Sample records for underlying mantle flow

  1. Kinematics and flow patterns in deep mantle and upper mantle subduction models : Influence of the mantle depth and slab to mantle viscosity ratio

    NARCIS (Netherlands)

    Schellart, W. P.

    Three-dimensional fluid dynamic laboratory simulations are presented that investigate the subduction process in two mantle models, an upper mantle model and a deep mantle model, and for various subducting plate/mantle viscosity ratios (ηSP/ηM = 59-1375). The models investigate the mantle flow field,

  2. Mantle flow influence on subduction evolution (United States)

    Chertova, Maria V.; Spakman, Wim; Steinberger, Bernhard


    The impact of remotely forced mantle flow on regional subduction evolution is largely unexplored. Here we investigate this by means of 3D thermo-mechanical numerical modeling using a regional modeling domain. We start with simplified models consisting of a 600 km (or 1400 km) wide subducting plate surrounded by other plates. Mantle inflow of ∼3 cm/yr is prescribed during 25 Myr of slab evolution on a subset of the domain boundaries while the other side boundaries are open. Our experiments show that the influence of imposed mantle flow on subduction evolution is the least for trench-perpendicular mantle inflow from either the back or front of the slab leading to 10-50 km changes in slab morphology and trench position while no strong slab dip changes were observed, as compared to a reference model with no imposed mantle inflow. In experiments with trench-oblique mantle inflow we notice larger effects of slab bending and slab translation of the order of 100-200 km. Lastly, we investigate how subduction in the western Mediterranean region is influenced by remotely excited mantle flow that is computed by back-advection of a temperature and density model scaled from a global seismic tomography model. After 35 Myr of subduction evolution we find 10-50 km changes in slab position and slab morphology and a slight change in overall slab tilt. Our study shows that remotely forced mantle flow leads to secondary effects on slab evolution as compared to slab buoyancy and plate motion. Still these secondary effects occur on scales, 10-50 km, typical for the large-scale deformation of the overlying crust and thus may still be of large importance for understanding geological evolution.

  3. Improved design of mantle tanks for small low flow SDHW systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren


    Side-by-side tests of two small low flow SDHW systems based on mantle tanks have been carried out under the same test conditions in a laboratory test facility. The systems are identical with exception of the mantle tanks. One of the mantle tanks has the mantle inlet port located at the top of the...... improved by relatively simple design changes: increasing the height/diameter ratio, reducing the mantle height and increasing the insulation thickness on the sides of t he tank.......Side-by-side tests of two small low flow SDHW systems based on mantle tanks have been carried out under the same test conditions in a laboratory test facility. The systems are identical with exception of the mantle tanks. One of the mantle tanks has the mantle inlet port located at the top...... of the mantle and the other mantle tank has the mantle inlet port moved 0.175 m down from the top of the mantle. The thermal performance is almost the same for the two systems in the measuring period of 252 days. The solar fractions were 0.66 and 0.68 for the two systems. The tests showed also that the system...


    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon


    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... programme that simulates the thermal behaviour of low flow SDHW systems. The yearly thermal performance of low flow SDHW systems with different designed mantle tanks has been calculated. The influence of the mantle tank design on the thermal performance is investigated by means of the calculations...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...

  5. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan


    One of the most robust results from tomographic studies is the existence of two antipodally located Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle, which appear to be chemically denser than the ambient mantle. Results from reconstruction studies (Torsvik et al., 2006) infer that the LLSVPs are stable, long-lived, and are sampled by deep mantle plumes that rise predominantly from their margins. The origin of the dense material is debated, but generally falls within three categories: (i) a primitive layer that formed during magma ocean crystallization, (ii) accumulation of a dense eclogitic component from the recycled oceanic crust, and (iii) outer core material leaking into the lower mantle. A dense layer underlying a less dense ambient mantle is gravitationally stable. However, the flow due to thermal density variations, i.e. hot rising plumes and cold downwelling slabs, may deform the layer into piles with higher topography. Further deformation may lead to entrainment of the dense layer, its mixing with the ambient material, and even complete homogenisation with the rest of the mantle. The amount of the anomalous LLSVP-material that gets entrained into the rising plumes poses a constraint on the survival time of the LLSVPs, as well as on the plume buoyancy, on the lithospheric uplift associated with plume interaction and geochemical signature of the erupted lavas observed at the Earth's surface. Recent estimates for the plume responsible for the formation of the Siberian Flood Basalts give about 15% of entrained dense recycled oceanic crust, which made the hot mantle plume almost neutrally buoyant (Sobolev et al., 2011). In this numerical study we investigate the mechanics of entrainment of a dense basal layer by convective mantle flow. We observe that the types of flow that promote entrainment of the dense layer are (i) upwelling of the dense layer when it gets heated enough to overcome its stabilizing chemical density anomaly, (ii

  6. Upper mantle flow in the western Mediterranean

    International Nuclear Information System (INIS)

    Panza, G.F.; Raykova, R.; Carminati, E.; Doglioni, C.


    Two cross-sections of the western Mediterranean Neogene-to-present backarc basin are presented, in which geological and geophysical data of the Transmed project are tied to a new shear-wave tomography. Major results are i) the presence of a well stratified upper mantle beneath the older African continent, with a marked low-velocity layer between 130-200 km of depth; ii) the dilution of this layer within the younger western Mediterranean backarc basin to the north, and iii) the easterly raising of a shallower low-velocity layer from about 140 km to about 30 km in the Tyrrhenian active part of the backarc basin. These findings suggest upper mantle circulation in the western Mediterranean backarc basin, mostly easterly-directed and affecting the boundary between upper asthenosphere (LVZ) and lower asthenosphere, which undulates between about 180 km and 280 km. (author)

  7. Seismic anisotropy and mantle flow below subducting slabs (United States)

    Walpole, Jack; Wookey, James; Kendall, J.-Michael; Masters, T.-Guy


    Subduction is integral to mantle convection and plate tectonics, yet the role of the subslab mantle in this process is poorly understood. Some propose that decoupling from the slab permits widespread trench parallel flow in the subslab mantle, although the geodynamical feasibility of this has been questioned. Here, we use the source-side shear wave splitting technique to probe anisotropy beneath subducting slabs, enabling us to test petrofabric models and constrain the geometry of mantle fow. Our global dataset contains 6369 high quality measurements - spanning ∼ 40 , 000 km of subduction zone trenches - over the complete range of available source depths (4 to 687 km) - and a large range of angles in the slab reference frame. We find that anisotropy in the subslab mantle is well characterised by tilted transverse isotropy with a slow-symmetry-axis pointing normal to the plane of the slab. This appears incompatible with purely trench-parallel flow models. On the other hand it is compatible with the idea that the asthenosphere is tilted and entrained during subduction. Trench parallel measurements are most commonly associated with shallow events (source depth slab. This may correspond to the shape preferred orientation of cracks, fractures, and faults opened by slab bending. Meanwhile the deepest events probe the upper lower mantle where splitting is found to be consistent with deformed bridgmanite.

  8. Comparison of gravimetric and mantle flow solutions for lithospheric stress modelling and their combination (United States)

    Eshagh, Mehdi; Steinberger, Bernhard; Tenzer, Robert; Tassara, Andrés


    Based on Hager and O'Connell's solution to mantle flow equations the stresses induced by mantle convection are determined using the density and viscosity structure in addition to topographic data and a plate velocity model. The solution to mantle flow equations requires the knowledge of mantle properties that are typically retrieved from seismic information. Large parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative method of modelling the stress field was introduced by Runcorn. He formulated a direct relation between the stress field and gravity data while adopting several assumptions, particularly disregarding the toroidal mantle flow component and mantle viscosity variations. A possible way to overcome theoretical deficiencies of Runcorn's theory as well as some practical limitations of applying Hager and O'Connell's theory (in the absence of seismic data) is to combine these two methods. In this study we apply a least-squares analysis to combine these two methods based on the gravity data inversion constraint on mantle flow equations. In particular, we use vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer (GOCE) that are corrected for the gravitational contribution of crustal density heterogeneities prior to applying a localized gravity-gradient inversion. This gravitational contribution is estimated based on combining the Vening Meinesz-Moritz (VMM) and flexural isostatic theories. Moreover, we treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equation during the inversion. In numerical studies of modelling the stress field within the South American continental lithosphere we compare the results obtained after applying Runcorn and Hager and O'Connell's methods as well as their combination. The results show that, according to Hager and O'Connell's (mantle flow) solution, the maximum stress intensity is inferred under the northern

  9. The Role of Deep Mantle Flow in Shaping the Hawaiian-Emperor Bend (United States)

    Hassan, R.; Müller, D.; Gurnis, M.; Williams, S.; Flament, N. E.


    Age-progressive volcanic hotspot tracks are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth's mantle. Seismic imaging reveals that these plumes can be of deep origin, potentially rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. The north Pacific features long-lasting subduction systems, unlike those in the south Pacific. We present palaeogeographically-constrained numerical models of thermochemical convection demonstrating that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 Ma and 50 Ma. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. We show that the different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 Ma and 50 Ma. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  10. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow (United States)

    Hassan, Rakib; Müller, R. Dietmar; Gurnis, Michael; Williams, Simon E.; Flament, Nicolas


    Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth’s mantle. Seismic imaging reveals that these plumes can be of deep origin—probably rooted on thermochemical structures in the lower mantle. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian-Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian-Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian-Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

  11. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M


    Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...

  12. Structural Heterogeneities in Southeast Tibet: Implications for Regional Flow in the Lower Crust and Upper Mantle

    Directory of Open Access Journals (Sweden)

    Zhi Wang


    Full Text Available Our seismic study together with the MT analysis reveal a “R-shape” flow existing in both the lower crust and uppermost mantle, which suggests the crustal deformation along the deep, large sutures (such as the Longmen Shan fault and the Anninghe Fault under the southeastern Tibetan Plateau is maintained by dynamic pressure from the regional flow intermingled with the hot upwelling asthenosphere. The material in the lower crust and uppermost mantle flowing outward from the center of the plateau is buttressed by the old, strong lithosphere that underlies the Sichuan basin, pushing up on the crust above and maintaining steep orogenic belt through dynamic pressure. We therefore consider that the “R-shape” regional flow played a key role in the crustal deformation along the deep suture zones of the Bangong-Nujiang, the Longmen-Shan faults, and other local heavily faulted zones beneath the southeastern Tibetan Plateau.

  13. P-wave anisotropy, mantle wedge flow and olivine fabrics beneath Japan (United States)

    Liu, Xin; Zhao, Dapeng


    We present a new 3-D anisotropic P-wave velocity (Vp) model for the crust and upper mantle of the Japan subduction zone obtained by inverting a large number of high-quality P-wave traveltime data of local earthquakes and teleseismic events. By assuming orthorhombic anisotropy with a vertical symmetry axis existing in the modeling space, isotropic Vp tomography and 3-D Vp azimuthal and radial anisotropies are determined simultaneously. According to a simple flow field and the obtained Vp anisotropic tomography, we estimate the distribution of olivine fabrics in the mantle wedge. Our results show that the forearc mantle wedge above the subducting Pacific slab beneath NE Japan exhibits an azimuthal anisotropy with trench-parallel fast velocity directions (FVDs) and Vhf > Vv > Vhs (here Vv is Vp in the vertical direction, Vhf and Vhs are P-wave velocities in the fast and slow directions in the horizontal plane), where B-type olivine fabric with vertical trench-parallel flow may dominate. Such an anisotropic feature is not obvious in the forearc mantle wedge above the Philippine Sea (PHS) slab under SW Japan, probably due to higher temperatures and more fluids there associated with the young and warm PHS slab subduction. Trench-normal FVDs and Vhf > Vv > Vhs are generally revealed in the mantle wedge beneath the arc and backarc in Japan, where E-type olivine fabric with FVD-parallel horizontal flow may dominate. Beneath western Honshu, however, the mantle wedge exhibits an anisotropy of Vv > Vhf > Vhs and so C-type olivine fabric may dominate, suggesting that the water content is the highest there, because both the PHS and Pacific slabs exist there and their dehydration reactions release abundant fluids to the overlying mantle wedge.

  14. Deformation, Fluid Flow and Mantle Serpentinization at Oceanic Transform Faults (United States)

    Rupke, L.; Hasenclever, J.


    Oceanic transform faults (OTF) and fracture zones have long been hypothesized to be sites of enhanced fluid flow and biogeochemical exchange. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting. The transformation of peridotite to serpentinite not only leads to hydration of oceanic plates and is thereby an important agent of the geological water cycle, it is also a mechanism of abiotic hydrogen and methane formation, which can support archeal and bacterial communities at the seafloor. Inferring the likely amount of mantle undergoing serpentinization reactions therefore allows estimating the amount of biomass that may be autotrophically produced at and around oceanic transform faults and mid-ocean ridges Here we present results of 3-D geodynamic model simulations that explore the interrelations between deformation, fluid flow, and mantle serpentinization at oceanic transform faults. We investigate how slip rate and fault offset affect the predicted patterns of mantle serpentinization around oceanic transform faults. Global rates of mantle serpentinization and associated H2 production are calculated by integrating the modeling results with plate boundary data. The global additional OTF-related production of H2 is found to be between 6.1 and 10.7 x 1011 mol per year, which is comparable to the predicted background mid-ocean ridge rate of 4.1 - 15.0 x 1011 mol H2/yr. This points to oceanic transform faults as potential sites of intense fluid-rock interaction, where chemosynthetic life could be sustained by serpentinization reactions.

  15. Experimental investigation of flow-induced fabrics in rocks at upper-mantle pressures. Application to understanding mantle dynamics and seismic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Durham, William B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA), to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitatively describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.-

  16. Experimental investigation of flow-induced fabrics in rocks at upper-mantle pressures: Application to understanding mantle dynamics and seismic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Kohlstedt, David L. [Univ. of Minnesota, Minneapolis, MN (United States)


    The goal of this collaborative research effort between W.B. Durham at the Massachusetts Institute of Technology (MIT) and D.L. Kohlstedt and S. Mei at the University of Minnesota (UMN) was to exploit a newly developed technology for high-pressure, high-temperature deformation experimentation, namely, the deformation DIA (D-DIA) to determine the deformation behavior of a number of important upper mantle rock types including olivine, garnet, enstatite, and periclase. Experiments were carried out under both hydrous and anhydrous conditions and at both lithospheric and asthenospheric stress and temperature conditions. The result was a group of flow laws for Earth’s upper mantle that quantitatively describe the viscosity of mantle rocks from shallow depths (the lithosphere) to great depths (the asthenosphere). These flow laws are fundamental for modeling the geodynamic behavior and heat transport from depth to Earth’s surface.

  17. Improved design of mantle tanks for small low flow SDHW systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren


    of the mantle and the other mantle tank has the mantle inlet port moved 0.175 m down from the top of the mantle. The thermal performance is almost the same for the two systems in the measuring period of 252 days. The solar fractions were 0.66 and 0.68 for the two systems. The tests showed also that the system...... with the low mantle inlet perform better than the system with the high mantle inlet in periods with low solar fractions, that is in less sunny periods. Further, calculations with a simulation model for low flow SDHW systems based on mantle tanks showed that mantle tanks currently marketed can be greatly...... improved by relatively simple design changes: increasing the height/diameter ratio, reducing the mantle height and increasing the insulation thickness on the sides of t he tank....

  18. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price


    Full Text Available Orbital thermal infrared (TIR remote sensing is an important tool for characterizing geologic surfaces on Earth and Mars. However, deposition of material from volcanic or eolian activity results in bedrock surfaces becoming significantly mantled over time, hindering the accuracy of TIR compositional analysis. Moreover, interplay between particle size, albedo, composition and surface roughness add complexity to these interpretations. Apparent Thermal Inertia (ATI is the measure of the resistance to temperature change and has been used to determine parameters such as grain/block size, density/mantling, and the presence of subsurface soil moisture/ice. Our objective is to document the quantitative relationship between ATI derived from orbital visible/near infrared (VNIR and thermal infrared (TIR data and tephra fall mantling of the Mono Craters and Domes (MCD in California, which were chosen as an analog for partially mantled flows observed at Arsia Mons volcano on Mars. The ATI data were created from two images collected ~12 h apart by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER instrument. The results were validated with a quantitative framework developed using fieldwork that was conducted at 13 pre-chosen sites. These sites ranged in grain size from ash-sized to meter-scale blocks and were all rhyolitic in composition. Block size and mantling were directly correlated with ATI. Areas with ATI under 2.3 × 10−2 were well-mantled with average grain size below 4 cm; whereas values greater than 3.0 × 10−2 corresponded to mantle-free surfaces. Correlation was less accurate where checkerboard-style mixing between mantled and non-mantled surfaces occurred below the pixel scale as well as in locations where strong shadowing occurred. However, the results validate that the approach is viable for a large majority of mantled surfaces on Earth and Mars. This is relevant for determining the volcanic history of Mars, for

  19. Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot (United States)

    Nelson, P.; Grand, S.


    The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.

  20. Quantitative assessments of mantle flow models against seismic observations: Influence of uncertainties in mineralogical parameters (United States)

    Schuberth, Bernhard S. A.


    One of the major challenges in studies of Earth's deep mantle is to bridge the gap between geophysical hypotheses and observations. The biggest dataset available to investigate the nature of mantle flow are recordings of seismic waveforms. On the other hand, numerical models of mantle convection can be simulated on a routine basis nowadays for earth-like parameters, and modern thermodynamic mineralogical models allow us to translate the predicted temperature field to seismic structures. The great benefit of the mineralogical models is that they provide the full non-linear relation between temperature and seismic velocities and thus ensure a consistent conversion in terms of magnitudes. This opens the possibility for quantitative assessments of the theoretical predictions. The often-adopted comparison between geodynamic and seismic models is unsuitable in this respect owing to the effects of damping, limited resolving power and non-uniqueness inherent to tomographic inversions. The most relevant issue, however, is related to wavefield effects that reduce the magnitude of seismic signals (e.g., traveltimes of waves), a phenomenon called wavefront healing. Over the past couple of years, we have developed an approach that takes the next step towards a quantitative assessment of geodynamic models and that enables us to test the underlying geophysical hypotheses directly against seismic observations. It is based solely on forward modelling and warrants a physically correct treatment of the seismic wave equation without theoretical approximations. Fully synthetic 3-D seismic wavefields are computed using a spectral element method for 3-D seismic structures derived from mantle flow models. This way, synthetic seismograms are generated independent of any seismic observations. Furthermore, through the wavefield simulations, it is possible to relate the magnitude of lateral temperature variations in the dynamic flow simulations directly to body-wave traveltime residuals. The

  1. Evidence for trench-parallel mantle flow in the northern Cascade Arc from basalt geochemistry (United States)

    Mullen, Emily K.; Weis, Dominique


    Geochemical data for basalts from the Garibaldi Volcanic Belt (northern segment of the Cascade Arc) define arc-parallel gradients in trace elements and isotope ratios that extend at least 150 km into the arc from the northern margin of the subducting Juan de Fuca plate. Southerly increases in Zr/Nb, Ba/Nb, Th/La, Pb/Ce, 208Pb/204Pb and 176Hf/177Hf indicate greater mantle depletion and higher slab-derived contributions with distance from the slab edge. Temperatures and pressures of mantle melt segregation also decrease to the south. The gradients are most plausibly explained as a consequence of slab rollback-induced toroidal flow at the northern slab edge (Nootka fault zone), whereby enriched (OIB-type) NE Pacific asthenospheric mantle from beneath the slab is drawn into the mantle wedge in a trench-parallel southerly flow pattern. Melts of the enriched asthenosphere are progressively diluted to the south by melts of the slab-modified, depleted mantle wedge. Arc-parallel changes in slab thermal conditions cannot account for these gradients. Trench parallel geochemical gradients in the northern Cascade Arc are consistent with shear wave splitting data, numerical modeling, and experimental studies showing that trench-parallel mantle flow may be a common phenomenon near slab edges and slab gaps.

  2. Upper mantle viscosity and lithospheric thickness under Iceland

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Drury, M.R.


    Deglaciation during the Holocene on Iceland caused uplift due to glacial isostatic adjustment. Relatively low estimates for the upper mantle viscosity and lithospheric thickness result in rapid uplift responses to the deglaciation cycles on Iceland. The relatively high temperatures of the upper

  3. Alternate Histories of the Core-Mantle Boundary Region: Discrimination by Heat Flow (United States)

    Hernlund, J. W.


    Interactions between material that would become Earth's core and mantle began prior to accretion. For example, during and just after the supernova event that is thought to have produced the matter that comprises our solar system, a substantial amount of its iron and other heavy elements were forged in nucleosynthetic processes, establishing a pattern of elemental and isotopic abundances that is reflected in the composition of our planet today, and sets the relative size of the core and mantle. As Earth accreted, metals and silicates were delivered together in mostly small increments, and formation of the core required separation and gravitational settling of the metal to the center, probably facilitated by extensive melting. This process over-printed previous metal-silicate interactions, owing to chemical interactions and re-equilibration at higher pressures and temperatures. The heat of core formation was dissipated largely in the mantle if metal descended as diapirs, or was retained in the metal if it was able to crack the mantle and sink by rapid turbulent injection into the core. These processes established the first temperature contrast between the core and the mantle, controlling the extent to which the core could become a giant heat capacitor and supply thermal energy heat to the mantle. Beginning from this very early stage we are able to correlate different hypothesized processes with their variable implications for core-mantle boundary (CMB) heat flow through time. In fact, CMB heat flow is a thread that runs through almost every important question regarding the evolution of the core and mantle. Whole mantle convection vs. layered convection, the abundance of radioactive isotopes, age of the inner core, sustenance of the ancient geodynamo, the possibility of basal magma oceans, core-mantle chemical interactions, etc., all have close connections to CMB heat flow. Here I will attempt to discriminate hypotheses for many processes into high vs. low CMB heat

  4. Mantle Flow Beneath Slow-Spreading Ridges Constrained by Seismic Anisotropy in Atlantic Lithosphere (United States)

    Gaherty, J.; Dunn, R.


    Seismic anisotropy within the oceanic lithosphere provides one of the most direct means to study deformation associated with convection in the mantle. Advection beneath a mid-ocean ridge spreading center deforms the mantle rocks, and as the rocks cool to produce the oceanic lithosphere, they retain a record of this deformation in the form of lattice-preferred orientation (LPO) of olivine grains. LPO direction and strength can be estimated from directional and/or polarization dependence (anisotropy) of seismic wave speeds, and mid-ocean ridge mantle flow properties can be inferred. Mantle flow beneath the slow-spreading Mid-Atlantic Ridge (MAR) is suspected to be strongly three-dimensional due to the influence of hotspots and other thermal variations, and this thermal heterogeneity may be related to buoyancy-driven flow beneath the ridge. This notion is supported by two analyses of lithospheric anisotropy in the Atlantic, which until recently had not been well characterized. Radial anisotropy imaged near the hotspot-influenced Reykjanes Ridge implies a quasi-vertical (rather than horizontal) orientation of the lithospheric fabric. Azimuthal anisotropy within a narrow swatch of western Atlantic lithosphere that was formed via ultra-slow spreading is weaker than that found in the Pacific by a factor of two. Both can be interpreted in terms of buoyancy-driven flow beneath the MAR. Here we extend these results using regional surface-wave analyses of the Atlantic basin. Earthquakes from Atlantic source regions recorded at broad-band seismic instruments located on Atlantic islands and the surrounding margins provide excellent sensitivity to oceanic lithosphere structure, without contamination by continental heterogeneity. By characterizing such structure in both hotspot-influenced (e.g. Azores) and normal slow-spreading lithosphere, and comparing these structures to the Pacific, we evaluate the degree to which spreading rate and/or mantle source temperature control fabric

  5. Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle (United States)

    Forte, A.M.; Woodward, R.L.


    Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.

  6. Crust and mantle structure under Botswana - the new key-player in African geodynamics? (United States)

    van der Meijde, M.; Fadel, I.; Paulssen, H.


    The 3D crustal and upper mantle structure of Botswana is a major gap in our knowledge about the tectonic evolution of Africa. We will present a new model for crust and upper mantle structure. Our model is based on data from the NARS Botswana and AfricaArray networks, broadband temporary networks in southern Africa (Botswana, Namibia, South Africa and Zambia). The NARS-Botswana seismic network was established to provide broadband recordings in Botswana, covering one of the least studied regions in the world. It is an area that is for a large part covered by the Kalahari sands but also covers the southwestern most branch of the African Rift under the Okavango delta. The goal is to understand how the rifting process and cratonic provinces influence crustal thickness and couple to the underlying mantle. Crust and upper mantle structure, down to the bottom of the mantle transition zone, will be based on receiver function analysis. We observe crustal thicknesses between 35 and 46 km, strongly linked to basins and cratons in the region. The central Kalahari part, which has been previously unstudied, showed some anomalous structure, possibly suggesting melt in the lower crust. The deeper mantle structure shows a discontinuity between 100-150 km depth for a large number of the stations. The mantle transition zone varies in thickness and sharpness of the bounding discontinuities suggesting active dynamical processes underneath Botswana.

  7. Flow of mantle fluids through the ductile lower crust: Heliumisotope trends

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, B. Mack; van Soest, Matthijs C.


    Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

  8. Abnormal high surface heat flow caused by the Emeishan mantle plume (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing


    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  9. Present mantle flow in North China Craton constrained by seismic anisotropy and numerical modelling (United States)

    Qu, W.; Guo, Z.; Zhang, H.; Chen, Y. J.


    North China Carton (NCC) has undergone complicated geodynamic processes during the Cenozoic, including the westward subduction of the Pacific plate to its east and the collision of the India-Eurasia plates to its southwest. Shear wave splitting measurements in NCC reveal distinct seismic anisotropy patterns at different tectonic blocks, that is, the predominantly NW-SE trending alignment of fast directions in the western NCC and eastern NCC, weak anisotropy within the Ordos block, and N-S fast polarization beneath the Trans-North China Orogen (TNCO). To better understand the origin of seismic anisotropy from SKS splitting in NCC, we obtain a high-resolution dynamic model that absorbs multi-geophysical observations and state-of-the-art numerical methods. We calculate the mantle flow using a most updated version of software ASPECT (Kronbichler et al., 2012) with high-resolution temperature and density structures from a recent 3-D thermal-chemical model by Guo et al. (2016). The thermal-chemical model is obtained by multi-observable probabilistic inversion using high-quality surface wave measurements, potential fields, topography, and surface heat flow (Guo et al., 2016). The viscosity is then estimated by combining the dislocation creep, diffusion creep, and plasticity, which is depended on temperature, pressure, and chemical composition. Then we calculate the seismic anisotropy from the shear deformation of mantle flow by DREX, and predict the fast direction and delay time of SKS splitting. We find that when complex boundary conditions are applied, including the far field effects of the deep subduction of Pacific plate and eastward escaping of Tibetan Plateau, our model can successfully predict the observed shear wave splitting patterns. Our model indicates that seismic anisotropy revealed by SKS is primarily resulting from the LPO of olivine due to the shear deformation from asthenospheric flow. We suggest that two branches of mantle flow may contribute to the

  10. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume (United States)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing


    The Emeishan large igneous province (ELIP) is widely considered to be a consequence of a mantle plume. The supporting evidence includes rapid emplacement, voluminous flood basalt eruptions, and high mantle potential temperature estimates. Several studies have suggested that there was surface uplift prior to the eruption of the Emeishan flood basalts. Additionally, the plume's lateral extent is hard to constrain and has been variously estimated to be 800-1400 km in diameter. In this study, we analyzed present-day heat flow data and reconstructed the Permian paleo-heat flow using vitrinite reflectance and zircon (U-Th)/He thermochronology data in the ELIP region and discussed implications for the geodynamics of the Emeishan mantle plume. The present-day heat flow is higher in the inner and intermediate zones than in the outer zone, with a decrease of average heat flow from 76 mW/m2 to 51 mW/m2. Thermal history modeling results show that an abnormal high paleo-heat flow of 90-110 mW/m2 was caused by the Emeishan mantle plume activity. Based on the present-day heat flow data, we can calculate that there is lithospheric thinning in the central ELIP region, which may be due to the destruction of the lithosphere by mantle plume upwelling and magmatic underplating. The Permian paleo-heat flow anomaly implies that there was a temperature anomaly in the mantle. The ascending high-temperature mantle plume and the thinned lithosphere may have induced the large-scale uplift in the ELIP region. According to the range of the surface heat flow anomaly, it can be estimated that the diameter of the flattened head of the Emeishan mantle plume could have reached 1600-1800 km. Our research provides new insights into the geodynamics of the Emeishan mantle plume through study of heat flow.

  11. Porous Flow and Diffusion of Water in the Mantle Wedge: Melting and Hydration Patterns (United States)

    Conder, J. A.


    It is widely accepted that melting at volcanic arcs is primarily triggered by fluxing the mantle wedge from the dehydrating subducting slab. However, there is less concensus regarding how water moves into and within the mantle wedge. There are at least four possible mechanisms for water migration in the wedge: buoyant porous flow, diffusion through mineral crystals, advection of hydrated minerals, and compositionally buoyant diapers. The latter two mechanisms require at least one of the first two to occur to get water from the slab into the wedge before they can function. Using geodynamic models of mantle flow in a simplified subduction setting, we explore the implications of diffusion and porous flow of water in the wedge, particularly as they would affect the time for recycling water through the subduction factory and the predicted pattern of basalt hydration across the arc. The slab is assumed to dehydrate in a continuous fashion as the solubility of water in subducted oceanic crust decreases with temperature and pressure and the water then enters the wedge via one of the two transport mechanisms. Diffusion is controlled by temperature and by which minerals are present. Although olivine dominates the mantle mineral fraction, pyroxenes may control the diffusion of water in the wedge as the diffusivity of pyroxene is one or more orders of magnitude greater than olivine. Even assuming the faster diffusion rate of orthopyroxene in the models, diffusion can only be an important transport mechanism when subduction rates are slower than ~3 cm/yr. Flux melting occurs in the wedge above where the slab is ~100-160 km deep with the maximum above where the slab is ~120 km deep. Models including porous flow can result in melting at higher subduction rates provided the permeability of the mantle is greater than 10-17 m2. The true magnitude of the permeability likely varies with the corresponding porosity created by the free phase. With porous flow, melting occurs 20-30 km

  12. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.


