WorldWideScience

Sample records for underlying mantle source

  1. Mantle source heterogeneity of the Early Jurassic basalt of eastern North America

    Science.gov (United States)

    Gregory Shellnutt, J.; Dostal, Jaroslav; Yeh, Meng-Wan

    2018-04-01

    One of the defining characteristics of the basaltic rocks from the Early Jurassic Eastern North America (ENA) sub-province of the Central Atlantic Magmatic Province (CAMP) is the systematic compositional variation from South to North. Moreover, the tectono-thermal regime of the CAMP is debated as it demonstrates geological and structural characteristics (size, radial dyke pattern) that are commonly associated with mantle plume-derived mafic continental large igneous provinces but is considered to be unrelated to a plume. Mantle potential temperature ( T P) estimates of the northern-most CAMP flood basalts (North Mountain basalt, Fundy Basin) indicate that they were likely produced under a thermal regime ( T P ≈ 1450 °C) that is closer to ambient mantle ( T P ≈ 1400 °C) conditions and are indistinguishable from other regions of the ENA sub-province ( T Psouth = 1320-1490 °C, T Pnorth = 1390-1480 °C). The regional mantle potential temperatures are consistent along the 3000-km-long ENA sub-province suggesting that the CAMP was unlikely to be generated by a mantle plume. Furthermore, the mantle potential temperature calculation using the rocks from the Northern Appalachians favors an Fe-rich mantle (FeOt = 8.6 wt %) source, whereas the rocks from the South Appalachians favor a less Fe-rich (FeOt = 8.3 wt %) source. The results indicate that the spatial-compositional variation of the ENA basaltic rocks is likely related to differing amounts of melting of mantle sources that reflect the uniqueness of their regional accreted terranes (Carolinia and West Avalonia) and their post-accretion, pre-rift structural histories.

  2. Tracking the evolution of mantle sources with incompatible element ratios in stagnant-lid and plate-tectonic planets

    Science.gov (United States)

    Condie, Kent C.; Shearer, Charles K.

    2017-09-01

    The distribution of high field strength incompatible element ratios Zr/Nb, Nb/Th, Th/Yb and Nb/Yb in terrestrial oceanic basalts prior to 2.7 Ga suggests the absence or near-absence of an enriched mantle reservoir. Instead, most oceanic basalts reflect a variably depleted mantle source similar in composition to primitive mantle. In contrast, basalts from hydrated mantle sources (like those associated with subduction) exist from 4 Ga onwards. The gradual appearance of enriched mantle between 2 and 3 Ga may reflect the onset and propagation of plate tectonics around the globe. Prior to 3 Ga, Earth may have been in a stagnant-lid regime with most basaltic magmas coming from a rather uniform, variably depleted mantle source or from a non-subduction hydrated mantle source. It was not until the extraction of continental crust and accompanying propagation of plate tectonics that ;modern type; enriched and depleted mantle reservoirs developed. Consistent with the absence of plate tectonics on the Moon is the near absence of basalts derived from depleted (DM) and enriched (EM) mantle reservoirs as defined by the four incompatible element ratios of this study. An exception are Apollo 17 basalts, which may come from a mixed source with a composition similar to primitive mantle as one end member and a high-Nb component as the other end member. With exception of Th, which requires selective enrichment in at least parts of the martian mantle, most martian meteorites can be derived from sources similar to terrestrial primitive mantle or by mixing of enriched and depleted mantle end members produced during magma ocean crystallization. Earth, Mars and the Moon exhibit three very different planetary evolution paths. The mantle source regions for Mars and the Moon are ancient and have HFS element signatures of magma ocean crystallization well-preserved, and differences in these signatures reflect magma ocean crystallization under two distinct pressure regimes. In contrast, plate

  3. Investigating the Mantle Source of the Lunar Crater Volcanic Field, Nevada: Evidence of a Thermal Plume?

    Science.gov (United States)

    Lee, J. W.; Roden, M.

    2016-12-01

    The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689

  4. Robust determination of earthquake source parameters and mantle attenuation

    Science.gov (United States)

    Ko, Yen-Ting; Kuo, Ban-Yuan; Hung, Shu-Huei

    2012-04-01

    An improved inversion technique is needed to effectively separate the frequency dependence of the source from the intrinsic attenuation of the medium. We developed a cluster-event method (CEM) in which clusters of nearby events, instead of individual events, pair with stations to form the basis for measurements ofQ value and corner frequency (fc). We assume that the raypaths from one cluster to a station share an identical Q while each event in the same cluster is allowed for only one fcin the inversion process. This approach largely reduces the degrees of freedom to achieve a robust inversion. We use an optimization algorithm of simulated annealing to solve the nonlinear inverse problem. The CEM was applied to events at 70-150 km depths in the Japan subduction zone recorded by F-net. We show that the method proposed here leads to better constraints on both source parameters and attenuation. The resultantQ's in the mantle wedge increase from lower than 300 beneath the arc and back-arc to greater than 600 in the fore-arc region. Thefc's satisfy a self-similar scaling relationship with seismic moment ofM0 ∝ fc-3 with a best fit stress drop of 21.9 ± 6.9 MPa in Madariaga's form. This contrasts to the stress drop of 1.4 ± 1.1 MPa for a global data set composed of prior measurements for crustal events. The results of this study agree with results from previous studies, except with an upward deviation due to higher corner frequencies and stress drops.

  5. Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot

    Science.gov (United States)

    Nelson, P.; Grand, S.

    2017-12-01

    The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.

  6. Physical and petrologic evidence for a two component mantle MORB source

    Science.gov (United States)

    Dick, H.; Standish, J.; Snow, J.; Michael, P.; Salters, V.

    2003-04-01

    Study of ultra-slow spreading sections of the Southwest Indian and Gakkel Ridges support a two-component (veined?) mantle source for MORB. At both the Southwest Indian and Gakkel Ridges, mantle upwelling slows continuously over long sections of the ridge system due to changing ridge geometry and position with respect to the pole of rotation. For a simple peridotitic mantle this predicts steadily decreasing crustal production due to conductive heat loss depressing the top of the mantle-melting column. Instead, at 16 degrees E on the Southwest Indian Ridge and at 3 degrees E on the Gakkel, seafloor spreading abruptly goes from magmatic to amagmatic, with peridotite instead of basalt emplaced to the sea floor for long distances. As the mantle upwelling rate continues to decrease, however, volcanism reappears on both ridges at point source volcanoes and at large long-lived cross-axis volcanic highs, with intervening amagmatic segments. Such low levels of crustal production show that mantle melting is limited, and that abyssal peridotites there must have compositions close to unmelted mantle. However, significant areas of the amagmatic sections of the SW Indian and Gakkel Ridges appear to be floored dominantly by harzburgite, while other regions predominantly expose lherzolite. This poses a problem for modeling the MORB source as simply peridotite; as harzburgite is too depleted too generate MORB. The limited melt production during ultra-slow spreading also makes it difficult to produce the harzburgite during the axial mantle-melting event from lherzolite. In this case there is likely another mantle component contributing to MORB generation. Basalts over the transition from slow to ultra-slow spreading show a regular compositional gradient over 1000 km. Helium isotopes range from only 7.3 RA to 6.3 RA across this region, suggesting that while there is a chemical gradient in the mantle, there is not an abrupt change in the mantle source at the 16 degree E discontinuity

  7. Upper mantle viscosity and lithospheric thickness under Iceland

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Drury, M.R.

    2011-01-01

    Deglaciation during the Holocene on Iceland caused uplift due to glacial isostatic adjustment. Relatively low estimates for the upper mantle viscosity and lithospheric thickness result in rapid uplift responses to the deglaciation cycles on Iceland. The relatively high temperatures of the upper

  8. Three-dimensional P velocity structure of the crust and upper mantle under Beijing region

    Energy Technology Data Exchange (ETDEWEB)

    Quan, A.; Liu, F.; Sun, Y.

    1980-04-01

    By use of the teleseismic P arrival times at 15 stations of the Beijing network for 120 events distributed over various azimuths, we studied the three-dimensional P velocity structure under the Beijing region. In calculating the theoretic travel time, we adopted the source parameters given in BISC, and used the J-B model as the standard model of earth. On inversion, we adopted singular value decomposition as a generalized inversion package, which can be used for solving very large over-determined systems of equations Gm = t without resorting to normal equations G/sup T/Gm = G/sup T/t. The results are that within the crust and upper mantle under the Beijing region there are clear lateral differences. In the results obtained by use of data from 1972 to 1975, it can be seen that there are three different zones of P-velocity. In the southeast Beijing region, P velocity is lower than that of the normal model by 10 to 14% within the crust, and by 8 to 9% within the upper mantle. The northwest Beijing region is a higher-velocity zone, within which the average P-velocity is faster than that of the normal model by about 9%. It disappears after entering into the upper mantle. The central part of this region is a normal zone. On the surface, the distribution of these P velocity variations corresponds approximately to the distribution of the over-burden. But in the deeper region, the distribution of velocity variation agrees with the distribution of seismicity. It is interesting to note that the hypocenters of several major earthquakes in this region, e.g., the Sanhe-Pinggu earthquake (1679, M = 8), the Shacheng earthquake (1730, M = 6-3/4) and the Tangshan earthquake (1976, M = 7.8), are all located very close to this boundary of these P-velocity variation zones.

  9. Crust and mantle structure under Botswana - the new key-player in African geodynamics?

    Science.gov (United States)

    van der Meijde, M.; Fadel, I.; Paulssen, H.

    2016-12-01

    The 3D crustal and upper mantle structure of Botswana is a major gap in our knowledge about the tectonic evolution of Africa. We will present a new model for crust and upper mantle structure. Our model is based on data from the NARS Botswana and AfricaArray networks, broadband temporary networks in southern Africa (Botswana, Namibia, South Africa and Zambia). The NARS-Botswana seismic network was established to provide broadband recordings in Botswana, covering one of the least studied regions in the world. It is an area that is for a large part covered by the Kalahari sands but also covers the southwestern most branch of the African Rift under the Okavango delta. The goal is to understand how the rifting process and cratonic provinces influence crustal thickness and couple to the underlying mantle. Crust and upper mantle structure, down to the bottom of the mantle transition zone, will be based on receiver function analysis. We observe crustal thicknesses between 35 and 46 km, strongly linked to basins and cratons in the region. The central Kalahari part, which has been previously unstudied, showed some anomalous structure, possibly suggesting melt in the lower crust. The deeper mantle structure shows a discontinuity between 100-150 km depth for a large number of the stations. The mantle transition zone varies in thickness and sharpness of the bounding discontinuities suggesting active dynamical processes underneath Botswana.

  10. Mantle cloaks for elliptical cylinders excited by an electric line source

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Yakovlev, Alexander B.; Arslanagic, Samel

    2016-01-01

    We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number of configu......We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number...

  11. A large mantle water source for the northern San Andreas Fault System: A ghost of subduction past

    Science.gov (United States)

    Kirby, Stephen H.; Wang, Kelin; Brocher, Thomas M.

    2014-01-01

    Recent research indicates that the shallow mantle of the Cascadia subduction margin under near-coastal Pacific Northwest U.S. is cold and partially serpentinized, storing large quantities of water in this wedge-shaped region. Such a wedge probably formed to the south in California during an earlier period of subduction. We show by numerical modeling that after subduction ceased with the creation of the San Andreas Fault System (SAFS), the mantle wedge warmed, slowly releasing its water over a period of more than 25 Ma by serpentine dehydration into the crust above. This deep, long-term water source could facilitate fault slip in San Andreas System at low shear stresses by raising pore pressures in a broad region above the wedge. Moreover, the location and breadth of the water release from this model gives insights into the position and breadth of the SAFS. Such a mantle source of water also likely plays a role in the occurrence of Non-Volcanic Tremor (NVT) that has been reported along the SAFS in central California. This process of water release from mantle depths could also mobilize mantle serpentinite from the wedge above the dehydration front, permitting upward emplacement of serpentinite bodies by faulting or by diapiric ascent. Specimens of serpentinite collected from tectonically emplaced serpentinite blocks along the SAFS show mineralogical and structural evidence of high fluid pressures during ascent from depth. Serpentinite dehydration may also lead to tectonic mobility along other plate boundaries that succeed subduction, such as other continental transforms, collision zones, or along present-day subduction zones where spreading centers are subducting.

  12. New Constraints on Upper Mantle Structure Underlying the Diamondiferous Central Slave Craton, Canada, from Teleseismic Body Wave Tomography

    Science.gov (United States)

    Esteve, C.; Schaeffer, A. J.; Audet, P.

    2017-12-01

    Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.

  13. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    Science.gov (United States)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    extreme Pb isotopic values distinct from any recognised terrestrial reservoir. We suggest that this type of young, carbonatite-related radiogenic Pb signature with extreme 238U/204Pb and 232Th/204Pb, which is widely observed in the southwest Pacific, may reflect a secular change in mantle chemistry consistent with the increased prevalence of carbonatite sources during the Phanerozoic. This signature is referred to as "CarboHIMU", to differentiate it from the originally defined HIMU representing an ancient lower mantle component present in some ocean island basalts.

  14. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.

    2015-01-01

    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...

  15. Geochemical insights into the lithology of mantle sources for Cenozoic alkali basalts in West Qinling, China

    Science.gov (United States)

    Dai, Li-Qun; Zheng, Fei; Zhao, Zi-Fu; Zheng, Yong-Fei

    2018-03-01

    Although alkali basalts are common in oceanic islands and continental rifts, the lithology of their mantle sources is still controversial. While the peridotite is usually viewed as a common source lithology, there are increasing studies suggesting significant contributions from ultramafic metasomatites such as carbonated peridotite, pyroxenite and hornblendite to the origin of alkali basalts. The present study indicates that carbonated peridotite plus hornblendite would have served as the mantle sources of Cenozoic alkali basalts from the West Qinling orogen in China. The target basalts show low SiO2 contents of 36.9 to 40.8 wt% and highly variable Na2O + K2O contents from 0.86 to 4.77 wt%, but high CaO contents of 12.5 to 16.3 wt% and CaO/Al2O3 ratios of 1.42 to 2.19. They are highly enriched in the majority of incompatible trace elements, but depleted in Rb, K, Pb, Zr, Hf, and Ti. Furthermore, they exhibit high (La/Yb)N, Zr/Hf, Ce/Pb and Nb/Ta ratios, but low Ti/Eu and Hf/Sm ratios. Generally, with increasing (La/Yb)N and CaO/Al2O3 ratios, their Ti/Eu and Hf/Sm ratios decrease whereas their Zr/Hf, Ce/Pb and Nb/Ta ratios increase. These major and trace element features are similar to those of carbonatites and hornblendite-derived melts to some extent, but significantly different from those of mid-ocean ridge basalts (MORB). This suggests that the alkali basalts would be originated from metasomatic mantle sources. A comparison of the major-trace elements in the alkali basalts with those of some representative mantle-derived melts indicates that the source lithology of alkali basalts is a kind of ultramafic metasomatites that are composed of carbonated peridotite and hornblendite. Such metasomatites would be generated by reaction of the depleted MORB mantle peridotite with hydrous, carbonate-bearing felsic melts derived from partial melting of the subducted Paleotethyan oceanic crust. Therefore, the melt-peridotite reaction at the slab-mantle interface in the

  16. A primitive mantle source for the Neoarchean mafic rocks from the Tanzania Craton

    Directory of Open Access Journals (Sweden)

    Y.A. Cook

    2016-11-01

    Full Text Available Mafic rocks comprising tholeiitic pillow basalt, dolerite and minor gabbro form the basal stratigraphic unit in the ca. 2.8 to 2.6 Ga Geita Greenstone Belt situated in the NW Tanzania Craton. They outcrop mainly along the southern margin of the belt, and are at least 50 million years older than the supracrustal assemblages against which they have been juxtaposed. Geochemical analyses indicate that parts of the assemblage approach high Mg-tholeiite (more than 8 wt.% MgO. This suite of samples has a restricted compositional range suggesting derivation from a chemically homogenous reservoir. Trace element modeling suggests that the mafic rocks were derived by partial melting within the spinel peridotite field from a source rock with a primitive mantle composition. That is, trace elements maintain primitive mantle ratios (Zr/Hf = 32–35, Ti/Zr = 107–147, producing flat REE and HFSE profiles [(La/Ybpm = 0.9–1.3], with abundances of 3–10 times primitive mantle and with minor negative anomalies of Nb [(Nb/Lapm = 0.6–0.8] and Th [(Th/Lapm = 0.6–0.9]. Initial isotope compositions (ɛNd range from 1.6 to 2.9 at 2.8 Ga and plot below the depleted mantle line suggesting derivation from a more enriched source compared to present day MORB mantle. The trace element composition and Nd isotopic ratios are similar to the mafic rocks outcropping ∼50 km south. The mafic rocks outcropping in the Geita area were erupted through oceanic crust over a short time period, between ∼2830 and ∼2820 Ma; are compositionally homogenous, contain little to no associated terrigenous sediments, and their trace element composition and short emplacement time resemble oceanic plateau basalts. They have been interpreted to be derived from a plume head with a primitive mantle composition.

  17. Mixing and Progressive Melting of Deep and Shallow Mantle Sources in the NE Atlantic and Arctic

    DEFF Research Database (Denmark)

    Trønnes, Reidar; Debaille, Vincianne; Erambert, M.

    2013-01-01

    and the Southern Volcanic Flank Zone in Iceland, via 1.2 at the Snæfellsnes peninsula, Western Rift Zone and Mid-Icelandic Belt and 0.7 at Jan Mayen and the Kolbeinsey, Mohns and Knipovich Ridges to less than 0.2 in Spitsbergen and along the Gakkel Ridge. These ratios might be slightly overestimated due......, Mohns, Knipovich and Gakkel Ridges reflects the young, narrow and slow-spreading character of the corresponding oceanic basins. These ridges appear to sample mantle sources with higher proportions of locally derived SCLM-material than other mid-ocean ridges....

  18. MANTLE SOURCES OF GENERATION OF HYDROCARBONS: GEOLOGY-PHYSICAL SIGNS AND FORECAST-SEARCHING CRITERIONS OF MAPPING; REGULARITY OF AN OIL-AND-GAS-BEARING CAPACITY AS UNLOADING REFLEX OF MANTLE HYDROCARBON-SYSTEMS IN THE CRUST OF THE EARTH

    OpenAIRE

    Тімурзіїв, А.І.

    2017-01-01

    In the conditions of the developed uncertainty concerning the nature of primary sources (donors) and the generation focal (reactionary chambers) of deep hydrocarbons, questions of the nature of donors and the sources of generation of deep hydrocarbons systems, the mechanism and ways of generation and in-source mobilization of hydrocarbons in the top mantle of the Earth and evacuation (vertical migration) of hydrocarbon-systems from the generation sources in the mantle of the Earth into the ac...

  19. Enriched mantle source for the Central Atlantic magmatic province: New supporting evidence from southwestern Europe

    Science.gov (United States)

    Callegaro, Sara; Rapaille, Cedric; Marzoli, Andrea; Bertrand, Hervé; Chiaradia, Massimo; Reisberg, Laurie; Bellieni, Giuliano; Martins, Línia; Madeira, José; Mata, João; Youbi, Nasrrddine; De Min, Angelo; Azevedo, Maria Rosário; Bensalah, Mohamed Khalil

    2014-02-01

    Remnants of the Central Atlantic magmatic province (CAMP), emplaced ca. 201 Ma during the rifting phases leading to Pangaea breakup, are still preserved in southwestern Europe (SWE) in the form of sills, dykes and lava flows. Low-Ti (TiO2 0.48-1.46 wt.%) tholeiitic basalts and basaltic andesites crop out as sills only in the Pyrenean area, as dykes (especially the Messejana-Plasencia dyke) from central Spain to the Atlantic coast, and as lava flows within sedimentary basins in Southern Portugal. Here we present new geochemical data (major and trace elements, mineral chemistry and combined Sr-Nd-Pb-Os analyses) on 132 samples, aiming to investigate the mantle source of these rocks and correlate them with magmatism from other areas of the CAMP. Crustal-like signatures in incompatible element patterns (Nb-Ta troughs, Pb peaks, generally shared by most CAMP rocks) and the enriched Sr-Nd-Pb isotopic characters (87Sr/86Sr200 Ma 0.70529-0.70657; 143Nd/144Nd200 Ma 0.51238-0.51225; 206Pb/204Pb200 Ma 18.15-18.48; 207Pb/204Pb200 Ma 15.57-15.68; 208Pb/204Pb200 Ma 37.99-38.52) apparently argue in favor of crustal assimilation playing an important role in the evolution of these magmas. However, the low initial 187Os/188Os values (0.1298 ± 0.0056) as well as the restricted geochemical variations shown by SWE-CAMP rocks over such a large area limit the crustal assimilation of various Iberian lithologies to small amounts. We thus locate this enrichment in the mantle source, in the form of upper and lower crustal material recycled during earlier subduction-related events. This process, while imparting crustal signatures to incompatible elements and Sr-Nd-Pb isotopes, would not alter the Os isotopic signature, dominated by the peridotite. The mixed contribution of 3-7% of local upper (pelitic) and lower (felsic granulitic) crust is sufficient to enrich a depleted mantle source, which can be either the sub-SWE lithosphere or the upper depleted asthenosphere. Similar processes of

  20. Chromium isotope variations (δ53/52Cr) in mantle-derived sources and their weathering products: Implications for environmental studies and the evolution of δ53/52Cr in the Earth’s mantle over geologic time

    Czech Academy of Sciences Publication Activity Database

    Farkaš, J.; Chrastný, V.; Novák, M.; Čadková, E.; Pašava, J.; Chakrabarti, R.; Jacobsen, S. B.; Ackerman, Lukáš; Bullen, T. D.

    2013-01-01

    Roč. 123, 15 December 2013 (2013), s. 74-92 ISSN 0016-7037 Keywords : chemical weathering * chromite * chromium * isotopic composition * isotopic fractionation * mantle chemistry * mantle source * serpentine * serpentinization * ultramafic rock Subject RIV: DD - Geochemistry Impact factor: 4.250, year: 2013

  1. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    Science.gov (United States)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  2. Mantle Evolution under the Bouvet Triple Junction (SMAR) from the aspect of Tectonic and Geochemistry

    Science.gov (United States)

    Migdisova, Natalia; Sobolev, Alexander; Sushchevskaya, Nadejda; Belyatsky, Boris; Kuzmin, Dmitrii

    2010-05-01

    Three main structures of the oceanic floor - Mid Atlantic Ridge (MAR), American Antarctic Ridge (AAR) and Southwest Indian Ridge (SWIR) - constitute the Bouvet Triple Junction (BTJ). These constituents have changed their position relatively each other a lot of times during the evolution (Ligi et al., 1999). The unstable character of their interaction was the main cause of the complicated structure of BTJ. The segment of BTJ is characterized by the tholeiitic type of magmatism. However those magmas have different conditions of generation and eruption. Nevertheless basaltic rocks of the studying segment of the rift valley SWIR are determined as moderately enriched tholeiites on the basis of trace and major element variations. Normalized patterns of incompatible elements of BTJ basalts are characterized by relative maxima of Nb, Ta, and La and minima of Pb and less pronounced minima of Th and U. There is a clear Sr minimum in the most fractionated basalts from the Spiess Ridge. Apparent "garnet signature" expressed in the elevated values of (Gd/Yb)N ratio (up to 2.5) present in some basalt compositions. This indicates the presence of garnet in the source of basaltic melts of the BTJ. Ni excess over Mg and Mn deficiency over Fe in olivine phenocrysts suggest the presence of olivine-free pyroxenite lithologies in the sources of primary melts (Sobolev et al., 2007). The lowest amounts of pyroxenite component (X PX Mn/Fe = 0-10%) were recorded for the samples from the station S18-63, located in the MAR valley. The greatest range (X PX Mn/Fe = 0-90% in the single rock) was observed in samples from the station G96-10 situated on the western slope of the Spiess Ridge. Obtained results suggest the participation of recycled crustal component in the generation of primary melts. That component was involved in the rising mantle in the form of silica oversaturated eclogite as previously subducted oceanic crust or as fragments of ancient continental lithosphere. Melts generated

  3. Evidence from Volatiles and Trace Elements for Continental Mantle in the Source of Gakkel Ridge MORB

    Science.gov (United States)

    Michael, P. J.; Langmuir, C.; Goldstein, S. L.; Graham, D. W.; Ionov, D. A.; Matzen, A. K.

    2006-12-01

    Along Gakkel ridge, the Western Volcanic Zone [WVZ: 8° W 3°E] has several elongate robust volcanic highs with no offsets. A Sparsely Magmatic Zone [SMZ: 3°E -29°E] extends from a sharp boundary at 3°E where the axis abruptly becomes 1000 m deeper and only peridotites are exposed on the axial valley floor for 120 km, and there is sparse volcanism for 250km. The Eastern Volcanic Zone [EVZ: 29°E -85°E] has localized volcanic centers separated by lengthy sections of tectonized seafloor [1]. A remarkable transition in the composition of the Arctic mantle coincides closely with the bathymetric boundary at 3°E. All MORB from the WVZ are enriched in Ba and H2O at a given level of mantle enrichment (i.e., at constant La/Sm) compared to MORB globally and from the EVZ. H2O/Ce and Ba/Nb remain high to the southwest along the WVZ, through Knipovich and Jan Mayen Ridges and possibly south of Iceland [2], suggesting a large, regional anomaly. WVZ and EVZ lavas have distinct isotopic compositions, with the WVZ displaying a "DUPAL-like" signature that is absent in the EVZ [3]. H2O/Ce and Ba/Nb decline to Pacific-like values to the east, but the transition for trace element and volatile ratios is not as sharp as for isotopic ratios: H2O/Ce, Ba/La and Ba/Nb remain somewhat elevated to 25°E along Gakkel Ridge. The WVZ's distinctive composition may arise from incorporation of subcontinental lithospheric mantle (SCLM) [3] that was stranded during recent continental breakup in this region [4]. Phlogopite and amphibole that were residual after small extents of melting to make alkali basalts could account for elevated Ba [3]. We show here that this hypothesis is viable by examining ratios of H2O, K2O, Ba, Rb, REE, Cl and F in basalts from Gakkel Ridge and comparing them with amphibole and phlogopite from mantle xenoliths from Spitsbergen [5]. High H2O/K2O ratios in WVZ basalts indicate that amphibole is present in the WVZ source: up to 0.7% modal at 8°W, diminishing to the east

  4. Deep Sources: New constraints on the tectonic origin of the Klyuchevskoy Group upper mantle anomaly

    Science.gov (United States)

    Bourke, J. R.; Nikulin, A.; Levin, V. L.

    2017-12-01

    Volcanoes of the Klyuchevskoy Group (KG) form one of the most active volcanic clusters on the planet, yet its position relative to the subducting Pacific Plate seems to be in violation of the understood principles of the flux-induced arc volcanism. Positioned at 170km above the accepted subduction contact, the KG is seemingly outside the maximum fluid flux release zone of 100km, as observed across global subduction zone environments. Past geophysical studies indicate presence of a planar seismic anomaly 110km below the KG, and it has been noted that the KG lavas exhibit anomalous geochemical signatures, possibly associated with two separate melt generation regions. This interpretation was largely based on receiver function analysis of seismic data recorded by 3 stations of the Partnership in International Research and Education (PIRE) network, done prior to this data becoming publically available. We present results of receiver function and a teleseismic, regional, and local source shear wave splitting study, focused on datasets obtained by the full PIRE network of 12 stations, as well as a hybrid summation of all stations. We present our findings in the form of depth migrated receiver function images convolved with a three-dimensional model of the subduction zone and shear-wave splitting measurements. Our results vastly increase the resolution of the previously identified upper mantle anomaly, further constraining its geometry both vertically and laterally. We complement our observations with a forward modeling effort aimed at assessing the geological nature of the anomaly. Specifically, we test three scenarios that were previously invoked to explain the presence of the low-velocity anomaly in the upper mantle below the KG: a 3D flow of mantle material around the corner of the subducting Pacific Plate, a sinking paleoslab left behind as a result of subduction rollback, and a plume of sediments from the subducting plate. We show that presence of remnant paleoslab

  5. Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS

    Science.gov (United States)

    Kimura, Jun-Ichi; Ariskin, Alexey A.

    2014-04-01

    We present a new method for estimating the composition of water-bearing primary arc basalt and its source mantle conditions. The PRIMACALC2 model uses a thermodynamic fractional crystallization model COMAGMAT3.72 and runs with an Excel macro to examine the mantle equilibrium and trace element calculations of a primary basalt. COMAGMAT3.72 calculates magma fractionation in 0-10 kb at various compositions, pressure, oxygen fugacity, and water content, but is only applicable for forward calculations. PRIMACALC2 first calculates the provisional composition of a primary basalt from an observed magma. The basalt composition is then calculated by COMAGMAT3.72 for crystallization. Differences in elemental concentrations between observed and the closest-match calculated magmas are then adjusted in the primary basalt. Further iteration continues until the calculated magma composition converges with the observed magma, resulting in the primary basalt composition. Once the fitting is satisfied, back calculations of trace elements are made using stepwise addition of fractionated minerals. Mantle equilibrium of the primary basalt is tested using the Fo-NiO relationship of olivine in equilibrium with the primary basalt, and thus with the source mantle. Source mantle pressure, temperature, and degree of melting are estimated using petrogenetic grids based on experimental data obtained in anhydrous systems. Mantle melting temperature in a hydrous system is computed by adjusting T with a parameterization for a water-bearing system. PRIMACALC2 can be used either in dry or water-bearing arc magmas and is also applicable to mid-ocean ridge basalts and nonalkalic ocean island basalts.

  6. A two-component mantle source feeding Mt. Etna magmatism: Insights from the geochemistry of primitive magmas

    Science.gov (United States)

    Correale, Alessandra; Paonita, Antonio; Martelli, Mauro; Rizzo, Andrea; Rotolo, Silvio G.; Corsaro, Rosa Anna; Di Renzo, Valeria

    2014-01-01

    The major elements, trace elements and Sr and Nd isotopes of selected Etnean primitive rocks (Y versus La/Yb), can be attributed to varying degrees of melting of a common mantle source. Numerical simulations performed with the MELTS program allowed the melting percentages associated with each product to be estimated. This led us to recalculate the hypothetical parental trace-element content of the Etnean mantle source, which was common to all of the investigated rocks. The characteristics of the Sr, Nd and He isotopes confirmed the primitive nature of the rocks, with the most-depleted and primitive lava being that of Mt. Spagnolo (SPA; 143Nd/144Nd = 0.512908 87Sr/86Sr = 0.703317-0.703325 and 3He/4He = 7.6 Ra), and highlighted the similarity of the mantle sources feeding the volcanic activity of Mt. Etna and the Hyblean Plateau (a region to the south of Mt. Etna and characterized by older magmatism than Mt. Etna). The coupling of noble gases and trace elements suggests an origin for the investigated Etnean lavas from melting of a Hyblean-like mantle, consisting of a two-component source where a peridotitic matrix is veined by 10% pyroxenite. A variable degree of mantle contamination by crustal-like fluids, probably related to subduction, is proposed to explain the higher Sr-isotope and lower Nd-isotope values in some rocks (143Nd/144Nd up to 0.512865 and 87Sr/86Sr up to 0.703707). This process probably occurred in the source prior to magma generation, refertilizing some portions of the mantle. Accordingly, the estimated degree of melting responsible for each magma appears to be related to its 87Sr/86Sr enrichment. In contrast, the decoupling between 3He/4He and 87Sr/86Sr ratios requires the occurrence in the crustal reservoirs of further processes capable of shifting the He isotope ratio towards slightly more radiogenic values, such as magma aging or a contribution of shallow fluid. Therefore, different residence times in the Etnean reservoir and/or various rates of

  7. Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source

    Science.gov (United States)

    Vanderkluysen, Loÿc.; Mahoney, John J.; Koppers, Anthony A. P.; Beier, Christoph; Regelous, Marcel; Gee, Jeffrey S.; Lonsdale, Peter F.

    2014-06-01

    The Louisville Seamount Chain is a ˜4300 km long chain of submarine volcanoes in the southwestern Pacific that spans an age range comparable to that of the Hawaiian-Emperor chain and is commonly thought to represent a hot spot track. Dredging in 2006 recovered igneous rocks from 33 stations on 22 seamounts covering some 49 Myr of the chain's history. All samples are alkalic, similar to previous dredge and drill samples, providing no evidence for a Hawaiian-type tholeiitic shield-volcano stage. Major and trace element variations appear to be predominantly controlled by small but variable extents of fractional crystallization and by partial melting. Isotopic values define only a narrow range, in agreement with a surprising long-term source homogeneity—relative to the length scale of melting—and overlap with proposed fields for the "C" and "FOZO" mantle end-members. Trace element and isotope geochemistry is uncorrelated with either seamount age or lithospheric thickness at the time of volcanism, except for a small number of lavas from the westernmost Louisville Seamounts built on young (Java Plateau, but the Louisville isotopic signature cannot have evolved from a source with isotopic ratios like those measured for Ontong Java Plateau basalts. On the other hand, this signature can be correlated with that of samples dredged from the Danger Islands Troughs of the Manihiki Plateau, which has been interpreted as a rifted fragment of the "Greater" Ontong Java Plateau.

  8. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec

    Science.gov (United States)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.

    2009-05-01

    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  9. Lateral, radial and temporal variations in upper mantle viscosity and rheology under Scandinavia

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Vermeersen, L.L.A.; Drury, M.R.

    2011-01-01

    The viscosity of the upper mantle has a large control on the dynamics of plate tectonic processes or the response of the Earth's crust after a period of glaciation. Temperature variations within the upper mantle, time-dependent stress changes due to glaciations, and/or variations in the

  10. THE MIOCENE AND DEVONIAN MAGMATISM AT THE JUNCTION BETWEEN THE TUVA-MONGOLIAN MASSIF AND SIBERIAN CRATON: COMMON COMPONENT OF MANTLE SOURCES AND ITS ORIGIN

    Directory of Open Access Journals (Sweden)

    Sergey V. Rasskazov

    2012-01-01

    Full Text Available Devonian dikes of the Urik-Belaya and Shagayte-Gol-Urik zones and Miocene lavas of the Urik volcanic field are spatially associated with each other at the structural junction between the Neoproterozoic Tuva-Mongolian massif and Siberian craton. The former dike belt is represented by basalts and basaltic andesites of tholeiitic series and the latter one by trachybasalts, trachyandesitic basalts of moderately alkaline series and trachybasalts, phonotephrites of highly alkaline one. The Urik volcanic field is composed of trachybasalts and trachyandesitic basalts of moderately alkaline series. A partial similarity between magmatic series of different age is found in terms of major oxides, trace elements, and Sr, Pb isotopes. The common component corrected for age was defined through its converging mixing trends with those of the lithospheric mantle and crust. The component identification was a basis for deciphering the nature of isotopic and geochemical heterogeneity of evolved magmatic sources. It was inferred that the common component characterizes either a modified (depleted reservoir of the lower mantle or, more likely, a local region of the convecting asthenospheric mantle that underlies the Tuva-Mongolian massif. The latter interpretation assumes the formation of a locally convecting asthenosphere in the middle Neoproterozoic, along with the development of the Oka zone at the massif, and puts constrains on later sufficient processing of the asthenosphere due to rising plumes or subducting slabs.

  11. Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources

    Science.gov (United States)

    Martin, Adam P.; Cooper, Alan F.; Price, Richard C.

    2013-12-01

    Two volcanic lineages are identified at Mount Morning, a Cenozoic to recent, eruptive centre in the Ross Sea, West Antarctica, which is part of the McMurdo Volcanic Group. Both the older (at least 18.7-11.4 Ma), mildly alkalic, nepheline- or quartz-normative Mason Spur Lineage, and the younger (at least 6-0.02 Ma), nepheline normative, strongly alkalic Riviera Ridge Lineage evolved by fractional crystallization from nominally anhydrous (Zealandia and eastern Australia share common chemical and isotopic source characteristics and they have been argued to collectively constitute a single diffuse alkaline magmatic province (DAMP). Source characteristic similarities suggest DAMP volcanic rocks inherit at least some of their trace element and isotopic characteristics from the lithospheric mantle. Super-chondritic Nb/Ta values measured in some SCLM xenoliths and volcanic rocks at Mount Morning, and in volcanic rocks across the DAMP, can be explained by addition of ⩽5 wt% carbonatite to the source. The DAMP SCLM is a significant Nb reservoir that offers an explanation for the Nb paradox.

  12. A high 87Sr 86Sr mantle source for low alkali tholeiite, northern Great Basin

    Science.gov (United States)

    Mark, R.K.; Lee, Hu C.; Bowman, H.R.; Asaro, F.; McKee, E.H.; Coats, R.R.

    1975-01-01

    Olivine tholeiites, the youngest Tertiary units (about 8-11 m.y. old) at five widely spaced localities in northeastern Nevada, are geologically related to the basalts of the Snake River Plain, Idaho, to the north and are similar in major element and alkali chemistry to mid-ocean ridge basalts (MORB) and island arc tholeiites. The measured K (1250-3350 ppm), Rb (1??9-6??2 ppm) and Sr (140-240 ppm) concentrations overlap the range reported for MORB. Three of the five samples have low, unfractionated rare earth element (REE) patterns, the other two show moderate light-REE enrichment. Barium concentration is high and variable (100-780 ppm) and does not correlate with the other LIL elements. The rocks have 87Sr/86Sr = 0??7052-0??7076, considerably higher than MORB (~0??702-0??703). These samples are chemically distinct (i.e. less alkalic) from the olivine tholeiites from the adjacent Snake River Plain, but their Sr isotopic compositions are similar. They contain Sr that is distinctly more radiogenic than the basalts from the adjacent Great Basin. About 10 b.y. would be required for the mean measured Rb/Sr (~ 0??02) of these samples to generate, in a closed system, the radiogenic Sr they contain. The low alkali content of these basalts makes crustal contamination an unlikely mechanism. If the magma is uncontaminated, the time-averaged Rb/Sr of the source material must have been ~0??04. A significant decrease in Rb/Sr of the source material (a factor 2??) thus most probably occurred in the relatively recent (1??09 yr) past. Such a decrease of Rb/Sr in the mantle could accompany alkali depletion produced by an episode of partial melting and magma extraction. In contrast, low 87Sr 86Sr ratios indicate that the source material of the mid-ocean ridge basalts may have been depleted early in the Earth's history. ?? 1975.

  13. Mantle heterogeneity in the source region of mid-ocean ridge basalts along the northern Central Indian Ridge (8°S-17°S)

    Science.gov (United States)

    Kim, Jonguk; Pak, Sang-Joon; Moon, Jai-Woon; Lee, Sang-Mook; Oh, Jihye; Stuart, Finlay M.

    2017-04-01

    The northern Central Indian Ridge (CIR) between 8°S and 17°S is composed of seven segments whose spreading rates increase southward from ˜35 to ˜40 mm/yr. During expeditions of R/V Onnuri to study hydrothermal activity on the northern CIR in 2009-2011, high-resolution multibeam mapping was conducted and ridge axis basalts were dredged. The major and trace element and Sr-Nd-Pb-He isotopic compositions of basaltic glasses dredged from the spreading axis require three mantle sources: depleted mantle and two distinct enriched mantle sources. The southern segments have Sr, Nd, and Pb that are a mix of depleted mantle and an enriched component as recorded in southern CIR MORB. This enrichment is indistinguishable from Rèunion plume mantle, except for He isotopes. This suggests that the southern segments have incorporated a contribution of the fossil Rèunion plume mantle, as the CIR migrated over hot-spot-modified mantle. The low 3He/4He (7.5-9.2 RA) of this enriched component may result from radiogenic 4He ingrowth in the fossil Rèunion mantle component. Basalts from the northern segments have high 206Pb/204Pb (18.53-19.15) and low 87Sr/86Sr (0.70286-0.70296) that are distinct from the Rèunion plume but consistent with derivation from mantle with FOZO signature, albeit with 3He/4He (9.2-11.8 RA) that are higher than typical. The FOZO-like enriched mantle cannot be attributed to the track of a nearby mantle plume. Instead, this enrichment may have resulted from recycling oceanic crust, possibly accompanied by small plume activity.

  14. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm

    Science.gov (United States)

    Ong-Abdullah, Meilina; Ordway, Jared M.; Jiang, Nan; Ooi, Siew–Eng; Kok, Sau-Yee; Sarpan, Norashikin; Azimi, Nuraziyan; Hashim, Ahmad Tarmizi; Ishak, Zamzuri; Rosli, Samsul Kamal; Malike, Fadila Ahmad; Bakar, Nor Azwani Abu; Marjuni, Marhalil; Abdullah, Norziha; Yaakub, Zulkifli; Amiruddin, Mohd Din; Nookiah, Rajanaidu; Singh, Rajinder; Low, Eng-Ti Leslie; Chan, Kuang-Lim; Azizi, Norazah; Smith, Steven W.; Bacher, Blaire; Budiman, Muhammad A.; Van Brunt, Andrew; Wischmeyer, Corey; Beil, Melissa; Hogan, Michael; Lakey, Nathan; Lim, Chin-Ching; Arulandoo, Xaviar; Wong, Choo-Kien; Choo, Chin-Nee; Wong, Wei-Chee; Kwan, Yen-Yen; Alwee, Sharifah Shahrul Rabiah Syed; Sambanthamurthi, Ravigadevi; Martienssen, Robert A.

    2015-01-01

    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered micropropagation of elite hybrids and genetically modified crops, but the mechanism remains a mystery1. The oil palm fruit abnormality, mantled, is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production2–4. Widely regarded as epigenetic5, mantling has defied explanation, but here we identify the MANTLED gene using Epigenome Wide Association Studies. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (the Good Karma epiallele) predicts normal fruit set, while hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and dramatic loss of yield. Loss of Karma methylation and small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources. PMID:26352475

  15. Early mantle heterogeneities in the Réunion hotspot source inferred from highly siderophile elements in cumulate xenoliths

    Science.gov (United States)

    Peters, Bradley J.; Day, James M. D.; Taylor, Lawrence A.

    2016-08-01

    Ultramafic cumulate rocks form during intrusive crystallization of high-MgO magmas, incorporating relatively high abundances of compatible elements, including Cr and Ni, and high abundances of the highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, Re). Here, we utilize a suite of cumulate xenoliths from Piton de la Fournaise, La Réunion (Indian Ocean), to examine the mantle source composition of the Réunion hotspot using HSE abundances and Os isotopes. Dunite and wherlite xenoliths and associated lavas from the Piton de la Fournaise volcanic complex span a range of MgO contents (46 to 7 wt.%), yet exhibit remarkably homogeneous 187Os/188Os (0.1324 ± 0.0014, 2σ), representing the Os-isotopic composition of Réunion hotspot primary melts. A significant fraction of the xenoliths also have primitive upper-mantle (PUM) normalized HSE patterns with elevated Ru and Pd (PUM-normalized Ru/Ir and Pd/Ir of 0.8-6.3 and 0.2-7.2, respectively). These patterns are not artifacts of alteration, fractional crystallization, or partial melting processes, but rather require a primary magma with similar relative enrichments. Some highly olivine-phyric (>40 modal percent olivine) Piton de la Fournaise lavas also preserve these relative Ru and Pd enrichments, while others preserve a pattern that is likely related to sulfur saturation in evolved melts. The estimate of HSE abundances in PUM indicates high Ru/Ir and Pd/Pt values relative to carbonaceous, ordinary and enstatite chondrite meteorite groups. Thus, the existence of cumulate rocks with even more fractionated HSE patterns relative to PUM suggests that the Réunion hotspot samples a yet unrecognized mantle source. The origin of fractionated HSE patterns in Réunion melts may arise from sampling of a mantle source that experienced limited late accretion (isotopic signatures of Réunion, which plot near the convergence point of isotopic data for many hotspots, such a conclusion provides evidence for an early differentiated and

  16. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    Science.gov (United States)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal

  17. Synchrotron in-situ deformation experiments of perovskite + (Mg,Fe)O aggregates under shallow lower mantle conditions (Invited)

    Science.gov (United States)

    Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.

    2013-12-01

    Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the

  18. Mantle fluids ascent in the regions of strong earthquake sources and large deep fault zones: geochemical evidences

    International Nuclear Information System (INIS)

    Kopnichev, Yu.F.; Sokolova, I.N.

    2005-01-01

    Data on variations of a ratio of the helium isotope content (parameter R= 3 He/ 4 He) near the sources of strong earthquakes and some large fault zones (in the regions of Tien Shan, Mongolia, California, Central Japan and Central Apennines) are being analyzed. It was shown that in many cases R values regularly diminish with the distance from epicenters and large regional faults. This testifies to the ascent of mantle fluids into the earth's crust after strong earthquakes and in some deep fault zones, which are characterized by superhigh permeability and their further migration in horizontal direction. (author)

  19. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    Science.gov (United States)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and

  20. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence

    Science.gov (United States)

    Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad

    2018-04-01

    Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the

  1. Os-186 and Os-187 Enrichments and High-He-3/He-4 sources in the Earth's Mantle: Evidence from Icelandic Picrites

    Science.gov (United States)

    Brandon, Alan D.; Graham, David W.; Waight, Tod; Gautason, Bjarni

    2007-01-01

    Picrites from the neovolcanic zones in Iceland display a range in Os-187/Os-188O from 0.1297 to 0.1381 ((gamma)Os = 0.0 to 6.5) and uniform Os-186/Os-188 of 0.1198375+/-32 (2 (sigma)). The value for Os-186/Os-188 is within uncertainty of the present-day value for the primitive upper mantle of 0.1198398+/-16. These Os isotope systematics are best explained by ancient recycled crust or melt enrichment in the mantle source region. If so, then the coupled enrichments displayed in Os-186/Os-188 and Os-187/Os-188 from lavas of other plume systems must result from an independent process, the most viable candidate at present remains core-mantle interaction. While some plumes with high He-3/He-4, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between Os-187/Os-188 and He-3/He-4 from 9.6 to 19 RA in Iceland picrites is best modeled as mixtures of 500 Ma or older ancient recycled crust mixed with primitive mantle, creating a hybrid source region that subsequently mixes with the convecting MORB mantle during ascent and melting. This multistage mechanism to explain these isotope systematics is consistent with ancient recycled crust juxtaposed with more primitive, relatively He-rich mantle, in convective isolation from the upper mantle, most likely in the lowermost mantle. This is inconsistent with models that propose random mixing between heterogeneities in the convecting upper mantle as a mechanism to explain the observed isotopic variation in oceanic lavas or models that produce a high He-3/He-4 signature in melt depleted and strongly outgassed, He-poor mantle. Instead these systematics require a deep mantle source to explain the 3He/4He signature in Iceland lavas. The He-3/He-4 of lavas derived from the Iceland plume changed over time, from a maximum of 50 RA at 60 Ma, to approximately 25-27 RA at present. The changes are coupled with distinct

  2. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature

    Science.gov (United States)

    Konter, Jasper G.; Hanan, Barry B.; Blichert-Toft, Janne; Koppers, Anthony A. P.; Plank, Terry; Staudigel, Hubert

    2008-11-01

    Linear chains of intraplate volcanoes and their geochemistry provide a record of mantle melting through geological time. The isotopic compositions of their lavas characterize their mantle sources, and their ages help backtrack these volcanoes to their original, eruptive source regions. Such data may shed light on a much-debated issue in Earth Sciences: the origin of intraplate volcanism and its underlying mantle and lithosphere dynamics. We show here that three major Western Pacific Seamount groups, ˜ 50-100 million years in age, display distinct Sr, Nd, Hf, and Pb isotopic signatures that can be traced back in time, both geographically and geochemically, to three separate, recently-active intraplate volcanoes in the South Pacific Cook-Austral Islands. Their unique 100 million year history, which shows a persistent geochemical fingerprint, suggests formation from large volumes of laterally fixed, long-lived source regions. Such longevity is unlikely to be attained in the relatively dynamic upper mantle. Therefore, these sources are likely anchored deep in the mantle, isolated from homogenization by mantle convection, and imply a primary origin from deep mantle plumes rather than resulting from lithosphere extension.

  3. Upper mantle low velocity heterogeneities beneath NE China revealed by source- and receiver-side converted waves

    Science.gov (United States)

    Guan, Z.; Niu, F.

    2017-12-01

    Common-conversion-point (CCP) stacking of receiver function is a powerful tool in mapping upper mantle heterogeneities. However, reverberations from shallow boundaries with large velocity contrast could contaminate the imaging profiles severely. Applying the refined Slowness Weighted CCP (SWCCP) stacking technique (Guan and Niu, 2017) on NECESSArray data, we eliminated the multiple effects and systematically imaged the upper mantle low velocity heterogeneities in NE China where there exist rich unconsolidated sediments. The SWCCP profiles reveal a 350 km low velocity heterogeneity which is possibly associated with the Changbai Mountain volcanism and interpreted as a negatively buoyant silicate melt lying atop of the 410 km discontinuity. Besides, the imaging results are also suggestive of a sporadic 580-620 km low velocity heterogeneity locating in the easternmost part of NE China with a velocity contrast comparable with the 660-km discontinuity. In addition, between 42º N and 45º N, we also found a double 660-km discontinuity at the two sides of the localized depression in the longitudinal range of 128º E to 131º E. On the other hand, we gathered USArray and Alaska regional array seismic data of deep earthquakes occurring beneath NE China and the surrounding areas and employed stacking technique to study the source side S-to-P conversions. The source-side stacking also showed a strong S-to-P conversion at 600 km deep, consistent with the SWCCP stacks. Meanwhile, we also confirmed the double 660-km discontinuity feature from the source-side conversions. The receiver- and source-side observations provide strong constraints on these low velocity anomalies that may offer insights on the subduction dynamics of the Pacific plate.

  4. REE and Isotopic Compositions of Lunar Basalts Demonstrate Partial Melting of Hybridized Mantle Sources after Cumulate Overturn is Required

    Science.gov (United States)

    Dygert, N. J.; Liang, Y.

    2017-12-01

    Lunar basalts maintain an important record of the composition of the lunar interior. Much of our understanding of the Moon's early evolution comes from studying their petrogenesis. Recent experimental work has advanced our knowledge of major and trace element fractionation during lunar magma ocean (LMO) crystallization [e.g., 1-3], which produced heterogeneous basalt sources in the Moon's mantle. With the new experimental constraints, we can evaluate isotopic and trace element signatures in lunar basalts in unprecedented detail, refining inferences about the Moon's dynamic history. Two petrogenetic models are invoked to explain the compositions of the basalts. The assimilation model argues they formed as primitive melts of early LMO cumulates that assimilated late LMO cumulates as they migrated upward. The cumulate overturn model argues that dense LMO cumulates sank into the lunar interior, producing hybridized sources that melted to form the basalts. Here we compare predicted Ce/Yb and Hf and Nd isotopes of partial melts of LMO cumulates with measured compositions of lunar basalts to evaluate whether they could have formed by end-member petrogenetic models. LMO crystallization models suggest all LMO cumulates have chondrite normalized Ce/Yb 1.5; these could not have formed by assimilation of any LMO cumulate or residual liquid (or KREEP basalt, which has isotopically negative ɛNd and ɛHf). In contrast, basalt REE patterns and isotopes can easily be modeled assuming partial melting of hybridized mantle sources, indicating overturn may be required. A chemical requirement for overturn independently confirms that late LMO cumulates are sufficiently low in viscosity to sink into the lunar interior, as suggested by recent rock deformation experiments [4]. Overturned, low viscosity late LMO cumulates would be relatively stable around the core [5]. High Ce/Yb basalts require that overturned cumulates were mixed back into the overlying mantle by convection within a few

  5. An assessment of the record in compositional variations from mantle source to magmatism at East Island, Crozet archipelago

    Science.gov (United States)

    Meyzen, C. M.; Marzoli, A.; Bellieni, G.

