory of Open Access Journals (Sweden)

    Halil Murat Enginsoy

    2017-12-01

    Full Text Available In this article, mechanical behaviors of adhesive tape VHB 4950 elastomeric material, which is an element of acrylic polymer group and which is in viscoelastic behavior, under different pre-stress conditions and complex forces of different geometric parameters created by combining loadings have been experimentally and numerically investigated. In experimental studies, loading-unloading cyclic tests, one of the different standardized tests for the mechanical characterization of viscoelastic material, have been applied which give the most suitable convergent optimization parameters for the finite element model. Different material models were also investigated by using the data obtained from loading-unloading test results in all numerical models. According to the experimental results, the most suitable material parameters were determined with the Abaqus Parallel Rheological Framework Model (PRF for 4 Yeoh Networks with Bergstrom-Boyce Flow model created in the Mcalibration software for finite element analysis. Subsequently, using these material parameters, finite element analysis was performed as three dimension non-linear viscoelastic with a commercial finite element software Abaqus. The finite element analysis results showed good correlation to the Force (N-Displacement (mm experimental data for maximum load-carrying capacity of structural specimens.

  4. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  5. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  6. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  7. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  8. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  9. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  10. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  11. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Antonio F. Hernández

    2016-03-01

    Full Text Available Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation. Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.

  12. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  13. Interplay between r- and K-strategists leads to phytoplankton underyielding under pulsed resource supply.

    Science.gov (United States)

    Papanikolopoulou, Lydia A; Smeti, Evangelia; Roelke, Daniel L; Dimitrakopoulos, Panayiotis G; Kokkoris, Giorgos D; Danielidis, Daniel B; Spatharis, Sofie

    2018-03-01

    Fluctuations in nutrient ratios over seasonal scales in aquatic ecosystems can result in overyielding, a condition arising when complementary life-history traits of coexisting phytoplankton species enables more complete use of resources. However, when nutrient concentrations fluctuate under short-period pulsed resource supply, the role of complementarity is less understood. We explore this using the framework of Resource Saturation Limitation Theory (r-strategists vs. K-strategists) to interpret findings from laboratory experiments. For these experiments, we isolated dominant species from a natural assemblage, stabilized to a state of coexistence in the laboratory and determined life-history traits for each species, important to categorize its competition strategy. Then, using monocultures we determined maximum biomass density under pulsed resource supply. These same conditions of resource supply were used with polycultures comprised of combinations of the isolated species. Our focal species were consistent of either r- or K-strategies and the biomass production achieved in monocultures depended on their efficiency to convert resources to biomass. For these species, the K-strategists were less efficient resource users. This affected biomass production in polycultures, which were characteristic of underyielding. In polycultures, K-strategists sequestered more resources than the r-strategists. This likely occurred because the intermittent periods of nutrient limitation that would have occurred just prior to the next nutrient supply pulse would have favored the K-strategists, leading to overall less efficient use of resources by the polyculture. This study provides evidence that fluctuation in resource concentrations resulting from pulsed resource supplies in aquatic ecosystems can result in phytoplankton assemblages' underyielding.

  14. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity.

    Science.gov (United States)

    Ashraf, Umair; Hussain, Saddam; Anjum, Shakeel Ahmad; Abbas, Farhat; Tanveer, Mohsin; Noor, Mehmood Ali; Tang, Xiangru

    2017-06-01

    Lead (Pb) affects plant growth and its related physio-biochemical functions negatively. The present study investigated the responses of five different fragrant rice cultivars viz., Meixiangzhan (MXZ-2), Xiangyaxiangzhan (XYXZ), Guixiangzhan (GXZ), Basmati-385 (B-385), and Nongxiang-18 (NX-18) to four different Pb concentrations viz., 0, 400, 800 and 1200 μM. Results depicted that Pb toxicity significantly (P rice plants; nonetheless, a significant variation was found in the sensitivity of rice cultivars to Pb toxicity. Soluble sugars increased significantly only at 1200 μM in GXZ and 800 μM in B-385, whilst the maximum reductions in protein contents were observed at 1200 μM Pb for all rice cultivars. Proline contents were reduced for XYXZ and NX-18 at Pb1200 μM. Activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) as well as reduced glutathione (GSH) and oxidized glutathione (GSSG) showed differential behavior among Pb treatments and rice cultivars. Among rice cultivars, GXZ showed better antioxidative defense system under Pb toxicity compared with all other cultivars. For all rice cultivars, the trend for Pb accumulation was recorded as: roots > stems > leaves. Furthermore, significant but negative correlations among Pb uptake and plant height (r = -0.79), tillers per plant (r = -0.91) and plant dry biomass (r = -0.81) were recorded for all rice cultivars whereas the values of translocation factor (TF) from stems to leaves were higher than roots to stems. In sum, Pb reduced the early growth and caused physio-biochemical changes in all rice cultivars, nonetheless, GXZ proved better able to tolerate Pb stress than all other rice cultivars under study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  16. Mechanisms underlying recovery of zooplankton in Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Roberta Piscia

    2016-04-01

    Full Text Available The goal of this study was to improve the understanding of the large-scale mechanisms underlying the recovery of the zooplankton of Lake Orta from historical contamination, following reduced input of ammonia and metals and the subsequent 1989/90 liming intervention. The industrial pollution had been severe and long-lasting (1929-1990. Zooplankton biodiversity has improved, but most of the new taxa appearing in our counts are rotifers, while many calanoids and the large cladoceran predators (Bythotrephes and Leptodora that are common in the nearby Lake Maggiore, were still absent from Lake Orta 17 years after liming. To aid understanding of the large-scale mechanisms controlling changes in annual richness, we assessed the annual persistence (P of Crustacea and Rotifera taxa as an estimator of whether propagules that survived introduction, as result of the natural recolonization process, also thrived. We found that the rate of introduction of zooplankton colonists and their persistence in the water column of Lake Orta changed from 1971 to 2007. New rotifer taxa appeared in the lake after the mid-1980s, when discharge of toxic substances decreased, but their annual persistence was low (P<0.5 until the turn of the century. The numerical values of rotifer and crustacean persistence in Lake Orta were unexpectedly high in 2001 and 2007 (0.55 and 0.72 for rotifers, 0.85 and 0.86 for crustacean, respectively, much higher than in limed lakes in Sudbury, Canada, and in adjacent Lake Maggiore. We hypothesize this could be related to the lack of Cladoceran predators and zooplanktivorous fish in the pelagic waters of Lake Orta.

  17. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  18. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    Science.gov (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  19. Rules and mechanisms governing octahedral tilts in perovskites under pressure

    Science.gov (United States)

    Xiang, H. J.; Guennou, Mael; Íñiguez, Jorge; Kreisel, Jens; Bellaiche, L.

    2017-08-01

    The rotation of octahedra (octahedral tilting) is common in A B O3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper, we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A -O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR /dP ) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A -O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in A B O3 perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR /dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites—the orthorhombic Pbnm state—the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the

  20. Scale Formation under Blended Phosphate Treatment for a Utility with Lead Pipes

    Science.gov (United States)

    Conventional wisdom hypothesizes that the orthophosphate component of blended phosphate corrosion inhibitors causes the formation of low solubility lead-orthophosphate solids which inhibit lead release into drinking water. This study characterized the composition and morphology o...

  1. Mechanisms leading to increased risk of preterm birth in growth-restricted guinea pig pregnancies.

    Science.gov (United States)

    Palliser, Hannah K; Kelleher, Meredith A; Welsh, Toni N; Zakar, Tamas; Hirst, Jonathan J

    2014-02-01

    Intrauterine growth restriction (IUGR) is a risk factor for preterm labor; however, the mechanisms of the relationship remain unknown. Prostaglandin (PG), key stimulants of labor, availability is regulated by the synthetic enzymes, prostaglandin endoperoxidases 1 and 2 (PTGS1 and 2), and the metabolizing enzyme, 15-hydroxyprostaglandin dehydrogenase (HPGD). We hypothesized that IUGR increases susceptibility to preterm labor due to the changing balance of synthetic and metabolizing enzymes and hence greater PG availability. We have tested this hypothesis using a surgically induced IUGR model in guinea pigs, which results in significantly shorter gestation. Myometrium, amnion, chorion, and placentas were collected from sham operated or IUGR pregnancies, and PTGS1 and HPGD protein expression were quantified throughout late gestation (>62 days) and labor. The PTGS1 expression was significantly upregulated in the myometrium of IUGR animals, and chorionic HPGD expression was markedly decreased (P production over metabolism in IUGR pregnancies leads to a greater susceptibility to preterm birth.

  2. An introduction to the mechanisms leading to density-wave instabilities in BWRs

    International Nuclear Information System (INIS)

    March-Leuba, Jose

    2004-01-01

    This paper presents a review of the physical mechanisms that lead to density-wave instabilities in boiling water reactors (BWRs). The goal of this paper is not to present new information; but ideas that are generally known and accepted in the field of BWR stability. The number of people working in the field of BWR stability has grown over the past years to a significant number; nevertheless, the field is still small enough so that personal communication is an effective way of conveying information. The unfortunate consequence is that this field has a large component of ''art'' as opposed to science.'' This paper attempts to summarize these basic ideas for the reader. (author)

  3. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  4. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T. Alan; Doyle, Patrick S.; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  5. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee

    2013-06-20

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  6. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  7. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective

    DEFF Research Database (Denmark)

    Serrano-Luján, Lucía; Espinosa Martinez, Nieves; Larsen-Olsen, Thue Trofod

    2015-01-01

    The effect of substituting lead with tin in perovskite-based solar cells (PSCs) has shows that lead is preferred over tin by a lower cumulative energy demand. The results, which also include end-of-life management, show that a recycling scenario that carefully handles emission of lead enables use...

  9. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  10. Comparison of the key mechanisms leading to rollovers in Liquefied Natural Gas using Computational Fluid Dynamics

    Science.gov (United States)

    Hubert, Antoine; Dadonau, Maksim; Dembele, Siaka; Denissenko, Petr; Wen, Jennifer

    2017-11-01

    Growing demand for the LNG fosters growth of the number of production sites with varying composition and density. Combining different sources of LNG may result in a stably stratified system, in which heat and mass transfer between the layers is limited. Heating of the LNG due to wall thermal conductivity leads to formation of convection cells confined within the layers. While the upper layer can release the extra energy via preferential methane boil-off, the bottom layer cannot and hence becomes superheated. Gradual density equilibration reduces stratification and may eventually lead to a sudden mixing event called ``rollover'', accompanied by violent evaporation of the superheated LNG. Three phenomena are potentially responsible for density equilibration. The first is the growing difference in thermal expansion of the layers due to the reduced ability of the bottom layer to reject heat. The second is the penetration of the heated near-wall boundary layer into the upper layer. The third is the ``entrainment mixing'' occurring at the contact surface between the two layers. The present study uses CFD to compare these mechanisms. Boussinesq approximation and an extended version of the k- ɛ model is used. The code is validated by comparison with a large-scale LNG rollover experiment.

  11. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  12. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading Edge Panels

    Science.gov (United States)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2010-01-01

    The Space Shuttle Orbiter wing comprises of 22 leading edge panels on each side of the wing. These panels are part of the thermal protection system that protects the Orbiter wings from extreme heating that take place on the reentry in to the earth atmosphere. On some panels that experience extreme heating, liberation of silicon carbon (SiC) coating was observed on the slip side regions of the panels. Global structural and local fracture mechanics analyses were performed on these panels as a part of the root cause investigation of this coating liberation anomaly. The wing-leading-edge reinforced carbon-carbon (RCC) panels, Panel 9, T-seal 10, and Panel 10, are shown in Figure 1 and the progression of the stress analysis models is presented in Figure 2. The global structural analyses showed minimal interaction between adjacent panels and the T-seal that bridges the gap between the panels. A bounding uniform temperature is applied to a representative panel and the resulting stress distribution is examined. For this loading condition, the interlaminar normal stresses showed negligible variation in the chord direction and increased values in the vicinity of the slip-side joggle shoulder. As such, a representative span wise slice on the panel can be taken and the cross section can be analyzed using plane strain analysis.

  13. Fluorometric detection of nitroaromatics by fluorescent lead complexes: A spectroscopic assessment of detection mechanism

    Science.gov (United States)

    Chattopadhyay, Tanmay; Chatterjee, Sourav; Majumder, Ishani; Ghosh, Soumen; Yoon, Sangee; Sim, Eunji

    2018-04-01

    Three Schiff base ligands such as 2-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL1), 2-[(2-Hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL2), 2-[(3,5-Dichloro-2-hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5-Dichloro-2-hydroxy benzaldehyde, 2-Hydroxy-benzaldehyde, and 2-Hydroxy-3-methoxy-benzaldehyde) with Tris-(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.

  14. Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric

    DEFF Research Database (Denmark)

    Walker, Julian; Simons, Hugh; Alikin, Denis O

    2016-01-01

    Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb)-based ferroe......Electromechanical properties such as d33 and strain are significantly enhanced at morphotropic phase boundaries (MPBs) between two or more different crystal structures. Many actuators, sensors and MEMS devices are therefore systems with MPBs, usually between polar phases in lead (Pb......)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...

  15. Evaluation of Possible Proximate Mechanisms Underlying the Kinship Theory of Intragenomic Conflict in Social Insects.

    Science.gov (United States)

    Galbraith, David A; Yi, Soojin V; Grozinger, Christina M

    2016-12-01

    Kinship theory provides a universal framework in which to understand the evolution of altruism, but there are many molecular and genetic mechanisms that can generate altruistic behaviors. Interestingly, kinship theory specifically predicts intragenomic conflict between maternally-derived alleles (matrigenes) and paternally-derived alleles (patrigenes) over the generation of altruistic behavior in cases where the interests of the matrigenes and patrigenes are not aligned. Under these conditions, individual differences in selfish versus altruistic behavior are predicted to arise from differential expression of the matrigenes and patrigenes (parent-specific gene expression or PSGE) that regulate selfish versus altruistic behaviors. As one of the leading theories to describe PSGE and genomic imprinting, kinship theory has been used to generate predictions to describe the reproductive division of labor in social insect colonies, which represents an excellent model system to test the hypotheses of kinship theory and examine the underlying mechanisms driving it. Recent studies have confirmed the predicted differences in the influence of matrigenes and patrigenes on reproductive division of labor in social insects, and demonstrated that these differences are associated with differences in PSGE of key genes involved in regulating reproductive physiology, providing further support for kinship theory. However, the mechanisms mediating PSGE in social insects, and how PSGE leads to differences in selfish versus altruistic behavior, remain to be determined. Here, we review the available supporting evidence for three possible epigenetic mechanisms (DNA methylation, piRNAs, and histone modification) that may generate PSGE in social insects, and discuss how these may lead to variation in social behavior. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email

  16. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  17. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    Science.gov (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. [Underlying Mechanisms and Management of Refractory Gastroesophageal Reflux Disease].

    Science.gov (United States)

    Lee, Kwang Jae

    2015-08-01

    The prevalence of gastroesophageal reflux disease (GERD) in South Korea has increased over the past 10 years. Patients with erosive reflux disease (ERD) shows better response to proton pump inhibitors (PPIs) than those with non-erosive reflux disease (NERD). NERD is a heterogeneous condition, showing pathological gastroesophageal reflux or esophageal hypersensitivity to reflux contents. NERD patients with pathological gastroesophageal reflux or hypersensitivity to acid may respond to PPIs. However, many patients with esophageal hypersensitivity to nonacid or functional heartburn do not respond to PPIs. Therefore, careful history and investigations are required when managing patients with refractory GERD who show poor response to conventional dose PPIs. Combined pH-impedance studies and a PPI diagnostic trial are recommended to reveal underlying mechanisms of refractory symptoms. For those with ongoing reflux-related symptoms, split dose administration, change to long-acting PPIs or PPIs less influenced by CYP2C19 genotypes, increasing dose of PPIs, and the addition of alginate preparations, prokinetics, selective serotonin reuptake inhibitors, or tricyclic antidepressants can be considered. Pain modulators, selective serotonin reuptake inhibitors, or tricyclic antidepressants are more likely to be effective for those with reflux-unrelated symptoms. Surgery or endoscopic per oral fundoplication may be effective in selected patients.

  19. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  20. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  1. Underlying mechanisms and the evolving influence of diet

    DEFF Research Database (Denmark)

    Larsen, Lesli Hingstrup

    2012-01-01

    Obesity is determined by both genetic and environmental factors. Since 2007, 52 genes have been associated with obesity and obesity-related measurements in genome-wide association studies (GWAS), among these the fat and obesity-associated gene (FTO). Despite the success in identifying genes predi...... and the microbiome that can be modified by diet, and by genotype, adding to the complexity of determining the contributors to obesity....... has been shown to attenuate the effect of FTO on obesity. Several studies have examined gene-diet interactions in relation to obesity, but only a few suggestive interactions have been identified. This is most probably due to small effect sizes of the interactions and thereby a demand for large samples...... to increased risk of developing obesity. Recently, the intestinal microbiome, the collected genome of the bacteria, also has been associated with obesity and with specific dietary profiles. The underlying mechanisms determining the susceptibility to obesity do not only include the genome but also the epigenome...

  2. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  3. 16 CFR 1500.88 - Exemptions from lead limits under section 101 of the Consumer Product Safety Improvement Act for...

    Science.gov (United States)

    2010-01-01

    ... 101 of the Consumer Product Safety Improvement Act for certain electronic devices. 1500.88 Section... from lead limits under section 101 of the Consumer Product Safety Improvement Act for certain electronic devices. (a) The Consumer Product Safety Improvement Act (CPSIA) provides for specific lead limits...

  4. Presynaptic mechanisms of lead neurotoxicity: effects on vesicular release, vesicle clustering and mitochondria number.

    Science.gov (United States)

    Zhang, Xiao-Lei; Guariglia, Sara R; McGlothan, Jennifer L; Stansfield, Kirstie H; Stanton, Patric K; Guilarte, Tomás R

    2015-01-01

    Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development.

  5. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design

    Science.gov (United States)

    Lättig, Jens; Böhl, Markus; Fischer, Petra; Tischer, Sandra; Tietböhl, Claudia; Menschikowski, Mario; Gutzeit, Herwig O.; Metz, Peter; Pisabarro, M. Teresa

    2007-08-01

    The human secretory phospholipase A2 group IIA (PLA2-IIA) is a lipolytic enzyme. Its inhibition leads to a decrease in eicosanoids levels and, thereby, to reduced inflammation. Therefore, PLA2-IIA is of high pharmacological interest in treatment of chronic diseases such as asthma and rheumatoid arthritis. Quercetin and naringenin, amongst other flavonoids, are known for their anti-inflammatory activity by modulation of enzymes of the arachidonic acid cascade. However, the mechanism by which flavonoids inhibit Phospholipase A2 (PLA2) remained unclear so far. Flavonoids are widely produced in plant tissues and, thereby, suitable targets for pharmaceutical extractions and chemical syntheses. Our work focuses on understanding the binding modes of flavonoids to PLA2, their inhibition mechanism and the rationale to modify them to obtain potent and specific inhibitors. Our computational and experimental studies focused on a set of 24 compounds including natural flavonoids and naringenin-based derivatives. Experimental results on PLA2-inhibition showed good inhibitory activity for quercetin, kaempferol, and galangin, but relatively poor for naringenin. Several naringenin derivatives were synthesized and tested for affinity and inhibitory activity improvement. 6-(1,1-dimethylallyl)naringenin revealed comparable PLA2 inhibition to quercetin-like compounds. We characterized the binding mode of these compounds and the determinants for their affinity, selectivity, and inhibitory potency. Based on our results, we suggest C(6) as the most promising position of the flavonoid scaffold to introduce chemical modifications to improve affinity, selectivity, and inhibition of PLA2-IIA by flavonoids.

  6. A Mechanism of Unidirectional Transformation, Leading to Antibiotic Resistance, Occurs within Nasopharyngeal Pneumococcal Biofilm Consortia.

    Science.gov (United States)

    Lattar, Santiago M; Wu, Xueqing; Brophy, Jennifer; Sakai, Fuminori; Klugman, Keith P; Vidal, Jorge E

    2018-05-15

    Streptococcus pneumoniae acquires genes for resistance to antibiotics such as streptomycin (Str) or trimethoprim (Tmp) by recombination via transformation of DNA released by other pneumococci and closely related species. Using naturally transformable pneumococci, including strain D39 serotype 2 (S2) and TIGR4 (S4), we studied whether pneumococcal nasopharyngeal transformation was symmetrical, asymmetrical, or unidirectional. Incubation of S2 Tet and S4 Str in a bioreactor simulating the human nasopharynx led to the generation of Spn Tet/Str recombinants. Double-resistant pneumococci emerged soon after 4 h postinoculation at a recombination frequency (rF) of 2.5 × 10 -4 while peaking after 8 h at a rF of 1.1 × 10 -3 Acquisition of antibiotic resistance genes by transformation was confirmed by treatment with DNase I. A high-throughput serotyping method demonstrated that all double-resistant pneumococci belonged to one serotype lineage (S2 Tet/Str ) and therefore that unidirectional transformation had occurred. Neither heterolysis nor availability of DNA for transformation was a factor for unidirectional transformation given that the density of each strain and extracellular DNA (eDNA) released from both strains were similar. Unidirectional transformation occurred regardless of the antibiotic-resistant gene carried by donors or acquired by recipients and regardless of whether competence-stimulating peptide-receptor cross talk was allowed. Moreover, unidirectional transformation occurred when two donor strains (e.g., S4 Str and S19F Tmp ) were incubated together, leading to S19F Str/Tmp but at a rF 3 orders of magnitude lower (4.9 × 10 -6 ). We finally demonstrated that the mechanism leading to unidirectional transformation was due to inhibition of transformation of the donor by the recipient. IMPORTANCE Pneumococcal transformation in the human nasopharynx may lead to the acquisition of antibiotic resistance genes or genes encoding new capsular variants

  7. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.