    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  13. Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle (United States)

    Martin, A. P.; Cooper, A. F.; Price, R. C.


    The lithospheric, and shallow asthenospheric, mantle in Southern Victoria Land are known to record anomalously high heat flow but the cause remains imperfectly understood. To address this issue plagioclase peridotite xenoliths have been collected from Cenozoic alkalic igneous rocks at three localities along a 150 km transect across the western shoulder of the West Antarctic rift system in Southern Victoria Land, Antarctica. There is a geochemical, thermal and chronological progression across this section of the rift shoulder from relatively hot, young and thick lithosphere in the west to cooler, older and thinner lithosphere in the east. Overprinting this progression are relatively more recent mantle refertilising events. Melt depletion and refertilisation was relatively limited in the lithospheric mantle to the west but has been more extensive in the east. Thermometry obtained from orthopyroxene in these plagioclase peridotites indicates that those samples most recently affected by refertilising melts have attained the highest temperatures, above those predicted from idealised dynamic rift or Northern Victoria Land geotherms and higher than those prevailing in the equivalent East Antarctic mantle. Anomalously high heat flow can thus be attributed to entrapment of syn-rift melts in the lithosphere, probably since regional magmatism commenced at least 24 Myr ago. The chemistry and mineralogy of shallow plagioclase peridotite mantle can be explained by up to 8% melt extraction and a series of refertilisation events. These include: (a) up to 8% refertilisation by a N-MORB melt; (b) metasomatism involving up to 1% addition of a subduction-related component; and (c) addition of ~ 1.5% average calcio-carbonatite. A high MgO group of clinopyroxenes can be modelled by the addition of up to 1% alkalic melt. Melt extraction and refertilisation mainly occurred in the spinel stability field prior to decompression and uplift. In this region mantle plagioclase originates by a

  14. Large-scale trench-normal mantle flow beneath central South America (United States)

    Reiss, M. C.; Rümpker, G.; Wölbern, I.


    We investigate the anisotropic properties of the fore-arc region of the central Andean margin between 17-25°S by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. With partly over ten years of recording time, the data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements suggest two anisotropic layers located within the crust and mantle beneath the stations, respectively. The teleseismic measurements show a moderate change of fast polarizations from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, are oriented mostly perpendicular to the trench. Shear-wave splitting measurements from local earthquakes show fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow origin. Comparisons between fast polarization directions from local earthquakes and the strike of the local fault systems yield a good agreement. To infer the parameters of the lower anisotropic layer we employ an inversion of the teleseismic waveforms based on two-layer models, where the anisotropy of the upper (crustal) layer is constrained by the results from the local splitting. The waveform inversion yields a mantle layer that is best characterized by a fast axis parallel to the absolute plate motion which is more-or-less perpendicular to the trench. This orientation is likely caused by a combination of the fossil crystallographic preferred orientation of olivine within the slab and entrained mantle flow beneath the slab. The anisotropy within the crust of the overriding continental plate is explained by the shape-preferred orientation of micro-cracks in relation to local fault zones which are oriented parallel to the overall strike of the Andean range. Our

  15. Influence of mantle flow on the drainage of eastern Australia since the Jurassic Period (United States)

    Salles, T.; Flament, N.; Müller, D.


    Recent studies of the past eastern Australian landscape from present-day longitudinal river profiles and from mantle flow models suggest that the interaction of plate motion with mantle convection accounts for the two phases of large-scale uplift of the region since 120 Ma. We coupled the dynamic topography predicted from one of these mantle flow models to a surface process model to study the evolution of the eastern Australian landscape since the Jurassic Period. We varied the rainfall regime, erodibility, sea level variations, dynamic topography magnitude, and elastic thickness across a series of experiments. The approach accounts for erosion and sedimentation and simulates catchment dynamics. Despite the relative simplicity of our model, the results provide insights on the fundamental links between dynamic topography and continental-scale drainage evolution. Based on temporal and spatial changes in longitudinal river profiles as well as erosion and deposition maps, we show that the motion of the Australian plate over the convecting mantle has resulted in significant reorganization of the eastern Australian drainage. The model predicts that the Murray river drained eastward between 150 and ˜120 Ma, and switched to westward draining due to the tilting of the Australian plate from ˜120 Ma. First order comparisons of eight modeled river profiles and of the catchment shape of modeled Murray-Darling Basin are in agreement with present-day observations. The predicted denudation of the eastern highlands is compatible with thermochronology data and sedimentation rates along the southern Australian margin are consistent with cumulative sediment thickness.

  16. Large-scale trench-perpendicular mantle flow beneath northern Chile (United States)

    Reiss, M. C.; Rumpker, G.; Woelbern, I.


    We investigate the anisotropic properties of the forearc region of the central Andean margin by analyzing shear-wave splitting from teleseismic and local earthquakes from the Nazca slab. The data stems from the Integrated Plate boundary Observatory Chile (IPOC) located in northern Chile, covering an approximately 120 km wide coastal strip between 17°-25° S with an average station spacing of 60 km. With partly over ten years of data, this data set is uniquely suited to address the long-standing debate about the mantle flow field at the South American margin and in particular whether the flow field beneath the slab is parallel or perpendicular to the trench. Our measurements yield two distinct anisotropic layers. The teleseismic measurements show a change of fast polarizations directions from North to South along the trench ranging from parallel to subparallel to the absolute plate motion and, given the geometry of absolute plate motion and strike of the trench, mostly perpendicular to the trench. Shear-wave splitting from local earthquakes shows fast polarizations roughly aligned trench-parallel but exhibit short-scale variations which are indicative of a relatively shallow source. Comparisons between fast polarization directions and the strike of the local fault systems yield a good agreement. We use forward modelling to test the influence of the upper layer on the teleseismic measurements. We show that the observed variations of teleseismic measurements along the trench are caused by the anisotropy in the upper layer. Accordingly, the mantle layer is best characterized by an anisotropic fast axes parallel to the absolute plate motion which is roughly trench-perpendicular. This anisotropy is likely caused by a combination of crystallographic preferred orientation of the mantle mineral olivine as fossilized anisotropy in the slab and entrained flow beneath the slab. We interpret the upper anisotropic layer to be confined to the crust of the overriding continental

  17. The feasibility of inverting for flow in the lowermost mantle (Invited) (United States)

    Nowacki, A.; Walpole, J.; Wookey, J. M.; Walker, A.; Forte, A. M.; Masters, G.; Kendall, J. M.


    At the core-mantle boundary (CMB), the largest change in physical properties occurs within the Earth. Furthermore, up to a few hundred kilometres above the CMB--the region known as D″--the largest lateral variations in seismic wave speed are observed outside the upper mantle. Observations of shear wave splitting in D″ shows that these variations are dependent not only on position, but also wave propagation direction and polarisation; that is, strong seismic anisotropy is a pervasive feature of D″, just as in the upper mantle (UM). Similarly to the UM, it is frequently argued that alignment of anisotropic minerals due to flow is the cause of this. Were this the case, this anisotropy could be used to retrieve the recent strain history of the lowermost mantle. Recent modelling of mineral alignment in D″ [1,2] has shown that quite simple models of mantle flow do not produce simple anisotropy, hence one must make use of the most information about the type and orientation of anisotropy possible. Global inversion for radial anisotropy permits complete coverage of the CMB but so far has relied on core-diffracted waves (Sdiff) which are challenging to accurately interpret [3]. The assumption of radial anisotropy may also be too restrictive [4]. Shear wave splitting studies do not impose any assumed type of anisotropy but have been traditionally limited in their geographical scope. We present the results of a consistent analysis of core-reflected shear waves (ScS) for shear wave splitting, producing near-global coverage [5] of D″. Over 12,000 individual measurements are made, from ~470 events. Along well-studied paths such as beneath the Caribbean, our results agree excellently with previous work. Elsewhere, a full range of fast orientations are observed, indicating that simple SV-SH comparisons may not accurately reflect the elasticity present. We compare these results to candidate models of D″ anisotropy assuming a simple flow model derived from geophysical

  18. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone


    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  19. Reconstructing mantle flow and long-wavelength dynamic topography since the Jurassic Period (GD Division Outstanding ECS Award Lecture) (United States)

    Flament, Nicolas


    Global tectonic reconstructions can be used as boundary conditions of forward mantle convection models to simulate past mantle flow and long-wavelength dynamic topography. The predictions of such models can be compared to seismic tomography, to estimates of residual topography and to geological indicators of past vertical motions. Here we present models that reproduce the present-day structure of the lower mantle, including two large structures that resemble the Pacific and African Large Low Shear Velocity Provinces (LLSVPs, ˜15,000 km in diameter) and a smaller structure that resembles the recently discovered Perm Anomaly (˜1,000 km in diameter). The match between predicted and seismically inferred lower mantle structure is quantified across a series of mantle flow and tomography models. In the models, the Perm-like anomaly forms in isolation within a closed and long-lived subduction network (East Asia, Northern Tethys and Mongol-Okhotsk) ˜22,000 km in circumference before migrating ˜1,500 km westward at an average rate of 1 cm yr-1 since 150 million years ago. These results indicate a greater mobility of deep mantle structures than previously recognized, and illustrate that the predictive power of mantle flow models has significantly increased over the last thirty years. We suggest that the mobile Perm Anomaly could be linked to the ˜258 Ma Emeishan volcanics, in contrast to the previously proposed ˜251 Ma Siberian Traps. We also compare the present-day dynamic topography predicted by forward mantle flow models to residual topography models, and show that radial and lateral viscosity variations significantly influence the distribution of power of predicted dynamic topography as a function of spherical harmonic degree. We finally show how past vertical motions preserved in the geological record and the present-day position of slabs in the mantle inferred from seismic tomography may be used to constrain tectonic reconstructions and mantle rheology, including

  20. Mantle flow and oceanic crust formation during the opening of the Tyrrhenian back-arc basin (United States)

    Magni, Valentina


    The formation of the Tyrrhenian back-arc basin occurred through short-lived episodes of fast spreading alternated with periods of slow rifting. I present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, I explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. Moreover, the occurrence of collision results in the formation of two slab windows at the ocean-continent boundaries, which is in very good agreement with what is observed in the Central Mediterranean, nearby the Calabrian slab. During the evolution of the system the trench velocity shows pulses of fast trench retreat that last a few millions of years. This is associated with episodes of more intense melting of the asthenosphere rising at the back-arc basin. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  1. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles (United States)

    Wilson, L.; Head, J. W., III


    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  2. The Burgers/squirt-flow seismic model of the crust and mantle (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria


    Part of the crust shows generally brittle behaviour while areas of high temperature and/or high pore pressure, including the mantle, may present ductile behaviour. For instance, the potential heat source of geothermal fields, overpressured formations and molten rocks. Seismic waves can be used to detect these conditions on the basis of reflection and transmission events. Basically, from the elastic-plastic point of view the seismic properties (seismic velocity, quality factor and density) depend on effective pressure and temperature. Confining and pore pressures have opposite effects on these properties, and high temperatures may induce a similar behaviour by partial melting. In order to model these effects, we consider a poro-viscoelastic model based on the Burgers mechanical element and the squirt-flow model to represent the properties of the rock frame to describe ductility in which deformation takes place by shear plastic flow, and to model local and global fluid flow effects. The Burgers element allows us to model the effects of the steady-state creep flow on the dry-rock frame. The stiffness components of the brittle and ductile media depend on stress and temperature through the shear viscosity, which is obtained by the Arrhenius equation and the octahedral stress criterion. Effective pressure effects are taken into account in the dry-rock moduli by using exponential functions whose parameters are obtained by fitting experimental data as a function of confining pressure. Since fluid effects are important, the density and bulk modulus of the saturating fluids (water at sub- and supercritical conditions) are modeled by using the equations provided by the NIST website. The squirt-flow model has a single free parameter represented by the aspect ratio of the grain contacts. The theory generalizes a preceding theory based on Gassmann (low-frequency) moduli to the more general case of the presence of local (squirt) flow and global (Biot) flow, which contribute with

  3. Inverse models of plate coupling and mantle rheology: Towards a direct link between large-scale mantle flow and mega thrust earthquakes (United States)

    Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Rudi, J.; Liu, X.; Ghattas, O.


    We are developing high-resolution inverse models for plate motions and mantle flow to recover the degree of mechanical coupling between plates and the non-linear and plastic parameters governing viscous flow within the lithosphere and mantle. We have developed adjoint versions of the Stokes equations with fully non-linear viscosity with a cost function that measures the fit with plate motions and with regional constrains on effective upper mantle viscosity (from post-glacial rebound and post seismic relaxation). In our earlier work, we demonstrate that when the temperature field is known, the strength of plate boundaries, the yield stress and strain rate exponent in the upper mantle are recoverable. As the plate boundary coupling drops below a threshold, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Comparing the trade-offs between inferred rheological parameters found from a Gaussian approximation of the parameter distribution and from MCMC sampling, we found that the Gaussian approximation—which is significantly cheaper to compute—is often a good approximation. We have extended our earlier method such that we can recover normal and shear stresses within the zones determining the interface between subducting and over-riding plates determined through seismic constraints (using the Slab1.0 model). We find that those subduction zones with low seismic coupling correspond with low inferred values of mechanical coupling. By fitting plate motion data in the optimization scheme, we find that Tonga and the Marianas have the lowest values of mechanical coupling while Chile and Sumatra the highest, among the subduction zones we have studies. Moreover, because of the nature of the high-resolution adjoint models, the subduction zones with the lowest coupling have back-arc extension. Globally we find that the non-linear stress-strain exponent, n, is about 3.0 +/- 0.25 (in the upper mantle and lithosphere) and a

  4. Combined micro and macro geodynamic modelling of mantle flow: methods, potentialities and limits. (United States)

    Faccenda, M.


    Over the last few years, geodynamic simulations aiming at reconstructing the Earth's internal dynamics have increasingly attempted to link processes occurring at the micro (i.e., strain-induced lattice preferred orientation (LPO) of crystal aggregates) and macro scale (2D/3D mantle convection). As a major outcome, such a combined approach results in the prediction of the modelled region's elastic properties that, in turn, can be used to perform seismological synthetic experiments. By comparison with observables, the geodynamic simulations can then be considered as a good numerical analogue of specific tectonic settings, constraining their deep structure and recent tectonic evolution. In this contribution, I will discuss the recent methodologies, potentialities and current limits of combined micro- and macro-flow simulations, with particular attention to convergent margins whose dynamics and deep structure is still the object of extensive studies.

  5. Mantle Flow and Melting Beneath Young Oceanic Lithosphere: Seismic Studies of the Galapagos Archipelago and the Juan de Fuca Plate (United States)

    Byrnes, Joseph Stephen

    In this dissertation, I use seismic imaging techniques to constrain the physical state of the upper mantle beneath regions of young oceanic lithosphere. Mantle convection is investigated beneath the Galapagos Archipelago and then beneath the Juan de Fuca (JdF) plate, with a focus on the JdF and Gorda Ridges before turning to the off-axis asthenosphere. In the Galapagos Archipelago, S-to-p receiver functions reveal a discontinuity in seismic velocity that is attributed to the dehydration of the upper mantle. The depth at which dehydration occurs is shown to be consistent with prior constraints on mantle temperature. A comparison between results from receiver functions, seismic tomography and petrology shows that mantle upwelling and melt generation occur shallower than the depth of the discontinuity, despite the expectation of high viscosities in the dehydrated layer. Beneath the JdF and Gorda Ridge, low Vs anomalies are too large to be explained by the cooling of the lithosphere and are attributed to partial melt. The asymmetry, large Vs gradients, and sinuosity of the anomalies beneath the JdF Ridge are consistent with models of buoyancy-driven upwelling. However, deformation zone processes appear to dominate mantle flow over seafloor spreading beneath the Explorer and Gorda diffuse plate boundaries. Finally, S-to-p receiver functions reveal a seismic discontinuity beneath the JdF plate that can only be attributed to seismic anisotropy. Synthesis of the receiver function results with prior SKS splitting results requires heterogeneous anisotropy between the crust and the discontinuity. Models of anisotropy feature increasing anisotropy before the decrease at the discontinuity, but well below the base of the lithosphere, and a clockwise rotation of the fast direction with increasing depth. In these results and even in the SKS splitting results, additional driving mechanisms for mantle flow such as density or pressure anomalies are required.

  6. Shear wave anisotropy beneath the Sierra Nevada range: Implications for lithospheric foundering and upper mantle flow (United States)

    Badger, N. B.; Bastow, I. D.; Owens, T. J.; Zandt, G.; Jones, C. H.; Gilbert, H.


    Recent work asserts that the garnet-rich Sierra Nevada batholith root has undergone foundering since the early Cenozoic. The Sierra Nevada EarthScope Project (SNEP), undertaken to gain a better understanding of this phenomena, consists of a network of ~80 broadband seismometers spaced at ~25 km from ~37.0N to 40.5N. We use the Silver and Chan method to determine shear wave splitting parameters (dt and φ) for teleseismic SKS phases recorded at SNEP and US Array Transportable Array stations in the region. We find dt>1.1s and φ approximately in the E-NE direction over most of the batholith. Splitting of this magnitude cannot be accounted for solely in the crust, and our results, therefore, have significant implications for upper mantle flow beneath the region. At latitude ~39N to 40N, from the western Sierra Nevada range across our study area to central Nevada, we observe dtGorda-Juan de Fuca Plate. Such a flow pattern is also consistent with the circular pattern of splitting measurements that exist in the broader California and Western Nevada region. We observe subtle variations in splitting parameters as a function of backazimuth primarily at stations situated on the western foothills of the Sierra Nevada. These complexities may be indicative of either a two-layer or dipping layer structure beneath the batholith that may be associated with on- going lithospheric foundering beneath the Sierran range. Additionally, in the southern part of our study area, we note a reduction in dt for arrivals that sample the high Vp Isabella anomaly - an upper mantle downwelling thought to be a result of recent lithospheric foundering.

  7. Three-dimensional P velocity structure of the crust and upper mantle under Beijing region

    Energy Technology Data Exchange (ETDEWEB)

    Quan, A.; Liu, F.; Sun, Y.


    By use of the teleseismic P arrival times at 15 stations of the Beijing network for 120 events distributed over various azimuths, we studied the three-dimensional P velocity structure under the Beijing region. In calculating the theoretic travel time, we adopted the source parameters given in BISC, and used the J-B model as the standard model of earth. On inversion, we adopted singular value decomposition as a generalized inversion package, which can be used for solving very large over-determined systems of equations Gm = t without resorting to normal equations G/sup T/Gm = G/sup T/t. The results are that within the crust and upper mantle under the Beijing region there are clear lateral differences. In the results obtained by use of data from 1972 to 1975, it can be seen that there are three different zones of P-velocity. In the southeast Beijing region, P velocity is lower than that of the normal model by 10 to 14% within the crust, and by 8 to 9% within the upper mantle. The northwest Beijing region is a higher-velocity zone, within which the average P-velocity is faster than that of the normal model by about 9%. It disappears after entering into the upper mantle. The central part of this region is a normal zone. On the surface, the distribution of these P velocity variations corresponds approximately to the distribution of the over-burden. But in the deeper region, the distribution of velocity variation agrees with the distribution of seismicity. It is interesting to note that the hypocenters of several major earthquakes in this region, e.g., the Sanhe-Pinggu earthquake (1679, M = 8), the Shacheng earthquake (1730, M = 6-3/4) and the Tangshan earthquake (1976, M = 7.8), are all located very close to this boundary of these P-velocity variation zones.

  8. Load flow analysis using decoupled fuzzy load flow under critical ...

    African Journals Online (AJOL)


    The conventional load flow methods like Newton-Raphson load flow (NRLF), Fast Decoupled load flow (FDLF) provide poor performance under critical conditions such as high R/X ratio, heavily loading condition etc. Exploiting the decoupling properties of power system, reliable fuzzy load flow is developed to overcome the ...

  9. Kinematics of subduction and subduction-induced flow in the upper mantle

    NARCIS (Netherlands)

    Schellart, W. P.


    Results of fluid dynamical experiments are presented to model the kinematics of lithospheric subduction in the upper mantle. The experiments model a dense highviscosity plate (subducting lithosphere) overlying a less dense low-viscosity layer (upper mantle). The overriding lithosphere is not

  10. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec (United States)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.


    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  11. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution. (United States)

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A


    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.


    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon


    Experimental and theoretical investigations of mantle tanks for SDHW systems have been carried out. Five differently designed mantle tanks have been tested in a laboratory test facility. A transient three-dimensional CFD-model of one of the tested mantle tanks is made in the CFD-program CFX 4.......1. The model is validated against the experimental tests, and good agreement between measured and calculated results is achieved. The results from the CFD-calculations are used to illustrate the thermal behaviour and the fluid dynamics in the mantle and in the hot water tank. With the CFD......-calculations, a detailed analysis of the heat transfer from the solar collector fluid to the wall of the hot water tank is performed. The analysis has resulted in a correlation for the heat transfer between the solar collector fluid and the wall of the hot water....


    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon


    in the CFD-program CFX 4.1. The model is validated against the experimental tests and good agreement between measured and calculated results are achieved. The results from the CFD-calculations are used to illustrate the thermal behaviour and the fluid dynamics in the mantle and in the inner tank. The CFD......Experimental and theoretical investigations of vertical mantle tanks for solar domestic hot water systems have been carried out. Differently designed mantle tanks have been evaluated in a laboratory test facility and a transient three-dimensional CFD-model of one of the mantle tanks is developed......-calculations are used to carry out a detailed analysis of the heat transfer from the solar collector fluid to the wall of the inner tank. The analysis has resulted in a local Nusselt-Rayleigh correlation for the heat transfer between the solar collector fluid and the wall of the inner tank....

  14. Lateral, radial and temporal variations in upper mantle viscosity and rheology under Scandinavia

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Vermeersen, L.L.A.; Drury, M.R.


    The viscosity of the upper mantle has a large control on the dynamics of plate tectonic processes or the response of the Earth's crust after a period of glaciation. Temperature variations within the upper mantle, time-dependent stress changes due to glaciations, and/or variations in the

  15. Stone Stability under Stationary Nonuniform Flows

    NARCIS (Netherlands)

    Steenstra, Remco; Hofland, B.; Paarlberg, Andries; Smale, Alfons; Huthoff, Fredrik; Uijttewaal, W.S.J.


    A stability parameter for rock in bed protections under nonuniform stationary flow is derived. The influence of the mean flow velocity, turbulence, and mean acceleration of the flow are included explicitly in the parameter. The relatively new notion of explicitly incorporating the mean acceleration

  16. Melting and reactive flow of a volatilized mantle beneath mid-ocean ridges: theory and numerical models (United States)

    Keller, Tobias; Katz, Richard F.


    Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES

  17. Experiments were conducted under uniform flow

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Experiments were conducted under uniform flow: Experiments were conducted under uniform flow: Bed slopes: S = 0.13, 0.30, 0.38%. Sediments used: d50 = 0.95, 2.6, 4.1 mm. Experimental conditions were independent of relative submergence: Sh (= d50/h) < 0.1 ...

  18. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi


    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  19. Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study (United States)

    Fu, Z. Y.; Chen, H. S.; Zhang, W.; Xu, Q. X.; Wang, S.; Wang, K. L.


    Soil and epikarst co-evolve resulting in complex structures, but their coupled structural effects on hydrological processes are poorly understood in karst regions. This study examined the plot-scale subsurface flow characteristics from an integrated soil-epikarst system perspective in a humid subtropical cockpit karst region of Southwest China. A trench was excavated to the epikarst lower boundary for collecting individual subsurface flows in five sections with different soil thicknesses. Four field rainfall simulation experiments were carried out under different initial moisture conditions (dry and wet) and rainfall intensities (114 mm h- 1 (high) and 46 mm h- 1 (low) on average). The soil-epikarst system was characterized by shallow soil overlaying a highly irregular epikarst surface with a near-steady infiltration rate of about 35 mm h- 1. The subsurface flows occurred mainly along the soil-epikarst interface and were dominated by preferential flow. The subsurface flow hydrographs showed strong spatial variability and had high steady-state coefficients (0.52 and 0.36 for high and low rainfall intensity events). Irregular epikarst surface combining with high vertical drainage capacity resulted in high threshold rainfall depths for subsurface flows: 67 mm and 263 mm for initial wet and dry conditions, respectively. The above results evidenced that the irregular and permeable soil-epikarst interface was a crucial component of soil-epikarst architecture and consequently should be taken into account in the hydrological modeling for karst regions.

  20. A Plastic Flow and Rheomorfic Differentiation of the Mantle Ultramafic Rocks

    Directory of Open Access Journals (Sweden)

    D. E. Saveliev


    Full Text Available In this paper, the general characteristics of morphological features of the ophiolitic ultramafic rock formations are discussed. The ultramafic rocks are the fragments of upper mantle, which were exposed on the surface due to tectonic events. It is shown that their main chemical and structural characteristic is a stratification accompanied by separation of the rheologically weakest dunite bodies usually containing the economic amount of chromite ore. Based on results of conducted analysis, we propose a new hypothesis of petro- and ore genesis in the upper mantle. Using the thermodynamic approach, we developed the rheomorfic model of the differentiation of the mantle matter. This model solves many problems inherent to currently used magmatic or metasomatic models.

  1. Flow behavior and microstructures of hydrous olivine aggregates at upper mantle pressures and temperatures (United States)

    Ohuchi, Tomohiro; Kawazoe, Takaaki; Higo, Yuji; Suzuki, Akio


    Deformation experiments on olivine aggregates were performed under hydrous conditions using a deformation-DIA apparatus combined with synchrotron in situ X-ray observations at pressures of 1.5-9.8 GPa, temperatures of 1223-1800 K, and strain rates ranging from 0.8 × 10-5 to 7.5 × 10-5 s-1. The pressure and strain rate dependencies of the plasticity of hydrous olivine may be described by an activation volume of 17 ± 6 cm3 mol-1 and a stress exponent of 3.2 ± 0.6 at temperatures of 1323-1423 K. A comparison between previous data sets and our results at a normalized temperature and a strain rate showed that the creep strength of hydrous olivine deformed at 1323-1423 K is much weaker than that for the dislocation creep of water-saturated olivine and is similar to that for diffusional creep and dislocation-accommodated grain boundary sliding, while dislocation microstructures showing the [001] slip or the [001](100) slip system were developed. At temperatures of 1633-1800 K, a much stronger pressure effect on creep strength was observed for olivine with an activation volume of 27 ± 7 cm3 mol-1 assuming a stress exponent of 3.5, water fugacity exponent of 1.2, and activation energy of 520 kJ mol-1 (i.e., power-law dislocation creep of hydrous olivine). Because of the weak pressure dependence of the rheology of hydrous olivine at lower temperatures, water weakening of olivine could be effective in the deeper and colder part of Earth's upper mantle.

  2. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy (United States)

    Blackman, D. K.; Boyce, D. E.; Castelnau, O.; Dawson, P. R.; Laske, G.


    Insight into upper-mantle processes can be gained by linking flow-induced mineral alignment to regional deformation and seismic anisotropy patterns. Through a series of linked micro-macro scale numerical experiments, we explore the rheologic effects of crystal preferred orientation (CPO) and evaluate the magnitude of possible impacts on the pattern of flow and associated seismic signals for mantle that includes a cooling, thickening young oceanic lithosphere. The CPO and associated anisotropic rheology, computed by a micromechanical polycrystal model, are coupled with a large scale flow model (Eulerian Finite Element method) via a local viscosity tensor field, which quantifies the stress:strain rate response of a textured polycrystal. CPO is computed along streamlines throughout the model space and the corresponding viscosity tensor field at each element defines the local properties for the next iteration of the flow field. Stable flow and CPO distributions were obtained after several iterations for the two dislocation glide cases tested: linear and nonlinear stress:strain rate polycrystal behaviour. The textured olivine polycrystals are found to have anisotropic viscosity tensors in a significant portion of the model space. This directional dependence in strength impacts the pattern of upper-mantle flow. For background asthenosphere viscosity of ∼1020 Pa s and a rigid lithosphere, the modification of the corner flow pattern is not drastic but the change could have geologic implications. Feedback in the development of CPO occurs, particularly in the region immediately below the base of the lithosphere. Stronger fabric is predicted below the flanks of a spreading centre for fully coupled, power-law polycrystals than was determined using prior linear, intermediate coupling polycrystal models. The predicted SKS splitting is modestly different (∼0.5 s) between the intermediate and fully coupled cases for oceanic plates less than 20 Myr old. The magnitude of

  3. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm (United States)

    Ong-Abdullah, Meilina; Ordway, Jared M.; Jiang, Nan; Ooi, Siew–Eng; Kok, Sau-Yee; Sarpan, Norashikin; Azimi, Nuraziyan; Hashim, Ahmad Tarmizi; Ishak, Zamzuri; Rosli, Samsul Kamal; Malike, Fadila Ahmad; Bakar, Nor Azwani Abu; Marjuni, Marhalil; Abdullah, Norziha; Yaakub, Zulkifli; Amiruddin, Mohd Din; Nookiah, Rajanaidu; Singh, Rajinder; Low, Eng-Ti Leslie; Chan, Kuang-Lim; Azizi, Norazah; Smith, Steven W.; Bacher, Blaire; Budiman, Muhammad A.; Van Brunt, Andrew; Wischmeyer, Corey; Beil, Melissa; Hogan, Michael; Lakey, Nathan; Lim, Chin-Ching; Arulandoo, Xaviar; Wong, Choo-Kien; Choo, Chin-Nee; Wong, Wei-Chee; Kwan, Yen-Yen; Alwee, Sharifah Shahrul Rabiah Syed; Sambanthamurthi, Ravigadevi; Martienssen, Robert A.


    Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered micropropagation of elite hybrids and genetically modified crops, but the mechanism remains a mystery1. The oil palm fruit abnormality, mantled, is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production2–4. Widely regarded as epigenetic5, mantling has defied explanation, but here we identify the MANTLED gene using Epigenome Wide Association Studies. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (the Good Karma epiallele) predicts normal fruit set, while hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and dramatic loss of yield. Loss of Karma methylation and small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources. PMID:26352475

  4. New Constraints on Upper Mantle Structure Underlying the Diamondiferous Central Slave Craton, Canada, from Teleseismic Body Wave Tomography (United States)

    Esteve, C.; Schaeffer, A. J.; Audet, P.


    Over the past number of decades, the Slave Craton (Canada) has been extensively studied for its diamondiferous kimberlites. Not only are diamonds a valuable resource, but their kimberlitic host rocks provide an otherwise unique direct source of information on the deep upper mantle (and potentially transition zone). Many of the Canadian Diamond mines are located within the Slave Craton. As a result of the propensity for diamondiferous kimberlites, it is imperative to probe the deep mantle structure beneath the Slave Craton. This work is further motivated by the increase in high-quality broadband seismic data across the Northern Canadian Cordillera over the past decade. To this end we have generated a P and S body wave tomography model of the Slave Craton and its surroundings. Furthermore, tomographic inversion techniques are growing ever more capable of producing high resolution Earth models which capture detailed structure and dynamics across a range of scale lengths. Here, we present preliminary results on the structure of the upper mantle underlying the Slave Craton. These results are generated using data from eight different seismic networks such as the Canadian National Seismic Network (CNSN), Yukon Northwest Seismic Network (YNSN), older Portable Observatories for Lithospheric Analysis and Reseach Investigating Seismicity (POLARIS), Regional Alberta Observatory for Earthquake Studies Network (RV), USArray Transportable Array (TA), older Canadian Northwest Experiment (CANOE), Batholith Broadband (XY) and the Yukon Observatory (YO). This regional model brings new insights about the upper mantle structure beneath the Slave Craton, Canada.

  5. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania (United States)

    Chichester, D.C.


    The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average

  6. Active and fossil mantle flows in the western Alpine region unravelled by seismic anisotropy analysis and high-resolution P wave tomography (United States)

    Salimbeni, Simone; Malusà, Marco G.; Zhao, Liang; Guillot, Stéphane; Pondrelli, Silvia; Margheriti, Lucia; Paul, Anne; Solarino, Stefano; Aubert, Coralie; Dumont, Thierry; Schwartz, Stéphane; Wang, Qingchen; Xu, Xiaobing; Zheng, Tianyu; Zhu, Rixiang


    The anisotropy of seismic velocities in the mantle, when integrated with high-resolution tomographic models and geologic information, can be used to detect active mantle flows in complex plate boundary areas, providing new insights on the impact of mantle processes on the topography of mountain belts. Here we use a densely spaced array of temporary broadband seismic stations to analyze the seismic anisotropy pattern of the western Alpine region, at the boundary between the Alpine and Apenninic slabs. Our results are supportive of a polyphase development of anisotropic mantle fabrics, possibly starting from the Jurassic to present. Geophysical data presented in this work, and geologic evidence taken from the literature, indicate that: (i) fossil fabrics formed during Tethyan rifting may be still preserved within the Alpine and Apenninic slabs; (ii) mantle deformation during Apenninic slab rollback is not compensated by a complete toroidal flow around the northern tip of the retreating slab; (iii) the previously observed continuous trend of anisotropy fast axes near-parallel to the western Alpine arc is confirmed. We observe that this arc-parallel trend of fast axes is located in correspondence to a low velocity anomaly in the European upper mantle, beneath regions of the Western and Ligurian Alps showing the highest uplift rates. We propose that the progressive rollback of the Apenninic slab, in the absence of a counterclockwise toroidal flow at its northern tip, induced a suction effect at the scale of the supraslab mantle. The resulting mantle flow pattern was characterized by an asthenospheric counterflow at the rear of the unbroken Western Alps slab and around its southern tip, and by an asthenospheric upwelling, mirrored by low P wave velocities, that would have favored the topographic uplift of the Alpine belt from the Mont Blanc to the Mediterranean sea.

  7. Flows in networks under fuzzy conditions

    CERN Document Server

    Bozhenyuk, Alexander Vitalievich; Kacprzyk, Janusz; Rozenberg, Igor Naymovich


    This book offers a comprehensive introduction to fuzzy methods for solving flow tasks in both transportation and networks. It analyzes the problems of minimum cost and maximum flow finding with fuzzy nonzero lower flow bounds, and describes solutions to minimum cost flow finding in a network with fuzzy arc capacities and transmission costs. After a concise introduction to flow theory and tasks, the book analyzes two important problems. The first is related to determining the maximum volume for cargo transportation in the presence of uncertain network parameters, such as environmental changes, measurement errors and repair work on the roads. These parameters are represented here as fuzzy triangular, trapezoidal numbers and intervals. The second problem concerns static and dynamic flow finding in networks under fuzzy conditions, and an effective method that takes into account the network’s transit parameters is presented here. All in all, the book provides readers with a practical reference guide to state-of-...

  8. Synchrotron in-situ deformation experiments of perovskite + (Mg,Fe)O aggregates under shallow lower mantle conditions (Invited) (United States)

    Girard, J.; Amulele, G.; Farla, R. J.; Liu, Z.; Mohiuddin, A.; Karato, S.


    Experimental studies on rheological properties of mantle's minerals are crucial to understand the dynamics of Earth's interior, but direct experimental studies under the relevant lower mantle conditions are challenging. Most of the earlier studies were performed at lower mantle pressures but low temperatures using DAC (diamond anvil cell) (e.g., Merkel et al., 2003)), and in DAC experiments strain-rate and stress are unknown. Some previous studies were carried out under high pressures and high temperatures (e.g, Cordier et al., 2004) , but quantitative results on rheological behaviour of said minerals were not obtained. Here we present the results of the first in-situ deformation experiments of perovskite + (Mg,Fe)O (Pv + fp) aggregates using RDA (rotational Drickamer apparatus). The RDA has a better support for the anvils at high pressure than the more commonly used D-DIA apparatus and hence we can reach higher pressures and temperatures than the D-DIA. We have recently made new modifications to the cell assembly to reach the lower mantle conditions with less interference in X-ray diffraction patterns by the surrounding materials. The starting material was ringwoodite synthesized using a multi-anvil. In-situ deformation experiments were then carried at pressure up to 28 GPa (calculated from thermal EOS of Pt) and estimated temperatures up to 2200 K using RDA. Under these conditions, ringwoodite transformed to Pv + fp. We subsequently deformed the sample between strain rates of 10-4 to 10-5 s-1. Stress and strain were measured in-situ using X-ray synchrotron beam. The recovered sample analyses show evidence of perovskite+(Mg,Fe)O microstructure (Fig. 1). The radial X-ray diffraction data are being analysed to determine the stress levels of two minerals. Also microstructures of deformed specimens are studied to understand the deformation mechanisms and strain partitioning. The results will contribute towards our understanding of the rheological properties of the

  9. Flow characteristics around a deformable stenosis under pulsatile flow condition (United States)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon


    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  10. Geochemical and Isotopic Variations Along the Southeast Indian Ridge (126°-140°E) Related to Mantle Flow Originating from Beneath Antarctica (United States)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Dufour, F.; Briais, A.; Ceuleneer, G.; Maia, M.; Park, S. H.; Revillon, S.; Yang, Y. S.


    We present data for glassy basalts from 37 localities along the spreading axis of the Southeast Indian Ridge (SEIR) between 126°-140°E, eastward of the Australian-Antarctic Discordance (AAD). Each of the five ridge segments (A1 to A5, west to east) show well-defined major element trends. An isotopic and negative axial depth anomaly is present, centered on the overlapping tips of segments A3 and A4 at 135°E. Segment A4 basalts have distinct radiogenic Pb and He isotopes plus enriched MORB-like ɛHf, relative to segments to the west and east. Crystal fractionation is more extensive at the A3 and A5 overlapping segment tips adjacent to A4, and decreases both to the west and east. The along axis pattern suggests a mantle heterogeneity located beneath the A3-A4 segments. Pb-Pb isotopic co-variations for the 5 segments define two linear arrays, with a western trend (A1-A3) and an eastern trend (A4-A5) that intersects it at the composition of the anomalous A4 segment, at a 206Pb/204Pb 19. The western trend has higher 208Pb/204Pb for a given 206Pb/204Pb, revealing a gradient in the asthenosphere, with Δ208Pb/204Pb decreasing to the east away from the AAD. Overall, 206,207,208Pb/204Pb and 4He/3He of the A4 anomaly define trends that vector toward the fields for Cenozoic lavas from west Antarctica (Marie Byrd Land and Balleny Islands). West Antarctica has a history of mantle plume underplating and lithosphere modification by subduction [1,2], and there is a broad seismic anomaly below 250 km underlying the West Antarctic Rift system [3]. Our data supports a model in which flow of underplated material plus lithosphere may be guided by the underside topography of the lithosphere beneath the Transantarctic mountains. This flow emerges from beneath east Antarctica, where it leads to volcanism in the Balleny Islands [4]. The material apparently continues to flow northward to the SEIR at 135°E. The geochemical anomaly beneath Zone A is potentially explained by the presence of

  11. The electrical conductivity of the upper mantle and lithosphere from satellite magnetic signal due to ocean tidal flow (United States)

    Schnepf, N. R.; Kuvshinov, A. V.; Grayver, A.; Sabaka, T. J.; Olsen, N.


    Global electromagnetic (EM) studies provide information on mantle electrical conductivity with the ultimate aim of understanding the composition, structure, and dynamics of Earth's interior. There is great much interest in mapping the global conductivity of the lithosphere and upper mantle (i.e., depths of 10-400 km) because recent laboratory experiments demonstrate that the electrical conductivity of minerals in these regions are greatly affected by small amounts of water or by partial melt. For decades, studies of lithospheric/mantle conductivity were based on interpretation of magnetic data from a global network of observatories. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. This is a challenging period range for global EM studies since the ionospheric (Sq) source dominates these periods and has a much more complex spatial structure compared to the magnetospheric ring current. Moreover, satellite-based EM induction studies in principle cannot use Sq data since the satellites fly above the Sq source causing the signals to be seen by the satellite as a purely internal source, thus precluding the separation of satellite Sq signals into internal and external parts. Lastly, magnetospheric and ionospheric sources interact inductively with Earth's conducting interior. Fortunately, there exists an alternative EM source in the Sq period range: electric currents generated by oceanic tides. Tides instead interact galvanically with the lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling

  12. Flow inside an eye under vitreous surgery (United States)

    Kono, Daiki; Sakamoto, Shun; Sakakibara, Jun


    Vitreous is a clear gel filling the space between crystalline lens and retina in human eye. Under circumstances where the vitreous becomes opaque due to bleeding or other disease, ophthalmologist removes the vitreous from eye by cutting and sucking through a pipe named vitreous cutter, and meanwhile replaces fluid in the eye with a balanced salt solution by injecting it through the infusion port. Jet flow from the infusion port may cause intense flow. Consequently, this may generate a pressure and a shear stress on the retinal wall and possibly lead to the damage of retinal cell. In this study, we visualized the flow inside eye and estimated the shear stress on the retinal wall under the vitreous surgery. Instead of using human eye, we used a spherical shell model simulating human eyeball, and measured the two dimensional distribution of two-component velocity by PIV. Under the condition of Re=66 to 99, which meet in the actual operation, the maximum shear stress reaches 0.4 Pa. This value is insufficient to cause retinal detachment, while any physiological effect on the retinal endothelial cells is still unclear. Flow field under higher Re will be presented in the talk. Supported by Grants-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Grant No. 25289026.

  13. Elasticity of superhydrous phase B at the mantle temperature and pressure: Implications for 800-km discontinuity and water flow into lower mantle (United States)

    Yang, D.; Wang, W.; Wu, Z.


    Plate subduction can transport the water to the Earth's interior by forming hydrous phases and water can exert important effects on global dynamics and many processes within the deep Earth. Superhydrous phase B (ShyB), as an important candidate for transporting water into the mantle transition zone and lower mantle, is stable up to 31 GPa and will decompose into bridgmanite, periclase and water at a depth of 800 km [Komabayashi and Omori, 2006]. The decomposition of ShyB may be related to the seismic discontinuity at the depth of 800 km in Western-Pacific Subduction Zones [Liu et al., 2016; Porritt and Yoshioka, 2016]. The detail discussions on this topic require the elasticity of ShyB at the P-T conditions of the transition zone and lower mantle. In this contribution, we obtained the thermal elasticity of ShyB using first-principles calculations. ShyB shows a very low velocity and density compared to the bridgmanite and periclase, the major minerals in the lower mantle. The accumulation of ShyB will generate the low-velocity anomaly in the uppermost lower mantle. The dehydration of ShyB will cause the Vp, Vs, and density increase by 7.5%, 15.0% and 12%, respectively. It means that a slab with 10% ShyB could cause an impedance contrast of 2.7% at a depth of 800 km for shear wave. Furthermore, the released waters by the dehydration of ShyB probably migrate upward and promote the partial melt to reduce the sound velocity at shallower depth, which can further explain the low-velocity zones just above 800-km discontinuity in Western-Pacific Subduction Zones [Liu et al., 2016]. Komabayashi, T., and S. Omori (2006), Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth's deep mantle, Physics of the Earth and Planetary Interiors, 156(1-2), 89-107. Liu, Z., J. Park, and S. I. Karato (2016), Seismological detection of low-velocity anomalies surrounding the mantle transition

  14. Burnout characteristics under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Kuroyanagai, Toshiyuki


    Burnout characteristics in a uniformly heated, vertically oriented tube, under flow reduction condition, were experimentally studied. Test pressures ranged 0.5 -- 3.9 MPa and flow reduction rates 0.6 -- 35%/s. An analytical method was developed to obtain the local mass velocity during a transient condition. The local mass velocity at the burnout location with an increasing flow reduction rate was slightly different from that measured in steady state tests. The system pressure had a significant effect on the difference. An empirical correlation was presented to give the ratio between the transient and steady state burnout mass velocities at the burnout location as a function of the steam-water density ratio and the flow reduction rate. Experimental results of previous work were compared with this correlation. (author)

  15. Amphibole incongruent melting under Lithospheric Mantle conditions in spinel peridotites from Balaton area, Hungary (United States)

    Ntaflos, Theodoros; Abart, Rainer; Bizimis, Michel


    Pliocene alkali basalts from the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. We studied coarse and fine grained fertile to depleted spinel lherzolites, spinel harzubrgites and dunites from Szentbékálla, Balaton, in detail, using XRF, EPMA and LA-ICP-MS and MC-ICP-MS techniques. Pliocene alkali basalts containing mantle xenoliths with three major types of textures are widespread in the studied area: fine-grained primary and secondary equigranular, coarse-grained protogranular and transitional between equigranular and protogranular textures. Melt pockets, are common in the studied xenoliths. The shape of several melt pockets resembles euhedral amphibole. Other samples have thin films of intergranular glass attributed to the host basalt infiltration. Calculations have shown that such xenoliths experienced an up to 2.4% host basalt infiltration. The bulk rock Al2O3 and CaO concentrations vary from 0.75 to 4.1 and from 0.9 to 3.6 wt% respectively, and represent residues after variable degrees of partial melting. Using bulk rock major element abundances, the estimated degree of partial melting ranges from 4 to 20%.. The Primitive Mantle normalized clinopyroxene trace element abundances reveal a complicated evolution of the Lithospheric mantle underneath Balaton, which range from partial melting to modal and cryptic metasomatism. Subduction-related melt/fluids and/or infiltration of percolating undersaturated melts could be account for the metasomatic processes. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. Mass balance calculations have shown that the bulk composition of the melt pockets is identical to small amphibole relics found as

  16. Lateral displacement of crustal units relative to underlying mantle lithosphere: Example from the Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Babuška, Vladislav; Plomerová, Jaroslava


    Roč. 48, December (2017), s. 125-138 ISSN 1342-937X R&D Projects: GA ČR GAP210/12/2381; GA MŠk(CZ) LD15029; GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:67985530 Keywords : Bohemian Massif * Teplá-Barrandian mantle lithosphere * Zone Erbendorf-Vohenstrauss * Jáchymov Fault Zone Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 6.959, year: 2016

  17. Highly stable superhydrophobic surfaces under flow conditions (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin


    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  18. Measurement of unsteady gas flow under anisothermic conditions (United States)

    Gulin, L. V.; Shipitsin, V. F.; Volobuev, P. V.


    We describe a dynamic method for measuring unsteady gas flow under anisothermic conditions. We show that the value of the flow sensitivity determined under isothermal conditions can be used for molecular flow.

  19. Mantle Evolution under the Bouvet Triple Junction (SMAR) from the aspect of Tectonic and Geochemistry (United States)

    Migdisova, Natalia; Sobolev, Alexander; Sushchevskaya, Nadejda; Belyatsky, Boris; Kuzmin, Dmitrii


    Three main structures of the oceanic floor - Mid Atlantic Ridge (MAR), American Antarctic Ridge (AAR) and Southwest Indian Ridge (SWIR) - constitute the Bouvet Triple Junction (BTJ). These constituents have changed their position relatively each other a lot of times during the evolution (Ligi et al., 1999). The unstable character of their interaction was the main cause of the complicated structure of BTJ. The segment of BTJ is characterized by the tholeiitic type of magmatism. However those magmas have different conditions of generation and eruption. Nevertheless basaltic rocks of the studying segment of the rift valley SWIR are determined as moderately enriched tholeiites on the basis of trace and major element variations. Normalized patterns of incompatible elements of BTJ basalts are characterized by relative maxima of Nb, Ta, and La and minima of Pb and less pronounced minima of Th and U. There is a clear Sr minimum in the most fractionated basalts from the Spiess Ridge. Apparent "garnet signature" expressed in the elevated values of (Gd/Yb)N ratio (up to 2.5) present in some basalt compositions. This indicates the presence of garnet in the source of basaltic melts of the BTJ. Ni excess over Mg and Mn deficiency over Fe in olivine phenocrysts suggest the presence of olivine-free pyroxenite lithologies in the sources of primary melts (Sobolev et al., 2007). The lowest amounts of pyroxenite component (X PX Mn/Fe = 0-10%) were recorded for the samples from the station S18-63, located in the MAR valley. The greatest range (X PX Mn/Fe = 0-90% in the single rock) was observed in samples from the station G96-10 situated on the western slope of the Spiess Ridge. Obtained results suggest the participation of recycled crustal component in the generation of primary melts. That component was involved in the rising mantle in the form of silica oversaturated eclogite as previously subducted oceanic crust or as fragments of ancient continental lithosphere. Melts generated

  20. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel


    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  1. Imaging the lithosphere and underlying mantle of the South Atlantic, South America and Africa using waveform tomography with massive datasets (United States)

    Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Ravenna, M.; Gaina, C.


    Recent growth in global seismic station coverage has created dense data sampling of the previously poorly constrained lithosphere and underlying mantle beneath the South Atlantic, South America and Africa. The new data enable us to image the vast region at a new level of detail and address important open questions regarding its lithospheric architecture and mantle dynamics. In order to fully exploit the data sampling, we use an efficient, multimode waveform tomography scheme that enables the extraction of structural information from millions of seismograms and use the inherent data redundancy to minimize effects of errors in the data. Our tomographic model is constrained by waveform fits of over 1.2 million vertical-component seismograms, computed using the Automated Multimode Inversion of surface, S- and multiple S-waves. Each successful seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. We then combine all equations into a large linear system and invert jointly for a model of S- and P-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. We are now able to image the detailed structure of various African shields. For example, in West Africa, two clearly separate high-velocity units underlay the Reguibat and Man-Léo Shields; in the Congo area, a single high-velocity body, formed by three main units correspond to the Gabon-Cameroon, Bomu-Kibali and Kasai Shields. Strong low-velocity anomalies underlay the Afar Hotspot and the East African Rift; pronounced low velocities are also seen beneath parts of the Sahara Desert. We discuss the shape of the deep Afar anomaly and its possible relationships with the Saharan volcanism and the neighboring Tanzania Craton. In the South Atlantic, we retrieve fine-scale velocity structure along the Mid-Atlantic Ridge (MAR), indicative of hotspot-ridge interactions. Major hotspots show

  2. Studying leukocyte recruitment under flow conditions. (United States)

    Parsons, Sean A; Jurzinsky, Christophe; Cuvelier, Susan L; Patel, Kamala D


    Leukocyte recruitment from the vasculature occurs under conditions of haemodynamic shear stress. The parallel plate flow chamber apparatus is an in vitro system that is widely used to study leukocyte recruitment under shear conditions. The flow chamber is a versatile tool for examining adhesive interactions, as it can be used to study a variety of adhesive substrates, ranging from monolayers of primary cells to isolated adhesion molecules, and a variety of adhesive particles, ranging from leukocytes in whole blood to antibody-coated latex beads. We describe here methods for studying leukocyte recruitment to cytokine-stimulated, transfected or transduced endothelial cells using both whole blood and isolated leukocyte suspensions. These methods enable multiple parameters to be measured, including the total number of recruited leukocytes, the percentage of leukocytes that are rolling or firmly adherent, and the percentage of leukocytes that have transmigrated. Although these methods are described for interactions between leukocytes and endothelial cells, they are broadly applicable to the study of interactions between many combinations of adhesive substrates and adhesive particles.

  3. Lithosphere-mantle coupling and the dynamics of the Eurasian Plate

    NARCIS (Netherlands)

    Warners-Ruckstuhl, K.N.; Govers, R.; Wortel, R.


    Mechanical equilibrium of tectonic plates implies that lithospheric edge and body forces are balanced by forces arising from interaction with the underlying mantle. We use this quantitative physical relation to integrate existing modelling approaches of lithosphere dynamics and mantle flow into a

  4. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc (United States)

    Currie, C. A.; Wang, K.; Hyndman, Roy D.; He, Jiangheng


    At subduction zones, geophysical and geochemical observations indicate that the arc and backarc regions are hot, in spite of the cooling effects of a subducting plate. At the well-studied Cascadia subduction zone, high mantle temperatures persist for over 500 km into the backarc, with little lateral variation. These high temperatures are even more surprising due to the juxtaposition of the hot Cascadia backarc against the thick, cold North America craton lithosphere. Given that local heat sources appear to be negligible, mantle flow is required to transport heat into the wedge and backarc. We have examined the thermal effects of mantle flow induced by traction along the top of the subducting plate. Through systematic tests of the backarc model boundary, we have shown that the model thermal structure of the wedge is primarily determined by the assumed temperatures along this boundary. To get high temperatures in the wedge, it is necessary for flow to mine heat from depth, either by using a temperature-dependent rheology, or by introducing a deep cold boundary through a thick adjacent lithosphere, consistent with the presence of a craton. Regardless of the thermal conditions along the backarc boundary, flow within an isoviscous wedge is too slow to transport a significant amount of heat into the wedge corner. With a more realistic stress- and temperature-dependent wedge rheology, flow is focused into the wedge corner, resulting in rapid flow upward toward the corner and enhanced temperatures below the arc, compatible with temperatures required for arc magma generation. However, this strong flow focusing produces a nearly stagnant region further landward in the shallow backarc mantle, where model temperatures and heat flow are much lower than observed. Observations of high backarc temperatures, particularly in areas that have not undergone recent extension, provide an important constraint on wedge dynamics. None of the models of simple traction-driven flow were able

  5. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.


    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...


    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud


    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  7. Reserves and cash flows under stochastic retirement

    DEFF Research Database (Denmark)

    Gad, Kamille Sofie Tågholt; Nielsen, Jeppe Woetmann


    and the guarantees provided. Stochastic retirement creates a need to rethink the construction of disability products for high ages and ways to handle this are discussed. We show how to calculate market reserves and how to use modified transition probabilities to calculate expected cash flows without significantly...... more complexity than in the traditional model. At last, we demonstrate the impact of stochastic retirement on market reserves and expected cash flow in numerical examples....

  8. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei


    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  9. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions (United States)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.


    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each

  10. The free overfall under laminar flow conditions

    International Nuclear Information System (INIS)

    Tsanis, I.K.; Leutheusser, H.J.


    Industrial flow processes involving molten substances or other highly viscous liquids frequently make use of conveyance by open channels. A typical example of this occurs in the manufacture of glass products where the liquid glass is distributed by means of a network of open channels linking a central melting furnace with a possibly large number of widely dispersed casting machines. The generally nonuniform motion in these conduits is laminar and, as yet, surprisingly little explored. Following a first attack on the problem of gradually varied laminar free-surface flow in long rectangular channels, the present work addresses the case of rapidly varied laminar free-surface flow over a rectangular free over-fall. (author)

  11. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.


    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...

  12. The mantle-plume model, its feasibility and consequences

    NARCIS (Netherlands)

    Calsteren, van P.W.C.


    High beat-flow foci on the Earth have been named ‘hot-spots’ and are commonly correlated with ‘mantle-plumes’ in the deep. A mantle plume may be described as a portion of mantle material with a higher heat content than its surroundings. The intrusion of a mantle-plume is inferred to be similar to

  13. Dynamics of Deformable Active Particles under External Flow Field (United States)

    Tarama, Mitsusuke


    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  14. Stress Analysis of Fuel Rod under Axial Coolant Flow

    International Nuclear Information System (INIS)

    Jin, Hai Lan; Lee, Young Shin; Lee, Hyun Seung; Park, Num Kyu; Jeon, Kyung Rok


    A pressurized water reactor(PWR) fuel assembly, is a typical bundle structure, which uses light water as a coolant in most commercial nuclear power plants. Fuel rods that have a very slender and long clad are supported by fuel assembly which consists of several spacer grids. A coolant is a fluid which flows through device to prevent its overheating, transferring the heat produced by the device to other devices that use or dissipate it. But at the same time, the coolant flow will bring out the fluid induced vibration(FIV) of fuel rods and even damaged the fuel rod. This study has been conducted to investigate the flow characteristics and nuclear reactor fuel rod stress under effect of coolant. Fluid structure interaction(FSI) analysis on nuclear reactor fuel rod was performed. Fluid analysis of the coolant which flow along the axial direction and structural analysis under effect of flow velocity were carried out under different output flow velocity conditions

  15. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren


    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... on calculations with a CFD-model, which has earlier been validated by means of experiments. The CFD-model is used to determine the heat transfer between the solar collector fluid in the mantle and the walls surrounding the mantle in all levels of the mantle as well as the heat transfer between the wall...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...

  16. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E


    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  17. Where is mantle's carbon? (United States)

    Oganov, A. R.; Ono, S.; Ma, Y.


    Petrology: Field Observations and High Pressure Experimentation: A Tribute to Francis R. (Joe) Boyd. Geochemical Soc., Special Publication No. 6. Eds: Y. Fei, C.M. Bertka, B.O. Mysen. 4.Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A. (2008). Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth's lower mantle. Earth Planet. Sci. Lett. 273, 38-47 5.Scott H.P.,, Williams Q., Knittle E. (2001). Stability and equation of state of Fe3C to 73 GPa: Implications for carbon in the Earth's core. Geoph. Res. Lett. 28, 1875-1878. 6.Oganov A.R., Glass C.W., Ono S. (2006). High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet. Sci. Lett. 241, 95-103. 7.Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T., Nishibori E., Takadda M., and Sakata M. (2004). Stability of Magnesite and its high-pressure form in the lowermost mantle. Nature 427, 60-63. 8.Skorodumova N.V., Belonoshko A.B., Huang L., Ahuja R., Johansson B. (2005) Stability of the MgCO3 structures under lower mantle conditions. Am. Mineral. 90, 1008-1011. 9.Panero W.R., Kabbes J.E. (2008). Mantle-wide sequestration of carbon in silicates and the structure of magnesite II. Geophys. Res. Lett. 35, L14307. 10.Oganov A.R., Glass C.W. (2006). Crystal structure prediction using ab initio evolutionary algorithms: principles and applications. J. Chem. Phys. 124, art. 244704.

  18. Particle Entrainment under Turbulent Flow Conditions (United States)

    Diplas, Panayiotis


    Erosion, transportation and deposition of sediments and pollutants influence the hydrosphere, pedosphere, biosphere and atmosphere in profound ways. The global amount of sediment eroded annually over the continental surface of the earth via the action of water and wind is estimated to be around 80 billion metric tons, with 20 of them delivered by rivers to the oceans. This redistribution of material over the surface of the earth affects most of its physical, chemical and biological processes in ways that are exceedingly difficult to comprehend. The criterion currently in use for predicting particle entrainment, originally proposed by Shields in 1936, emphasizes the time-averaged boundary shear stress and therefore is incapable of accounting for the fluctuating forces encountered in turbulent flows. A new criterion that was developed recently in an effort to overcome the limitations of the previous approach will be presented. It is hypothesized that not only the magnitude, but also the duration of energetic near bed turbulent events is relevant in predicting grain removal from the bed surface. It is therefore proposed that the product of force and its duration, or impulse, is a more appropriate and universal criterion for identifying conditions suitable for particle dislodgement. Analytical formulation of the problem and experimental data are used to examine the validity of the new criterion.

  19. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.


    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  20. Crust and Mantle Deformation Revealed from High-Resolution Radially Anisotropic Velocity Models (United States)

    Li, A.; Dave, R.; Yao, Y.