    2013-12-01

    The Crozet archipelago, located midway between Madagascar and Antarctica, constitutes the emerged part of the easternmost bank of the Crozet plateau, which lies upon upper Cretaceous oceanic seafloor derived from the Southeast Indian Ridge. It forms an elongated chain of five islands and islets, divided into two groups: an older eastern island group (islands) and a younger western one (islands. The whole region exhibits some of the most typical gravimetric, seismic and bathymetric characteristics associated with upwelling hotter than average mantle including: a geoid high, a topographic swell, a deep low-velocity zone (up to 2350 km), an anomalous heat flow and a thickened crust (10-16.5 km). Most of these features are exacerbated by the near stationary absolute motion of the Antarctic plate. However, since thirty years, the chemical composition of Crozet archipelago magmas has beneficiated from little interest compared to that of other Earth's hotspots. Because of the occurrence of both a thick and old lithosphere and of a near stagnant absolute plate motion, new data from the Crozet archipelago magmatic record will provide new critical perspective on oceanic island building processes. The data presented here are based on a basaltic suite of ~ 25 samples collected by a 'Terres Australes et Antarctiques Francaises' expedition in 1969 from the northern part of East Island. Our alkali basalts from the Crozet archipelago are distinct from other oceanic within-plate magmatic rocks in showing ubiquitous large depletions in LILE with respect to other incompatible elements, although these rocks constitute one of the most incompatible-element-enriched suites among Earth's oceanic island basalts (OIB). The similarity of their trace element ratios and parallelism of their rare earth element patterns indicate: (1) a mantle source homogeneity over at least 1 Ma; (2) an uniformity of the melting conditions (i.e. degree of melting and residual mineralogy) during most of the sub

  6. Amphibole incongruent melting under Lithospheric Mantle conditions in spinel peridotites from Balaton area, Hungary

    Science.gov (United States)

    Ntaflos, Theodoros; Abart, Rainer; Bizimis, Michel

    2017-04-01

    Pliocene alkali basalts from the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. We studied coarse and fine grained fertile to depleted spinel lherzolites, spinel harzubrgites and dunites from Szentbékálla, Balaton, in detail, using XRF, EPMA and LA-ICP-MS and MC-ICP-MS techniques. Pliocene alkali basalts containing mantle xenoliths with three major types of textures are widespread in the studied area: fine-grained primary and secondary equigranular, coarse-grained protogranular and transitional between equigranular and protogranular textures. Melt pockets, are common in the studied xenoliths. The shape of several melt pockets resembles euhedral amphibole. Other samples have thin films of intergranular glass attributed to the host basalt infiltration. Calculations have shown that such xenoliths experienced an up to 2.4% host basalt infiltration. The bulk rock Al2O3 and CaO concentrations vary from 0.75 to 4.1 and from 0.9 to 3.6 wt% respectively, and represent residues after variable degrees of partial melting. Using bulk rock major element abundances, the estimated degree of partial melting ranges from 4 to 20%.. The Primitive Mantle normalized clinopyroxene trace element abundances reveal a complicated evolution of the Lithospheric mantle underneath Balaton, which range from partial melting to modal and cryptic metasomatism. Subduction-related melt/fluids and/or infiltration of percolating undersaturated melts could be account for the metasomatic processes. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. Mass balance calculations have shown that the bulk composition of the melt pockets is identical to small amphibole relics found as

  7. Lateral displacement of crustal units relative to underlying mantle lithosphere: Example from the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava

    2017-01-01

    Roč. 48, December (2017), s. 125-138 ISSN 1342-937X R&D Projects: GA ČR GAP210/12/2381; GA MŠk(CZ) LD15029; GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : Bohemian Massif * Teplá-Barrandian mantle lithosphere * Zone Erbendorf-Vohenstrauss * Jáchymov Fault Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 6.959, year: 2016

  8. Sulfur in ocean island basalt source regions constrained by modeling the fate of sulfide during decompression melting of a heterogeneous mantle

    Science.gov (United States)

    Dasgupta, R.; Ding, S.

    2017-12-01

    Primitive OIBs can be used to constrain the inventory and heterogeneity of volatile elements such as sulfur (S) in the mantle with potentially large range of mantle potential temperature, TP of 1400-1650 °C and different source lithologies. Yet, no systematic study exists that fully models the extraction of sulfur from a sulfide-bearing heterogeneous mantle relevant for oceanic intraplate magmatism. We modeled the evolution of S and Cu during mantle decompression melting by combining experimental partial melt compositions as a function of P-T and sulfur contents at sulfide saturation (SCSS) models [1, 2]. Calculations at TP =1450-1650 °C to explain S and Cu inventory of near-primary ocean island basalts (OIBs), suggests that partial melts relevant to OIBs have higher SCSS than that of primitive MORBs, because of the positive effect of temperature on SCSS. Hence, for a given sulfide content in the mantle, hotter mantle consumes sulfide more efficiently. Calculation of SCSS along melting adiabats at TP = 1450-1550 °C with variable initial S content of peridotite indicates that sulfide undersaturated primitive Icelandic basalts with 800-950 ppm S and 80-110 ppm Cu can be generated by 10-25 wt.% melting of peridotite containing 100-250 ppm S. However, S and Cu budgets of OIBs that are thought to represent low-degree melts can only be satisfied if equilibration with a sulfide melt with ≥25-30 wt.% Ni is applicable. Alternatively, if Ni content in equilibrium sulfide in peridotitic mantle is ≤20-25 wt.%, mixing of low-degree partial melts of MORB-eclogite and metapelite, with peridotite partial melt is necessary to reconcile the measured S and Cu contents in the low-F (Galapagos, Lau Basin, Loihi and Samoa for TP of 1450-1650 °C. In this latter case, 25-150 ppm S in the peridotite mantle can be exhausted by 1-9 wt.% partial melting. Bulk S content of the heterogeneous mantle source of these islands is high because of the presence of subducted eclogite

  9. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr-Nb-Pb isotope data from Roman Province and Southern Tuscany

    International Nuclear Information System (INIS)

    Conticelli, S.; D'Antonio, M.; Pinarelli, L.; Civetta, L.

    2002-01-01

    The Tyrrhenian border of the Italian peninsula has been the site of intense magmatism from Pliocene to recent times. Although calc-alkaline, potassic and ultrapotassic volcanism overlaps in space and time, a decrease of alkaline character in time and space (southward) is observed. Alkaline ultrapotassic and potassic volcanic rocks are characterized by variable enrichment in K and incompatible elements, coupled with consistently high LILE/IFSE values, similar to those of calc-alkaline volcanic rocks from the nearby Aeolian arc. On the basis of mineralogy and major and trace element chemistry two different arrays can be recognized among primitive rocks; a silica saturated trend, which resulted in formation of leucite-free mafic rocks, and a silica under saturated trend, characterized by leucite-bearing rocks. Initial 87 Sr/ 87 Sr and 143 Nd/ 144 Nd values of Italian ultrapotassic and potassic mafic rocks range from 0.70506 to 0.71672 and from 0.51173 to 0.51273, respectively. 207 Pb/ 204 Pb values range between 18.50 and 19.15, 207 Pb/ 204 Pb values range between 15.63 and 15.70, and 208 Pb/ 204 Pb values range between 38.35 and 39.20. The general ε Sr vs. ε Nd array, along with crustal lead isotopic values, clearly indicates that a continental crustal component has played an important role in the genesis of those magmas. The main question is where this continental crustal component has been acquired by the magmas. Volcanological and petrologic data indicate continental crustal contamination to be a leading process along with fractional crystallization and magma mixing. Considering, however, only the samples thought to represent primary magmas, which have been in equilibrium with their mantle source, a clearer picture emerges. A large variation of ε Sr vs. ε Nd is still observed, with ε Sr from -2 to +180 and ε Nd from +2 to -12. A bifurcation of this array is observed in the samples that plot in the lower right quadrant, with mafic leucite-bearing Roman

  10. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source

    Science.gov (United States)

    Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu

    2004-08-01

    Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.

  11. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    Science.gov (United States)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    stability field of garnet and/or spinel lherzolite, suggesting that the source of these lavas may stem from MORB mixing with an enriched plume (OIB) source. The discovery of these magmatic signatures beneath the North Fiji Basin is important in understanding the heterogeneities of volatiles in the mantle, in addition to linking deeper mantle and subsurface crustal processes.

  12. Imaging the lithosphere and underlying mantle of the South Atlantic, South America and Africa using waveform tomography with massive datasets

    Science.gov (United States)

    Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Ravenna, M.; Gaina, C.

    2017-12-01

    Recent growth in global seismic station coverage has created dense data sampling of the previously poorly constrained lithosphere and underlying mantle beneath the South Atlantic, South America and Africa. The new data enable us to image the vast region at a new level of detail and address important open questions regarding its lithospheric architecture and mantle dynamics. In order to fully exploit the data sampling, we use an efficient, multimode waveform tomography scheme that enables the extraction of structural information from millions of seismograms and use the inherent data redundancy to minimize effects of errors in the data. Our tomographic model is constrained by waveform fits of over 1.2 million vertical-component seismograms, computed using the Automated Multimode Inversion of surface, S- and multiple S-waves. Each successful seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. We then combine all equations into a large linear system and invert jointly for a model of S- and P-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. We are now able to image the detailed structure of various African shields. For example, in West Africa, two clearly separate high-velocity units underlay the Reguibat and Man-Léo Shields; in the Congo area, a single high-velocity body, formed by three main units correspond to the Gabon-Cameroon, Bomu-Kibali and Kasai Shields. Strong low-velocity anomalies underlay the Afar Hotspot and the East African Rift; pronounced low velocities are also seen beneath parts of the Sahara Desert. We discuss the shape of the deep Afar anomaly and its possible relationships with the Saharan volcanism and the neighboring Tanzania Craton. In the South Atlantic, we retrieve fine-scale velocity structure along the Mid-Atlantic Ridge (MAR), indicative of hotspot-ridge interactions. Major hotspots show

  13. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions

    Science.gov (United States)

    Dasgupta, Rajdeep; Hirschmann, Marc M.; Withers, Anthony C.

    2004-10-01

    eclogite solidus is likely to intersect the oceanic geotherm at a depth close to 400 km. Carbonated eclogite bodies entering the convecting upper mantle will thus release carbonate melt near the top of the mantle transition zone and may account for anomalously slow seismic velocities at depths of 280-400 km. Upon release, this small volume, highly reactive melt could be an effective agent of deep mantle metasomatism. Comparison of the carbonated eclogite solidus with that of peridotite-CO 2 shows a shallower solidus-geotherm intersection for the latter. This implies that carbonated peridotite is a more likely proximal source of magmatic carbon in oceanic provinces. However, carbonated eclogite is a potential source of continental carbonatites, as its solidus crosses the continental shield geotherm at ca. 4 GPa. Transfer of eclogite-derived carbonate melt to peridotite may account for the geochemical characteristics of some oceanic island basalts (OIBs) and their association with high CaO and CO 2.

  14. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.

    Science.gov (United States)

    Dubrovinsky, L; Annersten, H; Dubrovinskaia, N; Westman, F; Harryson, H; Fabrichnaya, O; Carlson, S

    2001-08-02

    Seismological studies have revealed that a complex texture or heterogeneity exists in the Earth's inner core and at the boundary between core and mantle. These studies highlight the importance of understanding the properties of iron when modelling the composition and dynamics of the core and the interaction of the core with the lowermost mantle. One of the main problems in inferring the composition of the lowermost mantle is our lack of knowledge of the high-pressure and high-temperature chemical reactions that occur between iron and the complex Mg-Fe-Si-Al-oxides which are thought to form the bulk of the Earth's lower mantle. A number of studies have demonstrated that iron can react with MgSiO3-perovskite at high pressures and high temperatures, and it was proposed that the chemical nature of this process involves the reduction of silicon by the more electropositive iron. Here we present a study of the interaction between iron and corundum (Al(2)O3) in electrically- and laser-heated diamond anvil cells at 2,000-2,200 K and pressures up to 70 GPa, simulating conditions in the Earth's deep interior. We found that at pressures above 60 GPa and temperatures of 2,200 K, iron and corundum react to form iron oxide and an iron-aluminium alloy. Our results demonstrate that iron is able to reduce aluminium out of oxides at core-mantle boundary conditions, which could provide an additional source of light elements in the Earth's core and produce significant heterogeneity at the core-mantle boundary.

  15. Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts.

    Science.gov (United States)

    Elliott, Tim; Thomas, Alex; Jeffcoate, Alistair; Niu, Yaoling

    2006-10-05

    'Recycled' crustal materials, returned from the Earth's surface to the mantle by subduction, have long been invoked to explain compositional heterogeneity in the upper mantle. Yet increasingly, problems have been noted with this model. The debate can be definitively addressed using stable isotope ratios, which should only significantly vary in primitive, mantle-derived materials as a consequence of recycling. Here we present data showing a notable range in lithium isotope ratios in basalts from the East Pacific Rise, which correlate with traditional indices of mantle heterogeneity (for example, 143Nd/144Nd ratios). Such co-variations of stable and radiogenic isotopes in melts from a normal ridge segment provide critical evidence for the importance of recycled material in generating chemical heterogeneity in the upper mantle. Contrary to many models, however, the elevated lithium isotope ratios of the 'enriched' East Pacific Rise lavas imply that subducted ocean crust is not the agent of enrichment. Instead, we suggest that fluid-modified mantle, which is enriched during residency in a subduction zone, is mixed back into the upper mantle to cause compositional variability.

  16. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    Science.gov (United States)

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also

  17. Generation of Northern Parana High Ti/Y Basalts By Progressive Lithospheric Thinning Above a "Gough"-like Mantle Source.

    Science.gov (United States)

    Peate, D. W.

    2015-12-01

    Stratigraphic and geochronologic data show that the high Ti/Y magma types (Pitanga & Paranapanema) of NW Paraná are the youngest magmatic phase in the Paraná-Etendeka flood basalt province and comprise ~50% of the total erupted volume. They are more homogeneous than low Ti/Y basalts in SE Paraná and the Etendeka, with a restricted range in Sr-Nd-Pb isotope composition (87Sr/86Sr 0.7055-0.7063; ɛNd -5 to -3; 206Pb/204Pb 17.7-18.2). Subtle differences between Pitanga and Paranapanema (Th/Ta, 206Pb/204Pb) are consistent with minor crustal assimilation. Pitanga show greater incompatible element enrichment compared to Paranapanema (Ti/Y 440-590 vs. 325-510; La/Yb 9.3-12.2 vs. 5.9-9.0), and have greater MREE/HREE enrichment (Dy/Yb 2.1-2.5 vs. 1.8-2.1). Boreholes and surface profiles reveal a consistent temporal transition from Pitanga to Paranapanema lavas, and the decrease in Dy/Yb requires a shallowing of the mean depth of melting, consistent with lithospheric thinning. Pitanga and Paranapanema lavas show Dupal characteristics (elevated Δ7/4Pb 8-13), distinct from Tristan hot-spot and S Atlantic MORB compositions, but similar to the EM-I endmember composition from Walvis Ridge DSDP Site 525A. Previous workers suggested a common origin for Parana high Ti/Y magmas and DSDP Site 525A in continental lithospheric mantle. However, recent comprehensive sampling of the Tristan - Gough - Walvis Ridge - Rio Grande Rise hotspot track has revealed spatial geochemical zonation with a northern "Tristan"-track and a southern "Gough"-track, and the "Tristan" component (Δ7/4Pb 3-6) is only found in samples < 70 Ma (Hoernle et al. 2015). The early hotspot track history is dominated by the "Gough" component (Δ7/4Pb 6-13), inferred to be derived from the African LLSVP, and this material has the compositional features (Sr-Nd-Pb-Hf isotopes, elevated La/Nb and Th/Nb) required for the mantle source for the Pitanga and Paranapanema magma types of the 135 Ma Paraná flood basalt

  18. Geochemical characterization of basalts from west of Khash (SE Iran: an approach to the nature of the mantle source

    Directory of Open Access Journals (Sweden)

    Zahra Firouzkouhi

    2017-07-01

    Full Text Available Monogenic basaltic cinder cones and lava flows from west of Khash are part of volcanic arc of northern Makran, formed as a result of subduction of Oman oceanic lithosphere beneath the Eurasian plate. The basalts belong to medium-K calc-alkaline series as they contain high Al2O3 (16.5- 19.04 wt. % and CaO (8.4- 12.0 wt. % and moderate amounts of K2O (0.5- 1.1 wt. %. They share arc geochemical features such as high LILE/HFSE ([Rb/Zr]N-MORB up to 19 LILE/LREE ([Ba/La]N-MORB up to 4.86 and LREE/HREE ([La/Yb]N-MORB up to 10, and depletion of Ta, Nb, Zr, and Ti relative to N-MORB. Partial melting models indicate that near-primary basalts were derived from an enriched source type mantle wedge peridotite after low to medium degrees (2-10% of partial melting. This source peridotite was enriched in LREE and LILE, by subduction derived fluids in the supra-subduction zone. Negative correlation of Th/La vs. Sm/La, and relationships between Pb/Ce and Th/Nb values of the studied basalts which are between two end compositions of global subducting sediment (GLOSS and N-MORB are indicative of significant contribution of subducting sediments to the genesis of the basaltic rocks. Estimates made using binary mixing model are indicative of about 16% of sediment participation in the magma genesis. Low Pb/Ce ratio (1.6 - 11.1, compared to OIB (>20 may be a signature of participation of fluids resulted from dehydration of the subducting slab

  19. Different degrees of partial melting of the enriched mantle source for Plio-Quaternary basic volcanism, Toprakkale (Osmaniye) Region, Southern Turkey

    DEFF Research Database (Denmark)

    Bagci, U; Alpaslan, M; Frei, Robert

    2011-01-01

    .703575 for the alkali basalts and 0.703120–0.703130 for the basanites) and the 143Nd/144Nd ratio is high (0.512868–0.512877 for the alkali basalts and 0.512885–0.512913 for the basanites), suggesting that both units originated from an isotopically depleted mantle source. The degree of partial melting of the Toprakkale...

  20. Seismic tomography model reveals mantle magma sources of recent volcanic activity at El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    García-Yeguas, Araceli; Ibáñez, Jesús M.; Koulakov, Ivan; Jakovlev, Andrey; Romero-Ruiz, M. Carmen; Prudencio, Janire

    2014-12-01

    We present a 3-D model of P and S velocities beneath El Hierro Island, constructed using the traveltime data of more than 13 000 local earthquakes recorded by the Instituto Geográfico Nacional (IGN, Spain) in the period from 2011 July to 2012 September. The velocity models were performed using the LOTOS code for iterative passive source tomography. The results of inversion were thoroughly verified using different resolution and robustness tests. The results reveal that the majority of the onshore area of El Hierro is associated with a high-velocity anomaly observed down to 10-12-km depth. This anomaly is interpreted as the accumulation of solid igneous rocks erupted during the last 1 Myr and intrusive magmatic bodies. Below this high-velocity pattern, we observe a low-velocity anomaly, interpreted as a batch of magma coming from the mantle located beneath El Hierro. The boundary between the low- and high-velocity anomalies is marked by a prominent seismicity cluster, thought to represent anomalous stresses due to the interaction of the batch of magma with crust material. The areas of recent eruptions, Orchilla and La Restinga, are associated with low-velocity anomalies surrounding the main high-velocity block. These eruptions took place around the island where the crust is much weaker than the onshore area and where the melted material cannot penetrate. These results put constraints on the geological model that could explain the origin of the volcanism in oceanic islands, such as in the Canaries, which is not yet clearly understood.

  1. Petrologic evaluation of Pliocene basaltic volcanism in Eastern Anatolian region, Turkey: Evidence for mixing of melts derived from both shallow and deep mantle sources

    Science.gov (United States)

    Oyan, Vural; Özdemir, Yavuz; Keskin, Mehmet; Güleç, Nilgün

    2017-04-01

    Collision-related Neogene volcanism in the Eastern Anatolia region (EAR) began after the continent-continent collision between the Arabia and the Eurasia plates, and spreads in a wide zone from the Erzurum-Kars Plateau in the northeast to the Karacadaǧ in the south. Volcanic activity in the EAR started 15 Ma ago (Middle Miocene) in the south of the region. Voluminous basaltic lavas from local eruption centers formed basaltic lava plateaus and volcanic cones as a result of high production level of volcanism during the Pliocene time interval. Our dating results (Ar-Ar and K-Ar) indicate that age of this Late Miocene-Pliocene magmatic activity range between 6 and 3.5 Ma. Volcanic products contain alkaline and subalkaline lavas, ranging in composition from basalts to andesites and trachyandesites. Our EC-AFC and AFC modeling, based on trace element and Sr, Nd, Pb isotopic compositions, suggests about 2-7 % crustal contamination in the evolved andesites and trachyandesites. MORB and primitive mantle normalized patterns of the lavas and isotopic compositions imply that alkaline and subalkaline basalts erupted in Pliocene time interval in the EAR could have been derived from a mantle source that had previously been enriched by a clear subduction component. A partial melting model was conducted to evaluate partial melting processes in the mantle source of the Pliocene basalts. Our melting model calculations suggest that basaltic melts in the EAR could have been produced by melting of mantle sources containing spinel, garnet and amphibole with melting degree in the range of 0.7-7%. The products of mixing of these derivative melts are the Pliocene basaltic lavas of the Eastern Anatolian Region.

  2. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions

    Science.gov (United States)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.

    2001-12-01

    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each

  3. Across-arc variation of Magma Composition in Central Sunda Arc, Indonesia: A test of slab influence to mantle source

    Science.gov (United States)

    Wibowo, H.; Hasenaka, T.; Handini, E.; Harijoko, A.

    2011-12-01

    Sunda arc, a part of Pacific ring of fire, extends from West Java to Flores. The arc developed since Tertiary period at a convergent tectonic plate margin, where India-Australian plate is subducted northward beneath Eurasian plate. Central Sunda Arc (CSA) is represented by a series of Quartenary volcanoes from the fore arc toward the back arc including Merapi, Merbabu, Telomoyo, Ungaran and Muria. Estimated depth of Wadati-Benioff zone beneath CSA ranges from 190 km for Merapi to 350 km for Muria. Field works have been conducted for brief geologic observation and rock sample collection from Merbabu, Telomoyo, Muria, including Genuk on the north and Patiayam on the south of Muria. Data from Merapi is compiled from previous studies. X-Ray Fluorescence, Prompt Gamma Ray and Instrumental Neutron Activation Analyses were used to obtain whole rock compositions. Previously reported trace element of Altered Oceanic Crust (AOC) and Indian Ocean sediment are employed to estimate the derived fluid composition, by considering mobility of the elements and assuming 1.5% weight fraction of hydrous fluid extracted from them. By applying subduction component elements, we tried to estimate the slab influence to mantle source in magma genesis of CSA. High Al2O3 (~18 wt%), low Cr (~29 ppm) and Ni (~27 ppm) of the volcanic rocks characterize CSA. K2O content increases gradually with the depth of Benioff zone from each volcano. Most samples from Merapi, Merbabu, Telomoyo and Ungaran are classified as subalkaline, whereas Muria samples fall on both alkaline and subalkaline fields. In detail, Merapi samples could be divided into medium-K and high-K, Merbabu medium-K, Telomoyo and Ungaran high-K, and Muria samples range from high-K to shosonitic. We only selected unfractionated lavas to avoid assimilation, including basalt, basaltic andesite, basanite, and trachy basaltic andesite. We also exclude samples with hornblende, micas, and K-feldspar to avoid boron fractionation and assimilation

  4. Transition region of the earth's upper mantle

    Science.gov (United States)

    Anderson, D. L.; Bass, J. D.

    1986-01-01

    The chemistry of the earth's mantle is discussed using data from cosmochemistry, geochemistry, petrology, seismology, and mineral physics. The chondritic earth, the upper mantle and the 400-km discontinuity, the transition region, lower mantle mineralogy, and surface wave tomography are examined. Three main issues are addressed: (1) whether the mantle is homogeneous in composition or chemically stratified, (2) whether the major element chemistry of the mantle is more similar to upper mantle peridotites or to chondrites, and (3) the nature of the composition of the source region of basalts erupted at midocean ridges.

  5. 186Os and 187Os enrichments and high-3He/4He sources in the Earth's mantle

    DEFF Research Database (Denmark)

    Brandon, A.D.; Graham, D.W.; Waight, Tod Earle

    2007-01-01

    picrites is best modeled as mixtures of 1 Ga or older ancient recycled crust mixed with primitive mantle or incompletely degassed depleted mantle isolated since 1-1.5 Ga, which preserves the high 3He/4He of the depleted mantle at the time. These mixtures create a hybrid source region that subsequently...... be interpreted as an increase in the proportion of ancient recycled crust in the upwelling plume over this time period. The positive correlation between 187Os/188Os and 3He/4He demonstrates that the Iceland lava He isotopic compositions do not result from simple melt depletion histories and consequent removal...

  6. Information sources and constraints under national agricultural ...

    African Journals Online (AJOL)

    Mo

    they buying information materials on the assumption that their are adequately qualified did not need to look for any more information. Lack of and/or limited financial resources in addition limited private service providers' access to most information sources notably internet as most of them reported that it was unaffordable.

  7. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions

    Science.gov (United States)

    Ren, Zhong-Yuan; Wu, Ya-Dong; Zhang, Le; Nichols, Alexander R. L.; Hong, Lu-Bing; Zhang, Yin-Hui; Zhang, Yan; Liu, Jian-Qiang; Xu, Yi-Gang

    2017-07-01

    Olivine-hosted melt inclusions within lava retain important information regarding the lava's primary magma compositions and mantle sources. Thus, they can be used to infer the nature of the mantle sources of large igneous provinces, which is still not well known and of the subject of debate. We have analysed the chemical compositions and Pb isotopic ratios of olivine-hosted melt inclusions in the Dali picrites, Emeishan Large Igneous Province (LIP), SW China. These are the first in-situ Pb isotope data measured for melt inclusions found in the Emeishan picrites and allow new constraints to be placed on the source lithology of the Emeishan LIP. The melt inclusions show chemical compositional variations, spanning low-, intermediate- and high-Ti compositions, while their host whole rocks are restricted to the intermediate-Ti compositions. Together with the relatively constant Pb isotope ratios of the melt inclusions, the compositional variations suggest that the low-, intermediate- and high-Ti melts were derived from compositionally similar sources. The geochemical characteristics of melt inclusions, their host olivines, and whole-rocks from the Emeishan LIP indicate that Ca, Al, Mn, Yb, and Lu behave compatibly, and Ti, Rb, Sr, Zr, and Nb behave incompatibly during partial melting, requiring a pyroxenite source for the Emeishin LIP. The wide range of Ti contents in the melt inclusions and whole-rocks of the Emeishan basalts reflects different degrees of partial melting in the pyroxenite source at different depths in the melting column. The Pb isotope compositions of the melt inclusions and the OIB-like trace element compositions of the Emeishan basalts imply that mixing of a recycled ancient oceanic crust (EM1-like) component with a peridotite component from the lower mantle (FOZO-like component) could have underwent solid-state reaction, producing a secondary pyroxenite source that was subsequently partially melted to form the basalts. This new model of pyroxenite

  8. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block

    Science.gov (United States)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang

    2017-08-01

    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of "hidden" large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  9. Where is mantle's carbon?

    Science.gov (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.

    2008-12-01

    Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. Geochemical Soc., Special Publication No. 6. Eds: Y. Fei, C.M. Bertka, B.O. Mysen. 4.Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. (2008). Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth's lower mantle. Earth Planet. Sci. Lett. 273, 38-47 5.Scott H.P.,, Williams Q., Knittle E. (2001). Stability and equation of state of Fe3C to 73 GPa: Implications for carbon in the Earth's core. Geoph. Res. Lett. 28, 1875-1878. 6.Oganov A.R., Glass C.W., Ono S. (2006). High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241, 95-103. 7.Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T., Nishibori E., Takadda M., and Sakata M. (2004). Stability of Magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60-63. 8.Skorodumova N.V., Belonoshko A.B., Huang L., Ahuja R., Johansson B. (2005) Stability of the MgCO3 structures under lower mantle conditions. Am. Mineral. 90, 1008-1011. 9.Panero W.R., Kabbes J.E. (2008). Mantle-wide sequestration of carbon in silicates and the structure of magnesite II. Geophys. Res. Lett. 35, L14307. 10.Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary algorithms: principles and applications. J. Chem. Phys. 124, art. 244704.

  10. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard

    2018-01-01

    Full Text Available The lower plate is the dominant agent in modern convergent margins characterized by active subduction, as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight. This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle. As geological and geochemical data seem inconsistent with the existence of modern-style ridges and arcs in the Archaean, a periodically-destabilized stagnant-lid crust system is proposed instead. Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle, perturbing Earth's heat generation/loss balance, eventually triggering mantle overturns. Archaean basalts were derived from fertile mantle in overturn upwelling zones (OUZOs, which were larger and longer-lived than post-Archaean plumes. Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods, allowing basal crustal cannibalism, garnetiferous crustal restite delamination, and coupled development of continental crust and sub-continental lithospheric mantle. Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB (mid-ocean ridge basalt mantle. Only after the start of true subduction did sequestration of subducted slabs at the core-mantle boundary lead to the development of the depleted MORB mantle source. During Archaean mantle overturns, pre-existing continents located above OUZOs would be strongly reworked; whereas OUZO-distal continents would drift in response to mantle currents. The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion, imbrication, subcretion and anatexis of unsubductable oceanic lithosphere. As Earth cooled and the background oceanic lithosphere became denser and stiffer, there would be an increasing

  11. The subduction erosion and mantle source region contamination model of Andean arc magmatism: Isotopic evidence from igneous rocks of central Chile

    International Nuclear Information System (INIS)

    Stern, Charles R

    2001-01-01

    Continental crust may be incorporated in mantle-derived Andean magmas as these magmas rise through the crust (Hildreth and Moorbath, 1988), or alternatively, crust may be tectonically transported into the mantle by subduction of trench sediments and subduction erosion of the continental margin, and then added into the mantle source region of Andean magmas (Stern, 1991). Since the mantle has relatively low Sr, Nd, and Pb concentrations compared to continental crust, differences in the isotopic compositions of magmas erupted in different region of the Andes may be produced by relatively small differences in the amount of subducted crust added to the mantle source region of these magmas. By comparison, significantly larger amounts of crust must be assimilated by mantle-derived magmas to produce isotopic differences of similar magnitude. Therefore, constraining the process by which continental crust is incorporated in Andean magmas has important implications for understanding the chemical cycling that takes place in the Andean subduction-related magma factory. Isotopic data suggest the incorporation of a greater proportion of crust in Andean magmas erupted at the northern portion of the Southern Volcanic Zone of central Chile compared to those erupted in the southern portion of the Southern Volcanic Zone of south central Chile (SSVZ) (Stern et al., 1984; Futa and Stern, 1988; Hildreth and Moorbath, 1988). The NSVZ occurs just south of the current locus of the subduction of the Juan Fernandez Ridge. The southward migration of the locus of subduction of this ridge has resulted in decreasing subduction angle below the NSVZ, the eastward migration of the volcanic front of the Andean arc, and an increase in the crustal thickness below the arc. These factors together have caused changes, since the middle Miocene, in the isotopic composition of Andean igneous rocks of central Chile. The data indicate a close chronologic relation between the southward migrations of the locus

  12. A common Pan-African Lithospheric Mantle (PALM) source for HIMU-like Pb-isotope signatures in circum-Mediterranean magmas

    Science.gov (United States)

    Young, H. P.; Wang, Z.; Brandon, M. T.

    2013-12-01

    conjugate margin of the Atlantic. Its distribution completely overlaps with the distribution of EAR rocks. We therefore propose that the previously termed European Asthenospheric Reservoir (EAR) is actually the Pan-African Lithospheric Mantle (PALM), which is a direct source of alkalic-basaltic melts. A mechanism for the generation of melts from an ancient, veined sub-continental lithospheric mantle is the advection of heat by melts generated in the asthenosphere as a result of extensional decompression which infiltrate or underplate the lithosphere, or alternatively heating by advection of hotter mantle such as by a plume. Cebria, J., and Wilson, M., 1995, Cenozoic mafic magmatism in Western/Central Europe: a common European asthenospheric reservoir: Terra Nova, v. 7, p. 162. Médard, E., Schmidt, M. W., Schiano, P., and Ottolini, L., 2006, Melting of Amphibole-bearing Wehrlites: an Experimental Study on the Origin of Ultra-calcic Nepheline-normative Melts: Journal of Petrology, v. 47, no. 3, p. 481-504. Pilet, S., Baker, M. B., Müntener, O., and Stolper, E. M., 2011, Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts: Journal of Petrology, v. 52, no. 7-8, p. 1415-1442. Zindler, A., and Hart, S., 1986, Chemical geodynamics: Annual review of earth and planetary sciences, v. 14, p. 493-571.

  13. Dynamical geochemistry of the mantle

    Directory of Open Access Journals (Sweden)

    G. F. Davies

    2011-09-01

    Full Text Available The reconciliation of mantle chemistry with the structure of the mantle inferred from geophysics and dynamical modelling has been a long-standing problem. This paper reviews three main aspects. First, extensions and refinements of dynamical modelling and theory of mantle processing over the past decade. Second, a recent reconsideration of the implications of mantle heterogeneity for melting, melt migration, mantle differentiation and mantle segregation. Third, a recent proposed shift in the primitive chemical baseline of the mantle inferred from observations of non-chondritic 142Nd in the Earth. It seems most issues can now be resolved, except the level of heating required to maintain the mantle's thermal evolution.

    A reconciliation of refractory trace elements and their isotopes with the dynamical mantle, proposed and given preliminary quantification by Hofmann, White and Christensen, has been strengthened by work over the past decade. The apparent age of lead isotopes and the broad refractory-element differences among and between ocean island basalts (OIBs and mid-ocean ridge basalts (MORBs can now be quantitatively accounted for with some assurance.

    The association of the least radiogenic helium with relatively depleted sources and their location in the mantle have been enigmatic. The least radiogenic helium samples have recently been recognised as matching the proposed non-chondritic primitive mantle. It has also been proposed recently that noble gases reside in a so-called hybrid pyroxenite assemblage that is the result of melt from fusible pods reacting with surrounding refractory peridotite and refreezing. Hybrid pyroxenite that is off-axis may not remelt and erupt at MORs, so its volatile constituents would recirculate within the mantle. Hybrid pyroxenite is likely to be denser than average mantle, and thus some would tend to settle in the D" zone at the base of the mantle, along with some old subducted

  14. A >100 Ma Mantle Geochemical Record: Retiring Mantle Plumes may be Premature

    Science.gov (United States)

    Konter, J. G.; Hanan, B. B.; Blichert-Toft, J.; Koppers, A. A.; Plank, T.; Staudigel, H.

    2006-12-01

    Hotspot volcanism has long been attributed to mantle plumes, but in recent years suggestions have been made that plate tectonic processes, such as extension, can account for all hotspot tracks. This explanation involves a profoundly less dynamic lower mantle, which justifies a critical evaluation before the plume model is dismissed. Such an evaluation has to involve a wide range of geochemical, geological, and geophysical techniques, broadly investigating the products of volcanism as well as the underlying lithosphere and mantle. We argue here that the combined geological record and geochemistry of intraplate volcanoes holds some important clues that help us decide between models of plume-like upwelling versus passive upwelling with lithospheric extension. The best of these integrated datasets can be obtained from the long seamount chains in the Pacific Ocean. A new combined dataset of trace element and isotopic compositions, along with modern 40Ar/39Ar ages from seamounts in the Gilbert Ridge, Tokelau chain, and West Pacific Seamount Province (WPSP) provides a record of current to Cretaceous volcanism in the South Pacific. We have reconstructed the eruptive locations of the seamounts using a range of absolute plate motion models, including some models with hotspot motion and others that use the Indo-Atlantic hotspot reference frame. Our results show that the backtracked locations consistently form clusters (300km radius) around the active ends of the Macdonald, Rurutu and Rarotonga hotspot chains, while closely matching their distinct C-HIMU and C-EM1 signatures. The oldest WPSP seamounts (older than 100 Ma) form the only exception and backtrack, with larger uncertainty, to north of Rarotonga. Therefore, the mantle currently underlying the Cook-Austral islands has produced volcanoes in three geochemically distinct areas for at least 100 m.y. Furthermore, we find the shortest mantle residence time, 0.6 Ga, for a source of mixed recycled DMM and an EM1-like

  15. Nonpoint Source Pollution Control Under Incomplete and Costly Information

    OpenAIRE

    Y.H. Farzin; J.D. Kaplan

    1999-01-01

    We analyze the efficient management of nonpoint source pollution (NPS) under a limited pollution control budget and incomplete information. We focus on the tradeoff between data collection and pollution abatement efforts by incorporating information acquisition into a NPS pollution control model. Comparative static results show conditions under which (i) a favorable change in the abatement costs at one source may lead to an increase in the treatment level at all sources, and vice versa, (ii) ...

  16. Genesis of Ultra-High Pressure Garnet Pyroxenite in Orogenic Peridotites and its bearing on the Isotopic Chemical Heterogeneity in the Mantle Source of Oceanic Basalts

    Science.gov (United States)

    Varas Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2017-04-01

    The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood. Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar to the recycled oceanic crustal component observed in oceanic basalts [1-6]. These pyroxenites hence provide an exceptional opportunity to investigate in situ the nature and scale of the Earth's mantle chemical heterogeneities. Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain) and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample, bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content, we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic signatures. Group A pyroxenites (Al2O3: 15 - 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group B pyroxenites (Al2O3 element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet pyroxenites lend support to the "Marble Cake Mantle" model [7] for the genesis of these pyroxenites. This model envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented by garnet pyroxenites in orogenic peridotites—- intimately mixed with peridotites by mantle convection. The present study reveals, however, that besides this exotic component of ancient recycled oceanic crust, the genesis of these pyroxenites requires a previously unnoticed component of recycled lower continental crust akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in

  17. Evolution of the mantle source in an evolving arc-backarc system (Torres del Paine, Patagonia): Evidence from Hf isotopes in zircon

    Science.gov (United States)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Baumgartner, L. P.; Putlitz, B.; d'Abzac, F. X.; Chiaradia, M.

    2015-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a transitional alkaline backarc intrusion1 emplaced on short timescales of 162 ± 11 ka2. It is subdivided into two units with distinct ages of ~12.6 Ma and ~12.45 Ma1. Smaller intrusive bodies in the area record a change in chemistry from calc-alkaline at ~16 Ma, to transitional alkaline at ~12.5 Ma. Zircons from ~16 Ma intrusives and the 12.6 Ma part of the TPIC have remarkably consistent, slightly enriched Hf isotope compositions with ɛHf(i) of -1 to +2. An abrupt shift towards more juvenile Hf isotope compositions is observed in the ~12.45 Ma part of the TPIC, with ɛHf(i) of +3 to +6. Bulk rock Nd and Sr isotopes for the TPIC show the same shift towards more juvenile compositions at this time1. The long-term consistency of ɛHf(i) from 16 to 12.6 Ma is surprising, given that in the same period the bulk rock chemistry changes from calc-alkaline to transitional alkaline. Conversely, the major shift in ɛHf(i) is not correlated with any change in bulk rock chemistry, which remains transitional alkaline from 12.6 to 12.45 Ma. The decoupling of major element chemical evolution and Hf isotope signatures suggests that the subsequent rapid influx of juvenile material recorded by our Hf isotope data must have occurred by renewed mantle melting. Subduction of the Chile ridge at ~12.5 Ma in this area caused arc magmatism to move westwards and back-arc extension to initiate. We propose that the first TPIC magmas (12.6 Ma) came from a mantle wedge with a residual subduction signature. Subsequent melting of more juvenile mantle, less contaminated by a subduction component, generated the 12.45 Ma TPIC magmas. These results demonstrate that magmatic complexes such as the TPIC may tap distinct mantle sources even on very short timescales, fingerprinting arc-backarc transition processes. 1Leuthold et al., 2013, JPET, 54: 273-303 2Leuthold et al., 2012, EPSL, 325: 85-92

  18. High-Precision Pb Isotopic Analyses of Historical Kilauea Summit Lavas (1823-1982): Implications for a Heterogeneous Mantle Source and a Dynamic Magmatic Plumbing System

    Science.gov (United States)

    Heaton, D. E.; Pietruszka, A. J.; Garcia, M. O.; Marske, J. P.

    2010-12-01

    We present new high-precision Pb isotopic analyses of 40 historical Kilauea summit lavas (1823-1982). These data provide the opportunity to investigate the architecture of Kilauea’s summit magma storage reservoir and the characteristics of the volcano’s mantle source region. The Pb isotope ratios of the lavas exhibit a fluctuating temporal trend characterized by low 206Pb/204Pb ratios in 1823, a gradual increase to 1921, relatively constant intermediate values from 1934-1959, and a rapid decrease to 1982. These variations indicate that Kilauea’s summit reservoir is being supplied by rapidly changing parental magma compositions derived from a mantle source that is heterogeneous on a small scale. This inference is highlighted by the two distinct mixing arrays on a plot of 206Pb/204Pb vs. 208Pb/204Pb, where the 19th century lavas have lower 208Pb/204Pb at a given 206Pb/204Pb. Analyses of lavas from individual summit eruptions (e.g., 1959, Aug. 1971, Jul. 1974, and Sep. 1982) reveal additional isotopic variability with small but significant differences in 206Pb/204Pb ratios (0.009 to 0.029). The extracaldera lavas from Aug. 1971 and Jul. 1974 display significantly lower Pb isotope ratios than the intracaldera lavas from the same eruption, and are isotopically similar to lavas from the immediately proceeding eruption (e.g., Jul. 1974 intracaldera lavas are similar to Aug. 1971 extracaldera lavas). These spatial distinctions indicate that intracaldera lavas are supplied from the summit reservoir, whereas extracaldera may bypass it. A single reservoir magma mixing model and the temporal progression of Pb isotope ratios were used to determine both the residence time and volume of magma in the volcano’s summit reservoir. The volume of Kilauea’s summit reservoir has increased by an order of magnitude from the 1924 explosions and caldera collapse to the late 20th century (0.02 to 0.20 km3). These volume estimates are more precise and much smaller than previous

  19. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland

    DEFF Research Database (Denmark)

    Polat, A; Frei, Robert; Scherstén, Anders

    2010-01-01

    –2650 Ma ages are attributed to metamorphic overgrowth and recrystallization in response to multiple tectonothermal events that affected the Fiskenæsset region. On the basis of recently published trace element data, and new Nd and Pb isotope and U–Pb zircon age data, a three-stage geodynamic model...... rocks collectively yield an Sm–Nd errorchron age of 2973 ± 28 Ma (MSWD = 33), with an average initial eNd = + 3.3 ± 0.7, consistent with a long-term depleted mantle source. Regression of Pb isotope data define an age of 2945 ± 36 Ma (MSWD = 44); and the regression line intersects the average growth...... curve at 3036 Ma. Slightly lower Pb–Pb errorchron age is interpreted as reflecting partial disturbance of the U–Pb system in gabbros, leucogabbros and ultramafic rocks during intrusion of TTGs. Complex internal structures in zircons from orthogneisses reveal several episodes of zircon growth...

  20. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan)

    Science.gov (United States)

    Ewing, Tanya A.; Müntener, Othmar

    2018-05-01

    The Cretaceous-Paleogene Kohistan arc complex, northern Pakistan, is renowned as one of the most complete sections through a preserved paleo-island arc. The Jijal Complex represents a fragment of the plutonic roots of the Kohistan arc, formed during its early intraoceanic history. We present the first Hf isotope determinations for the Jijal Complex, made on rutile from garnet gabbros. These lithologies are zircon-free, but contain rutile that formed as an early phase. Recent developments in analytical capabilities coupled with a careful analytical and data reduction protocol allow the accurate determination of Hf isotope composition for rutile with <30 ppm Hf for the first time. Rutile from the analysed samples contains 5-35 ppm Hf, with sample averages of 13-17 ppm. Rutile from five samples from the Jijal Complex mafic section, sampling 2 km of former crustal thickness, gave indistinguishable Hf isotope compositions with εHf(i) ranging from 11.4 ± 3.2 to 20.1 ± 5.7. These values are within error of or only slightly more enriched than modern depleted mantle. The analysed samples record variable degrees of interaction with late-stage melt segregations, which produced symplectitic overprints on the main mineral assemblage as well as pegmatitic segregations of hydrous minerals. The indistinguishable εHf(i) across this range of lithologies demonstrates the robust preservation of the Hf isotope composition of rutile. The Hf isotope data, combined with previously published Nd isotope data for the Jijal Complex garnet gabbros, favour derivation from an inherently enriched, Indian Ocean type mantle. This implies a smaller contribution from subducted sediments than if the source was a normal (Pacific-type) depleted mantle. The Jijal Complex thus had only a limited recycled continental crustal component in its source, and represents a largely juvenile addition of new continental crust during the early phases of intraoceanic magmatism. The ability to determine the Hf

  1. Heterogeneously hydrated mantle beneath the late Archean Yilgarn Craton

    Science.gov (United States)

    Ivanic, T. J.; Nebel, O.; Jourdan, F.; Faure, K.; Kirkland, C. L.; Belousova, E. A.

    2015-12-01

    melting may also generate large melt fractions. We conclude that the source of the magmatic water at Narndee is the mantle, which, in conjunction with its absence in the adjacent Windimurra Igneous Complex, argues for a heterogeneous hydration of mantle source regions under the Yilgarn Craton in the Mesoarchean.

  2. Light source characterization and air movement under CIE S 025

    DEFF Research Database (Denmark)

    Thorseth, Anders; Bergen, A. S. J.

    2017-01-01

    as well as requirements for the performance of testing and measurement equipment. One of the environmental considerations is a restriction of the airflow incident on the device under test. The sensitivity of LED source based devices to airflow is important for estimating the uncertainty originating from...

  3. Autonomous robotic platforms for locating radio sources buried under rubble

    Science.gov (United States)

    Tasu, A. S.; Anchidin, L.; Tamas, R.; Paun, M.; Danisor, A.; Petrescu, T.

    2016-12-01

    This paper deals with the use of autonomous robotic platforms able to locate radio signal sources such as mobile phones, buried under collapsed buildings as a result of earthquakes, natural disasters, terrorism, war, etc. This technique relies on averaging position data resulting from a propagation model implemented on the platform and the data acquired by robotic platforms at the disaster site. That allows us to calculate the approximate position of radio sources buried under the rubble. Based on measurements, a radio map of the disaster site is made, very useful for locating victims and for guiding specific rubble lifting machinery, by assuming that there is a victim next to a mobile device detected by the robotic platform; by knowing the approximate position, the lifting machinery does not risk to further hurt the victims. Moreover, by knowing the positions of the victims, the reaction time is decreased, and the chances of survival for the victims buried under the rubble, are obviously increased.

  4. A Lower-Crust or Mantle Source for Mineralizing Fluids Beneath the Olympic Dam IOCG Deposit, Australia: New Evidence From Magnetotelluric Sounding

    Science.gov (United States)

    Heinson, G.

    2005-12-01

    The iron-oxide-copper-gold (IOCG) Olympic Dam (OD) deposit, situated along the margin of the Proterozoic Gawler Craton, South Australia, is the world's largest uranium deposit, and sixth largest copper deposit; it also contains significant reserves of gold, silver and rare-earth elements (REE). Gaining a better understanding of the mechanisms for genesis of the economic mineralisation is fundamental for defining exploration models in similar crustal-settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses OD and the major crustal boundaries. We present results from 58 long-period (10-104 s) MT sites, with site spacing of 5 to 10 km. A 2D inversion of all MT data to a depth of 100 km shows four notable features: (a) sedimentary cover sequences with low resistivity (1000 Ω.m) Archaean crustal core, from a more conductive crust to the north (typically <500 Ω.m); (c) to the north of OD, the crust to about 20 km is quite resistive (~1000 Ω.m), but the lower crust is much more conductive (<100 Ω.m); and (d) beneath OD, we image a low-resistivity region (<100 Ω.m) throughout the crust, coincident with a seismically transparent region. We argue that the cause of the low-resistivity and low-reflectivity region beneath OD may be due to the upward movement of crustal-volatiles that have deposited conductive graphite mineralisation along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle-degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.

  5. Rogue Mantle Helium and Neon

    Science.gov (United States)

    Albarede, F.

    2007-12-01

    The canonical view of He isotope geochemistry holds that high 3He/4He ratios in basalts fingerprints undegassed mantle sources. Hawaiian basalts with unradiogenic He with 3He/4He up to 30 RA are therefore seen as originating from parts of the mantle that is still primordial, at least much more so than MORB mantle (3He/4He ~ 8 RA). This view was strongly reinforced by the discovery of solar and even planetary Ne components in oceanic basalts and gas wells. The canonical view, however, conflicts with multiple observations on ocean islands, notably Hawaiian basalts: the correlation of {187}Os/{186}Os with δ 18O combined with the presence of unusually radiogenic Hf isotope compositions for a given Nd isotope composition and the correlation between Hf and Pb isotopes are all features strongly reminiscent of ancient subducted oceanic crust and pelagic sediments in the source of the Hawaiian plume. These conflicting observations beg the question of how Hawaiian basalts, which carry the embodiment of a primordial gas signature, at the same time can provide such strong evidence of surface material recycling. I here suggest and alternative model that uses the marble cake paradigm and Shuster et al.'s data on olivine. A solution to this conundrum lies in an analogy with oil genesis: 3He and Ne do not reside in the low-melting point peridotites in which they were originally hosted but rather migrated since early in Earth history into refractory 'reservoir' rocks. Since there can be no free gas phase percolating at pressures in excess of olivine carbonation at ~3 GPa, He must be largely redistributed by diffusion. The time scale of diffusion is the defining parameter: although over billions of years 3He diffuses across large distances, melting events are too short to efficiently strip residual refractory rocks from their high-3He/4He component. Assuming that melts begin forming over the uppermost 100 km with an upwelling rate of 10 m y-1 in plume conduits and 10 cm y-1 under

  6. THE EVALUATION OF SOURCES OF KNOWLEDGE UNDERLYING DIFFERENT CONCEPTUAL CATEGORIES

    Directory of Open Access Journals (Sweden)

    Guido eGainotti

    2013-02-01

    Full Text Available According to the embodied cognition theory and to the sensory-motor model of semantic knowledge: (a concepts are represented in the brain in the same format in which they have been constructed by the sensory-motor system and (b various conceptual categories differ for the weight that different kinds of information play in their representation. In our study, we have tried to check the second assumption by asking normal elderly subjects to rate their subjective evaluation of the role that various perceptual, motor and language-mediated sources of knowledge could have in the construction of different semantic categories. Our first aim consisted in rating the influence that different sources of knowledge could have in the representation of animals, plant life and artifact categories, rather than in those of living and non-living beings, as many previous studies on this subject have made. We also tried to check the influence of age and stimulus modality on these evaluations of the ‘sources of knowledge’ underlying different conceptual categories. The influence of age was checked by comparing results obtained on our group of elderly subjects with those obtained in a previous study, conducted with the same methodology on a sample of young students, whereas the influence of stimulus modality was assessed by presenting the stimuli in the verbal modality to 50 subjects and in the pictorial modality to 50 other subjects.The distinction between ‘animals’ and ‘plant life’ within the ‘living’ categories was confirmed bythe analysis of their prevalent sources of knowledge and by a cluster analysis, which allowed to distinguish fruits and vegetables from animals. Furthermore, results of the study showed: (a that the visual modality was considered by our subjects as the main source of knowledge for all the categories taken into account; (b that in biological categories the next more important source of information was represented by other

  7. Self-Organized Mantle Layering After the Magma-Ocean Period

    Science.gov (United States)

    Hansen, U.; Dude, S.