    1997-01-01

    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  8. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  9. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  10. Mechanisms underlying the antihypertensive properties of Urtica dioica.

    Science.gov (United States)

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar

    2016-09-01

    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  11. Polymer Composite Rebars under Moisture and Mechanical Loading

    Science.gov (United States)

    Adam, Mohamed Ibrahim

    structural GFRP composites will, through their design life, be exposed to a range of hygrothermal and other environmental conditions. This study aims to investigate the durability of glass fiber reinforced vinyl ester rebars exposed to moisture at different temperatures and under mechanical loading. Rebars of 10 mm, 13 mm, and 16 mm diameter were immersed in deionized water until saturation for 220 days at three different temperatures 30°C, 70°C, and 100°C. The rebars were examined as-received and following exposure to moisture by scanning electron microscopy and CT scan for possible microvoids and for modes of failures after being tested in both compression as well as non-tested specimens. Diffusion parameters were calculated and the accelerated hygrothermal effect on the compressive strength, modulus, and porosity was investigated. Significant decrease in compressive modulus and a much less degree of degradation in strength was observed. Three modes of failure were noted: splitting, fiber microbuckling, and fiber kinking. Presence of microvoids on both as-received and exposed to moisture specimens was evident. Despite this degradation due to hygrothermal exposure, GFRP rebars were able to maintain their strength. This can be regarded as an edge in their performance compared to steel. However this advantage may not hold with prolonged exposure. It was also noted that the specimens exposed to moisture and temperature exhibited an increase in microvoids of approximately 33% and new distribution of microvoids sizes was recorded. The degradation of the mechanical properties of the GFRP rebars was attributed to the hygrothermal effect that was facilitated by the presence of microvoids which allow moisture to diffuse. Presence and growth of Microvoids due to exposure to moisture and temperature was deemed the primary reason causing the degradation of GFRP rebars. Presence of microvoids needs to be addressed in order to enhance the durability and performance of GFRP rebar.

  12. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  13. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  14. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  15. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Rogers, J.T.; Richards, J.G.; Wood, C.M.

    2003-01-01

    The mechanism for acute toxicity of lead (Pb) in rainbow trout (Oncorhynchus mykiss) was investigated at Pb concentrations close to the 96 h LC50 of 1.0 mg dissolved Pb l -1 (0.8-1.4, 95% C.I.) determined in dechlorinated Hamilton city tap water (from Lake Ontario, hardness=140 mg l -1 CaCO 3 ). Tissue Pb accumulation associated with death was highest in the gill, followed by kidney and liver. Significant ionoregulatory impacts were observed in adult rainbow trout (200-300 g) fitted with indwelling dorsal aortic catheters and exposed to 1.1±0.04 mg dissolved Pb l -1 . Decreased plasma [Ca 2+ ], [Na + ] and [Cl - ] occurred after 48 h of exposure through to 120 h, with increases in plasma [Mg 2+ ], ammonia, and cortisol. No marked changes in PaO 2 , PaCO 2 , pH, glucose, or hematological parameters were evident. Branchial Na + /K + ATPase activity in juvenile trout exposed to concentrations close to the 96 h LC50 was inhibited by approximately 40% after 48 h of Pb exposure. Calcium ion flux measurements using 45 Ca as a radiotracer showed 65% inhibition of Ca 2+ influx after 0, 12, 24 or 48 h exposure to the 96 h LC50 concentration of Pb. There was also significant inhibition (40-50%) of both Na + and Cl - uptake, measured with 22 Na and 36 Cl simultaneously. We conclude that the mechanism of acute toxicity for Pb in rainbow trout occurs by ionoregulatory disruption rather than respiratory or acid/base distress at Pb concentrations close to the 96 h LC50 in moderately hard water

  16. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.T.; Richards, J.G.; Wood, C.M

    2003-07-16

    The mechanism for acute toxicity of lead (Pb) in rainbow trout (Oncorhynchus mykiss) was investigated at Pb concentrations close to the 96 h LC50 of 1.0 mg dissolved Pb l{sup -1} (0.8-1.4, 95% C.I.) determined in dechlorinated Hamilton city tap water (from Lake Ontario, hardness=140 mg l{sup -1} CaCO{sub 3}). Tissue Pb accumulation associated with death was highest in the gill, followed by kidney and liver. Significant ionoregulatory impacts were observed in adult rainbow trout (200-300 g) fitted with indwelling dorsal aortic catheters and exposed to 1.1{+-}0.04 mg dissolved Pb l{sup -1}. Decreased plasma [Ca{sup 2+}], [Na{sup +}] and [Cl{sup -}] occurred after 48 h of exposure through to 120 h, with increases in plasma [Mg{sup 2+}], ammonia, and cortisol. No marked changes in PaO{sub 2}, PaCO{sub 2}, pH, glucose, or hematological parameters were evident. Branchial Na{sup +}/K{sup +} ATPase activity in juvenile trout exposed to concentrations close to the 96 h LC50 was inhibited by approximately 40% after 48 h of Pb exposure. Calcium ion flux measurements using {sup 45}Ca as a radiotracer showed 65% inhibition of Ca{sup 2+} influx after 0, 12, 24 or 48 h exposure to the 96 h LC50 concentration of Pb. There was also significant inhibition (40-50%) of both Na{sup +} and Cl{sup -} uptake, measured with {sup 22}Na and {sup 36}Cl simultaneously. We conclude that the mechanism of acute toxicity for Pb in rainbow trout occurs by ionoregulatory disruption rather than respiratory or acid/base distress at Pb concentrations close to the 96 h LC50 in moderately hard water.

  17. Molecular and Microbial Mechanisms Increasing Soil C Storage Under Future Rates of Anthropogenic N Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald R. [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-11-17

    A growing body of evidence reveals that anthropogenic N deposition can reduce the microbial decay of plant detritus and increase soil C storage across a wide range of terrestrial ecosystems. This aspect of global change has the potential to constrain the accumulation of anthropogenic CO2 in the Earth’s atmosphere, and hence slow the pace of climate warming. The molecular and microbial mechanisms underlying this biogeochemical response are not understood, and they are not a component of any coupled climate-biogeochemical model estimating ecosystem C storage, and hence, the future climate of an N-enriched Earth. Here, we report the use of genomic-enabled approaches to identify the molecular underpinnings of the microbial mechanisms leading to greater soil C storage in response to anthropogenic N deposition, thereby enabling us to better anticipate changes in soil C storage.

  18. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  19. Study and understanding of the ageing mechanisms in lead-calcium alloys

    International Nuclear Information System (INIS)

    Rossi, F.

    2006-12-01

    The data available in the literature about ageing and over-ageing of lead-calcium alloys are often incomplete and inconsistent. It is undoubtedly due to the experimental difficulties encountered to observe the structure transformations which are numerous. As a result there is a certain confusion among the results of the different authors. Moreover, small variations in the process parameters and chemical composition may have some influence on the alloy behaviour. This work enabled us to obtain a set of TTT diagrams, more realistic and accurate than the ones available in the literature. Experimental techniques developed (particularly the preservation of the cold chain with is essential for the guaranty of the results repeatability), enabled particularly the study of the first transformations and better control the five stages of ageing and over-ageing. Our work have enabled to determine precisely the kinetics and the mechanisms of the transformations. This work constitutes a thorough analysis of the ageing and over-ageing of theses alloys. (author)

  20. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications.

    Science.gov (United States)

    Ifthikar, Jerosha; Wang, Jia; Wang, Qiliang; Wang, Ting; Wang, Huabin; Khan, Aimal; Jawad, Ali; Sun, Tingting; Jiao, Xiang; Chen, Zhuqi

    2017-08-01

    Highly efficient magnetic sewage sludge biochar (MSSBC) discloses feasible fabrication process with lower production cost, superior adsorption capacity, usage of waste sewage sludge as resource, selected by external magnetic field and exceptional regeneration property. 2gL -1 MSSBC exhibited a high adsorption capacity of 249.00mgg -1 in 200ppmPb(II) and the lead-MSSBC equilibrium was achieved within one hour, owing to the existence of the copious active sites. The adsorption kinetics was well described by the pseudo-second-order model while the adsorption isotherm could be fitted by Langmuir model. Mechanism study demonstrated the adsorption involved electrostatic attraction, ion exchange, inner-sphere complexation and formation of co-precipitates at the surface of MSSBC. Additionally, adsorption performance maintained remarkable in a broad pH window. These outcomes demonstrated the promising waste resource utilization by a feasible approach that turns the solid waste of sewage sludge into biochar adsorbent with auspicious applications in elimination of Pb(II) from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    Science.gov (United States)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  2. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  3. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  4. Scale Formation under Blended Phosphate Treatment for a Utility with Lead Pipes

    Data.gov (United States)

    U.S. Environmental Protection Agency — Tap water lead profiles from the Del Toral et al (2013) study, grouped in disturbed and undisturbed Pb service line sites. This dataset is associated with the...

  5. Clarifying beliefs underlying hunter intentions to support a ban on lead shot

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.; Doncarlos, Kathy

    2016-01-01

    Shot from hunting adds toxic lead to environments worldwide. Existing lead shot regulations have been instituted with little understanding of hunter beliefs and attitudes. This study applied the Theory of Reasoned Action, using a multilevel, multivariate approach, to clarify how positive and negative beliefs relate to attitudes about a ban on lead shot. Structure coefficients and commonality analysis were employed to further examine relationships between beliefs and attitudes. Results suggest that while both positive and negative outcomes influence attitudes, positive outcomes were more influential for supporters and negative beliefs for opposers. Management may need to focus on the results from hunters who indicated that they would be unlikely to support a ban, as these hunters include those who may actively oppose additional efforts to regulate lead.

  6. Survival Analysis of Occipital Nerve Stimulator Leads Placed under Fluoroscopic Guidance with and without Ultrasonography.

    Science.gov (United States)

    Jones, James H; Brown, Alison; Moyse, Daniel; Qi, Wenjing; Roy, Lance

    2017-11-01

    Electrical stimulation of the greater occipital nerves is performed to treat pain secondary to chronic daily headaches and occipital neuralgia. The use of fluoroscopy alone to guide the surgical placement of electrodes near the greater occipital nerves disregards the impact of tissue planes on lead stability and stimulation efficacy. We hypothesized that occipital neurostimulator (ONS) leads placed with ultrasonography combined with fluoroscopy would demonstrate increased survival rates and times when compared to ONS leads placed with fluoroscopy alone. A 2-arm retrospective chart review. A single academic medical center. This retrospective chart review analyzed the procedure notes and demographic data of patients who underwent the permanent implant of an ONS lead between July 2012 and August 2015. Patient data included the diagnosis (reason for implant), smoking tobacco use, disability, and age. ONS lead data included the date of permanent implant, the imaging modality used during permanent implant (fluoroscopy with or without ultrasonography), and, if applicable, the date and reason for lead removal. A total of 21 patients (53 leads) were included for the review. Chi-squared tests, Fishers exact tests, 2-sample t-tests, and Wilcoxon rank-sum tests were used to compare fluoroscopy against combined fluoroscopy and ultrasonography as implant methods with respect to patient demographics. These tests were also used to evaluate the primary aim of this study, which was to compare the survival rates and times of ONS leads placed with combined ultrasonography and fluoroscopy versus those placed with fluoroscopy alone. Survival analysis was used to assess the effect of implant method, adjusted for patient demographics (age, smoking tobacco use, and disability), on the risk of lead explant. Data from 21 patients were collected, including a total of 53 ONS leads. There was no statistically significant difference in the lead survival rate or time, disability, or patient age

  7. Numerical Analysis on Failure Modes and Mechanisms of Mine Pillars under Shear Loading

    Directory of Open Access Journals (Sweden)

    Tianhui Ma

    2016-01-01

    Full Text Available Severe damage occurs frequently in mine pillars subjected to shear stresses. The empirical design charts or formulas for mine pillars are not applicable to orebodies under shear. In this paper, the failure process of pillars under shear stresses was investigated by numerical simulations using the rock failure process analysis (RFPA 2D software. The numerical simulation results indicate that the strength of mine pillars and the corresponding failure mode vary with different width-to-height ratios and dip angles. With increasing dip angle, stress concentration first occurs at the intersection between the pillar and the roof, leading to formation of microcracks. Damage gradually develops from the surface to the core of the pillar. The damage process is tracked with acoustic emission monitoring. The study in this paper can provide an effective means for understanding the failure mechanism, planning, and design of mine pillars.

  8. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  9. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  10. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  11. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  12. An Analysis of the Dispute Settlement Mechanism under the

    African Journals Online (AJOL)

    user

    This article examines and evaluates the consumer redress mechanism, .... 23 The behaviour or conduct must be prohibited in terms of the Competition Act ...... appropriate orders and provide "sufficient" remedies to avoid the involvement of the.

  13. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  14. Fracture behavior and deformation mechanisms under fast neutron irradiation

    International Nuclear Information System (INIS)

    Boutard, J.L.; Dupouy, J.M.

    1980-09-01

    We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture

  15. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  16. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies.

    Directory of Open Access Journals (Sweden)

    Benedikt Frieg

    2016-02-01

    Full Text Available Glutamine synthetase (GS catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.

  17. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  18. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  19. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  20. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  1. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.

    Science.gov (United States)

    Khatoon, Amana; Rehman, Shafiq; Hiraga, Susumu; Makino, Takahiro; Komatsu, Setsuko

    2012-10-22

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafsteinsdottir, Erla G., E-mail: erla.hafsteinsdottir@gmail.com [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); White, Duanne A., E-mail: duanne.white@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Gore, Damian B., E-mail: damian.gore@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Stark, Scott C., E-mail: scott.stark@aad.gov.au [Environmental Protection and Change, Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Tasmania 7050 (Australia)

    2011-12-15

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H{sub 2}PO{sub 4}){sub 2}] or sodium phosphate [Na{sub 3}PO{sub 4}]) reacts with lead (PbSO{sub 4} or PbCl{sub 2}) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO{sub 4} and Na{sub 3}PO{sub 4} were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: > Formation of lead phosphate products in cold environments is identified. > Potential change in formation during freeze-thaw cycling is assessed. > Lead phosphate reaction efficiency varies according to phosphate and lead source. > Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  3. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    International Nuclear Information System (INIS)

    Hafsteinsdottir, Erla G.; White, Duanne A.; Gore, Damian B.; Stark, Scott C.

    2011-01-01

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H 2 PO 4 ) 2 ] or sodium phosphate [Na 3 PO 4 ]) reacts with lead (PbSO 4 or PbCl 2 ) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO 4 and Na 3 PO 4 were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: → Formation of lead phosphate products in cold environments is identified. → Potential change in formation during freeze-thaw cycling is assessed. → Lead phosphate reaction efficiency varies according to phosphate and lead source. → Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  4. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    Science.gov (United States)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  5. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Martin Munoz, F.J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-01-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400 deg. C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases

  6. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  7. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    Science.gov (United States)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    Silicon-based ceramics have been proposed as component materials for gas turbine engine hot-sections. When the Navy s Harrier fighter experienced engine (Pegasus F402) failure because of leading-edge durability problems on the second-stage high-pressure turbine vane, the Office of Naval Research came to the NASA Glenn Research Center at Lewis Field for test support in evaluating a concept for eliminating the vane-edge degradation. The High Pressure Burner Rig (HPBR) was selected for testing since it could provide temperature, pressure, velocity, and combustion gas compositions that closely simulate the engine environment. The study focused on equipping the stationary metal airfoil (Pegasus F402) with a ceramic matrix composite (CMC) leading-edge insert and evaluating the feasibility and benefits of such a configuration. The test exposed the component, with and without the CMC insert, to the harsh engine environment in an unloaded condition, with cooling to provide temperature relief to the metal blade underneath. The insert was made using an AlliedSignal Composites, Inc., enhanced HiNicalon (Nippon Carbon Co. LTD., Yokohama, Japan) fiber-reinforced silicon carbide composite (SiC/SiC CMC) material fabricated via chemical vapor infiltration. This insert was 45-mils thick and occupied a recessed area in the leading edge and shroud of the vane. It was designed to be free floating with an end cap design. The HPBR tests provided a comparative evaluation of the temperature response and leading-edge durability and included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were aircooled, uniquely instrumented, and exposed to the exact set of internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). In addition to documenting the temperature response of the metal vane for comparison with the CMC, a demonstration of improved leading-edge durability was a primary goal. First, the

  8. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.

    1976-01-01

    The critical current of a commercial multifilamentary Nb 3 Sn conductor has been measured under the application of uniaxial tension at 4.2 K and following bending at room temperature. Significant reductions in J/subc/ are observed under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  9. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  10. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms.

    Science.gov (United States)

    Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande

    2016-03-15

    Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. © The Author 2016. Published by Oxford University Press.

  11. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while its thermoelectric

  12. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  13. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  14. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the

  15. Wire bond degradation under thermo- and pure mechanical loading

    DEFF Research Database (Denmark)

    Pedersen, Kristian Bonderup; Nielsen, Dennis Achton; Czerny, Bernhard

    2017-01-01

    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate...

  16. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  17. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  18. Optimization and Customer Utilities under Dynamic Lead Time Quotation in an M/M Type Base Stock System

    Directory of Open Access Journals (Sweden)

    Koichi Nakade

    2017-01-01

    Full Text Available In a manufacturing and inventory system, information on production and order lead time helps consumers’ decision whether they receive finished products or not by considering their own impatience on waiting time. In Savaşaneril et al. (2010, the optimal dynamic lead time quotation policy in a one-stage production and inventory system with a base stock policy for maximizing the system’s profit and its properties are discussed. In this system, each arriving customer decides whether he/she enters the system based on the quoted lead time informed by the system. On the other hand, the customer’s utility may be small under the optimal quoted lead time policy because the actual lead time may be longer than the quoted lead time. We use a utility function with respect to benefit of receiving products and waiting time and propose several kinds of heuristic lead time quotation policies. These are compared with optimal policies with respect to both profits and customer’s utilities. Through numerical examples some kinds of heuristic policies have better expected utilities of customers than the optimal quoted lead time policy maximizing system’s profits.

  19. Underlying mechanisms of transient luminous events: a review

    Directory of Open Access Journals (Sweden)

    V. V. Surkov

    2012-08-01

    Full Text Available Transient luminous events (TLEs occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency and ELF (extremely low frequency phenomena associated with sprites.

  20. Mechanical and fatigue properties of martensitic 20X13 and austenitic 12X18H10T at interaction with lead nad lead-bismuth melts

    International Nuclear Information System (INIS)

    Yas'kiv, O.I.; Fedirko, V.M.

    2013-01-01

    The effect of Pb and Pb-Bi melts on mechanical properties and fatigue of Fe-13Cr and Fe-18Cr-10Ni-Ti steels in temperature interval 250...750 deg C has been investigated. It was shown that metal melts lead to increasing of strength of Fe-13Cr steel on 10...20 % as compared with vacuum and this effect increases with temperature rising. Fe-13Cr steel is prone to liquid metal embrittlement in temperature interval 350...450 deg C, particularly in Pb-Bi melt. Mechanical properties of Fe-18Cr-10Ni-Ti are not affected by metal melts. Both Pb and Pb-Bi assist in reducing of fatigue life of steels and this effect is more significant in Pb-Bi

  1. ONE PROBABLE MECHANISM OF THE LEARNING-MEMORY DAMAGE BY LEAD: THE CHANGES OF NOS IN HIPPOCAMPUS

    Institute of Scientific and Technical Information of China (English)

    王静; 赵义; 杨章民; 张进; 李积胜; 司履生; 王一理

    2003-01-01

    Objective To study the effects of lead on the activity and expression of nitric oxide synthase (NOS) and relationship between the effects of lead on learning-memory and changes of NOS in subfields of hippocampus. Methods Y-maze test was used to study the effects of lead on ability of learning-memory; NADPH-d histochemistry and immunohistochemistry methods were used to investigate the changes of NOS in subfields of hippocampus. Results Compared with the control group, the ability of learning- memory in lead-exposed rats was significantly decreased (P<0.05); the number of NOS positive neurons in CA1 region and dentate gyrus of lead-exposed rats was significantly decreased(P<0.05), but no marked changes in CA3 region; the number of nNOS positive neurons in CA1 of lead-exposed rats was also significantly decreased(P<0.05), but no obvious changes in CA3. Conclusion Lead could damage the ability of learning-memory in rats. Lead could decrease the activity and expression of NOS in hippocampus and had different effects on NOS in different subfields of hippocampus. The changes of NOS in hippocampus induced by lead may be the mechanism of the learning-memory damage by lead.