    Love wave tomography, which can achieve a similar model resolution as Rayleigh wave, so far has limited applications to the USArray data. Recently, we have developed high-resolution Love wave phase velocity maps in the Wyoming craton and Texas using data at the Transportable Array stations. 3-D, radially anisotropic velocity models are obtained by jointly inverting Love and Rayleigh wave phase velocities. A high-velocity anomaly extending to about 200 km depth beneath central Wyoming correlates with negative radial anisotropy (Vsv>Vsh), suggesting that mantle downwelling develops under the cratonic lithosphere. Surprisingly, the significantly low velocity beneath the Yellowstone hotspot, which has been interpreted as partial melting and asthenospheric upwelling, is associated with the largest radial anisotropy (Vsh>Vsv) in the area. This observation does not support mantle upwelling. Instead, it indicates that the upper mantle beneath the hotspot has experienced strong shear deformation probably by the plate motion and large-scale mantle flow. In Texas, positive radial anisotropy in the lower crust extends from the coast to the Ouachita belt, which is characterized by high velocity and negative radial anisotropy. In the upper mantle, large variations of velocity and anisotropy exit under the coastal plain. A common feature in these anisotropic models is that high-velocity anomalies in the upper mantle often correlate with negative anisotropy (Vsv>Vsh) while low-velocity anomalies are associated with positive anisotropy (Vsh>Vsv). The manifestation of mantle downweling as negative radial anisotropy is largely due to the relatively high viscosity of the high-velocity mantle block, which is less affected by the surrounding large-scale horizontal flow. However, mantle upwelling, which is often associated with low-velocity anomalies, presumably low-viscosity mantle blocks, is invisible in radial anisotropy models. Such upwelling may happen too quickly to make last

  1. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M


    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  2. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy) (United States)

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.


    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  3. Heat transfer correlations in mantle tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Knudsen, Søren


    Small solar domestic hot water systems are best designed as low flow systems based on vertical mantle tanks. Theoretical investigations of the heat transfer in differently designed vertical mantle tanks during different operation conditions have been carried out. The investigations are based...... transfer correlations are suitable as input for a detailed simulation model for mantle tanks. The heat transfer correlations determined in this study are somewhat different from previous reported heat transfer correlations. The reason is that this study includes more mantle tank designs and operation...... of the inner hot water tank and the domestic water in all levels of the tank. The heat transfer analysis showed that the heat transfer near the mantle inlet port between the solar collector fluid in the mantle and the walls surrounding the mantle is in the mixed convection regime, and as the distance from...

  4. Time-dependent convective flows with high viscosity contrasts under micro gravity conditions. (United States)

    Zaussinger, Florian; Egbers, Christoph; Krebs, Andreas; Schwarzbach, Felix; Kunze, Christian


    Thermal driven convection in spherical geometry is of main interest in geo- and astrophysical research. To capture certain aspects of temperature dependent viscosity we investigate the micro-gravity experiment GeoFlow-IIb, located on the ISS. This unique experimental setup consists of a bottom heated and top cooled spherical gap, filled with the silicon oil 1-Nonanol. However, rotation and varying temperature gradients can be applied, to spread the experimental parameter space. The main focus of the current mission is the investigation of time dependent convective flow structures. Since the ISS requirements makes it impossible to use tracer particles, the flow structures are captured by interferometry, whose outcome is analysed by an ground based adapted image processing technique. To guarantee valid results the experimental time of each parameter is in the order of the thermal time scale, which is about 40 min. We are presenting latest results of plume-like and sheet-like time-dependent convective patterns in the spherical shell, their evolution and temporal behaviour under high viscosity contrasts. Due to an unexpected nonlinear coupling between the temperature dependent viscosity of the working fluid and the applied dielectrophoretic force field, we are able to maintain a viscosity contrast of 50 and more. This gives the chance to compare cautiously our experimental results with theoretical assumptions of the mantle convection theory. Besides, numerical simulations in the same parameter regime are performed, which give the opportunity to deduce the internal structure of the experimental flow flied. The main focus of the presented results are the long time temporal evolution of convective plumes in the spherical gap, image capturing- and processing techniques and the deduction of the internal flow field based on planar interferometry pictures.

  5. Motion estimation under location uncertainty for turbulent fluid flows (United States)

    Cai, Shengze; Mémin, Etienne; Dérian, Pierre; Xu, Chao


    In this paper, we propose a novel optical flow formulation for estimating two-dimensional velocity fields from an image sequence depicting the evolution of a passive scalar transported by a fluid flow. This motion estimator relies on a stochastic representation of the flow allowing to incorporate naturally a notion of uncertainty in the flow measurement. In this context, the Eulerian fluid flow velocity field is decomposed into two components: a large-scale motion field and a small-scale uncertainty component. We define the small-scale component as a random field. Subsequently, the data term of the optical flow formulation is based on a stochastic transport equation, derived from the formalism under location uncertainty proposed in Mémin (Geophys Astrophys Fluid Dyn 108(2):119-146, 2014) and Resseguier et al. (Geophys Astrophys Fluid Dyn 111(3):149-176, 2017a). In addition, a specific regularization term built from the assumption of constant kinetic energy involves the very same diffusion tensor as the one appearing in the data transport term. Opposite to the classical motion estimators, this enables us to devise an optical flow method dedicated to fluid flows in which the regularization parameter has now a clear physical interpretation and can be easily estimated. Experimental evaluations are presented on both synthetic and real world image sequences. Results and comparisons indicate very good performance of the proposed formulation for turbulent flow motion estimation.

  6. Maintaining Information Flow Security under Refinement and Transformation


    Seehusen, Fredrik; Stølen, Ketil


    - We address the problem of maintaining information flow security under refinement and transformation. To this end we define a schema for the specification of secure information flow properties and show that all security properties defined in the schema are preserved by a notion of refinement. Refinement is a process that requires human guidance and is in general not subject for automation. A transformation on the other hand, is an executable function mapping specifications to specificatio...

  7. Morphological instabilities of rapidly solidified binary alloys under weak flow (United States)

    Kowal, Katarzyna; Davis, Stephen


    Additive manufacturing, or three-dimensional printing, offers promising advantages over existing manufacturing techniques. However, it is still subject to a range of undesirable effects. One of these involves the onset of flow resulting from sharp thermal gradients within the laser melt pool, affecting the morphological stability of the solidified alloys. We examine the linear stability of the interface of a rapidly solidifying binary alloy under weak boundary-layer flow by performing an asymptotic analysis for a singular perturbation problem that arises as a result of departures from the equilibrium phase diagram. Under no flow, the problem involves cellular and pulsatile instabilities, stabilised by surface tension and attachment kinetics. We find that travelling waves appear as a result of flow and we map out the effect of flow on two absolute stability boundaries as well as on the cells and solute bands that have been observed in experiments under no flow. This work is supported by the National Institute of Standards and Technology [Grant Number 70NANB14H012].

  8. Unraveling African plate structure from elevation, geoid and geology data: implications for the impact of mantle flow and sediment transfers on lithospheric deformation (United States)

    Bajolet, Flora; Robert, Alexandra; Chardon, Dominique; Rouby, Delphine


    thickness map of the African plate is derived from our lithospheric thickness model and is used to simulate the long-term flexural response of the continent due to thermal relaxation subsequent to rifting. The elastic thickness map is also combined with erosion-deposition record of northwestern Africa and its margins in a thermal-flexural model to infer the African plate's response to sediment transfers during the Meso-Cenozoic. Our results indicate that at least one-third of the long-wavelength vertical rock uplift undergone by the continent may be due sediment transfers, suggesting dynamically supported topography derived from mantle flow models is overestimated. References: Fullea J. et al., 2007. Tectonophysics 430, 97-117.

  9. Numerical simulation of transverse jet flow field under supersonic inflow

    Directory of Open Access Journals (Sweden)

    Qian Li


    Full Text Available Transverse jet flow field under supersonic inflow is simulated numerically for studying the characteristic of fuel transverse jet and fuel mixing in scramjet combustion chamber. Comparison is performed between simulated results and the results of references and experiments. Results indicate that the CFD code in this paper is applicable for simulation of transverse jut flow field under supersonic inflow, but in order to providing more effective numerical predictive method, CFD code should be modified through increasing mesh density and adding LES module.

  10. Episodic kinematics in continental rifts modulated by changes in mantle melt fraction (United States)

    Lamb, Simon; Moore, James D. P.; Smith, Euan; Stern, Tim


    Oceanic crust is created by the extraction of molten rock from underlying mantle at the seafloor ‘spreading centres’ found between diverging tectonic plates. Modelling studies have suggested that mantle melting can occur through decompression as the mantle flows upwards beneath spreading centres, but direct observation of this process is difficult beneath the oceans. Continental rifts, however—which are also associated with mantle melt production—are amenable to detailed measurements of their short-term kinematics using geodetic techniques. Here we show that such data can provide evidence for an upwelling mantle flow, as well as information on the dimensions and timescale of mantle melting. For North Island, New Zealand, around ten years of campaign and continuous GPS measurements in the continental rift system known as the Taupo volcanic zone reveal that it is extending at a rate of 6-15 millimetres per year. However, a roughly 70-kilometre-long segment of the rift axis is associated with strong horizontal contraction and rapid subsidence, and is flanked by regions of extension and uplift. These features fit a simple model that involves flexure of an elastic upper crust, which is pulled downwards or pushed upwards along the rift axis by a driving force located at a depth greater than 15 kilometres. We propose that flexure is caused by melt-induced episodic changes in the vertical flow forces that are generated by upwelling mantle beneath the rift axis, triggering a transient lower-crustal flow. A drop in the melt fraction owing to melt extraction raises the mantle flow viscosity and drives subsidence, whereas melt accumulation reduces viscosity and allows uplift—processes that are also likely to occur in oceanic spreading centres.

  11. Verification of the karst flow model under laboratory controlled conditions (United States)

    Gotovac, Hrvoje; Andric, Ivo; Malenica, Luka; Srzic, Veljko


    Karst aquifers are very important groundwater resources around the world as well as in coastal part of Croatia. They consist of extremely complex structure defining by slow and laminar porous medium and small fissures and usually fast turbulent conduits/karst channels. Except simple lumped hydrological models that ignore high karst heterogeneity, full hydraulic (distributive) models have been developed exclusively by conventional finite element and finite volume elements considering complete karst heterogeneity structure that improves our understanding of complex processes in karst. Groundwater flow modeling in complex karst aquifers are faced by many difficulties such as a lack of heterogeneity knowledge (especially conduits), resolution of different spatial/temporal scales, connectivity between matrix and conduits, setting of appropriate boundary conditions and many others. Particular problem of karst flow modeling is verification of distributive models under real aquifer conditions due to lack of above-mentioned information. Therefore, we will show here possibility to verify karst flow models under the laboratory controlled conditions. Special 3-D karst flow model (5.6*2.6*2 m) consists of concrete construction, rainfall platform, 74 piezometers, 2 reservoirs and other supply equipment. Model is filled by fine sand (3-D porous matrix) and drainage plastic pipes (1-D conduits). This model enables knowledge of full heterogeneity structure including position of different sand layers as well as conduits location and geometry. Moreover, we know geometry of conduits perforation that enable analysis of interaction between matrix and conduits. In addition, pressure and precipitation distribution and discharge flow rates from both phases can be measured very accurately. These possibilities are not present in real sites what this model makes much more useful for karst flow modeling. Many experiments were performed under different controlled conditions such as different

  12. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions (United States)

    Dasgupta, Rajdeep; Hirschmann, Marc M.; Withers, Anthony C.


    We present partial melting experiments that constrain the near solidus phase relations of carbonated eclogite from 2 to 8.5 GPa. The starting material was prepared by adding 5 wt.% CO 2 in the form of a mixture of Fe-Mg-Ca-Na-K carbonates to an eclogite from Salt Lake crater, Oahu, Hawaii and is a reasonable approximation of carbonated oceanic crust from which siliceous hydrous fluids have been extracted during subduction. Melt-present versus melt-absent conditions are distinguished based on textural criteria. Garnet and clinopyroxene appear in all the experiments. Between 2 and 3 GPa, the subsolidus assemblage also includes ilmenite±calcio-dolomite ss±CO 2, whereas above the solidus (1050-1075 °C at 3 GPa) calcio-dolomitic liquid appears. From 3 to 4.5 GPa, dolomite ss is stable at the solidus and the near-solidus melt becomes increasingly dolomitic. The appearance of dolomite above 3 GPa is accompanied by a negative Clapeyron slope of the solidus, with a minimum located between 995 and 1025 °C at ca. 4 GPa. Above 4 GPa, the solidus rises with increasing pressure to 1245±35 °C at 8.5 GPa and magnesite becomes the subsolidus carbonate. Dolomitic melt coexists with magnesite+garnet+cpx+rutile along the solidus from 5 to 8.5 GPa. Comparison of our results to other recent experimental studies [T. Hammouda, High-pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle, Earth Planet. Sci. Lett. 214 (2003) 357-368; G.M. Yaxley, G.P. Brey, Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites, Contrib. Mineral. Petrol. 146 (2004) 606-619] shows that carbonate minerals are preserved in anhydrous or slightly hydrous carbonated eclogite to temperatures >1100 and >1200 °C at 5 and 9 GPa, respectively. Thus, deep subduction of carbonate is expected along any plausible subduction geotherm. If extrapolated to higher pressures, the carbonated

  13. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.


    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  14. Modelling of transit-time ultrasonic flow meters under multi-phase flow conditions

    DEFF Research Database (Denmark)

    Simurda, Matej; Duggen, Lars; Lassen, Benny


    of the background flow are included. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the Fast Fourier transform. The method is compared against analytical solutions and experimental measurements. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating......A pseudospectral model for transit time ultrasonic flowmeters under multiphase flow conditions is presented. The method solves first order stress-velocity equations of elastodynamics, with acoustic media being modelled by setting shear modulus to zero. Additional terms to account for the effect...... under multiphase flow conditions is carried out....

  15. Mantle wedge serpentinization effects on slab dips

    Directory of Open Access Journals (Sweden)

    Eh Tan


    Full Text Available The mechanical coupling between a subducting slab and the overlying mantle wedge is an important factor in controlling the subduction dip angle and the flow in mantel wedge. This paper investigates the role of the amount of mantle serpentinization on the subduction zone evolution. With numerical thermos-mechanical models with elasto-visco-plastic rheology, we vary the thickness and depth extent of mantle serpentinization in the mantle wedge to control the degree of coupling between the slab and mantle wedge. A thin serpentinized mantle layer is required for stable subduction. For models with stable subduction, we find that the slab dip is affected by the down-dip extent and the mantle serpentinization thickness. A critical down-dip extent exists in mantle serpentinization, determined by the thickness of the overriding lithosphere. If the down-dip extent does not exceed the critical depth, the slab is partially coupled to the overriding lithosphere and has a constant dip angle regardless of the mantle serpentinization thickness. However, if the down-dip extent exceeds the critical depth, the slab and the base of the overriding lithosphere would be separated and decoupled by a thick layer of serpentinized peridotite. This allows further slab bending and results in steeper slab dip. Increasing mantle serpentinization thickness will also result in larger slab dip. We also find that with weak mantle wedge, there is no material flowing from the asthenosphere into the serpentinized mantle wedge. All of these results indicate that serpentinization is an important ingredient when studying the subduction dynamics in the mantle wedge.

  16. Distinction between Asymptomatic Monoclonal B-cell Lymphocytosis with Cyclin D1 Overexpression and Mantle Cell Lymphoma: From Molecular Profiling to Flow Cytometry (United States)

    Espinet, Blanca; Ferrer, Ana; Bellosillo, Beatriz; Nonell, Lara; Salar, Antonio; Fernández-Rodríguez, Concepción; Puigdecanet, Eulàlia; Gimeno, Javier; Garcia-Garcia, Mar; Carmen Vela, Maria; Luño, Elisa; Collado, Rosa; Navarro, José Tomás; de la Banda, Esmeralda; Abrisqueta, Pau; Arenillas, Leonor; Serrano, Cristina; Lloreta, Josep; Miñana, Belén; Cerutti, Andrea; Florensa, Lourdes; Orfao, Alberto; Sanz, Ferran; Solé, Francesc; Dominguez-Sola, David; Serrano, Sergio


    Purpose According to current diagnostic criteria, mantle cell lymphoma (MCL) encompasses the usual, aggressive variants and rare, nonnodal cases with monoclonal asymptomatic lymphocytosis, cyclin D1–positive (MALD1). We aimed to understand the biology behind this clinical heterogeneity and to identify markers for adequate identification of MALD1 cases. Experimental Design We compared 17 typical MCL cases with a homogeneous group of 13 untreated MALD1 cases (median follow-up, 71 months). We conducted gene expression profiling with functional analysis in five MCL and five MALD1. Results were validated in 12 MCL and 8 MALD1 additional cases by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in 24 MCL and 13 MALD1 cases by flow cytometry. Classification and regression trees strategy was used to generate an algorithm based on CD38 and CD200 expression by flow cytometry. Results We found 171 differentially expressed genes with enrichment of neoplastic behavior and cell proliferation signatures in MCL. Conversely, MALD1 was enriched in gene sets related to immune activation and inflammatory responses. CD38 and CD200 were differentially expressed between MCL and MALD1 and confirmed by flow cytometry (median CD38, 89% vs. 14%; median CD200, 0% vs. 24%, respectively). Assessment of both proteins allowed classifying 85% (11 of 13) of MALD1 cases whereas 15% remained unclassified. SOX11 expression by qRT-PCR was significantly different between MCL and MALD1 groups but did not improve the classification. Conclusion We show for the first time that MALD1, in contrast to MCL, is characterized by immune activation and driven by inflammatory cues. Assessment of CD38/CD200 by flow cytometry is useful to distinguish most cases of MALD1 from MCL in the clinical setting. MALD1 should be identified and segregated from the current MCL category to avoid overdiagnosis and unnecessary treatment. PMID:24352646

  17. Mekong River flow and hydrological extremes under climate change (United States)

    Phi Hoang, Long; Lauri, Hannu; Kummu, Matti; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco


    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.

  18. Mantle dynamics following supercontinent formation (United States)

    Heron, Philip J.

    This thesis presents mantle convection numerical simulations of supercontinent formation. Approximately 300 million years ago, through the large-scale subduction of oceanic sea floor, continental material amalgamated to form the supercontinent Pangea. For 100 million years after its formation, Pangea remained relatively stationary, and subduction of oceanic material featured on its margins. The present-day location of the continents is due to the rifting apart of Pangea, with supercontinent dispersal being characterized by increased volcanic activity linked to the generation of deep mantle plumes. The work presented here investigates the thermal evolution of mantle dynamics (e.g., mantle temperatures and sub-continental plumes) following the formation of a supercontinent. Specifically, continental insulation and continental margin subduction are analyzed. Continental material, as compared to oceanic material, inhibits heat flow from the mantle. Previous numerical simulations have shown that the formation of a stationary supercontinent would elevate sub-continental mantle temperatures due to the effect of continental insulation, leading to the break-up of the continent. By modelling a vigorously convecting mantle that features thermally and mechanically distinct continental and oceanic plates, this study shows the effect of continental insulation on the mantle to be minimal. However, the formation of a supercontinent results in sub-continental plume formation due to the re-positioning of subduction zones to the margins of the continent. Accordingly, it is demonstrated that continental insulation is not a significant factor in producing sub-supercontinent plumes but that subduction patterns control the location and timing of upwelling formation. A theme throughout the thesis is an inquiry into why geodynamic studies would produce different results. Mantle viscosity, Rayleigh number, continental size, continental insulation, and oceanic plate boundary evolution are

  19. Impact of Mantle Wind on Subducting Plate Geometry and Interplate Pressure: Insights From Physical Modelling. (United States)

    Boutelier, D.; Cruden, A. R.


    New physical models of subduction investigate the impact of large-scale mantle flow on the structure of the subducted slab and deformation of the downgoing and overriding plates. The experiments comprise two lithospheric plates made of highly filled silicone polymer resting on a model asthenosphere of low viscosity transparent silicone polymer. Subduction is driven by a piston that pushes the subducting plate at constant rate, a slab-pull force due to the relative density of the slab, and a basal drag force exerted by flow in the model asthenosphere. Large-scale mantle flow is imposed by a second piston moving at constant rate in a tunnel at the bottom of the experiment tank. Passive markers in the mantle track the evolution of flow during the experiment. Slab structure is recorded by side pictures of the experiment while horizontal deformation is studied via passive marker grids on top of both plates. The initial mantle flow direction beneath the overriding plate can be sub-horizontal or sub-vertical. In both cases, as the slab penetrates the mantle, the mantle flow pattern changes to accommodate the subducting high viscosity lithosphere. As the slab continues to descend, the imposed flow produces either over- or under-pressure on the lower surface of the slab depending on the initial mantle flow pattern (sub-horizontal or sub-vertical respectively). Over-pressure imposed on the slab lower surface promotes shallow dip subduction while under-pressure tends to steepen the slab. These effects resemble those observed in previous experiments when the overriding plate moves horizontally with respect to a static asthenosphere. Our experiments also demonstrate that a strong vertical drag force (due to relatively fast downward mantle flow) exerted on the slab results in a decrease in strain rate in both the downgoing and overriding plates, suggesting a decrease in interplate pressure. Furthermore, with an increase in drag force deformation in the downgoing plate can switch

  20. Brachial blood flow under relative levels of blood flow restriction is decreased in a nonlinear fashion. (United States)

    Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G


    Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Determination of flow curves under equibiaxial stress conditions

    NARCIS (Netherlands)

    Mulder, J.; Vegter, H.; Ha, J.J.; van den Boogaard, Antonius H.


    Three experimental methods have been used to establish flow curves for a low carbon steel under biaxial stress conditions: the hydraulic bulge test, the stack compression test and the biaxial tensile test. The individual tests are discussed and the results for a DC06 IF steel grade compared.


    NARCIS (Netherlands)

    Subbotin, A.V.; Semenov, A.N.; Manias, E; Hadziioannou, G; ten Brinke, G.


    The nonlinear theology of an unentangled polymer melt under shear flow is considered theoretically. The finite chain extensibility is taken into account explicitly. The tangential stress and the first and the second normal-stress differences are calculated as a function of shear rate gamma. It is

  3. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon


    are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle......It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...

  4. Core-exsolved SiO2 Dispersal in the Earth's Mantle (United States)

    Helffrich, G. R.; Ballmer, M.; Hirose, K.


    SiO2 may have been expelled from the core following its formation in the early stages of Earth's accretion and onwards through the present day. On account of SiO2's low density with respect to both the core and the lowermost mantle, we examine the process of SiO2 accumulation at the core-mantle boundary (CMB) and its incorporation into the mantle by buoyant rise. Today, the if SiO2 is 100-10000 times more viscous than lower mantle material, the dimensions of SiO2 diapirs formed by the viscous Rayleigh-Taylor instability at the CMB would cause them to be swept into the mantle as inclusions of 100 m - 10 km diameter. Under early Earth conditions of rapid heat loss after core formation, SiO2 diapirs of 5-80 km diameter could have risen independently of mantle flow to their level of neutral buoyancy in the mantle, trapping them there due to a combination of high viscosity and neutral buoyancy. We examine the SiO2 yield by assuming Si+O saturation at the conditions found at the base of a magma ocean and find that for a range of conditions, dispersed bodies could reach as high as 2 volume percent in shallow parts of the lower mantle, with their abundance decreasing with depth. At such low concentrations, their effect on aggregate seismic wavespeeds would be within the uncertainty of the radial Earth model PREM. However, their presence would be revealed by small-scale scattering in the lower mantle due to the bodies' large velocity contrast. We conclude that the shallow lower mantle (700-1500 km depth) could harbor SiO2 released in early Earth times.

  5. Mantle viscosity structure constrained by joint inversions of seismic velocities and density (United States)

    Rudolph, M. L.; Moulik, P.; Lekic, V.


    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  6. Microbiologically induced corrosion of carbon steel under continuous flow conditions

    International Nuclear Information System (INIS)

    Tunaru, Mariana; Dragomir, Maria; Voicu, Anca


    Microbiologically induced corrosion is the label generally applied to corrosion involving the action of bacteria on metal surfaces. While different combinations of bacterial species, materials and chemical constituents are interrelated factors, stagnant water is the factor most often mentioned in reported cases. This paper presents the results obtained regarding the testing of microbiologically induced corrosion of carbon steel under continuous flow conditions in the presence of iron-oxidizing bacteria. The tests were performed on coupons of SA106gr.B exposed both in stagnant conditions and in flow conditions. The surfaces of these coupons were studied by metallographic technique, while the developed biofilms were analysed using microbiological technique. The correlation of all the results which were obtained emphasized that the minimizing the occurrence of stagnant or low-flow conditions can prove effective in reducing the risk of microbiologically induced corrosion in plant cooling-water systems. (authors)

  7. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions (United States)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.


    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  8. Radionuclide Transport in Fractured Tuff under Episodic Flow Conditions (United States)

    Hu, Q.; Sun, Y.; Ewing, R. P.


    The current conceptual model of radionuclide transport in unsaturated fractured rock includes water movement in fractures, with migration of the entrained radionuclides being retarded by diffusion into and sorption within the rock matrix. Water infiltration and radionuclide transport through low-permeability unsaturated fractured rock are episodic and intermittent in nature, at least at local scales. Under episodic flow conditions, the matrix is constantly imbibing or draining, and this fluctuating wetness both drives two-way advective movement of radionuclides, and forces changes in the matrix diffusivity. This work is intended to examine, both experimentally and numerically, how radionuclide transport under episodic flow conditions is affected by the interacting processes of imbibition and drainage, diffusion, and matrix sorption. Using Topopah Spring welded volcanic tuff, collected from the potential repository geologic unit at Yucca Mountain for storing high-level nuclear waste, we prepared a saw-cut fracture core (length 10.2 cm, diameter 4.4 cm, and fracture aperture 100 microns). The dry core was packed into a flow reactor, flushed with CO2, then saturated via slow pumping (0.01 mL/min) of synthetic groundwater. The fractured core was then flushed with air at 97% relative humidity (to simulate in situ unsaturated fractured rock conditions at Yucca Mountain), then the episodic transport experiment was conducted. Episodic flow involved 4 cycles of tracer solution flow within the fracture, followed by flushing with high humidity air. Each flow episode contained a different suite of non-sorbing and sorbing tracers, which included 3H, ReO4- (a chemical analog for 99TcO4-), I- (for 129I-), Sr and Cs (for 90Sr and 137Cs), plus the radionuclides 235U, 237Np, and 241Pu. These radionuclides span a variety of sorption strengths and represent a large fraction of the radionuclides of concern at the potential Yucca Mountain repository. Meanwhile, the non-sorbing 3H and Re

  9. Effects of incomplete mixing on chemical reactions under flow heterogeneities. (United States)

    Perez, Lazaro; Hidalgo, Juan J.; Dentz, Marco


    Evaluation of the mixing process in aquifers is of primary importance when assessing attenuation of pollutants. In aquifers different hydraulic and chemical properties can increase mixing and spreading of the transported species. Mixing processes control biogeochemical transformations such as precipitation/dissolution reactions or degradation reactions that are fast compared to mass transfer processes. Reactions are local phenomena that fluctuate at the pore scale, but predictions are often made at much larger scales. However, aquifer heterogeities are found at all scales and generates flow heterogeneities which creates complex concentration distributions that enhances mixing. In order to assess the impact of spatial flow heterogeneities at pore scale we study concentration profiles, gradients and reaction rates using a random walk particle tracking (RWPT) method and kernel density estimators to reconstruct concentrations and gradients in two setups. First, we focus on a irreversible bimolecular reaction A+B → C under homogeneous flow to distinguish phenomena of incomplete mixing of reactants from finite-size sampling effects. Second, we analise a fast reversible bimolecular chemical reaction A+B rightleftharpoons C in a laminar Poiseuille flow reactor to determine the difference between local and global reaction rates caused by the incomplete mixing under flow heterogeneities. Simulation results for the first setup differ from the analytical solution of the continuum scale advection-dispersion-reaction equation studied by Gramling et al. (2002), which results in an overstimation quantity of reaction product (C). In the second setup, results show that actual reaction rates are bigger than the obtained from artificially mixing the system by averaging the concentration vertically. - LITERATURE Gramling, C. M.,Harvey, C. F., Meigs, and L. C., (2002). Reactive transport in porous media: A comparison of model prediction with laboratory visualization, Environ. Sci

  10. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea (United States)

    Hongsresawat, S.; Russo, R. M.


    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that

  11. Instabilities in rapid directional solidification under weak flow (United States)

    Kowal, Katarzyna N.; Davis, Stephen H.; Voorhees, Peter W.


    We examine a rapidly solidifying binary alloy under directional solidification with nonequilibrium interfacial thermodynamics viz. the segregation coefficient and the liquidus slope are speed dependent and attachment-kinetic effects are present. Both of these effects alone give rise to (steady) cellular instabilities, mode S , and a pulsatile instability, mode P . We examine how weak imposed boundary-layer flow of magnitude |V | affects these instabilities. For small |V | , mode S becomes a traveling and the flow stabilizes (destabilizes) the interface for small (large) surface energies. For small |V | , mode P has a critical wave number that shifts from zero to nonzero giving spatial structure. The flow promotes this instability and the frequencies of the complex conjugate pairs each increase (decrease) with flow for large (small) wave numbers. These results are obtained by regular perturbation theory in powers of V far from the point where the neutral curves cross, but requires a modified expansion in powers of V1 /3 near the crossing. A uniform composite expansion is then obtained valid for all small |V | .

  12. Flow-shop scheduling problem under uncertainties: Review and trends

    Directory of Open Access Journals (Sweden)

    Eliana María González-Neira


    Full Text Available Among the different tasks in production logistics, job scheduling is one of the most important at the operational decision-making level to enable organizations to achieve competiveness. Scheduling consists in the allocation of limited resources to activities over time in order to achieve one or more optimization objectives. Flow-shop (FS scheduling problems encompass the sequencing processes in environments in which the activities or operations are performed in a serial flow. This type of configuration includes assembly lines and the chemical, electronic, food, and metallurgical industries, among others. Scheduling has been mostly investigated for the deterministic cases, in which all parameters are known in advance and do not vary over time. Nevertheless, in real-world situations, events are frequently subject to uncertainties that can affect the decision-making process. Thus, it is important to study scheduling and sequencing activities under uncertainties since they can cause infeasibilities and disturbances. The purpose of this paper is to provide a general overview of the FS scheduling problem under uncertainties and its role in production logistics and to draw up opportunities for further research. To this end, 100 papers about FS and flexible flow-shop scheduling problems published from 2001 to October 2016 were analyzed and classified. Trends in the reviewed literature are presented and finally some research opportunities in the field are proposed.