    2017-12-01

    The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.

  8. Lead isotope constraints on the mantle sources involved in the genesis of Mesozoic high-Ti tholeiite dykes (Urubici type from the São Francisco Craton (Southern Espinhaço, Brazil

    Directory of Open Access Journals (Sweden)

    Leila Soares Marques

    Full Text Available ABSTRACT: The first results of Pb isotope compositions of the high-Ti Mesozoic dykes of the Southern Espinhaço are presented. The results do not show large variations and are significantly more radiogenic than the Pb isotope compositions of the high-Ti tholeiites from the Paraná Continental Flood Basalts. The data combined with published geochemical and Sr-Nd isotope results rule out crustal contamination processes in the genesis of the dykes, requiring magma generation in metasomatized subcontinental lithospheric mantle with the involvement of HIMU-type and carbonatite components. The magmas may have been also derived from a mantle source containing ~4 - 5% of pyroxenite and ~1% of carbonatite melts, agreeing with published Os isotope compositions of high-Ti rocks from the Paraná Continental Flood Basalts. These metasomatizing agents could be responsible for mantle source refertilization, as was also proposed in the literature to explain the characteristics of xenoliths of the Goiás Alkaline Province, which also occurs in the border of the São Francisco Craton. Additionally, to evaluate the risks of Pb contamination during sample preparation for analysis, several experimental tests were accomplished, which indicate the need of sawed surface removal and a careful washing of small-sized rock fragments before powdering, especially for rocks with [Pb] < 7 µg/g.

  9. Facilitating atmosphere oxidation through mantle convection

    Science.gov (United States)

    Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.

    2017-12-01

    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the

  10. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts suggest an Archean source component in the mantle transition zone

    NARCIS (Netherlands)

    Nebel, O.; Arculus, R.J.; van Westrenen, W.; Woodhead, J.D.; Jenner, F.E.; Nebel-Jacobsen, Y.J.; Wille, M.; Eggins, S.M.

    2013-01-01

    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with

  11. A squeezed light source operated under high vacuum.

    Science.gov (United States)

    Wade, Andrew R; Mansell, Georgia L; Chua, Sheon S Y; Ward, Robert L; Slagmolen, Bram J J; Shaddock, Daniel A; McClelland, David E

    2015-12-14

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  12. Magnetotellurics with geomagnetic observatory data influenced by the ocean effect: upper mantle conductivity under the islands of Gan and Tristan da Cunha

    Science.gov (United States)

    Morschhauser, A.; Grayver, A.; Kuvshinov, A. V.; Samrock, F.; Matzka, J.

    2017-12-01

    The electric conductivity of the oceanic lithosphere and upper mantle is not well constrained, mainly due to logistical challenges in oceanic surveys. However, electric field measurements can easily be added to geomagnetic observatories on islands.Currently, such measurements are available for Tristan da Cunha in the Atlantic Ocean and Gan on the Maldives in the Indian Ocean, and we derive tippers, impedances, and phase tensors for those observatories. The main challenge is that these transfer functions are severely affected by the conductivity contrast between seawater and land, which results in a three-dimensional (3-D) behaviour of the responses. We use an adaptive finite-element MT forward solver in order to properly account for this 3-D effect by including the available bathymetry and topography data into the model. Then, different transfer functions are individually inverted for upper mantle conductivities using a stochastic approach. We observe that tippers are mostly sensitive down to depths of approx. 100 km, and that additional electric field measurements improve the resolution for 100 to 200 km depth. The obtained 1-D conductivity profiles indicate a normal oceanic mantle below GAN and an anomalously conductive mantle below TDC, which may be related to the presence of melt below the island.

  13. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.

    Science.gov (United States)

    Rosenthal, Anja; Yaxley, Gregory M; Green, David H; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-08-18

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

  14. Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle.

    Science.gov (United States)

    Goldstein, Steven L; Soffer, Gad; Langmuir, Charles H; Lehnert, Kerstin A; Graham, David W; Michael, Peter J

    2008-05-01

    The Gakkel ridge, which extends under the Arctic ice cap for approximately 1,800 km, is the slowest spreading ocean ridge on Earth. Its spreading created the Eurasian basin, which is isolated from the rest of the oceanic mantle by North America, Eurasia and the Lomonosov ridge. The Gakkel ridge thus provides unique opportunities to investigate the composition of the sub-Arctic mantle and mantle heterogeneity and melting at the lower limits of seafloor spreading. The first results of the 2001 Arctic Mid-Ocean Ridge Expedition (ref. 1) divided the Gakkel ridge into three tectonic segments, composed of robust western and eastern volcanic zones separated by a 'sparsely magmatic zone'. On the basis of Sr-Nd-Pb isotope ratios and trace elements in basalts from the spreading axis, we show that the sparsely magmatic zone contains an abrupt mantle compositional boundary. Basalts to the west of the boundary display affinities to the Southern Hemisphere 'Dupal' isotopic province, whereas those to the east-closest to the Eurasian continent and where the spreading rate is slowest-display affinities to 'Northern Hemisphere' ridges. The western zone is the only known spreading ridge outside the Southern Hemisphere that samples a significant upper-mantle region with Dupal-like characteristics. Although the cause of Dupal mantle has been long debated, we show that the source of this signature beneath the western Gakkel ridge was subcontinental lithospheric mantle that delaminated and became integrated into the convecting Arctic asthenosphere. This occurred as North Atlantic mantle propagated north into the Arctic during the separation of Svalbard and Greenland.

  15. The Role of Deep Mantle Flow in Shaping the Hawaiian-Emperor Bend

    Science.gov (United States)

    Hassan, R.; Müller, D.; Gurnis, M.; Williams, S.; Flament, N. E.

    2016-12-01

    Age-progressive volcanic hotspot tracks are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin, potentially rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. The north Pacific features long-lasting subduction systems, unlike those in the south Pacific. We present palaeogeographically-constrained numerical models of thermochemical convection demonstrating that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 Ma and 50 Ma. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. We show that the different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 Ma and 50 Ma. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  16. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow

    Science.gov (United States)

    Hassan, Rakib; Müller, R. Dietmar; Gurnis, Michael; Williams, Simon E.; Flament, Nicolas

    2016-05-01

    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth’s mantle. Seismic imaging reveals that these plumes can be of deep origin—probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  17. Magmatic and Seismic Evidence for the Neogene Evolution of the Subducting Slab and Crustal and Mantle Lithosphere under the Central Andes

    Science.gov (United States)

    Kay, S. M.; Sandvol, E. A.

    2017-12-01

    Geophysical models coupled with the distribution, chemistry and age of magmatic rocks provide powerful tools for reconstructing the thermal and material balance and deformational history of the Central Andean crust and lithosphere in time and space. Two examples are given. In the first, a model for changing slab geometry, delamination (foundering) of the crust and mantle and forearc subduction erosion beneath the southern Puna plateau comes from studies of Miocene to Recent magmatic rocks linked with seismic studies. The distribution and chemistry (e.g., Sm/Yb, La/Ta, Ba/La, isotopes) of the volcanic rocks support an 18-7 Ma period of slab shallowing, followed by slab steepening and forearc subduction erosion linked with backarc crustal and lithospheric delamination and eruption of large ignimbrites. Support for delamination comes from seismic attenuation and Vs tomographic images that reveal an 100 km wide high velocity anomaly associated with an irregular shear wave splitting pattern, which is interpreted as a delaminated block above a nearly aseismic segment of the subducting slab at a depth of 150-200 km (Calixto et al., 2013, 2014; Liang et al. 2014). This block underlies the 1350°C at 2 Gpa followed by fractionation and mixing with melts of garnet-pyroxene-amphibole bearing crust (Risse et al., 2013). In accord, the lavas are over a region where receiver functions indicate a lithosphere-asthenosphere boundary at 60-80 km and a regionally thin 45-55 km thick crust with a low Vp/Vs (< 1.70) ratio (Heit et al., 2014). Calculations of crustal loss and gain allow up to 10% of the southern Puna lower crust to have been lost in the last 10 Ma. A second region where the characteristics of the magmatic rocks provide clues to the timing of slab shallowing and proposed slab tears (e.g., Lynner et al, 2017) is over and on the margins of the Chilean flat-slab). In this case, shallowing of the slab as the trench normal portion of the Juan Fernandez Ridge began to subduct

  18. Application of nuclear analytical techniques to trace elements in cenozoic basalt and their mantle xenoliths from Aershan area in Inner Mongolia, China

    International Nuclear Information System (INIS)

    Yu Fusheng; Han Song; Huang Yuying; He Wei; Cao Jie; Wang Hongyue

    2005-01-01

    Basaltic samples from different locations in Aershan area determined by instrumental neutron activation analysis (INAA) have the same distribution patterns of REE and trace elements. The similar REE contents of the same minerals without inclusions from different xenolith suggest that the mantle source region under different active volcanoes have the same composition. The REE content differences between the same minerals with and without melt inclusions selected from the same mantle xenolith indicate that the melt inclusions are rich in REE. The same patterns of trace elements of inclusions and host minerals from different xenolith analyzed by SRXRF suggest that the mantle fluid has no notable heterogeneity in Aershan area. (authors)

  19. LMFBR source term experiments with rupture disk discharge under sodium

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-05-01

    In the frame of the KfK research program FAUST, contributions are given to the assessment of the instantaneous source term in case of an LMFBR loss-of-flow accident with expanding fuel or sodium vapour. The main goal of the program is to achieve information, mainly by experiments, on the retention capability of the primary sodium pool for fuel and fission products. For that purpose, it is necessary to investigate the interaction of bubble and aerosol behaviour after a pressure discharge, and the subsequent aerosol transport. After a series of water tests (FAUST-1), rupture disk discharge tests under 500 C sodium up to 3.81 MPa were performed during the phase FAUST-2 with the two test facilities 2A (about 2 liters of sodium) and 2B (about 200 liters of sodium). The discharge tests were performed with pressurized argon gas and admixtures of the simulation materials Cs, Csl, Nal, l 2 , SrO, and UO 2 . Cs was a liquid, l 2 vapour, and all other substances solid particles. Besides UO 2 , non-radioactive material was used (natural isotopes). The retention capability of liquid sodium is expressed by retention factors RF. In general, RF is defined as the mass ratio of discharged amount, and the amount which is detected in the cover gas for the relevant species. From sampling immediately after the discharge, the instantaneous retention factors are deduced. From retarded sampling, the 'delayed factors' follow. High pressure discharge creates two important removal mechanisms, namely 'impaction by inertia relative to the bubble oscillations' and 'wash-out by sedimentation of entrained sodium droplets'. On the other hand, the retention of particles enclosed in a buoyantly rising bubble is significantly smaller. (orig.) [de

  20. Long-Lived Mantle Plumes Sample Multiple Deep Mantle Geochemical Domains: The Example of the Hawaiian-Emperor Chain

    Science.gov (United States)

    Harrison, L.; Weis, D.

    2017-12-01

    Oceanic island basalts provide the opportunity for the geochemist to study the deep mantle source removed from continental sources of contamination and, for long-lived systems, the evolution of mantle sources with time. In the case of the Hawaiian-Emperor (HE) chain, formation by a long-lived (>81 Myr), deeply-sourced mantle plume allows for insight into plume dynamics and deep mantle geochemistry. The geochemical record of the entire chain is now complete with analysis of Pb-Hf-Nd-Sr isotopes and elemental compositions of the Northwest Hawaiian Ridge (NWHR), which consists of 51 volcanoes spanning 42 Ma between the bend in the chain and the Hawaiian Islands. This segment of the chain previously represented a significant data gap where Hawaiian plume geochemistry changed markedly, along with magmatic flux: only Kea compositions have been observed on Emperor seamounts (>50 Ma), whereas the Hawaiian Islands (drift through different lower mantle geohemical domains.

  1. Mantle dynamics and basalt petrogenesis

    Science.gov (United States)

    Ringwood, A. E.

    1985-03-01

    Differentiation at mid-ocean ridges generates a layered lithosphere consisting of a basaltic crust, immediately underlain by harzburgite and further underlain by pyrolite which has experienced depletion only of highly incompatible elements. The body forces driving subduction are concentrated mainly in the upper half of the lithosphere which is relatively cool and brittle. During subduction, the lower layer of relatively ductile, slightly depleted pyrolite is stripped off and resorbed into the upper mantle, thereby providing a future source region for MORB magmas. The slab which sinks to ~ 600 km is comprised mainly of differentiated former basalt and harzburgite which undergo a different series of phase transformations to those experienced by mantle pyrolite. In consequence, the former basaltic crust remains denser than surrounding mantle whereas former harzburgite becomes relatively buoyant below the 650 km seismic discontinuity. The resulting non-uniformity in stress distribution causes the slab to buckle at this depth and accrete to form a large, relatively cool ovoid "megalith" of mixed former harzburgite and basaltic crust. Heating of the megalith occurs over 1-2 b.y., leading to partial melting of the former basaltic crust. The resultant liquids contaminate regions of former harzburgite, rendering them fertile in the sense of future capacity to produce basaltic magmas. After thermal equilibration, the newly fertile, former harzburgite becomes buoyant, leading to the separation of diapirs which rise into the upper mantle. Such diapirs rising beneath sub-oceanic lithosphere experience small degrees of partial melting to produce ocean island basalts, mainly of the alkaline suite. Diapirs of fertile former harzburgite rising beneath continents become incorporated into the sub-continental lithosphere. This is a cumulative process and is ultimately responsible for the development of the chemical, physical and isotopic characteristics of the sub

  2. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...

  3. Heating in the Solar Mantle

    Science.gov (United States)

    Chiuderi, C.

    1985-01-01

    In the case of the solar chromosphere and corona (the solar mantle) the primary energy source is the mechanical energy from photospheric motions. Plenty of energy is available; the problem is to transfer the needed amount of energy to the proper place to account for the observations. The global problem is reviewed from the point of view of the generation and transmission of energy, the intermediate storage of energy, and the release of energy in such a way that the observed features are generated.

  4. Driving forces: Slab subduction and mantle convection

    Science.gov (United States)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  5. Carbonate- and silicate-rich globules in the kimberlitic rocks of northwestern Tarim large igneous province, NW China: Evidence for carbonated mantle source

    Science.gov (United States)

    Cheng, Zhiguo; Zhang, Zhaochong; Santosh, M.; Hou, Tong; Zhang, Dongyang

    2014-12-01

    samples are characterized by incompatible element enrichment with high (La/Yb)N values (41-58) and remarkable negative anomalies in HFSEs (e.g. Ta, Zr, Hf). Our new data suggest that the carbonate-rich globule most likely crystallized at high-temperature and does not represent immiscible liquids, whereas the silicate-rich globules are related to carbonate-rich deuteric hydrothermal fluids during the later-stage of melt evolution. The fluids reacted with the surrounding silicate melts resulting in the formation of skarn minerals such as phlogopite, diopside and andradite. The presence of the carbonate-bearing globules indicates that the Wajilitage kimberlitic rocks are carbonate-rich and most likely derived from an enriched mantle with abundant carbonate. We correlate the carbonated mantle to metasomatism by the migration of deep-seated fluids (carbonate-rich) in response to the impingement of the early Permian mantle plume.

  6. TranSCorBe Project: A high-resolution seismic-passive profile to study the variation of the crustal and upper mantle structures under the Betic mountain ranges

    Science.gov (United States)

    Morales, José; Martín, Rosa; Stich, Daniel; Heit, Benjamín; Yuan, Xiaohui; Mancilla, Flor; Benito, José; Carrion, Francisco; Serrano, Inmaculada; López-Comino, Jose Angel; Abreu, Rafael; Alguacil, Gerardo; Almendros, Javier; Carmona, Enrique; Ontiveros, Alfonso; García-Quiroga, Daniel; García-Jerez, Antonio

    2014-05-01

    The goal of this project is to study the crustal and upper mantle structures under the Betic mountain ranges and their variations between the different geological domains. We deployed 50 broadband and short period seismic stations during 18 months following two profiles. We collect teleseismic events to perform a high-resolution P-to-S and S-to-P receiver function analysis. The main profile (TranSCorBe), of 160 km length, starts near the coast in Mazarrón (Murcia) and follows a NW-SE direction, crossing the Cazorla mountain range. It probes, from south to north, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The spacing between stations is around 3-4 km. This inter-station distance allows us mapping with high accuracy the variations of the crust and upper mantle discontinuities in the Betic Range and their transition to the Iberian Massif. A second profile (HiRe II) with a larger spacing between seismic stations, is a continuation of a previously installed HiRe I profile, a NS profile starting near the Mediterranean coast in Adra (Almería) through Sierra Nevada Mountains. HiRe II profile prolongs HiRe I profile until the Variscan intersecting with TranSCorBe profile near Cazorla.

  7. Determining resolvability of mantle plumes with synthetic seismic modeling

    Science.gov (United States)

    Maguire, R.; Van Keken, P. E.; Ritsema, J.; Fichtner, A.; Goes, S. D. B.

    2014-12-01

    Hotspot volcanism in locations such as Hawaii and Iceland is commonly thought to be associated with plumes rising from the deep mantle. In theory these dynamic upwellings should be visible in seismic data due to their reduced seismic velocity and their effect on mantle transition zone thickness. Numerous studies have attempted to image plumes [1,2,3], but their deep mantle origin remains unclear. In addition, a debate continues as to whether lower mantle plumes are visible in the form of body wave travel time delays, or whether such delays will be erased due to wavefront healing. Here we combine geodynamic modeling of mantle plumes with synthetic seismic waveform modeling in order to quantitatively determine under what conditions mantle plumes should be seismically visible. We model compressible plumes with phase changes at 410 km and 670 km, and a viscosity reduction in the upper mantle. These plumes thin from greater than 600 km in diameter in the lower mantle, to 200 - 400 km in the upper mantle. Plume excess potential temperature is 375 K, which maps to seismic velocity reductions of 4 - 12 % in the upper mantle, and 2 - 4 % in the lower mantle. Previous work that was limited to an axisymmetric spherical geometry suggested that these plumes would not be visible in the lower mantle [4]. Here we extend this approach to full 3D spherical wave propagation modeling. Initial results using a simplified cylindrical plume conduit suggest that mantle plumes with a diameter of 1000 km or greater will retain a deep mantle seismic signature. References[1] Wolfe, Cecily J., et al. "Seismic structure of the Iceland mantle plume." Nature 385.6613 (1997): 245-247. [2] Montelli, Raffaella, et al. "Finite-frequency tomography reveals a variety of plumes in the mantle." Science 303.5656 (2004): 338-343. [3] Schmandt, Brandon, et al. "Hot mantle upwelling across the 660 beneath Yellowstone." Earth and Planetary Science Letters 331 (2012): 224-236. [4] Hwang, Yong Keun, et al

  8. Radiation doses from radioactivity in incandescent mantles

    International Nuclear Information System (INIS)

    1985-01-01

    Thorium nitrate is used in the production of incandescent mantles for gas lanterns. In this report dose estimates are given for internal and external exposure that result from the use of the incandescent mantles for gas lanterns. The collective, effective dose equivalent for all users of gas mantles is estimated to be about 100 Sv per annum in the Netherlands. For the population involved (ca. 700,000 persons) this is roughly equivalent to 5% to 10% of the collective dose equivalent associated with exposure to radiation from natural sources. The major contribution to dose estimates comes from inhalation of radium during burning of the mantles. A pessimistic approach results in individual dose estimates for inhalation of up to 0.2 mSv. Consideration of dose consequences in case of a fire in a storage department learns that it is necessary for emergency personnel to wear respirators. It is concluded that the uncontrolled removal of used gas mantles to the environment (soil) does not result in a significant contribution to environmental radiation exposure. (Auth.)

  9. Crust and upper-mantle structure of Wanganui Basin and southern Hikurangi margin, North Island, New Zealand as revealed by active source seismic data

    Science.gov (United States)

    Tozer, B.; Stern, T. A.; Lamb, S. L.; Henrys, S. A.

    2017-11-01

    Wide-angle reflection and refraction data recorded during the Seismic Array HiKurangi Experiment (SAHKE) are used to constrain the crustal P-wave velocity (Vp) structure along two profiles spanning the length and width of Wanganui Basin, located landwards of the southern Hikurangi subduction margin, New Zealand. These models provide high-resolution constraints on the structure and crustal thickness of the overlying Australian and subducted Pacific plates and plate interface geometry. Wide-angle reflections are modelled to show that the subducted oceanic Pacific plate crust is anomalously thick (∼10 km) below southern North Island and is overlain by a ∼1.5-4.0 km thick, low Vp (4.8-5.4 km s-1) layer, interpreted as a channel of sedimentary material, that persists landwards at least as far as Kapiti Island. Distinct near vertical reflections from onshore shots identify a ∼4 km high mound of low-velocity sedimentary material that appears to underplate the overlying Australian plate crust and is likely to contribute to local rock uplift along the Axial ranges. The overriding Australian plate Moho beneath Wanganui Basin is imaged as deepening southwards and reaches a depth of at least 36.4 km. The Moho shape approximately mirrors the thickening of the basin sediments, suggestive of crustal downwarping. However, the observed crustal thickness variation is insufficient to explain the large negative Bouguer gravity anomaly (-160 mGal) centred over the basin. Partial serpentinization within the upper mantle with a concomitant density decrease is one possible way of reconciling this anomaly.

  10. Chemical equilibration of the Earth's core and upper mantle

    Science.gov (United States)

    Brett, R.

    1984-01-01

    The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wu??stite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely. As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range. ?? 1984.

  11. Water distribution in the lower mantle: Implications for hydrolytic weakening

    Science.gov (United States)

    Muir, Joshua M. R.; Brodholt, John P.

    2018-02-01

    The presence of water in lower mantle minerals is thought to have substantial effects on the rheological properties of the Earth's lower mantle in what is generally known as "hydrolytic weakening". This weakening will have profound effects on global convection, but hydrolytic weakening in lower mantle minerals has not been observed experimentally and thus the effect of water on global dynamics remains speculative. In order to constrain the likelihood of hydrolytic weakening being important in the lower mantle, we use first principles methods to calculate the partitioning of water (strictly protons) between mineral phases of the lower mantle under lower mantle conditions. We show that throughout the lower mantle water is primarily found either in the minor Ca-perovskite phase or in bridgmanite as an Al3+-H+ pair. Ferropericlase remains dry. However, neither of these methods of water absorption creates additional vacancies in bridgmanite and thus the effect of hydrolytic weakening is likely to be small. We find that water creates significant number of vacancies in bridgmanite only at the deepest part of the lower mantle and only for very high water contents (>1000 ppm). We conclude that water is thus likely to have only a limited effect on the rheological properties of the lower mantle.

  12. Improved design of mantle tanks for small low flow SDHW systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2006-01-01

    Side-by-side tests of two small low flow SDHW systems based on mantle tanks have been carried out under the same test conditions in a laboratory test facility. The systems are identical with exception of the mantle tanks. One of the mantle tanks has the mantle inlet port located at the top of the...... improved by relatively simple design changes: increasing the height/diameter ratio, reducing the mantle height and increasing the insulation thickness on the sides of t he tank.......Side-by-side tests of two small low flow SDHW systems based on mantle tanks have been carried out under the same test conditions in a laboratory test facility. The systems are identical with exception of the mantle tanks. One of the mantle tanks has the mantle inlet port located at the top...... of the mantle and the other mantle tank has the mantle inlet port moved 0.175 m down from the top of the mantle. The thermal performance is almost the same for the two systems in the measuring period of 252 days. The solar fractions were 0.66 and 0.68 for the two systems. The tests showed also that the system...

  13. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    Science.gov (United States)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of

  14. Backup Sourcing Decisions for Coping with Supply Disruptions under Long-Term Horizons

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2016-01-01

    Full Text Available This paper studies a buyer’s inventory control problem under a long-term horizon. The buyer has one major supplier that is prone to disruption risks and one backup supplier with higher wholesale price. Two kinds of sourcing methods are available for the buyer: single sourcing with/without contingent supply and dual sourcing. In contingent sourcing, the backup supplier is capacitated and/or has yield uncertainty, whereas in dual sourcing the backup supplier has an incentive to offer output flexibility during disrupted periods. The buyer’s expected cost functions and the optimal base-stock levels using each sourcing method under long-term horizon are obtained, respectively. The effects of three risk parameters, disruption probability, contingent capacity or uncertainty, and backup flexibility, are examined using comparative studies and numerical computations. Four sourcing methods, namely, single sourcing with contingent supply, dual sourcing, and single sourcing from either of the two suppliers, are also compared. These findings can be used as a valuable guideline for companies to select an appropriate sourcing strategy under supply disruption risks.

  15. Large-scale global convection in the mantle beneath Australia from 55 Ma to now

    International Nuclear Information System (INIS)

    Zhang, M.

    1999-01-01

    Full text: The global-scale mantle convection cells in the asthenosphere are not geochemically homogeneous. The heterogeneity is most prominently reflected in the isotopic compositions (Pb-Sr-Nd) of the mid-ocean ridge basalts (MORB) that are direct partial melts from the underlying asthenosphere. Of particular relevance to Australia's geodynamic evolution from about 100 million years, are the distinctive geochemical signatures of the asthenosphere beneath the Pacific Ocean (Pacific MORB) and Indian Ocean (Indian MORB). Therefore, delineation of the boundary between the two distinct mantle reservoirs and any change in that boundary with time provide information about the patterns of global-scale asthenospheric mantle convection. This information has also allowed us to track large-scale mantle chemical reservoirs such as the distinctive Gondwana lithospheric mantle, and hence better understand the geodynamic evolution of the Australian continent from the time of Gondwana dispersal. Pb-Sr-Nd isotope data for Cenozoic basalts in eastern Australia (Zhang et al, 1999) indicate that Pacific-MORB type isotopic signatures characterise the lava-field basalts (55-14 Ma) in southeastern Australia, whereas Indian-MORB type isotopic signatures characterise younger basalts (6-0 Ma) from northeastern Australia. This discovery helps to constrain the changing locus of the major asthenospheric mantle convection cells represented by the Pacific and Indian MORB sources during and following the breakup of the eastern part of Gondwana, and locates, for the first time, the boundary of these convection cells beneath the Australian continent. This extends previous work in the SW Pacific back-arc basins (eg Hickey-Vargas et al., 1995) and the Southern Ocean (Lanyon et al., 1995) that indicates that the 1- and P-MORB mantle convection cells have been moving in opposite directions since the early Tertiary. These new data also indicate that the Indian-MORB source is a long-term asthenospheric

  16. Pillars of the Mantle

    KAUST Repository

    Pugmire, David

    2017-07-05

    In this work, we investigate global seismic tomographic models obtained by spectral-element simulations of seismic wave propagation and adjoint methods. Global crustal and mantle models are obtained based on an iterative conjugate-gradient type of optimization scheme. Forward and adjoint seismic wave propagation simulations, which result in synthetic seismic data to make measurements and data sensitivity kernels to compute gradient for model updates, respectively, are performed by the SPECFEM3D-GLOBE package [1] [2] at the Oak Ridge Leadership Computing Facility (OLCF) to study the structure of the Earth at unprecedented levels. Using advances in solver techniques that run on the GPUs on Titan at the OLCF, scientists are able to perform large-scale seismic inverse modeling and imaging. Using seismic data from global and regional networks from global CMT earthquakes, scientists are using SPECFEM3D-GLOBE to understand the structure of the mantle layer of the Earth. Visualization of the generated data sets provide an effective way to understand the computed wave perturbations which define the structure of mantle in the Earth.

  17. Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling

    Science.gov (United States)

    Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan

    2018-03-01

    We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.

  18. Trace Element Geochemistry of Basaltic Tephra in Maar Cores; Implications for Centre Correlation, Field Evolution, and Mantle Source Characteristics of the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.

    2014-12-01

    Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.

  19. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry.

    Science.gov (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M

    2017-05-12

    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  20. Sources

    International Nuclear Information System (INIS)

    Duffy, L.P.

    1991-01-01

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  1. Diamond growth in mantle fluids

    OpenAIRE

    Bureau, Hélène; Frost, Daniel J.; Bolfan-casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick

    2016-01-01

    International audience; In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C–O–H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds ...

  2. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  3. Kinematics and flow patterns in deep mantle and upper mantle subduction models : Influence of the mantle depth and slab to mantle viscosity ratio

    NARCIS (Netherlands)

    Schellart, W. P.

    Three-dimensional fluid dynamic laboratory simulations are presented that investigate the subduction process in two mantle models, an upper mantle model and a deep mantle model, and for various subducting plate/mantle viscosity ratios (ηSP/ηM = 59-1375). The models investigate the mantle flow field,

  4. Seismic anisotropy and mantle flow below subducting slabs

    Science.gov (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy

    2017-05-01

    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  5. Tracing recycled volatiles in a heterogeneous mantle with boron isotopes

    Science.gov (United States)

    Walowski, Kristina; Kirstein, Linda; de Hoog, Cees-Jan; Elliot, Tim; Savov, Ivan; Devey, Colin

    2016-04-01

    Recycling of oceanic lithosphere drives the chemical evolution of the Earth's mantle supplying both solids and volatiles to the Earth's interior. Yet, how subducted material influences mantle composition remains unclear. A perfect tracer for slab recycling should be only fractionated at the Earth's surface, have a strong influence on mantle compositions but be resistant to perturbations en route back to the surface. Current understanding suggests that boron concentrations linked to B isotope determinations fulfil all these requirements and should be an excellent tracer of heterogeneity in the deep mantle. Here, we present the trace element, volatile and the B isotope composition of basaltic glasses and melt inclusions in olivine from distinct end-member ocean island basalts (OIB) to track the fate of recycled lithosphere and ultimately document how recycling contributes to mantle heterogeneity. The chosen samples represent the different end member OIB compositions and include: EMI (Pitcairn), EMII (MacDonald), HIMU (St. Helena), and FOZO (Cape Verde & Reunion). The data is derived from both submarine and subaerial deposits, with B isotope determination of both basaltic glass and melt inclusions from each locality. Preliminary results suggest OIB have B isotopic compositions that overlap the MORB array (-7.5‰±0.7; Marschall et al., 2015) but extend to both lighter and heavier values. These results suggest that B isotopes will be useful for resolving mantle source heterogeneity at different ocean islands and contribute to our understanding of the volatile budget of the deep mantle.

  6. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Nickel and helium evidence for melt above the core-mantle boundary.

    Science.gov (United States)

    Herzberg, Claude; Asimow, Paul D; Ionov, Dmitri A; Vidito, Chris; Jackson, Matthew G; Geist, Dennis

    2013-01-17

    High (3)He/(4)He ratios in some basalts have generally been interpreted as originating in an incompletely degassed lower-mantle source. This helium source may have been isolated at the core-mantle boundary region since Earth's accretion. Alternatively, it may have taken part in whole-mantle convection and crust production over the age of the Earth; if so, it is now either a primitive refugium at the core-mantle boundary or is distributed throughout the lower mantle. Here we constrain the problem using lavas from Baffin Island, West Greenland, the Ontong Java Plateau, Isla Gorgona and Fernandina (Galapagos). Olivine phenocryst compositions show that these lavas originated from a peridotite source that was about 20 per cent higher in nickel content than in the modern mid-ocean-ridge basalt source. Where data are available, these lavas also have high (3)He/(4)He. We propose that a less-degassed nickel-rich source formed by core-mantle interaction during the crystallization of a melt-rich layer or basal magma ocean, and that this source continues to be sampled by mantle plumes. The spatial distribution of this source may be constrained by nickel partitioning experiments at the pressures of the core-mantle boundary.

  8. Improved Convolutive and Under-Determined Blind Audio Source Separation with MRF Smoothing.

    Science.gov (United States)

    Zdunek, Rafał

    2013-01-01

    Convolutive and under-determined blind audio source separation from noisy recordings is a challenging problem. Several computational strategies have been proposed to address this problem. This study is concerned with several modifications to the expectation-minimization-based algorithm, which iteratively estimates the mixing and source parameters. This strategy assumes that any entry in each source spectrogram is modeled using superimposed Gaussian components, which are mutually and individually independent across frequency and time bins. In our approach, we resolve this issue by considering a locally smooth temporal and frequency structure in the power source spectrograms. Local smoothness is enforced by incorporating a Gibbs prior in the complete data likelihood function, which models the interactions between neighboring spectrogram bins using a Markov random field. Simulations using audio files derived from stereo audio source separation evaluation campaign 2008 demonstrate high efficiency with the proposed improvement.

  9. The Elephants' Graveyard: Constraints from Mantle Plumes on the Fate of Subducted Slabs and Implications for the Style of Mantle Convection

    Science.gov (United States)

    Lassiter, J. C.

    2007-12-01

    The style of mantle convection (e.g., layered- vs. whole-mantle convection) is one of the most hotly contested questions in the Geological Sciences. Geochemical arguments for and against mantle layering have largely focused on mass-balance evidence for the existence of "hidden" geochemical reservoirs. However, the size and location of such reservoirs are largely unconstrained, and most geochemical arguments for mantle layering are consistent with a depleted mantle comprising most of the mantle mass and a comparatively small volume of enriched, hidden material either within D" or within seismically anomalous "piles" beneath southern Africa and the South Pacific. The mass flux associated with subduction of oceanic lithosphere is large and plate subduction is an efficient driver of convective mixing in the mantle. Therefore, the depth to which oceanic lithosphere descends into the mantle is effectively the depth of the upper mantle in any layered mantle model. Numerous geochemical studies provide convincing evidence that many mantle plumes contain material which at one point resided close to the Earth's surface (e.g., recycled oceanic crust ± sediments, possibly subduction-modified mantle wedge material). Fluid dynamic models further reveal that only the central cores of mantle plumes are involved in melt generation. The presence of recycled material in the sources of many ocean island basalts therefore cannot be explained by entrainment of this material during plume ascent, but requires that recycled material resides within or immediately above the thermo-chemical boundary layer(s) that generates mantle plumes. More recent Os- isotope studies of mantle xenoliths from OIB settings reveal the presence not only of recycled crust in mantle plumes, but also ancient melt-depleted harzburgite interpreted to represent ancient recycled oceanic lithosphere [1]. Thus, there is increasing evidence that subducted slabs accumulate in the boundary layer(s) that provide the source

  10. Solid-liquid iron partitioning in Earth's deep mantle.

    Science.gov (United States)

    Andrault, Denis; Petitgirard, Sylvain; Lo Nigro, Giacomo; Devidal, Jean-Luc; Veronesi, Giulia; Garbarino, Gaston; Mezouar, Mohamed

    2012-07-18

    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements.

  11. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  12. Performance Evaluation of Three-Level Z-Source Inverters Under Semiconductor-Failure Conditions

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2009-01-01

    This paper evaluates and proposes various compensation methods for three-level Z-source inverters under semiconductor-failure conditions. Unlike the fault-tolerant techniques used in traditional three-level inverters, where either an extra phase-leg or collective switching states are used...... under semiconductor-failure conditions. For verifying these described performance features, PLECS simulation and experimental testing were performed with some results captured and shown in a later section for visual confirmation....

  13. Deep mantle seismic heterogeneities in Western Pacific subduction zones

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.

    2012-04-01

    In recent years array seismology has been used extensively to image the small scale (~10 km) structure of the Earth. In the mantle, small scale structure likely represents chemical heterogeneity and is essential in our understanding of mantle convection and especially mantle mixing. As subduction is the main source of introducing crustal material into the Earth's mantle, it is of particular interest to track the transport of subducted crust through the mantle to resolve details of composition and deformation of the crust during the subduction process. Improved knowledge of subduction can help provide constraints on the mechanical mixing process of crustal material into the ambient mantle, as well as constraining mantle composition and convection. This study uses seismic array techniques to map seismic heterogeneities associated with Western Pacific subduction zones, where a variety of slab geometries have been previously observed. We use seismic energy arriving prior to PP, a P-wave underside reflection off the Earth's surface halfway between source and receiver, to probe the mantle for small-scale heterogeneities. PP precursors were analysed at Eielson Array (ILAR), Alaska using the recently developed Toolkit for Out-of-Plane Coherent Arrival Tracking (TOPCAT) algorithm. The approach combines the calculated optimal beampower and an independent semblance (coherency) measure, to improve the signal-to-noise ratio of coherent arrivals. 94 earthquakes with sufficient coherent precursory energy were selected and directivity information of the arrivals (i.e. slowness and backazimuth) was extracted from the data. The scattering locations for 311 out-of-plane precursors were determined by ray-tracing and minimising the slowness, backazimuth and differential travel time misfit. Initial analyses show that deep scattering (>1000 km) occurs beneath the Izu-Bonin subduction zone, suggesting that subducted crust does continue into the lower mantle in this location. Other

  14. Understanding the nature of mantle upwelling beneath East-Africa

    Science.gov (United States)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2014-05-01

    The concept of hot upwelling material - otherwise known as mantle plumes - has long been accepted as a possible mechanism to explain hotspots occurring at Earth's surface and it is recognized as a way of removing heat from the deep Earth. Nevertheless, this theory remains controversial since no one has definitively imaged a plume and over the last decades several other potential mechanisms that do not require a deep mantle source have been invoked to explain this phenomenon, for example small-scale convection at rifted margins, meteorite impacts or lithospheric delamination. One of the best locations to study the potential connection between hotspot volcanism at the surface and deep mantle plumes on land is the East African Rift (EAR). We image seismic velocity structure of the mantle below EAR with higher resolution than has been available to date by including seismic data recorded by stations from many regional networks ranging from Saudi Arabia to Tanzania. We use relative travel-time tomography to produce P- velocity models from the surface down into the lower mantle incorporating 9250 ray-paths in our model from 495 events and 402 stations. We add smaller earthquakes (4.5 image structures of ~ 100-km length scales to ~ 1000 km depth beneath the northern East-Africa rift (Ethiopia, Eritrea, Djibouti, Yemen) with good resolution also in the transition zone and uppermost lower mantle. Our observations provide evidence that the shallow mantle slow seismic velocities continue trough the transition zone and into the lower mantle. In particular, the relatively slow velocity anomaly beneath the Afar Depression extends up to depths of at least 1000 km depth while another low-velocity anomaly beneath the Main Ethiopian Rift seems to be present in the upper mantle only. These features in the lower mantle are isolated with a diameter of about 400 km indicating deep multiple sources of upwelling that converge in broader low-velocity bodies along the rift axis at shallow

  15. Mineralogy and composition of the oceanic mantle

    Science.gov (United States)

    Putirka, Keith; Ryerson, F.J.; Perfit, Michael; Ridley, W. Ian

    2011-01-01

    The mineralogy of the oceanic basalt source region is examined by testing whether a peridotite mineralogy can yield observed whole-rock and olivine compositions from (1) the Hawaiian Islands, our type example of a mantle plume, and (2) the Siqueiros Transform, which provides primitive samples of normal mid-ocean ridge basalt. New olivine compositional data from phase 2 of the Hawaii Scientific Drilling Project (HSDP2) show that higher Ni-in-olivine at the Hawaiian Islands is due to higher temperatures (T) of melt generation and processing (by c. 300°C) related to the Hawaiian mantle plume. DNi is low at high T, so parental Hawaiian basalts are enriched in NiO. When Hawaiian (picritic) parental magmas are transported to shallow depths, olivine precipitation occurs at lower temperatures, where DNi is high, leading to high Ni-in-olivine. Similarly, variations in Mn and Fe/Mn ratios in olivines are explained by contrasts in the temperatures of magma processing. Using the most mafic rocks to delimit Siqueiros and Hawaiian Co and Ni contents in parental magmas and mantle source compositions also shows that both suites can be derived from natural peridotites, but are inconsistent with partial melting of natural pyroxenites. Whole-rock compositions at Hawaii and Siqueiros are also matched by partial melting experiments conducted on peridotite bulk compositions. Hawaiian whole-rocks have elevated FeO contents compared with Siqueiros, which can be explained if Hawaiian parental magmas are generated from peridotite at 4-5 GPa, in contrast to pressures of slightly greater than 1 GPa for melt generation at Siqueiros; these pressures are consistent with olivine thermometry, as described in an earlier paper. SiO2-enriched Koolau compositions are reproduced if high-Fe Hawaiian parental magmas re-equilibrate at 1-1·5 GPa. Peridotite partial melts from experimental studies also reproduce the CaO and Al2O3 contents of Hawaiian (and Siqueiros) whole-rocks. Hawaiian magmas have TiO2

  16. Pb evolution in the Martian mantle

    Science.gov (United States)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.

    2018-03-01

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted

  17. Performance Evaluation of Three-Level Z-Source Inverters Under Semiconductor Failure Conditions

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, P.C.; Vilathgamuwa, D.M.

    2007-01-01

    This paper proposes various compensation methods for three-level Z-source inverters under semiconductor failure conditions. Unlike the traditional fault tolerant techniques in three-level inverter by using either an additional phase-leg or collective switching states, the proposed methods simply ...

  18. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes

    Science.gov (United States)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa

    2018-01-01

    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  19. Mantle structure and tectonic history of SE Asia

    Science.gov (United States)

    Hall, Robert; Spakman, Wim

    2015-09-01

    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  20. Mantle plumes and hotspot geochemistry

    Science.gov (United States)

    Jackson, M. G.; Becker, T. W.; Konter, J.

    2017-12-01

    Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot

  1. Mantle dynamics following supercontinent formation

    Science.gov (United States)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  2. [Cytostructure of the mantle zone in lymphatic tissue].

    Science.gov (United States)

    Bednár, B

    1993-04-01

    Four cellular layers of the follicular mantle zone in palatine tonsil lymphatic tissue were studied by electron microscopy after simultaneous immunophenotypical investigation. The first layer of the mantle zone consisting of small blastic cells was analogous to the small (centrocytoid) blastic layer of germinal centres. The second B monocytoid layer was lacking analogy in basic series of lymphocytes and seemed to be an independent morphological and probably functional unit. Plasmacytoid and clarocellular elements in outer layers of follicular mantle zone were in a way similar to T plasmacytoid and clarocellular components of Sézary syndrome infiltrates but considering transitional forms they had a local origin from incompletely transformed elements of B monocytoid layer. Inner follicular mantle zone was discussed as a source of incompletely transformed B lymphocytes for further mantle layers where their immunophenotypical modulation is taking place according to actual need. Outer mantle layers are aggressive against damaged epithelial and litoral structures and may be instrumental in a common reaction of B and T components.

  3. Volatile element content of the heterogeneous upper mantle

    Science.gov (United States)

    Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.

    2014-12-01

    The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of

  4. Radiological safety assessment of gas mantle industries in India

    International Nuclear Information System (INIS)

    Sadagopan, G.; Venkataraman, G.

    1994-01-01

    Thorium, a radioactive element of actinide family was discovered by Berzelius in 1828 and named by him in honor of the Scandinavian God open-quote Thor close-quote. Following its discovery the earliest known use of thorium was in the making of gas mantles. The other use as an X-ray contrast medium open-quote Thorotrast close-quote has since long been discontinued, where as even today its use in gas mantles is continued. Gas lights have been used as a source of light since 1800's. In India, although electric bulbs have replaced most of the gas lights, even today in villages and in urban areas where there is no continuous power supply and in outdoor lightings gas lamps are used. The mantle which is used in these lamps is called the Welsbach mantle and is a netted hose that is impregnated with thorium nitrate and other metals. The function of a gas mantle is to produce a bright light during operation of the lighting device (gas or kerosene lamp) in which the mantle is placed. When placed in a lighting device and heated to 1300-1800 degree Celcius thorium in the mantle incandesces and gives off bright light. In India presently there are about 70 manufacturing units handling 150 metric tons of thorium nitrate annually. There are about four hundred persons involved in manufacturing 200 million mantles per year. Thorium is chosen because of its property of incadescence, however since it is radioactive, radiation safety of the workplace, handling personnel and safe environmental condition for members of public have to be maintained

  5. A great thermal divergence in the mantle beginning 2.5 Ga: Geochemical constraints from greenstone basalts and komatiites

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2016-07-01

    Full Text Available Greenstone basalts and komatiites provide a means to track both mantle composition and magma generation temperature with time. Four types of mantle are characterized from incompatible element distributions in basalts and komatiites: depleted, hydrated, enriched and mantle from which komatiites are derived. Our most important observation is the recognition for the first time of what we refer to as a Great Thermal Divergence within the mantle beginning near the end of the Archean, which we ascribe to thermal and convective evolution. Prior to 2.5 Ga, depleted and enriched mantle have indistinguishable thermal histories, whereas at 2.5–2.0 Ga a divergence in mantle magma generation temperature begins between these two types of mantle. Major and incompatible element distributions and calculated magma generation temperatures suggest that Archean enriched mantle did not come from mantle plumes, but was part of an undifferentiated or well-mixed mantle similar in composition to calculated primitive mantle. During this time, however, high-temperature mantle plumes from dominantly depleted sources gave rise to komatiites and associated basalts. Recycling of oceanic crust into the deep mantle after the Archean may have contributed to enrichment of Ti, Al, Ca and Na in basalts derived from enriched mantle sources. After 2.5 Ga, increases in Mg# in basalts from depleted mantle and decreases in Fe and Mn reflect some combination of growing depletion and cooling of depleted mantle with time. A delay in cooling of depleted mantle until after the Archean probably reflects a combination of greater radiogenic heat sources in the Archean mantle and the propagation of plate tectonics after 3 Ga.

  6. Density heterogeneity of the North American upper mantle from satellite gravity and a regional crustal model

    DEFF Research Database (Denmark)

    Herceg, Matija; Artemieva, Irina; Thybo, Hans

    2014-01-01

    and by introducing variations into the crustal structure which corresponds to the uncertainty of its resolution by highquality and low-quality seismic models. We examine the propagation of these uncertainties into determinations of lithospheric mantle density. Given a relatively small range of expected density......We present a regional model for the density structure of the North American upper mantle. The residual mantle gravity anomalies are based on gravity data derived from the GOCE geopotential models with crustal correction to the gravity field being calculated from a regional crustal model. We analyze...... how uncertainties and errors in the crustal model propagate from crustal densities to mantle residual gravity anomalies and the density model of the upper mantle. Uncertainties in the residual upper (lithospheric) mantle gravity anomalies result from several sources: (i) uncertainties in the velocity-density...

  7. Stability of Carbonated Eclogite in the Upper Mantle: Experimental Solidus from 2 to 9 GPa

    Science.gov (United States)

    Dasgupta, R.; Withers, A. C.; Hirschmann, M. M.

    2003-12-01

    Carbonates are pervasive alteration products of the oceanic crust and likely survive subduction-related dehydration and/or melting. Thus, significant quantities of carbonated refractory eclogite are probably delivered to the deeper mantle. The melting behavior of such recycled carbonate influences the fate of recycled carbon, determines the possible sources and depths of carbonated metasomatic melts in the mantle, and delimits the conditions under which carbonated eclogite may act as a source of carbonatite and other types of magmatic CO2. We present partial melting experiments of carbonated eclogite that constrain the solidus and near solidus phase relations from 2 to 9 GPa. To simulate the near-isochemical nature of ocean floor carbonation, the starting material was prepared by adding 5 wt.% CO2 in the form of a mixture of Fe-Mg-Ca-Na-K carbonates to a bimineralic eclogite from Salt Lake crater, Oahu, Hawaii. The starting composition is a reasonable approximation of carbonated oceanic crust from which siliceous hydrous fluid has been extracted by subduction. We find that melt-present versus melt-absent conditions can be distinguished based on textural criteria. Garnet and cpx appear in all the experiments. Between 2 and 3 GPa, the subsolidus assemblage also includes calcite-dolomitess + ilmenite, whereas above the solidus (950-975 ° C at 2 GPa and 1050-1075 ° C at 3 GPa) calcio-dolomitic liquid appears. From 3 to 4.5 GPa, dolomitess becomes stable at the solidus and the near solidus melt becomes increasingly dolomitic. Appearance of dolomite above 3 GPa is accompanied by a negative Clapeyron slope of the solidus, with the cusp located between 995 and 1025 ° C at ca. 4 GPa. Above 4-4.5 GPa, the solidus again rises with increasing pressure to ca. 1245 ° C at 9 GPa and magnesite becomes the subsolidus carbonate. Dolomitic melt coexists with magnesite + garnet + cpx + rutile between 5 and 9 GPa. If extrapolated to higher pressures, the carbonated eclogite solidus

  8. Seismic Imaging of Mantle Plumes

    Science.gov (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  9. Shallow mantle melt stagnation under Gakkel Ridge

    Science.gov (United States)

    von der Handt, A.; Snow, J. E.; Hellebrand, E.; Dick, H. J. B.; Michael, P.

    2003-04-01

    Few studies have been devoted to abyssal plagioclase peridotites, despite their relatively high abundance (30% of AP). Their origin is still unresolved, probably because intense alteration sets limits to spatially controlled geochemical analysis and obliterates textural relationships. Impregnation by a melt is the most widely accepted theory whereas other studies propose an origin by retrogression from spinel to plagioclase facies conditions. During the AMORE cruise along Gakkel Ridge in summer 2001, a dredge haul recovered spinel and plagioclase lherzolites in the axial valley of the amagmatic area. Their exceptional freshness has allowed to analyse all mineral phases. Plagioclase-bearing and -free samples are coarse-grained cpx-rich lherzolites. The plagioclase lherzolites show a wide range of modal plagioclase-contents and often showes textures related to impregnation. Noticeable are the common symplectite textures in the plagioclase peridotites, mostly opx-plag around cpx grains but also one ol-plag around cpx, suggesting a breakdown origin. The spinel lherzolites are characterised by low spinel-Cr# (˜16) and homogeneous flat cpx REE-patterns (~6 x CI). The plagioclase peridotites display strong compositional heterogeneities with pronounced core-rim variations in major and trace elements. Trace element variations in cpx show consistent correlations with textures as contact with plagioclase or symplectite formation. The An-contents of plagioclase range from 76 to 94, spinel Cr# from 10 to 48. Plagioclase trace element data reveal low concentrations for the LREE and no positive Sr-anomaly. Therefore it suggests an impregnation origin for most of the plagioclase by an already fractionated and depleted melt. Yet a minor breakdown component can be observed which was probably triggered by the impregnation. The inferred composition of this melt cannot be correlated with the nearest basalts in this region nor with a melt produced by melting of the spinel lherzolites.