  2. Morphology of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication

    Directory of Open Access Journals (Sweden)

    Harets V.I.

    2016-05-01

    Full Text Available Morphological state of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication was studied. We found that values of the hepatofetal index in the groups Pb+Ag and Pb+Au had significant differences as compared to the group exposed to lead intoxication, but did not differ significantly from the control group and made up 0,086±0,001 and 0,083±0,001, respectively. Value of the relative area of blood vessels in groups Pb+Ag and Pb+Au was 13.08±0.53% and 16.83±0.53%, respectively, which had no significant difference as compared to control group, but differed from the value of lead intoxication group. Under the influence of silver citrate on a background of lead intoxication the relative area of hematopoietic cells was 52,5±0,95%; this indicates to modification action of silver on haematopoiesis. Thus, injection of silver and gold citrates prevents negative effect of lead on morphometric parameters of embryonic liver, relative area of blood vessels and hematopoietic cells. Experiment results showed protective effect of silver and gold citrates on a background of lead intoxication during hepatogenesis.

  3. Mechanisms underlying syntactic comprehension deficits in vascular aphasia: new evidence from self-paced listening.

    Science.gov (United States)

    Caplan, David; Michaud, Jennifer; Hufford, Rebecca

    2015-01-01

    Sixty-one people with aphasia (pwa) and 41 matched controls were tested for the ability to understand sentences that required the ability to process particular syntactic elements and assign particular syntactic structures. Participants paced themselves word-by-word through 20 examples of 11 spoken sentence types and indicated which of two pictures corresponded to the meaning of each sentence. Sentences were developed in pairs such that comprehension of the experimental version of a pair required an aspect of syntactic processing not required in the corresponding baseline sentence. The need for the syntactic operations required only in the experimental version was triggered at a "critical word" in the experimental sentence. Listening times for critical words in experimental sentences were compared to those for corresponding words in the corresponding baseline sentences. The results were consistent with several models of syntactic comprehension deficits in pwa: resource reduction, slowed lexical and/or syntactic processing, abnormal susceptibility to interference from thematic roles generated non-syntactically. They suggest that a previously unidentified disturbance limiting the duration of parsing and interpretation may lead to these deficits, and that this mechanism may lead to structure-specific deficits in pwa. The results thus point to more than one mechanism underlying syntactic comprehension disorders both across and within pwa.

  4. Different mechanisms for lead acetate, aluminum and cadmium sulfate in rat corpus cavernosum

    International Nuclear Information System (INIS)

    Senbel, Amira M.; Saad, Evan I.; Taha, Safaa S.; Mohamed, Hosny F.

    2016-01-01

    Introduction: Some heavy metals show adverse vascular and neurological effects, however, their effect on erection is underestimated. This study aims to investigate the effect of Pb, Cd and Al on erectile function and their potential mechanism of action in rats. Methods: Measurement of intracavernosal pressure/mean arterial pressure (ICP/MAP) changes elicited by electrical stimulation of cavernous nerve in anesthetized rats treated with Pb-acetate, Al-sulfate, or Cd-sulfate acutely, and subacutely for 7 days. Serum creatinine, testosterone, TBARs, GSH levels and metal accumulation in corpus cavernosum were measured. Results: Pb, Al and Cd significantly reduced ICP/MAP in rats after acute (2,10–2,10 and 1,3 mg/kg respectively) and sub-acute (3, 3, and 1 mg/kg/day respectively) treatments. They selectively accumulated in the corpus cavernosum reaching 25.107 ± 2.081 μg/g wet weight for Pb, 1.029 ± 0.193 for Cd, 31.343 ± 1.991 for Al, compared to 7.084 ± 1.517, 0.296 ± 0.067, and 8.86 ± 1.115 as controls respectively. Serum creatinine levels were not altered. Cd and Al significantly reduced testosterone level to 0.483 ± 0.059 and 0.419 ± 0.037 ng/ml respectively compared to 0.927 ± 0.105 ng/ml as control. Aluminum elevated TBARs significantly by 27.843%. The acute anti-erectile action of Pb was blocked by non-selective NOS and GC inhibitors and potassium channel blocker. Lead also masked the potentiatory effect of L-arginine and diazoxide on ICP/MAP. No interaction with muscarinic or nicotinic modulators was observed. Conclusions: Pb, Cd and Al show anti-erectile effect independent on renal injury. They don not modulate cholinergic nor ganglionic transmission in corpus cavernosum. Pb may inhibit NO/cGMP/K + channel pathway. The effect of Cd and Al but not Pb seems to be hormonal dependent.

  5. Urban gardens: lead exposure, recontamination mechanisms, and implications for remediation design.

    Science.gov (United States)

    Clark, Heather F; Hausladen, Debra M; Brabander, Daniel J

    2008-07-01

    Environmental lead contamination is prevalent in urban areas where soil represents a significant sink and pathway of exposure. This study characterizes the speciation of lead that is relevant to local recontamination and to human exposure in the backyard gardens of Roxbury and Dorchester, MA, USA. One hundred forty-one backyard gardens were tested by X-ray fluorescence, and 81% of gardens have lead levels above the US EPA action limit of 400 microg/g. Raised gardening beds are the in situ exposure reduction method used in the communities to promote urban gardening. Raised beds were tested for lead and the results showed that the lead concentration increased from an initial range of 150+/-40 microg/g to an average of 336 microg/g over 4 years. The percent distribution of lead in the fine grain soil (lead, and the trace metal signature of the fine grain soil in both gardens and raised gardening beds is characteristic of lead-based paint. This study demonstrates that raised beds are a limited exposure reduction method and require maintenance to achieve exposure reduction goals. An exposure model was developed based on a suite of parameters that combine relevant values from the literature with site-specific quantification of exposure pathways. This model suggests that consumption of homegrown produce accounts for only 3% of children's daily exposure of lead while ingestion of fine grained soil (lead remediation on a yard-by-yard scale requires constant maintenance and that remediation may need to occur on a neighborhood-wide scale.

  6. Song Leading Effectiveness of Undergraduate Education Majors: A Comparison of Student Self Ratings and Expert Ratings under Three Conditions.

    Science.gov (United States)

    Barry, Nancy H.; Orlofsky, Diane DeNicola

    1997-01-01

    Examines the song leading effectiveness of undergraduate education majors under three conditions: unaccompanied, accompanied with autoharp, and accompanied by recording. Finds that students rate themselves higher than experts do; there is greater eye contact using rote or recording; and there is greater tempo accuracy using rote and autoharp. (DSK)

  7. 16 CFR 1500.91 - Determinations regarding lead content for certain materials or products under section 101 of the...

    Science.gov (United States)

    2010-01-01

    ... certain materials or products under section 101 of the Consumer Product Safety Improvement Act. 1500.91... Safety Improvement Act. (a) The Consumer Product Safety Improvement Act provides for specific lead limits..., flowers, bone, sea shell, coral, amber, feathers, fur, leather. (e) The following metals and alloys do not...

  8. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  10. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  11. Pore closure in zeolitic imidazolate frameworks under mechanical pressure.

    Science.gov (United States)

    Henke, Sebastian; Wharmby, Michael T; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K

    2018-02-14

    We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im) 2 ; M 2+ = Co 2+ or Zn 2+ , im - = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore ( op ) phase with continuous porosity (space group Pbca , bulk modulus ∼1.4 GPa) to a closed pore ( cp ) phase with inaccessible porosity (space group P 2 1 / c , bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M 2+ ions (3d 10 for Zn 2+ and 3d 7 for Co 2+ ). Our results present the first examples of op-cp phase transitions ( i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.

  12. Underlying mechanisms of transient luminous events: a review

    OpenAIRE

    V. V. Surkov; M. Hayakawa

    2012-01-01

    Transient luminous events (TLEs) occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric...

  13. Mechanical Characterization of Femoral Cartilage Under Unicompartimental Osteoarthritis

    OpenAIRE

    Vidal-Lesso, A.; Ledesma-Orozco, E.; Daza-Benítez, L.; Lesso-Arroyo, R.

    2014-01-01

    The aim of this study was to determine the mechanical properties and thickness of articular cartilage in the unaffected femoral regions in cases of unicompartimental osteoarthritis on the knees. The specimens were tested using a 3mm plane-ended cylindrical indenter and a displacement of 0.5mm was applied at specific points in seven femoral knee cartilages with unicompartimental osteoarthritis. The thickness, stiffness, elastic modulus, shear modulus and bulk modulus were obtained. These prope...

  14. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  15. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    In this project we have sought to explain the co-existence of gas and hydrate phases in sediments within the gas hydrate stability zone. We have focused on the gas/brine interface at the scale of individual grains in the sediment. The capillary forces associated with a gas/brine interface play a dominant role in many processes that occur in the pores of sediments and sedimentary rocks. The mechanical forces associated with the same interface can lead to fracture initiation and propagation in hydrate-bearing sediments. Thus the unifying theme of the research reported here is that pore scale phenomena are key to understanding large scale phenomena in hydrate-bearing sediments whenever a free gas phase is present. Our analysis of pore-scale phenomena in this project has delineated three regimes that govern processes in which the gas phase pressure is increasing: fracturing, capillary fingering and viscous fingering. These regimes are characterized by different morphology of the region invaded by the gas. On the other hand when the gas phase pressure is decreasing, the corresponding regimes are capillary fingering and compaction. In this project, we studied all these regimes except compaction. Many processes of interest in hydrate-bearing sediments can be better understood when placed in the context of the appropriate regime. For example, hydrate formation in sub-permafrost sediments falls in the capillary fingering regime, whereas gas invasion into ocean sediments is likely to fall into the fracturing regime. Our research provides insight into the mechanisms by which gas reservoirs are converted to hydrate as the base of the gas hydrate stability zone descends through the reservoir. If the reservoir was no longer being charged, then variation in grain size distribution within the reservoir explain hydrate saturation profiles such as that at Mt. Elbert, where sand-rich intervals containing little hydrate are interspersed between intervals containing large hydrate

  16. Passive and active response of bacteria under mechanical compression

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  17. The Survival Advantage: Underlying Mechanisms and Extant Limitations

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas

    2015-04-01

    Full Text Available Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007, the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.. However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007 original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving.

  18. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore

    Directory of Open Access Journals (Sweden)

    Ádám Golcs

    2018-05-01

    Full Text Available Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II ions using a polyvinyl chloride (PVC-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II ions between the concentration range of 10−4 to 10−2 M, and can be used in the pH range of 4–7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II ions in the presence of many additional metal ions.

  19. Modeling and analysis for determining optimal suppliers under stochastic lead times

    DEFF Research Database (Denmark)

    Abginehchi, Soheil; Farahani, Reza Zanjirani

    2010-01-01

    systems. The item acquisition lead times of suppliers are random variables. Backorder is allowed and shortage cost is charged based on not only per unit in shortage but also per time unit. Continuous review (s,Q) policy has been assumed. When the inventory level depletes to a reorder level, the total...... order is split among n suppliers. Since the suppliers have different characteristics, the quantity ordered to different suppliers may be different. The problem is to determine the reorder level and quantity ordered to each supplier so that the expected total cost per time unit, including ordering cost...

  20. Mobilization of arsenic, lead, and mercury under conditions of sea water intrusion and road deicing salt application

    Science.gov (United States)

    Sun, Hongbing; Alexander, John; Gove, Brita; Koch, Manfred

    2015-09-01

    Water geochemistry data from complexly designed salt-solution injection experiments in the laboratory, coastal aquifers of Bangladesh and Italy, taken from the literature, and two salted watersheds of New Jersey, US were collected and analyzed to study the geochemical mechanisms that mobilize As, Pb, and Hg under varied salting conditions. Overall, increased NaCl-concentrations in aquifers and soil are found to increase the release of Pb and Hg into the water. Reducing environments and possible soil dispersion by hydrated Na+ are found to lead to an increase of As-concentration in water. However, the application of a pure NaCl salt solution in the column injection experiment was found to release less As, Pb, and Hg initially from the soil and delay their concentration increase, when compared to the application of CaCl2 and NaCl mixed salts (at 6:4 weight ratio). The concentration correlation dendrogram statistical analyses of the experimental and field data suggest that the release of As, Hg, and Pb into groundwater and the soil solution depends not only on the salt level and content, but also on the redox condition, dissolved organic matter contents, competitiveness of other ions for exchange sites, and source minerals. With the ongoing over-exploration of coastal aquifers from increased pumping, continued sea-level rise, and increased winter deicing salt applications in salted watersheds of many inland regions, the results of this study will help understand the complex relation between the concentrations of As, Pb, and Hg and increased salt level in a coastal aquifer and in soils of a salted watershed.

  1. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  2. Interconnection of thermal parameters, microstructure and mechanical properties in directionally solidified Sn–Sb lead-free solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Marcelino; Costa, Thiago [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Rocha, Otávio [Federal Institute of Education, Science and Technology of Pará — IFPA, 66093-020 Belém, PA (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos — UFSCar, 13565-905 São Carlos, SP (Brazil); Cheung, Noé, E-mail: cheung@fem.unicamp.br [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas — UNICAMP, 13083-860 Campinas, SP (Brazil)

    2015-08-15

    Considerable effort is being made to develop lead-free solders for assembling in environmental-conscious electronics, due to the inherent toxicity of Pb. The search for substitute alloys of Pb–Sn solders has increased in order to comply with different soldering purposes. The solder must not only meet the expected levels of electrical performance but may also have appropriate mechanical strength, with the absence of cracks in the solder joints. The Sn–Sb alloy system has a range of compositions that can be potentially included in the class of high temperature solders. This study aims to establish interrelations of solidification thermal parameters, microstructure and mechanical properties of Sn–Sb alloys (2 wt.%Sb and 5.5 wt.%Sb) samples, which were directionally solidified under cooling rates similar to those of reflow procedures in industrial practice. A complete high-cooling rate cellular growth is shown to be associated with the Sn–2.0 wt.%Sb alloy and a reverse dendrite-to-cell transition is observed for the Sn–5.5 wt.%Sb alloy. Strength and ductility of the Sn–2.0 wt.%Sb alloy are shown not to be affected by the cellular spacing. On the other hand, a considerable variation in these properties is associated with the cellular region of the Sn–5.5 wt.%Sb alloy casting. - Graphical abstract: Display Omitted - Highlights: • The microstructure of the Sn–2 wt.%Sb alloy is characterized by high-cooling rates cells. • Reverse dendrite > cell transition occurs for Sn–5.5 wt.%Sb alloy: cells prevail for cooling rates > 1.2 K/s. • Sn–5.5 wt.%Sb alloy: the dendritic region occurs for cooling rates < 0.9 K/s. • Sn–5.5 wt.%Sb alloy: tensile properties are improved with decreasing cellular spacing.

  3. Pontomedullary lacerations and concomitant head and neck injuries: their underlying mechanism. A prospective autopsy study.

    Science.gov (United States)

    Živković, Vladimir; Nikolić, Slobodan; Strajina, Veljko; Babić, Dragan; Djonić, Danijela; Djurić, Marija

    2012-09-01

    It is a well-documented fact that pontomedullary lacerations (PML) occur as a result of severe craniocervical injury, but their underlying mechanism has yet to be fully clarified. The aim of this prospective study has been to give greater insight into the underlying mechanism of PML through determining the site of blunt head-impact, as well as the presence of concomitant head and neck injuries in cases of brainstem PML. A total of 56 cases with partial PML have been analysed for this study. The case group was composed of 40 men and 16 women, averaging in age 44.2 ± 19.2 years and consisting of 7 motorcyclists, 4 bicyclists, 18 car occupants, 16 pedestrians, and 10 victims of falls from a height, as well as 1 victim of a fall from standing height. The presented study has shown that there are several possible mechanisms of PML. Impact to the chin, with or without a skull base fracture, most often leads to this fatal injury, due to the impact force transmission either through the jawbone or vertebral column; most likely in combination with a fronto-posterior hyperextension of the head. Additionally, lateral head-impacts with subsequent hinge fractures and PML may also be a possible mechanism. The jawbone and other facial bones are able to act as shock absorbers, and their fracture may diminish the energy transfer towards the skull and protect the brain and brainstem from injury. The upper cervical spine can act as damper and energy absorber as well, and may prevent any occurrence of fracture to the base of the skull.

  4. Expected utility violations evolve under status-based selection mechanisms.

    Science.gov (United States)

    Dickson, Eric S

    2008-10-07

    The expected utility theory of decision making under uncertainty, a cornerstone of modern economics, assumes that humans linearly weight "utilities" for different possible outcomes by the probabilities with which these outcomes occur. Despite the theory's intuitive appeal, both from normative and from evolutionary perspectives, many experiments demonstrate systematic, though poorly understood, patterns of deviation from EU predictions. This paper offers a novel theoretical account of such patterns of deviation by demonstrating that EU violations can emerge from evolutionary selection when individual "status" affects inclusive fitness. In humans, battles for resources and social standing involve high-stakes decision making, and assortative mating ensures that status matters for fitness outcomes. The paper therefore proposes grounding the study of decision making under uncertainty in an evolutionary game-theoretic framework.

  5. Phosphorene under strain:electronic, mechanical and piezoelectric responses

    Science.gov (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.

    2018-01-01

    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  6. Corrosion mechanisms of spent fuel under oxidizing conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Finch, R.; Buck, E.; Bates, J.

    1997-01-01

    The release of 99 Tc can be used as a reliable marker for the extent of spent oxide fuel reaction under unsaturated high-drip-rate conditions at 90 degrees C. Evidence from leachate data and from scanning and transmission electron microscopy (SEM and TEM) examination of reacted fuel samples is presented for radionuclide release, potential reaction pathways, and the formation of alteration products. In the ATM-103 fuel, 0.03 of the total inventory of 99 Tc is released in 3.7 years under unsaturated and oxidizing conditions. Two reaction pathways that have been identified from SEM are (1) through-grain dissolution with subsequent formation of uranyl alteration products, and (2) grain-boundary dissolution. The major alteration product identified by x-ray diffraction (XRD) and SEM, is Na-boltwoodite, Na[(UO 2 )(SiO 3 OH)]lg-bullet H 2 O, which is formed from sodium and silicon in the water leachant

  7. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.

    1976-11-01

    The critical current density of commercial multifilamentary Nb 3 Sn conductor has been measured during the application of uniaxial tension at 4.2 0 K and after bending at room temperature. Significant reductions in the critical current density J/sub c/ occurred under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  8. Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.

    Science.gov (United States)

    Cinelli, I; Destrade, M; Duffy, M; McHugh, P

    2018-03-01

    Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications.

    Science.gov (United States)

    Cartenì, Fabrizio; Bonanomi, Giuliano; Giannino, Francesco; Incerti, Guido; Vincenot, Christian Ernest; Chiusano, Maria Luisa; Mazzoleni, Stefano

    2016-01-01

    DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence.

  10. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster.

    Science.gov (United States)

    Ryvkin, Julia; Bentzur, Assa; Zer-Krispil, Shir; Shohat-Ophir, Galit

    2018-01-01

    The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.

  11. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Julia Ryvkin

    2018-04-01

    Full Text Available The ability to adapt to environmental changes is an essential feature of biological systems, achieved in animals by a coordinated crosstalk between neuronal and hormonal programs that allow rapid and integrated organismal responses. Reward systems play a key role in mediating this adaptation by reinforcing behaviors that enhance immediate survival, such as eating or drinking, or those that ensure long-term survival, such as sexual behavior or caring for offspring. Drugs of abuse co-opt neuronal and molecular pathways that mediate natural rewards, which under certain circumstances can lead to addiction. Many factors can contribute to the transition from drug use to drug addiction, highlighting the need to discover mechanisms underlying the progression from initial drug use to drug addiction. Since similar responses to natural and drug rewards are present in very different animals, it is likely that the central systems that process reward stimuli originated early in evolution, and that common ancient biological principles and genes are involved in these processes. Thus, the neurobiology of natural and drug rewards can be studied using simpler model organisms that have their systems stripped of some of the immense complexity that exists in mammalian brains. In this paper we review studies in Drosophila melanogaster that model different aspects of natural and drug rewards, with an emphasis on how motivational states shape the value of the rewarding experience, as an entry point to understanding the mechanisms that contribute to the vulnerability of drug addiction.