  13. In vitro toxicological nanoparticle studies under flow exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sambale, Franziska, E-mail:; Stahl, Frank; Bahnemann, Detlef; Scheper, Thomas [Gottfried Wilhelm Leibniz University Hanover, Institute for Technical Chemistry (Germany)


    The use of nanoparticles is becoming increasingly common in industry and everyday objects. Thus, extensive risk management concerning the potential health risk of nanoparticles is important. Currently, in vitro nanoparticle testing is mainly performed under static culture conditions without any shear stress. However, shear stress is an important biomechanical parameter. Therefore, in this study, a defined physiological flow to different mammalian cell lines such as A549 cells and NIH-3T3 cells has been applied. The effects of zinc oxide and titanium dioxide nanoparticles (TiO{sub 2}-NP), respectively, were investigated under both static and dynamic conditions. Cell viability, cell morphology, and adhesion were proven and compared to the static cell culture. Flow exposure had an impact on the cellular morphology of the cells. NIH-3T3 cells were elongated in the direction of flow and A549 cells exhibited vesicles inside the cells. Zinc oxide nanoparticles reduced the cell viability in the static and in the dynamic culture; however, the dynamic cultures were more sensitive. In the static culture and in the dynamic culture, TiO{sub 2}-NP did not affect cell viability. In conclusion, dynamic culture conditions are important for further in vitro investigations and provide more relevant results than static culture conditions.

  14. Heater rod temperature change at boiling transition under flow oscillation

    International Nuclear Information System (INIS)

    Kasai, Shigeru; Toba, Akio; Takigawa, Yukio; Ebata, Shigeo; Morooka, Shin-ichi; Shirakawa, Ken-etsu; Utsuno, Hideaki.


    The experiments were performed to investigate the boiling transition phenomenon under flow oscillation (OSBT) during thermal hydraulic instability. It was found, from the experimental results, that the thermal hydraulic instability did not immediately lead to the boiling transition (BT) and, even when the BT occurred due to a power increase, the change in the heater rod temperature was periodically up and down with a saw-toothed shape and no excursion occurred. To investigate the temperature change characteristics, an analysis was also performed using the transient thermal hydraulics code. The analytical results showed that the shape of the heater rod temperature change was well simulated by presuming a repeat of alternate BT and rewetting. Based on these results, further analysis has been performed with the lumped parameter model to investigate the temperature profile characteristics as well as the effects of the post-BT heat transfer coefficient and the flow oscillation period on the maximum temperature. (author)

  15. Heterogeneously hydrated mantle beneath the late Archean Yilgarn Craton (United States)

    Ivanic, T. J.; Nebel, O.; Jourdan, F.; Faure, K.; Kirkland, C. L.; Belousova, E. A.


    Archean mafic-ultramafic melts, crystallized as layered intrusions in the upper crust and extruded as komatiitic flows, are primary probes of upper mantle chemistry. However, the message from their primary chemical composition can be compromised by different modes of contamination. Contaminants are typically cryptic in terms of their geochemical and isotopic signals but may be related to metasomatised mantle sources, ambient crustal assimilation or subduction-related inputs. In this work we present critical evidence for both dry and wet Archean mantle sources for two juxtaposed layered intrusions in the Australian Yilgarn Craton. The ca. 2813 Ma Windimurra and ca. 2800 Ma Narndee Igneous Complexes in Western Australia are two adjacent layered intrusions and would be expected to derive via similar mantle sections. A key difference in their chemistry is the presence of crystal-bound water in the Narndee Igneous Complex, represented primarily by abundant hornblende. Such a primary hydrous phase is notably absent in the Windimurra Igneous Complex. New 40Ar/39Ar plateau ages for fresh Narndee hornblende (weighted mean: 2805 ± 14 Ma, MSWD = 1.8, probability = 0.18) agrees with the published U-Pb age of 2800 ± 6 Ma for the complex and is consistent with a magmatic origin for this phase. Zircon Hf and whole-rock Hf and Nd isotopes for the Narndee Igneous Complex indicate only minor crustal contamination, in agreement with H and O isotope values in amphibole and O isotope values in rare zircon crystals, plagioclase and pyroxene within both complexes. These findings illustrate a fast temporal transition, in proximal bodies, from anhydrous to hydrous mantle sources with very minor crustal contamination. These large layered mafic-ultramafic intrusions are igneous bodies with a primitive chemical bulk composition that requires large degrees of mantle melting. This has been attributed by many workers to mantle plume activity, yet not without dispute, as subduction-related flux

  16. Vegetated Flow down a Slope under a Uniform Rainfall (United States)

    Hsieh, P.; Hu, S.


    To understand the effect of vegetation on flow velocity and water depth, a semi-analytical approach was proposed to study flow passing over a finite thick vegetated area under a uniform rainfall event. In this study, the flow region is divided into three layers-- homogenous water layer, mixed water-plant layer and finite thick soil layer (briefly denoted by water layer, vegetation layer, and soil layer). The flow of the water layer is governed by the Navier-Stokes equations. The vegetation and soil layers are both regarded as porous media and a laminar model modified from Biot's theory of poroelasticity is applied. The semi-closed solutions were obtained via the Runge-Kutta method. The flow profiles on a vegetated slope with different slopes were graphed. Accordingly, the relation between vegetation and water depth was divided into three patterns-- submerged vegetation, emergent vegetation and submerged-emergent vegetation. The velocity profiles for these patterns at each location were estimated. The retardation of vegetation causes that the velocity in vegetation layer is much slower than that in water layer and thus an inflection point exists inside the vegetation layer. This phenomenon doesn't happen in the case of emergent vegetation. The nonzero velocity at the ground surface is also estimated, and the velocity in the soil layer decays quickly to a constant. The shear stress distribution for different diameters of vegetation in the case of submerged vegetation was estimated. There is a positive correlation between the diameter of vegetation and the retardation of vegetation. Therefore the shear stress is influenced by the diameter of vegetation. The shear stress inside the water layer increases with the diameter of vegetation while the shear stress inside the vegetation layer decreases with the diameter of vegetation. This implies that the vegetation on the slope can protect the soil erosion.

  17. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere

    NARCIS (Netherlands)

    Čížková, H.; van den Berg, A.P.; Spakman, W.; Matyska, C.


    The viscosity of the mantle is indispensable for predicting Earth's mechanical behavior at scales ranging from deep mantle material flow to local stress accumulation in earthquakes zones. But, mantle viscosity is not well determined. For the lower mantle, particularly, only few constraints result

  18. Instability of water-ice interface under turbulent flow (United States)

    Izumi, Norihiro; Naito, Kensuke; Yokokawa, Miwa


    It is known that plane water-ice interface becomes unstable to evolve into a train of waves. The underside of ice formed on the water surface of rivers are often observed to be covered with ice ripples. Relatively steep channels which discharge melting water from glaciers are characterized by beds covered with a series of steps. Though the flowing agent inducing instability is not water but gas including water vapor, a similar train of steps have been recently observed on the Polar Ice Caps on Mars (Spiral Troughs). They are expected to be caused by the instability of water-ice interface induced by flowing fluid on ice. There have been some studies on this instability in terms of linear stability analysis. Recently, Caporeale and Ridolfi (2012) have proposed a complete linear stability analysis in the case of laminar flow, and found that plane water-ice interface is unstable in the range of sufficiently large Reynolds numbers, and that the important parameters are the Reynolds number, the slope angle, and the water surface temperature. However, the flow inducing instability on water-ice interface in the field should be in the turbulent regime. Extension of the analysis to the case of fully developed turbulent flow with larger Reynolds numbers is needed. We have performed a linear stability analysis on the instability of water-ice interface under turbulent flow conditions with the use of the Reynolds-averaged Navier-Stokes equations with the mixing length turbulent model, the continuity equation of flow, the diffusion/dispersion equation of heat, and the Stefan equation. In order to reproduce the accurate velocity distribution and the heat transfer in the vicinity of smooth walls with the use of the mixing length model, it is important to take into account of the rapid decrease in the mixing length in the viscous sublayer. We employ the Driest model (1956) to the formulation. In addition, as the thermal boundary condition at the water surface, we describe the

  19. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow (United States)

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen


    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  20. Endocannabinoids control platelet activation and limit aggregate formation under flow.

    Directory of Open Access Journals (Sweden)

    Valentina De Angelis

    Full Text Available The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function.Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo.We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa.Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search

  1. Endocannabinoids control platelet activation and limit aggregate formation under flow. (United States)

    De Angelis, Valentina; Koekman, Arnold C; Weeterings, Cees; Roest, Mark; de Groot, Philip G; Herczenik, Eszter; Maas, Coen


    The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search for new

  2. Cross flow response of a cylindrical structure under local shear flow

    Directory of Open Access Journals (Sweden)

    Yoo-Chul Kim


    Full Text Available The VIV (Vortex-Induced Vibration analysis of a flexible cylindrical structure under locally strong shear flow is presented. The model is made of Teflon and has 9.5m length, 0.0127m diameter, and 0.001m wall thickness. 11 2-dimensional accelerometers are installed along the model. The experiment has been conducted at the ocean engineering basin in the University of Tokyo in which uniform current can be generated. The model is installed at about 30 degree of slope and submerged by almost overall length. Local shear flow is made by superposing uniform current and accelerated flow generated by an impeller. The results of frequency and modal analysis are presented.

  3. Self-Organized Mantle Layering After the Magma-Ocean Period (United States)

    Hansen, U.; Dude, S.


    The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stable stratified mantle, as resulting from fractional crystallization of the magma ocean. The early mantle is subject to heating from below by the Earth's core and cooling from the top through the atmosphere. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self -organized layer formation, even without the preexisting jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity and a pressure dependent thermal expansivity . The experiments show that in a wide parameter range. distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core and decouples the dynamics in the lower mantle from the upper part. With time, individual layers grow on the expense of others and merging of layers does occur. We observe several events of intermittent breakdown of individual layers. Altogether an evolution emerges, characterized by continuous but also spontaneous changes in the mantle structure, ranging from multiple to single layer flow. Such an evolutionary path of mantle convection allows to interpret phenomena ranging from stagnation of slabs at various depth to variations in the chemical signature of mantle upwellings in a new framework.

  4. Measuring material microstructure under flow using 1-2 plane flow-small angle neutron scattering. (United States)

    Gurnon, A Kate; Godfrin, P Douglas; Wagner, Norman J; Eberle, Aaron P R; Butler, Paul; Porcar, Lionel


    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions.

  5. A Method to Evaluate Groundwater flow system under the Seabed (United States)

    Kohara, N.; Marui, A.


    A rapid increase of population in the world causes growth of water demands, and this may result worldwide water shortage in future. Especially, in the coastal area, water resource development becomes important because the half of the world population is concentrated in this area. Recently, countermeasures to mitigate climate change are discussed. Coastal area is one of the promising places for disposal of high-level nuclear waste or carbon dioxide capture and storage. Lots of development will be conducted in the coastal areas, however there are a lot of uncertainties remaining to understand the hydrogeological environment in there. It has been said that salt water / fresh water interface is formed in the place where meteoric fresh groundwater and salt groundwater from the ocean meet, and there is a large amount of groundwater discharge on the seafloor of the end of this interface so far. Recently, there is a lot of research about this submarine groundwater discharge because of the protection of the coastal ecosystem. In addition, there is a report that fresh water under the seabed was discovered on the continental shelf away from a present coastline by tens of kilometers in many parts of the world, because recently offshore drilling technology has been improving. Classical theory about formulation of salt water / fresh water interface could not explain completely, and consideration of longterm geochemical process (e.g., sea level fluctuations) is needed to understand this mechanism. Fresh (or brackish) groundwater under the seabed have been found on the investigation related to a seabed resources exploration in the field of coal mining, oceanic engineering works such as submarine tunnels, the atomic research, and the collection investigations of the basic data in the earth science field. A lot of fresh water under the seabed is confirmed on the offshore side from a present coastline as for these cases, and it is suggested that the end position of the salt water

  6. The deep hydrogeologic flow system underlying the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Nativ, R.; Hunley, A.E.


    The deep hydrogeologic system underlying the Oak Ridge Reservation contains some areas contaminated with radionuclides, heavy metals, nitrates, and organic compounds. The groundwater at that depth is saline and has previously been considered stagnant. On the basis of existing and newly collected data, the nature of flow of the saline groundwater and its potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial temperature variations, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. In addition, chemical analyses of brine in adjacent areas in Tennessee, Kentucky, Ohio, Pennsylvania, and West Virginia were compared with the deep water underlying the reservation to help assess the origin of the brine. Preliminary conclusions suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active and freshwater-bearing units. The confined water (along with dissolved solutes) moves along open fractures (or man-made shortcuts) at relatively high velocity into adjacent, more permeable units. Groundwater volumes involved in this flow probably are small

  7. Rheology of dense granular suspensions under extensional flow (United States)

    Cheal, Oliver; Ness, Christopher


    We study granular suspensions under a variety of extensional deformations and simple shear using numerical simulations. The viscosity and Trouton's ratio (the ratio of extensional to shear viscosity) are computed as functions of solids volume fraction $\\phi$ close to the limit of zero inertia. Suspensions of frictionless particles follow a Newtonian Trouton's ratio for $\\phi$ all the way up to $\\phi_0$, a universal jamming point that is independent of deformation type. In contrast, frictional particles lead to a deformation-type-dependent jamming fraction $\\phi_m$, which is largest for shear flows. Trouton's ratio consequently starts off Newtonian but diverges as $\\phi\\to\\phi_m$. We explain this discrepancy in suspensions of frictional particles by considering the particle arrangements at jamming. While frictionless particle suspensions have a nearly isotropic microstructure at jamming, friction permits more anisotropic contact chains that allow jamming at lower $\\phi$ but introduce protocol dependence. Finally, we provide evidence that viscous number rheology can be extended from shear to extensional deformations, with a particularly successful collapse for frictionless particles. Extensional deformations are an important class of rheometric flow in suspensions, relevant to paste processing, granulation and high performance materials.

  8. Waste migration in shallow burial sites under unsaturated flow conditions

    International Nuclear Information System (INIS)

    Eicholz, G.G.; Whang, J.


    Unsaturated conditions prevail in many shallow-land burial sites, both in arid and humid regions. Unless a burial site is allowed to flood and possibly overflow, a realistic assessment of any migration scenario must take into account the conditions of unsaturated flow. These are more difficult to observe and to model, but introduce significant changes into projected rates of waste leaching and waste migration. Column tests have been performed using soils from the Southeastern coastal plain to observe the effects of varying degrees of ''unsaturation'' on the movement of radioactive tracers. The moisture content in the columns was controlled by maintaining various levels of hydrostatic suction on soil columns whose hydrodynamic characteristics had been determined carefully. Tracer tests, employing Cs-137, I-131 and Ba-133 were used to determine migration profiles and to follow their movement down the column for different suction values. A calculational model has been developed for unsaturated flow and seems to match the observations fairly well. It is evident that a full description of migration processes must take into account the reduced migration rates under unsaturated conditions and the hysteresis effects associated with wetting-drying cycles

  9. HAWT dynamic stall response asymmetries under yawed flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.


    Horizontal axis wind turbines can experience significant time varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components, and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modeling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle of attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location, and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated.

  10. Assessment of interfacial heat transfer models under subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail:, E-mail: [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear


    The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)

  11. 3-D Modelling and Experimental Comparison of Reactive Flow in Carbonates under Radial Flow Conditions. (United States)

    Liu, Piyang; Yao, Jun; Couples, Gary Douglas; Ma, Jingsheng; Iliev, Oleg


    We use a two-scale continuum model to simulate reactive flow and wormhole formation in carbonate rocks under 3-D radial flow conditions. More specifically, we present a new structure-property relationship based on the fractal geometry theory, to describe the evolution of local permeability, pore radius, and specific area with porosity variation. In the numerical calculation, to improve the convergence rate, the heterogeneous medium in question is extended by adding a thin layer of homogeneous porous medium to its inlet. We compare the simulation results with the available experimental observations and find that they are qualitatively consistent with each other. Additionally, sensitivity analysis of the dissolution process with respect to acid injection rate and rock heterogeneity, including heterogeneity magnitude and correlation length, is presented.

  12. Facilitating atmosphere oxidation through mantle convection (United States)

    Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.


    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the

  13. Evolution of the earliest mantle caused by the magmatism-mantle upwelling feedback: Implications for the Moon and the Earth (United States)

    Ogawa, M.


    The two most important agents that cause mantle evolution are magmatism and mantle convection. My earlier 2D numerical models of a coupled magmatism-mantle convection system show that these two agents strongly couple each other, when the Rayleigh number Ra is sufficiently high: magmatism induced by a mantle upwelling flow boosts the upwelling flow itself. The mantle convection enhanced by this positive feedback (the magmatism-mantle upwelling, or MMU, feedback) causes vigorous magmatism and, at the same time, strongly stirs the mantle. I explored how the MMU feedback influences the evolution of the earliest mantle that contains the magma ocean, based on a numerical model where the mantle is hot and its topmost 1/3 is partially molten at the beginning of the calculation: The evolution drastically changes its style, as Ra exceeds the threshold for onset of the MMU feedback, around 107. At Ra 107, however, the mantle remains compositionally more homogeneous in spite of the widespread magmatism, and the deep mantle remains hotter than the shallow mantle, because of the strong convective stirring caused by the feedback. The threshold value suggests that the mantle of a planet larger than Mars evolves in a way substantially different from that in the Moon does. Indeed, in my earlier models, magmatism makes the early mantle compositionally stratified in the Moon, but the effects of strong convective stirring overwhelms that of magmatism to keep the mantle compositionally rather homogeneous in Venus and the Earth. The MMU feedback is likely to be a key to understanding why vestiges of the magma ocean are so scarce in the Earth.

  14. A new driving mechanism for backarc extension and backarc shortening through slab sinking induced toroidal and poloidal mantle flow : Results from dynamic subduction models with an overriding plate

    NARCIS (Netherlands)

    Schellart, W. P.; Moresi, L.


    We present numerical subduction models to investigate overriding plate deformation at subduction zones. All models show forearc shortening, resulting predominantly from shear stresses at the subduction zone interface and opposite-sense mantle shear stresses at the base of the forearc lithosphere.

  15. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović


    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  16. MRI of cerebral blood flow under hyperbaric conditions in rats. (United States)

    Cardenas, Damon P; Muir, Eric R; Duong, Timothy Q


    Hyperbaric oxygen (HBO) therapy has a number of clinical applications. However, the effects of acute HBO on basal cerebral blood flow (CBF) and neurovascular coupling are not well understood. This study explored the use of arterial spin labeling MRI to evaluate changes in baseline and forepaw stimulus-evoked CBF responses in rats (n = 8) during normobaric air (NB), normobaric oxygen (NBO) (100% O2 ), 3 atm absolute (ATA) hyperbaric air (HB) and 3 ATA HBO conditions. T1 was also measured, and the effects of changes in T1 caused by increasing oxygen on the CBF calculation were investigated. The major findings were as follows: (i) increased inhaled oxygen concentrations led to a reduced respiration rate; (ii) increased dissolved paramagnetic oxygen had significant effects on blood and tissue T1 , which affected the CBF calculation using the arterial spin labeling method; (iii) the differences in blood T1 had a larger effect than the differences in tissue T1 on CBF calculation; (iv) if oxygen-induced changes in blood and tissue T1 were not taken into account, CBF was underestimated by 33% at 3 ATA HBO, 10% at NBO and 0.05) and all were higher than CBF under NB by ~40% (p masks oxygen-induced vasoconstriction, although blood gas was not measured; and (vi) substantial stimulus-evoked CBF increases were detected under HBO, similar to NB, supporting the notion that activation-induced CBF regulation in the brain does not operate through an oxygen-sensing mechanism. CBF MRI provides valuable insights into the effects of oxygen on basal CBF and neurovascular coupling under hyperbaric conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.


    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  18. Inception of supraglacial channelization under turbulent flow conditions (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.


    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  19. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)


    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  20. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    International Nuclear Information System (INIS)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng; Kim, Seung Hyun; Kim, Ji Hyun


    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B

  1. Thermoconvective waves in the earth's mantle (United States)

    Birger, B. I.


    The thermoconvective instability of the Earth's mantle is analysed. The mantle is modelled as an infinite horizontal layer with a free upper surface, heated from below. The creep in the mantle is supposed to be transient when strains are small. This transient creep is described by Lomnitz's law modified by Jeffreys (1958a). It is shown that disturbances, in the form of thermoconvective waves with a period of 10 8 - 10 9y and wavelength of the order 10 3 km, can propagate through the mantle without attenuation. These waves induce oscillations of the Earth's surface. The pattern of flows differs greatly from that suggested by plate tectonics. An attempt is made to give a new explanation for the linear magnetic anomalies over oceanic ridges.

  2. Magnetotellurics with geomagnetic observatory data influenced by the ocean effect: upper mantle conductivity under the islands of Gan and Tristan da Cunha (United States)

    Morschhauser, A.; Grayver, A.; Kuvshinov, A. V.; Samrock, F.; Matzka, J.


    The electric conductivity of the oceanic lithosphere and upper mantle is not well constrained, mainly due to logistical challenges in oceanic surveys. However, electric field measurements can easily be added to geomagnetic observatories on islands.Currently, such measurements are available for Tristan da Cunha in the Atlantic Ocean and Gan on the Maldives in the Indian Ocean, and we derive tippers, impedances, and phase tensors for those observatories. The main challenge is that these transfer functions are severely affected by the conductivity contrast between seawater and land, which results in a three-dimensional (3-D) behaviour of the responses. We use an adaptive finite-element MT forward solver in order to properly account for this 3-D effect by including the available bathymetry and topography data into the model. Then, different transfer functions are individually inverted for upper mantle conductivities using a stochastic approach. We observe that tippers are mostly sensitive down to depths of approx. 100 km, and that additional electric field measurements improve the resolution for 100 to 200 km depth. The obtained 1-D conductivity profiles indicate a normal oceanic mantle below GAN and an anomalously conductive mantle below TDC, which may be related to the presence of melt below the island.

  3. Plate tectonics, mantle convection and D'' seismic structures (United States)

    Wen, Lianxing

    This thesis adopts multidisciplinary (geodynamical and seismological) approaches toward understanding dynamics of the Earth's mantle. My geodynamical approach is directed at understanding the relationship between large-scale surface observables (geoid, topography, plate motions) and mantle rheology and convection of the present-day Earth. In chapter 2, I remove shallow mantle structure of various tectonic features to generate "residual tomography." In chapter 3, I show that the pattern, spectrum and amplitude of the "residual topography" are consistent with shallow origin of the "Earth surface dynamic topography;" the long wavelength geoid and topography (l = 2-3) are successfully explained by density models inferred from the "residual tomography," assuming layered mantle convection stratified at the "920 km seismic discontinuity." In chapter 4, I develop a new method to calculate mantle flow with lateral variation of viscosity. The viscosity contrast between continental and oceanic regions is identified to have dominating effects on both the observed poloidal/toroidal ratio and pattern of toroidal motions at long wavelengths. My seismological approach is focused on exploring fine structures near the core-mantle boundary (CMB) and developing new seismic techniques. I discuss the method development and strategies to explore fine structures in the following chapters. In chapter 5, I develop a hybrid method, a combination of analytical and numerical methods, with numerical methods applied in heterogeneous regions only. In chapter 6, I constrain the general structures of the ultra low velocity zones (ULVZ) near the CMB under the south-east Pacific and Iceland. The SKS-SPdKS data are explained by ULVZ with P-velocity reduction of 10%, horizontal length-scales of about 250 km and height of about 40 km. S-velocity reduction of 30% is consistent with the data. In chapter 7, I constrain the detailed structures of the ULVZ near the CMB from observed broadband PKP precursors

  4. Controllability of Non-Newtonian Fluids Under Homogeneous Flows

    National Research Council Canada - National Science Library

    Wilson, Lynda M


    .... The constitutive models are as follows: the Phan-Thien-Tanner model; the Johnson-Segalman model; and the Doi model. The effect of extensional flow on these models and the effect of shear flow on the Doi model have not been explored previous to this work...

  5. Magmatic and Seismic Evidence for the Neogene Evolution of the Subducting Slab and Crustal and Mantle Lithosphere under the Central Andes (United States)

    Kay, S. M.; Sandvol, E. A.


    Geophysical models coupled with the distribution, chemistry and age of magmatic rocks provide powerful tools for reconstructing the thermal and material balance and deformational history of the Central Andean crust and lithosphere in time and space. Two examples are given. In the first, a model for changing slab geometry, delamination (foundering) of the crust and mantle and forearc subduction erosion beneath the southern Puna plateau comes from studies of Miocene to Recent magmatic rocks linked with seismic studies. The distribution and chemistry (e.g., Sm/Yb, La/Ta, Ba/La, isotopes) of the volcanic rocks support an 18-7 Ma period of slab shallowing, followed by slab steepening and forearc subduction erosion linked with backarc crustal and lithospheric delamination and eruption of large ignimbrites. Support for delamination comes from seismic attenuation and Vs tomographic images that reveal an 100 km wide high velocity anomaly associated with an irregular shear wave splitting pattern, which is interpreted as a delaminated block above a nearly aseismic segment of the subducting slab at a depth of 150-200 km (Calixto et al., 2013, 2014; Liang et al. 2014). This block underlies the 1350°C at 2 Gpa followed by fractionation and mixing with melts of garnet-pyroxene-amphibole bearing crust (Risse et al., 2013). In accord, the lavas are over a region where receiver functions indicate a lithosphere-asthenosphere boundary at 60-80 km and a regionally thin 45-55 km thick crust with a low Vp/Vs (< 1.70) ratio (Heit et al., 2014). Calculations of crustal loss and gain allow up to 10% of the southern Puna lower crust to have been lost in the last 10 Ma. A second region where the characteristics of the magmatic rocks provide clues to the timing of slab shallowing and proposed slab tears (e.g., Lynner et al, 2017) is over and on the margins of the Chilean flat-slab). In this case, shallowing of the slab as the trench normal portion of the Juan Fernandez Ridge began to subduct

  6. Submerged flow bridge scour under clear water conditions (United States)


    Prediction of pressure flow (vertical contraction) scour underneath a partially or fully submerged bridge superstructure : in an extreme flood event is crucial for bridge safety. An experimentally and numerically calibrated formulation is : developed...

  7. Calibration of CORSIM models under saturated traffic flow conditions. (United States)


    This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....

  8. Influencing parameters on performance of a mantle heat exchanger ...

    African Journals Online (AJOL)

    The experiments arte simulated and validated by using CFD tool ANSYS-CFX and a good agreement is obtained between experiments and simulations. The objective of this paper is to investigate the influence of location of hot fluid inlet, mass flow rate of mantle fluid and type of hot fluid on the performance of the mantle ...

  9. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics (United States)

    Becker, T. W.


    Huge numbers of SKS splitting observations and improved surface-wave based models of azimuthal anisotropy have advanced our understanding of how convection is recorded in mantle fabrics in the upper mantle. However, we are still debating the relative importance of frozen to actively forming olivine fabrics, subduction zone anisotropy lacks a clear reference model, and regional marine studies yield conflicting evidence as to what exactly is going on at the base of the plates and below. Here, I review the degree of agreement between regional and global observations of seismic anisotropy and how well those may be matched by first-order mantle convection models. Updated bean counting can help contextualize the spatial scales of alignment, and I discuss several examples of the relative roles of plate shear to mantle density anomalies and frozen-in structure for oceanic and continental plates. Resolution of seismological models is globally uneven, but there are some locales where such exercises may yield information on the relative strength of asthenosphere and mantle. Another long-standing question is how olivine fabrics record flow under different stress and volatile conditions. I illustrate how different petrological assumptions might be used to reconcile observations of azimuthal dependency of wave speeds for both Love and Rayleigh waves, and how this could improve our models of the upper mantle, much in the spirit of Montagner's vectorial tomography. This is but one approach to improve the regional realism of global geodynamic background models to understand where in space and time dissonance arises, and if a harmonious model may yet be constructed given our assumptions about the workings of the mantle.

  10. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia (United States)

    Chen, Chuanxu; Zhao, Dapeng; Tian, You; Wu, Shiguo; Hasegawa, Akira; Lei, Jianshe; Park, Jung-Ho; Kang, Ik-Bum


    3-D P- and S-wave velocity structures of the mantle down to a depth of 800 km beneath NE Asia are investigated using ∼981 000 high-quality arrival-time data of local earthquakes and teleseismic events recorded at 2388 stations of permanent and portable seismic networks deployed in NE China, Japan and South Korea. Our results do not support the existence of a gap (or a hole) in the stagnant slab under the Changbai volcano, which was proposed by a previous study of teleseismic tomography. In this work we conducted joint inversions of both local-earthquake arrival times and teleseismic relative traveltime residuals, leading to a robust tomography of the upper mantle and the mantle transition zone (MTZ) beneath NE Asia. Our joint inversion results reveal clearly the subducting Pacific slab beneath the Japan Islands and the Japan Sea, as well as the stagnant slab in the MTZ beneath the Korean Peninsula and NE China. A big mantle wedge (BMW) has formed in the upper mantle and the upper part of the MTZ above the stagnant slab. Localized low-velocity anomalies are revealed clearly in the crust and the BMW directly beneath the active Changbai and Ulleung volcanoes, indicating that the intraplate volcanism is caused by hot and wet upwelling in the BMW associated with corner flows in the BMW and deep slab dehydration as well.

  11. Void fraction distribution in a heated rod bundle under flow stagnation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)


    An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.

  12. Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid (United States)

    Kadyirov, A. I.; Abaydullin, B. R.


    The numerical investigation was carried out to study vortex breakdown for pseudoplastic fluid flow in circular pipe with twisted tape inserts. 0.67%, 1.5% and 3% aqueous solutions of Na-CMC are chosen as a pseudoplastic fluid. The numerical results are compared with available data in literature.