  10. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  11. Ferrofluid convective heat transfer under the influence of external magnetic source

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2018-03-01

    Full Text Available Ferrofluid convective heat transfer in a cavity with sinusoidal cold wall is examined under the influence of external magnetic source. The working fluid is Fe3O4-water nanofluid. Single phase model is used to estimate the behavior of nanofluid. Vorticity stream function formulation is utilized to eliminate pressure gradient source terms. New numerical method is chosen namely Control volume base finite element method. Influences of Rayleigh, Hartmann numbers, amplitude of the sinusoidal wall and volume fraction of Fe3O4 on hydrothermal characteristics are presented. Results indicate that temperature gradient enhances as space between cold and hot walls reduces at low buoyancy force. Lorentz forces cause the nanofluid velocity to reduce and augment the thermal boundary layer thickness. Nusselt number augments with rise of buoyancy forces but it decreases with augment of Lorentz forces. Keywords: Nanofluid, Natural convection, Magnetic source, CVFEM, Sinusoidal wall

  12. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    Science.gov (United States)

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Investigation of Grid-connected Voltage Source Converter Performance under Unbalanced Faults

    DEFF Research Database (Denmark)

    Jia, Jundi; Yang, Guangya; Nielsen, Arne Hejde

    2016-01-01

    Renewable energy sources (RES) and HVDC links are typically interfaced with the grid by power converters, whose performance during grid faults is significantly different from that of traditional synchronous generators. This paper investigates the performance of grid-connected voltage source...... converters (VSCs) under unbalanced faults. Conventional positive-sequence synchronous reference frame (SRF) control is presented first, followed by three different negative-sequence current control strategies considering reactive power injection and converter current limit. The simulation results indicate...... that the performance of VSCs varies with their control strategies. Negative-sequence current control is necessary to restrict converter current in each phase under unbalanced faults. Among presented control strategies, the balanced current control strategy complies with the present voltage support requirement best...

  14. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion.

    Science.gov (United States)

    Zeng, Xiankui; Wu, Jichun; Wang, Dong; Zhu, Xiaobin

    2016-07-01

    Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl(-) concentration. The numerical model of seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM(ZS) is used as sampling algorithm. Then, the predictive distribution of Cl(-) concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl(-) concentration. The results of model calibration and verification demonstrate that the DREAM(ZS) based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015-2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl(-) concentration of groundwater source field always vary between 175mg/l and 200mg/l. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Potassium consumption by rice plant from different sources under salt stress

    International Nuclear Information System (INIS)

    Zaman, B.U.; Ali, A.; Mahmood, I.A.; Arshadullah, M.

    2010-01-01

    The study on usage of K+ by two rice cultivars (Cv. Shaheen and KS-282) from KNO/sub 3/, KH/sub 2/PO/sub 4/ and K/sub 2/SO/sub 4/ (5 mM each), with 60 mM NaCI under hydroponics conditions, showed that fresh mass of shoot (FMS), fresh mass of root (FMR), root/ shoot ratio of fresh and dry mass, relative water contents (RWC) and relative growth rate (RGR) were affected significantly (P=0.01) inconsistent relating to K+ sources under salt stress. The intake of K+ was the highest with application of KH/sub 2/PO/sub 4/ than KNO) and K/sub 2/SO/sub 4/ application. The transport of K+ was the highest with KH/sub 2/PO. than KNO) and K/sub 2/SO/sub 4/ application in Shaheen, whereas in var. KS-282 with K/sub 2/SO/sub 4/. transport of K+ was higher than the other two sources. The utilisation of K+ was higher with KNO) than KH/sub 2/PO/sub 4/ and K/sub 2/SO/sub 4/ application in Shaheen, whereas in KS-282, K+ utilisation with KH/sub 2/PO/sub 4/. was higher than the other two sources. It was inferred that K+ consumption in shoot and root system of rice was dependent physio-genetically on potassium sources. (author)

  16. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection

    Science.gov (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.

    2015-11-01

    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  17. Nd-isotopes in selected mantle-derived rocks and minerals and their implications for mantle evolution

    Science.gov (United States)

    Basu, A.R.; Tatsumoto, M.

    1980-01-01

    The Sm-Nd systematics in a variety of mantle-derived samples including kimberlites, alnoite, carbonatite, pyroxene and amphibole inclusions in alkali basalts and xenolithic eclogites, granulites and a pyroxene megacryst in kimberlites are reported. The additional data on kimberlites strengthen our earlier conclusion that kimberlites are derived from a relatively undifferentiated chondritic mantle source. This conclusion is based on the observation that the e{open}Nd values of most of the kimberlites are near zero. In contrast with the kimberlites, their garnet lherzolite inclusions show both time-averaged Nd enrichment and depletion with respect to Sm. Separated clinopyroxenes in eclogite xenoliths from the Roberts Victor kimberlite pipe show both positive and negative e{open}Nd values suggesting different genetic history. A whole rock lower crustal scapolite granulite xenolith from the Matsoku kimberlite pipe shows a negative e{open}Nd value of -4.2, possibly representative of the base of the crust in Lesotho. It appears that all inclusions, mafic and ultramafic, in kimberlites are unrelated to their kimberlite host. The above data and additional Sm-Nd data on xenoliths in alkali basalts, alpine peridotite and alnoite-carbonatites are used to construct a model for the upper 200 km of the earth's mantle - both oceanic and continental. The essential feature of this model is the increasing degree of fertility of the mantle with depth. The kimberlite's source at depths below 200 km in the subcontinental mantle is the most primitive in this model, and this primitive layer is also extended to the suboceanic mantle. However, it is clear from the Nd-isotopic data in the xenoliths of the continental kimberlites that above 200 km the continental mantle is distinctly different from their suboceanic counterpart. ?? 1980 Springer-Verlag.

  18. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  19. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Directory of Open Access Journals (Sweden)

    Sadegh Balotf

    Full Text Available Nitrogen (N is one of the most important nutrients for plants and nitric oxide (NO as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE. This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3 treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  20. Chemical and isotopic evidence for mixing between depleted and enriched mantle, northwestern U.S.A.

    Science.gov (United States)

    Hart, William K.

    1985-01-01

    Combined elemental and Sr, Nd, Pb and O isotopic data for late Cenozoic olivine tholeiite lavas from the northwestern Great Basin indicate derivation from at least two chemically and isotopically distinct mantle source regions with no significant modification by interaction with continental crust. The lack of crustal involvement is a direct reflection of the extensional tectonic environment which favors rapid ascent of magmas, minimal residence time in crustal magma chambers and scattered fissure eruptions. The observed chemical and isotopic variations in the tholeiite suite are attributed to mixing between depleted oceanic type mantle ( 87Sr /86Sr ~ 0.7030 and 143Nd /144Nd ~ 0.51305 ) and old, chemically heterogeneous, isotopically enriched subcontinental mantle ( 87Sr /86Sr ~ 0.7078 and 143Nd /144Nd ~ 0.51233 ). Model incompatible element concentrations suggest strong similarities between the depleted mantle and the mantles beneath normal oceanic ridge segments and back-arc basins and between the enriched mantle and the mantle beneath enriched oceanic ridge segments such as the Azores. Superimposed upon the characteristics derived from the two component mixing model may be the effects of a third mantle source which is identifiable only by its apparent radiogenic 206Pb /204Pb ratios. If present, this third source may reflect a component derived from the downgoing slab of an ancient subduction zone.

  1. A diffusion mechanism for core-mantle interaction.

    Science.gov (United States)

    Hayden, Leslie A; Watson, E Bruce

    2007-11-29

    Understanding the geochemical behaviour of the siderophile elements--those tending to form alloys with iron in natural environments--is important in the search for a deep-mantle chemical 'fingerprint' in upper mantle rocks, and also in the evaluation of models of large-scale differentiation of the Earth and terrestrial planets. These elements are highly concentrated in the core relative to the silicate mantle, but their concentrations in upper mantle rocks are higher than predicted by most core-formation models. It has been suggested that mixing of outer-core material back into the mantle following core formation may be responsible for the siderophile element ratios observed in upper mantle rocks. Such re-mixing has been attributed to an unspecified metal-silicate interaction in the reactive D'' layer just above the core-mantle boundary. The siderophile elements are excellent candidates as indicators of an outer-core contribution to the mantle, but the nature and existence of possible core-mantle interactions is controversial. In light of the recent findings that grain-boundary diffusion of oxygen through a dry intergranular medium may be effective over geologically significant length scales and that grain boundaries can be primary storage sites for incompatible lithophile elements, the question arises as to whether siderophile elements might exhibit similar (or greater) grain-boundary mobility. Here we report experimental results from a study of grain-boundary diffusion of siderophile elements through polycrystalline MgO that were obtained by quantifying the extent of alloy formation between initially pure metals separated by approximately 1 mm of polycrystalline MgO. Grain-boundary diffusion resulted in significant alloying of sink and source particles, enabling calculation of grain-boundary fluxes. Our computed diffusivities were high enough to allow transport of a number of siderophile elements over geologically significant length scales (tens of kilometres

  2. Physiological characters of soybean cultivars with application of nitrogen sources under dry land conditions

    Science.gov (United States)

    Hasanah, Y.; Nisa, T. C.; Hapsoh; Hanum, H.

    2018-02-01

    The objective of this study was to evaluate the influence of nutrient N management on physiological characteristics of three different soybean cultivars under dry land conditions. The study was conducted under dry lands of Desa Sambirejo (Langkat Regency) in the dry season. The study was conducted with a Randomize Block Design with two factors and three replication. The research was used a randomized block design with 2 factors and 3 replications. The first factor was soybean cultivars (Anjasmoro, Wilis, Sinabung). The second factor was N source, with Urea (50 kg/ha), Bradyrhizobium sp., farmyard manure (10 ton/ha), a combination of Bradyrhizobium sp. + farmyard manure (5 ton/ha) and a control with no N. The parameter observed in this study was the content of root N, shoot Nitrogen, shoot Phosphor, shoot Potassium and total of chlorophyll content. The results suggest that Anjasmoro and Sinabung cultivars had higher physiological characteristics (root N, shoot P and shoot K) compared to Wilis. Nitrogen source of Urea gave a higher physiological characteristics (content of root N, shoot Phosphor and shoot Potassium) compared to different treatment of N source in this study. The interaction between Anjasmoro cultivar and Urea gave the highest of content of shoot Phosphor and shoot Potassium, otherwise the interaction between Sinabung cultivar and Bradyrhizobium sp. gave the highest of content of shoot Nitrogen.

  3. Hybrid digital-analog coding with bandwidth expansion for correlated Gaussian sources under Rayleigh fading

    Science.gov (United States)

    Yahampath, Pradeepa

    2017-12-01

    Consider communicating a correlated Gaussian source over a Rayleigh fading channel with no knowledge of the channel signal-to-noise ratio (CSNR) at the transmitter. In this case, a digital system cannot be optimal for a range of CSNRs. Analog transmission however is optimal at all CSNRs, if the source and channel are memoryless and bandwidth matched. This paper presents new hybrid digital-analog (HDA) systems for sources with memory and channels with bandwidth expansion, which outperform both digital-only and analog-only systems over a wide range of CSNRs. The digital part is either a predictive quantizer or a transform code, used to achieve a coding gain. Analog part uses linear encoding to transmit the quantization error which improves the performance under CSNR variations. The hybrid encoder is optimized to achieve the minimum AMMSE (average minimum mean square error) over the CSNR distribution. To this end, analytical expressions are derived for the AMMSE of asymptotically optimal systems. It is shown that the outage CSNR of the channel code and the analog-digital power allocation must be jointly optimized to achieve the minimum AMMSE. In the case of HDA predictive quantization, a simple algorithm is presented to solve the optimization problem. Experimental results are presented for both Gauss-Markov sources and speech signals.

  4. Spin Transition in the Lower Mantle: Deep Learning and Pattern Recognition of Superplumes from the Mid-mantle and Mid-mantle Slab Stagnation

    Science.gov (United States)

    Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.

    2016-12-01

    The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different

  5. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    DEFF Research Database (Denmark)

    Scott, James M.; Hodgkinson, A.; Palin, J.M.

    2014-01-01

    Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand record evidence for the complex evolution of the underlying mantle lithosphere. Spinel Cr# records melt extraction with some values indicative of near complete r...

  6. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.

    2012-01-01

    Mechanical equilibrium of tectonic plates implies that lithospheric edge and body forces are balanced by forces arising from interaction with the underlying mantle. We use this quantitative physical relation to integrate existing modelling approaches of lithosphere dynamics and mantle flow into a

  7. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth's mantle

    Science.gov (United States)

    Urann, B. M.; Le Roux, V.; Hammond, K.; Marschall, H. R.; Lee, C.-T. A.; Monteleone, B. D.

    2017-07-01

    The fluorine (F) and chlorine (Cl) contents of arc magmas have been used to track the composition of subducted components, and the F and Cl contents of MORB have been used to estimate the halogen content of depleted MORB mantle (DMM). Yet, the F and Cl budget of the Earth's upper mantle and their distribution in peridotite minerals remain to be constrained. Here, we developed a method to measure low concentrations of halogens (≥0.4 µg/g F and ≥0.3 µg/g Cl) in minerals by secondary ion mass spectroscopy. We present a comprehensive study of F and Cl in co-existing natural olivine, orthopyroxene, clinopyroxene, and amphibole in seventeen samples from different tectonic settings. We support the hypothesis that F in olivine is controlled by melt polymerization, and that F in pyroxene is controlled by their Na and Al contents, with some effect of melt polymerization. We infer that Cl compatibility ranks as follows: amphibole > clinopyroxene > olivine orthopyroxene, while F compatibility ranks as follows: amphibole > clinopyroxene > orthopyroxene ≥ olivine, depending on the tectonic context. In addition, we show that F, Cl, Be and B are correlated in pyroxenes and amphibole. F and Cl variations suggest that interaction with slab melts and fluids can significantly alter the halogen content of mantle minerals. In particular, F in oceanic peridotites is mostly hosted in pyroxenes, and proportionally increases in olivine in subduction-related peridotites. The mantle wedge is likely enriched in F compared to un-metasomatized mantle, while Cl is always low (<1 µg/g) in all tectonic settings studied here. The bulk anhydrous peridotite mantle contains 1.4-31 µg/g F and 0.14-0.38 µg/g Cl. The bulk F content of oceanic-like peridotites (2.1-9.4 µg/g) is lower than DMM estimates, consistent with F-rich eclogite in the source of MORB. Furthermore, the bulk Cl budget of all anhydrous peridotites studied here is lower than previous DMM estimates. Our results indicate that

  8. Intraplate mantle oxidation by volatile-rich silicic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Audrey M.; Médard, Etienne; Righter, Kevin; Lanzirotti, Antonio

    2017-11-01

    The upper subcontinental lithospheric mantle below the French Massif Central is more oxidized than the average continental lithosphere, although the origin of this anomaly remains unknown. Using iron oxidation analysis in clinopyroxene, oxybarometry, and melt inclusions in mantle xenoliths, we show that widespread infiltration of volatile (HCSO)-rich silicic melts played a major role in this oxidation. We propose the first comprehensive model of magmatism and mantle oxidation at an intraplate setting. Two oxidizing events occurred: (1) a 365–286 Ma old magmatic episode that produced alkaline vaugnerites, potassic lamprophyres, and K-rich calc-alkaline granitoids, related to the N–S Rhenohercynian subduction, and (2) < 30 Ma old magmatism related to W–E extension, producing carbonatites and hydrous potassic trachytes. These melts were capable of locally increasing the subcontinental lithospheric mantle fO2 to FMQ + 2.4. Both events originate from the melting of a metasomatized lithosphere containing carbonate + phlogopite ± amphibole. The persistence of this volatile-rich lithospheric source implies the potential for new episodes of volatile-rich magmatism. Similarities with worldwide magmatism also show that the importance of volatiles and the oxidation of the mantle in intraplate regions is underestimated.

  9. Sourcing and pricing strategies for two retailers in a decentralized supply chain system under supply disruption

    Directory of Open Access Journals (Sweden)

    M.A. Azarmehr

    2012-01-01

    Full Text Available This paper presents the decentralized supply chain with two suppliers and two competing retailers. It also investigates the sourcing and pricing strategies of two retailers in a decentralized supply chain system under a supply disruption environment. These retailers face their individual stochastic demand markets; however, they compete with each other through a two-stage price and service operation. The interactive dynamics among retailers is characterized, including the existence and uniqueness of the Nash Equilibrium in service and price games demonstrated.

  10. Characterizing the Source Water for Montane Meadows to Assess Resiliency under Changing Hydroclimatic Condition

    Science.gov (United States)

    Yarnell, S. M.; Peek, R.; Bell, A.; Weixelman, D.; Viers, J. H.

    2015-12-01

    Ecologically and hydrologically functioning montane meadows provide a variety of ecosystem services and create biological hotspots in high-elevation landscapes. They serve as wetlands that filter water, attenuate floods, sequester carbon, sustain downstream flows, and provide high productivity habitat in typically lower productivity mountain regions. Their importance to watershed quality and health is well recognized, and restoration of meadows is a high priority for resource management agencies and non-governmental organizations. Yet many meadow restoration projects have limited outcomes or fail to achieve the desired effects due to a lack of understanding the underlying hydrological and geomorphic processes inherent to meadows that contribute to their resiliency. Few studies exist on how meadows are sustained through time despite various land use impacts or how the origin of water supplying the meadow (snowmelt-dominated versus regional groundwater-dominated) may influence meadow conditions. Furthermore, as climate conditions continue to change, questions remain regarding which meadows will be most resistant to and resilient from climate warming and thus have the highest potential for successful and sustainable restoration of meadow processes. We discuss these concepts and present two methods for assessing the regional and local contributions of source water to meadows as an indicator of resiliency. On a broad scale, comparisons of satellite imagery using metrics such as normalized difference vegetation index (NDVI) for regions with meadows may be useful to detect inter-annual and seasonal variations in meadow wetness and thus indicate meadow sites with larger groundwater sources that are more resilient over time. Locally, use of a hydrogeomorphic typing key that relates water source, geomorphic position, groundwater table elevation, and plant species composition may be useful to detect local groundwater sources that provide greater consistency of conditions and

  11. The redox state of arc mantle using Zn/Fe systematics.

    Science.gov (United States)

    Lee, Cin-Ty A; Luffi, Peter; Le Roux, Véronique; Dasgupta, Rajdeep; Albaréde, Francis; Leeman, William P

    2010-12-02

    Many arc lavas are more oxidized than mid-ocean-ridge basalts and subduction introduces oxidized components into the mantle. As a consequence, the sub-arc mantle wedge is widely believed to be oxidized. The Fe oxidation state of sub-arc mantle is, however, difficult to determine directly, and debate persists as to whether this oxidation is intrinsic to the mantle source. Here we show that Zn/Fe(T) (where Fe(T) = Fe(2+) + Fe(3+)) is redox-sensitive and retains a memory of the valence state of Fe in primary arc basalts and their mantle sources. During melting of mantle peridotite, Fe(2+) and Zn behave similarly, but because Fe(3+) is more incompatible than Fe(2+), melts generated in oxidized environments have low Zn/Fe(T). Primitive arc magmas have identical Zn/Fe(T) to mid-ocean-ridge basalts, suggesting that primary mantle melts in arcs and ridges have similar Fe oxidation states. The constancy of Zn/Fe(T) during early differentiation involving olivine requires that Fe(3+)/Fe(T) remains low in the magma. Only after progressive fractionation does Fe(3+)/Fe(T) increase and stabilize magnetite as a fractionating phase. These results suggest that subduction of oxidized crustal material may not significantly alter the redox state of the mantle wedge. Thus, the higher oxidation states of arc lavas must be in part a consequence of shallow-level differentiation processes, though such processes remain poorly understood.

  12. Interaction between Edge-Driven Convection and Mantle Plumes

    Science.gov (United States)

    Manjón-Cabeza Córdoba, A.; Ballmer, M.

    2017-12-01

    Intraplate volcanism can occur in a variety of geodynamic settings. Its characteristics can inform about the underlying mantle dynamics. A non-negligible number of intraplate oceanic volcanoes are located close to continental shelves (e.g. Bermuda, Canary Islands, Cape Verde…). In these regions, any putative plumes would interact with Edge-Driven Convection (EDC), a mode of Small-Scale Convection that is triggered along steps of lithospheric thickness. We have systematically explored 2-D geodynamic models of EDC, varying e.g. the viscosity of the mantle, geometry of the edge, potential temperature, etc. In addition, we study the influence of a mantle plume with variable excess temperature and buoyancy flux at a given distance to the edge. The mantle-convection code is coupled with a new melting parameterization that considers the depletion effect on productivity. We apply this parameterization not only to predict the extent of melting for a given lithology, but also the major-element composition of extracted melts for comparison with geochemical data. Results show that the first EDC upwellings are always localized in the oceanic domain at a distance from the continental margin that depends on mantle viscosity. The initial geometry of the edge does not have a significant influence on the "steady-state" shape of EDC. Depending on the distance of the plume from the edge and plume vigor, the plume is either deflected or enhanced by EDC. The mix of materials that melts in the mantle, as well as the amount of melting, is controlled by the interaction of the plume with EDC (e.g., with melting restricted to fertile heterogeneities in the end-member EDC case). Because several model parameters affect this interaction and related melting, a joint analysis of major-element and trace-element composition of hotspot lavas is required to constrain mantle processes.

  13. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    Science.gov (United States)

    Waight, Tod E.; Scott, James M.; van der Meer, Quinten H. A.

    2013-04-01

    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasman Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand. These xenoliths were transported to the surface in intra-plate alkaline volcanics that erupted across the region in the Eocene and Miocene (33-10 m.y.a.). Most of the volcanic suites have similar geochemical and isotopic properties that indicate melting of an OIB-like mantle source in the garnet stability zone and that contained a HIMU component. The volcanics have tapped two adjacent but chemically contrasting upper mantle domains: a fertile eastern domain and an extremely depleted western domain. Both domains underlie Mesozoic metasedimentary crust. Radiogenic isotope compositions of the clinopyroxene have 87Sr/86Sr between 0.7023 to 0.7035, 143Nd/144Nd between 0.5128 and 0.5132 (corresponding to ?Nd between +3 and +13) with a few samples extending to even more depleted compositions, 206Pb/204 Pb between ca. 19.5 to 21.5 and 208Pb/204 Pb between ca. 38.5 to 40.5. No correlations are observed between isotopic composition, age or geographical separation. These isotopic compositions indicate that the sub-continental lithospheric mantle under southern New Zealand has a regionally distinct and pervasive FOZO to HIMU - like signature. The isotopic signatures are also similar to those of the alkaline magmas that transported the xenoliths and suggest that most of the HIMU signature observed in the volcanics could be derived from a major source component in the sub-continental lithospheric mantle

  14. Upper mantle fluids evolution, diamond formation, and mantle metasomatism

    Science.gov (United States)

    Huang, F.; Sverjensky, D. A.

    2017-12-01

    During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014

  15. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...

  16. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone

    Science.gov (United States)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia

    2016-04-01

    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  17. Differentiation characteristics and source analysis of heavy metals in typical brown soil under different vegetation

    Science.gov (United States)

    Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan

    2017-08-01

    Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.

  18. SOURCES OF MYCORRHIZAL INFECTION OF SHOREA ACUMINATA SEEDLINGS UNDER LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    LEE Su SEE

    1995-01-01

    Full Text Available Uninoculated dipterocarp seedlings raised in normal field soil in nurseries were always found to have mycorrhizas after a few months. This study set out to determine whether dipterocarp seedlings could continue to grow and develop in the absence of mycorrhizas and also to determine possible sources of mycorrhizal infection of dipterocarp seedlings raised under laboratory conditions using Shorea acuminata as a typical example. Seedlings were planted in capped or uncapped perspex boxes containing sterile or non-sterile field soil and watered daily with sterile water or tap water. Seedling growth and development of mycorrhizas were monitored at monthly intervals for up to seven months. Seedlings grown in sterile soil remained uninfected after seven months while infection was found in some of the seedlings grown in normal soil regardless of whether they had been watered with tap water or sterile water. This showed that field soil (i.e. under grass far from the forest contained suitable inoculum for forest tree seedlings. Tap water and the air were not important sources of infection. However, mycorrhizal infection was very uneven indicating that the inoculum was probably very unevenly distributed in the soil or that the inoculum density was rather low. Seedlings grown in sterile soil showed better growth than those grown in normal soil and infection of roots by parasitic fungi in the latter was also observed.

  19. The electrical conductivity of the upper mantle and lithosphere from satellite magnetic signal due to ocean tidal flow

    Science.gov (United States)

    Schnepf, N. R.; Kuvshinov, A. V.; Grayver, A.; Sabaka, T. J.; Olsen, N.

    2015-12-01

    Global electromagnetic (EM) studies provide information on mantle electrical conductivity with the ultimate aim of understanding the composition, structure, and dynamics of Earth's interior. There is great much interest in mapping the global conductivity of the lithosphere and upper mantle (i.e., depths of 10-400 km) because recent laboratory experiments demonstrate that the electrical conductivity of minerals in these regions are greatly affected by small amounts of water or by partial melt. For decades, studies of lithospheric/mantle conductivity were based on interpretation of magnetic data from a global network of observatories. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. This is a challenging period range for global EM studies since the ionospheric (Sq) source dominates these periods and has a much more complex spatial structure compared to the magnetospheric ring current. Moreover, satellite-based EM induction studies in principle cannot use Sq data since the satellites fly above the Sq source causing the signals to be seen by the satellite as a purely internal source, thus precluding the separation of satellite Sq signals into internal and external parts. Lastly, magnetospheric and ionospheric sources interact inductively with Earth's conducting interior. Fortunately, there exists an alternative EM source in the Sq period range: electric currents generated by oceanic tides. Tides instead interact galvanically with the lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling

  20. Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis.

    Science.gov (United States)

    Burke, Marshall; Heft-Neal, Sam; Bendavid, Eran

    2016-12-01

    Detailed spatial understanding of levels and trends in under-5 mortality is needed to improve the targeting of interventions to the areas of highest need, and to understand the sources of variation in mortality. To improve this understanding, we analysed local-level information on child mortality across sub-Saharan Africa between 1980-2010. We used data from 82 Demographic and Health Surveys in 28 sub-Saharan African countries, including the location and timing of 3·24 million childbirths and 393 685 deaths, to develop high-resolution spatial maps of under-5 mortality in the 1980s, 1990s, and 2000s. These estimates were at a resolution of 0·1 degree latitude by 0·1 degree longitude (roughly 10 km × 10 km). We then analysed this spatial information to distinguish within-country versus between-country sources of variation in mortality, to examine the extent to which declines in mortality have been accompanied by convergence in the distribution of mortality, and to study localised drivers of mortality differences, including temperature, malaria burden, and conflict. In our sample of sub-Saharan African countries from the 1980s to the 2000s, within-country differences in under-5 mortality accounted for 74-78% of overall variation in under-5 mortality across space and over time. Mortality differed significantly across only 8-15% of country borders, supporting the role of local, rather than national, factors in driving mortality patterns. We found that by the end of the study period, 23% of the eligible children in the study countries continue to live in mortality hotspots-areas where, if current trends continue, the Sustainable Developent Goals mortality targets will not be met. In multivariate analysis, within-country mortality levels at each pixel were significantly related to local temperature, malaria burden, and recent history of conflict. Our findings suggest that sub-national determinants explain a greater portion of under-5 mortality than do country

  1. AND THEIR IMPLICATIONS TO MANTLE DYNAMICS

    African Journals Online (AJOL)

    ... the southwest Indian ridge appears to be tapping the same portion of mantle as did the Central Indian ridge. These results have important thermo-chemical implications, such as variations in the extent of melting and mineralogicalcomposition of the mantle beneath diflerent ridges, which may influence mantle dynamics.

  2. Copper dynamics under alternating redox conditions is influenced by soil properties and contamination source.

    Science.gov (United States)

    Balint, Ramona; Said-Pullicino, Daniel; Ajmone-Marsan, Franco

    2015-02-01

    Understanding the effect of soil redox conditions on contaminant dynamics is of significant importance for evaluating their lability, mobility and potential transfer to other environmental compartments. Under changing redox conditions, soil properties and constituents such as Fe and Mn (hydr)oxides and organic matter (OM) may influence the behavior of associated metallic elements (MEs). In this work, the redox-driven release and redistribution of Cu between different soil pools was studied in three soils having different contamination sources. This was achieved by subjecting soil columns to a series of alternating reducing and oxidizing cycles under non-limiting C conditions, and assessing their influence on soil pore water, leachate and solid phase composition. Results showed that, in all soils, alternating redox conditions led to an increase in the distribution of Cu in the more labile fractions, consequently enhancing its susceptibility to loss. This was generally linked to the redox-driven cycling of Fe, Mn and dissolved organic matter (DOM). In fact, results suggested that the reductive dissolution of Fe and Mn (hydr)oxides and subsequent reprecipitation as poorly-ordered phases under oxic conditions contributed to the release and mobilization of Cu and/or Cu-containing organometallic complexes. However, the behavior of Cu, as well as the mechanisms controlling Cu release and loss with redox cycling, was influenced by both soil properties (e.g. pH, contents of easily reducible Fe and Mn (hydr)oxides) and source of Cu contamination. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Large, omega-3 rich, pelagic diatoms under Arctic sea ice: sources and implications for food webs.

    Science.gov (United States)

    Duerksen, Steven W; Thiemann, Gregory W; Budge, Suzanne M; Poulin, Michel; Niemi, Andrea; Michel, Christine

    2014-01-01

    Pelagic primary production in Arctic seas has traditionally been viewed as biologically insignificant until after the ice breakup. There is growing evidence however, that under-ice blooms of pelagic phytoplankton may be a recurrent occurrence. During the springs of 2011 and 2012, we found substantial numbers (201-5713 cells m-3) of the large centric diatom (diameter >250 µm) Coscinodiscus centralis under the sea ice in the Canadian Arctic Archipelago near Resolute Bay, Nunavut. The highest numbers of these pelagic diatoms were observed in Barrow Strait. Spatial patterns of fatty acid profiles and stable isotopes indicated two source populations for C. centralis: a western origin with low light conditions and high nutrients, and a northern origin with lower nutrient levels and higher irradiances. Fatty acid analysis revealed that pelagic diatoms had significantly higher levels of polyunsaturated fatty acids (mean ± SD: 50.3 ± 8.9%) compared to ice-associated producers (30.6 ± 10.3%) in our study area. In particular, C. centralis had significantly greater proportions of the long chain omega-3 fatty acid, eicosapentaenoic acid (EPA), than ice algae (24.4 ± 5.1% versus 13.7 ± 5.1%, respectively). Thus, C. centralis represented a significantly higher quality food source for local herbivores than ice algae, although feeding experiments did not show clear evidence of copepod grazing on C. centralis. Our results suggest that C. centralis are able to initiate growth under pack ice in this area and provide further evidence that biological productivity in ice-covered seas may be substantially higher than previously recognized.

  4. 182W evidence from flood basalt lavas for the long-term survival of primordial mantle

    Science.gov (United States)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2016-12-01

    How much of the chemical heterogeneity present in mantle today dates to processes that occurred during Earth's planetary formation stage remains an unanswered question. Geochemical observations obtained from short-lived radiogenic isotope systems, however, provide important insights. Tungsten isotope data for flood basalt lavas from two large igneous provinces, the North Atlantic Igneous Province ( 60 Ma) and the Ontong Java Plateau ( 120 Ma), show well resolved 182W excesses, compared with terrestrial standards that are presumed to be representative of the present bulk mantle. These W isotope results, thus, indicate that one or more mantle domains formed very early in Earth history and have been preserved well into the Phanerozoic eon. The flood basalts from Baffin Bay contain among the highest 3He/4He ratios ever measured, as well as Pb and 143Nd isotopic compositions, and D/H ratios consistent with a chemically primitive, un-degassed mantle source. Ontong Java is the Earth's largest known volcanic province and shares chemical and isotopic similarities with the Baffin Bay lavas, indicative of a similarly primitive mantle source. The 182W-enriched nature of the mantle sources of rocks from both locations indicates that their primitive characteristics were likely isolated in a deep mantle reservoir within the first 50 Ma of Solar System history. The correlation between large low seismic shear velocity provinces (LLSVPs) and the distribution of reconstructed eruption sites of these large igneous provinces makes the LLSVPs possible candidate domains for the required primitive and un-degassed reservoirs.

  5. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    Science.gov (United States)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  6. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth

    Science.gov (United States)

    Walzer, Uwe; Hendel, Roland

    2010-05-01

    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic

  7. Early episodes of high-pressure core formation preserved in plume mantle

    Science.gov (United States)

    Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei

    2018-01-01

    The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.

  8. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle

    Science.gov (United States)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.

    2017-12-01

    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  9. Acoustic characterization of panel materials under simulated ocean conditions using a parametric array source.

    Science.gov (United States)

    Humphrey, Victor F; Robinson, Stephen P; Smith, John D; Martin, Michael J; Beamiss, Graham A; Hayman, Gary; Carroll, Nicholas L

    2008-08-01

    A technique for evaluating the underwater acoustic performance of panels under simulated ocean conditions in a laboratory test facility is described. The method uses a parametric array as a source of sound within a test vessel capable of simulating ocean depths down to 700 m and water temperatures from 2 to 35 degrees C. The reflection loss and transmission loss of the test panel may be determined at frequencies from a few kilohertz to 50 kHz. The use of the parametric array enables wideband measurements to be undertaken with short-duration pulses and reduces the effects of diffraction from the panel edges. An acoustic filter is used to truncate the array in order to provide a source-free measurement region and to simplify the measurement process. The difficulties of establishing a parametric array in the confined space of the vessel are outlined, and the experimental procedures adopted are described. The techniques were validated by undertaking measurements on two test objects that have predictable behavior. The potential of the technique is also illustrated with experimental results for test panels for hydrostatic pressures up to 2.8 MPa. An extensive discussion of the measurement limitations is included.

  10. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    Science.gov (United States)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  11. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren

    2005-01-01

    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...

  12. The Lowermost Mantle Beneath Central America Imaged by Kirchhoff Migration of Scatterers and Reflectors

    Science.gov (United States)

    Hutko, A.; Lay, T.; Revenaugh, J.

    2007-05-01

    We use tens of thousands of seismograms from South and Central American earthquakes recorded by western North American seismic networks to image the lowermost mantle beneath Central America using a 3D Kirchhoff migration method. P wave studies of the deep mantle often rely on some form of stacking of many records in order to enhance the signal-to-noise ratio of weak phases generated by deep structure, such as reflections off of the D" discontinuity. These methods, however, often assume one-dimensional structure, which is at odds with the evidence for significant heterogeneity. Kirchhoff migration is a three-dimensional stacking method that allows interactions with structure outside of the source-receiver plane, thus illuminating a much larger volume. The D" discontinuity beneath Central America has been readily observed in S wave studies and may be the result of the shear wave velocity increase associated with the recently discovered perovskite to post-perovskite phase transition. This phase transition is expected to have weaker effects on P wave velocities than on S wave velocities and the sharpness of this transition is unknown. Using data at post-critical distances, we observe structures consistent with a P velocity discontinuity about 200 km above the core-mantle boundary (CMB). Observing this using short period data suggests that the boundary must be less than a few 10s of km thick, while observation with lower frequency broadband data exclude the possibility of it being a thin layer. Whether this discontinuity is co-located for both P and S waves is difficult to resolve. Both the broadband and the short period P wave data sets also reveal a sharp out-of-plane scatterer, which may be located close to the CMB. The short period data also indicate reflectivity about 400 km above the CMB, well above the D" discontinuity, and similar reflectivity is observed under the Central Pacific. This feature appears to be more consistent with a discontinuity than a scatterer

  13. Mantle Melting as a Function of Water Content in Arcs

    Science.gov (United States)

    Kelley, K. A.; Plank, T.; Newman, S.; Stolper, E.; Grove, T. L.; Parman, S.; Hauri, E.

    2003-12-01

    Subduction zone magmas are characterized by high concentrations of dissolved H2O, presumably derived from the subducted plate and ultimately responsible for melt generation in this tectonic setting. Almost ten years ago, Stolper and Newman (EPSL, 1994) illustrated a linear relationship between the concentration of water (H2Oo) and the fraction of melting (F) in the mantle beneath the Mariana back-arc. Here we report new major element and volatile data for olivine-hosted melt inclusions from the Mariana Islands to test this relationship for melting beneath an arc. Basaltic melt inclusions from the Mariana arc have water contents (2.3-6.1 wt% H2O) significantly higher than all basaltic glasses or melt inclusions from the Mariana back-arc (0.2-2.2 wt% H2O). We use TiO2 as a proxy for F, after correcting for crystal fractionation, and evaluate the Ti source composition with a model based on Ti/Y variations in mid-ocean ridge basalts (MORBs). Each calculated F thus represents the amount of mantle melting for a single melting episode. Even after accounting for mantle depletion, the TiO2 concentrations in Mariana arc magmas record higher extents of mantle melting (F = 10-30%) than recorded in back-arc magmas (F = 5-24%). As a whole, the Mariana arc broadly extends the linear H2Oo-F array defined by the back-arc, although in detail the islands show important differences. Two islands from the Mariana arc (Guguan and Pagan) define a H2Oo-F slope similar to the Mariana back-arc, suggesting similar mantle potential temperature beneath the arc and back-arc ( ˜1360 +/- 20° C). Melts from Agrigan island, however, indicate a steeper slope suggestive both of cooler mantle beneath Agrigan and of along-strike thermal variations beneath the Mariana Islands. Both the arc and back-arc arrays project to finite F at zero water in the mantle, providing evidence for decompression melting in both settings. These relationships may be extended globally to other back-arc and arc systems

  14. Mantle amphibole control on arc and within-plate chemical signatures: Quaternary lavas from Kurdistan Province, Iran

    Science.gov (United States)

    Kheirkhah, M.; Allen, M. B.; Neill, I.; Emami, M. H.; McLeod, C.

    2012-04-01

    New analyses of Quaternary lavas from Kurdistan Province in west Iran shed light on the nature of collision zone magmatism. The rocks are from the Turkish-Iranian plateau within the Arabia-Eurasia collision. Compositions are typically basanite, hawaiite and alkali basalt. Sr-Nd isotope values are close to BSE, which is similar to Quaternary alkali basalts of NW Iran, but distinct from a depleted source melting under Mount Ararat. The chemical signatures suggests variable melting of two distinct sources. One inferred source produced melts with La/Nb from~3.5 to~1.2, which we model as the result of depletion of amphibole during ≤1% melting in the garnet stability field. We infer phlogopite in the source of potassic lavas from Takab. Lithosphere delamination or slab break-off mechanisms for triggering melting are problematic, as the lithosphere is~150-200km thick. It is possible that the negative dT/dP section of the amphibole peridotite solidus was crossed as a result of lithospheric thickening in the collision zone. This explanation is conditional upon the mantle source being weakly hydrated and so only containing a small proportion of amphibole, which can be exhausted during small degrees of partial melting. Our model maybe viable for other magmatic areas within orogenic plateaux, e.g. northern Tibet. Depletion of mantle amphibole may also help explain larger scale transitions from arc to within-plate chemistry in orogens, such as the Palaeogene Arabia-Eurasia system.

  15. THE VELOCITY STRUCTURE OF THE UPPER MANTLE AND REGIONAL DEEP THERMODYNAMICS OF THE BAIKAL RIFT ZONE

    Directory of Open Access Journals (Sweden)

    Alexander V. Pospeev

    2012-01-01

    Full Text Available The article is aimed at discussion of geological and geophysical aspects of the ‘asthenospheric’ interpretation of the ‘anomalous’ mantle layer that is revealed in the Baikal rift zone by deep seismic sounding (DSS methods. Based on the analysis of the geoelectrical model, estimations of rheological properties, regional geothermal and deep petrological data, it is concluded that the ‘anomalous’ mantle phenomenon should be interpreted within the framework of solid-phase models. It is shown that the actual minimum depth to the top of the asthenosphere is about 60–70 km in the region under study, and temperatures at the surface of the Earth’s mantle varies from 600 to 900 °С. It is most probable that velocities are reduced in the ‘anomalous’ mantle layer due to the presence of hightemperature spinel-pyroxene facies of the mantle rocks.

  16. Global-scale modelling of melting and isotopic evolution of Earth's mantle: Melting modules for TERRA

    NARCIS (Netherlands)

    Van Heck, H.J.; Huw Davies, J.; Elliott, T.; Porcelli, D.

    2016-01-01

    Many outstanding problems in solid-Earth science relate to the geodynamical explanation of geochemical observations. Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. One way to address these problems is

  17. Helium isotope signature of the Permo-Carboniferous magmatic province in Scotland - no role for a mantle Plume

    NARCIS (Netherlands)

    Kirstein, L.A.; Dunai, T.J.; Davies, G.R.; Upton, B.G.J.

    2004-01-01

    Noble gas studies of well-characterized spinel-peridotite-facies lithospheric mantle xenoliths and garnet megacrysts from Scottish Permo-Carboniferous dykes, sills and vents demonstrate that the mantle beneath Scotland during the late Palaeozoic was more radiogenic than the source of mid-ocean ridge

  18. Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen)

    Science.gov (United States)

    Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.

    2015-05-01

    Detailed petrological and geochemical investigations of an extensive sampling of mantle xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric mantle consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted mantle (DM) towards the enriched OIB mantle (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali mantle xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are

  19. Komatiites constrain molybdenum isotope composition of the Earth's mantle

    Science.gov (United States)

    Greber, Nicolas D.; Puchtel, Igor S.; Nägler, Thomas F.; Mezger, Klaus

    2015-07-01

    In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25 ± 3 to 66 ± 22 ng /g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17 ± 4 and 30 ± 12 ng /g, with an average value of 23 ± 7 ng /g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39 ± 16 ng /g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from δ98Mo = - 0.04 ± 0.28 to 0.11 ± 0.10 ‰, with an average of 0.04 ± 0.06 ‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.

  20. Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models

    Science.gov (United States)

    Li, A.; Dave, R.; Yao, Y.

    2017-12-01

    Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last

  1. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan

    2017-01-01

    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  2. Quantifying mantle structure and dynamics using plume tracing in seismic tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2017-12-01

    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  3. Upper mantle structure at Walvis Ridge from Pn tomography

    Science.gov (United States)

    Ryberg, Trond; Braeuer, Benjamin; Weber, Michael

    2017-10-01

    Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (LIthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle Pn travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up.

  4. Early mantle dynamics inferred from 142Nd variations in Archean rocks from southwest Greenland

    DEFF Research Database (Denmark)

    Rizo, Hanika; Boyet, Maud; Blichert-Toft, Janne

    2013-01-01

    of the Greenland samples from a source formed in the Hadean. This mantle source is the oldest yet identified on Earth and therefore provides key information about the nature and evolution of early-differentiated reservoirs. In contrast, modern mantle-derived rocks from around the world do not have Nd-142 anomalies...... Supracrustal Belt (ISB) in southwest Greenland has revealed ubiquitous Nd-142 excesses in these rocks compared to modern samples and terrestrial Nd standards. Because the parent isotope, Sm-146, was extant only during the first few hundred million years of Solar System history, this implies derivation......, suggesting that the primordial heterogeneities detected in Earth's early mantle have been erased over time. In order to better constrain the rate at which early mantle heterogeneities have been re-homogenized, we produced new Sm-146-Nd-142 data for both 3.8 and 3.3 Ga old mafic rocks from different tectonic...

  5. U-Series Disequilibria across the New Southern Ocean Mantle Province, Australian-Antarctic Ridge

    Science.gov (United States)

    Scott, S. R.; Sims, K. W. W.; Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S. S.; Blichert-Toft, J.; Michael, P. J.; Choi, H.; Yang, Y. S.

    2017-12-01

    Mid-ocean ridge basalts (MORB) provide a unique window into the temporal and spatial scales of mantle evolution. Long-lived radiogenic isotopes in MORB have demonstrated that the mantle contains many different chemical components or "flavors". U-series disequilibria in MORB have further shown that different chemical components/lithologies in the mantle contribute differently to mantle melting processes beneath mid-ocean ridges. Recent Sr, Nd, Hf, and Pb isotopic analyses from newly collected basalts along the Australian-Antarctic Ridge (AAR) have revealed that a large distinct mantle province exists between the Australian-Antarctic Discordance and the Pacific-Antarctic Ridge, extending from West Antarctica and Marie Byrd Land to New Zealand and Eastern Australia (Park et al., submitted). This southern mantle province is located between the Indian-type mantle and the Pacific-type mantle domains. U-series measurements in the Southeast Indian Ridge and East Pacific Rise provinces show distinct signatures suggestive of differences in melting processes and source lithology. To examine whether the AAR mantle province also exhibits different U-series systematics we have measured U-Th-Ra disequilibria data on 38 basalts from the AAR sampled along 500 km of ridge axis from two segments that cross the newly discovered Southern Ocean Mantle province. We compare the data to those from nearby ridge segments show that the AAR possesses unique U-series disequilibria, and are thus undergoing distinct mantle melting dynamics relative to the adjacent Pacific and Indian ridges. (230Th)/(238U) excesses in zero-age basalts (i.e., those with (226Ra)/(230Th) > 1.0) range from 1.3 to 1.7, while (226Ra)/(230Th) ranges from 1.0 to 2.3. (226Ra)/(230Th) and (230Th)/(238U) are negatively correlated, consistent with the model of mixing between deep and shallow melts. The AAR data show higher values of disequilibria compared to the Indian and Pacific Ridges, which can be explained by either

  6. Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure

    KAUST Repository

    Mazarrasa, Inés

    2017-03-15

    Seagrass meadows are strong coastal carbon sinks of autochthonous and allochthonous carbon. The aim of this study was to assess the effect of coastal anthropogenic pressure on the variability of carbon sources in seagrass carbon sinks during the last 150 yr. We did so by examining the composition of the sediment organic carbon (Corg) stocks by measuring the δ13Corg signature and C : N ratio in 210Pb dated sediments of 11 Posidonia oceanica seagrass meadows around the Balearic Islands (Spain, Western Mediterranean) under different levels of human pressure. On average, the top meter sediment carbon deposits were mainly (59% ± 12%) composed by P. oceanica derived carbon whereas seston contribution was generally lower (41% ± 8%). The contribution of P. oceanica to the total sediment carbon stock was the highest (∼ 80%) in the most pristine sites whereas the sestonic contribution was the highest (∼ 40–80%) in the meadows located in areas under moderate to very high human pressure. Furthermore, an increase in the contribution of sestonic carbon and a decrease in that of seagrass derived carbon toward present was observed in most of the meadows examined, coincident with the onset of the tourism industry development and coastal urbanization in the region. Our results demonstrate a general increase of total carbon accumulation rate in P. oceanica sediments during the last century, mainly driven by the increase in sestonic Corg carbon burial, which may have important implications in the long-term carbon sink capacity of the seagrass meadows in the region examined.

  7. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  8. Source-sink relationships in two soybean cultivars with indeterminate growth under water deficit

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva

    Full Text Available Abstract Water deficit is a major factor limiting crop yield in rainfed areas. We hypothesized that under water deficit the decrease of photosynthetic production stimulates: carbohydrate remobilization from leaves, stems and roots to reproductive organs; and decreasing flowering intensity and pod development. The present work aims to study the effect of water deficit during bloom and grain pod-filling stages in two indeterminate soybean cultivar, Vtop and Nidera. The following physiological parameters were evaluated by means of daily CO2 assimilation rate (Ai, dynamic of carbohydrates in tissues, plant growth, grain yield and yield components. The study was conducted in a greenhouse with plants sown in tanks of 0.5 m3. Regardless of the phenological phase, water deficit reduced Ai, plant growth and number of pods and seeds per plant. The fact that grain yield was less affected by water deficit at bloom than at grain pod-filling stage was attributed to larger seeds found at bloom. In both treatments, a sharp reduction on carbohydrate content was found in leaves, stem and roots at the beginning of pod formation. The high amounts of carbohydrates remobilized for seed growth, along with the high values of Ai observed in well-watered plants, indicate that grain yield of soybeans is source rather than sink limited. On the other hand, in water deficit treatments, a new stimulus for carbohydrate storage was found in the leaves and stem at the beginning of grain maturity, suggesting that grain yield was limited by sink capacity.

  9. Greywater as a sustainable water source: A photocatalytic treatment technology under artificial and solar illumination.

    Science.gov (United States)

    Tsoumachidou, Sophia; Velegraki, Theodora; Antoniadis, Apostolos; Poulios, Ioannis

    2017-06-15

    Greywater considers being a highly reclaimable water source particularly important for water-stressed nations. In this work, heterogeneous photocatalysis using artificial and solar illumination has been applied for the mineralization of simulated light greywater (effluents from dishwashers and kitchen sinks were excluded from the study). The effects on the process' efficiency of TiO 2 P25 catalyst's concentration, initial concentration of H 2 O 2 and Fe 3+ , pH of the solution, as well as the type of radiation, were evaluated in a bench-scale Pyrex reactor and a pilot-scale slurry fountain photoreactor. The treatment efficiency has been followed through the evolution of the organic matter content expresses as dissolved organic carbon (DOC). Best results were obtained with the photo-Fenton-assisted TiO 2 photocatalytic process with 72% DOC removal after 210 min of bench scale treatment, while under the same photocatalytic conditions in the pilot reactor the DOC removal reached almost 64%. Moreover, the decrease in toxicity, phytotoxicity and biodegradability of the simulated wastewater has been observed after solar-induced photocatalytic treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Methane bubble ascent within muddy aquatic sediments under different ambient methane source strengths

    Science.gov (United States)

    Tarboush Sirhan, Shahrazad; Katsman, Regina; Ten Brink, Uri

    2016-04-01

    Methane (CH4) is the simplest and, the most common hydrocarbon in nature. It is considered as one of the most adverse greenhouse gases, at least 25 times more potent than carbon dioxide. When concentration of the dissolved methane in pore waters exceeds the solubility of the gas (affected in turn by temperature, pressure, salinity and by other factors) methane bubbles nucleate. Gas migration in fine-grained cohesive muddy aquatic sediments is accompanied by sediment fracturing. When gas pressure is high enough to overcome compression, friction, and cohesion at grain contacts, gas migrates by pushing the grains apart. These sub-vertical fractures provide lowered-resistance conduits for migration of other bubbles that can destabilize sediment structure resulting even in slope failure. Therefore, understanding the processes governing bubble propagation within fine-grained aquatic sediment is important. Previous models showed that bubbles propagation within fine-grained muddy aquatic sediments can be modeled using principles of linear elastic fracture mechanics. Mass transfer between the bubble rising with high velocity and the surrounding sediments was mostly ignored. We use a coupled macroscopic mechanical/reaction-transport numerical model under a variable source strength profile associated with bio-chemical processes of methane production and consumption within the sediment, as it occurs in nature. The model shows that changes in the dissolved methane concentrations strongly affect bubble ascent velocity, sometimes leading to its retardation below the sediment-water interface

  11. Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances

    Science.gov (United States)

    Gan, Chun-Biao; Ding, Chang-Tao; Yang, Shi-Xi

    2014-12-01

    During bipedal walking, it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors. The radical basis function (RBF) neural network model of a five-link biped robot is established, and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincaré map. In contrast with the simulations, the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving. Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints, the response errors of the biped will be increasing with higher disturbance levels, and especially there are larger output fluctuations in the knee and hip joints of the swing leg.