  12. Lead generation strategy as a multichannel mechanism of growth of a modern enterprise

    Directory of Open Access Journals (Sweden)

    Łukowski Wojciech

    2016-09-01

    Full Text Available Lead generation strategy describes the marketing process of involvement and capture of interest in a product or service which is aimed at developing sales plans and, as a consequence, soliciting new clients. Lead generation is becoming an increasingly popular demand-generating strategy, which – through its multichannelled dissemination of the generated message – gives it a much greater reach. Lead generation assists organisations in achieving a greater brand awareness, building relationships and attracting more potential clients to fill their sales pipeline. The primary purpose of this publication is identifying the possibilities that the implementation of lead generation strategies provides to modern enterprises. It discusses the key aspects of this issue, demonstrating how the significance of organisations change, how their value effectively increases as a result of the implementation of tools furnished by processes that form an integral part of lead generation. The article defines the factors and processes that affect the effective course of actions undertaken within lead generation campaigns.

  13. Automated microdialysis-based system for in situ microsampling and investigation of lead bioavailability in terrestrial environments under physiologically based extraction conditions.

    Science.gov (United States)

    Rosende, María; Magalhães, Luis M; Segundo, Marcela A; Miró, Manuel

    2013-10-15

    In situ automatic microdialysis sampling under batch-flow conditions is herein proposed for the first time for expedient assessment of the kinetics of lead bioaccessibility/bioavailability in contaminated and agricultural soils exploiting the harmonized physiologically based extraction test (UBM). Capitalized upon a concentric microdialysis probe immersed in synthetic gut fluids, the miniaturized flow system is harnessed for continuous monitoring of lead transfer across the permselective microdialysis membrane to mimic the diffusive transport of metal species through the epithelium of the stomach and of the small intestine. Besides, the addition of the UBM gastrointestinal fluid surrogates at a specified time frame is fully mechanized. Distinct microdialysis probe configurations and membranes types were investigated in detail to ensure passive sampling under steady-state dialytic conditions for lead. Using a 3-cm-long polysulfone membrane with averaged molecular weight cutoff of 30 kDa in a concentric probe and a perfusate flow rate of 2.0 μL min(-1), microdialysis relative recoveries in the gastric phase were close to 100%, thereby omitting the need for probe calibration. The automatic leaching method was validated in terms of bias in the analysis of four soils with different physicochemical properties and containing a wide range of lead content (16 ± 3 to 1216 ± 42 mg kg(-1)) using mass balance assessment as a quality control tool. No significant differences between the mass balance and the total lead concentration in the suite of analyzed soils were encountered (α = 0.05). Our finding that the extraction of soil-borne lead for merely one hour in the GI phase suffices for assessment of the bioavailable fraction as a result of the fast immobilization of lead species at near-neutral conditions would assist in providing risk assessment data from the UBM test on a short notice.

  14. Studies of the underlying mechanisms for optical nonlinearities of blue phase liquid crystals (Presentation Recording)

    Science.gov (United States)

    Chen, Chun-Wei; Khoo, Iam Choon; Zhao, Shuo; Lin, Tsung-Hsien; Ho, Tsung-Jui

    2015-10-01

    We have investigated the mechanisms responsible for nonlinear optical processes occurring in azobenzene-doped blue phase liquid crystals (BPLC), which exhibit two thermodynamically stable BPs: BPI and BPII. In coherent two wave-mixing experiments, a slow (minutes) and a fast (few milliseconds) side diffractions are observed. The underlying mechanisms were disclosed by monitoring the dynamics of grating formation and relaxation as well as by some supplementary experiments. We found the photothermal indexing and dye/LC intermolecular torque leading to lattice distortion to be the dominant mechanisms for the observed nonlinear response in BPLC. Moreover, the response time of the nonlinear optical process varied with operating phase. The rise time of the thermal indexing process was in good agreement with our findings on the temperature dependence of BP refractive index: τ(ISO) > τ(BPI) > τ(BPII). The relaxation time of the torque-induced lattice distortion was analogue to its electrostriction counterpart: τ'(BPI) > τ'(BPII). In a separate experiment, lattice swelling with selective reflection of direction changed from green to red was also observed. This was attributable to the isomerization-induced change in cholesteric pitch, which directly affects the lattice spacing. The phenomenon was confirmed by measuring the optical rotatory power of the BPLC.

  15. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C and CON (25°C conditions.Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting.Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001 and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05 temperatures, together with thermal comfort (P<0.001 were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001 and contact time (+3.2±2.4%; P<0.01 higher in HOT for the mean of sets 1-3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001, with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06. Mean vertical (-2.6±5.5%; P<0.01, horizontal (-9.1±4.4%; P<0.001 and resultant ground reaction forces (-3.0±2.8%; P<0.01 along with vertical stiffness (-12.9±2.3%; P<0.001 and leg stiffness (-8.4±2.7%; P<0.01 decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001, with lower propulsive power values in set 2 (-6.6%; P<0.05 in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise.Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations.

  16. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  17. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  18. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2012-02-01

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  19. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-03-17

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  20. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  1. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  2. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  3. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  4. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Morphology of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication

    OpenAIRE

    Harets V.I.; Shatorna V.F.; Belska Iu.O.

    2016-01-01

    Morphological state of embryonic liver under the influence of silver and gold citrates on a background of lead intoxication was studied. We found that  values of the hepatofetal index in the groups Pb+Ag and Pb+Au had significant differences as compared to the group exposed to lead intoxication, but did not differ significantly from the control group and made up 0,086±0,001 and 0,083±0,001, respectively. Value of the relative area of blood vessels in groups Pb+Ag and Pb+Au was 13.08±0.53% and...

  6. Overweight and obesity may lead to under-diagnosis of airflow limitation

    DEFF Research Database (Denmark)

    Çolak, Yunus; Marott, Jacob Louis; Vestbo, Jørgen

    2015-01-01

    BACKGROUND: The prevalence of obesity has increased during the last decades and varies from 10-20% in most European countries to approximately 32% in the United States. However, data on how obesity affects the presence of airflow limitation (AFL) defined as a reduced ratio between forced expiratory...... volume in 1 second (FEV1) and forced vital capacity (FVC) are scarce. METHODS: Data was derived from the third examination of the Copenhagen City Heart Study from 1991 until 1994 (n = 10,135). We examine the impact of different adiposity markers (weight, body mass index (BMI), waist circumference, waist......-diagnosis and under-treatment of COPD among individuals with overweight and obesity....

  7. Protein metabolism in marine animals: the underlying mechanism of growth.

    Science.gov (United States)

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  8. Research and development regarding the retaining mechanism of lead ions in industrial wastewaters using natural matter with remarkable properties

    Science.gov (United States)

    Pop, A.; Iepure, G.

    2017-05-01

    The paper shows the studying of the retaining mechanism of lead ions in industrial wastewaters through static and dynamic ion exchange mechanisms. In the experimental determinations of the lead metallic ion retention, metallurgical industry wastewaters have been used on samples of volcanic zeolite tuff (from Barsana, Maramures), samples that show a high concentration of lead ions and an acidic pH. The results showed that both the static and the dynamic ion exchanges ended with good results and they were consistent with other studies conducted on clinoptilolite zeolite tuff. Knowing that the industrial sector is an important source of environment pollution and degradation and being aware of what a serious threat the heavy metal pollution is, due to their high toxicity and stability, the experiment may find applicability in different aspects, both in the Maramures mining basing as well as in the worldwide controlling and directing of the polluting processes.

  9. Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

    Science.gov (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel

    2015-01-01

    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  10. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.

    2015-01-01

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  11. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  12. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.

    Science.gov (United States)

    Kobayashi, Kenji; Hsu, Ming

    2017-07-19

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.

  13. Does the Fit Between Competitive Strategy and Administrative Mechanisms Lead to Superior Performance?

    OpenAIRE

    Barth, Henrik

    2000-01-01

    At least two different administrative mechanisms are available for the small business manager to develop and pursue a competitive strategy. One refers to managerial skills needed to implement and follow the competitive strategy chosen by the firm. The other refers to the design of organisation structure i.e. how job tasks are divided, grouped and coordinated. This paper argues that the fit between the competitive strategy followed by a firm and the utilisation of the administrative mechanisms...

  14. Release of lead from crystal decanters under conditions of normal use.

    Science.gov (United States)

    Barbee, S J; Constantine, L A

    1994-03-01

    The pattern of release of lead (Pb) from crystal was investigated using new and used decanters. Two decanters in use prior to this study yielded significantly less Pb into sherry than did a decanter during its initial use. Pb concentrations in sherry after storage for 2 months reached 50, 163 or 1410 micrograms/litre in decanters previously used for 20, or for 10 yr, or a new decanter, respectively. The new decanter imparted progressively less Pb through normal use. Pb concentration was assayed in sherry during a series of three separate sampling periods, each 2 months in duration. The Pb concentration at the end of each period was 1410, 330 or 150 micrograms/litre respectively. These data are consistent with ceramic chemistry theory, which predicts that leaching of Pb from crystal is self-limiting exponentially as a function of increasing distance from the crystal-liquid interface. The results of this investigation support the concept that sufficient ageing of Pb crystal prior to use reduces, to acceptable levels, the human health risk to adults associated with consumption of beverages stored in Pb crystal decanters.

  15. Corrosion behavior of steels in flowing lead-bismuth under abnormal conditions

    International Nuclear Information System (INIS)

    Doubkova, A.; Di Gabriele, F.; Brabec, P.; Keilova, E.

    2008-01-01

    The project IP EUROTRANS, domain DEMETRA, is primary focused on the study of the technology of the interaction between steels and heavy liquid metals. The characterization of the metal response to sudden changes, simulating accidental conditions in liquid lead-bismuth eutectic was carried out. This paper reports the results of two hot-spot simulations with two different oxygen concentrations (10 -8 wt%, 10 -6 wt%). Each experiment was divided in two main periods: the initial, long period at the standard operating temperature 550 deg. C; the second, short period, at higher temperature, 650 deg. C. The damage that occurs on the austenitic steel AISI 316L and the ferritic-martensitic steel T91 was investigated. The amount of damage for both steels was higher at lower oxygen contents and the short, hot spot simulation, markedly affected the T91. At higher oxygen content the amount of damage decreased. A few, localized pits, were observed; however, there was no visible increment in the amount of damage after the hot spot simulation

  16. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram. To investigate the effect of material hardening the authors verify Halphen's Theorem which states that a structure made of material with kinematic hardening behavior and constant properties with temperature will always shake down to a periodic behavior. (Auth.)

  17. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  18. Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Manal Fardoun

    2016-11-01

    Full Text Available Raynaud's phenomenon (RP is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR. In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  19. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    Science.gov (United States)

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  20. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  1. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  3. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav

    2017-01-01

    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  4. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  5. Evaluation of Foliar Spraying of Zinc and Calcium Fertilizers on Yield and Physiological Traits of Safflower under Lead Stress

    Directory of Open Access Journals (Sweden)

    P Jamshidi

    2017-10-01

    Full Text Available Introduction In order to evaluate the effect of foliar spraying of zinc and calcium on yield and physiological traits of safflower under lead stress, a factorial experiment based on randomized complete block design was performed in Kerman agricultural and natural resource research and education center in 2014-2015 with three replications. The first factorial included three levels (control, and 0.5 and 1 μM lead spraying, whereas the second and third factorials were spraying zinc sulfate at three concentrations (zero, and 10 and 20 μM and spraying calcium chloride at two levels (zero and 20 μM, respectively. According to the results, grain yield, the 1000-grain weight, leaf dry weight, number of seeds per head, head weight and chlorophyll content decreased. On the other hand, a significant increase was observed in the activities of catalase and ascorbate peroxidase enzymes and amount of malondialdehyde in plants. Moreover, spraying zinc fertilizer in lead treatment resulted in a significant increase in activity of catalase enzyme, reduction of membrane lipid peroxidation, prevention of chlorophyll destruction and maintenance of grain yield. However, the effect of spraying calcium fertilize in lead treatment was only significant on chlorophyll content. According to the results of the research, it seems that spraying zinc fertilizer had more effects on improved growth of safflower under lead stress, compared to spraying calcium fertilizer. Therefore, in air pollution with heavy metals (lead, application of zinc sulfate fertilizer can be an effective approach to maintain the growth and production of plants. Among the various heavy metals, lead (Pb is a major anthropogenic pollutant that has been released to the environment since the industrial revolution and accumulated in different terrestrial and aquatic ecosystems These elements will transfer to leaves in polluted areas and will rapidly uptake and cause irreparable damages to the most

  6. Microscopic degradation mechanism of polyimide film caused by surface discharge under bipolar continuous square impulse voltage

    International Nuclear Information System (INIS)

    Luo Yang; Wu Guang-Ning; Liu Ji-Wu; Peng Jia; Gao Guo-Qiang; Zhu Guang-Ya; Wang Peng; Cao Kai-Jiang

    2014-01-01

    Polyimide (PI) film is an important type of insulating material used in inverter-fed motors. Partial discharge (PD) under a sequence of high-frequency square impulses is one of the key factors that lead to premature failures in insulation systems of inverter-fed motors. In order to explore the damage mechanism of PI film caused by discharge, an aging system of surface discharge under bipolar continuous square impulse voltage (BCSIV) is designed based on the ASTM 2275 01 standard and the electrical aging tests of PI film samples are performed above the partial discharge inception voltage (PDIV). The chemical bonds of PI polymer chains are analyzed through Fourier transform infrared spectroscopy (FTIR) and the dielectric properties of unaged and aged PI samples are investigated by LCR testers HIOKI 3532-50. Finally, the micro-morphology and micro-structure changes of PI film samples are observed through scanning electron microscopy (SEM). The results show that the physical and chemical effects of discharge cut off the chemical bonds of PI polymer chains. The fractures of ether bond (C—O—C) and imide ring (C—N—C) on the backbone of a PI polymer chain leads to the decrease of molecular weight, which results in the degradation of PI polymers and the generation of new chemical groups and materials, like carboxylic acid, ketone, aldehydes, etc. The variation of microscopic structure of PI polymers can change the orientation ability of polarizable units when the samples are under an AC electric field, which would cause the dielectric constant ε to increase and dielectric loss tan δ to decrease. The SEM images show that the degradation path of PI film is initiated from the surface and then gradually extends to the interior with continuous aging. The injection charge could result in the PI macromolecular chain degradation and increase the trap density in the PI polymer bulk. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].

    Science.gov (United States)

    Deng, Hong-xia; Yang, Ya-li; Li, Zhen; Xu, Yan; Li, Rong-hua; Meng, Zhao-fu; Yang, Ya-ti

    2015-04-01

    In order to investigate the leaching remediation effect of the eco-friendly biosurfactant saponin for Cu and Pb in contaminated Lou soil, batch tests method was used to study the leaching effect of saponin solution on single Cu, Pb contaminated Lou soil and mixed Cu and Pb contaminated Lou soil under different conditions such as reaction time, mass concentration of saponin, pH, concentration of background electrolyte and leaching times. The results showed that the maximum leaching removal effect of Cu and Pb in contaminated Lou soil was achieved by complexation of the heavy metals with saponin micelle, when the mass concentration of saponin solution was 50 g x L(-1), pH was 5.0, the reaction time was 240 min, and there was no background electrolyte. In single and mixed contaminated Lou soil, the leaching percentages of Cu were 29.02% and 25.09% after a single leaching with 50 g x L(-1) saponin under optimal condition, while the single leaching percentages of Pb were 31.56% and 28.03%, respectively. The result indicated the removal efficiency of Pb was more significant than that of Cu. After 4 times of leaching, the cumulative leaching percentages of Cu reached 58.92% and 53.11%, while the cumulative leaching percentages of Pb reached 77.69% and 65.32% for single and mixed contaminated Lou soil, respectively. The fractionation results of heavy metals in soil before and after a single leaching showed that the contents of adsorbed and exchangeable Cu and Pb increased in the contaminated soil, while the carbonate-bound, organic bound and sulfide residual Cu and Pb in the contaminated Lou soil could be effectively removed by saponin.

  8. Critical deflagration waves leading to detonation onset under different boundary conditions

    International Nuclear Information System (INIS)

    Lin Wei; Zhou Jin; Lin Zhi-Yong; Fan Xiao-Hua

    2015-01-01

    High-speed turbulent critical deflagration waves before detonation onset in H 2 –air mixture propagated into a square cross section channel, which was assembled of optional rigid rough, rigid smooth, or flexible walls. The corresponding propagation characteristic and the influence of the wall boundaries on the propagation were investigated via high-speed shadowgraph and a high-frequency pressure sampling system. As a comprehensive supplement to the different walls effect investigation, the effect of porous absorbing walls on the detonation propagation was also investigated via smoke foils and the high-frequency pressure sampling system. Results are as follows. In the critical deflagration stage, the leading shock and the closely following turbulent flame front travel at a speed of nearly half the CJ detonation velocity. In the preheated zone, a zonary flame arises from the overlapping part of the boundary layer and the pressure waves, and then merges into the mainstream flame. Among these wall boundary conditions, the rigid rough wall plays a most positive role in the formation of the zonary flame and thus accelerates the transition of the deflagration to detonation (DDT), which is due to the boost of the boundary layer growth and the pressure wave reflection. Even though the flexible wall is not conducive to the pressure wave reflection, it brings out a faster boundary layer growth, which plays a more significant role in the zonary flame formation. Additionally, the porous absorbing wall absorbs the transverse wave and yields detonation decay and velocity deficit. After the absorbing wall, below some low initial pressure conditions, no re-initiation occurs and the deflagration propagates in critical deflagration for a relatively long distance. (paper)

  9. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  10. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  11. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  12. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  13. The effects of divided attention on encoding processes under incidental and intentional learning instructions: underlying mechanisms?

    Science.gov (United States)

    Naveh-Benjamin, Moshe; Guez, Jonathan; Hara, Yoko; Brubaker, Matthew S; Lowenschuss-Erlich, Iris

    2014-01-01

    Divided attention (DA) at encoding has been shown to significantly disrupt later memory for the studied information. However, what type of processing gets disrupted during DA remains unresolved. In this study, we assessed the degree to which strategic effortful processes are affected under DA by comparing the effects of DA at encoding under intentional and pure incidental learning instructions. In three experiments, participants studied list of words or word pairs under either full or divided attention. Results of three experiments, which used different methodologies, converged to show that the effects of DA at encoding reduce memory performance to the same degree under incidental and intentional learning. Secondary task performance indicated that encoding under intentional learning instructions was more effortful than under incidental learning instructions. In addition, the results indicated enhanced attention to the initial appearance of the words under both types of learning instructions. Results are interpreted to imply that other processes, rather than only strategic effortful ones, might be affected by DA at encoding.

  14. Behaviour of the steel T91 under uniaxial and multiaxial slow loading in contact with liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Hojná, Anna, E-mail: anna.hojna@cvrez.cz [Centrum vyzkumu Rez – CVR, Hlavni 130, 250 68, Husinec, Rez (Czech Republic); Di Gabriele, Fosca; Klecka, Jakub [Centrum vyzkumu Rez – CVR, Hlavni 130, 250 68, Husinec, Rez (Czech Republic); Burda, Jaroslav [UJV Rez, a. s., Hlavni 130, 250 68, Husinec, Rez (Czech Republic)

    2015-11-15

    This work deals with the interaction between liquid lead and the ferritic-martensitic steel, T91. Mechanical properties of specimens loaded in contact with liquid lead were tested in laboratory and boundary conditions necessary to ascertain the sensitivity to Liquid Metal Embrittlement (LME) were studied. Three effects, temperature, deformation rate and surface treatment were selected to stimulate the LME initiation on smooth tensile specimens, then the notch effect was selected as an additional factor. Some specimens were pre-treated by application of a flux followed by dipping into liquid lead to simulate wetting. Slow strain rate tests (SSRT) of specimens immersed in liquid lead were performed applying strain rates from 10{sup −2} to 10{sup −8} 1/s from 350° to 450 °C in test cell CALLISTO. Two types of tensile specimens were tested, smooth and notched. After tests, the fracture mode and the status of specimen surface was examined. Results of the specimens immersed in lead were compared with the results obtained in air. The most significant was the strain rate effect on the stress-strain curves of smooth specimens. Moreover, while no LME was observed for the smooth specimens, clear evidence of LME was observed for the notched specimens.

  15. Optimal Ordering Policy and Coordination Mechanism of a Supply Chain with Controllable Lead-Time-Dependent Demand Forecast

    Directory of Open Access Journals (Sweden)

    Hua-Ming Song

    2011-01-01

    Full Text Available This paper investigates the ordering decisions and coordination mechanism for a distributed short-life-cycle supply chain. The objective is to maximize the whole supply chain's expected profit and meanwhile make the supply chain participants achieve a Pareto improvement. We treat lead time as a controllable variable, thus the demand forecast is dependent on lead time: the shorter lead time, the better forecast. Moreover, optimal decision-making models for lead time and order quantity are formulated and compared in the decentralized and centralized cases. Besides, a three-parameter contract is proposed to coordinate the supply chain and alleviate the double margin in the decentralized scenario. In addition, based on the analysis of the models, we develop an algorithmic procedure to find the optimal ordering decisions. Finally, a numerical example is also presented to illustrate the results.