  13. Discharge characteristics in inhomogeneous fields under air flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim


    was connected to a variable DC potential of up to 100kV over a grounded plate in order to trigger different corona modes. The impact of the air flow on the space charges created in the vicinity of the electrode is evaluated by means of PD measurements in time domain. The results indicate that the wind increases...

  14. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  15. Reflood modeling under oscillatory flow conditions with Cathare

    International Nuclear Information System (INIS)

    Kelly, J.M.; Bartak, J.; Janicot, A.


    The problems and the current status in oscillatory reflood modelling with the CATHARE code are presented. The physical models used in CATHARE for reflood modelling predicted globally very well the forced reflood experiments. Significant drawbacks existed in predicting experiments with oscillatory flow (both forced and gravity driven). First, the more simple case of forced flow oscillations was analyzed. Modelling improvements within the reflooding package resolved the problem of quench front blockages and unphysical oscillations. Good agreements with experiment for the ERSEC forced oscillations reflood tests is now obtained. For gravity driven reflood, CATHARE predicted sustained flow oscillations during 100-150 s after the start of the reflood, whereas in the experiment flow oscillations were observed only during 25-30 s. Possible areas of modeling improvements are identified and several new correlations are suggested. The first test calculations of the BETHSY test 6.7A4 have shown that the oscillations are mostly sensitive to heat flux modeling downstream of the quench front. A much better agreement between CATHARE results and the experiment was obtained. However, further effort is necessary to obtain globally satisfactory predictions of gravity driven system reflood tests. (authors) 6 figs., 35 refs

  16. Effects of mantle rheologies on viscous heating induced by glacial isostatic adjustment

    NARCIS (Netherlands)

    Huang, Ping Ping; Wu, Patrick; van der Wal, W.


    It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's

  17. Deep Mantle Layering by Post-Perovskite Dissociation at 0.9 TPa in GJ876d Super Earth (United States)

    Shahnas, H.; Pysklywec, R.; Yuen, D. A.


    The processes in the interior of the exoplanets are poorly known. This is due to the uncertainties in the pressure- and temperature-dependence of the mantle properties, as well as the circumstances under which the mantle processes such as phase and spin transitions and structural changes in the mantle minerals occur. Recent advances in high pressure mineral physics as well as some recent theoretical studies have yielded new insights into our understanding of mantle dynamics. MgSiO3 post-perovskite (pPv) dissociates into MgO and MgSi2O5 at 0.9 TPa, and MgSi2O5 dissociates into MgO and SiO2 at 2.1 TPa. Both dissociations are endothermic and the first dislocation with a large Clapeyron slope of -12 MPa/K is expected to occur close to the bottom of the mantle in GJ876d super-Earth which is 7.5 times more massive than the Earth. Employing 3D-spherical control volume compressible models we perform a systematic investigation on the combined impact of the deep mantle dissociation of post-perovskite and the mantle conductivity and the viscosity, on the mixing, cooling and the style of the convection in GJ876d super Earth. Our model results reveal that in the presence of deep mantle dissociation of post-perovskite into MgO and MgSi2O5 at 0.9 TP, the mean mantle temperature decreases which is associated with the viscosity increase. However, while this deep mantle endothermic process for high viscosities ( 1023 Pa.s) does not cause layering in the bottom of mantle, for viscosities 1022 Pa.s and below, a layering of thickness 500 km develops above the CMB. The mean temperature and heat flow decrease in the presence of pPv dissociation-induced layering and the impact of the viscosity on mean mantle temperature is enhanced. In the layered models while the upper layer is cooling mainly by conduction; there may exist a vigorous convection in the lower layer above the CMB depending on the strength of the viscosity.

  18. Thermal Conductivity of Lower Mantle Minerals and Heat Flux Across the Core-Mantle Boundary (United States)

    Bennett, C.; Rainey, E.; Kavner, A.


    importance of lateral variations in phase and boundary layer thickness. Our values imply a total core-mantle boundary heat flow of 6-8 TW, which is sufficient to drive plumes and convection, is consistent with current geochemical estimates for mantle heat content, and permits a slow growth rate for the inner core.

  19. Plane strain bending under tension as an ideal flow process in pressure – dependent plasticity

    Directory of Open Access Journals (Sweden)

    Alexandrov Sergei


    Full Text Available Ideal plastic flows are those for which all material elements follow minimum work paths. Ideal flow solutions are widely used as the basis for inverse methods for the preliminary design of metalworking processes. The present paper provides the first ideal flow solution in pressure-dependent plasticity. In particular, the process of bending under tension is considered and it is shown that there are relations between the bending moment and tensile force that result in ideal flow paths.

  20. Optimal Power Flow for Distribution Systems under Uncertain Forecasts: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Anese, Emiliano; Baker, Kyri; Summers, Tyler


    The paper focuses on distribution systems featuring renewable energy sources and energy storage devices, and develops an optimal power flow (OPF) approach to optimize the system operation in spite of forecasting errors. The proposed method builds on a chance-constrained multi-period AC OPF formulation, where probabilistic constraints are utilized to enforce voltage regulation with a prescribed probability. To enable a computationally affordable solution approach, a convex reformulation of the OPF task is obtained by resorting to i) pertinent linear approximations of the power flow equations, and ii) convex approximations of the chance constraints. Particularly, the approximate chance constraints provide conservative bounds that hold for arbitrary distributions of the forecasting errors. An adaptive optimization strategy is then obtained by embedding the proposed OPF task into a model predictive control framework.

  1. Flow of cortical activity underlying a tactile decision in mice


    Guo, Zengcai V.; Li, Nuo; Huber, Daniel; Ophir, Eran; Gutnisky, Diego; Ting, Jonathan T.; Feng, Guoping; Svoboda, Karel


    Perceptual decisions involve distributed cortical activity. Does information flow sequentially from one cortical area to another, or do networks of interconnected areas contribute at the same time? Here we delineate when and how activity in specific areas drives a whisker-based decision in mice. A short-term memory component temporally separated tactile “sensation” and “action” (licking). Using optogenetic inhibition (spatial resolution, 2 mm; temporal resolution, 100 ms), we surveyed the neo...

  2. Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints (United States)

    Feron, Eric; Bilimoria, Karl (Technical Monitor)


    The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."

  3. Numerical Studies of Homogenization under a Fast Cellular Flow

    KAUST Repository

    Iyer, Gautam


    We consider a two dimensional particle diffusing in the presence of a fast cellular flow confined to a finite domain. If the flow amplitude A is held fixed and the number of cells L 2 →∞, then the problem homogenizes; this has been well studied. Also well studied is the limit when L is fixed and A→∞. In this case the solution averages along stream lines. The double limit as both the flow amplitude A→∞and the number of cells L 2 →∞was recently studied [G. Iyer et al., preprint, arXiv:1108.0074]; one observes a sharp transition between the homogenization and averaging regimes occurring at A = L 2. This paper numerically studies a few theoretically unresolved aspects of this problem when both A and L are large that were left open in [G. Iyer et al., preprint, arXiv:1108.0074] using the numerical method devised in [G. A. Pavliotis, A. M. Stewart, and K. C. Zygalakis, J. Comput. Phys., 228 (2009), pp. 1030-1055]. Our treatment of the numerical method uses recent developments in the theory of modified equations for numerical integrators of stochastic differential equations [K. C. Zygalakis, SIAM J. Sci. Comput., 33 (2001), pp. 102-130]. © 2012 Society for Industrial and Applied Mathematics.

  4. Incorporation of mantle effects in lithospheric stress modeling: the Eurasian plate (United States)

    Ruckstuhl, K.; Wortel, M. J. R.; Govers, R.; Meijer, P.


    The intraplate stress field is the result of forces acting on the lithosphere and as such contains valuable information on the dynamics of plate tectonics. Studies modeling the intraplate stress field have followed two different approaches, with the emphasis either on the lithosphere itself or the underlying convecting mantle. For most tectonic plates on earth one or both methods have been quiet successful in reproducing the large scale stress field. The Eurasian plate however has remained a challenge. A probable cause is that due to the complexity of the plate successful models require both an active mantle and well defined boundary forces. We therefore construct a model for the Eurasian plate in which we combine both modeling approaches by incorporating the effects of an active mantle in a model based on a lithospheric approach, where boundary forces are modeled explicitly. The assumption that the whole plate is in dynamical equilibrium allows for imposing a torque balance on the plate, which provides extra constraints on the forces that cannot be calculated a priori. Mantle interaction is modeled as a shear at the base of the plate obtained from global mantle flow models from literature. A first order approximation of the increased excess pressure of the anomalous ridge near the Iceland hotspot is incorporated. Results are evaluated by comparison with World Stress Map data. Direct incorporation of the sublithospheric stresses from mantle flow modeling in our force model is not possible, due to a discrepancy in the magnitude of the integrated mantle shear and lithospheric forces of around one order of magnitude, prohibiting balance of the torques. This magnitude discrepancy is a well known fundamental problem in geodynamics and we choose to close the gap between the two different approaches by scaling down the absolute magnitude of the sublithospheric stresses. Becker and O'Connell (G3,2,2001) showed that various mantle flow models show a considerable spread in

  5. Numerical study on modeling of liquid film flow under countercurrent flow limitation in volume of fluid method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Taro, E-mail: [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-shi, Osaka 565-7895 (Japan); Takata, Takashi, E-mail: [Japan Atomic Energy Agency, 4002 Narita-chou, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki 331-1393 (Japan); Yamaguchi, Akira, E-mail: [Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)


    Highlights: • Thin liquid film flow under CCFL was modeled and coupled with the VOF method. • The difference of the liquid flow rate in experiments of CCFL was evaluated. • The proposed VOF method can quantitatively predict CCFL with low computational cost. - Abstract: Countercurrent flow limitation (CCFL) in a heat transfer tube at a steam generator (SG) of pressurized water reactor (PWR) is one of the important issues on the core cooling under a loss of coolant accident (LOCA). In order to improve the prediction accuracy of the CCFL characteristics in numerical simulations using the volume of fluid (VOF) method with less computational cost, a thin liquid film flow in a countercurrent flow is modeled independently and is coupled with the VOF method. The CCFL characteristics is evaluated analytically in condition of a maximizing down-flow rate as a function of a void fraction or a liquid film thickness considering a critical thickness. Then, we have carried out numerical simulations of a countercurrent flow in a vertical tube so as to investigate the CCFL characteristics and compare them with the previous experimental results. As a result, it has been concluded that the effect of liquid film entrainment by upward gas flux will cause the difference in the experiments.

  6. The future of irrigated agriculture under environmental flow requirements restrictions (United States)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco


    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  7. Global Stream Temperatures and Flows under Climate Change (United States)

    van Vliet, M. T.; Yearsley, J. R.; Franssen, W. H.; Ludwig, F.; Haddeland, I.; Lettenmaier, D. P.; Kabat, P.


    Climate change will affect thermal and hydrologic regimes of rivers, having a direct impact on human water use and freshwater ecosystems. Here we assess the impact of climate change on stream temperature and streamflow globally. We used a physically-based stream temperature river basin model (RBM) linked to the Variable Infiltration Capacity (VIC) model. The modelling framework was adapted for global application including impacts of reservoirs and thermal heat discharges, and was validated using observed water temperature and river discharge records in large river basins globally. VIC-RBM was forced with an ensemble of bias-corrected Global Climate Model (GCM) output resulting in global projections of daily streamflow and water temperature for the 21st century. Global mean and high (95th percentile) stream temperatures are projected to increase on average by 0.8-1.6 (1.0-2.2)°C for the SRES B1-A2 scenario for 2071-2100 relative to 1971-2000. The largest water temperature increases are projected for Europe, North America, Southeast Asia, South Africa and parts of Australia. In these regions, the sensitivities for warming are exacerbated by projected decreases in summer low flows. Large increases in water temperature combined with decreases in low flows are found for the southeastern U.S., Europe and eastern China. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for beneficial uses such as thermoelectric power production.

  8. One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature (United States)

    Konter, Jasper G.; Hanan, Barry B.; Blichert-Toft, Janne; Koppers, Anthony A. P.; Plank, Terry; Staudigel, Hubert


    Linear chains of intraplate volcanoes and their geochemistry provide a record of mantle melting through geological time. The isotopic compositions of their lavas characterize their mantle sources, and their ages help backtrack these volcanoes to their original, eruptive source regions. Such data may shed light on a much-debated issue in Earth Sciences: the origin of intraplate volcanism and its underlying mantle and lithosphere dynamics. We show here that three major Western Pacific Seamount groups, ˜ 50-100 million years in age, display distinct Sr, Nd, Hf, and Pb isotopic signatures that can be traced back in time, both geographically and geochemically, to three separate, recently-active intraplate volcanoes in the South Pacific Cook-Austral Islands. Their unique 100 million year history, which shows a persistent geochemical fingerprint, suggests formation from large volumes of laterally fixed, long-lived source regions. Such longevity is unlikely to be attained in the relatively dynamic upper mantle. Therefore, these sources are likely anchored deep in the mantle, isolated from homogenization by mantle convection, and imply a primary origin from deep mantle plumes rather than resulting from lithosphere extension.

  9. Nanocrystalline Al Composites from Powder Milled under Ammonia Gas Flow

    Directory of Open Access Journals (Sweden)

    J. Cintas


    Full Text Available The production of high hardness and thermally stable nanocrystalline aluminium composites is described. Al powder was milled at room temperature in an ammonia flow for a period of less than 5 h. NH3 dissociation during milling provokes the absorption, at a high rate, of nitrogen into aluminium, hardening it by forming a solid solution. Controlled amounts of AlN and Al5O6N are formed during the subsequent sintering of milled powders for consolidation. The pinning action of these abundant dispersoids highly restrains aluminium grain growth during heating. The mean size of the Al grains remains below 45 nm and even after the milled powder is sintered at 650°C for 1 h.

  10. Cascading failures in interdependent systems under a flow redistribution model (United States)

    Zhang, Yingrui; Arenas, Alex; Yaǧan, Osman


    Robustness and cascading failures in interdependent systems has been an active research field in the past decade. However, most existing works use percolation-based models where only the largest component of each network remains functional throughout the cascade. Although suitable for communication networks, this assumption fails to capture the dependencies in systems carrying a flow (e.g., power systems, road transportation networks), where cascading failures are often triggered by redistribution of flows leading to overloading of lines. Here, we consider a model consisting of systems A and B with initial line loads and capacities given by {LA,i,CA ,i} i =1 n and {LB,i,CB ,i} i =1 n, respectively. When a line fails in system A , a fraction of its load is redistributed to alive lines in B , while remaining (1 -a ) fraction is redistributed equally among all functional lines in A ; a line failure in B is treated similarly with b giving the fraction to be redistributed to A . We give a thorough analysis of cascading failures of this model initiated by a random attack targeting p1 fraction of lines in A and p2 fraction in B . We show that (i) the model captures the real-world phenomenon of unexpected large scale cascades and exhibits interesting transition behavior: the final collapse is always first order, but it can be preceded by a sequence of first- and second-order transitions; (ii) network robustness tightly depends on the coupling coefficients a and b , and robustness is maximized at non-trivial a ,b values in general; (iii) unlike most existing models, interdependence has a multifaceted impact on system robustness in that interdependency can lead to an improved robustness for each individual network.

  11. Experimental investigation of flow accelerated corrosion under two-phase flow conditions

    International Nuclear Information System (INIS)

    Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam; Badr, Hassan M.


    Highlights: • Effect of two-phase flow on flow accelerated corrosion has been investigated experimentally. • Experiments were performed for different orifice to pipe diameter ratios. • The effect of flow patterns and mass quality on wear patterns is investigated. • The maximum FAC wear was found at approximately 2–5 pipe diameters downstream of the orifice. • The current study will help FAC engineers to prepare reliable plant inspection scope. - Abstract: The main objective of this paper is to experimentally study the effect of two-phase flow on flow-accelerated corrosion (FAC) downstream an orifice. FAC is a major safety and reliability issue affecting carbon-steel piping in nuclear and fossil power plants. This is because of its pipe wall wearing and thinning effects that could lead to sudden and sometimes catastrophic failures, as well as a huge economic loss. In the present study, FAC wear of carbon-steel piping was simulated experimentally by circulating air–water mixtures through hydrocal (CaSO 4 ·1/2H 2 O) test sections at liquid superficial Reynolds number, Re = 20,000, and different air mass flow rates. Experiments were performed for a test section with different orifice to pipe diameter ratios (d o /D = 0.25, 0.5 and 0.74). The observed flow patterns were compared with the available flow pattern maps. Surface wear patterns downstream the orifices were also analyzed. The maximum FAC wear was found to occur at approximately 2–5 pipe diameters downstream of the orifice. The obtained results were found to be consistent with those from a single-phase flow study reported earlier. Moreover, FAC was found to depend on the relative values of the mixture mass quality and the volumetric void fraction. Lower values of FAC wear rate were obtained for higher values of mass quality. A modified correlation is developed in order to predict FAC wear rate downstream of the pipe-restricting orifice with an average RMS accuracy of ±10%. However, the location

  12. Intermittent flow under constant forcing: Acoustic emission from creep avalanches (United States)

    Salje, Ekhard K. H.; Liu, Hanlong; Jin, Linsen; Jiang, Deyi; Xiao, Yang; Jiang, Xiang


    While avalanches in field driven ferroic systems (e.g., Barkhausen noise), domain switching of martensitic nanostructures, and the collapse of porous materials are well documented, creep avalanches (avalanches under constant forcing) were never observed. Collapse avalanches generate particularly large acoustic emission (AE) signals and were hence chosen to investigate crackling noise under creep conditions. Piezoelectric SiO2 has a strong piezoelectric response even at the nanoscale so that we chose weakly bound SiO2 spheres in natural sandstone as a representative for the study of avalanches under time-independent, constant force. We found highly non-stationary crackling noise with four activity periods, each with power law distributed AE emission. Only the period before the final collapse shows the mean field behavior (ɛ near 1.39), in agreement with previous dynamic measurements at a constant stress rate. All earlier event periods show collapse with larger exponents (ɛ = 1.65). The waiting time exponents are classic with τ near 2.2 and 1.32. Creep data generate power law mixing with "effective" exponents for the full dataset with combinations of mean field and non-mean field regimes. We find close agreement with the predicted time-dependent fiber bound simulations, including events and waiting time distributions. Båth's law holds under creep conditions.

  13. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions (United States)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui


    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  14. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann


    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  15. Simultaneous measurement of erythrocyte deformability and blood viscoelasticity using micropillars and co-flowing streams under pulsatile blood flows. (United States)

    Kang, Yang Jun


    The biophysical properties of blood provide useful information on the variation in hematological disorders or diseases. In this study, a simultaneous measurement method of RBC (Red Blood Cell) deformability and blood viscoelasticity is proposed by evaluating hemodynamic variations through micropillars and co-flowing streams under sinusoidal blood flow. A disposable microfluidic device is composed of two inlets and two outlets, two upper side channels, and two lower side channels connected to one bridge channel. First, to measure the RBC deformability, the left-lower side channel has a deformability assessment chamber (DAC) with narrow-sized micropillars. Second, to evaluate the blood viscoelasticity in co-flowing streams, a phosphate buffered saline solution is supplied at a constant flow rate. By closing or opening a pinch valve connected to the outlet of DAC, blood flows in forward or back-and-forth mode. A time-resolved micro-particle image velocimetry technique and a digital image processing technique are used to quantify the blood velocity and image intensity. Then, RBC deformability is evaluated by quantifying the blood volume passing through the DAC under forward flow, and quantifying the variations of blood velocity and image intensity in the DAC under back-and-forth flow. Using a discrete circuit model, blood viscoelasticity is obtained by evaluating variations of blood velocity and co-flowing streams. The effect of several factors (period, hematocrit, and base solution) on the performance is quantitatively evaluated. Based on the experimental results, the period of sinusoidal flow and hematocrit are fixed at 30 s and 50%, respectively. As a performance demonstration, the proposed method is employed to detect the homogeneous and heterogeneous blood composed of normal RBCs and hardened RBCs. These experimental results show that the RBC deformability is more effective to detect minor subpopulations of heterogeneous bloods, compared with blood viscoelasticity

  16. Flow velocities and bed shear stresses in a stone cover under an oscillatory flow

    DEFF Research Database (Denmark)

    Stenanato, F.; Nielsen, Anders Wedel; Sumer, B. Mutlu


    layers of stones. The flow velocities in the pores of the stones were measured using LDA (Laser Doppler Anemometer). In addition to the velocity measurements, the bed shear stresses were also measured using a hotfilm (Constant Temperature Anemometry). It is found that the boundary layer of the outer flow...... current boundary layer without any externally generated turbulence. The bd shear stress is found to be very low, more than ten times smaller than in the case of a smooth base bottom without stone cover....

  17. Theoretical investigations of droplet flow under typical coaxial injector flow conditions in cryogenic rocket engines (United States)

    Mayer, W.; Labani, R.; Kruelle, G.


    Theoretical investigations are described, explaining details of high-pressure H2/O2 coaxial injection. The stochastic separated flow model is used to study and quantify turbulent gas/droplet interaction. Central point of investigation is the contribution of gas turbulence to droplet dispersion in space and velocity. Spray computations in idealized homogeneous turbulent gas fields with parameter variations and in realistic flows were performed. Studies concerning droplet break-up using simplified model assumptions are presented. Proof has been obtained of the importance of Saffman Lift to droplet motion.

  18. The fluid flow of Czochralski melt under the electromagnetic field


    加藤, 拓哉; 二條久保, 裕; 岩本, 光生; 齋藤, 晋一; 赤松, 正人; 尾添, 紘之; Takuya, Katoh; Yuu, Nijoukubo; Mitsuo, Iwamoto; Shinichi, Saitoh; Masato, Akamatsu; Hiroyuki, Ozoe; 大分大院; 大分大工; 大分大工


    The silicon single crystal is use for the semiconductor device and it is mainly manufactured by the Czochralski crystal growing method. Under the Cz method, the forced convection and natural convection caused by the crystal rotation and the temperature difference between the crystal and crucible. In traditional system, the melt convection is controlled by the heater power, the crystal and crucible rotation. We apply Lorentz force to control the melt convection in this study, the Lorentz force...

  19. Effective viscous flow properties for fiber suspensions under concentrated conditions

    International Nuclear Information System (INIS)

    Christensen, R.M.


    The effective longitudinal and transverse shear viscosities are derived for an aligned fiber suspension. The solutions are valid under very concentrated conditions for a hexagonal arrangement of the single size fibers. The results compliment the classical dilute suspension forms at the other extreme of concentration. Empirical forms are constructed to cover the full range of volume fraction of the fiber phase. Also, single size spherical particle suspensions are given a similar treatment to that of the fiber case

  20. On the shear-thinning and viscoelastic effects of blood flow under various flow rates

    Czech Academy of Sciences Publication Activity Database

    Bodnár, Tomáš; Sequeira, A.; Prosi, M.


    Roč. 217, č. 11 (2011), s. 5055-5067 ISSN 0096-3003 Institutional research plan: CEZ:AV0Z20760514 Keywords : non-Newtonian * viscoelastic * Oldroyd-B * finite-volume * blood flow Subject RIV: BK - Fluid Dynamics Impact factor: 1.317, year: 2011

  1. Complex network analysis of phase dynamics underlying oil-water two-phase flows (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De


    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  2. Hydrodynamics of double phase under high pressure: evolutions of flow configurations until critical heating

    International Nuclear Information System (INIS)

    Raisson, Claude


    This research thesis reports the experimental study of flows and of their evolution until critical heating by using appropriate measurement instruments. The objective is to understand how flow evolution may condition critical heating. After a recall of some notions and values related to the study of two-phase flows, and an overview of published works on flow configurations and on critical heating, the author describes test installation and measurement devices, presents the typical test process, reports instrument calibration, and flow configuration tests with water-air flow under low pressure. Results are reported. The author proposes explanations regarding observed phenomena, and a possible scheme to explain the flow evolution until critical heating [fr

  3. TranSCorBe Project: A high-resolution seismic-passive profile to study the variation of the crustal and upper mantle structures under the Betic mountain ranges (United States)

    Morales, José; Martín, Rosa; Stich, Daniel; Heit, Benjamín; Yuan, Xiaohui; Mancilla, Flor; Benito, José; Carrion, Francisco; Serrano, Inmaculada; López-Comino, Jose Angel; Abreu, Rafael; Alguacil, Gerardo; Almendros, Javier; Carmona, Enrique; Ontiveros, Alfonso; García-Quiroga, Daniel; García-Jerez, Antonio


    The goal of this project is to study the crustal and upper mantle structures under the Betic mountain ranges and their variations between the different geological domains. We deployed 50 broadband and short period seismic stations during 18 months following two profiles. We collect teleseismic events to perform a high-resolution P-to-S and S-to-P receiver function analysis. The main profile (TranSCorBe), of 160 km length, starts near the coast in Mazarrón (Murcia) and follows a NW-SE direction, crossing the Cazorla mountain range. It probes, from south to north, the Alboran domain (metamorphic rocks), the External zones (sedimentary rocks) and the Variscan terrains of the Iberian Massif. The spacing between stations is around 3-4 km. This inter-station distance allows us mapping with high accuracy the variations of the crust and upper mantle discontinuities in the Betic Range and their transition to the Iberian Massif. A second profile (HiRe II) with a larger spacing between seismic stations, is a continuation of a previously installed HiRe I profile, a NS profile starting near the Mediterranean coast in Adra (Almería) through Sierra Nevada Mountains. HiRe II profile prolongs HiRe I profile until the Variscan intersecting with TranSCorBe profile near Cazorla.

  4. Overland flow under rainfall : some aspects related to modelling and conditioning factors

    NARCIS (Netherlands)

    Lima, de J.L.M.P.


    This study concerns the theory and some practical aspects of overland flow under rainfall. Of the conditioning factors and processes which govern the generation of overland flow, the following were studied: depression storage, infiltration, morphology and wind. Special attention was paid to

  5. Determining resolvability of mantle plumes with synthetic seismic modeling (United States)

    Maguire, R.; Van Keken, P. E.; Ritsema, J.; Fichtner, A.; Goes, S. D. B.


    Hotspot volcanism in locations such as Hawaii and Iceland is commonly thought to be associated with plumes rising from the deep mantle. In theory these dynamic upwellings should be visible in seismic data due to their reduced seismic velocity and their effect on mantle transition zone thickness. Numerous studies have attempted to image plumes [1,2,3], but their deep mantle origin remains unclear. In addition, a debate continues as to whether lower mantle plumes are visible in the form of body wave travel time delays, or whether such delays will be erased due to wavefront healing. Here we combine geodynamic modeling of mantle plumes with synthetic seismic waveform modeling in order to quantitatively determine under what conditions mantle plumes should be seismically visible. We model compressible plumes with phase changes at 410 km and 670 km, and a viscosity reduction in the upper mantle. These plumes thin from greater than 600 km in diameter in the lower mantle, to 200 - 400 km in the upper mantle. Plume excess potential temperature is 375 K, which maps to seismic velocity reductions of 4 - 12 % in the upper mantle, and 2 - 4 % in the lower mantle. Previous work that was limited to an axisymmetric spherical geometry suggested that these plumes would not be visible in the lower mantle [4]. Here we extend this approach to full 3D spherical wave propagation modeling. Initial results using a simplified cylindrical plume conduit suggest that mantle plumes with a diameter of 1000 km or greater will retain a deep mantle seismic signature. References[1] Wolfe, Cecily J., et al. "Seismic structure of the Iceland mantle plume." Nature 385.6613 (1997): 245-247. [2] Montelli, Raffaella, et al. "Finite-frequency tomography reveals a variety of plumes in the mantle." Science 303.5656 (2004): 338-343. [3] Schmandt, Brandon, et al. "Hot mantle upwelling across the 660 beneath Yellowstone." Earth and Planetary Science Letters 331 (2012): 224-236. [4] Hwang, Yong Keun, et al

  6. Respirator Filter Efficiency Testing Against Particulate and Biological Aerosols Under Moderate to High Flow Rates

    National Research Council Canada - National Science Library

    Richardson, Aaron W; Eshbaugh, Jonathan P; Hofacre, Kent C; Gardner, Paul D


    ...) and biological test aerosols under breather flow rates associated with high work rates. The inert test challenges consisted of solid and oil aerosols having nominal diameters ranging from 0.02...

  7. Hydrodynamics of slug flow in a vertical narrow rectangular channel under laminar flow condition

    International Nuclear Information System (INIS)

    Wang, Yang; Yan, Changqi; Cao, Xiaxin; Sun, Licheng; Yan, Chaoxing; Tian, Qiwei


    Highlights: • Slug flow hydrodynamics in a vertical narrow rectangular duct were investigated. • The velocity of trailing Taylor bubble undisturbed by the leading one was measured. • Correlation of Taylor bubble velocity with liquid slug length ahead it was proposed. • Evolution of length distributions of Taylor bubble and liquid slug was measured. • The model of predicted length distributions was applied to the rectangular channel. - Abstract: The hydrodynamics of gas–liquid two-phase slug flow in a vertical narrow rectangular channel with the cross section of 2.2 mm × 43 mm is investigated using a high speed video camera system. Simultaneous measurements of velocity and duration of Taylor bubble and liquid slug made it possible to determine the length distributions of the liquid slug and Taylor bubble. Taylor bubble velocity is dependent on the length of the liquid slug ahead, and an empirical correlation is proposed based on the experimental data. The length distributions of Taylor bubbles and liquid slugs are positively skewed (log-normal distribution) at all measuring positions for all flow conditions. A modified model based on that for circular tubes is adapted to predict the length distributions in the present narrow rectangular channel. In general, the experimental data is well predicted by the modified model

  8. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems (United States)

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.