  12. Estuarine sediment resuspension and acidification: Release behaviour of contaminants under different oxidation levels and acid sources.

    Science.gov (United States)

    Martín-Torre, M Camino; Cifrian, Eva; Ruiz, Gema; Galán, Berta; Viguri, Javier R

    2017-09-01

    Carbon dioxide (CO 2 ) Capture and Storage (CCS) is a technology to reduce the emissions of this gas to the atmosphere by sequestering it in geological formations. In the case of offshore storage, unexpected CO 2 leakages will acidify the marine environment. Reductions of the pH might be also caused by anthropogenic activities or natural events such as acid spills and dredging operations or storms and floods. Changes in the pH of the marine environment will trigger the mobilisation of elements trapped in contaminated shallow sediments with unclear redox boundary. Trace element (As, Cd, Cr, Cu, Ni, Pb and Zn) release from anoxic and oxic estuarine sediment is analysed and modelled under different laboratory acidification conditions using HNO 3 (l) and CO 2 (g): acidification at pH = 6.5 as worst-case scenario in events of CO 2 leakages and acid spills, and acidification at pH = 7.0 as a seawater scenario under CO 2 leakages, acid spills, as well as sediment resuspension. The prediction of metal leaching behaviour appear to require sediment specific and site specific tools. In the present work it is demonstrated that the proposed three in-series reactions model predicts the process kinetics of the studied elements under different simulated environmental conditions (oxidation levels and acid sources). Differences between HNO 3 and CO 2 acidification are analysed through the influence of the CO 2 gas on the ionic competition of the medium. The acidification with CO 2 provokes higher released concentrations from the oxic sediment than from the anoxic sediment, except in the case of Zn, which influences the release of the other studied elements. Slight acidification can endanger the aquatic environment through an important mobilisation of contaminants. The obtained prediction of the contaminant release from sediment (kinetic parameters and maximum concentrations) can contribute to the exposure assessment stage for risk management and preincidental planning in

  13. Core-exsolved SiO2 Dispersal in the Earth's Mantle

    Science.gov (United States)

    Helffrich, G. R.; Ballmer, M.; Hirose, K.

    2017-12-01

    SiO2 may have been expelled from the core following its formation in the early stages of Earth's accretion and onwards through the present day. On account of SiO2's low density with respect to both the core and the lowermost mantle, we examine the process of SiO2 accumulation at the core-mantle boundary (CMB) and its incorporation into the mantle by buoyant rise. Today, the if SiO2 is 100-10000 times more viscous than lower mantle material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions of 100 m - 10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of 5-80 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in the mantle, trapping them there due to a combination of high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si+O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 2 volume percent in shallow parts of the lower mantle, with their abundance decreasing with depth. At such low concentrations, their effect on aggregate seismic wavespeeds would be within the uncertainty of the radial Earth model PREM. However, their presence would be revealed by small-scale scattering in the lower mantle due to the bodies' large velocity contrast. We conclude that the shallow lower mantle (700-1500 km depth) could harbor SiO2 released in early Earth times.

  14. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    Science.gov (United States)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  15. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    International Nuclear Information System (INIS)

    Ogunlade, Olumide; Beard, Paul

    2015-01-01

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substance to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type

  16. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle......It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...

  17. A study of experimental simulation of mantle metasomatism by the proton microprobe

    International Nuclear Information System (INIS)

    Sie, S.H.; Suter, G.F.; Sweeney, R.J.; Green, D.H.

    1991-01-01

    The chemistry of melts and fluids in the Earth's mantle is essential to understand the processes that generate them and the source areas from which they derive. The characterisation of these phases is particularly relevant with regard to the geochemical changes which would occur in a mantle subjected to the percolation of fluids (for example fluids that derive from a hydrated subducting slab to influence basic geochemistry in subduction zones) and small degree melts which percolate into a relatively cool mantle beneath continents. The development of a technique in the Geology Department of University of Tasmania, of trapping and isolating these small degree melts and fluids in pre-stressed (fractured) olivine disks inserted into run capsules is described. Little success is reported with the analysis of subsurface inclusions in olivine containing trace amounts (e.g. up to 1000 ppm) of elements of interest. This is primarily due to the fact that olivine is a heavy absorber of secondary X-rays principally a function of its higher Fe content. However, some success was achieved in the analysis of small surface melt inclusions where corrections had to be made for the overlap of the beam on the encapsulating olivine. The results carry large uncertainties (20%), primarily due to the smallness of the sample hence the large contribution of underlying olivine, and also of surrounding olivine when the beam is larger than the sample or when the beam drifts off the sample. An example of such measurements is described. Garnets in the peridotite were also analysed and this enabled the calculation of melt-garnet partition coefficients. 5 refs., 2 tabs

  18. BurnMan: A lower mantle mineral physics toolkit

    KAUST Repository

    Cottaar, Sanne

    2014-04-01

    We present BurnMan, an open-source mineral physics toolbox to determine elastic properties for specified compositions in the lower mantle by solving an Equation of State (EoS). The toolbox, written in Python, can be used to evaluate seismic velocities of new mineral physics data or geodynamic models, and as the forward model in inversions for mantle composition. The user can define the composition from a list of minerals provided for the lower mantle or easily include their own. BurnMan provides choices in methodology, both for the EoS and for the multiphase averaging scheme. The results can be visually or quantitatively compared to observed seismic models. Example user scripts show how to go through these steps. This paper includes several examples realized with BurnMan: First, we benchmark the computations to check for correctness. Second, we exemplify two pitfalls in EoS modeling: using a different EoS than the one used to derive the mineral physical parameters or using an incorrect averaging scheme. Both pitfalls have led to incorrect conclusions on lower mantle composition and temperature in the literature. We further illustrate that fitting elastic velocities separately or jointly leads to different Mg/Si ratios for the lower mantle. However, we find that, within mineral physical uncertainties, a pyrolitic composition can match PREM very well. Finally, we find that uncertainties on specific input parameters result in a considerable amount of variation in both magnitude and gradient of the seismic velocities. © 2014. American Geophysical Union. All Rights Reserved.

  19. Traveltime dispersion in an isotropic elastic mantle: strong lower-mantle signal in differential-frequency residuals

    Science.gov (United States)

    Schuberth, Bernhard S. A.; Zaroli, Christophe; Nolet, Guust

    2015-12-01

    We study wavefield effects of direct P- and S-waves in elastic and isotropic 3-D seismic structures derived from the temperature field of a high-resolution mantle circulation model. More specifically, we quantify the dispersion of traveltime residuals caused by diffraction in structures with dynamically constrained length scales and magnitudes of the lateral variations in seismic velocities and density. 3-D global wave propagation is simulated using a spectral element method. Intrinsic attenuation (i.e. dissipation of seismic energy) is deliberately neglected, so that any variation of traveltimes with frequency can be attributed to structural effects. Traveltime residuals are measured at 15, 22.5, 34 and 51 s dominant periods by cross-correlation of 3-D and 1-D synthetic waveforms. Additional simulations are performed for a model in which 3-D structure is removed in the upper 800 km to isolate the dispersion signal of the lower mantle. We find that the structural length scales inherent to a vigorously convecting mantle give rise to significant diffraction-induced body-wave traveltime dispersion. For both P- and S-waves, the difference between long-period and short-period residuals for a given source-receiver pair can reach up to several seconds for the period bands considered here. In general, these `differential-frequency' residuals tend to increase in magnitude with increasing short-period delay. Furthermore, the long-period signal typically is smaller in magnitude than the short-period one; that is, wave-front healing is efficient independent of the sign of the residuals. Unlike the single-frequency residuals, the differential-frequency residuals are surprisingly similar between the `lower-mantle' and the `whole-mantle' model for corresponding source-receiver pairs. The similarity is more pronounced in case of S-waves and varies between different combinations of period bands. The traveltime delay acquired in the upper mantle seems to cancel in these differential

  20. Sr-Nd evidence of paleoproterozoic mantle metasomatism in the lithospheric mantle beneath northeastern Brazil

    International Nuclear Information System (INIS)

    Hollanda, M.H.B.M.; Pimentel, M.M.; Jardim de Sa, E.F

    2001-01-01

    discuss about mantle metasomatism against crustal contamination. The difficulty in commenting about this question taking into consideration Proterozoic mantle-derived plutonic rocks is related to non-uniqueness in interpreting the common enriched signatures, since that are similar to geochemical signature of crustal rocks. In this study, the data were carefully treated for filtering out the effects of crustal contamination to recognise the nature of their mantle source and obtain a picture of the lithospheric mantle chemical at Proterozoic time (au)

  1. Molybdenum isotope fractionation in the mantle

    Science.gov (United States)

    Liang, Yu-Hsuan; Halliday, Alex N.; Siebert, Chris; Fitton, J. Godfrey; Burton, Kevin W.; Wang, Kuo-Lung; Harvey, Jason

    2017-02-01

    concentrations of all the ultramafic xenoliths of 40-400 ppb, similar to or, significantly higher than, current estimates for the BSE (39 ppb). On this basis a revised best estimate of the Mo content in the BSE based on these concentrations would be in the range 113-180 ppb, significantly higher than previously assumed. These values are similar to the levels of depletion in the other refractory moderately siderophile elements W, Ni and Co. A simpler explanation may be that the subcontinental lithospheric mantle has been selectively enriched in Mo leading to the higher concentrations observed. Cryptic melt metasomatism would be difficult to reconcile with the high Mo/Ce of the most LREE depleted xenoliths. Ancient Mo-enriched subducted components would be expected to have heavy δ98/95Mo, which is not observed. The Mo isotope composition of the BSE, cannot be reliably resolved from that of chondrites at this time despite experimental evidence for metal-silicate fractionation. An identical isotopic composition might result from core-mantle differentiation under very high temperatures such as were associated with the Moon-forming Giant Impact, or from the BSE inventory reflecting addition of moderately siderophile elements from an oxidised Moon-forming impactor (O'Neill, 1991). However, the latter would be inconsistent with the non-chondritic radiogenic W isotopic composition of the BSE. Based on mantle fertility arguments, Mo in the BSE could even be lighter (lower 98/95Mo) than that in chondrites, which might be explained by loss of S rich liquids from the BSE during core formation (Wade et al., 2012). Such a late removal model is no longer required to explain the Mo concentration of the BSE if its abundance is in fact much higher, and similar to the values for ultramafic xenoliths.

  2. Development of the Central-Afar volcanic margin, mantle upwelling and break-up processes

    Science.gov (United States)

    Pik, Raphaël; Bellahsen, Nicolas; Leroy, Sylvie; Stab, Martin; Ayalew, Dereje; Yirgu, Gezahegn

    2017-04-01

    Whereas the present day mantle dynamics is now well imaged by geophysical investigations, the long-term expression of mantle dynamics below rifted lithosphere is not directly recorded at the surface of the earth. Such information must therefore be extracted from non-direct manifestations of mantle upwelling, which are principally (i) the uplift of the upperlying lithosphere and (ii) the melts produced when the solidus of mantle mineral assemblages is crossed. These first order and unique evidences should therefore represent corner stones output of any geodynamic models used to deduce the interplay between mantle dynamics and surface deformations. For magmatism produced during extension of lithosphere, the dynamics of mantle upwelling can be recognized in the volumes of magmas and also in their geochremistry, which allow tracking the various types of mantle sources and the various types of mantle melting regime (P, T and intensity of partial melting). Volcanism has been closely associated with extension in the East African rift system. It is yet (and logically) heterogeneously distributed along the western, eastern and northern volcanic provinces. We have concentrated the efforts of a multidisciplinary team these last years in the northern Ethiopian volcanic province where the most important volumes of volcanism have been emplaced since 30 Ma, from Continental Flood Basalts episode to active extension along the Central Afar magmatic segment. These structural and geochemical data point out new constraints on the interplay between the upwelling of the Afar mantle plume and the style and mechanisms of extension, and imply to update and revise our understanding of the development of this volcanic margin.

  3. Plate tectonics, mantle convection and D'' seismic structures

    Science.gov (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  4. Bases of the Mantle-Carbonatite Conception of Diamond Genesis

    Science.gov (United States)

    Litvin, Yuriy; Spivak, Anna; Kuzyura, Anastasia

    2016-04-01

    In the mantle-carbonatite conception of diamond genesis, the results of physic-chemical experiments are coordinated with the data of analytic mineralogy of primary inclusions in natural diamonds. Generalization of the solutions of principal genetic problems constitutes the bases of the conception. The solutions are following: (1) it is grounded that diamond-parental melts of the upper mantle have peridotite/eclogite - carbonatite - carbon compositions, of the transition zone - (wadsleite↔ringwoodite) - majorite - stishovite - carbonatite - carbon compositions, and of the lower mantle - periclase/wustite - bridgmanite - Ca-perovskite -stishovite - carbonatite - carbon compositions; (2) a construction of generalized diagrams for the diamond-parental media, which reveal changeable compositions of the growth melts of diamonds and associated phases, their genetic relations to the mantle substance, and classification connections of the primary inclusions in natural diamonds; (3) experimental equilibrium phase diagrams of syngenesis of diamonds and primary inclusions, which characterize the nucleation and growth conditions of diamonds and a capture of paragenetic and xenogenetic minerals by the growing diamonds; (4) a determination of the phase diagrams of diamonds and inclusions syngenesis under the regime of fractional crystallization, which discover the regularities of ultrabasic-basic evolution and paragenesis transitions in the diamond-forming systems of the upper and lower mantle. The evidence of the physic-chemically united mode of diamond genesis at the mantle depths with different mineralogy is obtained. References. Litvin Yu.A. (2007). High-pressure mineralogy of diamond genesis. In: Advances in High-Pressure Mineralogy (edited by Eiji Ohtani), Geological Society of America Special paper 421, 83-103. Litvin Yu.A. (2012). Experimental study of physic-chemical conditions of natural diamond formation on an example of the eclogite

  5. Using plant growth modeling to analyse C source-sink relations under drought: inter and intra specific comparison

    Directory of Open Access Journals (Sweden)

    Benoit ePallas

    2013-11-01

    Full Text Available The ability to assimilate C and allocate NSC (non structural carbohydrates to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyse such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

  6. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Muguira, L., E-mail: lmuguira@essbilbao.org [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Portilla, J. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Gonzalez, P.J.; Garmendia, N.; Feuchtwanger, J. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain); Etxebarria, V. [University of Basque Country (UPV/EHU), Department of Electricity and Electronics, Science and Technology Faculty, 48940 Leioa (Bizkaia) (Spain); Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D. [ESS-Bilbao, Edificio Rectorado, Vivero de Empresas, 48940 Leioa (Bizkaia) (Spain)

    2014-03-21

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible. - Highlights: • An automated system optimizing plasma and microwave power interaction is presented. • A model and a matching algorithm for the triple-stub tuner have been developed. • Different methods to measure the power transfer have been studied and deployed. • The system works for low or high power regimes under different ion source conditions.

  7. Diamond morphology as a key to understanding metasomatic processes in subcratonic mantle

    Science.gov (United States)

    Fedortchouk, Yana; Perritt, Samantha; Chinn, Ingrid

    2016-04-01

    Metasomatism in the subcratonic mantle is responsible for growth as well as dissolution of diamond. The morphology of resorption features developed on diamond during its residence in the mantle provides an important record of the nature of the metasomatic media and conditions of diamond destructive metasomatic events, while the diversity of these features indicates different metasomatic processes occurring in the mantle. The objective of this study was to shed more light on the nature of metasomatic processes in the subcratonic mantle by examining the conditions of mantle-derived diamond resorption. Towards this end, we conducted a study of 800 diamonds from two kimberlite pipes in the Orapa kimberlite field, Botswana, and examined the relationship between the conditions of diamond growth, as recorded in their nitrogen defects, and subsequent dissolution recorded in their resorption features. Using a set of morphological criteria we identified preservation of mantle-derived resorption features on 55% of diamonds from one pipe and 25-75% of diamonds from the second pipe. We identified at least twelve distinct morphological types developed during mantle residence of the diamond, and examined the possible effect of diamond internal features vs. the effect of the conditions of the mantle metasomatism. The mantle resorption types are the same for diamonds from both of the Orapa kimberlites studied, and compare well to the types previously described on diamonds from Ekati Mine (Canada), implying similarity of metasomatic history beneath the Slave and Zimbabwe cratons. A comparison of the mantle-derived diamond morphologies to the products of diamond dissolution experiments allows assessment of the importance of metasomatism caused by carbonatitic melts vs. aqueous silicate melts in the mantle underlying the kimberlites. The nitrogen content and nitrogen aggregation state of the diamonds from the different morphological groups provides insights into the relationship

  8. Nanodiamond Finding in the Hyblean Shallow Mantle Xenoliths

    OpenAIRE

    Simakov, S. K.; Kouchi, A.; Mel?nik, N.N.; Scribano, V.; Kimura, Y.; Hama, T.; Suzuki, N.; Saito, H.; Yoshizawa, T.

    2015-01-01

    Most of Earth?s diamonds are connected with deep-seated mantle rocks; however, in recent years, ?m-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in ...

  9. Melting and refertilization of the Arctic mantle from the ultra-slow spreading Gakkel Ridge

    Science.gov (United States)

    Cai, Y.; Goldstein, S. L.; Langmuir, C. H.; Michael, P. J.

    2011-12-01

    Mid-Ocean Ridge basalts (MORB) from the slowest spreading zone of the ultra-slow spreading Gakkel Ridge (the eastern volcanic zone or EVZ), comprise ~100 km long segments showing coherent geochemical and isotopic affinities, created by melt depletion and refertilization of the sub-ridge mantle. The EVZ lies to the east of a "sparsely magmatic zone" where peridotite outcrops in the ridge axis. Basalts just to the east of the sparsely magmatic zone (at 29°E - 40°E, segment EVZ1) show some of the highest MORB Hf and Nd isotope ratios on Earth (with ɛHf values up to nearly +26). They plot significantly above the Nd-Hf mantle-crust array. Basalts further to the east (segments EVZ2 and EVZ3), where spreading rate is even lower, show lower ɛNd and ɛHf values and plot closer to the mantle-crust array. Basalts from EVZ1 also show higher Lu/Hf and lower Dy/Yb ratios than basalts from EVZ2 and EVZ3. Comparing the differences in Hf-Nd isotope ratios for these segments, and accounting for the Lu/Hf-Sm/Nd ratios, the "depletion age" for the EVZ1 segment can be estimated, and the data are consistent with significant ancient melt removal (~9%) in the garnet stability field from the EVZ1 mantle source ca. 200Ma ago. In contrast to their high Hf-Nd isotope ratios (indicating severe incompatible element depletion), basalts from EVZ1 segment show strong enrichments in highly incompatible elements (for example, K2O/TiO2 up to 0.37 and (La/Sm)N up to 1.4). These geochemical signatures are consistent with recent melt refertilization of the sub-ridge mantle. In contrast to basalts from segment EVZ1, with enriched trace elements but Hf-Nd isotopes indicating long-term incompatible depletion, a group of samples from segment EVZ2, further to the east, show the opposite characteristics, that is, depleted incompatible element signatures (K2O/TiO2 down to 0.05 and low Dy/Yb), but long-term trace element enrichment (low ɛNd and ɛHf). These basalts may represent a second-round of melting

  10. A colossal impact enriched Mars' mantle with noble metals

    Science.gov (United States)

    Brasser, R.; Mojzsis, S. J.

    2017-06-01

    Once the terrestrial planets had mostly completed their assembly, bombardment continued by planetesimals left over from accretion. Highly siderophile element (HSE) abundances in Mars' mantle imply that its late accretion supplement was 0.8 wt %; Earth and the Moon obtained an additional 0.7 wt % and 0.02 wt %, respectively. The disproportionately high Earth/Moon accretion ratio is explicable by stochastic addition of a few remaining Ceres-sized bodies that preferentially targeted Earth. Here we show that Mars' late accretion budget also requires a colossal impact, a plausible visible remnant of which is the emispheric dichotomy. The addition of sufficient HSEs to the Martian mantle entails an impactor of at least 1200 km in diameter to have struck Mars before 4430 Ma, by which time crust formation was well underway. Thus, the dichotomy could be one of the oldest geophysical features of the Martian crust. Ejected debris could be the source material for its satellites.

  11. Elasticity of Orthoenstatite at High Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in the Mantle Wedge

    Science.gov (United States)

    Qian, Wangsheng; Wang, Wenzhong; Zou, Fan; Wu, Zhongqing

    2018-01-01

    Orthopyroxene (opx) is an important mineral in petrologic models for the upper mantle. Its elastic properties are fundamental for understanding the chemical composition and geodynamics of the upper mantle. Here we calculate the elastic properties of orthoenstatite (MgSiO3), the Mg end-member orthopyroxene under upper mantle pressure and temperature conditions using first principle calculations with local density approximation. Bulk and shear moduli increase nonlinearly with pressure at mantle temperatures, but the shear modulus and VS show very weak pressure dependence in comparison with VP. Compared to other major minerals in the upper mantle, orthoenstatite has the lowest compressional velocities (VP), shear velocities (VS), and VP/VS ratio down to the depth of approximately 300 km. The enrichment of opx in the upper mantle can cause the unusually low VP/VS observed in the mantle wedge.

  12. Regulation of Heterogenous Non-Point Sources of Pollution Under Imperfect Information, The

    OpenAIRE

    Richard Cabe; Joseph A. Herriges

    1990-01-01

    This paper discusses the rose of information structure (i.e., information cost, reliability, and distribution among agents) in the design of a regulatory mechanism for controlling non-point source pollution. An ambient concentration tax mechanism is examined for non-point source pollution with spatial transport among multiple zones. Imposition of the tax requires costly measurement of ambient concentrations in selected zones, and the selection of zones for measurement must be undertaken witho...

  13. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  14. Investigating melting induced mantle heterogeneities in plate driven mantle convection models

    Science.gov (United States)

    Price, M.; Davies, H.; Panton, J.

    2017-12-01

    Observations from geochemistry and seismology continue to suggest a range of complex heterogeneity in Earth's mantle. In the deep mantle, two large low velocity provinces (LLVPs) have been regularly observed in seismic studies, with their longevity, composition and density compared to the surrounding mantle debated. The cause of these observed LLVPs is equally uncertain, with previous studies advocating either thermal or thermo-chemical causes. There is also evidence that these structures could provide chemically distinct reservoirs within the mantle, with recent studies also suggesting there may be additional reservoirs in the mantle, such as bridgmanite-enriched ancient mantle structures (BEAMS). One way to test these hypotheses is using computational models of the mantle, with models that capture the full 3D system being both complex and computationally expensive. Here we present results from our global mantle model TERRA. Using our model, we can track compositional variations in the convecting mantle that are generated by self-consistent, evolving melting zones. Alongside the melting, we track trace elements and other volatiles which can be partitioned during melting events, and expelled and recycled at the surface. Utilising plate reconstruction models as a boundary condition, the models generate the tectonic features observed at Earth's surface, while also organising the lower mantle into recognisable degree-two structures. This results in our models generating basaltic `oceanic' crusts which are then brought into the mantle at tectonic boundaries, providing additional chemical heterogeneity in the mantle volume. Finally, by utilising thermodynamic lookup tables to convert the final outputs from the model to seismic structures, together with resolution filters for global tomography models, we are able to make direct comparisons between our results and observations. By varying the parameters of the model, we investigate a range of current hypotheses for

  15. Source index A: Federal law, without agreements under international law. As of December 31, 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Federal Law Catalogue and relevant sources - BGBl. III - is the basis of the source index A, which from 1st January 1966 onwards publishes the sources of laws and statutes announced in the Federal Law Gazette, part I and part II, as well as in the Federal Gazette. The source index A covers the sources of all statutes and amendments since 1st January 1964. Official directives, however, are not always announced in the Federal Law Gazette, or in the promulgation section of the Federal Gazette, but rather in the official journals of the Federal Ministries, and in the announcement section of the Federal Gazette. This also applies to amendments or cancellations of directives first published in the Federal Law Gazette or in the promulgation section of the Federal Gazette. As the latter and the official journals on the ministries are not scanned for the source index A, there is no guarantee as to complete coverage of directives. Subject scope 75 covers acts and directives relating to mining, nuclear energy, electricity, gas and power supply. (orig.) [de

  16. Automated system for efficient microwave power coupling in an S-band ECR ion source driven under different operating conditions

    Science.gov (United States)

    Muguira, L.; Portilla, J.; Gonzalez, P. J.; Garmendia, N.; Feuchtwanger, J.; Etxebarria, V.; Eguiraun, M.; Arredondo, I.; Miracoli, R.; Belver, D.

    2014-03-01

    This article presents an automated system for optimizing the microwave power coupling to the plasma generated in a proton/deuteron Electron Cyclotron Resonance (ECR) source, based on a specific model of a rectangular waveguide triple-stub tuner and the integrated measurement and control electronics, helping to get stable plasma states. The control and improvement of the RF power absorption into the plasma is a complex process, essential for the ion source development and optimization under different operating conditions. A model and a matching algorithm for the triple-stub tuner have been developed and, besides, different methods to accurately measure the power transfer in a waveguide RF system have been studied and deployed in the ESS-Bilbao ion source system. The different parts have been integrated through a controller, which allows to run an automatic plasma matching system in closed loop. The behavior of the system implemented for low and high power regimes has been tested under different conditions: with several load impedances, with plasma inside the chamber, in continuous wave and pulsed wave operation modes, demonstrating power absorption typically over 90% in all the ion source configurations. The developed system allows to achieve significant improvement in the ECR ion source power absorption efficiency, both in continuous and pulsed mode. The automatic tuning unit enhances the system operation finding an optimum solution much faster than manually, also behaving as an adaptive system able to respond in few pulses to ion source configuration changes to maintain the power coupling as high as possible.

  17. A two-dimensional transient analytical solution for a ponded ditch drainage system under the influence of source/sink

    Science.gov (United States)

    Sarmah, Ratan; Tiwari, Shubham

    2018-03-01

    An analytical solution is developed for predicting two-dimensional transient seepage into ditch drainage network receiving water from a non-uniform steady ponding field from the surface of the soil under the influence of source/sink in the flow domain. The flow domain is assumed to be saturated, homogeneous and anisotropic in nature and have finite extends in horizontal and vertical directions. The drains are assumed to be standing vertical and penetrating up to impervious layer. The water levels in the drains are unequal and invariant with time. The flow field is also assumed to be under the continuous influence of time-space dependent arbitrary source/sink term. The correctness of the proposed model is checked by developing a numerical code and also with the existing analytical solution for the simplified case. The study highlights the significance of source/sink influence in the subsurface flow. With the imposition of the source and sink term in the flow domain, the pathline and travel time of water particles started deviating from their original position and above that the side and top discharge to the drains were also observed to have a strong influence of the source/sink terms. The travel time and pathline of water particles are also observed to have a dependency on the height of water in the ditches and on the location of source/sink activation area.

  18. Crustal and upper mantle investigations of the Caribbean-South American plate boundary

    Science.gov (United States)

    Bezada, Maximiliano J.

    The evolution of the Caribbean --- South America plate boundary has been a matter of vigorous debate for decades and many questions remain unresolved. In this work, and in the framework of the BOLIVAR project, we shed light on some aspects of the present state and the tectonic history of the margin by using different types of geophysical data sets and techniques. An analysis of controlled-source traveltime data collected along a boundary-normal profile at ˜65°W was used to build a 2D P-wave velocity model. The model shows that the Caribbean Large Igenous Province is present offshore eastern Venezuela and confirms the uniformity of the velocity structure along the Leeward Antilles volcanic belt. In contrast with neighboring profiles, at this longitude we see no change in velocity structure or crustal thickness across the San Sebastian - El Pilar fault system. A 2D gravity modeling methodology that uses seismically derived initial density models was developed as part of this research. The application of this new method to four of the BOLIVAR boundary-normal profiles suggests that the uppermost mantle is denser under the South American continental crust and the island arc terranes than under the Caribbean oceanic crust. Crustal rocks of the island arc and extended island arc terranes of the Leeward Antilles have a relatively low density, given their P-wave velocity. This may be caused by low iron content, relative to average magmatic arc rocks. Finally, an analysis of teleseismic traveltimes with frequency-dependent kernels produced a 3D P-wave velocity perturbation model. The model shows the structure of the mantle lithosphere under the study area and clearly images the subduction of the Atlantic slab and associated partial removal of the lower lithosphere under northern South America. We also image the subduction of a section of the Caribbean plate under South America with an east-southeast direction. Both the Atlantic and Caribbean subducting slabs penetrate the

  19. Influence of precipitating light elements on stable stratification below the core/mantle boundary

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2017-12-01

    Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically

  20. The risk assessment of sudden water pollution for river network system under multi-source random emission

    Science.gov (United States)

    Li, D.

    2016-12-01

    Sudden water pollution accidents are unavoidable risk events that we must learn to co-exist with. In China's Taihu River Basin, the river flow conditions are complicated with frequently artificial interference. Sudden water pollution accident occurs mainly in the form of a large number of abnormal discharge of wastewater, and has the characteristics with the sudden occurrence, the uncontrollable scope, the uncertainty object and the concentrated distribution of many risk sources. Effective prevention of pollution accidents that may occur is of great significance for the water quality safety management. Bayesian networks can be applied to represent the relationship between pollution sources and river water quality intuitively. Using the time sequential Monte Carlo algorithm, the pollution sources state switching model, water quality model for river network and Bayesian reasoning is integrated together, and the sudden water pollution risk assessment model for river network is developed to quantify the water quality risk under the collective influence of multiple pollution sources. Based on the isotope water transport mechanism, a dynamic tracing model of multiple pollution sources is established, which can describe the relationship between the excessive risk of the system and the multiple risk sources. Finally, the diagnostic reasoning algorithm based on Bayesian network is coupled with the multi-source tracing model, which can identify the contribution of each risk source to the system risk under the complex flow conditions. Taking Taihu Lake water system as the research object, the model is applied to obtain the reasonable results under the three typical years. Studies have shown that the water quality risk at critical sections are influenced by the pollution risk source, the boundary water quality, the hydrological conditions and self -purification capacity, and the multiple pollution sources have obvious effect on water quality risk of the receiving water body

  1. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    Science.gov (United States)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  2. The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Dungan, Michael A.; Escrig, Stephane

    2017-08-01

    -member found in continental arcs is produced by low-degree melt-metasomatism of the sub-continental lithospheric mantle may be more plausible. The 143Nd/144Nd maximum along the SVZ may be a consequence of either rifting and collision of two ancient lithospheric domains or a slab tear. The correspondence of mantle wedge variations with EM1 suggests a potential role for metasomatized sub-continental lithosphere in creating EM1 sources globally.

  3. Separation of radiated sound field components from waves scattered by a source under non-anechoic conditions

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2010-01-01

    A method of estimating the sound field radiated by a source under non-anechoic conditions has been examined. The method uses near field acoustic holography based on a combination of pressure and particle velocity measurements in a plane near the source for separating outgoing and ingoing wave...... components. The outgoing part of the sound field is composed of both radiated and scattered waves. The method compensates for the scattered components of the outgoing field on the basis of the boundary condition of the problem, exploiting the fact that the sound field is reconstructed very close...... to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....

  4. Synchronization of grid-connected renewable energy sources under highly distorted voltages and unbalanced grid faults

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    and dynamic synchronization of the interconnected renewable energy system under unbalanced grid faults and under highly harmonic distorted voltage. The outstanding performance of the suggested PLL is achieved by implementing an innovative multi-sequence/harmonic decoupling cell in order to dynamically cancel...... renewable energy systems. Therefore, the performance of the new PLL can increase the quality of the injected power under abnormal conditions and in addition enable the renewable energy systems to provide the appropriate support to the grid under balanced and unbalanced grid faults....

  5. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    Science.gov (United States)

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics.

  6. The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of the Manihiki Plateau and the Troodos ophiolite

    Science.gov (United States)

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Sobolev, Alexander; Kuzmin, Dimitry; Werner, Reinhard

    2017-12-01

    High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20-25% of total melting with 8-10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb Y 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents ( 2 wt% in boninites), 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM + 0.2) and originated from deeper and hotter mantle (1.4-1.7 GPa, 1440 °C vs. 0.8-1.0 GPa, 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.

  7. Imaging earth's interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, R.J.

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth's mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  8. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, Robert Jay [Univ. of California, Berkeley, CA (United States)

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth`s mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  9. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  10. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    Science.gov (United States)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10

  11. Tomography images of the Alpine roots and surrounding upper mantle

    Science.gov (United States)

    Plomerova, Jaroslava; Babuska, Vladislav

    2017-04-01

    -processed, mostly the ISC-bulletin data (Babuska et al., Tectonophysics 1990). Calculated relative travel-time residuals have been assigned to source clusters and filtered relative to the residual mean of each cluster of events. We expect that future 3D studies of the mantle velocities and mantle fabrics with the use of body-wave anisotropic parameters from the AlpArray data will shed a new light on tectonic development of the complex Alpine region and its surroundings.

  12. A Global Upper-Mantle Tomographic Model of Shear Attenuation

    Science.gov (United States)

    Karaoglu, H.; Romanowicz, B. A.

    2016-12-01

    Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency

  13. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection.

    Science.gov (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon

    2017-04-01

    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  14. Stability of a radiative mantle in ITER

    International Nuclear Information System (INIS)

    Mahdavi, M.A.; Staebler, G.M.; Wood, R.D.; Whyte, D.G.; West, W.P.

    1996-12-01

    We report results of a study to evaluate the efficacy of various impurities for heat dispersal by a radiative mantle and radiative divertor(including SOL). We have derived a stability criterion for the mantle radiation which favors low Z impurities and low ratios of edge to core thermal conductivities. Since on the other hand the relative strength of boundary line radiation to core bremsstrahlung favors high Z impurities, we find that for the ITER physics phase argon is the best gaseous impurity for mantle radiation. For the engineering phase of ITER, more detailed analysis is needed to select between krypton and argon

  15. Application of Chondroitin Sulfate on Organogenesis of Two Cymbidium spp. under Different Sources of Lights

    Directory of Open Access Journals (Sweden)

    Syeda Jabun NAHAR

    2016-06-01

    Full Text Available The aim of this study was to present chondroitin sulfate as a plant growth regulator and to give an overview about light effects on PLBs (protocorm like bodies culture of Cymbidium dayanum and Cymbidium finlaysonianum cultured in vitro. Chondroitin sulfate is a sulfated glycosaminoglycan (GAG composed of a chain of alternating sugars N-acetylgalactosamine and glucuronic acid. It is widely used as a material for food ingredients, cosmetics and medicine. PLBs were cultured on modified MS medium containing different concentration of chondroitin sulfate (0, 0.1, 1 and 10 mg/l, under four sources of lights: conventional white fluorescent tube, red LED, green LED and blue LED. In C. dayanum, 100% PLBs formation rate was observed at 0.1 mg/l chondroitin sulfate with modified MS medium under green LED and 1 mg/l chondroitin sulfate under blue LED; the maximum shoots and roots formation were observed under green LEDs (93% and 80% respectively when media contained 0.1 mg/l chondroitin sulfate. In C. finlaysonianum, every concentrations of chondroitin sulfate enhanced the growth rate of PLBs when compared to control treatment, under all four sources of lights. The highest values were recorded with 0.1 mg/l chondroitin sulfate which induced 100% PLBs formation under blue LED, while 10 mg/l chondroitin sulfate had induced 100% PLBs formation under green LED. The highest percentage of shoots (73% was initiated in the medium containing 10 mg/l chondroitin sulfate under green LED. Plant development was strongly influenced by the light quality and plant growth regulator functions as chemical messengers for intercellular communication of plant. The results demonstrated that low concentrations of chondroitin sulfate could promote PLBs, shoots and roots formation of Cymbidium spp. under green and blue LED.

  16. Spin Transition of Iron in the Earth's Lower Mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J; Tsuchiya, T

    2007-05-23

    Electronic spin-pairing transitions of iron and associated effects on the physical properties of host phases have been reported in lower-mantle minerals including ferropericlase, silicate perovskite, and possibly in post-perovskite at lower-mantle pressures. Here we evaluate current understanding of the spin and valence states of iron in the lower-mantle phases, emphasizing the effects of the spin transitions on the density, sound velocities, chemical behavior, and transport properties of the lower-mantle phases. The spin transition of iron in ferropericlase occurs at approximately 50 GPa but likely turns into a wide spin crossover under lower-mantle temperatures. Current experimental results indicate a continuous nature of the spin crossover in silicate perovskite at high pressures, but which valence state of iron undergoes the spin crossover and what is its associated crystallographic site remain uncertain. The spin transition of iron results in enhanced density, incompressibility, and sound velocities, and reduced radiative thermal conductivity in the low-spin ferropericlase, which should be considered in future geophysical and geodynamic modeling of the Earth's lower mantle. Our evaluation of the experimental and theoretical pressure-volume results shows that the spin crossover of iron results in a density increase of 3-4% in ferropericlase containing 17-19% FeO. Here we have modeled the density and bulk modulus profiles of ferropericlase across the spin crossover under lower-mantle pressure-temperature conditions and showed how the ratio of the spin states of iron affects our understanding of the state of the Earth's lower mantle.

  17. Performance tests of air source heat pumps under frosting conditions. Quality of results

    Science.gov (United States)

    Fahlen, P.

    This report focuses on the analysis of uncertainties in research regarding air-source heat pumps. The principles recommended by the Western European Calibration Conference (WECC) are applied and the generated information is condensed in the form of uncertainty budgets. The ensuring discussion, and the Measurement Assurance Program that was applied during the research work are also relevant to general testing of cooling coils, e.g. for air source heat pumps. The general conclusion of the analysis is that the method of determining frost mass by continuous weighing and frost density by inference from pressure drop considerations, which is presented in the report, has the potential to produce results with an accuracy on a par with the best previously used techniques to investigate frosting and defrosting phenomena. Furthermore, the methodology has the distinct advantage of yielding online measuring possibilities and being much less time consuming than traditional techniques.

  18. Factors underlying students’ appropriate or inappropriate use of scholarly sources in academic writing, and instructors’ responses

    Directory of Open Access Journals (Sweden)

    John Sivell

    2013-07-01

    Full Text Available At first glance it is surprising that – in remarkable contrast to grammatical or lexical failings which, while certainly not viewed as insignificant, are rarely greeted with outright anger or hostility – inappropriate documentation of scholarly sources so frequently provokes very harsh penalties. Rather than the constructively pedagogical approach that one would expect with regard to other defects in writing, why do we so often witness a rush to negative evaluation of what may, after all, be evidence of nothing more culpable than misinformation, confusion, or oversight? Much has of course been written about possible remedies for ineffective use of scholarly sources and, on the other hand, about available monitoring and punishment for deliberate plagiarism; so, in a sense, the alternatives appear quite simple. However, decisions about when to adopt a more pedagogical or a more disciplinary viewpoint are complicated by difficult and potentially emotional factors that can disrupt calm, confident and well-reasoned judgment. Thus, this paper will focus not on pedagogical or disciplinary strategies, whichever may be considered suitable in a given case, but on a framework for thorough reflection earlier in the thinking process. It will explore multiple perspectives on possible origins for the innocent if maladroit mishandling of scholarly sources, with a view to highlighting a number of informative but potentially neglected reference points – a cognitive psychological perspective on human error and error management, plausible ambiguities in determining what actually constitutes plagiarism, and communication challenges – that may enter into the instructor’s final determination.

  19. Break-Induced Replication Is a Source of Mutation Clusters Underlying Kataegis

    Directory of Open Access Journals (Sweden)

    Cynthia J. Sakofsky

    2014-06-01

    Full Text Available Clusters of simultaneous multiple mutations can be a source of rapid change during carcinogenesis and evolution. Such mutation clusters have been recently shown to originate from DNA damage within long single-stranded DNA (ssDNA formed at resected double-strand breaks and dysfunctional replication forks. Here, we identify double-strand break (DSB-induced replication (BIR as another powerful source of mutation clusters that formed in nearly half of wild-type yeast cells undergoing BIR in the presence of alkylating damage. Clustered mutations were primarily formed along the track of DNA synthesis and were frequently associated with additional breakage and rearrangements. Moreover, the base specificity, strand coordination, and strand bias of the mutation spectrum were consistent with mutations arising from damage in persistent ssDNA stretches within unconventional replication intermediates. Altogether, these features closely resemble kataegic events in cancers, suggesting that replication intermediates during BIR may be the most prominent source of mutation clusters across species.

  20. Geochemical heterogeneity in the Arctic mantle at Gakkel Ridge

    Science.gov (United States)

    D'Errico, M. E.; Warren, J. M.; Godard, M.

    2014-12-01

    Conductive cooling due to ultraslow spreading has been suggested to limit partial melting of the mantle and crustal production at Gakkel Ridge. In addition, the thick lithosphere induced by cooling should significantly control melt migration and extraction. To explore these effects at ultraslow spreading rates, major and trace element concentrations in pyroxene minerals are presented for 14 dredged Gakkel abyssal peridotites. Samples from the same dredge and among dredges reveal wide compositional variation. Trace element compositions of lherzolites reflect 4-6% non-modal fractional mantle melting. However, these high degrees of melting without a corresponding amount of oceanic crust suggest the occurrence of infertile mantle due to ancient melting event(s). In addition, high degrees of melt depletion at short length-scales (<60 km) cannot be thermally driven and must instead reflect inherited small length-scale variability. Harzburgite samples exhibit low concentrations in heavy rare earth elements that can be fit by 6 to ≥13% non-modal melting, but this results in modeled light rare earth element contents that are too low relative to observed concentrations. Instead, harzburgite trace element patterns require open-system melting involving interaction with a percolating melt. Extreme enrichments in highly incompatible elements also suggest the occurrence of late-stage refertilization and melt entrapment. Modeling of several different source melt compositions indicates that the trapped melt was generated from garnet field-equilibrated peridotite. Overall, the compositional variability in Gakkel peridotite samples reflects a heterogeneous mantle resulting from inherited depletion and recent melt percolation and entrapment.

  1. Lithospheric Mantle Contribution to High Topography in Central Mongolia

    Science.gov (United States)

    Carlson, R. W.; Ionov, D. A.

    2014-12-01

    Over 110 spinel peridotite xenoliths collected from four localities in the Tariat region, central Mongolia, show a predominance (over 90%) of fertile lherzolites with subordinant harzburgite and peridotites veined with pyroxenite. Equilibration temperatures are high (~900°C at 1.5 GPa [1]). Major element compositions of the fertile samples are consistent with them being the residues of 0-6% partial melt removal at shallow depths [2]. The clinopyroxenes in the lherzolites are moderately LREE depleted (average chondrite normalized La/Sm = 0.45) and most whole rocks show small, if any, depletions in Re and Pd compared to the other HSE. These data point to minimal metasomatic overprinting of these fertile lherzolites. 187Os/188Os for samples with more than 3.2% Al2O3 range only from 0.126 to 0.131, within the range of modern fertile asthenospheric mantle. In contrast to the indicators of fertility in most samples, Sr, Nd and Hf isotopic composition of acid-leached clinopyroxene separates from the lherzolites plot within the range of modern MORB with 87Sr/86Sr from 0.7021 to 0.7026, eNd from +7.7 to +9.8 and eHf from +13.3 to +18.5. The lherzolites thus appear to sample a section of mantle that has compositional and isotope characteristics consistent with modern fertile asthenosphere. The isotopic composition of the Tariat lherzolites are distinct from that of Cenozoic Mongolian basaltic volcanism pointing to limited involvement of the lithospheric mantle in magma generation in this area. The implied asthenospheric provenance of the mantle lithosphere suggests that it either could be the replacement for recently delaminated lithosphere or, more likely, a section of fertile mantle accreted to the base of the crust earlier, e.g. during construction of the Central Asian Orogenic Belt in the Mesozoic/Paleozoic. Although fertile, and hence compositionally dense, the high temperatures of the shallow lithospheric mantle under this section of Mongolia likely contribute to the

  2. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    Science.gov (United States)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  3. The mantle-plume model, its feasibility and consequences

    NARCIS (Netherlands)

    Calsteren, van P.W.C.

    1981-01-01

    High beat-flow foci on the Earth have been named ‘hot-spots’ and are commonly correlated with ‘mantle-plumes’ in the deep. A mantle plume may be described as a portion of mantle material with a higher heat content than its surroundings. The intrusion of a mantle-plume is inferred to be similar to

  4. Finding the 'who' in whooping cough: vaccinated siblings are important pertussis sources in infants 6 months of age and under.

    Science.gov (United States)

    Bertilone, Christina; Wallace, Tania; Selvey, Linda A

    2014-09-30

    To describe the epidemiology of pertussis, and to identify changes in the source of pertussis in infants 6 months of age and under, during the 2008-2012 epidemic in south metropolitan Perth. Analysis of all pertussis cases notified to the South Metropolitan Population Health Unit and recorded on the Western Australian Notifiable Infectious Disease Database over the study period. Information on the source of pertussis was obtained from enhanced surveillance data. Notification rates were highest in the 5-9 years age group, followed by the 0-4 years and 10-14 years age groups. There was a significant increase in the proportion of known sources who were siblings from the early epidemic period of 2008-2010, compared with the peak epidemic period of 2011-2012 (14.3% versus 51.4%, p = 0.002). The majority of sibling sources were fully vaccinated children aged 2 and 3 years. The incidence of pertussis was highest in children aged 12 years and under in this epidemic. At its peak, siblings were the most important sources of pertussis in infants 6 months and younger, particularly fully vaccinated children aged 2 and 3 years. Waning immunity before the booster at 4 years may leave this age group susceptible to infection. Even if cocooning programs could achieve full vaccination coverage of parents and ensure all siblings were fully vaccinated according to national schedules, waning immunity in siblings could provide a means for ongoing transmission to infants. Recent evidence suggests that maternal antenatal vaccination would significantly reduce the risk of pertussis in infants 3 months of age and under.

  5. Teaching the Mantle Plumes Debate

    Science.gov (United States)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  6. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  7. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  8. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors

    Science.gov (United States)

    Bentham, H. L. M.; Rost, S.; Thorne, M. S.

    2017-08-01

    Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity

  9. Thermoconvective waves in the earth's mantle

    Science.gov (United States)

    Birger, B. I.

    1980-06-01

    The thermoconvective instability of the Earth's mantle is analysed. The mantle is modelled as an infinite horizontal layer with a free upper surface, heated from below. The creep in the mantle is supposed to be transient when strains are small. This transient creep is described by Lomnitz's law modified by Jeffreys (1958a). It is shown that disturbances, in the form of thermoconvective waves with a period of 10 8 - 10 9y and wavelength of the order 10 3 km, can propagate through the mantle without attenuation. These waves induce oscillations of the Earth's surface. The pattern of flows differs greatly from that suggested by plate tectonics. An attempt is made to give a new explanation for the linear magnetic anomalies over oceanic ridges.

  10. A Cyclodissipativity Condition for Power Factor Improvement under Nonsinusoidal Source with Significant Impedance

    NARCIS (Netherlands)

    Puerto-Flores, Dunstano del; Ortega, Romeo; Scherpen, Jacquelien M.A.

    2010-01-01

    The main contribution of this paper is an extension of a recent result that reformulates and solves the power factor compensation for nonlinear loads under nonsinusoidal regime in terms of cyclodissipativity. In the aforementioned result the generator was assumed to be ideal, that is, with

  11. Antenatal surveillance through estimates of the sources underlying the abdominal phonogram: a preliminary study

    International Nuclear Information System (INIS)

    Jiménez-González, A; James, C J

    2013-01-01

    Today, it is generally accepted that current methods for biophysical antenatal surveillance do not facilitate a comprehensive and reliable assessment of foetal well-being and that continuing research into alternative methods is necessary to improve antenatal monitoring procedures. In our research, attention has been paid to the abdominal phonogram, a signal that is recorded by positioning an acoustic sensor on the maternal womb and contains valuable information about foetal status, but which is hidden by maternal and environmental sources. To recover such information, previous work has used single-channel independent component analysis (SCICA) on the abdominal phonogram and successfully retrieved estimates of the foetal phonocardiogram, the maternal phonocardiogram, the maternal respirogram and noise. The availability of these estimates made it possible for the current study to focus on their evaluation as sources for antenatal surveillance purposes. To this end, the foetal heart rate (FHR), the foetal heart sounds morphology, the maternal heart rate (MHR) and the maternal breathing rate (MBR) were collected from the estimates retrieved from a dataset of 25 abdominal phonograms. Next, these parameters were compared with reference values to quantify the significance of the physiological information extracted from the estimates. As a result, it has been seen that the instantaneous FHR, the instantaneous MHR and the MBR collected from the estimates consistently followed the trends given by the reference signals, which is a promising outcome for this preliminary study. Thus, as far as this study has gone, it can be said that the independent traces retrieved by SCICA from the abdominal phonogram are likely to become valuable sources of information for well-being surveillance, both foetal and maternal. (paper)

  12. Recent Administrative and Judicial Decisions Regarding Consideration of Source Separation in Determining BACT Under PSD

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  13. Mantle flow influence on subduction evolution

    Science.gov (United States)

    Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard

    2018-05-01

    The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.

  14. Source selection problem of competitive power plants under government intervention: a game theory approach

    Science.gov (United States)

    Mahmoudi, Reza; Hafezalkotob, Ashkan; Makui, Ahmad

    2014-06-01

    Pollution and environmental protection in the present century are extremely significant global problems. Power plants as the largest pollution emitting industry have been the cause of a great deal of scientific researches. The fuel or source type used to generate electricity by the power plants plays an important role in the amount of pollution produced. Governments should take visible actions to promote green fuel. These actions are often called the governmental financial interventions that include legislations such as green subsidiaries and taxes. In this paper, by considering the government role in the competition of two power plants, we propose a game theoretical model that will help the government to determine the optimal taxes and subsidies. The numerical examples demonstrate how government could intervene in a competitive market of electricity to achieve the environmental objectives and how power plants maximize their utilities in each energy source. The results also reveal that the government's taxes and subsidiaries effectively influence the selected fuel types of power plants in the competitive market.