  16. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    International Nuclear Information System (INIS)

    Liu Hao; Tong Hua; Xu Ning

    2014-01-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution. (special topic — non-equilibrium phenomena in soft matters)

  17. The Neural Mechanisms Underlying Internally and Externally Guided Task Selection

    Science.gov (United States)

    Orr, Joseph M.; Banich, Marie T.

    2013-01-01

    While some prior work suggests that medial prefrontal cortex (MFC) regions mediate freely chosen actions, other work suggests that the lateral frontal pole (LFP) is responsible for control of abstract, internal goals. The present study uses fMRI to determine whether the voluntary selection of a task in pursuit of an overall goal relies on MFC regions or the LFP. To do so, we used a modified voluntary task switching (VTS) paradigm, in which participants choose an individual task to perform on each trial (i.e., a subgoal), under instructions to perform the tasks equally often and in a random order (i.e. the overall goal). In conjunction, we examined patterns of activation in the face of irrelevant, but task-related external stimuli that might nonetheless influence task selection. While there was some evidence that the MFC was involved in voluntary task selection, we found that the LFP and anterior insula (AI) were crucial to task selection in the pursuit of an overall goal. In addition, activation of the LFP and AI increased in the face of environmental stimuli that might serve as an interfering or conflicting external bias on voluntary task choice. These findings suggest that the LFP supports task selection according to abstract, internal goals, and leaves open the possibility that MFC may guide action selection in situations lacking in such top-down biases. As such, the current study represents a critical step towards understanding the neural underpinnings of how tasks are selected voluntarily to enable an overarching goal. PMID:23994316

  18. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  19. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  20. Mechanism underlying the development of unilateral spatial neglect

    International Nuclear Information System (INIS)

    Nishikiori, Etsuko

    1992-01-01

    To test the hypothesis that functional disturbance of the neural network involving the inferior parietal lobule (IPL), anterior cingulate gyrus (ACG), dorsolateral frontal lobe (DLF), and thalamus (TH) as components of the right hemisphere underlies the development of unilateral spatial neglect (USN), cerebral perfusion was measured by 123 I-IMP SPECT in 32 patients with cerebrovascular right brain damage, 20 of whom had USN and 12 of whom did not. In analyzing the SPECT data, RI uptake in the four component regions and cerebellum (serving as a control) were estimated by symmetrically placing 'regions of interest' from both hemispheres on SPECT slices, most suitable for each region. The 'regional to cerebellar ratio' (R/CE ratio) for each component region was calculated and the values were compared. In the USN group, R/CE ratio values for each component region in the right hemisphere were significantly lower than those in the left, whereas in the non-USN group there was no right-left difference. When R/CE ratio values for each component region in the right hemisphere were compared between the USN and non-USN group, those for the IPL, ACG and TH were significantly lower in the USN group; the value for the DLF was also lower in the USN group, although the difference was not significant. Significantly lower values of R/CE for each component region in the right hemisphere were noticed when the regions showed apparent involvement on X-ray CT/MRI. Furthermore, in seven of the USN patients where lesions revealed by CT/MRI did not involve network components, the R/CE ratio values for the components in the right hemisphere were lower than those in the left; the difference was significant for the IPL, ACG and TH, but not for the DLF. It is suggested that functional disturbance of the neural network involving the IPL, ACG, DLF and TH in the right hemisphere might underlie the development of USN. (author)

  1. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  2. Mechanical Properties of a High Lead Glass Used in the Mars Organic Molecule Analyzer

    Science.gov (United States)

    Salem, Jonathan A.; Smith, Nathan A.; Ersahin, Akif

    2015-01-01

    The elastic constants, strength, fracture toughness, slow crack growth parameters, and mirror constant of a high lead glass supplied as tubes and funnels were measured using ASTM International (formerly ASTM, American Society for Testing and Materials) methods and modifications thereof. The material exhibits lower Young's modulus and slow crack growth exponent as compared to soda-lime silica glass. Highly modified glasses exhibit lower fracture toughness and slow crack growth exponent than high purity glasses such as fused silica.

  3. When and how does labour lead to love? The ontogeny and mechanisms of the IKEA effect

    OpenAIRE

    Marsh, Lauren E.; Kanngiesser, Patricia; Hood, Bruce

    2018-01-01

    We elevate our constructions to a special status in our minds. This ‘IKEA’ effect leads us to believe that our creations are more valuable than items that are identical, but constructed by another. This series of studies utilises a developmental perspective to explore why this bias exists. Study 1 elucidates the ontogeny of the IKEA effect, demonstrating an emerging bias at age 5, corresponding with key developmental milestones in self-concept formation. Study 2 assesses the role of effort, r...

  4. Microstructure Deformation and Fracture Mechanism of Highly Filled Polymer Composites under Large Tensile Deformation

    International Nuclear Information System (INIS)

    Tao Zhangjiang; Ping Songdan; Mei Zhang; Cheng Zhaipeng

    2013-01-01

    The microstructure deformation and fracture mechanisms of particulate-filled polymer composites were studied based on microstructure observations in this paper. By using in-situ tensile test system under scanning electron microscopy, three different composites composed of polymer binder filled by three different types of particles, namely Al particles, AP particles and HMX particles, with the same total filler content were tested. The roles of initial microstructure damage and particle type on the microstructure deformation and damage are highlighted. The results show that microstructure damage starts with the growth of the initial microvoids within the binders or along the binder/particle interfaces. With the increase of strain, the microstructure damages including debonding at the particle/binder interface and tearing of the binder lead to microvoid coalescence, and finally cause an abrupt fracture of the samples. Coarse particles lead to an increase of debonding at the particle/binder interface both in the initial state and during the loading process, and angular particles promote interface debonding during the loading process.

  5. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-02-12

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  7. Towards identifying the mechanisms underlying field-aligned edge-loss of HHFW power on NSTX

    International Nuclear Information System (INIS)

    Perkins, R. J.; Bell, R. E.; Bertelli, N.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; LeBlanc, B. P.; Kramer, G. J.; Maingi, R.; Phillips, C. K.; Podestà, M.; Roquemore, L.; Scotti, F.; Taylor, G.; Wilson, J. R.; Ahn, J-W.; Gray, T. K.; Green, D. L.; McLean, A.

    2014-01-01

    Fast-wave heating will be a major heating scheme on ITER, as it can heat ions directly and is relatively unaffected by the large machine size unlike neutral beams. However, fast-wave interactions with the plasma edge can lead to deleterious effects such as, in the case of the high-harmonic fast-wave (HHFW) system on NSTX, large losses of fast-wave power in the scrape off layer (SOL) under certain conditions. In such scenarios, a large fraction of the lost HHFW power is deposited on the upper and lower divertors in bright spiral shapes. The responsible mechanism(s) has not yet been identified but may include fast-wave propagation in the scrape off layer, parametric decay instability, and RF currents driven by the antenna reactive fields. Understanding and mitigating these losses is important not only for improving the heating and current-drive on NSTX-Upgrade but also for understanding fast-wave propagation across the SOL in any fast-wave system. This talk summarizes experimental results demonstrating that the flow of lost HHFW power to the divertor regions largely follows the open SOL magnetic field lines. This lost power flux is relatively large close to both the antenna and the last closed flux surface with a reduced level in between, so the loss mechanism cannot be localized to the antenna. At the same time, significant losses also occur along field lines connected to the inboard edge of the bottom antenna plate. The power lost within the spirals is roughly estimated, showing that these field-aligned losses to the divertor are significant but may not account for the total HHFW loss. To elucidate the role of the onset layer for perpendicular fast-wave propagation with regards to fast-wave propagation in the SOL, a cylindrical cold-plasma model is being developed. This model, in addition to advanced RF codes such as TORIC and AORSA, is aimed at identifying the underlying mechanism(s) behind these SOL losses, to minimize their effects in NSTX-U, and to predict

  8. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  9. The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms

    International Nuclear Information System (INIS)

    Vries, Laurens de; Heijnen, Petra

    2008-01-01

    This paper presents an analysis of different market designs under uncertainty about the future growth rate of demand. Markets for electricity generation appear to be prone to an investment cycle due to their capital-intensiveness and the long lead time of new generation facilities. We tested the stability of different capacity mechanisms in the presence of uncertainty regarding the demand growth rate with a stochastic dynamic model. Investment decisions were assumed to maximize profit, based on an assumed growth rate of demand that was equal to the rolling average of the previous five years. All capacity mechanisms proved effective in reducing the tendency towards an investment cycle, but to different degrees. Interestingly, an oligopoly that is able to raise average prices by 10% would also be able to substantially reduce price volatility and decrease the risk of shortages by increasing the reserve margin. Benefits of such a strategy for the generating companies could be that it would deter new market entrants and stave off the political attention that shortages and price spikes would bring about. However, the benefits to consumers are compromised by the lack of economic efficiency and distributional effects of an oligopoly, while the stability of such an oligopolistic strategy can be questioned. The most attractive solution is a system of reliability contracts, which can be used to stabilize both investment and prices, while reducing market power and providing more efficient operational incentives to generating companies. (author)

  10. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    Science.gov (United States)

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  11. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  12. Microstructural development under interrupted hot deformation and the mechanical properties of a cast Mg–Gd–Y–Zr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhenyu [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yang, Xuyue [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Institute for Materials Microstructure, Central South University, Changsha 410083 (China); Yang, Yi; Zhang, Zhirou; Zhang, Duxiu; Li, Yi [Educational Key Laboratory of Nonferrous Metal Materials Science and Engineering, School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Sakai, Taku [UEC Tokyo (The University of Electro-Communications), Chofu, Tokyo 182-8585 (Japan)

    2016-01-15

    Microstructural development under interrupted hot deformation of a cast Mg–Gd–Y–Zr alloy was investigated by optical microscopy (OM) and electron backscattering diffraction (EBSD) technology and the resultant mechanical properties were detected through tensile tests at room temperature. Ultrafine grains (UFGs) were remarkably developed under the condition of interrupted hot forging, resulting in an improvement of ambient mechanical properties. The basal texture was weakened by an effective increase of the volume fraction of UFGs under interrupted hot forging. These resulted in an improvement of tensile ductility with little or no drop in strength, i.e. the volume fraction of UFGs was raised from 30% to 70%, leading to an increase of the ambient tensile elongation from 15% to 23%.

  13. Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism

    OpenAIRE

    Deng, Jiao; Li, Jiejie; Li, Liaoliao; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2013-01-01

    Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young a...

  14. AFM and SEM-FEG study on fundamental mechanisms leading to fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Man, Jiří; Valtr, M.; Petrenec, Martin; Dluhoš, J.; Kuběna, Ivo; Obrtlík, Karel; Polák, Jaroslav

    2015-01-01

    Roč. 76, JUL (2015), s. 11-18 ISSN 0142-1123 R&D Projects: GA ČR(CZ) GAP108/10/2371; GA MŠk(CZ) ED1.1.00/02.0068; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : fatigue crack initiation * 316L austenitic steel * atomic force microscopy * extrusion * intrusion Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  15. Quantum-Mechanics Methodologies in Drug Discovery: Applications of Docking and Scoring in Lead Optimization.

    Science.gov (United States)

    Crespo, Alejandro; Rodriguez-Granillo, Agustina; Lim, Victoria T

    2017-01-01

    The development and application of quantum mechanics (QM) methodologies in computer- aided drug design have flourished in the last 10 years. Despite the natural advantage of QM methods to predict binding affinities with a higher level of theory than those methods based on molecular mechanics (MM), there are only a few examples where diverse sets of protein-ligand targets have been evaluated simultaneously. In this work, we review recent advances in QM docking and scoring for those cases in which a systematic analysis has been performed. In addition, we introduce and validate a simplified QM/MM expression to compute protein-ligand binding energies. Overall, QMbased scoring functions are generally better to predict ligand affinities than those based on classical mechanics. However, the agreement between experimental activities and calculated binding energies is highly dependent on the specific chemical series considered. The advantage of more accurate QM methods is evident in cases where charge transfer and polarization effects are important, for example when metals are involved in the binding process or when dispersion forces play a significant role as in the case of hydrophobic or stacking interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. When and how does labour lead to love? The ontogeny and mechanisms of the IKEA effect.

    Science.gov (United States)

    Marsh, Lauren E; Kanngiesser, Patricia; Hood, Bruce

    2018-01-01

    We elevate our constructions to a special status in our minds. This 'IKEA' effect leads us to believe that our creations are more valuable than items that are identical, but constructed by another. This series of studies utilises a developmental perspective to explore why this bias exists. Study 1 elucidates the ontogeny of the IKEA effect, demonstrating an emerging bias at age 5, corresponding with key developmental milestones in self-concept formation. Study 2 assesses the role of effort, revealing that the IKEA effect is not moderated by the amount of effort invested in the task in 5-to-6-year olds. Finally, Study 3 examines whether feelings of ownership moderate the IKEA effect, finding that ownership alone cannot explain why children value their creations more. Altogether, results from this study series are incompatible with existing theories of the IKEA bias. Instead, we propose a new framework to examine biases in decision making. Perhaps the IKEA effect reflects a link between our creations and our self-concept, emerging at age 5, leading us to value them more positively than others' creations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms*

    Science.gov (United States)

    Gabbai, Carolina B.; Yeeles, Joseph T. P.; Marians, Kenneth J.

    2014-01-01

    A number of different enzymatic pathways have evolved to ensure that DNA replication can proceed past template base damage. These pathways include lesion skipping by the replisome, replication fork regression followed by either correction of the damage and origin-independent replication restart or homologous recombination-mediated restart of replication downstream of the lesion, and bypass of the damage by a translesion synthesis DNA polymerase. We report here that of two translesion synthesis polymerases tested, only DNA polymerase IV, not DNA polymerase II, could engage productively with the Escherichia coli replisome to bypass leading strand template damage, despite the fact that both enzymes are shown to be interacting with the replicase. Inactivation of the 3′ → 5′ proofreading exonuclease of DNA polymerase II did not enable bypass. Bypass by DNA polymerase IV required its ability to interact with the β clamp and act as a translesion polymerase but did not require its “little finger” domain, a secondary region of interaction with the β clamp. Bypass by DNA polymerase IV came at the expense of the inherent leading strand lesion skipping activity of the replisome, indicating that they are competing reactions. PMID:25301949

  18. Distinct mechanisms underlying tolerance to intermittent and constant hypoxia in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Priti Azad

    Full Text Available BACKGROUND: Constant hypoxia (CH and intermittent hypoxia (IH occur during several pathological conditions such as asthma and obstructive sleep apnea. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. Our current genome-wide study is designed to investigate gene expression changes and identify protective mechanism(s in D. melanogaster after exposure to severe (1% O(2 intermittent or constant hypoxia. METHODOLOGY/PRINCIPAL FINDINGS: Our microarray analysis has identified multiple gene families that are up- or down-regulated in response to acute CH or IH. We observed distinct responses to IH and CH in gene expression that varied in the number of genes and type of gene families. We then studied the role of candidate genes (up-or down-regulated in hypoxia tolerance (adult survival for longer periods (CH-7 days, IH-10 days under severe CH or IH. Heat shock proteins up-regulation (specifically Hsp23 and Hsp70 led to a significant increase in adult survival (as compared to controls of P-element lines during CH. In contrast, during IH treatment the up-regulation of Mdr49 and l(208717 genes (P-element lines provided survival advantage over controls. This suggests that the increased transcript levels following treatment with either paradigm play an important role in tolerance to severe hypoxia. Furthermore, by over-expressing Hsp70 in specific tissues, we found that up-regulation of Hsp70 in heart and brain play critical role in tolerance to CH in flies. CONCLUSIONS/SIGNIFICANCE: We observed that the gene expression response to IH or CH is specific and paradigm-dependent. We have identified several genes Hsp23, Hsp70, CG1600, l(208717 and Mdr49 that play an important role in hypoxia tolerance whether it is in CH or IH. These data provide further clues about the mechanisms by which IH or CH lead to cell injury and morbidity or adaptation and survival.

  19. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  20. Mechanical properties of a 316L/T91 weld joint tested in lead-bismuth liquid

    International Nuclear Information System (INIS)

    Serre, Ingrid; Vogt, Jean-Bernard

    2009-01-01

    The mechanical strength of T91/316L weld joint assembled by electron beam process is investigated in air and in a liquid lead bismuth bath at 300 and 380 o C using the small punch test. It is shown that the mechanical response in air of the weld joint is similar to that of the T91 base material. The plastic deformation is mainly concentrated in the T91 part of the weld joint which promotes cracking in this material. Testing in liquid lead bismuth bath results in a reduction in ductility and the formation of brittle cracks. The T91/weld interface is found to be rather resistant as it cracks late in the test and after a large crack propagated in the T91 steel.

  1. Kinetic and mechanism studies of the adsorption of lead onto waste cow bone powder (WCBP) surfaces.

    Science.gov (United States)

    Cha, Jihoon; Cui, Mingcan; Jang, Min; Cho, Sang-Hyun; Moon, Deok Hyun; Khim, Jeehyeong

    2011-01-01

    This study examines the adsorption isotherms, kinetics and mechanisms of Pb²(+) sorption onto waste cow bone powder (WCBP) surfaces. The concentrations of Pb²(+) in the study range from 10 to 90 mg/L. Although the sorption data follow the Langmuir and Freundlich isotherm, a detailed examination reveals that surface sorption or complexation and co-precipitation are the most important mechanisms, along with possibly ion exchange and solid diffusion also contributing to the overall sorption process. The co-precipitation of Pb²(+) with the calcium hydroxyapatite (Ca-HAP) is implied by significant changes in Ca²(+) and PO₄³⁻ concentrations during the metal sorption processes. The Pb²(+) sorption onto the WCBP surface by metal complexation with surface functional groups such as ≡ POH. The major metal surface species are likely to be ≡ POPb(+). The sorption isotherm results indicated that Pb²(+) sorption onto the Langmuir and Freundlich constant q(max) and K( F ) is 9.52 and 8.18 mg g⁻¹, respectively. Sorption kinetics results indicated that Pb²(+) sorption onto WCBP was pseudo-second-order rate constants K₂ was 1.12 g mg⁻¹ h⁻¹. The main mechanism is adsorption or surface complexation (≡POPb(+): 61.6%), co-precipitation or ion exchange [Ca₃(.)₉₃ Pb₁(.)₀₇ (PO₄)₃ (OH): 21.4%] and other precipitation [Pb 50 mg L⁻¹ and natural pH: 17%). Sorption isotherms showed that WCBP has a much higher Pb²(+) removal rate in an aqueous solution; the greater capability of WCBP to remove aqueous Pb²(+) indicates its potential as another promising way to remediate Pb²(+)-contaminated media.

  2. MOLECULAR MECHANISMS THAT LEAD TO CHOLANGIOCARCINOMA, DURING CHRONIC INFECTION OF LIVER FLUKES

    Directory of Open Access Journals (Sweden)

    A. O. Bogdanov

    2015-01-01

    Full Text Available Cholangiocarcinoma is a malignant tumor, characterized by poor prognosis and a low five-year survival rate. There is a clear correlation between the incidence of opisthorchiasis and high incidence of cholangiocarcinoma in South-East Asia. Liver flukes Clonorchis sinensis and Opisthorchis viverrini are I class carcinogens. There are some endemic regions of opisthorchiasis In the Russian Federation. The most important factor that leads to carcinogenesis during liver fluke infection is chronic inflammation. This review article focuses on the communication of chronic inflammation caused by invasion of liver flukes and cholangiocarcinoma. This paper summarizes the current knowledge about the risk factors for cholangiocarcinoma, as well as knowledge about the molecular aspects of the induction of carcinogenesis by liver flukes.

  3. Transport Mechanisms Governing initial Leading-Edge Vortex Development on a Pitching Wing

    Science.gov (United States)

    Wabick, Kevin; Berdon, Randall; Buchholz, James; Johnson, Kyle; Thurow, Brian

    2017-11-01

    The formation and evolution of Leading Edge Vortices (LEVs) are ubiquitous in natural fliers and maneuvering wings, and have a profound impact on aerodynamic loads. The formation of an LEV is experimentally investigated on a pitching flat-plate wing of aspect-ratio 2, and dimensionless pitch rates of k = Ωc / 2 U of 0.1, 0.2, and 0.5, at a Reynolds number of 104. The sources and sinks of vorticity that contribute to the growth and evolution of the LEV are investigated at spanwise regions of interest, and their relative balance is compared to other wing kinematics, and the case of a two-dimensional pitching wing. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  4. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    International Nuclear Information System (INIS)

    Haseroth, Helmut; Hora, Heinrich; Regensburg Inst. of Tech.

    1996-01-01

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10 11 C 4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ''hot'' electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author)

  5. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  6. Effective production planning for purchased part under long lead time and uncertain demand: MRP Vs demand-driven MRP

    Science.gov (United States)

    Shofa, M. J.; Moeis, A. O.; Restiana, N.