    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  9. Asymmetric three-dimensional topography over mantle plumes. (United States)

    Burov, Evgueni; Gerya, Taras


    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  10. Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Wael H., E-mail: [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia); Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals (KFUPM), P.O. Box 874, Dhahran 31261 (Saudi Arabia)


    Highlights: Black-Right-Pointing-Pointer Mass transfer downstream of orifices was numerically and experimentally investigated. Black-Right-Pointing-Pointer The surface wear pattern is measured and used to validate the present numerical results. Black-Right-Pointing-Pointer The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. Black-Right-Pointing-Pointer The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. Black-Right-Pointing-Pointer The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO{sub 4}{center_dot} Vulgar-Fraction-One-Half H{sub 2}O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2-3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice

  11. Chemical equilibration of the Earth's core and upper mantle (United States)

    Brett, R.


    The oxygen fugacity (fO2) of the Earth's upper mantle appears to lie somewhat above that of the iron-wu??stite buffer, its fO2 is assumed to have been similar to the present value at the time of core formation. In the upper mantle, the Fe-rich liquid protocore that would form under such conditions of fO2 at elevated temperatures would lie predominantly in the system Fe-S-O. Distribution coefficients for Co, Cu, Ni, Ir, Au, Ir, W, Re, Mo, Ag and Ga between such liquids and basalt are known and minimum values are known for Ge. From these coefficients, upper mantle abundances for the above elements can be calculated by assuming cosmic abundances for the whole Earth and equilibrium between the Fe-S-O protocore and upper mantle. These calculated abundances are surprisingly close to presently known upper mantle abundances; agreements are within a factor of 5, except for Cu, W, and Mo. Therefore, siderophile element abundances in the upper mantle based on known distribution coefficients do not demand a late-stage meteoritic bombardment, and a protocore formed from the upper mantle containing S and O seems likely. As upper mantle abundances fit a local equilibrium model, then either the upper mantle has not been mixed with the rest of the mantle since core formation, or else partition coefficients between protocore and mantle were similar for the whole mantle regardless of P, T, and fO2. The latter possibility seems unlikely over such a P-T range. ?? 1984.

  12. Water distribution in the lower mantle: Implications for hydrolytic weakening (United States)

    Muir, Joshua M. R.; Brodholt, John P.


    The presence of water in lower mantle minerals is thought to have substantial effects on the rheological properties of the Earth's lower mantle in what is generally known as "hydrolytic weakening". This weakening will have profound effects on global convection, but hydrolytic weakening in lower mantle minerals has not been observed experimentally and thus the effect of water on global dynamics remains speculative. In order to constrain the likelihood of hydrolytic weakening being important in the lower mantle, we use first principles methods to calculate the partitioning of water (strictly protons) between mineral phases of the lower mantle under lower mantle conditions. We show that throughout the lower mantle water is primarily found either in the minor Ca-perovskite phase or in bridgmanite as an Al3+-H+ pair. Ferropericlase remains dry. However, neither of these methods of water absorption creates additional vacancies in bridgmanite and thus the effect of hydrolytic weakening is likely to be small. We find that water creates significant number of vacancies in bridgmanite only at the deepest part of the lower mantle and only for very high water contents (>1000 ppm). We conclude that water is thus likely to have only a limited effect on the rheological properties of the lower mantle.

  13. Tectonic predictions with mantle convection models (United States)

    Coltice, Nicolas; Shephard, Grace E.


    Over the past 15 yr, numerical models of convection in Earth's mantle have made a leap forward: they can now produce self-consistent plate-like behaviour at the surface together with deep mantle circulation. These digital tools provide a new window into the intimate connections between plate tectonics and mantle dynamics, and can therefore be used for tectonic predictions, in principle. This contribution explores this assumption. First, initial conditions at 30, 20, 10 and 0 Ma are generated by driving a convective flow with imposed plate velocities at the surface. We then compute instantaneous mantle flows in response to the guessed temperature fields without imposing any boundary conditions. Plate boundaries self-consistently emerge at correct locations with respect to reconstructions, except for small plates close to subduction zones. As already observed for other types of instantaneous flow calculations, the structure of the top boundary layer and upper-mantle slab is the dominant character that leads to accurate predictions of surface velocities. Perturbations of the rheological parameters have little impact on the resulting surface velocities. We then compute fully dynamic model evolution from 30 and 10 to 0 Ma, without imposing plate boundaries or plate velocities. Contrary to instantaneous calculations, errors in kinematic predictions are substantial, although the plate layout and kinematics in several areas remain consistent with the expectations for the Earth. For these calculations, varying the rheological parameters makes a difference for plate boundary evolution. Also, identified errors in initial conditions contribute to first-order kinematic errors. This experiment shows that the tectonic predictions of dynamic models over 10 My are highly sensitive to uncertainties of rheological parameters and initial temperature field in comparison to instantaneous flow calculations. Indeed, the initial conditions and the rheological parameters can be good enough

  14. Direct observation of bunching of elementary steps on protein crystals under forced flow conditions

    Directory of Open Access Journals (Sweden)

    Gen Sazaki


    Full Text Available Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL under forced flow conditions, by our advanced optical microscopy. We found that in the case of a HEWL solution of 99.99% purity, forced flow changed bunched steps into elementary ones (debunching on tetragonal HEWL crystals. In contrast, in the case of a HEWL solution of 98.5% purity, forced flow significantly induced bunching of elementary steps. These results indicate that in the case of HEWL crystals, the mass transfer of impurities is more significantly enhanced by forced solution flow than that of solute HEWL molecules. We also showed that forced flow induced the incorporation of microcrystals into a mother crystal and the subsequent formation of screw dislocations and spiral growth hillocks.

  15. Lattice Boltzmann Study on Seawall-Break Flows under the Influence of Breach and Buildings (United States)

    Mei, Qiu-Ying; Zhang, Wen-Huan; Wang, Yi-Hang; Chen, Wen-Wen


    In the process of storm surge, the seawater often overflows and even destroys the seawall. The buildings near the shore are usually inundated by the seawater through the breach. However, at present, there is little study focusing on the effects of buildings and breach on the seawall-break flows. In this paper, the lattice Boltzmann (LB) model with nine velocities in two dimensions (D2Q9) for the shallow water equations is adopted to simulate the seawall-break flows. The flow patterns and water depth distributions for the seawall-break flows under various densities, layouts and shapes of buildings and different breach discharges, sizes and locations are investigated. It is found that when buildings with a high enough density are perpendicular to the main flow direction, an obvious backwater phenomenon appears near buildings while this phenomenon does not occur when buildings with the same density are parallel to the main flow direction. Moreover, it is observed that the occurrence of backwater phenomenon is independent of the building shape. As to the effects of breach on the seawall-break flows, it is found that only when the breach discharge is large enough or the breach size is small enough, the effects of asymmetric distribution of buildings on the seawall-break flows become important. The breach location only changes the flow pattern in the upstream area of the first building that seawater meets, but has little impact on the global water depth distribution. Supported by the National Natural Science Foundation of China under Grant No. 11502124, the Natural Science Foundation of Zhejiang Province under Grant No. LQ16A020001, the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y201533808, the Natural Science Foundation of Ningbo under Grant No. 2016A610075, and is sponsored by K.C. Wong Magna Fund in Ningbo University.

  16. Circulation of carbon dioxide in the mantle: multiscale modeling (United States)

    Morra, G.; Yuen, D. A.; Lee, S.


    Much speculation has been put forward on the quantity and nature of carbon reservoirs in the deep Earth, because of its involvement in the evolution of life at the surface and inside planetary interiors. Carbon penetrates into the Earth's mantle mostly during subduction of oceanic crust, which contains carbonate deposits [1], however the form that it assumes at lower mantle depths is scarcely understood [2], hampering our ability to estimate the amount of carbon in the entire mantle by orders of magnitude. We present simulations of spontaneous degassing of supercritical CO2 using in-house developed novel implementations of the Fast-Multipole Boundary Element Method suitable for modeling two-phase flow (here mantle mineral and free CO2 fluid) through disordered materials such as porous rocks. Because the mutual interaction of droplets immersed either in a fluid or a solid matrix and their weakening effect to the host rock alters the strength of the mantle rocks, at the large scale the fluid phases in the mantle may control the creeping of mantle rocks [3]. In particular our study focuses on the percolation of supercritical CO2, estimated through the solution of the Laplace equation in a porous system, stochastically generated through a series of random Karhunen-Loeve decomposition. The model outcome is employed to extract the transmissivity of supercritical fluids in the mantle from the lowest scale up to the mantle scale and in combination with the creeping flow of the convecting mantle. The emerging scenarios on the global carbon cycle are finally discussed. [1] Boulard, E., et al., New host for carbon in the deep Earth. Proceedings of the National Academy of Sciences, 2011. 108(13): p. 5184-5187. [2] Walter, M.J., et al., Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 2011. 334(6052): p. 54-57. [3] Morra, G., et al., Ascent of Bubbles in Magma Conduits Using Boundary Elements and Particles. Procedia Computer

  17. Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling (United States)

    Zhao, Dapeng; Liu, Xin; Hua, Yuanyuan


    We investigate the 3-D seismic structure of source areas of the 6 October 2000 Western Tottori earthquake (M 7.3) and the 21 October 2016 Central Tottori earthquake (M 6.6) which occurred near the Daisen volcano in SW Japan. The two large events took place in a high-velocity zone in the upper crust, whereas low-velocity (low-V) and high Poisson's ratio (high-σ) anomalies are revealed in the lower crust and upper mantle. Low-frequency micro-earthquakes (M 0.0-2.1) occur in or around the low-V and high-σ zones, which reflect upward migration of magmatic fluids from the upper mantle to the crust under the Daisen volcano. The nucleation of the Tottori earthquakes may be affected by the ascending fluids. The flat subducting Philippine Sea (PHS) slab has a younger lithosphere age and so a higher temperature beneath the Daisen and Tottori area, facilitating the PHS slab melting. It is also possible that a PHS slab window has formed along the extinct Shikoku Basin spreading ridge beneath SW Japan, and mantle materials below the PHS slab may ascend to the shallow area through the slab window. These results suggest that the Daisen adakite magma was affected by the PHS slab melting and upwelling flow in the upper mantle above the subducting Pacific slab.

  18. The latest geodynamics in Asia: Synthesis of data on volcanic evolution, lithosphere motion, and mantle velocities in the Baikal-Mongolian region

    Directory of Open Access Journals (Sweden)

    Sergei Rasskazov


    Full Text Available From a synthesis of data on volcanic evolution, movement of the lithosphere, and mantle velocities in the Baikal-Mongolian region, we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi, Baikal, and North Transbaikal transition-layer melting anomalies. This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage (i.e. in the early late Cretaceous due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker, Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific. At the latest geodynamic stage, Asia was involved in east–southeast movement, and the Pacific plate moved in the opposite direction with subduction under Asia. The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area. These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab. A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab, formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence. The early–middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens. We propose that extension at the Baikal Rift was caused by deviator flowing mantle material, initiated under the moving lithosphere in the Baikal melting anomaly. Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.

  19. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection. (United States)

    Yoshida, Masaki; Hamano, Yozo


    Since around 200 Ma, the most notable event in the process of the breakup of Pangea has been the high speed (up to 20 cm yr(-1)) of the northward drift of the Indian subcontinent. Our numerical simulations of 3-D spherical mantle convection approximately reproduced the process of continental drift from the breakup of Pangea at 200 Ma to the present-day continental distribution. These simulations revealed that a major factor in the northward drift of the Indian subcontinent was the large-scale cold mantle downwelling that developed spontaneously in the North Tethys Ocean, attributed to the overall shape of Pangea. The strong lateral mantle flow caused by the high-temperature anomaly beneath Pangea, due to the thermal insulation effect, enhanced the acceleration of the Indian subcontinent during the early stage of the Pangea breakup. The large-scale hot upwelling plumes from the lower mantle, initially located under Africa, might have contributed to the formation of the large-scale cold mantle downwelling in the North Tethys Ocean.

  20. Performance and Adaptive Surge-Preventing Acceleration Prediction of a Turboshaft Engine under Inlet Flow Distortion

    Directory of Open Access Journals (Sweden)

    Cao Dalu


    Full Text Available The intention of this paper is to research the inlet flow distortion influence on overall performance of turboshaft engine and put forward a method called Distortion Factor Item (DFI to improve the fuel supply plan for surge-preventing acceleration when turboshaft engine suddenly encounters inlet flow distortion. Based on the parallel compressor theory, steady-state and transition-state numerical simulation model of turboshaft engine with sub-compressor model were established for researching the influence of inlet flow distortion on turboshaft engine. This paper made a detailed analysis on the compressor operation from the aspects of performance and stability, and then analyzed the overall performance and dynamic response of the whole engine under inlet flow distortion. Improved fuel supply plan with DFI method was applied to control the acceleration process adaptively when encountering different inlet flow distortion. Several simulation examples about extreme natural environments were calculated to testify DFI method’s environmental applicability. The result shows that the inlet flow distortion reduces the air inflow and decreases the surge margin of compressor, and increase the engine exhaust loss. Encountering inlet flow distortion has many adverse influences such as sudden rotor acceleration, turbine inlet temperature rise and power output reduction. By using improved fuel supply plan with DFI, turboshaft engine above-idle acceleration can avoid surge effectively under inlet flow distortion with environmental applicability.

  1. Comparative Studies of Silicon Dissolution in Molten Aluminum Under Different Flow Conditions, Part I: Single-Phase Flow (United States)

    Seyed Ahmadi, Mehran; Argyropoulos, Stavros A.; Bussmann, Markus; Doutre, Don


    This manuscript presents research work related to the assimilation of Silicon (Si) in molten Aluminum (Al) under natural and forced convection conditions. The effects of impurity levels of solid Si, Al bath temperature, and fluid flow conditions were investigated. It was found that a polycrystalline metallurgical grade Si (MGSi) with higher levels of impurities dissolved more slowly than high purity polycrystalline MGSi, which showed a similar dissolution rate to monocrystalline electronic grade Si. For high-purity Si cylinders, the experimental data under natural convection conditions exhibit good agreement with a correlation for vertical cylinders: overline{Sh} = ( 0. 1 1 {{to}}0.129)(Gr_m Sc)^{1/3} . Under forced convection conditions, by rotating the molten Al, the mass transfer rate increased at higher liquid velocities, implying that the dissolution process is controlled by liquid phase diffusion. When the forced convection prevails, the experimental data are well predicted by a correlation for vertical cylinders in cross flow: overline{Sh} = 0.3 + {0.62{Re}^{1/2} Sc^{1/3} }/{[ {1 + (0.4/Sc)^{2/3 } ]^{1/4} }}[ {1 + ( {{Re} /282000} )^{5/8} } ]^{4/5} . Finally, at lower velocities of liquid Al, the combined effect of natural and forced convection must be considered, and a correlation is proposed based on the buoyancy force normal to the direction of the flow.

  2. Wax deposition measurement under turbulent flow conditions for a live waxy crude from Turkmenistan

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, K.; Ratulowski, J.; Davies, T. [Schlumberger, Edmonton, AB (Canada). DBR Technology Center; Norpiah, R.M. [Petronas (Malaysia)


    The challenges facing deepwater oil production were discussed, with particular reference to flow assurance problems caused by cold temperatures and long offsets that impact the flow of fluids from the wellbore to the export line. The precipitation and deposition of waxy material is one of the most pervasive flow assurance issues. In order to develop operating strategies that address flow assurance risks while minimizing capital and operating costs, it is important to obtain fluid property data and phase behaviour data. Conventional deposition testing for wax is typically run on dead oil in a low shear environment. However, the flow regime in a production system is turbulent with high wall shears because the oil, gas and water are at elevated pressures. As such, wax deposition data for dead oil taken under laminar flow conditions overpredicts the actual wax deposition rates observed at field conditions. Therefore, a high-pressure deposition cell was used in this study to investigate the deposition tendency of a waxy crude oil from Turkmenistan at field conditions. The study also examined the influence of flow rate, temperature and wax inhibitors on wax deposition. The effect of solution gas was also determined. A method for scaling the deposition cell data to pipe flow was also presented and used in a multiphase flow simulator to predict the wax deposition profile in the field.

  3. Multiple mantle upwellings through the transition zone beneath the Afar Depression? (United States)

    Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Thompson, D. A.; Ebinger, C. J.; Keir, D.; Ayele, A.; Goitom, B.; Ogubazghi, G.


    Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 7 other regional experiments and global network stations across Kenya, Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S-wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. Estimates of transition zone thickness suggest that this is unlikely to be an artefact of mantle discontinuity topography as a transition zone of normal thickness underlies the majority of Afar and surrounding regions. However, a low velocity layer is evident directly above the 410 discontinuity, co-incident with some of the lowest seismic velocities suggesting that smearing of a strong low velocity layer of limited depth extent may contribute to the tomographic models in north-east Afar. The combination of seismic constraints suggests that small low temperature (<50K) upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. These, combined with possible evidence of melt above the 410 discontinuity can explain the seismic velocity models. Our images of secondary upwellings suggest that

  4. Numerical Simulation of single-stage axial fan operation under dusty flow conditions (United States)

    Minkov, L. L.; Pikushchak, E. V.


    Assessment of the aerodynamic efficiency of the single-stage axial flow fan under dusty flow conditions based on a numerical simulation using the computational package Ansys-Fluent is proposed. The influence of dust volume fraction on the dependences of the air volume flow rate and the pressure drop on the rotational speed of rotor is demonstrated. Matching functions for formulas describing a pressure drop and volume flow rate in dependence on the rotor speed and dust content are obtained by numerical simulation for the single-stage axial fan. It is shown that the aerodynamic efficiency of the single-stage axial flow fan decreases exponentially with increasing volume content of dust in the air.

  5. Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action

    Directory of Open Access Journals (Sweden)

    V. V. Perevezentsev


    Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.

  6. Bistability of heat transfer of a viscous liquid under conditions of flow channel

    International Nuclear Information System (INIS)

    Melkikh, A.V.; Seleznev, V.D.


    The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru

  7. Physical investigation of square cylinder array dynamical response under single-phase cross-flow

    International Nuclear Information System (INIS)

    Longatte, E.; Baj, F.


    Fluid structure interaction and flow-induced vibration in square cylinder arrangement under single-phase incompressible laminar cross flow are investigated in the present paper. Dynamic instability governed by damping generation is studied without any consideration about mixing with turbulence effects. Conservative and non-conservative effects are pointed out and dynamical stability limit sensitivity to physical parameters is analyzed. Finally the influence of key physical parameters on fluid solid dynamics interaction is quantified. (authors)

  8. Second Law Analysis for a Variable Viscosity Reactive Couette Flow under Arrhenius Kinetics

    Directory of Open Access Journals (Sweden)

    N. S. Kobo


    Full Text Available This study investigates the inherent irreversibility associated with the Couette flow of a reacting variable viscosity combustible material under Arrhenius kinetics. The nonlinear equations of momentum and energy governing the flow system are solved both analytically using a perturbation method and numerically using the standard Newton Raphson shooting method along with a fourth-order Runge Kutta integration algorithm to obtain the velocity and temperature distributions which essentially expedite to obtain expressions for volumetric entropy generation numbers, irreversibility distribution ratio, and the Bejan number in the flow field.

  9. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions. (United States)

    Cui, Xinguang; Gutheil, Eva


    An excellent understanding of the airflow properties is critical to improve the drug delivery efficiency via the extrathoracic airway. The present numerical study focuses on the investigation the characteristics of important airflow structures such as the secondary vortices, the impinging jet and the recirculation zone under unsteady inspiration flow conditions in a circular idealized mouth-throat model using large eddy simulation (LES). Five inhalation cycles are simulated, the last one of which is analyzed in detail at five different times. Two times are chosen during the accelerating branch, one at the peak and two within the decelerating inhalation wave. The flow exhibits an extinct process of the flow transiting from laminar to turbulent during the accelerating phase and transiting back from turbulent to laminar in the decelerating phase. It is found that the flow is much more turbulent during the decelerating phase compared to the accelerating phase of the inspiration wave, which is associated with more smaller secondary vortices, a shorter and more unsteady laryngeal jet, a smaller and more unsteady recirculation zone, as well as an enlarged mixing zone. These differences during the unsteady inspiration require more attention in particular if particle transport and deposition in the upper airway are to be investigated. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Modification of Turbulent Pipe Flow Equations to Estimate the Vertical Velocity Profiles Under Woody Debris Jams (United States)

    Cervania, A.; Knack, I. M. W.


    The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.

  11. Pillars of the Mantle

    KAUST Repository

    Pugmire, David


    In this work, we investigate global seismic tomographic models obtained by spectral-element simulations of seismic wave propagation and adjoint methods. Global crustal and mantle models are obtained based on an iterative conjugate-gradient type of optimization scheme. Forward and adjoint seismic wave propagation simulations, which result in synthetic seismic data to make measurements and data sensitivity kernels to compute gradient for model updates, respectively, are performed by the SPECFEM3D-GLOBE package [1] [2] at the Oak Ridge Leadership Computing Facility (OLCF) to study the structure of the Earth at unprecedented levels. Using advances in solver techniques that run on the GPUs on Titan at the OLCF, scientists are able to perform large-scale seismic inverse modeling and imaging. Using seismic data from global and regional networks from global CMT earthquakes, scientists are using SPECFEM3D-GLOBE to understand the structure of the mantle layer of the Earth. Visualization of the generated data sets provide an effective way to understand the computed wave perturbations which define the structure of mantle in the Earth.

  12. The flow distribution in the parallel tubes of the cavity receiver under variable heat flux

    International Nuclear Information System (INIS)

    Hao, Yun; Wang, Yueshe; Hu, Tian


    Highlights: • An experimental loop is built to find the flow distribution in the parallel tubes. • With the concentration of heat flux, two-phase flow makes distribution more uneven. • The total flow rate is chosen appropriately for a wider heat flux distribution. • A suitable system pressure is essential for the optimization of flow distribution. - Abstract: As an optical component of tower solar thermal power station, the heliostat mirror reflects sunlight to one point of the heated surface in the solar cavity receiver, called as one-point focusing system. The radiation heat flux concentrated in the cavity receiver is always non-uniform temporally and spatially, which may lead to extremely local over-heat on the receiver evaporation panels. In this paper, an electrical heated evaporating experimental loop, including five parallel vertical tubes, is set up to evaluate the hydrodynamic characteristics of evaporation panels in a solar cavity receiver under various non-uniform heat flux. The influence of the heat flux concentration ratio, total flow rate, and system pressure on the flow distribution of parallel tubes is discussed. It is found that the flow distribution becomes significantly worse with the increase of heat flux and concentration ratio; and as the system pressure decreased, the flow distribution is improved. It is extremely important to obtain these interesting findings for the safe and stable operation of solar cavity receiver, and can also provide valuable references for the design and optimization of operating parameters solar tower power station system.

  13. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: new insights from flume experiments (United States)

    Cartigny, Matthieu; Ventra, Dario; Postma, George; Van den Berg, Jan H.


    Supercritical-flow phenomena are fairly common in modern sedimentary environments, yet their recognition remains subordinate in the rock record. This is commonly ascribed to the poor preservation potential of deposits from supercritical flows. However, the number of documented flume datasets on supercritical-flow dynamics and sedimentary structures is very limited in comparison with available data from subcritical-flow experiments, and our inability to identify and interpret such deposits might also be due to insufficient knowledge. This article describes the results of systematic experiments spanning the full range of supercritical-flow bedforms (antidunes, chutes-and-pools, cyclic steps) developed over mobile sand beds of variable grain sizes. Flow character and related bedform patterns are constrained through time-series measurements of the bed configuration, flow depth, flow velocity and Froude number. The results allow the refinement and extension of current bedform stability diagrams in the supercritical-flow domain. The experimental dataset and the stability diagram clarify morphodynamic relationships between antidune and cyclic steps. The onset of antidunes is controlled by the flow passing a threshold value of the Froude parameter. The transition from antidunes to cyclic steps instead is completed at a threshold value of the mobility parameter, and this transition spans a wider range of values for the mobility parameter as grain size increases. Sedimentary structures associated with the development of supercritical bedforms under variable aggradation rates are revealed by means of a synthetic aggradation technique and compared with examples from field and flume studies. Aggradation rate bears an important influence on the geometry of supercritical structures, and it should be held in consideration for the identification and mutual distinction of supercritical-flow bedforms in the stratigraphic record.

  14. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi


    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  15. Whole-mantle convection with tectonic plates preserves long-term global patterns of upper mantle geochemistry. (United States)

    Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M


    The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.

  16. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection (United States)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.


    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  17. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun II; Chang, Soon Heung


    This study has been carried out to investigate the hydrodynamic stabilities and Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations has been observed and the average mass flux under flow oscillation have been measured. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. And the CHF data from low flow experiments, namely the natural and forced circulation, have been compared with each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions for the CHF experiments were a low flow of less than 70 kg/m 2 s of water in a vertical round tube with diameter of 0.008 m at near atmospheric pressure. (author)

  18. Fine powder flow under humid environmental conditions from the perspective of surface energy. (United States)

    Karde, Vikram; Ghoroi, Chinmay


    The influence of humidity on surface energetics and flow behavior of fine pharmaceutical powders was investigated. Amorphous and crystalline fine powders with hydrophilic (Corn starch and Avicel PH105) and hydrophobic (ibuprofen) nature were considered for this study. The surface energy was determined using surface energy analyzer and flow behavior was measured in terms of unconfined yield stress (UYS) using a shear tester. The study showed that unlike hydrophobic ibuprofen powder, surface energy and flow of hydrophilic excipient powders were affected by relative humidity (RH). The Lifshitz-van der Waals dispersive (γ(LW)) component of surface energy barely changed with varying RH for all pharmaceutical powders. For hydrophilic excipients, the specific component of surface energy (γ(SP)) was found to increase with increasing RH. Furthermore, for these excipients, flow deterioration at elevated RH was observed due to increased capillary bridge formation. Detailed analysis showed that γ(SP) component of surface energy can be an effective indicator for flow behavior of fine powders under varying humid conditions. The present study also brought out the existence of different regimes of probable interparticle forces which dictate the bulk flow behavior of fine hydrophilic powder under humid conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Experimental study of the APR+ reactor core flow and pressure distributions under 4-pump running conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kihwan, E-mail:; Euh, Dong-Jin; Chu, In-Cheol; Youn, Young-Jung; Choi, Hae-Seob; Kwon, Tae-Soon, E-mail:


    Highlights: • Experimental facility with a 1/5 scale was designed to perform various hydraulic tests of an APR+ reactor. • Two kinds of experiments, balanced and unbalanced flows under 4-pump running conditions were carried out. • The core inlet flow rates and exit pressure distributions were measured and analyzed at 257 discrete points. • The coolant mixing characteristics were investigated with the sectional pressure loss coefficients. - Abstract: The core inlet flow rates and exit pressure distributions of an APR+ (Advanced Power Reactor Plus) reactor were evaluated experimentally with the ACOP (APR+ Core Flow and Pressure) test facility. The ACOP test facility was constructed with a linear reduced scale of 1/5 referring to the APR+ reactor. The major flow path from the clod leg to hot leg was preserved with a principle of similarity. The core region was simulated using 257 core simulators, which are representative of the real HIPER fuel assemblies that APR+ reactor adopted. The core inlet flow rates and pressure distributions along the main flow path, which are significant information as an input data to evaluate the core thermal margin and reactor safety, were obtained by differential pressures measured at core simulators representing 257 fuel assemblies, and the static or differential pressures at 584 points, respectively. Two kinds of experiments, 4-pump balanced and unbalanced flow conditions, were conducted to examine the hydraulic characteristics of the reactor coolant flow. The mass balance and overall pressure drop were carefully examined to check the reliability of the obtained values. The inlet flow rates of the two test results showed similar distributions, which met the hydraulic performance requirement. The details of these experiments, the facility, and a data analysis are also described in this paper.

  20. Spatial correlations of hydrodynamic fluctuations in simple fluids under shear flow: A mesoscale simulation study. (United States)

    Varghese, Anoop; Gompper, Gerhard; Winkler, Roland G


    Hydrodynamic fluctuations in simple fluids under shear flow are demonstrated to be spatially correlated, in contrast to the fluctuations at equilibrium, using mesoscopic hydrodynamic simulations. The simulation results for the equal-time hydrodynamic correlations in a multiparticle collision dynamics (MPC) fluid in shear flow are compared with the explicit expressions obtained from fluctuating hydrodynamics calculations. For large wave vectors k, the nonequilibrium contributions to transverse and longitudinal velocity correlations decay as k^{-4} for wave vectors along the flow direction and as k^{-2} for the off-flow directions. For small wave vectors, a crossover to a slower decay occurs, indicating long-range correlations in real space. The coupling between the transverse velocity components, which vanishes at equilibrium, also exhibits a k^{-2} dependence on the wave vector. In addition, we observe a quadratic dependency on the shear rate of the nonequilibrium contribution to pressure.

  1. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity (United States)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.


    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  2. Extension of SMAC scheme for variable density flows under strong temperature gradient (United States)

    Anwer, S. F.; Khan, H. Naushad; Sanghi, S.; Ahmad, A.; Yahya, S. M.


    An extension of SMAC scheme is proposed for variable density flows under low Mach number approximation. The algorithm is based on a predictor-corrector time integration scheme that employs a projection method for the momentum equation. A constant-coefficient Poisson equation is solved for the pressure following both the predictor and corrector steps to satisfy the continuity equation at each time step. Spatial discretization is performed on a collocated grid system that offers computational simplicity and straight forward extension to curvilinear coordinate systems. To avoid the pressure odd-even decoupling that is typically encountered in such grids, a flux interpolation technique is introduced for the equations governing variable density flows. An important characteristic of the proposed algorithm is that it can be applied to flows in both open and closed domains. Its robustness and accuracy are illustrated with a non-isothermal, turbulent channel flow at temperature ratio of 1.01 and 2.

  3. Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions

    Directory of Open Access Journals (Sweden)

    Lei Zhang


    Full Text Available An implicit, time-accurate 3D Reynolds-averaged Navier-Stokes (RANS solver is used to simulate the rotating stall phenomenon in a centrifugal fan. The goal of the present work is to shed light on the flow field and particularly the aerodynamic noise at different stall conditions. Aerodynamic characteristics, frequency domain characteristics, and the contours of sound power level under two different stall conditions are discussed in this paper. The results show that, with the decrease of valve opening, the amplitude of full pressure and flow fluctuations tends to be larger and the stall frequency remains the same. The flow field analysis indicates that the area occupied by stall cells expands with the decrease of flow rate. The noise calculation based on the simulation underlines the role of vortex noise after the occurrence of rotating stall, showing that the high noise area rotates along with the stall cell in the circumferential direction.