  15. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  16. QUALITY AND ANTIOXIDANT ACTIVIY OF TOMATO CULTIVATED UNDER DIFFERENT SOURCES AND DOSES OF NITROGEN

    Directory of Open Access Journals (Sweden)

    JOHN SILVA PORTO

    2016-01-01

    Full Text Available Tomatoes are an important component of the human diet because they are rich in minerals and antioxidants that sequester free radicals in cells, preventing various disorders that affect human health. Here, we aimed to evaluate the effects of different nitrogen sources and concentrations on antioxidant capacity and physical and chemical quality of tomato fruit. The experiment was conducted in Vitória da Conquista, state of Bahia, Brazil, in the experimental field of Universidade Estadual do Sudoeste da Bahia. The experimental setup included a randomized block design with four replicates in a factorial layout of 3 × 3 + 1 (control, for a total of 40 plots. The three treatments comprised different nitrogen sources (calcium nitrate, urea, and ammonium sulfate, applied in three doses (140, 280, and 420 kg ha - 1 . We evaluated firmness, pH, titratable acidity - TA, soluble solid - SS, SS/TA ratio, ascorbic acid, carotenoids, flavonoids, phenolic compounds and DPPH inhibition, were evaluated after samples were harvested. However, increasing concentrations of N adversely affected the acidity and led to an increase in the SS/TA ratio. Increasing the N concentration also reduced the content of bioactive compounds. excluding carotenoids, which consequently impaired antioxidant activity.

  17. Joint Inversion Of Local And Teleseismic Data For The Crust And Mantle Structure Of The Chinese Capital Region

    Science.gov (United States)

    Huang, J.; Zhao, D.

    2004-12-01

    . Our tomographic images of the deep crust and upper mantle layers also show different velocity features under different tectonic units. In the Yanshan uplift, a high-V patch is visible from the crust to about 300 km depth, which may reflect that the Yanshan uplift is a stable block without strong earthquakes. In the North China Basin, especially around Beijing, Tianjin and Tangshan,broad low-V anomalies are visible in the lower crust and at depths of 50¡«100 km. Beneath the Bohai Bay, low-V anomalies exist and extend down to about 120 km depth. These results suggest that the lithosphere becomes thinner in this region. From the Taihangshan uplift to the Shanxi rift low-V anomalies exist from the uppermost mantle to about 300 km depth. In this region, lava rocks are distributed broadly and the Datong volcano is located. In addition, most of the large earthquakes, such as the 1976 Tangshan earthquake and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-V areas in the upper to middle crust. However, in the lower crust and uppermost mantle under the source zones of the large earthquakes, low-V and high-conductivity anomalies exist. This result suggests the occurrence of strong earthquakes is related to the deep structure and processes in the deep crust and upper mantle.

  18. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter.

    Science.gov (United States)

    Resina, David; Serrano, Alícia; Valero, Francisco; Ferrer, Pau

    2004-04-08

    A Rhizopus oryzae lipase gene has been expressed in Pichia pastoris as a reporter using the formaldehyde dehydrogenase 1 promoter (PFLD1) of this organism, which has been reported to be strongly and independently induced by either methanol as sole carbon source or methylamine as sole nitrogen source. Levels of lipase expressed and secreted under the control of the PFLD1 at different induction conditions have been compared to those obtained with the commonly used alcohol oxidase 1 promoter (PAOX1) in small (shake flask) and 1l bioreactor batch cultures. PFLD1-controlled heterologous gene expression was strongly repressed by excess of either glycerol or glucose-but not sorbitol-during growth using methylamine both as sole nitrogen source and inducing substrate. Co-induction of PFLD1 with methanol and methylamine resulted in a synergistic effect on extracellular lipase expression levels. In all tested conditions, the substitution of ammonium for methylamine as carbon source provoked a clear decrease in the specific growth rate and yield of biomass per gram of carbon source. Overall, this study demonstrates that the PFLD1 promoter is at least as efficient as the PAOX1 for extracellular expression of heterologous proteins in P. pastoris bioreactor cultures and provides a first basis for the further design of methanol-free high cell density fed-batch cultivation strategies for controlled overproduction of foreign proteins in P. pastoris.

  20. European upper mantle tomography: adaptively parameterized models

    Science.gov (United States)

    Schäfer, J.; Boschi, L.

    2009-04-01

    We have devised a new algorithm for upper-mantle surface-wave tomography based on adaptive parameterization: i.e. the size of each parameterization pixel depends on the local density of seismic data coverage. The advantage in using this kind of parameterization is that a high resolution can be achieved in regions with dense data coverage while a lower (and cheaper) resolution is kept in regions with low coverage. This way, parameterization is everywhere optimal, both in terms of its computational cost, and of model resolution. This is especially important for data sets with inhomogenous data coverage, as it is usually the case for global seismic databases. The data set we use has an especially good coverage around Switzerland and over central Europe. We focus on periods from 35s to 150s. The final goal of the project is to determine a new model of seismic velocities for the upper mantle underlying Europe and the Mediterranean Basin, of resolution higher than what is currently found in the literature. Our inversions involve regularization via norm and roughness minimization, and this in turn requires that discrete norm and roughness operators associated with our adaptive grid be precisely defined. The discretization of the roughness damping operator in the case of adaptive parameterizations is not as trivial as it is for the uniform ones; important complications arise from the significant lateral variations in the size of pixels. We chose to first define the roughness operator in a spherical harmonic framework, and subsequently translate it to discrete pixels via a linear transformation. Since the smallest pixels we allow in our parameterization have a size of 0.625 °, the spherical-harmonic roughness operator has to be defined up to harmonic degree 899, corresponding to 810.000 harmonic coefficients. This results in considerable computational costs: we conduct the harmonic-pixel transformations on a small Beowulf cluster. We validate our implementation of adaptive

  1. Redox-influenced seismic properties of upper-mantle olivine

    Science.gov (United States)

    Cline, C. J., II; Faul, U. H.; David, E. C.; Berry, A. J.; Jackson, I.

    2018-03-01

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth’s upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth’s interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere–asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  2. Redox-influenced seismic properties of upper-mantle olivine.

    Science.gov (United States)

    Cline Ii, C J; Faul, U H; David, E C; Berry, A J; Jackson, I

    2018-03-14

    Lateral variations of seismic wave speeds and attenuation (dissipation of strain energy) in the Earth's upper mantle have the potential to map key characteristics such as temperature, major-element composition, melt fraction and water content. The inversion of these data into meaningful representations of physical properties requires a robust understanding of the micromechanical processes that affect the propagation of seismic waves. Structurally bound water (hydroxyl) is believed to affect seismic properties but this has yet to be experimentally quantified. Here we present a comprehensive low-frequency forced-oscillation assessment of the seismic properties of olivine as a function of water content within the under-saturated regime that is relevant to the Earth's interior. Our results demonstrate that wave speeds and attenuation are in fact strikingly insensitive to water content. Rather, the redox conditions imposed by the choice of metal sleeving, and the associated defect chemistry, appear to have a substantial influence on the seismic properties. These findings suggest that elevated water contents are not responsible for low-velocity or high-attenuation structures in the upper mantle. Instead, the high attenuation observed in hydrous and oxidized regions of the upper mantle (such as above subduction zones) may reflect the prevailing oxygen fugacity. In addition, these data provide no support for the hypothesis whereby a sharp lithosphere-asthenosphere boundary is explained by enhanced grain boundary sliding in the presence of water.

  3. Crust and Mantle Structure Beneath the Samoan Islands

    Science.gov (United States)

    Browning, J. M.; Courtier, A. M.; Jackson, M. G.; Lekic, V.; Hart, S. R.; Collins, J. A.

    2013-12-01

    We used teleseismic receiver functions to map the seismic structure under the Samoan Islands in the southern Pacific Ocean. We acquired seismograms for the permanent seismic station, AFI, and for five temporary stations located across the island chain from the Samoan Lithospheric Integrated Seismic Experiment (SLISE). We used multiple-taper correlation and Markov chain Monte Carlo algorithms to calculate receiver functions for events with epicentral distance of 30° to 95° and examined the results in a frequency range of 1.0 - 5.0 Hz for crustal structure and 0.1 - 2.0 Hz for mantle structure. We identify complex crustal layering, including the interface between volcanic rocks and the ocean crust and a substantial underplated layer beneath the normal ocean crust. We find that the crust thins with decreasing age across the Samoan Islands and correlates with previous observations from gravity data (Workman, 2005). We additionally identify a velocity increase in the range of 50-100 km depth, potentially the Hales discontinuity. Deeper in the mantle, we observe transition zone thickness of 245-250 km across the island chain, which is within the margin of error for globally observed transition zone thickness. When migrated with IASP, transition zone discontinuity depths do appear deeper beneath the youngest island, indicating slower velocities and/or deeper discontinuity depths relative to the older islands in the system. We will provide improved constraints on transition zone discontinuity depths from ScS reverberations for all stations, and will place the crust and mantle results into a multi-disciplinary context, with comparisons to geochemical and surface observations. Workman, R., 2005. Geochemical characterization of endmember mantle components, Doctoral dissertation, Massachusetts Institute of Technology, http://dspace.mit/edu/handle/1721.1/33721.

  4. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction

    Science.gov (United States)

    Lamb, Simon; Moore, James D. P.; Smith, Euan; Stern, Tim

    2017-07-01

    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor ‘spreading centres’ found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however—which are also associated with mantle melt production—are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift—processes that are also likely to occur in oceanic spreading centres.

  5. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  6. Ferric iron partitioning between pyroxene and melt during partial melting of the Earth's upper mantle

    Science.gov (United States)

    Rudra, A.; Hirschmann, M. M.

    2017-12-01

    The oxidation state of the Earth's mantle influences melt production, volatile behavior, partitioning of key trace elements and possible saturation of alloy at depth. Average Fe3+/FeT ratios in MORBs indicate oxygen fugacitiy of the source regions is close to QFM, in contrast to a 3 log unit variation of fO2 recorded by abyssal peridotites. Quantification of the relationship between basalt and source Fe3+/FeT, oxygen fugacity, and melting requires constraints on Fe3+ partitioning between melt and mantle minerals and in particular the principal Fe3+ host, pyroxene. McCanta et al. (2004) investigated valence dependent partitioning of Fe between Martian ferroan pigeonites and melt, but behavior in terrestrial pyroxene compositions relevant to MORB petrogenesis has not been investigated. We are conducting 1 atm controlled fO2 experiments over 4 log unit variation of fO2 between ΔQFM = 2.5 to -1.5 to grow pyroxenes of variable tetrahedral and octahedral cationic population from andesitic melts of varying Mg#, alumina and alkali content. Dynamic crystallization technique facilitates growth of pyroxene crystals (100-200 um) that EPMA analyses show to be compositionally homogeneous and in equilibrium with the melt. Fe3+/FeT ratio of the synthetic pyroxenes have been analyzed by XAFS spectroscopy at the APS (GSECARS) synchrotron. To quantify the x-ray anisotropy in pyroxenes, we collected Fe K-edge XAFS spectra of oriented natural single crystals for a wide range compositions whose Fe3+/FeT ratios we determined by Mossbauer spectroscopy. We have collected both XANES and EXAFS spectral regions spanning from 7020-7220 eV to explore predictive capabilities of different spectral regions about ferric iron concentration and site occupancy. Our results will document the Fe3+ compatibility in pyroxenes of different compositions under a variety of fO2 conditions, which in turn will better constrain the interrelationship between mantle redox and melting.

  7. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    Science.gov (United States)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  8. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities

    Energy Technology Data Exchange (ETDEWEB)

    Umezawa, Yu [Research Institute for Humanity and Nature (Japan)], E-mail: umezawa@nagasaki-u.ac.jp; Hosono, Takahiro [Department of Earth Science and Technology, Akita University (Japan); Onodera, Shin-ichi [Faculty of Integrated Arts and Sciences, Hiroshima University (Japan); Siringan, Fernando [Marine Science Institute, University of the Philippines (Philippines); Buapeng, Somkid [Department of Groundwater Resources, Ministry of Natural Resources and Environment (Thailand); Delinom, Robert [Division of Hydrology, Indonesia Institute of Sciences (Indonesia); Yoshimizu, Chikage [CREST, Japan Science and Technology Agency, Saitama (Japan); Tayasu, Ichiro; Nagata, Toshi [Center for Ecological Research, Kyoto University (Japan); Taniguchi, Makoto [Research Institute for Humanity and Nature (Japan)

    2008-10-15

    The status of nitrate (NO{sub 3}{sup -}), nitrite (NO{sub 2}{sup -}) and ammonium (NH{sub 4}{sup +}) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate {delta}{sup 15}N and {delta}{sup 18}O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO{sub 3}{sup -}-{delta}{sup 15}N along with the NO{sub 3}{sup -} reduction and clear {delta}{sup 18}O/{delta}{sup 15}N slopes of NO{sub 3}{sup -} ({approx} 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO{sub 3}{sup -} contamination via active denitrification and reduced nitrification. Our results showed that NO{sub 3}{sup -} and NH{sub 4}{sup +} contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.

  9. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities

    International Nuclear Information System (INIS)

    Umezawa, Yu; Hosono, Takahiro; Onodera, Shin-ichi; Siringan, Fernando; Buapeng, Somkid; Delinom, Robert; Yoshimizu, Chikage; Tayasu, Ichiro; Nagata, Toshi; Taniguchi, Makoto

    2008-01-01

    The status of nitrate (NO 3 - ), nitrite (NO 2 - ) and ammonium (NH 4 + ) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate δ 15 N and δ 18 O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields). The exponential increase in NO 3 - -δ 15 N along with the NO 3 - reduction and clear δ 18 O/δ 15 N slopes of NO 3 - (∼ 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO 3 - contamination via active denitrification and reduced nitrification. Our results showed that NO 3 - and NH 4 + contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings

  10. Forming supermassive black hole seeds under the influence of a nearby anisotropic multifrequency source.

    Science.gov (United States)

    Regan, John A; Johansson, Peter H; Wise, John H

    2016-07-01

    The photodissociation of H 2 by a nearby anisotropic source of radiation is seen as a critical component in creating an environment in which a direct collapse black hole may form. Employing radiative transfer we model the effect of multifrequency (0.76-60 eV) radiation on a collapsing halo at high redshift. We vary both the shape of the spectrum which emits the radiation and the distance to the emitting galaxy. We use blackbody spectra with temperatures of T = 10 4  K and 10 5  K and a realistic stellar spectrum. We find that an optimal zone exists between 1 and 4 kpc from the emitting galaxy. If the halo resides too close to the emitting galaxy the photoionizing radiation creates a large H ii region which effectively disrupts the collapsing halo, too far from the source and the radiation flux drops below the level of the expected background and the H 2 fraction remains too high. When the emitting galaxy is initially placed between 1 and 2 kpc from the collapsing halo, with a spectral shape consistent with a star-forming high-redshift galaxy, then a large central core forms. The mass of the central core is between 5000 and 10 000 M ⊙ at a temperature of approximately 1000 K. This core is however surrounded by a reservoir of hotter gas at approximately 8000 K, which leads to mass inflow rates of the order of ∼0.1 M ⊙  yr -1 .

  11. Structure and Evolution of the North American Upper Mantle: Insight from Integrative Modeling of Gravity, Topography and Seismic Tomography Data

    Science.gov (United States)

    Mooney, W. D.; Kaban, M. K.; Tesauro, M.

    2014-12-01

    A limitation on the application of geophysical methods for the study of the upper mantle is the effect of lateral variations in the structure of the overlying crust that obscure the signal from the mantle. However, the North American upper mantle is particularly well-suited for geophysical study because crustal corrections can be made based on the results from numerous active- and passive-source seismic investigations that have determined lateral variations in crustal properties, including crustal thickness, P- and S-wave velocities, and crustal density estimated from empirical velocity-density relations. We exploit this knowledge of the crust of North America to construct an integrated 3D model of variations in density, temperature and composition within the upper mantle to a depth of 250 km. Our model is based on a joint analysis of topography, gravity, and seismic tomography data, coupled with mineral physics constraints. In the first step we remove the effect of the laterally-varying crust from the observed gravity field and topography (assuming Airy isostasy) using our crustal model NACr2014 (Tesauro et al., submitted). In the second step the residual mantle gravity field and residual topography (obtained in the first step) are inverted to obtain a 3D density model of the upper mantle. Thermal effects dominate this initial density model. To compensate for the thermal effects we invert for mantle temperatures based on the S-wave velocities determined by two seismic tomography models (S40RTS and NA2007). After removing the thermal effect from the mantle gravity anomalies we are left with the upper mantle density variations that are due to compositional variations. We recover two long-wavelength (5°-10°) features in the upper mantle compositional density model that are not evident in seismic tomography models: (1) a strong (+200 mgal) positive compositional anomaly beneath the Gulf of Mexico, perhaps due to eclogite in the uppermost mantle, and (2) a NE

  12. Comparison of gravimetric and mantle flow solutions for lithospheric stress modelling and their combination

    Science.gov (United States)

    Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés

    2018-01-01

    Based on Hager and O'Connell's solution to mantle flow equations the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modelling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer (GOCE) that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz (VMM) and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modelling the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern

  13. Global P-wave tomography of mantle plumes and subducting slabs

    Science.gov (United States)

    Yamamoto, Y.; Zhao, D.

    2008-12-01

    There are many volcanoes on the Earth which can be generally classified into 3 categories: island arc volcanoes, mid-ocean ridge volcanoes, and hotspot volcanoes. Hotspot volcanoes denote intraplate volcanoes like Hawaii, or anomalously large mid-ocean ridge volcanoes like Iceland. So far many researchers have studied the origin of hotspot volcanoes and have used mantle plume hypothesis to explain them. However, we still have little knowledge about mantle plumes yet. In this study, we determined a new model of whole mantle P-wave tomography to understand the origin of hotspot volcanoes. We used the global tomography method of Zhao (2001, 2004). A 3-D grid net was set up in the mantle, and velocity perturbations at every grid nodes were taken as unknown parameters. The iasp91 velocity model (Kennett and Engdahl, 1991) was taken as the 1-D initial model. We selected 9106 earthquakes from the events occurred in the last forty years from the ISC catalog. About 1.6 million arrival-time data of five-type P phases (P, pP, PP, PcP, and Pdiff) were used to conduct the tomographic inversion. In our previous model (Zhao, 2004), the grid interval in the E-W direction is too small in the polar regions. In this study, in order to remedy this problem, we use a flexible-grid approach to make the lateral grid intervals in the polar regions nearly the same as the other portions of the mantle. As a result, the tomographic images in the polar regions are remarkably improved. Our new tomographic model shows huge low-velocity (low-V) zones in the entire mantle under Tahiti and Lake Victoria, which reflect the Pacific and African superplumes, being consistent with the previous studies. A clear low-V zone is revealed under Mt. Erebus volcano in Antarctica. Other major hotspots also exhibit significant low-V zones in the mantle under their surface locations. Beneath Bering Sea, we found that the Pacific slab is subducting from the Aleutian trench and it is stagnant in the mantle transition

  14. Insights into Earth's Accretion and Mantle Structure from Neon and Xenon in Icelandic Basalt (Invited)

    Science.gov (United States)

    Mukhopadhyay, S.

    2010-12-01

    The noble gases provide important constraints for planet accretion models and understanding mantle structure and dynamics. Recent work based on continental well gases indicate that the MORB source 20Ne/22Ne ratio is similar to the Ne-B component in chondrites [1,2]. However, ratios higher than Ne-B have been reported in plume-derived Devonian rocks form the Kola Peninsula [3]. Here I report high-precision noble gas data in an Icelandic basaltic glass that demonstrate plumes have a different 20Ne/22Ne ratio than the MORB source. The highest measured 20Ne/22Ne ratio from Iceland is ~12.9, very similar to values in the Kola plume, but quite distinct from the convecting upper mantle as constrained from the well gases [1,2]. Hence, the Icelandic and Kola plume data indicate that OIBs and MORBs have different 20Ne/22Ne ratios. Since 20Ne/22Ne ratios in the mantle cannot change, Earth must have accreted volatiles from at least two separate reservoirs. The differences in 20Ne/22Ne ratios between OIBs and MORBs further indicate that early heterogeneities in the Earth’s mantle have not been wiped away by 4.5 Gyrs of mantle convection, placing strong constraints on mixing and mass flow in the mantle. The requirement of limited direct mixing between plumes and MORB source is supported by 129Xe, formed through radioactive decay of now extinct 129I. Combined He, Ne, and Xe measurements demonstrate that the Iceland plume has a lower 129Xe/130Xe ratio than MORBs because it evolved with a I/Xe ratio distinct from the MORB source and not because of recycled atmosphere (which has low 129/130Xe) in the plume source. Since 129I became extinct 80 Myrs after solar system formation, limited mixing between plume and MORB source is a stringent requirement. Additionally, the high-precision Xe measurements reveal for the first time that the Iceland plume source has significantly higher proportion of plutonium derived fission xenon than MORBs, requiring the plume source to be less degassed

  15. Teaching machines to find mantle composition

    Science.gov (United States)

    Atkins, Suzanne; Tackley, Paul; Trampert, Jeannot; Valentine, Andrew

    2017-04-01

    The composition of the mantle affects many geodynamical processes by altering factors such as the density, the location of phase changes, and melting temperature. The inferences we make about mantle composition also determine how we interpret the changes in velocity, reflections, attenuation and scattering seen by seismologists. However, the bulk composition of the mantle is very poorly constrained. Inferences are made from meteorite samples, rock samples from the Earth and inferences made from geophysical data. All of these approaches require significant assumptions and the inferences made are subject to large uncertainties. Here we present a new method for inferring mantle composition, based on pattern recognition machine learning, which uses large scale in situ observations of the mantle to make fully probabilistic inferences of composition for convection simulations. Our method has an advantage over other petrological approaches because we use large scale geophysical observations. This means that we average over much greater length scales and do not need to rely on extrapolating from localised samples of the mantle or planetary disk. Another major advantage of our method is that it is fully probabilistic. This allows us to include all of the uncertainties inherent in the inference process, giving us far more information about the reliability of the result than other methods. Finally our method includes the impact of composition on mantle convection. This allows us to make much more precise inferences from geophysical data than other geophysical approaches, which attempt to invert one observation with no consideration of the relationship between convection and composition. We use a sampling based inversion method, using hundreds of convection simulations run using StagYY with self consistent mineral physics properties calculated using the PerpleX package. The observations from these simulations are used to train a neural network to make a probabilistic inference

  16. In situ SIMS oxygen isotope analysis of olivine in the Tibetan mantle xenoliths

    Science.gov (United States)

    Zhao, Zhidan; Zhu, Di-Cheng; Liu, Dong; Mo, Xuanxue

    2016-04-01

    Although the mantle-derived xenoliths from Lhasa terrane provide a means of directly investigating the mantle underlying the southern part of the plateau, they were rarely found in the region. The only case of mantle xenoliths came from the Sailipu ultrapotassic volcanic rocks, erupted at ˜17 Ma, which have indicated that the subcontinental mantle of southern Tibetan Plateau is hot and strongly influenced by metasomatism (Zhao et al., 2008a, b; Liu et al., 2011). A further study by Liu et al.(2014) of in-situ oxygen isotope of olivine crystals in Sailipu mantle xenoliths identify a metasomatized mantle reservoir that interpreted as the sub-arc lithospheric mantle, with anomalously enriched oxygen isotopes (δ18O=8.03). Here we present oxygen isotopes data on the Sailipu mantle xenolith olivines, using different method of sample preparation. Mantle xenoliths (less than 1 cm in diameter) together originally with their host volcanic rocks were prepared in epoxy adjacent to grains of a San Carlos olivine intralaboratory standard and then polished to a flat and smooth surface. Oxygen isotope compositions of olivines occurs both in mantle xenolith and as phenocryst in the host rock, were analyzed in situ using CAMECA SIMS-1280 ion microprobe at the Institute of Geology and Geophysics, Chinese Academy of Sciences. We also performed traditional oxygen isotope analysis on three olivine phenocrysts separates from the host lava. Our new data show: (1) The mantle xenolith olivines have typical mantle oxygen isotopic composition (δ18O=4.8-8.0‰ with average of 5.5±0.2‰ n=105) with variety Fo#(78-90), (2) Oxygen isotopes of situ olivine phenocrysts in the Sailipu lavas (δ18O=7.1-9.2‰ Fo#=70-84, n=66), are similar to that of the whole rock (δ18O=7.0-9.4‰ Fo#=64-74, n=8, Zhao et al., 2009), and three olivine phenocryst grains (δ18O=7.2-7.8); (3) The intralaboratory standard of San Carlos olivine can be a suitable standard using for analyzing olivines with Fo not only

  17. Orthodontic brackets removal under shear and tensile bond strength resistance tests – a comparative test between light sources

    International Nuclear Information System (INIS)

    Silva, P C G; Porto-Neto, S T; Lizarelli, R F Z; Bagnato, V S

    2008-01-01

    We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased

  18. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  19. Quality at the source (QATS) system design under six sigma methodology

    International Nuclear Information System (INIS)

    Aguirre, F.; Ballasteros, I.; Maricalva, J.

    2000-01-01

    One of the main objectives in the manufacturing of fuel assemblies, is to fulfill the customer expectations with a product that assures its reliability during its stay in the NPP. By mean of the QATS System design under 6-Sigma methodology, all the customer requirements are included in the product specifications and drawings. Product characteristics and process variables are classified and process capability is evaluated. All this information permits to identify CTQ's (Critical to Quality) product characteristics and process variables, and to define a quality system (QATS) based in the process and on-line characteristics control handled by the manufacturing workers. At the end, this system ensures a continuous product quality improvement, and a strong commitment with the customer requirements. (author)

  20. Experimental investigation of flow-induced fabrics in rocks at upper-mantle pressures. Application to understanding mantle dynamics and seismic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Durham, William B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-05-02

    The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA), to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitatively describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.-

  1. Experimental investigation of flow-induced fabrics in rocks at upper-mantle pressures: Application to understanding mantle dynamics and seismic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kohlstedt, David L. [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-04-26

    The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA) to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitatively describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.

  2. Mantle strength of the San Andreas fault system and the role of mantle-crust feedbacks

    NARCIS (Netherlands)

    Chatzaras, V.; Tikoff, B.; Newman, J.; Withers, A.C.; Drury, M.R.

    2015-01-01

    In lithospheric-scale strike-slip fault zones, upper crustal strength is well constrained from borehole observations and fault rock deformation experiments, but mantle strength is less well known. Using peridotite xenoliths, we show that the upper mantle below the San Andreas fault system

  3. A Limited Survey of Heavy Metal Concentrations in Fresh and Frozen Cuttlefish Ink and Mantle Used As Food.

    Science.gov (United States)

    Conficoni, Daniele; Alberghini, Leonardo; Bissacco, Elisa; Contiero, Barbara; Giaccone, Valerio

    2018-02-01

    Cuttlefish ink is consumed as a delicacy worldwide. The current study is the first assessment of heavy metal concentrations in cuttlefish ink versus mantle under different storage methods. A total of 212 samples (64 of fresh mantle, 42 of frozen mantle, 64 of fresh ink, and 42 of frozen ink) were analyzed for the detection of the following heavy metals: arsenic (As), chromium (Cr), iron (Fe), lead (Pb), mercury (Hg), and cadmium (Cd). The median As concentrations were 12.9 mg/kg for fresh mantle, 8.63 mg/kg for frozen mantle, 10.8 mg/kg for frozen ink, and 0.41 mg/kg for fresh ink. The median Cr concentrations were 0.06 mg/kg for fresh mantle and frozen ink, 0.03 mg/kg for frozen mantle, and below the limit of quantification (LOQ) for fresh ink. The median Fe concentrations were 4.08 mg/kg for frozen ink, 1.51 mg/kg for fresh mantle, 0.73 mg/kg for frozen mantle, and below the LOQ for fresh ink. The median Pb concentrations of almost all samples were below the LOQ; only two frozen ink, one fresh ink, one frozen mantle, and one fresh mantle sample exceeded the limit stipulated by the European Union. The Hg concentrations were statistically similar among the four categories of samples; the median Hg concentrations were below the LOQ, and the maximum concentrations were found in frozen ink, at 1.62 mg/kg. The median Cd concentrations were 0.69 mg/kg for frozen ink and 0.11 mg/kg for frozen mantle, fresh mantle and fresh ink concentrations were below the LOQ, and in 11.3% of the tested samples, Cd concentrations were higher than the European Union limit. The probability of samples having a Cd concentration above the legal limit was 35.75 times higher in frozen than in fresh products. Fresh ink had significantly lower concentrations of As, Cr, Fe, and Cd, but the concentrations of Hg and Pb were not significantly different from those of other products. Frozen ink had significantly higher concentrations of Cd, Cr, and Fe, but concentrations of As were lower than those in

  4. utilization of bio fertilizers and organic sources in arable soils under saline conditions using tracer technique

    International Nuclear Information System (INIS)

    Salama, O.A.E.

    2011-01-01

    Recently, more attention has been paid to conserve and save surrounding environment via minimizing the excessive use of chemical fertilizers and, in general, the agrochemicals applied in heavy quantities in agricultural agroecosystems. Therefore, the attention of most of agronomists was turned towards the use of so called clean agriculture or organic farming. Many of organic systems was pointed out such as the recycling of farm wastes i.e. crop residues, animal manure, organic conditioners for reclamation of soil and in the same time enhancement of plant growth and improving yield quality. The application of organic wastes combined with or without microbial inoculants to plant media are considered as a good management practice in any agricultural production system because it improves, plant quality and soil fertility. Therefore, we have the opportunity to conduct some experiments for achieving the clean agriculture approach, combating the adverse effects of salinity and avoiding the environmental pollution. Series of laboratory and greenhouse experiments were carried out to evaluate the impact of (1) potent isolated fungi (Aspergillus oryzae and Aspergillus terreus) on degrading plant residues (Leucaena and Acacia green parts), and (2) biofertilizers (Sinorhizobium meliloti, Azospirillum brasilense, and Pseudomonas aeruginosa) in assessing barley and spinach plants to combat salinity of soil and irrigation water. 15 N-tracer technique that considered unique and more reliable technique may benefits in clarifying the responsible mechanisms related to plant growth and gave us the opportunity to quantify the exact amounts of N derived from the different sources of nitrogen available to spinach and barley plants grown on sandy saline soil and irrigated with saline water.

  5. Dietary Protein Sources Affect Internal Quality of Raw and Cooked Shell Eggs under Refrigerated Conditions.

    Science.gov (United States)

    Wang, X C; Zhang, H J; Wu, S G; Yue, H Y; Wang, J; Li, J; Qi, G H

    2015-11-01

    This study was conducted to evaluate the effects of various protein sources (soybean meal, SBM; cottonseed protein, CSP; double-zero rapeseed meal, DRM) on the internal quality of refrigerated eggs. A total of 360 laying hens (32 wk of age) were randomly allotted to six treatment groups (five replicates per treatment) and fed diets containing SBM, CSP, or DRM individually or in combination with equal crude protein content (SBM-CSP, SBM-DRM, and CSP-DRM) as the protein ingredient(s). A 6×3 factorial arrangement was employed with dietary types and storage time (0 d, 2 wk, and 4 wk) as the main effects. After 12 wk of diet feeding, a total of 270 eggs were collected for egg quality determination. The egg Haugh unit (HU) in the CSP, SBM-DRM, and DRM groups were significantly lower than those in the SBM and SBM-CSP groups. The hardness and springiness of the cooked yolk in the CSP group were significantly higher than those in the other treatment groups. A lower HU, lower yolk index and higher albumen pH were observed in the DRM group compared to the SBM and SBM-CSP groups when the eggs were stored to 4 wk, and the HU was improved in the CSP-DRM group compared to the DRM group (pDRM groups showed no difference in comparison to the SBM group. In conclusion, CSP may ameliorate the negative effects of DRM on the HU of refrigerated eggs, and SBM or DRM may alleviate the adverse effects of CSP on yolk hardness.

  6. Signal restoration through deconvolution applied to deep mantle seismic probes

    Science.gov (United States)

    Stefan, W.; Garnero, E.; Renaut, R. A.

    2006-12-01

    We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.

  7. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds.

    Science.gov (United States)

    Weiss, Yaakov; McNeill, John; Pearson, D Graham; Nowell, Geoff M; Ottley, Chris J

    2015-08-20

    The infiltration of fluids into continental lithospheric mantle is a key mechanism for controlling abrupt changes in the chemical and physical properties of the lithospheric root, as well as diamond formation, yet the origin and composition of the fluids involved are still poorly constrained. Such fluids are trapped within diamonds when they form and so diamonds provide a unique means of directly characterizing the fluids that percolate through the deep continental lithospheric mantle. Here we show a clear chemical evolutionary trend, identifying saline fluids as parental to silicic and carbonatitic deep mantle melts, in diamonds from the Northwest Territories, Canada. Fluid-rock interaction along with in situ melting cause compositional transitions, as the saline fluids traverse mixed peridotite-eclogite lithosphere. Moreover, the chemistry of the parental saline fluids--especially their strontium isotopic compositions--and the timing of host diamond formation suggest that a subducting Mesozoic plate under western North America is the source of the fluids. Our results imply a strong association between subduction, mantle metasomatism and fluid-rich diamond formation, emphasizing the importance of subduction-derived fluids in affecting the composition of the deep lithospheric mantle.

  8. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Katsuhiko; Maekawa, Fujio; Takada, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated. (author)

  9. Basic design of shield blocks for a spallation neutron source under the high-intensity proton accelerator project

    CERN Document Server

    Yoshida, K; Takada, H

    2003-01-01

    Under the JAERI-KEK High-Intensity Proton Accelerator Project (J-PARC), a spallation neutron source driven by a 3 GeV-1 MW proton beam is planed to be constructed as a main part of the Materials and Life Science Facility. Overall dimensions of a biological shield of the neutron source had been determined by evaluation of shielding performance by Monte Carlo calculations. This report describes results of design studies on an optimum dividing scheme in terms of cost and treatment and mechanical strength of shield blocks for the biological shield. As for mechanical strength, it was studied whether the shield blocks would be stable, fall down or move to a horizontal direction in case of an earthquake of seismic intensity of 5.5 (250 Gal) as an abnormal load. For ceiling shielding blocks being supported by both ends of the long blocks, maximum bending moment and an amount of maximum deflection of their center were evaluated.

  10. Long-term preservation of early formed mantle heterogeneity by mobile lid convection: Importance of grainsize evolution

    Science.gov (United States)

    Foley, Bradford J.; Rizo, Hanika

    2017-10-01

    The style of tectonics on the Hadean and Archean Earth, particularly whether plate tectonics was in operation or not, is debated. One important, albeit indirect, constraint on early Earth tectonics comes from observations of early-formed geochemical heterogeneities: 142Nd and 182W anomalies recorded in Hadean to Phanerozoic rocks from different localities indicate that chemically heterogeneous reservoirs, formed during the first ∼500 Myrs of Earth's history, survived their remixing into the mantle for over 1 Gyrs. Such a long mixing time is difficult to explain because hotter mantle temperatures, expected for the early Earth, act to lower mantle viscosity and increase convective vigor. Previous studies found that mobile lid convection typically erases heterogeneity within ∼100 Myrs under such conditions, leading to the hypothesis that stagnant lid convection on the early Earth was responsible for the observed long mixing times. However, using two-dimensional Cartesian convection models that include grainsize evolution, we find that mobile lid convection can preserve heterogeneity at high mantle temperature conditions for much longer than previously thought, because higher mantle temperatures lead to larger grainsizes in the lithosphere. These larger grainsizes result in stronger plate boundaries that act to slow down surface and interior convective motions, in competition with the direct effect temperature has on mantle viscosity. Our models indicate that mobile lid convection can preserve heterogeneity for ≈0.4-1 Gyrs at early Earth mantle temperatures when the initial heterogeneity has the same viscosity as the background mantle, and ≈1-4 Gyrs when the heterogeneity is ten times more viscous than the background mantle. Thus, stagnant lid convection is not required to explain long-term survival of early formed geochemical heterogeneities, though these heterogeneities having an elevated viscosity compared to the surrounding mantle may be essential for their

  11. Decomposition of corn and soybean residues under field conditions and their role as inoculum source

    Directory of Open Access Journals (Sweden)

    E.M. Reis

    2011-03-01

    Full Text Available Necrotrophic parasites of above-ground plant parts survive saprophytically, between growing seasons in host crop residues. In an experiment conducted under field conditions, the time required in months for corn and soybean residues to be completely decomposed was quantified. Residues were laid on the soil surface to simulate no-till farming. Crop debris of the two plant species collected on the harvesting day cut into pieces of 5.0cm-long and a 200g mass was added to nylon mesh bags. At monthly intervals, bags were taken to the laboratory for weighing. Corn residues were decomposed within 37.0 months and those of soybean, within 34.5 months. Hw main necrotrophic fungi diagnosed in the corn residues were Colletotrichum gramicola, Diplodia spp. and Gibberella zeae, and those in soybeans residues were Cercospora kikuchii, Colletotrichum spp, Glomerella sp. and Phomopsis spp. Thus, those periods shoulb be observed in crop rotation aimed at to eliminating contaminated residues and, consequently, the inoculum from the cultivated area.

  12. Seismic Structure of the Shallow Mantle Beneath the Endeavor Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    VanderBeek, B. P.; Toomey, D. R.; Hooft, E. E.; Wilcock, W. S.; Weekly, R. T.; Soule, D. C.

    2013-12-01

    We present tomographic images of the seismic structure of the shallow mantle beneath the intermediate-spreading Endeavor segment of the Juan de Fuca ridge. Our results provide insight into the relationship between magma supply from the mantle and overlying ridge crest processes. We use seismic energy refracted below the Moho (Pn), as recorded by the Endeavor tomography (ETOMO) experiment, to image the anisotropic and isotropic P wave velocity structure. The ETOMO experiment was an active source seismic study conducted in August 2009 as part of the RIDGE2000 science program. The experimental area extends 100 km along- and 60 km across-axis and encompasses active hydrothermal vent fields near the segment center, the eastern end of the Heck seamount chain, and two overlapping spreading centers (OSCs) at either end of the segment. Previous tomographic analyses of seismic arrivals refracted through the crust (Pg), and reflected off the Moho (PmP), constrain a three-dimensional starting model of crustal velocity and thickness. These Pg and PmP arrivals are incorporated in our inversion of Pn travel-time data to further constrain the isotropic and anisotropic mantle velocity structure. Preliminary results reveal three distinct mantle low-velocity zones, inferred as regions of mantle melt delivery to the base of the crust, that are located: (i) off-axis near the segment center, (ii) beneath the Endeavor-West Valley OSC, and (iii) beneath the Cobb OSC near Split Seamount. The mantle anomalies are located at intervals of ~30 to 40 km along-axis and the low velocity anomalies beneath the OSCs are comparable in magnitude to the one located near the segment center. The direction of shallow mantle flow is inferred from azimuthal variations in Pn travel-time residuals relative to a homogeneous isotropic mantle. Continuing analysis will focus on constraining spatial variations in the orientation of azimuthal anisotropy. On the basis of our results, we will discuss the transport of

  13. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, Henning; Rosing, M.

    2003-01-01

    for the chondrite-forming event. This ¿176 value indicates that Earth's oldest minerals were derived from melts of a mantle source with a time-integrated history of depletion rather than enrichment. The depletion event must have occurred no later than 320 Myr after planetary accretion, consistent with timing...

  14. The Mineralogical Record of Oxygen Fugacity Variation and Alteration in Northwest Africa 8159: Evidence for Interaction Between a Mantle Derived Martian Basalt and a Crustal Component(s)

    Science.gov (United States)

    Shearer, Charles K.; Burger, Paul V.; Bell, Aaron S.; McCubbin, Francis M.; Agee, Carl; Simon, Justin I.; Papike, James J.

    2015-01-01

    A prominent geochemical feature of basaltic magmatism on Mars is the large range in initial Sr isotopic ratios (approx. 0.702 - 0.724) and initial epsilon-Nd values (approx. -10 to greater than +50). Within this range, the shergottites fall into three discreet subgroups. These subgroups have distinct bulk rock REE patterns, mineral chemistries (i.e. phosphate REE patterns, Ni, Co, V in olivine), oxygen fugacity of crystallization, and stable isotopes, such as O. In contrast, nakhlites and chassignites have depleted epsilon-Nd values (greater than or equal to +15), have REE patterns that are light REE enriched, and appear to have crystallized near the FMQ buffer. The characteristics of these various martian basalts have been linked to different reservoirs in the martian crust and mantle, and their interactions during the petrogenesis of these magmas. These observations pose interesting interpretive challenges to our understanding of the conditions of the martian mantle (e.g. oxygen fugacity) and the interaction of mantle derived magmas with the martian crust and surface. Martian meteorite NWA 8159 is a unique fine-grained augite basalt derived from a highly depleted mantle source as reflected in its initial epsilon-Nd value, contains a pronounced light REE depleted pattern, and crystallized presumably under very oxidizing conditions. Although considerably older than both shergottites and nahklites, it has been petrogenetically linked to both styles of martian magmatism. These unique characteristics of NWA 8159 may provide an additional perspective for deciphering the petrogenesis of martian basalts and the nature of the crust of Mars.

  15. The mantle cells lymphoma: a proposed treatment

    International Nuclear Information System (INIS)

    Chavez Martinez, Marlene Elizabeth

    2012-01-01

    A literature review was performed on mantle cells lymphoma in the therapeutic schemes. The literature that has been used is published in journals of medicine specializing in hematology, oncology, radiation therapy, molecular biology and internal medicine. The literature review was performed to propose a scheme of treatment according to Costa Rica. Epigenetic alterations have been revealed in patients with mantle lymphoma on current researches. The mantle lymphoma pathology has been described in various forms of clinical and histological presentation, stressing the importance of detailing the different methods and diagnostic reports. Working groups have proposed and developed various chemotherapy regimens and concluded that CHOP alone is without effect in mantle cell lymphoma unlike R-hyper-CVAD, CHOP / DHAP, high-dose Ara-C. Researchers have tried to develop new treatments based vaccines, use of modified viruses, specific monoclonal antibodies. The classic treatment has been triple intrathecal therapy. The central nervous system has been one of the most momentous sites of mantle cell lymphoma infiltration because poorer patient prognosis [es

  16. Constraining Lower Mantle Heterogeneity With Differential Dispersion of Core-Diffracted Waves

    Science.gov (United States)

    Euler, G. G.; Wysession, M. E.; Aleqabi, G. I.

    2006-12-01

    We investigate global differential travel-time dispersion of core-diffracted phases from large, deep earthquakes. This technique aids in constraining radial velocity structure at the core-mantle interface in a manner analogous to surface waves constraining upper mantle structure. We show that there is noticeable differential dispersion, that the cause is likely associated with the diffraction process and that the dispersion varies with geographic location. Variations in differential dispersion between Pdiff and Sdiff along the same azimuth are also observed. We attempt to utilize dispersion characteristics to put bounds on the magnitude and distribution of large-scale velocity perturbations in the lowermost mantle region and draw comparisons to variations found in several 3D whole-mantle models. We have included in our study all broadband recordings available from the IRIS DMC. Preprocessing of the records includes deconvolution of the instrument response, conversion to displacement, rotation of horizontals to the backazimuth, filtering using a set of bandpass filters, and sample-rate decimation (20 sps). Relative arrival times are found by computing cross correlegrams in the frequency domain, automatically detecting and removing poor recordings with cluster analysis, weighted least-squares inversion, and robust regression techniques to remedy misidentification in noisy signals. Raypath-approximated corrections for ellipticity, mantle, and crustal differences are applied to the relative times for the derivation of apparent slowness as a function of azimuth and frequency. Following previous studies of diffracted signals, we limit our analysis to stations located in narrow azimuthal windows spread over a considerable distance. This method has the advantage of removing source-side effects, averaging out minor timing errors, and, for our analysis, averaging out receiver-side upper mantle and crustal differential dispersion. Comparison with differential dispersion

  17. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites

    Science.gov (United States)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre

    2015-09-01

    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  18. Upper-mantle velocity structure and its relation to topography across the Caledonides in Greenland and Norway

    DEFF Research Database (Denmark)

    Hejrani, Babak; Balling, N.; Jacobsen, B. H.

    2015-01-01

    This study investigates the upper-mantle P- and S-wave velocity structure as well as structure in the VP/VS ratio across the high topography areas of north Atlantic Caledonides, integrating data from a new East Greenland Caledonide Central Fjord Array (EGCFA) with results of recent studies...... strong upper-mantle velocity boundary under the East Greenland Caledonides. However, the contrast in the VP/VS ratio is not as clear at this location. A correlation study of topography versus upper-mantle velocity revealed positive correlation in southern Norway but negative or absent correlation...

  19. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....... phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...

  20. Ambient PM2.5 Exposure in India: Burden, Source-Apportionment and Projection Under Climate Change

    Science.gov (United States)

    Dey, S.; Chowdhury, S.; Upadhyay, A. K.; Smith, K. R.

    2017-12-01

    Air pollution has been identified as one of the leading factors of premature death in India. Absence of adequate in-situ monitors led us to use satellite retrieved aerosol optical depth (AOD) data to infer surface fine particulate matter (PM2.5). Annual premature mortality burden due to ambient PM2.5 exposure is estimated to be 1.17 (0.42-2.7) million for India. A chemical transport model WRF-Chem is utilized to estimate source-apportioned PM2.5 exposure. We estimate the exposure for four major sources - transport, residential, energy and industrial and found that the largest contribution to ambient PM2.5 exposure in India is contributed by residential sources. We estimate that if all the solid fuel use at households is replaced by clean fuel, ambient PM2.5 exposure would reduce by 30-45%, leading to 170,000 (14.5% of total burden) averted premature deaths annually. To understand how the air quality is projected to change under climate change scenarios, we analyze 13 CMIP5 models. We calculate the relative changes in PM2.5 (ensemble mean) in future relative to the baseline period (2001-2005) and apply the factor to satellite-derived PM2.5 exposure in baseline period to project future PM2.5 exposure. Ambient PM2.5 is expected to reach a maxima in 2030 under RCP4.5 (15.5% rise from baseline period) and in 2040 (25.5% rise) under RCP8.5 scenario. The projected exposure under RCP4.5 and RCP8.5 scenarios are further used to estimate premature mortality burden till the end of the century by considering population distribution projections from five shared socio-economic pathways (SSP) scenarios. We separate the burden due to ambient PM2.5 exposure in future attributable to change in meteorology due to climate change and change in demographic and epidemiological transitions. If all-India average PM2.5 exposure meets WHO interim target 1 (35 µg/m3) by 2031-40, 28000-38000 and 41100-60100 premature deaths can be averted every year under RCP4.5 and RCP8.5 respectively. Even

  1. Mantle plumes on Venus revisited

    Science.gov (United States)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  2. Thermal Conductivity of Lower Mantle Minerals and Heat Flux Across the Core-Mantle Boundary

    Science.gov (United States)

    Bennett, C.; Rainey, E.; Kavner, A.

    2014-12-01

    The thermal conductivity properties of the minerals comprising the Earth's lowermost mantle control the core-mantle boundary heat flux, and are therefore critical properties for determining the thermal state and evolution of the Earth's interior. Here we present measurements of the thermal conductivity of lower mantle oxides and silicates as a function of pressure, temperature, and iron content determined in the laser-heated diamond anvil cell using a combination of measurements and 3-D modeling. Our models and measurements demonstrate that the measured steady-state temperature and its increase with increasing laser power depend on the sample thermal conductivity as well as the experimental geometry, enabling measurements of the pressure- and temperature- dependence of lattice thermal conductivity in the laser-heated diamond anvil cell. We applied this technique to iron-bearing silicate perovskites and MgO at lower mantle pressure and temperature conditions. For MgO, we determine the increase in thermal conductivity k with density ρ to be ∂lnk/∂lnρ=4.7±0.6, which is in agreement with results obtained using other experimental and computational techniques. For (Mg0.8,Fe0.2)SiO3 perovskite, we find ∂lnk/∂lnρ=2.9±0.6. We use these values in combination with independent computational and experimental results to determine thermal conductivity of lower mantle minerals up to core-mantle boundary conditions. We combine the mineralogical thermal conductivity estimates in a composite model and include an estimate for the radiative contribution to thermal conductivity. Our new value of the thermal conductivity of the lowermost mantle is ~5-6 W/m/K and is sensitive to the details of the lower mantle assemblage, but is relatively insensitive to pressure and temperature. We combine our mantle thermal conductivity with models for the lower mantle boundary layer to generate a series of two-dimensional maps of core-mantle boundary heat flux, which emphasize the

  3. Phase transitions in MgSiO3 post-perovskite in super-Earth mantles

    Science.gov (United States)

    Umemoto, Koichiro; Wentzcovitch, Renata M.; Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2 and MgO as the ultimate aggregation form at ∼3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth's mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.

  4. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions.

    Science.gov (United States)

    Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong

    2017-04-01

    The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.

  5. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  6. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea

    Science.gov (United States)

    Hongsresawat, S.; Russo, R. M.

    2016-12-01

    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that

  7. Variable Azimuthal Anisotropy in Earth's Lowermost Mantle

    Science.gov (United States)

    Garnero, Edward J.; Maupin, Valérie; Lay, Thorne; Fouch, Matthew J.

    2004-10-01

    A persistent reversal in the expected polarity of the initiation of vertically polarized shear waves that graze the D'' layer (the layer at the boundary between the outer core and the lower mantle of Earth) in some regions starts at the arrival time of horizontally polarized shear waves. Full waveform modeling of the split shear waves for paths beneath the Caribbean requires azimuthal anisotropy at the base of the mantle. Models with laterally coherent patterns of transverse isotropy with the hexagonal symmetry axis of the mineral phases tilted from the vertical by as much as 20° are consistent with the data. Small-scale convection cells within the mantle above the D'' layer may cause the observed variations by inducing laterally variable crystallographic or shape-preferred orientation in minerals in the D'' layer.

  8. Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions

    Directory of Open Access Journals (Sweden)

    Yeongsu Bak

    2016-12-01

    Full Text Available This paper proposes a balanced current control strategy for the current source rectifier (CSR stage of an indirect matrix converter (IMC under unbalanced grid voltage conditions. If the three-phase grid connected to the voltage source inverter (VSI of the IMC has unbalanced voltage conditions, it affects the currents of the CSR stage and VSI stage, and the currents are distorted. Above all, the distorted currents of the CSR stage cause instability in the overall system, which can affect the life span of the system. Therefore, in this paper, a control strategy for balanced currents in the CSR stage is proposed. To achieve balanced currents in the CSR stage, the VSI stage should receive DC power without ripple components from the CSR stage. This is implemented by controlling the currents in the VSI stage. Therefore, the proposed control strategy decouples the positive and negative phase-sequence components existing in the unbalanced voltages and currents of the VSI stage. Using the proposed control strategy under unbalanced grid voltage conditions, the stability and life span of the overall system can be improved. The effectiveness of the proposed control strategy is verified by simulation and experimental results.