    2018-04-01

    MRP as a production planning system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic, so that MRP is inappropriate at the time. Demand-Driven MRP (DDMRP) is new approach for production planning system dealing with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP for purchased part under long lead time and uncertain demand in terms of average inventory levels. The evaluation is conducted through a discrete event simulation with the long lead time and uncertain demand scenarios. The next step is evaluating the performance of DDMRP by comparing the inventory level of DDMRP with MRP. As result, DDMRP is more effective production planning than MRP in terms of average inventory levels.

  7. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions.

    Science.gov (United States)

    Li, Xuemei; Bu, Ning; Li, Yueying; Ma, Lianju; Xin, Shigang; Zhang, Lihong

    2012-04-30

    An endophytic fungus was tested in rice (Oryza sativa L.) exposed to four levels of lead (Pb) stress (0, 50, 100 and 200 μM) to assess effects on plant growth, photosynthesis and antioxidant enzyme activity. Under Pb stress conditions, endophyte-infected seedlings had greater shoot length but lower root length compared to non-infected controls, and endophyte-infected seedlings had greater dry weight in the 50 and 100 μM Pb treatments. Under Pb stress conditions, chlorophyll and carotenoid levels were significantly higher in the endophyte-infected seedlings. Net photosynthetic rate, transpiration rate and water use efficiency were significantly higher in endophyte-infected seedlings in the 50 and 100 μM Pb treatments. In addition, chlorophyll fluorescence parameters Fv/Fm and Fv/Fo were higher in the infected seedlings compared to the non-infected seedlings under Pb stress. Malondialdehyde accumulation was induced by Pb stress, and it was present in higher concentration in non-infected seedlings under higher concentrations of Pb (100 and 200 μM). Antioxidant activity was either higher or unchanged in the infected seedlings due to responses to the different Pb concentrations. These results suggest that the endophytic fungus improved rice growth under moderate Pb levels by enhancing photosynthesis and antioxidant activity relative to non-infected rice. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio.

    Science.gov (United States)

    Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P

    2016-01-02

    Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative

  9. Hypoxic ischemia encephalopathy leading to external hydrocephalus and the cerebral atrophy: mechanism and differential diagnosis

    International Nuclear Information System (INIS)

    Huang Zhenglin; Mo Xiaorong

    2002-01-01

    Objective: It is a study of the mechanism and differential diagnosis of the infant external hydrocephalus and cerebral atrophy. Methods: In total 84 cases of neonatal hypoxic ischemia encephalopathy followed by infant external hydrocephalus were investigated, among which 26 patients gradually were found having developed cerebral atrophy in follow up. Results: Characteristic dilation of the frontal-parietal subarachnoid space and the adjacent cistern was noted on the CT images of the external hydrocephalus. CT revealed the enlarged ventricle besides the dilated subarachnoid space in the cases of cerebral atrophy, while these two entities were indistinguishable on CT in the early stage. Conclusion: Clinical manifestations make a major differential diagnosis of the external hydrocephalus and cerebral atrophy: tic and mild delayed development of locomotion over major presentation of external hydrocephalus, while cerebral atrophy is featured by remarkable dysnoesia and severe delayed development of locomotion. In addition, hemiplegia and increased muscular tension are presented in a few cases of cerebral atrophy

  10. Nontraumatic Fracture of the Femoral Condylar Prosthesis in a Total Knee Arthroplasty Leading to Mechanical Failure

    Directory of Open Access Journals (Sweden)

    Girish N. Swamy

    2014-01-01

    Full Text Available This paper reports a case of fatigue fracture of the femoral component in a cruciate-retaining cemented total knee arthroplasty (TKA. A 64-year-old man had undergone a primary TKA for osteoarthritis 10 years previously at another institution using the PFC-Sigma prosthesis. The patient recovered fully and was back to his regular activities. He presented with a history of sudden onset pain and locking of the left knee since the preceding three months. There was no history of trauma, and the patient was mobilizing with difficulty using crutches. Radiographs revealed fracture of the posterior condyle of the femoral prosthesis. Revision surgery was performed as an elective procedure revealing the broken prosthesis. The TC3RP-PFC revision prosthesis was used with a medial parapatellar approach. The patient recovered fully without any squeal. Mechanical failure of the knee arthroplasty prosthesis is rare, and nontraumatic fracture of the femoral metallic component has not been reported before.

  11. Nontraumatic fracture of the femoral condylar prosthesis in a total knee arthroplasty leading to mechanical failure.

    Science.gov (United States)

    Swamy, Girish N; Quah, Conal; Bagouri, Elmunzar; Badhe, Nitin P

    2014-01-01

    This paper reports a case of fatigue fracture of the femoral component in a cruciate-retaining cemented total knee arthroplasty (TKA). A 64-year-old man had undergone a primary TKA for osteoarthritis 10 years previously at another institution using the PFC-Sigma prosthesis. The patient recovered fully and was back to his regular activities. He presented with a history of sudden onset pain and locking of the left knee since the preceding three months. There was no history of trauma, and the patient was mobilizing with difficulty using crutches. Radiographs revealed fracture of the posterior condyle of the femoral prosthesis. Revision surgery was performed as an elective procedure revealing the broken prosthesis. The TC3RP-PFC revision prosthesis was used with a medial parapatellar approach. The patient recovered fully without any squeal. Mechanical failure of the knee arthroplasty prosthesis is rare, and nontraumatic fracture of the femoral metallic component has not been reported before.

  12. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations.

    Science.gov (United States)

    Moysés-Oliveira, Mariana; Guilherme, Roberta Dos Santos; Dantas, Anelisa Gollo; Ueta, Renata; Perez, Ana Beatriz; Haidar, Mauro; Canonaco, Rosane; Meloni, Vera Ayres; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-05-01

    To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. Retrospective and case-control study. University-based research laboratory. Three women with balanced X-autosome translocation and primary amenorrhea. Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. Karyotype, copy number variation, breakpoint mapping, and gene expression levels. All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. In case of obesity, longevity-related mechanisms lead to anti-inflammation.

    Science.gov (United States)

    Kaya, Mehmet Salih; Bayıroglu, Fahri; Mis, Leyla; Kilinc, Dide; Comba, Bahat

    2014-04-01

    The exact mechanisms which contribute to longevity have not been figured out yet. Our aim was to find out a common way for prompting longevity by bringing together the well-known applications such as food restriction, exercise, and probiotic supplementing in an experimental obesity model. Experimental obesity was promoted in a total of 32 young (2 months old) and 32 aged (16 months old) male Wistar albino rats through 8-week cafeteria diet (salami, chocolate, chips, and biscuits). Old and young animals were divided into groups each consisting of eight animals and also divided into four subgroups as obese control, obese food restriction, obese probiotic-fed and obese exercise groups. Probiotic group diet contained 0.05 %w/total diet inactive and lyophilized Lactobacillus casei str. Shirota. The exercise group was subjected to treadmill running 1 h/day, at 21 m/min and at an uphill incline of 15 % for 5 days a week. Food restriction group was formed by giving 40 % less food than the others. The control group was fed regular pellet feed ad libitum. This program was continued for 16 weeks. Blood samples from all the groups were analyzed for fasting glucose, insulin, IGF-1, insulin-like growth factor binding protein 3 (IGFBP-3), interleukin (IL)-6, IL-12, malondialdehyde (MDA), fT3, TT3, fT4, TT4, and liver tissue MDA levels were measured. All applications showed anti-inflammatory effects through the observed changes in the levels of IGFBP-3, IL-6, and IL-12 in the young and old obese rats. While the interventions normally contribute to longevity by recruiting different action mechanisms, anti-inflammatory effect is the only mode of action for all the applications in the obesity model.

  14. Influence of different moderator materials on characteristics of neutron fluxes generated under irradiation of lead target with proton beams

    International Nuclear Information System (INIS)

    Sosnin, A.N.; Polanski, A.; Petrochenkov, S.A.

    2002-01-01

    Neutron fields generated in extended heavy (Z ≥ 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (diam. 8 cm x 20 cm or diam. 8 cm x 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin

  15. Influence of Different Moderator Materials on Characteristics of Neutron Fluxes Generated under Irradiation of Lead Target with Proton Beams

    CERN Document Server

    Sosnin, A N; Polanski, A; Petrochenkov, S A; Golovatyuk, V M; Krivopustov, M I; Bamblevski, V P; Westmeier, W; Odoj, R; Brandt, R; Robotham, H; Hashemi-Nezhad, S R; Zamani-Valassiadou, M

    2002-01-01

    Neutron fields generated in extended heavy (Z\\geq 82) targets under irradiation with proton beams at energies in the range of 1 GeV are investigated. Influence of different moderators on the spectra and multiplicities of neutrons escaping the surface of the assembly consisting of a lead target (\\varnothing 8 cm\\times 20 cm or \\varnothing 8cm\\times 50 cm) screened by variable thickness of polyethylene or graphite, respectively, was compared in the present work. It is shown that the effectiveness of graphite as a material used in such assemblies to moderate spallation neutrons down to thermal energies is significantly lower than that of paraffin.

  16. Transmission electron microscopy investigation of the microstructural mechanisms for the piezoelectricity in lead-free perovskite ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Cheng [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Lead-free materials with superior piezoelectricity are in increasingly urgent demand in the current century, because the industrial standard Pb(Zr,Ti)O3-based piezoelectrics, which contain over 60 weight% of the toxic element lead, pose severe environmental hazards. Although significant research efforts have been devoted in the past decade, no effective lead-free substitute for Pb(Zr,Ti)O3 has been identified yet. One of the primary hindrances to the development of lead-free piezoelectrics lies in the ignorance of the microstructural mechanism for the electric-field-induced strains in the currently existing compositions. In this dissertation, the microstructural origin for the high piezoelectricity in (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 [(1-x)BNT-xBT], the most widely studied lead-free piezoelectric system, has been elucidated.

  17. Probabilistic inference under time pressure leads to a cortical-to-subcortical shift in decision evidence integration.

    Science.gov (United States)

    Oh-Descher, Hanna; Beck, Jeffrey M; Ferrari, Silvia; Sommer, Marc A; Egner, Tobias

    2017-11-15

    Real-life decision-making often involves combining multiple probabilistic sources of information under finite time and cognitive resources. To mitigate these pressures, people "satisfice", foregoing a full evaluation of all available evidence to focus on a subset of cues that allow for fast and "good-enough" decisions. Although this form of decision-making likely mediates many of our everyday choices, very little is known about the way in which the neural encoding of cue information changes when we satisfice under time pressure. Here, we combined human functional magnetic resonance imaging (fMRI) with a probabilistic classification task to characterize neural substrates of multi-cue decision-making under low (1500 ms) and high (500 ms) time pressure. Using variational Bayesian inference, we analyzed participants' choices to track and quantify cue usage under each experimental condition, which was then applied to model the fMRI data. Under low time pressure, participants performed near-optimally, appropriately integrating all available cues to guide choices. Both cortical (prefrontal and parietal cortex) and subcortical (hippocampal and striatal) regions encoded individual cue weights, and activity linearly tracked trial-by-trial variations in the amount of evidence and decision uncertainty. Under increased time pressure, participants adaptively shifted to using a satisficing strategy by discounting the least informative cue in their decision process. This strategic change in decision-making was associated with an increased involvement of the dopaminergic midbrain, striatum, thalamus, and cerebellum in representing and integrating cue values. We conclude that satisficing the probabilistic inference process under time pressure leads to a cortical-to-subcortical shift in the neural drivers of decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of Positive End-Expiratory Pressure on Central Venous Pressure in Patients under Mechanical Ventilation.

    Science.gov (United States)

    Shojaee, Majid; Sabzghabaei, Anita; Alimohammadi, Hossein; Derakhshanfar, Hojjat; Amini, Afshin; Esmailzadeh, Bahareh

    2017-01-01

    Finding the probable governing pattern of PEEP and CVP changes is an area of interest for in-charge physicians and researchers. Therefore, the present study was designed with the aim of evaluating the relationship between the mentioned pressures. In this quasi-experimental study, patients under mechanical ventilation were evaluated with the aim of assessing the effect of PEEP change on CVP. Non-trauma patients, over 18 years of age, who were under mechanical ventilation and had stable hemodynamics, with inserted CV line were entered. After gathering demographic data, patients underwent 0, 5, and 10 cmH 2 O PEEPs and the respective CVPs of the mentioned points were recorded. The relationship of CVP and PEEP in different cut points were measured using SPSS 21.0 statistical software. 60 patients with the mean age of 73.95 ± 11.58 years were evaluated (68.3% male). The most frequent cause of ICU admission was sepsis with 45.0%. 5 cmH 2 O increase in PEEP led to 2.47 ± 1.53 mean difference in CVP level. If the PEEP baseline is 0 at the time of 5 cmH 2 O increase, it leads to a higher raise in CVP compared to when the baseline is 5 cmH 2 O (2.47 ± 1.53 vs. 1.57 ± 1.07; p = 0.039). The relationship between CVP and 5 cmH 2 O (p = 0.279), and 10 cmH 2 O (p = 0.292) PEEP changes were not dependent on the baseline level of CVP. The findings of this study revealed the direct relationship between PEEP and CVP. Approximately, a 5 cmH 2 O increase in PEEP will be associated with about 2.5 cmH 2 O raise in CVP. When applying a 5 cmH 2 O PEEP increase, if the baseline PEEP is 0, it leads to a significantly higher raise in CVP compared to when it is 5 cmH 2 O (2.5 vs. 1.6). It seems that sex, history of cardiac failure, baseline CVP level, and hypertension do not have a significant effect in this regard.

  19. Effect of Positive End-Expiratory Pressure on Central Venous Pressure in Patients under Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Majid Shojaee

    2016-12-01

    Full Text Available Introduction: Finding the probable governing pattern of PEEP and CVP changes is an area of interest for in-charge physicians and researchers. Therefore, the present study was designed with the aim of evaluating the relationship between the mentioned pressures. Methods: In this quasi-experimental study, patients under mechanical ventilation were evaluated with the aim of assessing the effect of PEEP change on CVP. Non-trauma patients, over 18 years of age, who were under mechanical ventilation and had stable hemodynamics, with inserted CV line were entered. After gathering demographic data, patients underwent 0, 5, and 10 cmH2O PEEPs and the respective CVPs of the mentioned points were recorded. The relationship of CVP and PEEP in different cut points were measured using SPSS 21.0 statistical software. Results: 60 patients with the mean age of 73.95 ± 11.58 years were evaluated (68.3% male. The most frequent cause of ICU admission was sepsis with 45.0%. 5 cmH2O increase in PEEP led to 2.47 ± 1.53 mean difference in CVP level. If the PEEP baseline is 0 at the time of 5 cmH2O increase, it leads to a higher raise in CVP compared to when the baseline is 5 cmH2O (2.47 ± 1.53 vs. 1.57 ± 1.07; p = 0.039. The relationship between CVP and 5 cmH2O (p = 0.279, and 10 cmH2O (p = 0.292 PEEP changes were not dependent on the baseline level of CVP. Conclusion: The findings of this study revealed the direct relationship between PEEP and CVP. Approximately, a 5 cmH2O increase in PEEP will be associated with about 2.5 cmH2O raise in CVP. When applying a 5 cmH2O PEEP increase, if the baseline PEEP is 0, it leads to a significantly higher raise in CVP compared to when it is 5 cmH2O (2.5 vs. 1.6. It seems that sex, history of cardiac failure, baseline CVP level, and hypertension do not have a significant effect in this regard.

  20. Evolution of fuel rod support under irradiation consequences on the mechanical behavior of fuel assembly

    International Nuclear Information System (INIS)

    Billerey, A.; Bouffioux, P.

    2002-01-01

    The complete paper follows. According to the fuel management policy in French PWR with respect to high burn-up, the prediction of the mechanical behavior of the irradiated fuel assembly is required as far as excessive deformations of fuel assembly might lead to incomplete Rod Cluster Control Assembly insertion (safety problems) and fretting wear lead to leaking rods (plant operation problems). One of the most important parameter is the evolution of the fuel rod support in the grid cell as it directly governs the mechanical behavior of the fuel assembly and consequently allows to predict the behavior of irradiated structure in terms of (i) axial and lateral deformation (global behavior of the assembly) and (ii) fretting wear (local behavior of the rod). Fuel rod support is provided by a spring-dimple system fixed on the grid. During irradiation, the spring force decreases and a gap between the rod and the spring might open. This phenomenon is due to (i) irradiation-induced stress relaxation for the spring and for the dimples, (ii) grid growth and (iii) reduction of rod diameter. Two models have been developed to predict the behavior of the rod in the grid cell. The first model is able to evaluate the spring force relaxation during irradiation. The second one is able to evaluate the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (i) the creep laws of the grid materials, (ii) the growth law of the grid, (iii) the evolution of rod diameter and (iv) the design of the fuel rod support. The objectives of this paper are to: (i) evaluate the consequences of grid support design modifications on the fretting sensitivity in terms of predicted maximum gap during irradiation and operational time to gap appearance; (ii) evaluate, using a non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the mechanical behavior of the full assembly in terms of axial and

  1. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    Science.gov (United States)

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  2. Ferroelectric behavior of a lead titanate nanosphere due to depolarization fields and mechanical stresses

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Landeta, J.; Lascano, I.

    2017-07-01

    A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)

  3. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Bian, H.B.; Jia, Y.; Shao, J.F.

    2012-01-01

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  4. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    Science.gov (United States)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  5. Effects and mechanisms of meta-sodium silicate amendments on lead uptake and accumulation by rice.

    Science.gov (United States)

    Zhao, Mingliu; Liu, Yuting; Li, Honghong; Cai, Yifan; Wang, Ming Kuang; Chen, Yanhui; Xie, Tuanhui; Wang, Guo

    2017-09-01

    The objectives of this research were to study the effects of Na 2 SiO 3 application on the uptake, translocation, and accumulation of Pb in rice and to investigate the mechanisms of Pb immobilization by Na 2 SiO 3 in paddy rice soils and rice plants. Pot experiments were conducted using a Cd-Pb-Zn-polluted soil and Oryza sativa L. ssp. indica cv. Donglian 5. L 3 -edge X-ray absorption spectroscopy was used to identify Pb species in soils and roots. The results showed that the application of Na 2 SiO 3 increased soil pH and available soil Si but decreased DTPA-extractable Pb in the soil. High dose of Na 2 SiO 3 (12.5 g/kg) reduced the Pb level in brown rice as it inhibited Pb transfer from soil to rice grains, especially Pb transfer from the root to the stem. The Pb X-ray absorption near-edge spectroscopic analysis revealed that application of high dose of Na 2 SiO 3 increased Pb-ferrihydrite and PbSiO 3 precipitates in the soil and in the root while it reduced Pb-humic acids (Pb-HAs) in the soil and Pb-pectin in the root. The decrease in Pb availability in the soil can be partly attributed to increase the precipitation of PbSiO 3 and the association of Pb 2+ with Fe oxides in the soil. The inhibition of the root-to-stem translocation of Pb was partially due to the precipitation of PbSiO 3 on the root surfaces or inside the roots.

  6. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  7. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  8. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms.

    Science.gov (United States)

    Meltzoff, Andrew N.; Moore, M. Keith

    1989-01-01

    Evaluated psychological mechanisms underlying imitation of facial actions in 40 newborn infants. Results showed imitation of head movement and a tongue-protrusion gesture. Subjects imitated from memory after displays had stopped. (RJC)

  9. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis

    NARCIS (Netherlands)

    Beijers, R.; Buitelaar, J.K.; Weerth, C. de

    2014-01-01

    Accumulating evidence from preclinical and clinical studies indicates that maternal psychosocial stress and anxiety during pregnancy adversely affect child outcomes. However, knowledge on the possible mechanisms underlying these relations is limited. In the present paper, we review the most often

  10. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  11. Comparison of lead removal behaviors and generation of water-soluble sodium compounds in molten lead glass under a reductive atmosphere

    Science.gov (United States)

    Okada, Takashi; Nishimura, Fumihiro; Xu, Zhanglian; Yonezawa, Susumu

    2018-06-01

    We propose a method of reduction-melting at 1000 °C, using a sodium-based flux, to recover lead from cathode-ray tube funnel glass. To recover the added sodium from the treated glass, we combined a reduction-melting process with a subsequent annealing step at 700 °C, generating water-soluble sodium compounds in the molten glass. Using this combined process, this study compares lead removal behavior and the generation of water-soluble sodium compounds (sodium silicates and carbonates) in order to gain fundamental information to enhance the recovery of both lead and sodium. We find that lead removal increases with increasing melting time, whereas the generation efficiency of water-soluble sodium increases and decreases periodically. In particular, near 90% lead removal, the generation of water-soluble sodium compounds decreased sharply, increasing again with the prolongation of melting time. This is due to the different crystallization and phase separation efficiencies of water-soluble sodium in molten glass, whose structure continuously changes with lead removal. Previous studies used a melting time of 60 min in the processes. However, in this study, we observe that a melting time of 180 min enhances the water-soluble sodium generation efficiency.