  9. The effects of mantle and anelasticity on nutations, earth tides, and tidal variations in rotation rate

    Science.gov (United States)

    Wahr, John; Bergen, Zachary

    1986-01-01

    The paper models the effects of mantle anelasticity on luni-solar nutations, on tidal deformation, on tidal variations in rotation rate, and on the eigenfrequency of the free core nutation. The results can be used to invert observations to solve for the anelastic contributions to the shear and bulk moduli of the upper and lower mantle. Specific anelastic models are used to numerically estimate the effects of anelasticity on these geodetic observables. The nutation estimates are compared with observational results. Among the conclusions: (1) mantle anelasticity is likely to be the most important source of damping for the free core nutation; (2) present VLBI nutation results are, in principle, accurate enough to usefully bound anelasticity at diurnal periods. But the discrepancy between the VLBI observed nutations and the 1984 IAU nutation model cannot be explained by anelasticity and is not yet well enough understood to allow anelasticity to be determined from the data.

  10. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    Science.gov (United States)

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  11. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics

    Science.gov (United States)

    Becker, T. W.

    2017-12-01

    Huge numbers of SKS splitting observations and improved surface-wave based models of azimuthal anisotropy have advanced our understanding of how convection is recorded in mantle fabrics in the upper mantle. However, we are still debating the relative importance of frozen to actively forming olivine fabrics, subduction zone anisotropy lacks a clear reference model, and regional marine studies yield conflicting evidence as to what exactly is going on at the base of the plates and below. Here, I review the degree of agreement between regional and global observations of seismic anisotropy and how well those may be matched by first-order mantle convection models. Updated bean counting can help contextualize the spatial scales of alignment, and I discuss several examples of the relative roles of plate shear to mantle density anomalies and frozen-in structure for oceanic and continental plates. Resolution of seismological models is globally uneven, but there are some locales where such exercises may yield information on the relative strength of asthenosphere and mantle. Another long-standing question is how olivine fabrics record flow under different stress and volatile conditions. I illustrate how different petrological assumptions might be used to reconcile observations of azimuthal dependency of wave speeds for both Love and Rayleigh waves, and how this could improve our models of the upper mantle, much in the spirit of Montagner's vectorial tomography. This is but one approach to improve the regional realism of global geodynamic background models to understand where in space and time dissonance arises, and if a harmonious model may yet be constructed given our assumptions about the workings of the mantle.

  12. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan

    Science.gov (United States)

    Liu, Xin; Zhao, Dapeng

    2017-09-01

    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  13. A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling

    Science.gov (United States)

    Liu, Jingao; Pearson, D. Graham; Chacko, Thomas; Luo, Yan

    2018-02-01

    High-precision measurements of W isotopic ratios have enabled increased exploration of early Earth processes. However, when applying W isotopic data to understand the geological processes, it is critical to recognize the potential mobility of W and hence evaluate whether measured W contents and isotopic compositions reflect the primary petrogenetic processes or instead are influenced by the effects of secondary inputs/mobility. Furthermore, if we are to better understand how W is partitioned between different minerals during melting and metasomatic processes it is important to document the likely sinks for W during these processes. In addition, an understanding of the main hosts for W in the crust and mantle is critically important to constrain how W is cycled and stored in the crust-mantle geochemical cycle. As a first step to investigate these issues, we have carried out in situ concentration measurements of W and other HFSEs in mineral phases within a broad spectrum of crustal and mantle rocks, along with whole-rock concentration measurements. Mass balance shows that for tonalitic gneiss and amphibolite, the major rock-forming minerals can adequately account for the bulk W budget, and for the pristine ultramafic rocks, olivine and orthopyroxene are the major controlling phases for W whereas for metasomatized ultramafic rocks, significant W is hosted in Ti-bearing trace phases (e.g., rutile, lindsleyite) along grain boundaries or is inferred to reside in cryptic W-bearing trace phases. Formation or decomposition of these phases during secondary processes could cause fractionation of W from other HFSEs, and also dramatically modify bulk W concentrations in rocks. For rocks that experienced subsequent W enrichment/alteration, their W isotopic compositions may not necessarily represent their mantle sources, but could reflect later inputs. The relatively small suite of rocks analyzed here serves as a reconnaissance study but allows some preliminary speculations on

  14. Mantle Flow Beneath Slow-Spreading Ridges Constrained by Seismic Anisotropy in Atlantic Lithosphere

    Science.gov (United States)

    Gaherty, J.; Dunn, R.

    2003-12-01

    Seismic anisotropy within the oceanic lithosphere provides one of the most direct means to study deformation associated with convection in the mantle. Advection beneath a mid-ocean ridge spreading center deforms the mantle rocks, and as the rocks cool to produce the oceanic lithosphere, they retain a record of this deformation in the form of lattice-preferred orientation (LPO) of olivine grains. LPO direction and strength can be estimated from directional and/or polarization dependence (anisotropy) of seismic wave speeds, and mid-ocean ridge mantle flow properties can be inferred. Mantle flow beneath the slow-spreading Mid-Atlantic Ridge (MAR) is suspected to be strongly three-dimensional due to the influence of hotspots and other thermal variations, and this thermal heterogeneity may be related to buoyancy-driven flow beneath the ridge. This notion is supported by two analyses of lithospheric anisotropy in the Atlantic, which until recently had not been well characterized. Radial anisotropy imaged near the hotspot-influenced Reykjanes Ridge implies a quasi-vertical (rather than horizontal) orientation of the lithospheric fabric. Azimuthal anisotropy within a narrow swatch of western Atlantic lithosphere that was formed via ultra-slow spreading is weaker than that found in the Pacific by a factor of two. Both can be interpreted in terms of buoyancy-driven flow beneath the MAR. Here we extend these results using regional surface-wave analyses of the Atlantic basin. Earthquakes from Atlantic source regions recorded at broad-band seismic instruments located on Atlantic islands and the surrounding margins provide excellent sensitivity to oceanic lithosphere structure, without contamination by continental heterogeneity. By characterizing such structure in both hotspot-influenced (e.g. Azores) and normal slow-spreading lithosphere, and comparing these structures to the Pacific, we evaluate the degree to which spreading rate and/or mantle source temperature control fabric

  15. Attenuation of short-period P, PcP, ScP, and pP waves in the earth's mantle

    International Nuclear Information System (INIS)

    Bock, G.; Clements, J.R.

    1982-01-01

    The parameter t* (ratio of body wave travel time to the average quality factor Q) was estimated under various assumptions of the nature of the earthquake sources for short-period P, PcP, and ScP phases originating from earthquakes in the Fiji-Tonga region and recorded at the Warramunga Seismic Array at Tennant Creek (Northern Territory, Australia). Spectral ratios were calculated for the amplitudes of PcP to P and of pP to P. The data reveal a laterally varying Q structure in the Fiji-Tonga region. The high-Q lithosphere descending beneath the Tonga Island arc is overlain above 350 km depth by a wedgelike zone of high attenuation with an average Q/sub α/ between 120 and 200 at short periods. The upper mantle farther to the west of the Tonga island arc is less attenuating, with Q/sub α/, between 370 and 560. Q/sub α/ is about 500 in the upper mantle on the oceanic side of the subduction zone. The t* estimates of this study are much smaller than estimates from the free oscillation model SL8. This can be partly explained by regional variations of Q in the upper mantle. If no lateral Q variations occur in the lower mantle, a frequency-dependent Q can make the PcP and ScP observations consistent with model SL8. Adopting the absorption band model to describe the frequency dependence of Q, the parameter tau 2 , the cut-off period of the high-frequency end of the absorption band, was determined. For different source models with finite corner frequencies, the average tau 2 for the mantle is between 0.01 and 0.10 s (corresponding to frequencies between 16 and 1.6 Hz) as derived from the PcP data, and between 0.06 and 0.12 s (2.7 and 1.3 Hz), as derived from the ScP data

  16. Water Content in the SW USA Mantle Lithosphere: FTIR Analysis of Dish Hill and Kilbourne Hole Pyroxenites

    Science.gov (United States)

    Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.

    2014-01-01

    Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.

  17. Mixing properties of thermal convection in the earth's mantle

    NARCIS (Netherlands)

    Schmalzl, J.T.

    1996-01-01

    The structure of mantle convection will greatly influence the generation and the survival of compositional heterogeneities. Conversely, geochemical observations can be used to obtain information about heterogeneities in the mantle and then, with certain model assumptions, information about the

  18. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  19. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...

  20. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling.

    Science.gov (United States)

    Boutelier, D.; Cruden, A. R.

    2005-12-01

    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  1. Mitochondrial Uncoupling Protein 1 Overexpression Increases Yield in Nicotiana tabacum under Drought Stress by Improving Source and Sink Metabolism

    Directory of Open Access Journals (Sweden)

    Pedro Barreto

    2017-11-01

    Full Text Available Mitochondrial uncoupling proteins (UCPs sustain mitochondrial respiration independent of intracellular ATP concentration. Uncoupled respiration is particularly beneficial under stress conditions, during which both photosynthesis and respiration may be impaired. Sustaining carbon fixation during the reproductive phase is essential for plants to develop viable pollen grains and for seed setting. Here, we examined whether UCP1 overexpression (UCP1-oe would help tobacco plants cope with drought stress during reproductive development. We observed that WT and UCP1-oe plants lost water at the same rate under moderate drought stress, but that UCP1-oe lines regained water faster upon rewatering. UCP1-oe plants maintained higher levels of respiration and photosynthesis and decreased H2O2 content in the leaves during the drought stress period. We examined whether UCP1-oe impacts reproductive tissues and seed production by monitoring the progress of flower development, focusing on the early stages of pollen formation. UCP1-oe lines induced the expression of mitochondrial genes and increased mtDNA content in reproductive tissues, which increased the consumption of carbohydrates and reduced H2O2 content and pollen disturbances. Finally, the beneficial impact of UCP1-oe on the source and sink organs resulted in an increased seed size and number under both control conditions and drought stress.

  2. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    Science.gov (United States)

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  3. Mapping mantle-melting anomalies in Baja California: a combined subaereal-submarine noble gas geochemistry new data set.

    Science.gov (United States)

    Spelz, R. M.; Negrete-Aranda, R.; Hilton, D. R.; Virrueta, C.; Tellez, M.; Lupton, J. E.; Evans, L. J.; Clague, D. A.; Zierenberg, R. A.; Neumann, F.

    2017-12-01

    In active tectonic settings, the presence of helium in aqueous fluids with 3He/4He ratios greater than in-situ production values ( 0.05 RA where RA = air He or 1.4 x 10-6) indicates the contribution of mantle-derived volatiles to the total volatile inventory. This is an indicative of the presence of mantle-derived melts, which act to transfer volatiles from the solid Earth towards the surface. Thus, He has the potential to map regions of the underlying mantle which are undergoing partial melting - a phenomenon which should also be evident in the seismic record. Reports of high 3He/4He in hot springs in Baja California (BC) has prompted us to initiate a survey of the region to assess relationship(s) between He isotopes and geophysical images of the underlying mantle. Previous studies report 3He/4He ratios of 0.54 RA for submarine hot springs (Punta Banda 108oC) and 1.3 RA for spring waters (81oC) at Bahia Concepcion. Our new survey of hot springs in northern BC has revealed that all 12 localities sampled to date, show the presence of mantle He with the highest ratio being 1.74RA (21% mantle-derived) at Puertecitos on the Gulf coast. He ratios are generally lower on the Pacific coast with the minimum mantle He contribution being 5% at Santa Minerva (0.11RA). Thus, preliminary trends are of a west-to-east increase in the mantle He signal across the peninsula. In the Gulf of California, recent He analyses from the newly discovered Meyibo (350 °C) and Auka (250-290 °C) hydrothermal fields at Alarcon rise and Pescadero basin, respectively, show high 3He/4He ratios ( 8RA), typical of MORB's. These ratios are higher than the ones reported for Guaymas Basin (6.95 RA), suggesting that primordial He signal from the mantle increases following a North-South direction along the Gulf axis. He results presented in this study correlate well with high resolution Rayleigh wave tomography images by DiLuccio et al (2014). Shear velocity variations in the BC crust and upper mantle

  4. Imaging Lower Mantle Heterogeniety With Differential Dispersion and Attenuation of Core- Diffracted Waves

    Science.gov (United States)

    Euler, G. G.; Wysession, M. E.; Huhmann, B.

    2007-12-01

    attempting to quantify the acceptable range of aspect ratios. This method has the advantage of removing source-side effects, averaging out minor timing errors, and, for our analysis, averaging out receiver-side frequency-dependent upper mantle and crustal biasing. Comparison with 1D reflectivity and 3D SEM synthetics facilitates our quantitative analysis of the lateral and vertical variations in the seismic velocity structure near the core-mantle boundary region.

  5. Coupled petrological-geodynamical modeling of a compositionally heterogeneous mantle plume

    Science.gov (United States)

    Rummel, Lisa; Kaus, Boris J. P.; White, Richard W.; Mertz, Dieter F.; Yang, Jianfeng; Baumann, Tobias S.

    2018-01-01

    Self-consistent geodynamic modeling that includes melting is challenging as the chemistry of the source rocks continuously changes as a result of melt extraction. Here, we describe a new method to study the interaction between physical and chemical processes in an uprising heterogeneous mantle plume by combining a geodynamic code with a thermodynamic modeling approach for magma generation and evolution. We pre-computed hundreds of phase diagrams, each of them for a different chemical system. After melt is extracted, the phase diagram with the closest bulk rock chemistry to the depleted source rock is updated locally. The petrological evolution of rocks is tracked via evolving chemical compositions of source rocks and extracted melts using twelve oxide compositional parameters. As a result, a wide variety of newly generated magmatic rocks can in principle be produced from mantle rocks with different degrees of depletion. The results show that a variable geothermal gradient, the amount of extracted melt and plume excess temperature affect the magma production and chemistry by influencing decompression melting and the depletion of rocks. Decompression melting is facilitated by a shallower lithosphere-asthenosphere boundary and an increase in the amount of extracted magma is induced by a lower critical melt fraction for melt extraction and/or higher plume temperatures. Increasing critical melt fractions activates the extraction of melts triggered by decompression at a later stage and slows down the depletion process from the metasomatized mantle. Melt compositional trends are used to determine melting related processes by focusing on K2O/Na2O ratio as indicator for the rock type that has been molten. Thus, a step-like-profile in K2O/Na2O might be explained by a transition between melting metasomatized and pyrolitic mantle components reproducible through numerical modeling of a heterogeneous asthenospheric mantle source. A potential application of the developed method

  6. Mantle source characterization of Sylhet Traps, northeastern India: A ...

    Indian Academy of Sciences (India)

    ... Meshesha1 3 Ryuichi Shinjo1. Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan. Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh. EL MINING PLC, Addis Ababa, Ethiopia.

  7. Mantle source characterization of Sylhet Traps, northeastern India: A ...

    Indian Academy of Sciences (India)

    1992; Kent et al. 1997, 2002; Ray et al. 1999;. Srivastava and Sinha 2004, 2007) have suggested that the spatial and temporal distribution of. Shillong Plateau magmatism are related to a plume that is presently beneath Kerguelen. .... (2009) in the Garo Hills that represent Proterozoic. Khasi greenstone related dolerites and ...

  8. Mantle source characterization of Sylhet Traps, northeastern India: A ...

    Indian Academy of Sciences (India)

    1Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru 1, Nishihara,. Okinawa 903-0213, Japan. 2Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology,. Sylhet 3114, Bangladesh .... earth elements (REEs) in the Sylhet Trap basalts are characterized by ...

  9. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...

  10. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia

    Science.gov (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum

    2017-04-01

    3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  11. Study on removal technology for thorium in the waste gas-lamp mantle

    International Nuclear Information System (INIS)

    Shi Yucheng; Wang Chengbao; Zhang Ping; Xu Lingqi; Jiang Shangen

    1999-01-01

    The author describes thorium removal technology and its application in the handling of the waste gas-lamp mantle that produced during the production of gas-lamp process. After laboratory test, pilot test, trial run and engineering scale use, the thorium removal technology is mainly as follows: soak the waste gas-lamp mantle into the ceramic vat with the nitric acid solution twice and wash it with the tap water twice. The volume of the ceramic vat is 500 L and the concentration of the nitric acid solution is 2 mol/L. After handling, the thorium removal rate can reach 99.97% and the residual thorium will be less than 160 Bq/kg. The waste gas-lamp mantle can be buried under the ground or be handled in the other ways just as the harmless waste. The nitric acid solution, in which gas-lamp mantle has been soaked, should be extracted with TBP, then back extracted with diluted hydrochloric acid. After supplementing the thorium nitrate into the back extracted liquid, the liquid can be reused in the gas-lamp mantle production. The waste water from the handling process can be handled together with waste water from production process

  12. Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps)

    Science.gov (United States)

    Solarino, Stefano; Malusà, Marco G.; Eva, Elena; Guillot, Stéphane; Paul, Anne; Schwartz, Stéphane; Zhao, Liang; Aubert, Coralie; Dumont, Thierry; Pondrelli, Silvia; Salimbeni, Simone; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang

    2018-01-01

    In continental subduction zones, the behaviour of the mantle wedge during exhumation of (ultra)high-pressure [(U)HP] rocks provides a key to distinguish among competing exhumation mechanisms. However, in spite of the relevant implications for understanding orogenic evolution, a high-resolution image of the mantle wedge beneath the Western Alps is still lacking. In order to fill this gap, we perform a detailed analysis of the velocity structure of the Alpine belt beneath the Dora-Maira (U)HP dome, based on local earthquake tomography independently validated by receiver function analysis. Our results point to a composite structure of the mantle wedge above the subducted European lithosphere. We found that the Dora-Maira (U)HP dome lays directly above partly serpentinized peridotites (Vp 7.5 km/s; Vp/Vs = 1.70-1.72), documented from 10 km depth down to the top of the eclogitized lower crust of the European plate. These serpentinized peridotites, possibly formed by fluid release from the subducting European slab to the Alpine mantle wedge, are juxtaposed against dry mantle peridotites of the Adriatic upper plate along an active fault rooted in the lithospheric mantle. We propose that serpentinized mantle-wedge peridotites were exhumed at shallow crustal levels during late Eocene transtensional tectonics, also triggering the rapid exhumation of (U)HP rocks, and were subsequently indented under the Alpine metamorphic wedge in the early Oligocene. Our findings suggest that mantle-wedge exhumation may represent a major feature of the deep structure of exhumed continental subduction zones. The deep orogenic levels here imaged by seismic tomography may be exposed today in older (U)HP belts, where mantle-wedge serpentinites are commonly associated with coesite-bearing continental metamorphic rocks.

  13. Compositional stratification in the deep mantle

    NARCIS (Netherlands)

    Kellogg, louise H.; Hager, Bradford H.; Hilst, R.D. van der

    1999-01-01

    A boundary between compositionally distinct regions at a depth of about 1600 kilometers may explain the seismological observations pertaining to Earth's lower mantle, produce the isotopic signatures of mid-ocean ridge basalts and oceanic island basalts, and reconcile the discrepancy between the

  14. Early-stage mantle cell lymphoma

    DEFF Research Database (Denmark)

    Dabaja, B S; Zelenetz, A D; Ng, A K

    2017-01-01

    Background: Mantle cell lymphoma (MCL) rarely presents as early-stage disease, but clinical observations suggest that patients who present with early-stage disease may have better outcomes than those with advanced-stage disease. Patients and methods: In this 13-institution study, we examined...

  15. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources

    Science.gov (United States)

    Britz, S. J.; Sager, J. C.; Knott, W. M. (Principal Investigator)

    1990-01-01

    The role of blue light in plant growth and development was investigated in soybean (Glycine max [L.] Merr. cv Williams) and sorghum (Sorghum bicolor [L.] Moench. cv Rio) grown under equal photosynthetic photon fluxes (approximately 500 micromoles per square meter per second) from broad spectrum daylight fluorescent or blue-deficient, narrow-band (589 nanometers) low pressure sodium (LPS) lamps. Between 14 and 18 days after sowing, it was possible to relate adaptations in photosynthesis and leaf growth to dry matter accumulation. Soybean development under LPS light was similar in several respects to that of shaded plants, consistent with an important role for blue light photoreceptors in regulation of growth response to irradiance. Thus, soybeans from LPS conditions partitioned relatively more growth to leaves and maintained higher average leaf area ratios (mean LAR) that compensated lower net assimilation rates (mean NAR). Relative growth rates were therefore comparable to plants from daylight fluorescent lamps. Reductions in mean NAR were matched by lower rates of net photosynthesis (A) on an area basis in the major photosynthetic source (first trifoliolate) leaf. Lower A in soybean resulted from reduced leaf dry matter per unit leaf area, but lower A under LPS conditions in sorghum correlated with leaf chlorosis and reduced total nitrogen (not observed in soybean). In spite of a lower A, mean NAR was larger in sorghum from LPS conditions, resulting in significantly greater relative growth rates (mean LAR was approximately equal for both light conditions). Leaf starch accumulation rate was higher for both species and starch content at the end of the dark period was elevated two- and three-fold for sorghum and soybean, respectively, under LPS conditions. Possible relations between starch accumulation, leaf export, and plant growth in response to spectral quality were considered.

  16. Investigating Late Cenozoic Mantle Dynamics beneath Yellowstone

    Science.gov (United States)

    Zhou, Q.; Liu, L.

    2015-12-01

    Recent tomography models (Sigloch, 2011; Schmandt & Lin, 2014) reveal unprecedented details of the mantle structure beneath the United States (U.S.). Prominent slow seismic anomalies below Yellowstone, traditionally interpreted as due to a mantle plume, are restricted to depths either shallower than 200 km or between 500 and 1000 km, but a continuation to greater depth is missing. Compared to fast seismic anomalies, which are usually interpreted as slabs or delaminated lithosphere, origin of deep slow seismic anomalies, especially those in the vicinity of subduction zones, is more enigmatic. As a consequence, both the dynamics and evolution of these slow anomalies remain poorly understood. To investigate the origin and evolution of the Yellowstone slow anomaly during the past 20 Myr, we construct a 4D inverse mantle convection model with a hybrid data assimilation scheme. On the one hand, we use the adjoint method to recover the past evolution of mantle seismic structures beyond the subduction zones. On the other hand, we use a high-resolution forward model to simulate the subduction of the oceanic (i.e., Farallon) plate. During the adjoint iterations, features from these two approaches are blended together at a depth of ~200 km below the subduction zone. In practice, we convert fast and slow seismic anomalies to effective positive and negative density heterogeneities. Our preliminary results indicate that at 20 Ma, the present-day shallow slow anomalies beneath the western U.S. were located inside the oceanic asthenosphere, which subsequently entered the mantle wedge, through the segmented Farallon slab. The eastward encroachment of the slow anomaly largely followed the Yellowstone hotspot track migration. The present deep mantle Yellowstone slow anomaly originated at shallower depths (i.e. transition zone), and was then translated down to the lower mantle accompanying the sinking fast anomalies. The temporal evolution of the slow anomalies suggests that the deep

  17. Diarrhea management in children under five in sub-Saharan Africa: does the source of care matter? A Countdown analysis

    Directory of Open Access Journals (Sweden)

    Liliana Carvajal-Vélez

    2016-08-01

    Full Text Available Abstract Background Diarrhea remains a high burden disease, responsible for nine percent of deaths in children under five globally. We analyzed diarrhea management practices in young children and their association with the source of care. Methods We used Demographic and Health Survey data from 12 countries in sub-Saharan Africa with high burdens of childhood diarrhea. We classified the quality of diarrhea management practices as good, fair, or poor based on mothers’ reports for children with diarrhea, using WHO/UNICEF recommendations for appropriate treatment. We described the prevalence of diarrhea management by type and assessed the association between good management and source of care, adjusting for potential confounders. Results Prevalence of good diarrhea management is low in 11 of the 12 analyzed surveys, varying from 17 % in Cote d’Ivoire to 38 % in Niger. The exception is Sierra Leone, where prevalence of good practice is 67 %. Prevalence of good management was low even among children taken to health facilities [median 52 %, range: 34–64 %]. Diarrhea careseeking from health facilities or community providers was associated with higher odds of good management than care from traditional/informal sources or no care. Careseeking from facilities did not result systematically in a higher likelihood of good diarrhea management than care from community providers. The odds of good diarrhea management were similar for community versus facility providers in six countries, higher in community than facility providers in two countries, and higher in facility than in community providers in four countries. Conclusion Many children’s lives can be saved with correct management of childhood diarrhea. Too many children are not receiving adequate care for diarrhea in high-burden sub-Saharan African countries, even among those seen in health facilities. Redoubling efforts to increase careseeking and improve quality of care for childhood diarrhea

  18. Transformations of humus and soil mantle in the urbanized areas of the Chernobyl NPP exclusion zone

    International Nuclear Information System (INIS)

    Tyutyunnik, Yu.G.; Bednaya, S.M.

    1998-01-01

    Presented are investigations into the demutation processes of the towns plant community in the Chernobyl NPP exclusion zone (Pripyat, Chernobyl, Chernobyl-2). Demonstrated is the specific nature of the reduction of humus and soil mantle in the abandoned towns under the impact of the natural factors. 21 refs., 5 tab., 7 figs

  19. Measurements of upper mantle shear wave anisotropy from a permanent network in southern Mexico

    NARCIS (Netherlands)

    van Benthem, S.A.C.; Valenzuela, R.W.; Ponce, G.J.

    2013-01-01

    Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are

  20. Effect of Spin Transition onComposition and Seismic Structure of the Lower Mantle

    Science.gov (United States)

    Wu, Z.

    2015-12-01

    Spin transition of iron in ferropericlase (Fp) causes a significant softening in bulk modulus [e.g.,1,2], which leads to unusual dVP/dT>0. Because dVP/dT>0 in Fp cancels out with dVP/dTMao, Z., Marquardt, H., 2013. . Rev Geophys 51, 244-275 (2013). [3] Wu, Z.Q., Wentzcovitch, R.M., 2014. Spin crossover in ferropericlase and velocity heterogeneities in the lower mantle. Proc. Natl. Acad. Sci. U. S. A. 111, 10468-10472. [4] Zhao, D.P., 2007. Seismic images under 60 hotspots: Search for mantle plumes. Gondwana Res 12, 335-355. [5] van der Hilst, R.D., Karason, H., 1999. Science 283, 1885-1888. [6] Huang,C., Leng, W., Wu, Z. Q., 2015. Iron-spin transition controls structure and stability of LLSVPs in the lower mantle, Earth Planet. Sci. Lett. 423, 173-181.

  1. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  2. Water in the Cratonic Mantle Lithosphere

    Science.gov (United States)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents ( 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (water contents. The olivine inclusions, however, may have been protected from metasomatism by their host diamond and record the overall low olivine water content of

  3. Episodic entrainment of primordial material in plumes from isolated lower mantle reservoirs

    Science.gov (United States)

    Williams, C. D.; McNamara, A. K.; Garnero, E. J.; Van Soest, M. C.

    2012-12-01

    The noble gas systematics observed in ocean island basalts (OIBs) relative to mid-ocean ridge basalts (MORBs), suggests OIBs preferentially sample a primordial reservoir located somewhere within Earth's mantle. The lower mantle has been favored as a candidate reservoir, either in its entirety or discrete reservoirs located within it. Thermal plumes originating from the lower mantle could potentially sample these reservoirs, which may have remained isolated from the MORB source region over much of Earth's history. Recently, seismic observations of two, nearly anti-podal large, low-shear velocity provinces (LLSVPs) in the lowermost mantle have been hypothesized as being chemically distinct, and thus, may be long-lived reservoirs that have retained primordial noble gas signatures from earlier in Earth's history. Geodynamic models predict that thermal plumes are likely to be associated with LLSVPs and could potentially entrain a small amount of these chemically distinct reservoirs, which may ultimately reach the surface of the Earth in the form of OIBs. However, isotopic variability within OIBs challenges the notion of multiple plumes tapping the same reservoir. Here, we perform geodynamic calculations that investigate the time-dependent rate of material entrained into thermal plumes from these primordial reservoirs. In particular, we examine how the rate of entrainment varies within a single, long-lived thermal plume with a relatively steady buoyancy flux. Using phase relations for mantle peridotite, the amount of entrained material comprising the melt is estimated. We find that time-dependent dynamical processes at the interface between a deep, primordial reservoir and the base of a mantle plume strongly influences the entrainment rate, causing the amount of entrainment to vary episodically with time. Thus, melts rising to the surface (e.g., OIBs) are predicted to contain variable proportions of material entrained from these primordial reservoirs. This time

  4. Earth's Deep Carbon Cycle Constrained by Partial Melting of Mantle Peridotite and Eclogite

    Science.gov (United States)

    Dasgupta, R.; Hirschmann, M. M.; Withers, A. C.

    2006-05-01

    The mass of carbon in the mantle is thought to exceed that in all Earth's other reservoirs combined1 and large fluxes of carbon are cycled into and out of the mantle via subduction and volcanic emission. Devolatilization is known to release water in the mantle wedge, but release of carbon could be delayed if the relevant decarbonation reactions or solidi of oceanic crust are not encountered along P-T path of subduction. Outgassing of CO2 from the mantle also has a critical influence on Earth's climate for time scales of 108-109 yr1. The residence time for carbon in the mantle is thought to exceed the age of the Earth1,2, but it could be significantly shorter owing to pervasive deep melting beneath oceanic ridges. The dominant influx of carbon is via carbonate in altered ocean-floor basalts, which survives decarbonation during subduction. Our experiments demonstrate that solidi of carbonated eclogite remain hotter than average subduction geotherms at least as deep as transition zone3, and thus significant subducted C is delivered to the deep Earth, rather than liberated in the shallow mantle by melting. Flux of CO2 into the mantle, assuming average estimate of carbon in altered ocean crust of 0.21 wt. % CO24, can amount to 0.15 × 1015 g/yr. In upwelling mantle, however, partial melting of carbonated eclogite releases calcio-dolomitic carbonatite melt at depths near ~400 km and metasomatically implants carbonate to surrounding peridotite. Thus, volcanic release of CO2 to basalt source regions is likely controlled by the solidus of carbonated peridotite. Our recent experiments with nominally anhydrous, carbonate-bearing garnet lherzolite indicate that the solidus of peridotite with a trace amount of CO2 is ~500 °C lower than that of volatile-free peridotite at 10 GPa5. In upwelling mantle the solidus of carbonated lherzolite is ~100-200 km shallower than that of eclogite+CO2, but beneath oceanic ridges, initial melting occurs as deep as 300-330 km. For peridotite

  5. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    International Nuclear Information System (INIS)

    Rodrigues, D.; Teixeira, P.; Tavares, C.J.; Azeredo, J.

    2013-01-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO 2 ) and, more recently, nitrogen-doped titanium dioxide (N-TiO 2 ) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO 2 coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO 2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10 6 CFU/ml on glass and 2.37 × 10 7 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO 2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne

  6. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, D.; Teixeira, P. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Tavares, C.J. [Center of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Azeredo, J., E-mail: jazeredo@deb.uminho.pt [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO{sub 2}) and, more recently, nitrogen-doped titanium dioxide (N-TiO{sub 2}) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO{sub 2} coating on glass and stainless steel under two different sources of visible light – fluorescent and incandescent – and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO{sub 2} coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 10{sup 6} CFU/ml on glass and 2.37 × 10{sup 7} on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO{sub 2} coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly

  7. Loss distribution approach for operational risk capital modelling under Basel II: Combining different data sources for risk estimation

    Directory of Open Access Journals (Sweden)

    Pavel V. Shevchenko

    2013-07-01

    Full Text Available The management of operational risk in the banking industry has undergone significant changes over the last decade due to substantial changes in operational risk environment. Globalization, deregulation, the use of complex financial products and changes in information technology have resulted in exposure to new risks very different from market and credit risks. In response, Basel Committee for banking Supervision has developed a regulatory framework, referred to as Basel II, that introduced operational risk category and corresponding capital requirements. Over the past five years, major banks in most parts of the world have received accreditation under the Basel II Advanced Measurement Approach (AMA by adopting the loss distribution approach (LDA despite there being a number of unresolved methodological challenges in its implementation. Different approaches and methods are still under hot debate. In this paper, we review methods proposed in the literature for combining different data sources (internal data, external data and scenario analysis which is one of the regulatory requirement for AMA.

  8. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  9. Sn-wave velocity structure of the uppermost mantle beneath the Australian continent

    Science.gov (United States)

    Wei, Zhi; Kennett, Brian L. N.; Sun, Weijia

    2018-03-01

    We have extracted a dataset of more than 5000 Sn traveltimes for source-station pairs within continental Australia, with 3-D source relocation using Pn arrivals to improve data consistency. We conduct tomographic inversion for S-wavespeed structure down to 100 km using the FMTOMO method for the whole Australian continent. We obtain a 3-D model with potential resolution of 3.0° 3.0°. The new S wavespeed model provides strong constraints on structure in a zone that was previously poorly characterised. The S velocities in the uppermost mantle are rather fast, with patterns of variation generally corresponding to those for Pn. We find strong heterogeneities of S wavespeed in the uppermost mantle across the entire continent of Australia with a close relation to crustal geological features. For instance, the cratons in the western Australia usually have high S velocities (> 4.70 km/s), while the volcanic regions on the eastern margin of Australia are characterised by low S velocities (continent. We find most of the uppermost mantle has Vp/Vs between 1.65 and 1.85, but with patches in central Australia and in the east with much higher Vp/Vs ratios. Distinctive local anomalies on the eastern margin may indicate the positions of remnants of mantle plumes.

  10. CD146+ human umbilical cord perivascular cells maintain stemness under hypoxia and as a cell source for skeletal regeneration.

    Directory of Open Access Journals (Sweden)

    Wing Pui Tsang

    Full Text Available The human umbilical cord perivascular cells (HUCPVCs have been considered as an alternative source of mesenchymal progenitors for cell based regenerative medicine. However, the biological properties of these cells remain to be well characterized. In the present study, HUCPVCs were isolated and sorted by CD146(+ pericyte marker. The purified CD146(+ HUCPVCs were induced to differentiate efficiently into osteoblast, chondrocyte and adipocyte lineages in vitro. Six weeks following subcutaneous transplantation of CD146(+ HUCPVCs-Gelfoam-alginate 3D complexes in severe combined immunodeficiency (SCID mice, newly formed bone matrix with embedded osteocytes of donor origin was observed. The functional engraftment of CD146(+ HUCPVCs in the new bone regenerates was further confirmed in a critical-sized bone defect model in SCID mice. Hypoxic conditions suppressed osteogenic differentiation while increased cell proliferation and colony-forming efficiency of CD146(+ HUCPVCs as compared to that under normoxic conditions. Re-oxygenation restored the multi-differentiation potential of the CD146(+ HUCPVCs. Western blot analysis revealed an upregulation of HIF-1α, HIF-2α, and OCT-4 protein expression in CD146(+ HUCPVCs under hypoxia, while there was no remarkable change in SOX2 and NANOG expression. The gene expression profiles of stem cell transcription factors between cells treated by normoxia and hypoxic conditions were compared by PCR array analysis. Intriguingly, PPAR-γ was dramatically downregulated (20-fold in mRNA expression under hypoxia, and was revealed to possess a putative binding site in the Hif-2α gene promoter region. Chromatin immunoprecipitation assays confirmed the binding of PPAR-γ protein to the Hif-2α promoter and the binding was suppressed by hypoxia treatment. Luciferase reporter assay showed that the Hif-2α promoter activity was suppressed by PPAR expression. Thus, PPAR-γ may involve in the regulation of HIF-2α for stemness

  11. Cosmochemical Estimates of Mantle Composition

    Science.gov (United States)

    Palme, H.; O'Neill, H. St. C.

    2003-12-01

    In 1794 the German physicist Chladni published a small book in which he suggested the extraterrestrial origin of meteorites. The response was skepticism and disbelief. Only after additional witnessed falls of meteorites did scientists begin to consider Chladni's hypothesis seriously. The first chemical analyses of meteorites were published by the English chemist Howard in 1802, and shortly afterwards by Klaproth, a professor of chemistry in Berlin. These early investigations led to the important conclusion that meteorites contained the same elements that were known from analyses of terrestrial rocks. By the year 1850, 18 elements had been identified in meteorites: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorous, sulfur, potassium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, copper, and tin (Burke, 1986). A popular hypothesis, which arose after the discovery of the first asteroid Ceres on January 1, 1801 by Piazzi, held that meteorites came from a single disrupted planet between Mars and Jupiter. In 1847 the French geologist Boisse (1810-1896) proposed an elaborate model that attempted to account for all known types of meteorites from a single planet. He envisioned a planet with layers in sequence of decreasing densities from the center to the surface. The core of the planet consisted of metallic iron surrounded by a mixed iron-olivine zone. The region overlying the core contained material similar to stony meteorites with ferromagnesian silicates and disseminated grains of metal gradually extending into shallower layers with aluminous silicates and less iron. The uppermost layer consisted of metal-free stony meteorites, i.e., eucrites or meteoritic basalts. About 20 years later, Daubrée (1814-1896) carried out experiments by melting and cooling meteorites. On the basis of his results, he came to similar conclusions as Boisse, namely that meteorites come from a single, differentiated planet with a metal core, a silicate mantle

  12. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price

    2016-02-01

    Full Text Available Orbital thermal infrared (TIR remote sensing is an important tool for characterizing geologic surfaces on Earth and Mars. However, deposition of material from volcanic or eolian activity results in bedrock surfaces becoming significantly mantled over time, hindering the accuracy of TIR compositional analysis. Moreover, interplay between particle size, albedo, composition and surface roughness add complexity to these interpretations. Apparent Thermal Inertia (ATI is the measure of the resistance to temperature change and has been used to determine parameters such as grain/block size, density/mantling, and the presence of subsurface soil moisture/ice. Our objective is to document the quantitative relationship between ATI derived from orbital visible/near infrared (VNIR and thermal infrared (TIR data and tephra fall mantling of the Mono Craters and Domes (MCD in California, which were chosen as an analog for partially mantled flows observed at Arsia Mons volcano on Mars. The ATI data were created from two images collected ~12 h apart by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument. The results were validated with a quantitative framework developed using fieldwork that was conducted at 13 pre-chosen sites. These sites ranged in grain size from ash-sized to meter-scale blocks and were all rhyolitic in composition. Block size and mantling were directly correlated with ATI. Areas with ATI under 2.3 × 10−2 were well-mantled with average grain size below 4 cm; whereas values greater than 3.0 × 10−2 corresponded to mantle-free surfaces. Correlation was less accurate where checkerboard-style mixing between mantled and non-mantled surfaces occurred below the pixel scale as well as in locations where strong shadowing occurred. However, the results validate that the approach is viable for a large majority of mantled surfaces on Earth and Mars. This is relevant for determining the volcanic history of Mars, for

  13. Deep Mantle Layering by Post-Perovskite Dissociation at 0.9 TPa in GJ876d Super Earth

    Science.gov (United States)

    Shahnas, H.; Pysklywec, R.; Yuen, D. A.

    2017-12-01

    The processes in the interior of the exoplanets are poorly known. This is due to the uncertainties in the pressure- and temperature-dependence of the mantle properties, as well as the circumstances under which the mantle processes such as phase and spin transitions and structural changes in the mantle minerals occur. Recent advances in high pressure mineral physics as well as some recent theoretical studies have yielded new insights into our understanding of mantle dynamics. MgSiO3 post-perovskite (pPv) dissociates into MgO and MgSi2O5 at 0.9 TPa, and MgSi2O5 dissociates into MgO and SiO2 at 2.1 TPa. Both dissociations are endothermic and the first dislocation with a large Clapeyron slope of -12 MPa/K is expected to occur close to the bottom of the mantle in GJ876d super-Earth which is 7.5 times more massive than the Earth. Employing 3D-spherical control volume compressible models we perform a systematic investigation on the combined impact of the deep mantle dissociation of post-perovskite and the mantle conductivity and the viscosity, on the mixing, cooling and the style of the convection in GJ876d super Earth. Our model results reveal that in the presence of deep mantle dissociation of post-perovskite into MgO and MgSi2O5 at 0.9 TP, the mean mantle temperature decreases which is associated with the viscosity increase. However, while this deep mantle endothermic process for high viscosities ( 1023 Pa.s) does not cause layering in the bottom of mantle, for viscosities 1022 Pa.s and below, a layering of thickness 500 km develops above the CMB. The mean temperature and heat flow decrease in the presence of pPv dissociation-induced layering and the impact of the viscosity on mean mantle temperature is enhanced. In the layered models while the upper layer is cooling mainly by conduction; there may exist a vigorous convection in the lower layer above the CMB depending on the strength of the viscosity.

  14. Influence of a West Antarctic mantle plume on ice sheet basal conditions

    Science.gov (United States)

    Seroussi, Helene; Ivins, Erik R.; Wiens, Douglas A.; Bondzio, Johannes

    2017-09-01

    The possibility that a deep mantle plume manifests Pliocene and Quaternary volcanism and potential elevated heat flux in West Antarctica has been studied for more than 30 years. Recent seismic images support the plume hypothesis as the cause of Marie Byrd Land (MBL) volcanism and geophysical structure. Mantle plumes may more than double the geothermal heat flux above nominal continental values. A dearth of in situ ice sheet basal data exists that samples the heat flux. Consequently, we examine a realistic distribution of heat flux associated with a possible late Cenozoic mantle plume in West Antarctica and explore its impact on thermal and melt conditions at the ice sheet base. We use a simple analytical mantle plume parameterization to produce geothermal heat flux at the base of the ice sheet. The three-dimensional ice flow model includes an enthalpy framework and full-Stokes stress balance. As both the putative plume location and extent are uncertain, we perform broadly scoped experiments to characterize the impact of the plume on geothermal heat flux and ice sheet basal conditions. The experiments show that mantle plumes have an important local impact on the ice sheet, with basal melting rates reaching several centimeters per year directly above the hotspot. In order to be consistent with observations of basal hydrology in MBL, the upper bound on the plume-derived geothermal heat flux is 150 mW/m2. In contrast, the active lake system of the lower part of Whillans Ice Stream suggests a widespread anomalous mantle heat flux, linked to a rift source.

  15. Ancient lead and osmium in the oceanic mantle

    Science.gov (United States)

    Burton, K. W.; Cenki-Tok, B.; Mokadem, F.; Harvey, J.; Gannoun, A.; Parkinson, I. J.

    2011-12-01

    The isotope composition of lead (Pb) in the silicate Earth appears to be far too radiogenic for evolution from chondritic (primitive solar system) material over 4.57 billion years, the so-called 'Pb paradox' [1]. Loss of Pb to the core [2], storage in the lower continental crust [3], or arrival in a late veneer [4], have all been proposed as mechanisms to account for this imbalance. Recently is has been suggested that orogenic peridotites, and by implication the upper mantle itself, could serve as a complementary reservoir of the unradiogenic Pb [5]. However, orogenic peridotites may not be representative of the asthenopshere underlying present-day mid-ocean ridges, furthermore, it is unclear why such material is not sampled by oceanic basalts. This study presents high-precision double-spike Pb isotope data for sulphides trapped as inclusions in silicate minerals in abyssal peridotites from the North Atlantic ocean (ODP Leg 209; Site 1274A). These sulphides preserve extremely unradiogenic Pb isotope compositions, some corresponding to an age of 1.83±0.23 billion years. These ages are indistinguishable from those preserved by Os isotopes in sulphides from the same samples [6], and demonstrate that both Pb and Os isotopes preserve an unequivocal record of ancient melt depletion in the sub-oceanic mantle. from abyssal peridotites exposed on the sea-floor the North Atlantic ocean.That these sulphides contribute little of their Pb to the isotope composition of oceanic basalts may be, in part, due to their entrapment in host silicate phases but also because they are present in refractory domains in the mantle that are little sampled by later melting events. If MORB do not sample these refractory domains then neither do they constrain the overall chemistry of the asthensophere, and will tend to underestimate the actual extent of depletion of the upper mantle. [1] Allègre, C.J. Earth Planet. Sci. lett. 5, 261-269 (1969). [2] Vollmer, R. Nature 270, 144-147 (1977). [3] O

  16. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    Science.gov (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    containing 90.5 - 92.0 mole % forsterite). The rocks which were subjected to significant decrease of mg# of silicates (down to 84) may be difficult to distinguish from cumulates. However, since the alkaline basaltic melts do not precipitate orthopyroxene under lithospheric pressures, their mineral composition is different than that of mantle harzburgites. Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635-641. Tursack E, Liang Y (2012) A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations. Contributions to Mineralogy and Petrology 163: 861-876

  17. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    Science.gov (United States)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  18. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth

    Science.gov (United States)

    Ogawa, M.

    2017-12-01

    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  19. Pristine MORB mantle from Gakkel Ridge

    Science.gov (United States)

    Snow, J. E.; Hellebrand, E.

    2010-12-01

    Fresh mantle rocks (Total ~300Kg) have been recovered from three dredge hauls on Gakkel Ridge. Most of the fresh material (~275 Kg) is from a single dredge haul (PS66-238) from PFS POLARSTERN ARK XX/2 in 2004 (not from the AMORE expedition). The samples from this group comprise extremely fresh protogranular lherzolites that have clearly defined 1-2 cm orange weathering rinds. The weathered material seems to be mostly discoloration along grain boundaries, as bulk weathering (e.g. Snow and Dick, 1995) cannot be detected in bulk analyses. The fresh cores are largely devoid of serpentine that can be identified in hand sample or SEM. The samples show a bimodal grain size distribution and abundant polygonization of olivine, but little stretching of pyroxene grains, suggesting that they have not been subject to intense deformation that has been seen in many mid-ocean ridge peridotites. Currently, 14 of the 208 discrete samples have been studied. The major element compositions of these samples range from relatively fertile spinel lherzolites to moderately depleted cpx-bearing harzburgites, both in their bulk chemistry and in the compositions of major minerals. The average Cr# (Dick and Bullen, 1984) of spinel ranges from 0.15 to 0.28, suggesting 5-12% melt extraction (Hellebrand et al. 2001). Trace elements measured by SIMS and LA-ICPMS reveal metasomatism and refertilization of the LREE. Os isotopes vary from 187Os/188Os of 0.128 to 0.114, revealing an ancient component that can be interpreted either as a fertile ambient mantle with a highly depleted ancient exotic block or as a single mantle domain variably depleted in an ancient melting event (Liu et al., 2008). Bulk Li isotopic data correspond to estimates of the MORB mantle, however mineral separates show significant isotopic heterogeneity that appears to be caused by diffusion caused by Li redistribution during uplift and cooling (Gao et al., accepted). The altered samples have radically different textures. These

  20. Tectonic predictions with mantle convection models

    Science.gov (United States)

    Coltice, Nicolas; Shephard, Grace E.

    2018-04-01

    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  1. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    Science.gov (United States)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  2. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration.

    Science.gov (United States)

    Safdar, Waseem; Shamoon, Muhammad; Zan, Xinyi; Haider, Junaid; Sharif, Hafiz Rizwan; Shoaib, Muhammad; Song, Yuanda

    2017-12-01

    The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO 3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD + /NADP + -dependent isocitrate dehydrogenase (NAD + /NADP + -ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO 3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.

  3. Effects of nitrogen fertilizer sources and temperature on soil CO2 efflux in Italian ryegrass crop under Mediterranean conditions

    Directory of Open Access Journals (Sweden)

    Roberto Lai

    2012-06-01

    Full Text Available We report the results of a study that aimed to assess the dynamics of total and heterotrophic soil respiration and its relationships with soil temperature or soil moisture of an Italian ryegrass haycrop managed with different nitrogen (N fertilizer sources. The field experiment was carried out in the Nitrate Vulnerable Zone of the dairy district of Arborea, a reclaimed wetland in central-western Sardinia, Italy. This is an area characterized by sandy soils, shallow water table and intensive dairy cattle farming systems. Italian ryegrass is grown for hay production in the context of a double cropping rotation with silage maize. We analyzed the effects of N fertilizer treatments on soil carbon dioxide (CO2 efflux, soil water content and soil temperature: i farmyard manure; ii cattle slurry; iii mineral fertilizer; iv 70 kg ha-1 from slurry and 60 kg ha-1 from mineral fertilizer that corresponds to the prescriptions of the vulnerable zone management plan. During the monitoring period, soil water content never fell below 8.6% vol., corresponding to approximately -33 kPa matric potential. Total and heterotrophic soil respiration dynamics were both influenced by soil temperature over winter and early spring, reaching a maximum in the first ten days of April in manure and slurry treatments. In the last 30 days of the Italian ryegrass crop cycle, total soil respiration decreased and seemed not to be affected by temperature. The analysis of covariance with soil temperature as covariate showed that average respiration rates were significantly higher under the manure treatment and lower with mineral fertilizer than the slurry and slurry+mineral treatments, but with similar rates of respiration per unit increase of soil temperature for all treatments. The average soil respiration rates were significantly and positively related to the soil carbon (C inputs derived from fertilizers and preceding crop residuals. We concluded that: i the fertilizer source

  4. Boron isotopes reveal multiple metasomatic events in the mantle beneath the eastern North China Craton

    Science.gov (United States)

    Li, Hong-Yan; Zhou, Zhou; Ryan, Jeffrey G.; Wei, Gang-Jian; Xu, Yi-Gang

    2016-12-01

    Linkages inferred between the geochemical heterogeneity of the mantle beneath eastern Eurasia and the stagnant Pacific slab documented geophysically in its mantle transition zone are as yet not clearly characterized. In this paper we report new elemental and isotopic data for boron (B) on a suite of well-characterized Cenozoic basalts (alkali basalts, basanites and nephelinites), with ocean island basalt (OIB)-like trace element signatures from western Shandong of the eastern North China Craton (NCC). Correlations between major elements (e.g., FeOT versus SiO2), trace elements (e.g., CeN/PbN versus BaN/ThN) and radiogenic isotopes (e.g., 206Pb/204Pb versus 87Sr/86Sr) suggest these basalts are derived via the mixing of melts from two mantle components: a fluid mobile element (FME; such as Ba, K, Pb and Sr) enriched component, which is most evident in the alkali basalts, and a FME depleted mantle component that is more evident in the basanites and nephelinites. The alkali basalts in this study have lower B concentrations (1.4-2.2 μg/g) but higher δ11B (-4.9 to -1.4) values than the basanites and nephelinites (B = 2.1-5.0 μg/g; δ11B = -6.9 to -3.9), and all the samples have nearly constant B/Nb ratios between 0.03 and 0.07, similar to the observed range in B/Nb for intraplate lavas. Our high-SiO2 samples have higher δ11B than that of our low SiO2 samples, indicating that the B isotopic differences among our samples do not result from the addition of a continental crustal component in the mantle source, or direct crustal assimilation during the eruption process. The positive B versus Nb correlation suggests the B isotopic compositions of the western Shandong basalts primarily reflect the pre-eruptive compositions of their mantle sources. Correlations among B, Nd and Sr isotope signatures of the western Shandong basalts differ from those among basalts from plume settings (e.g., Azores and Hawaii), and are inconsistent with models suggesting single-step metasomatic

  5. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    Science.gov (United States)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally

  6. First Row Transition Metals in Olivine - Petrogenetic Tracers for the Evolution of Mantle-Derived Magmas

    Science.gov (United States)

    Locmelis, M.; Arevalo, R. D., Jr.; Puchtel, I. S.; Barnes, S. J.; Fiorentini, M. L.