  12. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    Science.gov (United States)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  13. Molecular binding mechanisms of aqueous cadmium and lead to siderophores, bacteria and mineral surfaces

    Science.gov (United States)

    Mishra, Bhoopesh

    Recent studies have shown that diverse groups of bacteria adsorb metals to similar extents and uptake can be modeled using a universal adsorption model. In this study, XAFS has been used to resolve whether binding sites determined for single species systems are responsible for adsorption in more complex natural bacterial assemblages. Results obtained from a series of XAFS experiments on pure Gram positive and Gram negative bacterial strains and consortia of bacteria as a function of pH and Cd loading suggests that every bacterial strain has a complex physiology and they are all slightly different from each other. Nevertheless from the metal adsorption chemistry point of view, the main difference between them lies in the site ratio of three fundamental sites only - carboxyl, phosphoryl and sulfide. Two completely different consortia of bacteria (obtained from natural river water, and soil system with severe organic contamination) were successfully modeled in the pH range 3.4--7.8 using the EXAFS models developed for single species systems. Results thus obtained can potentially have very high impact on the modeling of the complex bacterial systems in realistic geological settings, leading to further refinement and development of robust remediation strategies for metal contamination at macroscopic level. In another study, solution speciation of Pb and Cd with DFO-B has been examined using a combination of techniques (ICP, TOC, thermodynamic modeling and XAFS). Results indicate that Pb does not complex with DFO-B at all until about pH 3.5, but forms a totally caged structure at pH 7.5. At intermediate pH conditions, mixture of species (one and two hydroxamate groups complexed) is formed. Cd on the other hand, does not complex until pH 5, forms intermediate complexes at pH 8 and is totally chelated at pH 9. Further studies were conducted for Pb sorption to mineral surface kaolinite with and without DFO-B. In the absence of DFO-B, results suggest outer sphere and inner

  14. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  15. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of

  16. Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, D.; Rogachev, T.; Nikolov, P.; Petkova, G. [Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 10, Sofia 1113 (Bulgaria)

    2009-06-01

    It is known that negative plates of lead-acid batteries have low charge acceptance when cycled at high rates and progressively accumulate lead sulphate on high-rate partial-state-of-charge (HRPSoC) operation in hybrid-electric vehicle (HEV) applications. Addition of some carbon or graphite forms to the negative paste mix improves the charge efficiency and slows down sulfation of the negative plates. The present investigation aims to elucidate the contribution of electrochemically active carbon (EAC) additives to the mechanism of the electrochemical reactions of charge of the negative plates. Test cells are assembled with four types of EAC added to the negative paste mix in five different concentrations. Through analysis of the structure of NAM (including specific surface and pore radius measurements) and of the electrochemical parameters of the test cells on HRPSoC cycling, it is established that the electrochemical reaction of charge Pb{sup 2+} + 2e{sup -} {yields} Pb proceeds at 300-400 mV lower over-potentials on negative plates doped with EAC additives as compared to the charge potentials of cells with no carbon additives. Hence, electrochemically active carbons have a highly catalytic effect on the charge reaction and are directly involved in it. Consequently, the reversibility of the charge/discharge processes is improved, which eventually leads to longer battery cycle life. Thus, charging of the negative plates proceeds via a parallel mechanism on the surfaces of both Pb and EAC particles, at a higher rate on the EAC phase. Cells with EAC in NAM have the longest cycle life when their NAM specific surface is up to 4 m{sup 2} g{sup -1} against 0.5 m{sup 2} g{sup -1} for the lead surface. The proposed parallel mechanism of charge is verified experimentally on model Pb/EAC/PbSO{sub 4} and Pb/EAC electrodes. During the charge and discharge cycles of the HRPSoC test, the EAC particles are involved in dynamic adsorption/desorption on the lead sulfate and lead

  17. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    Science.gov (United States)

    Fegan, S.; Auffray, E.; Battaglieri, M.; Buchanan, E.; Caiffi, B.; Celentano, A.; Colaneri, L.; D`Angelo, A.; De Vita, R.; Dormenev, V.; Fanchini, E.; Lanza, L.; Novotny, R. W.; Parodi, F.; Rizzo, A.; Sokhan, D.; Tarasov, I.; Zonta, I.

    2015-07-01

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  18. Assessing the performance under ionising radiation of lead tungstate scintillators for EM calorimetry in the CLAS12 Forward Tagger

    Energy Technology Data Exchange (ETDEWEB)

    Fegan, S., E-mail: fegan@ge.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Auffray, E. [CERN, European Organisation for Nuclear Research, Geneva (Switzerland); Battaglieri, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Buchanan, E. [University of Glasgow, Glasgow G12 8QQ (United Kingdom); Caiffi, B.; Celentano, A. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Colaneri, L.; D' Angelo, A. [Istituto Nazionale di Fisica Nucleare, Sezione Roma2 Tor Vergata and Università degli studi di Roma Tor Vergata, Via Scientifica 1, 00133 Roma (Italy); De Vita, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Dormenev, V. [II. Physikalisches Institut, Universität Gießen, 35392 Gießen (Germany); Fanchini, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Genova and Dipartimento di Fisica dell' Universitá, Via Dodecaneso 33, 16146 Genova (Italy); Lanza, L. [Istituto Nazionale di Fisica Nucleare, Sezione Roma2 Tor Vergata and Università degli studi di Roma Tor Vergata, Via Scientifica 1, 00133 Roma (Italy); Novotny, R.W. [II. Physikalisches Institut, Universität Gießen, 35392 Gießen (Germany); and others

    2015-07-21

    The well-established technology of electromagnetic calorimetry using Lead Tungstate crystals has recently seen an upheaval, with the closure of one of the most experienced large-scale suppliers of such crystals, the Bogoroditsk Technical Chemical Plant (BTCP), which was instrumental in the development of mass production procedures for PWO-II, the current benchmark for this scintillator. Obtaining alternative supplies of Lead Tungstate crystals matching the demanding specifications of contemporary calorimeter devices now presents a significant challenge to detector research and development programmes. In this paper we describe a programme of assessment carried out for the selection, based upon the performance under irradiation, of Lead Tungstate crystals for use in the Forward Tagger device, part of the CLAS12 detector in Hall B at Jefferson Lab. The crystals tested were acquired from SICCAS, the Shanghai Institute of Ceramics, Chinese Academy of Sciences. The tests performed are intended to maximise the performance of the detector within the practicalities of the crystal manufacturing process. Results of light transmission, before and after gamma ray irradiation, are presented and used to calculate dk, the induced radiation absorption coefficient, at 420 nm, the peak of the Lead Tungstate emission spectrum. Results for the SICCAS crystals are compared with identical measurements carried out on Bogoroditsk samples, which were acquired for the Forward Tagger development program before the closure of the facility. Also presented are a series of tests performed to determine the feasibility of recovering radiation damage to the crystals using illumination from an LED, with such illumination available in the Forward Tagger from a light monitoring system integral to the detector.

  19. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  20. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  1. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  2. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    dysregulation in epileptogenesis in the developing brain? 2) What are the molecular mechanisms downstream of mTOR hyperactivation that trigger epileptogenesis...underlying epilepsy. Hopefully, a knowledge of these mechanisms will aid in a rational development of therapies. KEYWORDS Tuberous Sclerosis, Epilepsy

  3. Insights into the energetics and mechanism underlying the interaction of tetraethylammonium bromide with proteins

    International Nuclear Information System (INIS)

    Banerjee, Tuhina; Kishore, Nand

    2008-01-01

    Calorimetry has been employed to investigate the quantitative energetic aspects and mechanism underlying protein-tetraethylammonium bromide (TEAB) interactions. Differential scanning calorimetry and UV-Visible spectroscopy have been used to study the thermal unfolding of three proteins of different structure and function (bovine serum albumin, α-lactalbumin, and bovine pancreatic ribonuclease A). The mode of interaction has been studied by using isothermal titration calorimetry, which demonstrates the absence of appreciable specific binding of TEAB to the protein. This suggests the involvement of solvent mediated effects and, possibly weak non-specific binding. The thermal unfolding transitions were found to be calorimetrically reversible for α-lactalbumin and bovine pancreatic ribonuclease A and partially reversible in the case of bovine serum albumin. The results indicate protein destabilization promoted by the TEAB interaction. The preferential interaction parameters of TEAB with α-lactalbumin and ribonuclease A confirm that an increased interaction of the hydrophobic groups of the TEAB with that of the protein upon denaturation is responsible for the reduced thermal stability of the protein. The decrease in the thermal stability of proteins in the presence of TEAB is well supported by a red shift in the intrinsic fluorescence of these proteins leading to conformational change thereby shifting the native ↔ denatured equilibrium towards right. The forces responsible for the thermal denaturation of the proteins of different structure and function in the presence of TEAB are discussed

  4. Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging

    Science.gov (United States)

    Sarraj, R.; Hassine, T.; Gamaoun, F.

    2018-01-01

    NiTi wires are mainly used to design orthodontic devices. However, they may be susceptible to a delayed fracture while they are submitted to cyclic loading with the presence of hydrogen in the oral cavity. Hydrogen may cause the embrittlement of the structure, leading to lower ductility and to a change in transformation behavior. The aim of the present study is to predict the NiTi behavior under cyclic loading with hydrogen charging. One the one hand, samples are submitted to superelastic cyclic loading, which results in investigating their performance degradations. On the other hand, after hydrogen charging, cyclic tensile aging tests are carried out on NiTi orthodontic wires at room temperature in the air. During cyclic loading, we notice that the critical stress for the martensite transformation evolves, the residual strain is accumulated in the structure and the hysteresis loop changes. Thus, via this work, we can assume that the embrittlement is due to the diffusion of hydrogen and the generation of dislocations after aging. The evolution of mechanical properties of specimens becomes more significant with hydrogen charging rather than without it.

  5. The Brain Mechanisms Underlying the Cognitive Benefits of Bilingualism may be Extraordinarily Difficult to Discover

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2014-12-01

    Full Text Available The hypothesis that coordinating two or more languages leads to an enhancement in executive functioning has been intensely studied for the past decade with very mixed results. The purpose of this review and analysis is to consider why it has been (and will continue to be difficult to discover the brain mechanisms underlying any cognitive benefits to bilingualism. Six reasons are discussed: 1 the phenomenon may not actually exist; 2 the cognitive neuroscientists investigating bilingual advantages may have been studying the wrong component of executive functioning; 3 most experiments use risky small numbers of participants and are underpowered; 4 the neural differences between groups do not align with the behavioral differences; 5 neural differences sometimes suffer from valence ambiguity, that is, disagreements whether “more” implies better or worse functioning and 6 neural differences often suffer from kind ambiguity, that is, disagreements regarding what type of mental events the pattern of activation in a region-of-interest actually reflects.

  6. Combined toxicity and underlying mechanisms of a mixture of eight heavy metals.

    Science.gov (United States)

    Zhou, Qi; Gu, Yuanliang; Yue, Xia; Mao, Guochuan; Wang, Yafei; Su, Hong; Xu, Jin; Shi, Hongbo; Zou, Baobo; Zhao, Jinshun; Wang, Renyuan

    2017-02-01

    With the rapid development of modernization and industrialization in China, a large quantity of heavy metals, including zinc, copper, lead, cadmium and mercury, have been entering the atmosphere, soil and water, the latter being the primary route of pollution. In the present study, in vitro experiments were performed to examine the joint toxicity and the underlying mechanisms of the eight most common heavy metals contaminating offshore waters on the eastern coast of Ningbo region. Using a cell cycle assay, cell apoptosis and reactive oxygen species (ROS) detection methods, the present study demonstrated that the heavy metal mixture arrested JB6 cells at the S phase, induced the generation of ROS and cell apoptosis. A luciferase assay indicated that the levels of activator protein‑1 and nuclear factor‑κB transcription factors were upregulated. Upregulation of the protein levels of C‑jun and p65 were detected in the JB6 cells by western blot analysis; these two genes have important roles in cell carcinogenesis. These results provide a useful reference for further investigations on the combined toxicity of the exposure to multiple heavy metals.

  7. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  8. Neurodevelopmental consequences in offspring of mothers with preeclampsia during pregnancy: underlying biological mechanism via imprinting genes.

    Science.gov (United States)

    Nomura, Yoko; John, Rosalind M; Janssen, Anna Bugge; Davey, Charles; Finik, Jackie; Buthmann, Jessica; Glover, Vivette; Lambertini, Luca

    2017-06-01

    Preeclampsia is known to be a leading cause of mortality and morbidity among mothers and their infants. Approximately 3-8% of all pregnancies in the US are complicated by preeclampsia and another 5-7% by hypertensive symptoms. However, less is known about its long-term influence on infant neurobehavioral development. The current review attempts to demonstrate new evidence for imprinting gene dysregulation caused by hypertension, which may explain the link between maternal preeclampsia and neurocognitive dysregulation in offspring. Pub Med and Web of Science databases were searched using the terms "preeclampsia," "gestational hypertension," "imprinting genes," "imprinting dysregulation," and "epigenetic modification," in order to review the evidence demonstrating associations between preeclampsia and suboptimal child neurodevelopment, and suggest dysregulation of placental genomic imprinting as a potential underlying mechanism. The high mortality and morbidity among mothers and fetuses due to preeclampsia is well known, but there is little research on the long-term biological consequences of preeclampsia and resulting hypoxia on the fetal/child neurodevelopment. In the past decade, accumulating evidence from studies that transcend disciplinary boundaries have begun to show that imprinted genes expressed in the placenta might hold clues for a link between preeclampsia and impaired cognitive neurodevelopment. A sudden onset of maternal hypertension detected by the placenta may result in misguided biological programming of the fetus via changes in the epigenome, resulting in suboptimal infant development. Furthering our understanding of the molecular and cellular mechanisms through which neurodevelopmental trajectories of the fetus/infant are affected by preeclampsia and hypertension will represent an important first step toward preventing adverse neurodevelopment in infants.

  9. The e7 guide to implementing projects under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    2003-09-01

    The e7 was formed in 1992 to play an active role in global electricity issues and to promote sustainable development. It consists of nine leading electricity companies: American Electric Power (United States), Electricite de France (France), ENEL (Italy), Hydro-Quebec (Canada), The Kansai Electric Power Company, Inc. (Japan), Ontario Power Generation, Inc. (Canada), RWE (Germany), ScottishPower (United Kingdom), and Tokyo Electric Power Company (Japan). This report provides a guide to help develop projects under the Clean Development Mechanism (CDM), which is an instrument that allows public or private entities to invest in greenhouse gas (GHG) mitigating activities in developing countries and earn credits in an emission trading system. The dual objectives of the CDM, one of three mechanisms set out in the Kyoto Protocol, are the reduction of global GHG emissions and a contribution to sustainable development in the host country. The guidelines and procedures detailed by the United Nations Framework Convention on Climate Change (UN FCCC) and the related Protocols and Accords, were followed in the preparation of this document. Recommendations based on e7 experience were also included. The criteria for success were stated, and additionality was discussed. Additionality refers to the reductions of emissions that are additional to any that would occur in the absence of the certified project activity. The baseline methodology was described. Project Design Document (PDD) is the format that must be used for presenting the information pertaining to a project and its evaluation. PDD contents include: general description of the project activity, baseline methodology, identification of crediting period, monitoring methodology and plan, calculation of GHG emissions by sources, environmental impacts, and stakeholder comments. Third party verification, and project risk and transaction costs were also addressed. refs., tabs., figs

  10. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  11. Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions

    Science.gov (United States)

    Pei, Liang; Blöcher, Guido; Milsch, Harald; Zimmermann, Günter; Sass, Ingo; Huenges, Ernst

    2018-01-01

    The present study aims to quantify the thermo-mechanical properties of Neuburger Bankkalk limestone, an outcrop analog of the Upper Jurassic carbonate formation (Germany), and to provide a reference for reservoir rock deformation within future enhanced geothermal systems located in the Southern German Molasse Basin. Experiments deriving the drained bulk compressibility C were performed by cycling confining pressure p c between 2 and 50 MPa at a constant pore pressure p p of 0.5 MPa after heating the samples to defined temperatures between 30 and 90 °C. Creep strain was then measured after each loading and unloading stage, and permeability k was obtained after each creep strain measurement. The drained bulk compressibility increased with increasing temperature and decreased with increasing differential pressure p d = p c - p p showing hysteresis between the loading and unloading stages above 30 °C. The apparent values of the indirectly calculated Biot coefficient α ind containing contributions from inelastic deformation displayed the same temperature and pressure dependencies. The permeability k increased immediately after heating and the creep rates were also temperature dependent. It is inferred that the alteration of the void space caused by temperature changes leads to the variation of rock properties measured under isothermal conditions while the load cycles applied under isothermal conditions yield additional changes in pore space microstructure. The experimental results were applied to a geothermal fluid production scenario to constrain drawdown and time-dependent effects on the reservoir, overall, to provide a reference for the hydromechanical behavior of geothermal systems in carbonate, and more specifically, in Upper Jurassic lithologies.

  12. Demographic Mechanisms of Reef Coral Species Winnowing from Communities under Increased Environmental Stress

    Directory of Open Access Journals (Sweden)

    Bernhard Riegl

    2017-10-01

    Full Text Available Winnowing of poorly-adapted species from local communities causes shifts/declines in species richness, making ecosystems increasingly ecologically depauperate. Low diversity can be associated with marginality of environments, which is increasing as climate change impacts ecosystems globally. This paper demonstrates the demographic mechanisms (size-specific mortality, growth, fertility; and metapopulation connectivity associated with population-level changes due to thermal stress extremes for five zooxanthellate reef-coral species. Effects vary among species, leading to predictable changes in population size and, consequently, community structure. The Persian/Arabian Gulf (PAG is an ecologically marginal reef environment with a subset of Indo-Pacific species, plus endemics. Local heating correlates with changes in coral population dynamics and community structure. Recent population dynamics of PAG corals were quantified in two phases (medium disturbed MD 1998–2010 and 2013–2017, severely disturbed SD 1996/8, 2010/11/12 with two stable states of declining coral frequency and cover. The strongest changes in life-dynamics, as expressed by transition matrices solved for MD and SD periods were in Acropora downingi and Porites harrisoni, which showed significant partial and whole-colony mortality (termed “shrinkers”. But in Dipsastrea pallida, Platygyra daedalea, Cyphastraea microphthalma the changes to life dynamics were more subtle, with only partial tissue mortality (termed “persisters”. Metapopulation models suggested recovery predominantly in species experiencing partial rather than whole-colony mortality. Increased frequency of disturbance caused progressive reduction in coral size, cover, and population fecundity. Also, the greater the frequency of disturbance, the more larval connectivity is required to maintain the metapopulation. An oceanographic model revealed important local larval retention and connectivity primarily between

  13. Mechanical and tribological behaviour of molten salt processed self-lubricated aluminium composite under different treatments

    Science.gov (United States)

    Kannan, C.; Ramanujam, R.

    2018-05-01

    The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.

  14. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained......In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...

  15. Influence of safety vlave pressure on gelled electrolyte valve-regulated lead/acid batteries under deep cycling applications

    International Nuclear Information System (INIS)

    Oh, Sang Hyub; Kim, Myung Soo; Lee, Jin Bok; Lee, Heung Lark

    2002-01-01

    Cycle life tests have been carried out to evaluate the influence of safety valve pressure on vlave regulated lead/acid batteries under deep cycling applications. Batteries were cycled at 5 hour rates at 100 % DOD, and safety valve pressure was set to 1.08 and 2.00 bar, respectively. The batteries lost 248.3 g of water for each case after about 1,200 cycles, but the cyclic performances of the batteries were comparable. Most of the gas of the battery during discharging was hydrogen, and the oxygen concentration increased to 18 % after 3 hours of charging. The micro structure of the positive active materials was completely changed and the corrosion layer of the positive grid was less than 50 μm, regardless of the pressure of the safety valve after cycle life tests. The cause of discharge capacity decrease was found to water loss and the shedding of the positive active materials. The pressure of safety valve does not give little effect to the cyclic performance and the failure modes of the gelled electrolyte valve-regulated lead acid batteries

  16. Effect of spin-orbit interactions on the structural stability, thermodynamic properties, and transport properties of lead under pressure

    Science.gov (United States)

    Smirnov, N. A.

    2018-03-01

    The paper investigates the role of spin-orbit interaction in the prediction of structural stability, lattice dynamics, elasticity, thermodynamic and transport properties (electrical resistivity and thermal conductivity) of lead under pressure with the FP-LMTO (full-potential linear-muffin-tin orbital) method for the first-principles band structure calculations. Our calculations were carried out for three polymorphous lead modifications (fcc, hcp, and bcc) in generalized gradient approximation with the exchange-correlation functional PBEsol. They suggest that compared to the scalar-relativistic calculation, the account for the SO effects insignificantly influences the compressibility of Pb. At the same time, in the calculation of phonon spectra and transport properties, the role of SO interaction is important, at least, for P ≲150 GPa. At higher pressures, the contribution from SO interaction reduces but not vanishes. As for the relative structural stability, our studies show that SO effects influence weakly the pressure of the fcc →hcp transition and much higher the pressure of the hcp →bcc transition.

  17. Enhancement of radiation effect using beta-lapachone and underlying mechanism

    International Nuclear Information System (INIS)

    Ahn, Ki Jung; Lee, Hyung Sik; Bai, Se Kyung; Song, Chang Won

    2013-01-01

    Beta-lapachone (β-Lap; 3,4-dihydro-2, 2-dimethyl-2H-naphthol[1, 2-b]pyran-5,6-dione) is a novel anti-cancer drug under phase I/II clinical trials. (β-Lap has been demonstrated to cause apoptotic and necrotic death in a variety of human cancer cells in vitro and in vivo. The mechanisms underlying the (β-Lap toxicity against cancer cells has been controversial. The most recent view is that (β-Lap, which is a quinone compound, undergoes two-electron reduction to hydroquinone form utilizing NAD(P)H or NADH as electron source. This two-electron reduction of (β-Lap is mediated by NAD(P)H:quinone oxidoreductase (NQO1), which is known to mediate the reduction of many quinone compounds. The hydroquinone forms of (β-Lap then spontaneously oxidizes back to the original oxidized (β-Lap, creating futile cycling between the oxidized and reduced forms of (β-Lap. It is proposed that the futile recycling between oxidized and reduced forms of (β-Lap leads to two distinct cell death pathways. First one is that the two-electron reduced (β-Lap is converted first to one-electron reduced (β-Lap, i.e., semiquinone (β-Lap (SQ)- causing production of reactive oxygen species (ROS), which then causes apoptotic cell death. The second mechanism is that severe depletion of NAD(P)H and NADH as a result of futile cycling between the quinone and hydroquinone forms of β- p causes severe disturbance in cellular metabolism leading to apoptosis and necrosis. The relative importance of the aforementioned two mechanisms, i.e., generation of ROS or depletion of NAD(P)H/NADH, may vary depending on cell type and environment. Importantly, the NQO1 level in cancer cells has been found to be higher than that in normal cells indicating that β-Lap may be preferentially toxic to cancer cells relative to non-cancer cells. The cellular level of NQO1 has been found to be significantly increased by divergent physical and chemical stresses including ionizing radiation. Recent reports clearly demonstrated

  18. A case of hypoglycemiainduced QT prolongation leading to torsade de pointes and a review of pathophysiological mechanisms

    Directory of Open Access Journals (Sweden)

    Faris Hannoodi

    2017-06-01

    Full Text Available Torsades de pointes is a life-threatening cardiac arrhythmia. Occurrence of this arrhythmia as a result of hypoglycemia has not been reported in the literature. We describe an interesting case of an insulindependent diabetic patient presenting with torsades de pointes resulting from hypoglycemia. A 62-year-old male was admitted to the hospital following an episode of severe insulin-induced hypoglycemia and a cardiac arrest. He was found to unresponsive at home after taking insulin. His serum glucose was found to be 18. He was given juice initially to normalize his glucose and was then transferred by EMS to ER where he was given 5% dextrose infusion. Analysis of the LifeVest rhythm recording showed torsades de pointes that was terminated by defibrillation of the LifeVest. Several mechanisms are responsible for torsade, including QT interval prolongation, adrenalin secretion and calcium overload leading to intracellular calcium oscillations. These mechanisms are a trigger to torsade de pointes. Predisposing factors were present leading torsade to occur.

  19. Investigation of reaction mechanisms during electroreduction of carbon dioxide on lead electrode for the production of organic compounds

    International Nuclear Information System (INIS)

    Innocent, B.

    2008-09-01

    The aim of this work was to promote the reduction of CO 2 through its electrochemical conversion (electro-synthesis) on a lead electrode into high added value products. Depending on the nature of electrolyte, the electro-reduction of carbon dioxide leads to different products. Various electrolytes (aqueous or organic, protic or aprotic) were used to study two mechanisms: hydrogenation (formation of formate) and electro-dimerization (synthesis of oxalate). Cyclic voltammetry studies have been carried out for electrochemically characterizing CO 2 reduction on Pb. The electrochemical investigation of the electrode electrolyte interface has shown that the process of CO 2 electro-reduction is a mass transfer control both in the organic and aqueous media. Electrochemical experiments (cyclic voltammetry, chrono-amperometry) coupled with in situ infrared reflectance spectroscopic techniques (SPAIRS, SNIFTIRS) have also shown that in aqueous medium (7 ≤pH≤9) hydrogeno-carbonate ions were reduced to formate. The modification of solvent (propylene carbonate) leads selectively to oxalate as the main reaction product. Long-term electrolyses were performed in a filter-press cell to deal large volumes. In aqueous medium, the reduction of HCO 3 - to HCOO - (R F = 89% at -2.5 mA cm -2 and 4 C) is always accompanied by the production of H 2 . (author)

  20. Evolution of fuel rod support under irradiation impact on the mechanical behaviour of fuel assemblies

    International Nuclear Information System (INIS)

    Billerey, Antoine; Waeckel, Nicolas

    2005-01-01

    New fuel management targets imply to increase fuel assembly discharge burnup. Therefore, the prediction of the mechanical behaviour of the irradiated fuel assembly is essential such as excessive fuel assembly distortion induce incomplete Rod Cluster Control Assembly insertion problems (safety issue) or fuel rod vibration induced wear leading to leaking rods (plant operation problems). Within this framework, one of the most important parameter is the knowledge of the fuel rod support in the grid cell because it directly governs the mechanical behaviour of the fuel assembly and consequently allows to predict the behaviour of irradiated structures in terms of (1) axial and lateral deformation (global behaviour of the assembly) and (2) rod vibration induced wear (local behaviour of the rod). Generally, fuel rod support is provided by a spring-dimple system fixed to the grid. During irradiation, the spring force decreases and a gap between the rod and the spring may occur. This phenomenon is due to (1) stress relieving in the spring and in the dimples, (2) grid growth and (3) reduction of the rod diameter. Two models have been developed to predict the behaviour of the rod in the cell. The first model is dedicated to the evaluation of the spring force relaxation during irradiation. The second one can assess the rotation characteristic of the fuel rod in the cell, function of the spring force. The main input parameters are (1) the creep laws of the grid materials, (2) the growth law of the grid, (3) the evolution of rod diameter and (4) the design of the fuel rod support. The aim of this paper is to: (1) evaluate the consequences of grid support design modifications on the rod vibration sensitivity in terms of predicted rod to grid maximum gap during irradiation and time in operation with an open rod to grid gap, (2) evaluate, using a linear or non-linear Finite Element assembly model, the impact of the evolution of grid support under irradiation on the overall mechanical

  1. Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection.

    Science.gov (United States)

    Senba, Masachika; Mori, Naoki

    2012-10-02

    Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility complex (MHC) class I molecules are patrolled by natural killer cells and CD8+ cytotoxic T lymphocytes, respectively. This system of recognition is a main target for the strategies of immune evasion deployed by viruses. The viral immune evasion proteins constitute useful tools to block defined stages of the MHC class I presentation pathway, and in this way HPV avoids the host immune response. The long latency period from initial infection to persistence signifies that HPV evolves mechanisms to escape the immune response. It has now been established that there are oncogenic mechanisms by which E7 binds to and degrades tumor suppressor Rb, while E6 binds to and inactivates tumor suppressor p53. Therefore, interaction of p53 and pRb proteins can give rise to an increased immortalization and genomic instability. Overexpression of NF-κB in cervical and penile cancers suggests that NF-κB activation is a key modulator in driving chronic inflammation to cancer. HPV oncogene-mediated suppression of NF-κB activity contributes to HPV escape from the immune system. This review focuses on the diverse mechanisms of the virus immune evasion with HPV that leads to chronic inflammation and cancer.

  2. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  3. Retinal ganglion cells: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells

    Science.gov (United States)

    Kameneva, T.; Maturana, M. I.; Hadjinicolaou, A. E.; Cloherty, S. L.; Ibbotson, M. R.; Grayden, D. B.; Burkitt, A. N.; Meffin, H.

    2016-02-01

    Objective. ON and OFF retinal ganglion cells (RGCs) are known to have non-monotonic responses to increasing amplitudes of high frequency (2 kHz) biphasic electrical stimulation. That is, an increase in stimulation amplitude causes an increase in the cell’s spike rate up to a peak value above which further increases in stimulation amplitude cause the cell to decrease its activity. The peak response for ON and OFF cells occurs at different stimulation amplitudes, which allows differential stimulation of these functional cell types. In this study, we investigate the mechanisms underlying the non-monotonic responses of ON and OFF brisk-transient RGCs and the mechanisms underlying their differential responses. Approach. Using in vitro patch-clamp recordings from rat RGCs, together with simulations of single and multiple compartment Hodgkin-Huxley models, we show that the non-monotonic response to increasing amplitudes of stimulation is due to depolarization block, a change in the membrane potential that prevents the cell from generating action potentials. Main results. We show that the onset for depolarization block depends on the amplitude and frequency of stimulation and reveal the biophysical mechanisms that lead to depolarization block during high frequency stimulation. Our results indicate that differences in transmembrane potassium conductance lead to shifts of the stimulus currents that generate peak spike rates, suggesting that the differential responses of ON and OFF cells may be due to differences in the expression of this current type. We also show that the length of the axon’s high sodium channel band (SOCB) affects non-monotonic responses and the stimulation amplitude that leads to the peak spike rate, suggesting that the length of the SOCB is shorter in ON cells. Significance. This may have important implications for stimulation strategies in visual prostheses.

  4. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  5. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies.

    Science.gov (United States)

    Truini, Andrea; Cruccu, Giorgio

    2016-02-01

    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  6. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    OpenAIRE

    FÁBIO PALCZEWSKI PACHECO; LÚCIA HELENA PEREIRA NÓBREGA; GISLAINE PICOLLO DE LIMA; MÁRCIA SANTORUM; WALTER BOLLER; LORIVAN FORMIGHIERI

    2015-01-01

    The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial ...

  7. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  8. Metabolic acidosis as an underlying mechanism of respiratory distress in children with severe acute asthma.

    Science.gov (United States)

    Meert, Kathleen L; Clark, Jeff; Sarnaik, Ashok P

    2007-11-01

    1) To alert the clinician that increasing rate and depth of breathing during treatment of acute asthma may be a manifestation of metabolic acidosis with hyperventilation rather than worsening airway obstruction; and 2) to describe the frequency of metabolic acidosis with hyperventilation in children with severe acute asthma admitted to our pediatric intensive care unit. Retrospective medical record review. University-affiliated children's hospital. All patients admitted to the pediatric intensive care unit with a diagnosis of asthma between January 1, 2005, and December 31, 2005. None. Fifty-three patients with asthma (median age 7.8 yrs, range 0.7-17.9 yrs; 35 [66%] male; 46 [87%] black and 7 [13%] white) were admitted to the pediatric intensive care unit during the study period. Fifteen (28%) patients developed metabolic acidosis with hyperventilation (pH 120 mg/dL [6.7 mmol/L]). Patients who developed metabolic acidosis with hyperventilation received asthma therapy similar to that received by patients who did not develop the disorder. Metabolic acidosis resolved contemporaneously with tapering of beta2-adrenergic agonists and administration of supportive care. All patients survived. Metabolic acidosis with hyperventilation manifesting as respiratory distress can occur in children with severe acute asthma. A pathophysiologic rationale exists for the contribution of beta2-adrenergic agents to the development of this acid-base disorder. Failure to recognize metabolic acidosis as the underlying mechanism of respiratory distress may lead to inappropriate intensification of bronchodilator therapy. Supportive care and tapering of beta2-adrenergic agents are recommended to resolve this condition.

  9. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  10. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  11. An investigation of the mechanism underlying teacher aggression: Testing I3 theory and the General Aggression Model.

    Science.gov (United States)

    Montuoro, Paul; Mainhard, Tim

    2017-12-01

    Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. This study investigated whether the mechanism underlying teacher aggression follows I 3 theory or General Aggression Model (GAM) metatheory of human aggression. I 3 theory explains exceptional, catastrophic events of human aggression, whereas the GAM explains common human aggression behaviours. A total of 249 Australian teachers participated in this study, including 142 primary school teachers (Mdn [age] = 35-39 years; Mdn [years teaching] = 10-14 years; 84% female) and 107 secondary school teachers (Mdn [age] = 45-49 years; Mdn [years teaching] = 15-19 years; 65% female). Participants completed four online self-report questionnaires, which assessed caregiving responsiveness, trait self-control, misbehaviour provocation, and teacher aggression. Analyses revealed that the GAM most accurately captures the mechanism underlying teacher aggression, with lower caregiving responsiveness appearing to indirectly lead to teacher aggression via higher misbehaviour provocation and lower trait self-control in serial, controlling for gender, age, years teaching, and current role (primary, secondary). This study indicates that teacher aggression proceeds from 'the person in the situation'. Specifically, lower caregiving responsiveness appears to negatively shape a teacher's affective, cognitive, and arousal states, which influence how they perceive and interpret student misbehaviour. These internal states, in turn, appear to negatively influence appraisal and decision processes, leading to immediate appraisal and impulsive actions. These results raise the possibility that teacher aggression is a form of countertransference. © 2017 The British Psychological Society.

  12. The effect of grain and pore sizes on the mechanical behavior of thin Al films deposited under different conditions

    International Nuclear Information System (INIS)

    Ben-David, E.; Landa, M.; Janovská, M.; Seiner, H.; Gutman, O.; Tepper-Faran, T.; Shilo, D.

    2015-01-01

    This paper presents a comprehensive study of the relationships between deposition conditions, microstructure and mechanical behavior in thin aluminum films commonly used in micro and nano-devices. A particular focus is placed on the effect of porosity, which is present in all thin films deposited by evaporation or sputtering techniques. The influences of the deposition temperature on the grain size, pore size and crystallographic texture were characterized by X-ray diffraction and scanning electron microscopy. The mechanical behavior of the films was investigated using four different methods. Each method is suitable for characterizing different properties and for testing the material at different length scales. Nanoindentation was used to study hardness at the level of individual grains; resonant ultrasound spectroscopy was used to measure the elastic moduli and porosity; and bulge and tensile tests were used to study released films under biaxial and uniaxial tensions. Our results demonstrate that even low porosities may have tremendous effects on the mechanical properties and that different methods allow the capture of different aspects of these effects. Therefore, a combination of several methods is required to obtain a comprehensive understanding of the mechanical behavior of a film. It is also shown that porosity with different pore size leads to very different effects on the mechanical behavior

  13. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  14. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  15. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.

    Science.gov (United States)

    Zoladz, J A; Korzeniewski, B; Grassi, B

    2006-11-01

    It is well known that the oxygen uptake kinetics during rest-to-work transition (V(O2) on-kinetics) in trained subjects is significantly faster than in untrained individuals. It was recently postulated that the main system variable that determines the transition time (t(1/2)) of the V(O2) on-kinetics in skeletal muscle, at a given moderate ATP usage/work intensity, and under the assumption that creatine kinase reaction works near thermodynamic equilibrium, is the absolute (in mM) decrease in [PCr] during rest-to-work transition. Therefore we postulate that the training-induced acceleration of the V(O2) on-kinetics is a marker of an improvement of absolute metabolic stability in skeletal muscles. The most frequently postulated factor responsible for enhancement of muscle metabolic stability is the training-induced increase in mitochondrial proteins. However, the mechanism proposed by Gollnick and Saltin (1982) can improve absolute metabolic stability only if training leads to a decrease in resting [ADP(free)]. This effect is not observed in many examples of training causing an acceleration of the V(O2) on-kinetics, especially in early stages of training. Additionally, this mechanism cannot account for the significant training-induced increase in the relative (expressed in % or as multiples of the resting values) metabolic stability at low work intensities, condition in which oxidative phosphorylation is not saturated with [ADP(free)]. Finally, it was reported that in the early stage of training, acceleration in the V(O2) on-kinetics and enhancement of muscle metabolic stability may precede adaptive responses in mitochondrial enzymes activities or mitochondria content. We postulate that the training-induced acceleration in the V(O2) on-kinetics and the improvement of the metabolite stability during moderate intensity exercise in the early stage of training is mostly caused by an intensification of the "parallel activation" of ATP consumption and ATP supply pathways

  16. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  17. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  18. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  19. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    Science.gov (United States)

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil.

  20. Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to Fragile-X syndrome

    Science.gov (United States)

    Quartier, Angélique; Poquet, Hélène; Gilbert-Dussardier, Brigitte; Rossi, Massimiliano; Casteleyn, Anne-Sophie; Portes, Vincent des; Feger, Claire; Nourisson, Elsa; Kuentz, Paul; Redin, Claire; Thevenon, Julien; Mosca-Boidron, Anne-Laure; Callier, Patrick; Muller, Jean; Lesca, Gaetan; Huet, Frédéric; Geoffroy, Véronique; El Chehadeh, Salima; Jung, Matthieu; Trojak, Benoit; Le Gras, Stéphanie; Lehalle, Daphné; Jost, Bernard; Maury, Stéphanie; Masurel, Alice; Edery, Patrick; Thauvin-Robinet, Christel; Gérard, Bénédicte; Mandel, Jean-Louis; Faivre, Laurence; Piton, Amélie

    2017-01-01

    Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5′-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up. PMID:28176767

  1. A Poroelasticity Theory Approach to Study the Mechanisms Leading to Elevated Interstitial Fluid Pressure in Solid Tumours.

    Science.gov (United States)

    Burazin, Andrijana; Drapaca, Corina S; Tenti, Giuseppe; Sivaloganathan, Siv

    2018-05-01

    Although the mechanisms responsible for elevated interstitial fluid pressure (IFP) in tumours remain obscure, it seems clear that high IFP represents a barrier to drug delivery (since the resulting adverse pressure gradient implies a reduction in the driving force for transvascular exchange of both fluid and macromolecules). R. Jain and co-workers studied this problem, and although the conclusions drawn from their idealized mathematical models offered useful insights into the causes of elevated IFP, they by no means gave a definitive explanation for this phenomenon. In this paper, we use poroelasticity theory to also develop a macroscopic mathematical model to describe the time evolution of a solid tumour, but focus our attention on the mechanisms responsible for the rise of the IFP, from that for a healthy interstitium to that measured in malignant tumours. In particular, we discuss a number of possible time scales suggested by our mathematical model and propose a tumour-dependent time scale that leads to results in agreement with experimental observations. We apply our mathematical model to simulate the effect of "vascular normalization" (as proposed by Jain in Nat Med 7:987-989, 2001) on the IFP profile and discuss and contrast our conclusions with those of previous work in the literature.

  2. ACTIVATION MECHANISMS OF GUT-ASSOCIATED LYMPHOID TISSUE UNDER CHRONIC SOCIAL STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. M. Kamyshnyi

    2015-01-01

    Full Text Available Stress-induced immune disregulation is a risk factor of autoimmune and inflammatory diseases, but, so far, the mechanisms for this effect are not fully known. Expression levels of specific mRNAs were assessed in gut-associated lymphoid tissue (GALT from Wistar rats subjected to chronic social stress (CSS. Gene expression was evaluated for NR3C1, Adrβ2, as well as IL-1β, IL-17α pro-inflammatory cytokines, and Nlrp, an inflammasome gene. Under the CSS conditions, we have shown altered distribution of RORγt +, FoxP3+, LMP2+, XBP1+ lymphocytes in GALT.The experiments were carried out with female Wistar rats aged 5–6 months. Specific mRNA expression for the target genes was determined by means of real-time PCR performed in a CFX96™ thermocycler («BioRadLaboratories, Inc»,USA. Relative levels of a target gene expression were quantified by the ΔΔCt method, being compared with rat GAPDH reference gene expression. Statistical analysis was performed with available «BioRad СFX Manager 3.1» software. Specific monoclonal rat antibodes were used for detection of immunopositive lymphocytes by means of indirect immunofluorescence technique.CSS development leads to decreased levels of mRNA expression for Nr3c1 and Adrβ2-genes in the GALT cells, being accompanied with unidirectional changes, i.e., increased transcription of pro-inflammatory cytokine mRNAs (IL-1β, IL-17α and Nlrp3-inflammasome genes. These changes are accompanied by decreased FoxP3+/RORγt + cell ratio and predominant Th17 differentiation accompanied by suppressor failure. In addition, CSS development was characterized by unidirectional tendency for increasing total number of LMP2+ lymphocytes and reduced ХВР1+ cell population density in lymphoid structures of rat ileum.The events observed in GALT cell populations under CSS conditions are opposing classical paradigm of the stress response. The CSS-associated effects do not promote immunosuppression, however, are able to cause

  3. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  4. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  5. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  6. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  7. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Mortensen, Laust; Andersen, Anne-Marie Nybo

    2011-01-01

    The mechanisms underlying the association between maternal age (both young and older maternal age) and adverse perinatal outcomes are unclear. Methods We examined the association of maternal age at first birth with preterm birth (<37 weeks gestation) and small for gestational age (SGA) in a cohor...

  8. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  9. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  10. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    Science.gov (United States)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  11. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    Science.gov (United States)

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  12. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  13. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  14. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    Science.gov (United States)

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  15. Fatigue behaviour of coke drum materials