    2015-12-01

    Olivine is the most abundant mineral in the upper mantle and a major constituent of most mantle-derived rocks. However, despite its abundance, studies on the trace element chemistry of olivine are underrepresented in the literature. We present the results of a comprehensive study on the contents of first-row transition metals (FRTM: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), Ga and Ge in olivines from 2.7-3.5 Ga old Munro- and Barberton-type komatiites from the Kapvaal and Zimbabwe Cratons in southern Africa, the Yilgarn Craton in Australia, and the Superior Craton in Canada. Komatiitic olivines are compared to olivines from a Devonian-Carboniferous mantle peridotite (Finero, Italy) and contemporary ocean Island basalts (OIB, from St. Helena, South Atlantic Ocean). The olivine major element chemistry was determined using a JEOL JXA-8900 Superprobe at the University of Maryland. Trace element contents were determined using a Photon Machines Analyte G2 193 nm Excimer laser ablation system coupled to a Nu Instruments AttoM single collector ICP-MS at NASA Goddard Space Flight Center. Medium resolution mass discrimination (m/Δm = 2500, at 5% peak intensity) was leveraged to separate isobaric interferences and support accurate quantitation of elemental abundances. The results show that olivines from komatiites are largely depleted in FRTM, Ga and Ge relative to the composition of the primitive mantle (FRTMPM-norm = ~0.01 - 1). All komatiitic olivines have similar mantle-normalized trace element patterns, regardless of age and/or locality. Olivines from the Finero mantle peridotite and the St. Helena OIB are similarly depleted. However, compared to komatiites, grains from Finero are enriched in Ge and distinctly depleted in Ti, V, Cr, and Ga, whereas olivines from St. Helena have overall flatter normalized trace element patterns. The distinct patterns show that olivine chemistry can be used to identify and understand the source and evolution of mantle-derived rocks

  7. The lithospheric mantle below southern West Greenland

    DEFF Research Database (Denmark)

    Sand, Karina Krarup; Waight, Tod Earle; Pearson, D. Graham

    2009-01-01

    Geothermobarometry of primarily garnet lherzolitic xenoliths from several localities in southern West Greenland is applied to address the diamond potential, pressure and temperature distribution and the stratigraphy of the subcontinental lithospheric mantle ~600 Ma ago. The samples are from...... kimberlitic and ultramafic lamprophyre (senso lato) dikes and sills emplaced into three tectonically distinct crustal areas in the North Atlantic Craton. Several geothermobarometry formulations have been applied and a thorough assessment of which P-T combinations are most applicable to this sample suite has...... and the Kirkland Lake locality within the Superior craton. In supporting previous studies we find that the continental lithospheric mantle is layered and increases in fertility with depth. Twenty-five of 32 investigated samples are estimated to be derived from the diamond stability field that extends...

  8. Upper mantle flow in the western Mediterranean

    International Nuclear Information System (INIS)

    Panza, G.F.; Raykova, R.; Carminati, E.; Doglioni, C.

    2006-07-01

    Two cross-sections of the western Mediterranean Neogene-to-present backarc basin are presented, in which geological and geophysical data of the Transmed project are tied to a new shear-wave tomography. Major results are i) the presence of a well stratified upper mantle beneath the older African continent, with a marked low-velocity layer between 130-200 km of depth; ii) the dilution of this layer within the younger western Mediterranean backarc basin to the north, and iii) the easterly raising of a shallower low-velocity layer from about 140 km to about 30 km in the Tyrrhenian active part of the backarc basin. These findings suggest upper mantle circulation in the western Mediterranean backarc basin, mostly easterly-directed and affecting the boundary between upper asthenosphere (LVZ) and lower asthenosphere, which undulates between about 180 km and 280 km. (author)

  9. Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity.

    Science.gov (United States)

    Voigt, Eduardo Luiz; Almeida, Tânia Dias; Chagas, Roberta Magalhães; Ponte, Luiz Ferreira Aguiar; Viégas, Ricardo Almeida; Silveira, Joaquim Albenísio Gomes

    2009-01-01

    Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.

  10. Core formation and mantle differentiation on Mars

    OpenAIRE

    Mezger Klaus; Debaille Vinciane; Kleine Thorsten

    2012-01-01

    Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is on...

  11. Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS

    Science.gov (United States)

    Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho

    1993-01-01

    Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.

  12. Governing Laws of Complex System Predictability under Co-evolving Uncertainty Sources: Theory and Nonlinear Geophysical Applications

    Science.gov (United States)

    Perdigão, R. A. P.

    2017-12-01

    Predictability assessments are traditionally made on a case-by-case basis, often by running the particular model of interest with randomly perturbed initial/boundary conditions and parameters, producing computationally expensive ensembles. These approaches provide a lumped statistical view of uncertainty evolution, without eliciting the fundamental processes and interactions at play in the uncertainty dynamics. In order to address these limitations, we introduce a systematic dynamical framework for predictability assessment and forecast, by analytically deriving governing equations of predictability in terms of the fundamental architecture of dynamical systems, independent of any particular problem under consideration. The framework further relates multiple uncertainty sources along with their coevolutionary interplay, enabling a comprehensive and explicit treatment of uncertainty dynamics along time, without requiring the actual model to be run. In doing so, computational resources are freed and a quick and effective a-priori systematic dynamic evaluation is made of predictability evolution and its challenges, including aspects in the model architecture and intervening variables that may require optimization ahead of initiating any model runs. It further brings out universal dynamic features in the error dynamics elusive to any case specific treatment, ultimately shedding fundamental light on the challenging issue of predictability. The formulated approach, framed with broad mathematical physics generality in mind, is then implemented in dynamic models of nonlinear geophysical systems with various degrees of complexity, in order to evaluate their limitations and provide informed assistance on how to optimize their design and improve their predictability in fundamental dynamical terms.

  13. Renewable energy sources project appraisal under uncertainty: the case of wind energy exploitation within a changing energy market environment

    International Nuclear Information System (INIS)

    Venetsanos, K.; Angelopoulou, P.; Tsoutsos, T.

    2002-01-01

    There are four elements, which contribute to the oncoming increase of electricity demand: climate changes, the expected growth rates of EU Member State economies, changes in the consumption patterns and the introduction of new technologies. The new deregulated Electricity Market is expected to respond to this challenge and the energy supply will be adequate and cost effective within this new environment which offers promising opportunities for power producers both existing and newcomers. In this paper a framework for the appraisal of power projects under uncertainty within a competitive market environment is identified, focusing on the electricity from Renewable Energy Sources. To this end the wind energy-to-electricity, production in Greece will serve as a case study. The subject matter is centred on the following areas: the uncertainties within the new deregulated energy market; the evaluation methods including an analysis of the introduced uncertainties after deregulation and a new approach to project evaluation using the real options, as well as comparison of the valuation methodologies within the new environment drawing from the case for Greece. (author)

  14. A Heuristic Algorithm for Constrained Multi-Source Location Problem with Closest Distance under Gauge: The Variational Inequality Approach

    Directory of Open Access Journals (Sweden)

    Jian-Lin Jiang

    2013-01-01

    Full Text Available This paper considers the locations of multiple facilities in the space , with the aim of minimizing the sum of weighted distances between facilities and regional customers, where the proximity between a facility and a regional customer is evaluated by the closest distance. Due to the fact that facilities are usually allowed to be sited in certain restricted areas, some locational constraints are imposed to the facilities of our problem. In addition, since the symmetry of distances is sometimes violated in practical situations, the gauge is employed in this paper instead of the frequently used norms for measuring both the symmetric and asymmetric distances. In the spirit of the Cooper algorithm (Cooper, 1964, a new location-allocation heuristic algorithm is proposed to solve this problem. In the location phase, the single-source subproblem with regional demands is reformulated into an equivalent linear variational inequality (LVI, and then, a projection-contraction (PC method is adopted to find the optimal locations of facilities, whereas in the allocation phase, the regional customers are allocated to facilities according to the nearest center reclassification (NCR. The convergence of the proposed algorithm is proved under mild assumptions. Some preliminary numerical results are reported to show the effectiveness of the new algorithm.

  15. Mantle updrafts and mechanisms of oceanic volcanism

    Science.gov (United States)

    Anderson, Don L.; Natland, James H.

    2014-10-01

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts-consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  16. Mantle updrafts and mechanisms of oceanic volcanism.

    Science.gov (United States)

    Anderson, Don L; Natland, James H

    2014-10-14

    Convection in an isolated planet is characterized by narrow downwellings and broad updrafts--consequences of Archimedes' principle, the cooling required by the second law of thermodynamics, and the effect of compression on material properties. A mature cooling planet with a conductive low-viscosity core develops a thick insulating surface boundary layer with a thermal maximum, a subadiabatic interior, and a cooling highly conductive but thin boundary layer above the core. Parts of the surface layer sink into the interior, displacing older, colder material, which is entrained by spreading ridges. Magma characteristics of intraplate volcanoes are derived from within the upper boundary layer. Upper mantle features revealed by seismic tomography and that are apparently related to surface volcanoes are intrinsically broad and are not due to unresolved narrow jets. Their morphology, aspect ratio, inferred ascent rate, and temperature show that they are passively responding to downward fluxes, as appropriate for a cooling planet that is losing more heat through its surface than is being provided from its core or from radioactive heating. Response to doward flux is the inverse of the heat-pipe/mantle-plume mode of planetary cooling. Shear-driven melt extraction from the surface boundary layer explains volcanic provinces such as Yellowstone, Hawaii, and Samoa. Passive upwellings from deeper in the upper mantle feed ridges and near-ridge hotspots, and others interact with the sheared and metasomatized surface layer. Normal plate tectonic processes are responsible both for plate boundary and intraplate swells and volcanism.

  17. 26 CFR 1.863-8 - Source of income derived from space and ocean activity under section 863(d).

    Science.gov (United States)

    2010-04-01

    ... from sources without the United States to the extent the income, based on all the facts and... income derived by a CFC is income from sources without the United States to the extent the income, based... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Source of income derived from space and ocean...

  18. 26 CFR 1.863-9 - Source of income derived from communications activity under section 863(a), (d), and (e).

    Science.gov (United States)

    2010-04-01

    ... United States pro rata based on the relative amounts of gross income from sources within the United... 26 Internal Revenue 9 2010-04-01 2010-04-01 false Source of income derived from communications... to Taxable Years Prior to December 30, 1996 § 1.863-9 Source of income derived from communications...

  19. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    Science.gov (United States)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    The vigorous Late Devonian-Early Carboniferous plutonic activity in the core of the Bohemian Massif was marked by a transition from normal-K calc-alkaline, arc-related (~375-355 Ma), through high-K calc-alkaline (~346 Ma) to (ultra-)potassic (343-335 Ma) suites, the latter associated with mainly felsic HP granulites enclosing Grt/Spl mantle peridotite bodies. The changing chemistry, especially an increase in K2O/Na2O and 87Sr/86Sri with decrease in 143Nd/144Ndi in the basic end-members, cannot be reconciled by contamination during ascent. Instead it has to reflect the character of the mantle sources, changing over time. The tectonic model invokes an oceanic subduction passing to subduction of the attenuated Saxothuringian crust under the rifted Gondwana margin (Teplá-Barrandian and Moldanubian domains). The deep burial of this mostly refractory felsic metaigneous material is evidenced by the presence of coesite/diamond (Massonne 2001; Kotková et al. 2011) in the detached UHP slices exhumed through the subduction channel and thrusted over the Saxothuringian basement, and by the abundance of felsic HP granulites (> 2.3 GPa), some bearing evidence for small-scale HP melt separation, in the orogen's core (Vrána et al. 2013). The subduction channel was most likely formed by 'dirty' serpentinites contaminated by the melts/fluids derived from the underlying continental-crust slab (Zheng 2012). Upon the passage through the orogenic mantle, the continental crust-slab derived material not only contaminated the adjacent mantle forming small bodies/veins of pyroxenites (Becker 1996), glimmerites (Becker et al. 1999) or even phlogopite- and apatite-bearing peridotites (Naemura et al. 2009) but the felsic HP-HT granulites also sampled the individual peridotite types at various levels. Eventually the subducted felsic material would form an (U)HP continental wedge under the forearc/arc region, to be later redistributed under the Moldanubian crust by channel flow and crustal

  20. The preferential growth of branched GDGT source microorganisms under aerobic conditions in peat revealed by stable isotope probing experiments

    Science.gov (United States)

    Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Derenne, Sylvie; Hinrichs, Kai-Uwe

    2016-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGTs) membrane lipids are widely distributed in aquatic and terrestrial environments and are being increasingly used as temperature proxies. Nevertheless, little is known regarding the microorganisms that produce these lipids, which are found in especially high abundance in the anaerobic horizons of peat bogs. We initiated stable isotope probing incubations of peat samples from a Sphagnum-dominated peatland (Jura Mountains, France) to measure the incorporation of (D)-D2O and 13C-labeled dissolved inorganic carbon (DIC) into brGDGTs, and thus gauge the activity, growth, and turnover times of their source organisms. Peat samples were collected from two adjacent sites with contrasting humidity levels (hereafter called "fen" and "bog" sites). For each site, samples from the surficial aerobic layer (acrotelm) and deeper anaerobic layer (catotelm) were collected and were incubated under both anaerobic and aerobic conditions for the acrotelm samples and only anaerobic conditions for the catotelm. The incubations were performed at 12 ° C, consistent with the mean summer air temperature at the sampling site. After two months of incubation, there was no incorporation of 13C label in brGDGTs for samples incubated under either aerobic or anaerobic conditions, showing that brGDGT-producing bacteria are heterotrophic microorganisms, as previously observed in organo-mineral soils (Weijers et al., 2011). Similarly, little to no deuterium incorporation was observed for brGDGTs isolated from anaerobically-incubated deep samples. In contrast, in the aerobic incubations of acrotelm samples from bog and fen, the weighted average δD of brGDGT core lipids (CLs) increased by up to 3332‰ and 933‰ after two months, respectively, indicating that fresh brGDGT CLs were biosynthesized at the peat surface. D incorporation into brGDGT CLs converted to production rates ranging from 30-106 ng cm-3y-1 in the aerobic acrotelm from bog and fen

  1. Nature of the uppermost mantle below the Porcupine Basin, offshore Ireland: new insights from seismic refraction and gravity data modeling

    Science.gov (United States)

    Prada, M.; Watremez, L.; Chen, C.; O'Reilly, B.; Minshull, T. A.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.

    2015-12-01

    The Porcupine Basin is a tongue-shaped basin SW of Ireland formed during the opening of the North Atlantic Ocean. Its history of sedimentation reveals several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on seismic and gravity data, suggest the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Serpentinization is a key factor in lithospheric extension since it reduces the strength of mantle rocks, and hence, influences the tectonics of the lithosphere. Besides reducing the seismic velocity of the rock, serpentinization decreases mantle rock density favoring isostatic rebound and basin uplift, thus affecting the tectonic and thermal evolution of the basin. Here we characterize the deep structure of the Porcupine Basin from wide-angle seismic (WAS) and gravity data, with especial emphasis on the nature of the underlying mantle. The WAS data used were acquired along a 300 km long transect across the northern region of the basin. We used a travel time inversion method to model the data and obtain a P-wave velocity (Vp) model of the crust and uppermost mantle, together with the geometry of the main geological interfaces. The crustal structure along the model reveals a maximum stretching factor of ~5-6. These values are well within the range of crustal extension at which the crust becomes entirely brittle allowing the formation of major crustal faulting and serpentinization of the mantle. To further constrain the seismic structure and hence the nature of the mantle we assess the Vp uncertainty of the model by means of a Monte Carlo analysis and perform gravity modeling to test different interpretations regarding mantle rock nature. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.

  2. Constraints on Small-scale Heterogeneity in the Lowermost Mantle from Observations of Near Podal PcP Precursors

    Science.gov (United States)

    Zhang, B.; Ni, S.; Sun, D.; Shen, Z.; Jackson, J. M.; Wu, W.

    2017-12-01

    Volumetric heterogeneity on large scales ( >1000 km) and intermediate scales ( >100km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity in the lowermost mantle. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.0%. And then we use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbation of small-scale ( 8 km) heterogeneity in the lowermost mantle is 0.2% beneath regions to the east of China-Myanmar border area, north of Okhotsk Sea and South America. The perturbation is 0.5% beneath south of Okhotsk Sea and west of China-Myanmar border area, whereas strong perturbations ( 1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small scale heterogeneity in lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.

  3. Incorporation of mantle effects in lithospheric stress modeling: the Eurasian plate

    Science.gov (United States)

    Ruckstuhl, K.; Wortel, M. J. R.; Govers, R.; Meijer, P.

    2009-04-01

    The intraplate stress field is the result of forces acting on the lithosphere and as such contains valuable information on the dynamics of plate tectonics. Studies modeling the intraplate stress field have followed two different approaches, with the emphasis either on the lithosphere itself or the underlying convecting mantle. For most tectonic plates on earth one or both methods have been quiet successful in reproducing the large scale stress field. The Eurasian plate however has remained a challenge. A probable cause is that due to the complexity of the plate successful models require both an active mantle and well defined boundary forces. We therefore construct a model for the Eurasian plate in which we combine both modeling approaches by incorporating the effects of an active mantle in a model based on a lithospheric approach, where boundary forces are modeled explicitly. The assumption that the whole plate is in dynamical equilibrium allows for imposing a torque balance on the plate, which provides extra constraints on the forces that cannot be calculated a priori. Mantle interaction is modeled as a shear at the base of the plate obtained from global mantle flow models from literature. A first order approximation of the increased excess pressure of the anomalous ridge near the Iceland hotspot is incorporated. Results are evaluated by comparison with World Stress Map data. Direct incorporation of the sublithospheric stresses from mantle flow modeling in our force model is not possible, due to a discrepancy in the magnitude of the integrated mantle shear and lithospheric forces of around one order of magnitude, prohibiting balance of the torques. This magnitude discrepancy is a well known fundamental problem in geodynamics and we choose to close the gap between the two different approaches by scaling down the absolute magnitude of the sublithospheric stresses. Becker and O'Connell (G3,2,2001) showed that various mantle flow models show a considerable spread in

  4. The Atlas of the Underworld: a catalogue of slab remnants in the mantle imaged by seismic tomography, and their geological interpretation

    Science.gov (United States)

    van der Meer, Douwe; van Hinsbergen, Douwe; Spakman, Wim

    2017-04-01

    Seismic tomography has provided a breakthrough in the analysis of plate tectonic history by allowing to trace now-subducted, ancient lithosphere in the Earth's mantle, where they appear as large positive seismic wave-speed anomalies. Subduction also leaves a geological record that allows for dating the geological period of active subduction. By combining these sources of information, we previously compiled 28 lower-mantle slab remnants and estimated for the timing of onset and end of subduction of these slabs, from which we derived a first-order sinking rate of slabs through the mantle (van der Meer et al., 2010). This constraint on lower mantle slab sinking rates allowed for the development of the first slab mantle reference frame, and was used to constrain of mantle viscosity. Since that first compilation, the plate tectonic and seismological community has made major progress on linking geological history to mantle structure. Slabs were linked to plate tectonic models at regional scale, contributed to understanding of orogenies at local level, and was recently even used as a novel basis for plate kinematic restorations. When analyses were expanded into the Pacific realm it improved our understanding of the presence of seismic scatterers in the sub-Pacific mantle and Pacific LLSVP topography. Expanding the tomographic analysis to a global, whole-mantle scale has led to the calculation of total lateral slab lengths, which was used to calculated corresponding subduction zone lengths through time that provided constraints for plate tectonic activity over the past 235 Myr impacting atmospheric CO2 and providing insights in the link between strontium isotope curves and global sea level. Encouraged by the direct and indirect results of our previous work, we have expanded our analysis to nearly 100 mantle images throughout the upper and lower mantle, which we correlate to 94 subduction systems active in the past 300 Myr. We provide our geological interpretation of these

  5. Inferring global Upper-Mantle Shear Attenuation structure by waveform tomography using the Spectral Element Method

    Science.gov (United States)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-01-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the Spectral Element Method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of 8 iterations (6 for attenuation and 2 for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper-mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high attenuation zone present in the depth range 80-200 km. The final three-dimensional model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200˜250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and back-arcs. Below 250 km, we observe strong attenuation in

  6. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle

    Science.gov (United States)

    Muravyeva, N. S.; Senin, V. G.

    2018-01-01

    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not сumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  7. A Nd and Sr isotopic study of the Trinity peridotite Implications for mantle evolution

    Science.gov (United States)

    Jacobsen, S. B.; Quick, J. E.; Wasserburg, G. J.

    1984-01-01

    Field evidence is reported which indicates that the Trinity peridotite in Northern California was partially melted during its rise as part of the upwelling convecting mantle at a spreading center. A Sm-Nd mineral isochron for a plagioclase Iherzolite yielded an age of about 427 Ma which is significantly higher than that expected for depleted mantle during this period. The age is interpreted as the time of crystallization of trapped melt in the plagioclase Iherzolite P-T field, and probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The Sm-Nd model age of the plagioclase Iherzolite total rock is 3.4 AE. This suggests that the peridotite was derived from a mantle that was depleted early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotropic values are preserved and chemical and physical heterogeneities are sometimes preserved in the depleted source of midocean ridge basalts as well as the oceanic lithosphere which they intrude.

  8. Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient seismic noise

    Science.gov (United States)

    Ryberg, T.; Geissler, W. H.; Jokat, W.; Pandey, S.

    2017-08-01

    According to classical plume theory, the Tristan da Cunha hotspot, located ∼400 km east off the Mid-Atlantic Ridge, is thought to have played a major role in the rifting while creating an aseismic Walvis Ridge during and after the breakup of the South Atlantic margins. Volcanic activity on the Tristan da Cunha Island shows that the hotspot might still be there influencing the upper mantle and crustal structure. In this study we present ambient noise data from 24 broadband OBS around Tristan da Cunha and a seismic station on Nightingale Island, which provide first constraints on the crustal and uppermost mantle structure around the island. By combining ambient noise techniques, dispersion curve analysis of Rayleigh waves, 2D tomographic inversion of travel times and 3D depth inversion of dispersion data we derived a 3D VS velocity model around the archipelago of Tristan da Cunha. The model shows an isolated, vertically sharp bounded thickened and modified crust beneath the islands surrounded by thin oceanic crust (feeding system/magmatic underplating, respectively. The observed simple and localized volcanic structure, embedded in a rather homogeneous crust and upper mantle indicates only minor and very localized magmatic overprinting of the existing lithosphere by the Tristan da Cunha hotspot. The uppermost mantle S wave velocity beneath nearby seamounts and to the SW of the islands is also slow and could indicate a thermal influence from a deeper source, whereas the Tristan da Cunha Fracture Zone shows no signs of modification.

  9. Differential motion between upper crust and lithospheric mantle in the central Basin and Range

    Science.gov (United States)

    Schulte-Pelkum, Vera; Biasi, Glenn; Sheehan, Anne; Jones, Craig

    2011-09-01

    Stretching of the continental crust in the Basin and Range, western USA, has more than doubled the surface area of the central province. But it is unknown whether stretching affects the entire column of lithosphere down to the convecting mantle, if deep extension occurs offset to the side, or if deeper layers are entirely decoupled from the upper crust. The central Basin and Range province is unusual, compared with its northern and southern counterparts: extension began later; volcanism was far less voluminous; and the unique geochemistry of erupted basalts suggests a long-preserved mantle source. Here we use seismic data and isostatic calculations to map lithospheric thickness in the central Basin and Range. We identify an isolated root of ancient mantle lithosphere that is ~125km thick, providing geophysical confirmation of a strong, cold mantle previously inferred from geochemistry. We suggest that the root caused the later onset of extension and prevented the eruption of voluminous volcanism at the surface. We infer that the root initially pulled away from the Colorado Plateau along with the crust, but then was left behind intact during extension across Death Valley to the Sierra Nevada. We conclude that the upper crust is now decoupled from and moving relative to the root.

  10. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia.

    Science.gov (United States)

    Yan, Quanshu; Shi, Xuefa; Metcalfe, Ian; Liu, Shengfa; Xu, Taoyu; Kornkanitnan, Narumol; Sirichaiseth, Thanyapat; Yuan, Long; Zhang, Ying; Zhang, Hui

    2018-02-08

    Intraplate volcanism initiated shortly after the cessation of Cenozoic seafloor spreading in the South China Sea (SCS) region, but the full extent of its influence on the Indochina block has not been well constrained. Here we present major and trace element data and Sr-Nd-Pb-Hf isotope ratios of late Cenozoic basaltic lavas from the Khorat plateau and some volcanic centers in the Paleozoic Sukhothai arc terrane in Thailand. These volcanic rocks are mainly trachybasalts and basaltic trachyandesites. Trace element patterns and Sr-Nd-Pb-Hf isotopic compositions show that these alkaline volcanic lavas exhibit oceanic island basalt (OIB)-like characteristics with enrichments in both large-ion lithophile elements (LILE) and high field strength elements (HFSEs). Their mantle source is a mixture between a depleted Indian MORB-type mantle and an enriched mantle type 2 (EMII). We suggest that the post-spreading intraplate volcanism in the SCS region was induced by a Hainan mantle plume which spread westwards to the Paleozoic Sukhothai arc terrane.

  11. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles

    Science.gov (United States)

    Wilson, L.; Head, J. W., III

    2008-09-01

    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  12. Dihedral angle of carbonatite melts in mantle residue near the upper mantle and transition zone

    Science.gov (United States)

    Ghosh, S. K.; Rohrbach, A.; Schmidt, M. W.

    2015-12-01

    Carbonate melts are thought to be ideal metasomatic agents in the deep upper mantle (Green & Wallace, 1988) and these melts are low in viscosities (10-1-10-3 Pa·s) compared to primitive basalt (101-102 Pa·s), furthermore the ability to form an interconnected grain-edge melt network at low melt fractions (3 GPa (Dasgupta et al. 2006, Ghosh et al., 2009), dissolve a number of geochemically incompatible elements much better than silicate melts (Blundy and Dalton, 2000). Previous studies of carbonate melt dihedral angles in olivine-dominated matrices yielded 25-30oat 1-3 GPa, relatively independent of melt composition (Watson et al., 1990) and temperature (Hunter and McKenzie, 1989). Dihedral angles of carbonate melts in contact with deep mantle silicate phases (e.g. garnet, wadsleyite, and ringwoodite) which constitute more than 70 % of the deep upper mantle and transition zone have not been studied yet. We have performed multi-anvil experiments on carbonate-bearing peridotites with 5.0 wt% CO2 from 13.5 to 20 GPa 1550 oC to investigate the dihedral angle of magnesio-carbonatite melts in equilibrium with garnet, olivine (and its high-pressure polymorphs), and clinoenstatite. The dihedral angle of carbonate melts in the deep upper mantle and transition zone is ~30° for majorite garnet and olivine (and its polymorphs) dominated matrices. It does not change with increasing pressure in the range 13.5-20 GPa. Our results suggest that very low melt fractions of carbonatite melt forming in the deep upper mantle and transition zone are interconnected at melt fractions less than 0.01. Consistent with geophysical observations, this could possibly explain low velocity regions in the deep mantle and transition zone.

  13. Noble Gases And Changing Models Of Mantle Evolution

    Science.gov (United States)

    Ballentine, C. J.; van Keken, P. E.; Porcelli, D.; Hauri, E. H.

    2003-04-01

    The noble gas isotopes recorded in Ocean Island Basalts (OIB) and Mid Ocean Ridge Basalts (MORB) combined with an estimate of ^3He concentration in the upper mantle have played a defining role in the development of models describing the geochemical evolution of the mantle. The three most cited noble gas constraints on a layered mantle system are the Heat/He discrepancy, 40Ar mass balance, and low ^3He concentration (relative to U+Th) in the upper mantle. These are all equally dependant on the validity of integrating the mantle ^3He flux into the oceans (t_frac{1}{2} ˜ 10^3 years) with the record of ocean floor generation (t_frac{1}{2} ˜ 5x10^6 years) to obtain the mantle ^3He concentration. A ^3He concentration 3.5 times higher in the mantle than currently accepted removes these noble gas constraints. A deep reservoir would then no longer be required to: i) trap ^4He produced by U+Th decay but let the associated heat escape; ii) provide a reservoir for the 'missing' 40Ar generated by K decay; and iii) provide a flux of ^3He to balance the ^3He/^4He ratio and U+Th content of the upper mantle. Numerical models simulating whole mantle convection show that natural fluctuations in the Heat/He ratio due to different extraction methods can accommodate the difference between predicted and observed values, while these same models illustrate that the efficiency of mantle 40Ar degassing is low enough to account for the 'missing' 40Ar within the context of whole mantle convection. The simple observation that ^3He/^4He ratios in OIB are higher than MORB nevertheless demands that there is a high ^3He reservoir in the mantle and that the model 'zero paradox' concentration remains the upper limit reference value. While higher upper mantle ^3He concentrations remove the need for a layer at the 670km boundary, mantle models satisfying the noble gases must still provide a system that separates radiogenic Heat from Helium production, preserves a region of the mantle with higher 40Ar

  14. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    Science.gov (United States)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with that of their younger counterparts now represents a highly viscous, stable continental keel. This model could account for the large spectrum of ages observed in fertile to moderately depleted peridotites sampled from lithospheric mantle beneath SE Australia, W Antarctica and other locations in Zealandia, as well as the oceanic mantle. Our data confirm the longevity and dispersal of ancient depleted mantle domains in the convecting mantle and their re-appearance beneath young continents.

  15. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya

    2014-12-01

    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41, 2014, p4-10  

  16. Iron isotope fractionation and the oxygen fugacity of the mantle.

    Science.gov (United States)

    Williams, Helen M; McCammon, Catherine A; Peslier, Anne H; Halliday, Alex N; Teutsch, Nadya; Levasseur, Sylvain; Burg, Jean-Pierre

    2004-06-11

    The oxygen fugacity of the mantle exerts a fundamental influence on mantle melting, volatile speciation, and the development of the atmosphere. However, its evolution through time is poorly understood. Changes in mantle oxidation state should be reflected in the Fe3+/Fe2+ of mantle minerals, and hence in stable iron isotope fractionation. Here it is shown that there are substantial (1.7 per mil) systematic variations in the iron isotope compositions (delta57/54Fe) of mantle spinels. Spinel delta57/54Fe values correlate with relative oxygen fugacity, Fe3+/sigmaFe, and chromium number, and provide a proxy of changes in mantle oxidation state, melting, and volatile recycling.

  17. Five years of the Normal Oceanic Mantle (NOMan) Project

    Science.gov (United States)

    Utada, Hisashi; Kawakatsu, Hitoshi; Shiobara, Hajime; Baba, Kiyoshi; Isse, Takehi; Suetsugu, Daisuke; NOMan Project Team

    2016-04-01

    The Normal Oceanic Mantle (NOMan) project was carried out for 5 years from 2010, aiming to solve two fundamental questions on the 'normal' oceanic mantle from observational approach, which are: (a) Cause of asthenosphere lubrication, and (b) Amount of water in the mantle transition zone. We selected two study areas (A and B) of similar seafloor age (about 130 and 140 Ma, respectively) in the northwestern Pacific Ocean where the mantle below is supposed to be normal. This presentation will give an overview of five years of the NOMan project, especially of its observational activities and a summary of preliminary results so far obtained. In June 2010, we deployed a small array consisting of 5 (both seismic and EM) sites and started data acquisition from area A, which we call the NOMan pilot experiment. The main observation by long-term seafloor arrays in areas A and B was started by two installation cruises carried out in November 2011 and in August 2012, deploying state-of-the-art ocean bottom seismic and electromagnetic instruments (BBOBS-NXs and EFOSs) in area A that are handled by ROV for installation and recovery. Conventional instruments (BBOBS and OBEM of free-fall/self-pop-up type) were also deployed both in areas A and B. Most of instruments of the pilot experiment were recovered by the cruise in August 2012. So-called advanced instruments (BBOBS-NXs and EFOSs) were equipped with batteries sufficient for 2 years of deployment, but conventional instruments (BBOBSs and OBEMs) only for one year or so. Therefore, we conducted a cruise by W/V Kaiyu in August 2013 to maintain the observation array by retrieving and re-deploying respective instruments. In June 2014, we conducted another W/V Kaiyu cruise, in which we recovered most of conventional instruments in area A after conducting a controlled source seismic experiment by using explosive sources. In September 2014, we completed a recovery cruise by R/V Kairei with ROV Kaiko-7000II. By these two cruises

  18. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    Science.gov (United States)

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  19. Linking erosion history and mantle processes in southern Africa

    Science.gov (United States)

    Stanley, J. R.; Braun, J.; Flowers, R. M.; Baby, G.; Wildman, M.; Guillocheau, F.; Robin, C.; Beucher, R.; Brown, R. W.

    2017-12-01

    The large, low relief, high elevation plateau of southern Africa has been the focus of many studies, but there is still considerable debate about how it formed. Lack of tectonic convergence and crustal thickening suggests mantle dynamics play an important role in the evolution of topography there, but the time and specific mechanisms of topographic development are still contested. Many mantle mechanisms of topographic support have been suggested including dynamic topography associated with either deep or shallow mantle thermal anomalies, thermochemical modification of the lithosphere, and plume tails related to Mesozoic magmatic activity. These mechanisms predict different timing and patterns of surface uplift such that better constraints on the uplift history have the potential to constrain the nature of the source of topographic support. Here we test several of these geodynamic hypotheses using a landscape evolution model that is used to predict the erosional response to surface uplift. Several recent studies have provided a clearer picture of the erosion history of the plateau surface and margins using low temperature thermochronology and the geometries of the surrounding offshore depositional systems. Model results are directly compared with these data. We use an inversion method (the Neighborhood Algorithm) to constrain the range in erosional and uplift parameters that can best reproduce the observed data. The combination of different types of geologic information including sedimentary flux, landscape shape, and thermochronolology is valuable for constraining many of these parameters. We show that both the characteristics of the geodynamic forcing as well as the physical characteristics of the eroding plateau have significant control on the plateau erosion patterns. Models that match the erosion history data well suggest uplift of the eastern margin in the Cretaceous ( 100 Ma) followed by uplift of the western margin 20 Myr later. The amplitude of this uplift

  20. Archimedean Proof of the Physical Impossibility of Earth Mantle Convection

    OpenAIRE

    Herndon, J. Marvin

    2010-01-01

    Eight decades ago, Arthur Holmes introducted the idea of mantle convection as a mechanism for continental drift. Five decades ago, continental drift was modified to become plate tectonics theory, which included mantle convection as an absolutely critical component. Using the submarine design and operation concept of "neutral buoyancy", which follows from Archimedes' discoveries, the concept of mantle convection is proven to be incorrect, concomitantly refuting plate tectonics, refuting all ma...

  1. Metastable garnet in oceanic crust at the top of the lower mantle.

    Science.gov (United States)

    Kubo, Tomoaki; Ohtani, Eiji; Kondo, Tadashi; Kato, Takumi; Toma, Motomasa; Hosoya, Tomofumi; Sano, Asami; Kikegawa, Takumi; Nagase, Toshiro

    As oceanic tectonic plates descend into the Earth's lower mantle, garnet (in the basaltic crust) and silicate spinel (in the underlying peridotite layer) each decompose to form silicate perovskite-the 'post-garnet' and 'post-spinel' transformations, respectively. Recent phase equilibrium studies have shown that the post-garnet transformation occurs in the shallow lower mantle in a cold slab, rather than at approximately 800 km depth as earlier studies indicated, with the implication that the subducted basaltic crust is unlikely to become buoyant enough to delaminate as it enters the lower mantle. But here we report results of a kinetic study of the post-garnet transformation, obtained from in situ X-ray observations using sintered diamond anvils, which show that the kinetics of the post-garnet transformation are significantly slower than for the post-spinel transformation. Although metastable spinel quickly breaks down at a temperature of 1,000 K, we estimate that metastable garnet should survive of the order of 10 Myr even at 1,600 K. Accordingly, the expectation of where the subducted oceanic crust would be buoyant spans a much wider depth range at the top of the lower mantle, when transformation kinetics are taken into account.

  2. Transport properties of CO2-bearing MgSiO3 melt at mantle conditions

    Science.gov (United States)

    Ghosh, D. B.; Karki, B. B.

    2017-12-01

    Carbon dioxide, generally considered as the second most abundant volatile component in silicate magmas, is expected to significantly influence various melt properties. In particular, our knowledge about its dynamical effects is lacking over most of the Earth's mantle pressure regime. Here we report the first-principles molecular dynamics results on the transport properties of carbonated MgSiO3 liquid under the conditions of mantle relevance. They show that dissolved CO2 systematically enhances the diffusion rates of all elements and the associated electrical conductivity and lowers the melt viscosity on average by factors of 1.5 to 3 over the pressure range considered. They also predict anomalous dynamical behavior - increasing diffusivity and conductivity, and decreasing viscosity with compression in the low pressure regime. We attempt to link the predicted transport coefficients to the microsocopic structural changes that occur in response to pressure and temperature. This anomaly and the concomitant increase of pressure and temperature with depth together make these transport coefficients vary modestly over extended portions of the mantle regime. It is possible that the melt electrical conductivity at conditions corresponding to the 410 and 660 km seismic discontinuities is at a detectable level by electromagnetic sounding observation. Also, the low melt viscosity values 0.2-0.5 Pa s at these depths and near the core-mantle boundary may imply high mobility of possible melts in these regions.

  3. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    Science.gov (United States)

    Scott, J. M.; Hodgkinson, A.; Palin, J. M.; Waight, T. E.; Van der Meer, Q. H. A.; Cooper, A. F.

    2014-01-01

    Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand preserve evidence of the complex evolution of the underlying continental mantle lithosphere. Spinel Cr# records melt extraction with some values indicative of near complete removal of clinopyroxene. LREE-enriched, low Ti/Eu and low Al2O3 clinopyroxene and rare F-, LREE-rich apatite indicates subsequent interaction between peridotite and a metasomatising carbonatitic melt. The clearest metasomatic signature occurs in the formerly highly depleted samples because there was little or no pre-existing clinopyroxene to dilute the carbonatite signature. For the same reason, the isotopic character of the metasomatising agent is best observed in the formerly highly depleted peridotites (87Sr/86Sr = 0.7028-0.7031; 143Nd/144Nd = 0.5129; 206Pb/204Pb = 20.2-20.3). These isotope ratios are very close to, but slightly less radiogenic than, the HIMU end-member mantle reservoir. Nd isotope data imply carbonatite metasomatism occurred within the last several hundred million years, with ubiquitous pyroxene core-to-rim Al diffusion zoning indicating that it must pre-date cooling of the lithospheric mantle following Late Cretaceous-Eocene rifting of Zealandia from Gondwana. Metasomatism was significantly younger than ancient Re-depletion ages of ~2 Ga and shows that decoupling of peridotite isotope systems has occurred.

  4. Long wavelength mantle transition zone structure beneath Europe as seen by Pds receiver functions

    Science.gov (United States)

    Cottaar, Sanne; Deuss, Arwen

    2015-04-01

    The mantle is delineated by seismic discontinuities between 300 and 800 km depth. Variations in topography, width and occurrence of the discontinuities indicate lateral variations in temperature, composition and water content, as these variations influence the mantle phase transitions. Seismic studies of the conversions of pressure to shear waves (Pds phases) are an important tool to observe lateral variations in these discontinuities. Here we collect a Pds data set across all European seismic stations since 2000 that are available through ORFEUS or IRIS; resulting in ~500,000 event-station pairs. We deconvolve the radial component by the vertical component - assumed to represent the source component- using the iterative deconvolution method to obtain receiver functions. We assess the quality of a receiver function by the signal-to-noise ratio and by evaluating how well the radial component is reproduced when reconvolving the receiver function with the vertical component. This results in ~45,000 high quality receiver functions across Europe. Here we present the large scale variations in the discontinuities around 410 and 660 km across Europe. The seismic discontinuities beneath the Eastern European craton show little topography and the mantle transition zone thickness is thinner compared to the thickness beneath the rest of Europe. Observing discontinuities within the mantle transition zone is complicated by arriving reverberations from strong shallow structure of the craton. The mantle transition zone around the Mediterranean is thicker and a lot more complexities are observed. The main discontinuities are generally weaker, and other discontinuities around 300 km and a negative jump around 600 km are observed.

  5. Constitution and structure of earth's mantle

    DEFF Research Database (Denmark)

    Zunino, Andrea; Khan, Amir; Cupillard, Paul

    2016-01-01

    This chapter describes a quantitative approach that integrates data and results from mineral physics, petrological analyses, and geophysical inverse calculations to map geophysical data directly for mantle composition and thermal state. Seismic tomography has proved an important tool to image...... seismic data. There is a growing consensus that the cause of the imaged wavespeed anomalies not only relates to variations in temperature, but also bears a strong compositional component. However, separation of thermal and chemical effects from seismic wave speeds alone is difficult and is further...

  6. MicroRNAs in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Husby, Simon; Geisler, Christian; Grønbæk, Kirsten

    2013-01-01

    Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma. New treatment modalities, including intensive induction regimens with immunochemotherapy and autologous stem cell transplant, have improved survival. However, many patients still relapse, and there is a need...... for novel therapeutic strategies. Recent progress has been made in the understanding of the role of microRNAs (miRNAs) in MCL. Comparisons of tumor samples from patients with MCL with their normal counterparts (naive B-cells) have identified differentially expressed miRNAs with roles in cellular growth...

  7. Effect of phase transformations on microstructures in deep mantle materials

    Science.gov (United States)

    Merkel, Sébastien; Langrand, Christopher; Rosa, Angelika; Hilairet, Nadège

    2017-04-01

    Phase transformations induce microstructural changes in deep Earth materials, including changes in grain size and orientation distribution. The effect of phase transformations on mineral microstructures is usually studied using electron microscopy on quench products from high P/T experiments. The method allows for a precise evaluation of the microscopic mechanisms involved. It is limited, however, to samples that can be quenched to ambient conditions and allows for investigations at a single P/T point for each experiment. In recent years, we extended the use of multigrain crystallography to samples inside diamond anvil cells under mantle P/T conditions. The method allows for monitoring the orientations of hundreds of grains and grain size variations during various physical processes, such as plastic deformation and successions of phase transformations (Rosa et al 2015, Langrand et al 2017). Here, we will show results concerning hydrous Mg2SiO4 during the series of α-β-γ phase transformations up to 40 GPa and 850 °C. Such results are important to understand the descending behaviour of subducted slabs, observations of seismic anisotropy, and polarity changes for seismic waves reflected of deep Earth interfaces. The data is used to asses the effect of the transformation on grain orientation and grain sizes. In particular, we do not observe orientation relationships between the parent α-phase and the daughter β-phase phase, suggesting an incoherent growth. We also observe significant grain size reductions and only little grain growth within the newly formed phases (Rosa et al 2016). These new results are important for understanding the mechanical behavior of subducting slabs, seismic anisotropy in the Earth's mantle, and phase transformation mechanisms in olivine. Now that it is validated, the method can also be applied to other phases that can not be studied using electron microscopy, such as perovskite and post-perovskite. Langrand, Hilairet, Nisr, Roskosz, Rib

  8. Diffusion creep in the mantle may create and maintain anisotropy

    Science.gov (United States)

    Wheeler, John

    2014-05-01

    Diffusion creep is thought to play an important role in lower mantle deformation and hence must be understood in detail if Earth behaviour is to be explained. It is commonly claimed that diffusion creep gives rise to equant grain shapes and destroys any crystallographic preferred orientation (CPO), so all physical properties would be isotropic. Some experiments on olivine support the first assertion but other minerals, and polyphase rocks, commonly show inequant grain shapes in nature and experiment even when diffusion creep is thought to be a major contribution to strain. Numerical models allow rigorous exploration of the effects of deformation under conditions not easily reached in experiments. A numerical model named 'DiffForm' (Wheeler & Ford 2007) gives insight into how grain shapes and microstructures evolve during diffusion creep. Modelling shows that whilst grains may initially rotate in apparently chaotic fashion during diffusion creep, such rotations slow down as grains become inequant. Consequently, an initial CPO (formed, for example, by dislocation creep at higher strain rates) will be decreased in intensity but not destroyed. Seismic anisotropy will decrease but not disappear (Wheeler 2009). Diffusion creep is also predicted to have intense mechanical anisotropy. In simple models diffusion creep is controlled entirely by diffusion and sliding along grain boundaries; there is no crystallographic influence. An aggregate of equant grains must then be mechanically isotropic, but a model microstructure with inequant grains has marked mechanical anisotropy (Wheeler 2010) - an effect related to the fact that grain boundary sliding is an intrinsic part of diffusion creep. That work was based on a very simple microstructure with a single inequant grain shape but I present here new results showing that for more complicated microstructures, mechanical anisotropy is intense even for quite modest grain elongations. There will be feedback between strain and

  9. Electromagnetic exploration of the oceanic mantle.

    Science.gov (United States)

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  10. Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust and Upper Mantle

    Directory of Open Access Journals (Sweden)

    Zhi Wang

    2012-01-01

    Full Text Available Our seismic study together with the MT analysis reveal a “R-shape” flow existing in both the lower crust and uppermost mantle, which suggests the crustal deformation along the deep, large sutures (such as the Longmen Shan fault and the Anninghe Fault under the southeastern Tibetan Plateau is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep orogenic belt through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones beneath the southeastern Tibetan Plateau.

  11. Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions

    Science.gov (United States)

    Wanless, V. D.; Behn, M. D.; Shaw, A. M.; Plank, T.

    2014-05-01

    We present major element, trace element, and volatile concentrations from 66 naturally glassy, olivine-hosted melt inclusions erupted along the Eastern Volcanic Zone (EVZ) of the ultraslow-spreading Gakkel Ridge. Melt inclusion compositions suggest that there are systematic variations in the mantle source composition and melting dynamics from the eastern to the western end of the EVZ. This includes increasing water contents and highly incompatible trace element concentrations (e.g., Ba and Nb) and decreasing light and middle rare earth element concentrations. Ratios of light to heavy rare earth elements in the easternmost melt inclusions are relatively homogeneous, but become more variable to the west. To determine the source of the geochemical variability observed along the EVZ, we model trace elements associated with mantle melting in one- and two-component systems. We consider four possible mantle sources and a range of melting regime shapes, from a full melting triangle to a vertical melting column centered beneath the ridge axes. The observed geochemical variations can be explained by melting of a heterogeneous mantle source composed of depleted MORB mantle plus a metasomatized mantle, where the proportion of the metasomatized component and the extent of melting increases toward the west. Lower rare earth element concentrations and trace element ratios in the westernmost sites also suggest inefficient melt focusing from the outer edges of the melting region. Our results indicate that despite variations in the size of the melting zone and the composition of the mantle source along the ridge axis, the region over which the melts are pooled back to the ridge axis is relatively constant (~10-20 km), suggesting that there is a limit to the distance melts can be transported from off-axis in ultraslow-spreading environments.

  12. Mantle peridotite in newly discovered far-inland subduction complex, southwest Arizona: Initial report

    Science.gov (United States)

    Haxel, Gordon B.; Jacobson, Carl E.; Wittke, James H.

    2015-01-01

    The latest Cretaceous to early Palaeogene Orocopia Schist and related units are generally considered a low-angle subduction complex that underlies much of southern California and Arizona. A recently discovered exposure of Orocopia Schist at Cemetery Ridge west of Phoenix, Arizona, lies exceptionally far inland from the continental margin. Unexpectedly, this body of Orocopia Schist contains numerous blocks, as large as ~300 m, of variably serpentinized mantle peridotite. These are unique; elsewhere in the Orocopia and related schists, peridotite is rare and completely serpentinized. Peridotite and metaperidotite at Cemetery Ridge are of three principal types: (1) serpentinite and tremolite serpentinite, derived from dunite; (2) partially serpentinized harzburgite and olivine orthopyroxenite (collectively, harzburgite); and (3) granoblastic or schistose metasomatic rocks, derived from serpentinite, made largely of actinolite, calcic plagioclase, hercynite, and chlorite. In the serpentinite, paucity of relict olivine, relatively abundant magnetite (5%), and elevated Fe3+/Fe indicate advanced serpentinization. Harzburgite contains abundant orthopyroxene, only slightly serpentinized, and minor to moderate (1–15%) relict olivine. Mantle tectonite fabric is locally preserved. Several petrographic and geochemical characteristics of the peridotite at Cemetery Ridge are ambiguously similar to either abyssal or mantle-wedge (suprasubduction) peridotites and serpentinites. Least ambiguous are orthopyroxene compositions. Orthopyroxene is distinctively depleted in Al2O3, Cr2O3, and CaO, indicating mantle-wedge affinities. Initial interpretation of field and petrologic data suggests that the peridotite blocks in the Orocopia Schist subduction complex at Cemetery Ridge may be derived from the leading corner or edge of a mantle wedge, presumably in (pre-San Andreas fault) southwest California. However, derivation from a subducting plate is not precluded.

  13. How Mercury can be the most reduced terrestrial planet and still store iron in its mantle

    Science.gov (United States)

    Malavergne, Valérie; Cordier, Patrick; Righter, Kevin; Brunet, Fabrice; Zanda, Brigitte; Addad, Ahmed; Smith, Thomas; Bureau, Hélène; Surblé, Suzy; Raepsaet, Caroline; Charon, Emeline; Hewins, Roger H.

    2014-05-01

    Mercury is notorious as the most reduced planet with the highest metal/silicate ratio, yet paradoxically data from the MESSENGER spacecraft show that its iron-poor crust is high in sulfur (up to ˜6 wt%, ˜80× Earth crust abundance) present mainly as Ca-rich sulfides on its surface. These particularities are simply impossible on the other terrestrial planets. In order to understand the role played by sulfur during the formation of Mercury, we investigated the phase relationships in Mercurian analogs of enstatite chondrite-like composition experimentally under conditions relevant to differentiation of Mercury (˜1 GPa and 1300-2000 °C). Our results show that Mg-rich and Ca-rich sulfides, which both contain Fe, crystallize successively from reduced silicate melts upon cooling below 1550 °C. As the iron concentration in the reduced silicates stays very low (≪1 wt%), these sulfides represent new host phases for both iron and sulfur in the run products. Extrapolated to Mercury, these results show that Mg-rich sulfide crystallization provides the first viable and fundamental means for retaining iron as well as sulfur in the mantle during differentiation, while sulfides richer in Ca would crystallize at shallower levels. The distribution of iron in the differentiating mantle of Mercury was mainly determined by its partitioning between metal (or troilite) and Mg-Fe-Ca-rich sulfides rather than by its partitioning between metal (or troilite) and silicates. Moreover, the primitive mantle might also be boosted in Fe by a reaction at the core mantle boundary (CMB) between Mg-rich sulfides of the mantle and FeS-rich outer core materials to produce (Fe, Mg)S. The stability of Mg-Fe-Ca-rich sulfides over a large range of depths up to the surface of Mercury would be consistent with sulfur, calcium and iron abundances measured by MESSENGER.

  14. Modelling of Equilibrium Between Mantle and Core: Refractory, Volatile, and Highly Siderophile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.

    2013-01-01

    Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.

  15. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  16. Multiple mantle upwellings through the transition zone beneath th