  4. Flow rate dynamics of pressure-compensating drippers under clogging effect

    Directory of Open Access Journals (Sweden)

    Marinaldo F. Pinto

    Full Text Available ABSTRACT The clogging dynamics of pressure-compensating drippers is still poorly addressed, and its understanding is quite important to control clogging. The aim of this study was to evaluate the flow performance of pressure-compensating drippers under clogging effect. Eight pressure-compensating emitters, model J-SC Jain PC-PLUS with nominal flow rate of 2.2 L h-1 were evaluated. The tests were run for 8 h d-1 for 4 weeks, a total of 160 h. Every 40 h, the concentration and granulometry of suspended particles were increased, by adding 125 mg L-1 of solids, composed of sand. The flow rate of the emitters was determined using a weight measurement system. Flow rate variations of the emitters did not follow a defined pattern. Clogging seems to occur randomly and abruptly. Sometimes the flow rate exceeded the nominal value (maximum relative flow rate of 182% and other times it was lower than the nominal value (minimum relative flow rate of 0%.

  5. Diamond growth in mantle fluids


    Bureau, Hélène; Frost, Daniel J.; Bolfan-casanova, Nathalie; Leroy, Clémence; Esteve, Imène; Cordier, Patrick


    International audience; In the upper mantle, diamonds can potentially grow from various forms of media (solid, gas, fluid) with a range of compositions (e.g. graphite, C–O–H fluids, silicate or carbonate melts). Inclusions trapped in diamonds are one of the few diagnostic tools that can constrain diamond growth conditions in the Earth's mantle. In this study, inclusion-bearing diamonds have been synthesized to understand the growth conditions of natural diamonds in the upper mantle. Diamonds ...

  6. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)


    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  7. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    International Nuclear Information System (INIS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula


    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed

  8. Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow (United States)

    Myung, Jin Suk; Winkler, Roland G.; Gompper, Gerhard


    The nonequilibrium dynamical behavior and structure formation of end-functionalized semiflexible polymer suspensions under flow are investigated by mesoscale hydrodynamic simulations. The hybrid simulation approach combines the multiparticle collision dynamics method for the fluid, which accounts for hydrodynamic interactions, with molecular dynamics simulations for the semiflexible polymers. In equilibrium, various kinds of scaffold-like network structures are observed, depending on polymer flexibility and end-attraction strength. We investigate the flow behavior of the polymer networks under shear and analyze their nonequilibrium structural and rheological properties. The scaffold structure breaks up and densified aggregates are formed at low shear rates, while the structural integrity is completely lost at high shear rates. We provide a detailed analysis of the shear- rate-dependent flow-induced structures. The studies provide a deeper understanding of the formation and deformation of network structures in complex materials.

  9. Hydro-dynamic Solute Transport under Two-Phase Flow Conditions. (United States)

    Karadimitriou, Nikolaos K; Joekar-Niasar, Vahid; Brizuela, Omar Godinez


    There are abundant examples of natural, engineering and industrial applications, in which "solute transport" and "mixing" in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models.

  10. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions (United States)

    Szekely, Julian


    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  11. Two-dimensional free-surface flow under gravity: A new benchmark case for SPH method (United States)

    Wu, J. Z.; Fang, L.


    Currently there are few free-surface benchmark cases with analytical results for the Smoothed Particle Hydrodynamics (SPH) simulation. In the present contribution we introduce a two-dimensional free-surface flow under gravity, and obtain an analytical expression on the surface height difference and a theoretical estimation on the surface fractal dimension. They are preliminarily validated and supported by SPH calculations.

  12. Correction factor to dye-measured flow velocity under varying water and sediment discharges (United States)

    Dye-tracing technique was a widely used method to measure velocity of overland flow in soil erosion studies under both laboratory and field conditions. Few studies were performed to quantify the effects of sediment load on correction factor on steep slopes. The objective was to investigate the poten...

  13. Numerical simulation of flow in centrifugal pump under cavitation and sediment condition (United States)

    Guo, P. C.; Lu, J. L.; Zheng, X. B.; Zhao, Q.; Luo, X. Q.


    The sediment concentration is very high in many rivers in the world, especially in China. The pumps that designed for the clear water are usually seriously abraded. The probability of pump cavitation is greatly enhanced due to the existence of sand. Under the joint action and mutual promotion of sand erosion and cavitation, serious abrasion could occurred, and the hydraulic performance of the pump may be greatly descended, meanwhile the safety and stability of the whole pump are greatly threatened. Therefore, it is significant to investigate the cavitation characteristic of pump under sediment flow condition. In this paper, the flow in a single stage centrifugal pump under cleat water and sediment flow conditions was numerically simulated. The cavitation performance under clear water was firstly analyzed. Then, The pressure, velocity and solid particle distribution in centrifugal pump under different particle diameter and different particle concentration was investigated by using the two-fluid model; The area and extent of erosion was illustrated by using the particle track model. Finally, the influence of mixed sand on centrifugal pump performance was investigated.

  14. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra


    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  15. Pressure drop and heat transfer of lithium single-phase flow under transverse magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Aritomi, Masanori; Inoue, Akira; Matsuzaki, Mitsuo


    Pressure drop and heat transfer characteristics of a lithium single-phase flow in a rectangular channel was investigated experimentally in the presence of a magnetic field. Friction loss coefficient under non-magnetic field and skin friction coefficient under magnetic field agreed well with the Blasius formula and a simple analytical expression, respectively. Nusselt number under non-magnetic field was slightly lower than the correlation by Hartnett and Irvine. Heat transfer was enhanced by increasing magnetic field above the Hartmann number of about 200. (author)

  16. Safety and Convergence Analysis of Intersecting Aircraft Flows Under Decentralized Collision Avoidance (United States)

    Dallal, Ahmed H.

    Safety is an essential requirement for air traffic management and control systems. Aircraft are not allowed to get closer to each other than a specified safety distance, to avoid any conflicts and collisions between aircraft. Forecast analysis predicts a tremendous increase in the number of flights. Subsequently, automated tools are needed to help air traffic controllers resolve air born conflicts. In this dissertation, we consider the problem of conflict resolution of aircraft flows with the assumption that aircraft are flowing through a fixed specified control volume at a constant speed. In this regard, several centralized and decentralized resolution rules have been proposed for path planning and conflict avoidance. For the case of two intersecting flows, we introduce the concept of conflict touches, and a collaborative decentralized conflict resolution rule is then proposed and analyzed for two intersecting flows. The proposed rule is also able to resolved airborne conflicts that resulted from resolving another conflict via the domino effect. We study the safety conditions under the proposed conflict resolution and collision avoidance rule. Then, we use Lyapunov analysis to analytically prove the convergence of conflict resolution dynamics under the proposed rule. The analysis show that, under the proposed conflict resolution rule, the system of intersecting aircraft flows is guaranteed to converge to safe, conflict free, trajectories within a bounded time. Simulations are provided to verify the analytically derived conclusions and study the convergence of the conflict resolution dynamics at different encounter angles. Simulation results show that lateral deviations taken by aircraft in each flow, to resolve conflicts, are bounded, and aircraft converged to safe and conflict free trajectories, within a finite time.

  17. Okavango Delta Islands: Interaction between density-driven flow and geochemical reactions under evapo-concentration (United States)

    Bauer-Gottwein, Peter; Langer, Thomas; Prommer, Henning; Wolski, Piotr; Kinzelbach, Wolfgang


    SummaryThis paper studies the interactions of density driven flow and geochemical reactions under evapo-concentration. A numerical model that couples the relevant flow, transport and chemical processes was used to analyze density-driven flow on islands in the Okavango Delta, Botswana. Evapo-concentration on the islands leads to steadily increasing solute concentrations until the onset of density-driven flow against the evaporation-induced upward flow. The modelling results suggest that lag times to the onset of density-driven flow are strongly influenced by geochemical reactions. Mineral precipitation and carbon dioxide de-gassing increase the lag time. Carbon dioxide de-gassing is enhanced if humic substances are present at elevated concentrations. Simulation results were shown to be most sensitive to the longitudinal dispersivity. Modelling results are compared to field observations from three islands in the Okavango Delta. A semi-quantitative correspondence between modelled and observed concentration patterns is established for the major chemical constituents.

  18. An in vitro experimental study of flow past aortic valve under varied pulsatile conditions (United States)

    Zhang, Ruihang; Zhang, Yan


    Flow past aortic valve represents a complex fluid-structure interaction phenomenon that involves pulsatile, vortical, and turbulent conditions. The flow characteristics immediately downstream of the valve, such as the variation of pulsatile flow velocity, formation of vortices, distribution of shear stresses, are of particular interest to further elucidate the role of hemodynamics in various aortic diseases. However, the fluid dynamics of a realistic aortic valve is not fully understood. Particularly, it is unclear how the flow fields downstream of the aortic valve would change under varied pulsatile inlet boundary conditions. In this study, an in vitro experiment has been conducted to investigate the flow fields downstream of a silicone aortic valve model within a cardiovascular flow simulator. Phased-locked Particle Image Velocimetry measurements were performed to map the velocity fields and Reynolds normal and shear stresses at different phases in a cardiac cycle. Temporal variations of pressure across the valve model were measured using high frequency transducers. Results have been compared for different pulsatile inlet conditions, including varied frequencies (heart rates), magnitudes (stroke volumes), and cardiac contractile functions (shapes of waveforms).

  19. Application of PSAT to Load Flow Analysis with STATCOM under Load Increase Scenario and Line Contingencies (United States)

    Telang, Aparna S.; Bedekar, P. P.


    Load flow analysis is the initial and essential step for any power system computation. It is required for choosing better options for power system expansion to meet with ever increasing load demand. Implementation of Flexible AC Transmission System (FACTS) device like STATCOM, in the load flow, which is having fast and very flexible control, is one of the important tasks for power system researchers. This paper presents a simple and systematic approach for steady state power flow calculations with FACTS controller, static synchronous compensator (STATCOM) using command line usage of MATLAB tool-power system analysis toolbox (PSAT). The complexity of MATLAB language programming increases due to incorporation of STATCOM in an existing Newton-Raphson load flow algorithm. Thus, the main contribution of this paper is to show how command line usage of user friendly MATLAB tool, PSAT, can extensively be used for quicker and wider interpretation of the results of load flow with STATCOM. The novelty of this paper lies in the method of applying the load increase pattern, where the active and reactive loads have been changed simultaneously at all the load buses under consideration for creating stressed conditions for load flow analysis with STATCOM. The performance have been evaluated on many standard IEEE test systems and the results for standard IEEE-30 bus system, IEEE-57 bus system, and IEEE-118 bus system are presented.

  20. Solute and colloid transport in karst conduits under low- and high-flow conditions. (United States)

    Göppert, Nadine; Goldscheider, Nico


    Solute and colloid transport in karst aquifers under low and high flows was investigated by tracer tests using fluorescent dyes (uranine) and microspheres of the size of pathogenic bacteria (1 microm) and Cryptosporidium cysts (5 microm), which were injected into a cave stream and sampled at a spring 2.5 km away. The two types of microspheres were analyzed using an epifluorescence microscope or a novel fluorescence particle counter, respectively. Uranine breakthrough curves (BTCs) were regular shaped and recovery approached 100%. Microsphere recoveries ranged between 27% and 75%. During low flow, the 1-microm spheres displayed an irregular BTC preceding the uranine peak. Only a very few 5-microm spheres were recovered. During high flow, the 1-microm-sphere BTC was regular and more similar to the uranine curve. BTCs were modeled analytically with CXTFIT using a conventional advection dispersion model (ADM) and a two-region nonequilibrium model (2RNE). The results show that (1) colloids travel at higher velocities than solutes during low flow; (2) colloids and solutes travel at similar velocities during high flow; (3) higher maximum concentrations occur during high flow; and (4) the 2RNE achieves a better fit, while the ADM is more robust, as it requires less parameters.

  1. Material processing of convection-driven flow field and temperature distribution under oblique gravity (United States)

    Hung, R. J.


    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.

  2. Prediction about chaotic times series of natural circulation flow under rolling motion

    International Nuclear Information System (INIS)

    Yuan Can; Cai Qi; Guo Li; Yan Feng


    The paper have proposed a chaotic time series prediction model, which combined phase space reconstruction with support vector machines. The model has been used to predict the coolant volume flow, in which a synchronous parameter optimization method was brought up based on particle swarm optimization algorithm, since the numerical value selection of related parameter was a key factor for the prediction precision. The average relative error of prediction values and actual observation values was l,5% and relative precision was 0.9879. The result indicated that the model could apply for the natural circulation coolant volume flow prediction under rolling motion condition with high accuracy and robustness. (authors)

  3. Improvement of the accuracy of continuous hematocrit measurement under various blood flow conditions (United States)

    Kim, Myounggon; Yang, Sung


    We propose an accurate method for continuous hematocrit (HCT) measurement of flowing blood under varying plasma conditions of electrical conductivity, osmolality, and flow rate. Two parameters, namely the hematocrit estimation parameter (HEP) and normalized difference, are proposed to reduce the HCT measurement error. HEP was demonstrated in a previous work. The results of multiple linear regression analysis showed that the two parameters were strongly correlated with the reference HCT measured by microcentrifugation. The measurement error was less than 9% despite significant simultaneous variations in the plasma properties and shear rate.

  4. The European Continent : Surface Expression of Upper Mantle Dynamics (United States)

    Tondi, M. R.; Schivardi, R.; Molinari, I.; Morelli, A.


    The surface topography of Europe shows important variations, most of which are relatively well explained by isostatic compensation of density contrasts within the crust and lithosphere. However, not all of the density contrasts leading to topography reside within the lithosphere. The crucial problem is how to detect the extra topography signal, in addition to that associated with both crustal and lithospheric anomalies. Forte and Perry, 2000 estimate the amplitude of the dynamic topography by removal of the crustal isostatic topography signal from the surface of the Earth. Faccenna and Becker, 2010 infer the equivalent dynamic topography from the normal stress generated at the surface by mantle viscous flow driven by thermal anomalies. Here we consider the correlation between residual topography and mantle residual gravity anomalies. As shown by Pekeris, 1935 and Hager et al., 1985, the viscous mantle flow that is driven by the thermal density contrasts is responsible for the long-wavelength gravity anomalies observed at the surface. They have demonstrated that the gravitational effects of surface deformation caused by the flow is opposite in sign and comparable in magnitude to that of the driving density contrast. The 1°x1° recently assembled European crustal model, EPCrust (Molinari and Morelli, 2011) is used to estimate the effects of the isostatic crust and the mantle residual gravity anomalies. We calculate the correlation matrix between the residual topography and the mantle residual gravity anomalies and we define the regions where the sublithospheric mantle density, below the European continent, contributes to surface topography. To recover the residual topography, the effects of the isostatic crust is estimated with the Panasyuk and Hager (2000) algorithm and subtracted from the observed elevation (ETOPO-1). The mantle residual gravity anomalies are estimated as the differences between the produced gravity field of EPCrust and the observations. 3-D

  5. Estimating the Risk of River Flow under Climate Change in the Tsengwen River Basin

    Directory of Open Access Journals (Sweden)

    Hsiao-Ping Wei


    Full Text Available This study evaluated the overflow risk of the Tsengwen River under a climate change scenario by using bias-corrected dynamic downscaled data as inputs for a SOBEK model (Deltares, the Netherlands. The results showed that the simulated river flow rate at Yufeng Bridge (upstream, Erxi Bridge (midstream, and XinZong (1 (downstream stations are at risk of exceeding the management plan’s flow rate for three projection periods (1979–2003, 2015–2039, 2075–2099. After validation with the geomorphic and hydrological data collected in this study, the frequency at which the flow rate exceeded the design flood was 2 in 88 events in the base period (1979–2003, 6 in 82 events in the near future (2015–2039, and 10 in 81 events at the end of the century (2075–2099.

  6. An optical flow-based approach to robust face recognition under expression variations. (United States)

    Hsieh, Chao-Kuei; Lai, Shang-Hong; Chen, Yung-Chang


    Face recognition is one of the most intensively studied topics in computer vision and pattern recognition, but few are focused on how to robustly recognize faces with expressions under the restriction of one single training sample per class. A constrained optical flow algorithm, which combines the advantages of the unambiguous correspondence of feature point labeling and the flexible representation of optical flow computation, has been developed for face recognition from expressional face images. In this paper, we propose an integrated face recognition system that is robust against facial expressions by combining information from the computed intraperson optical flow and the synthesized face image in a probabilistic framework. Our experimental results show that the proposed system improves the accuracy of face recognition from expressional face images.

  7. Dynamics and stress field of the Eurasian plate: A combined lithosphere-mantle approach

    NARCIS (Netherlands)

    Ruckstuhl, K.N.|info:eu-repo/dai/nl/304848743


    This thesis presents a new combined lithosphere-mantle modeling approach to the dynamics of individual tectonic plates. This approach incorporates tractions from convective mantle flow modeling into a detailed analysis of the forces acting on a tectonic plate. Mechanical equilibrium of the plate is

  8. Rogue Mantle Helium and Neon (United States)

    Albarede, F.


    The canonical view of He isotope geochemistry holds that high 3He/4He ratios in basalts fingerprints undegassed mantle sources. Hawaiian basalts with unradiogenic He with 3He/4He up to 30 RA are therefore seen as originating from parts of the mantle that is still primordial, at least much more so than MORB mantle (3He/4He ~ 8 RA). This view was strongly reinforced by the discovery of solar and even planetary Ne components in oceanic basalts and gas wells. The canonical view, however, conflicts with multiple observations on ocean islands, notably Hawaiian basalts: the correlation of {187}Os/{186}Os with δ 18O combined with the presence of unusually radiogenic Hf isotope compositions for a given Nd isotope composition and the correlation between Hf and Pb isotopes are all features strongly reminiscent of ancient subducted oceanic crust and pelagic sediments in the source of the Hawaiian plume. These conflicting observations beg the question of how Hawaiian basalts, which carry the embodiment of a primordial gas signature, at the same time can provide such strong evidence of surface material recycling. I here suggest and alternative model that uses the marble cake paradigm and Shuster et al.'s data on olivine. A solution to this conundrum lies in an analogy with oil genesis: 3He and Ne do not reside in the low-melting point peridotites in which they were originally hosted but rather migrated since early in Earth history into refractory 'reservoir' rocks. Since there can be no free gas phase percolating at pressures in excess of olivine carbonation at ~3 GPa, He must be largely redistributed by diffusion. The time scale of diffusion is the defining parameter: although over billions of years 3He diffuses across large distances, melting events are too short to efficiently strip residual refractory rocks from their high-3He/4He component. Assuming that melts begin forming over the uppermost 100 km with an upwelling rate of 10 m y-1 in plume conduits and 10 cm y-1 under

  9. A >100 Ma Mantle Geochemical Record: Retiring Mantle Plumes may be Premature (United States)

    Konter, J. G.; Hanan, B. B.; Blichert-Toft, J.; Koppers, A. A.; Plank, T.; Staudigel, H.


    Hotspot volcanism has long been attributed to mantle plumes, but in recent years suggestions have been made that plate tectonic processes, such as extension, can account for all hotspot tracks. This explanation involves a profoundly less dynamic lower mantle, which justifies a critical evaluation before the plume model is dismissed. Such an evaluation has to involve a wide range of geochemical, geological, and geophysical techniques, broadly investigating the products of volcanism as well as the underlying lithosphere and mantle. We argue here that the combined geological record and geochemistry of intraplate volcanoes holds some important clues that help us decide between models of plume-like upwelling versus passive upwelling with lithospheric extension. The best of these integrated datasets can be obtained from the long seamount chains in the Pacific Ocean. A new combined dataset of trace element and isotopic compositions, along with modern 40Ar/39Ar ages from seamounts in the Gilbert Ridge, Tokelau chain, and West Pacific Seamount Province (WPSP) provides a record of current to Cretaceous volcanism in the South Pacific. We have reconstructed the eruptive locations of the seamounts using a range of absolute plate motion models, including some models with hotspot motion and others that use the Indo-Atlantic hotspot reference frame. Our results show that the backtracked locations consistently form clusters (300km radius) around the active ends of the Macdonald, Rurutu and Rarotonga hotspot chains, while closely matching their distinct C-HIMU and C-EM1 signatures. The oldest WPSP seamounts (older than 100 Ma) form the only exception and backtrack, with larger uncertainty, to north of Rarotonga. Therefore, the mantle currently underlying the Cook-Austral islands has produced volcanoes in three geochemically distinct areas for at least 100 m.y. Furthermore, we find the shortest mantle residence time, 0.6 Ga, for a source of mixed recycled DMM and an EM1-like

  10. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics

    Directory of Open Access Journals (Sweden)

    Jean H. Bédard


    Full Text Available The lower plate is the dominant agent in modern convergent margins characterized by active subduction, as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight. This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle. As geological and geochemical data seem inconsistent with the existence of modern-style ridges and arcs in the Archaean, a periodically-destabilized stagnant-lid crust system is proposed instead. Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle, perturbing Earth's heat generation/loss balance, eventually triggering mantle overturns. Archaean basalts were derived from fertile mantle in overturn upwelling zones (OUZOs, which were larger and longer-lived than post-Archaean plumes. Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods, allowing basal crustal cannibalism, garnetiferous crustal restite delamination, and coupled development of continental crust and sub-continental lithospheric mantle. Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB (mid-ocean ridge basalt mantle. Only after the start of true subduction did sequestration of subducted slabs at the core-mantle boundary lead to the development of the depleted MORB mantle source. During Archaean mantle overturns, pre-existing continents located above OUZOs would be strongly reworked; whereas OUZO-distal continents would drift in response to mantle currents. The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion, imbrication, subcretion and anatexis of unsubductable oceanic lithosphere. As Earth cooled and the background oceanic lithosphere became denser and stiffer, there would be an increasing

  11. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    International Nuclear Information System (INIS)

    Grubbs, R.K.; George, S.M.


    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H 2 pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H 2 heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H 2 flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H 2 gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, γ, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes

  12. Adsorption of vitamin K-dependent proteins to live cell membranes measured under flow conditions. (United States)

    McGee, M P; Teuschler, H


    Mechanisms mediating initial adsorption of coagulation proteins to live cells were investigated. Adsorption kinetics were examined under varying flow conditions using tracer-dilution techniques in perfused spherical monolayers of cells expressing tissue factor. At biologically relevant time and concentration ranges, rates exceeded by 2-12 fold the theoretical maximum calculated for steady-state diffusion. Rates were correlated with aqueous-phase flux of reactants and were found to be largely independent of the density of reactive sites on the membrane. Average adsorption rate of factor VIIa at 4 etaM and flow velocity of 0.8 etam s(-1) was 5 x 10(7) s(-1) cm(-2). Adsorption rates of homologous coagulation factors IX and X under similar conditions were 5 and 9 x 10(7) s(-1)cm(-2). Results indicate that flow can effectively increase the rate of coagulation factor adsorption to the membrane of live cells. They also imply that factors affecting blood flow velocity and vessel permeability influence the rate of membrane-dependent coagulation reactions.

  13. Investigation of two-phase flow instability under SMART-P core conditions

    International Nuclear Information System (INIS)

    Hwang, Dae Hyun; Lee, Chung Chan


    An integral-type advanced light water reactor, named SMART-P, is being continuously studied at KAERI. The reactor core consists of hundreds of closed-channel type fuel assemblies with vertical upward flows. The upper and lower parts of the fuel assembly channels are connected to the common heads. The constant pressure drop imposed on the channel is responsible for the occurrence of density wave oscillations under local boiling and/or natural circulation conditions. The fuel assembly channel with oscillatory flow is highly susceptible to experience the CHF which may cause the fuel failure due to a sudden increase of the cladding temperature. Thus, prevention of the flow instability is an important criterion for the SMART-P core design. Experimental and analytical studies have been conducted in order to investigate the onset of flow instability (OFI) under SMART core conditions. The parallel channel oscillations were observed in a high pressure water-loop test facility. A linear stability analysis model in the frequency-domain was developed for the prediction of the marginal stability boundary (MSB) in the parallel boiling channels

  14. The equilibrium alluvial river under variable flow and its channel-forming discharge (United States)

    Blom, Astrid; Arkesteijn, Liselot; Chavarrías, Víctor; Viparelli, Enrica


    When the water discharge, sediment supply, and base level vary around stable values, an alluvial river evolves toward a mean equilibrium or graded state with small fluctuations around this mean state (i.e., a dynamic or statistical equilibrium state). Here we present analytical relations describing the mean equilibrium geometry of an alluvial river under variable flow by linking channel slope, width, and bed surface texture. The solution holds in river normal flow zones (or outside both the hydrograph boundary layer and the backwater zone) and accounts for grain size selective transport and particle abrasion. We consider the variable flow rate as a series of continuously changing yet steady water discharges (here termed an alternating steady discharge). The analysis also provides a solution to the channel-forming water discharge, which is here defined as the steady water discharge that, given the mean sediment supply, provides the same equilibrium channel slope as the natural long-term hydrograph. The channel-forming water discharge for the gravel load is larger than the one associated with the sand load. The analysis illustrates how the load is distributed over the range of water discharge in the river normal flow zone, which we term the "normal flow load distribution". The fact that the distribution of the (imposed) sediment supply spatially adapts to this normal flow load distribution is the origin of the hydrograph boundary layer. The results quantify the findings by Wolman and Miller (1960) regarding the relevance of both magnitude and frequency of the flow rate with respect to channel geometry.

  15. Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields. (United States)

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V


    When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α≥2), the Brownian motion seems not to affect the cloud behavior.

  16. Diffusion of a passive scalar by convective flows under parametric disorder (United States)

    Goldobin, Denis S.; Shklyaeva, Elizaveta V.


    We study transport of a weakly diffusive pollutant (a passive scalar) through thermoconvective flow in a fluid-saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability threshold of the system without disorder. Thermoconvective flows crucially affect the transport of a pollutant along the layer, especially when its molecular diffusion is weak. The effective (or eddy) diffusivity also allows us to observe the transition from a set of localized currents to an almost everywhere intense 'global' flow. We present results of numerical calculation of the effective diffusivity and discuss them in the context of localization of fluid currents and the transition to a 'global' flow. Our numerical findings are in good agreement with the analytical theory that we develop for the limit of a small molecular diffusivity and sparse domains of localized currents. Though the results are obtained for a specific physical system, they are relevant for a broad variety of fluid dynamical systems.

  17. Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. (United States)

    López-Bernal, Álvaro; Alcántara, Esteban; Testi, Luca; Villalobos, Francisco J


    The compensation heat pulse (CHP) method is widely used to estimate sap flow and transpiration in conducting organs of woody plants. Previous studies have reported a natural azimuthal variability in sap flow, which could have practical implications in locating the CHP probes and integrating their output. Sap flow of several olive trees (Olea europaea L. cv. 'Arbequina') previously grown under different irrigation treatments were monitored by the CHP method, and their xylem anatomical characteristics were analyzed from wood samples taken at the same location in which the probes were installed. A significant azimuthal variability in the sap flow was found in a well-irrigated olive tree monitored by eight CHP probes. The azimuthal variability was well related to crown architecture, but poorly to azimuthal differences in the xylem anatomical characteristics. Well-irrigated and deficit-irrigated olive trees showed similar xylem anatomical characteristics, but they differed in xylem growth and in the ratio of nocturnal-to-diurnal sap flow (N/D index). The results of this work indicate that transpiration cannot be accurately estimated by the CHP method in olive trees if a small number of sensors are employed and that the N/D index could be used as a sensitive water status indicator.

  18. Slug to annular flow transition during boiloff in a rod bundle under high-pressure conditions

    International Nuclear Information System (INIS)

    Osakabe, Masahiro; Koizumi, Yasuo; Yonomoto, Taisuke; Kumamaru, Hiroshige; Tasaka, Kanji


    High-pressure boiloff experiments in a wide range of bundle powers by using the Two-Phase Flow Test Facility (TPTF) were conducted. Two kinds of boiloff patterns were observed in these experiments. One is the boiloff pattern in a low bundle power, in which the dryout points of rods locate at a certain elevation in the bundle because the mixture level controls the dryout points. The other is the boiloff pattern in a high bundle power, in which the clear mixture level can not be observed and the dryout points of rods locate in a wide range of vertical directions. The vertical scatter of the dryout points is considered to be due to the break of the thin water film on the heater rods under the annular flow pattern. A simple model to predict the slug to annular flow transition in the rod bundle is proposed. In the model, the slug to annular flow transition takes place when the interferences of the water films on the neighboring rods cease. The model appeares to give good predictions of the previous flow transition experiment conducted in a rod bundle. The slug-annular transition below the dryout points was predicted with the present model in the high power boiloff experiments of TPTF. No slug-annular transition below the dryout points is predicted with the present model in the low power boiloff experiments. (orig.)

  19. Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load

    Directory of Open Access Journals (Sweden)

    Zheng Lu


    Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.

  20. Characterization of the Inlet Port Flow under Steady-State Conditions Using PIV and POD

    Directory of Open Access Journals (Sweden)

    Mohammed El-Adawy


    Full Text Available The current study demonstrates an experimental investigation of the tumble flow structures using Particle Image Velocimetry (PIV under steady-state conditions considering the central vertical tumble plane. The experiments were carried out on a four-valve, pent-roof Gasoline Direct Injection (GDI engine head at different valve lifts and with a pressure difference of 150 mmH2O across the intake valves. Furthermore, the Proper Orthogonal Decomposition (POD analytical technique was applied to PIV-measured velocity vector maps to characterize the flow structures at various valve lifts, and hence the different rig tumble values. The results show that at low valve lifts (1 to 5 mm, 48.9 to 46.6% of the flow energy is concentrated in the large (mode 1 eddies with only 8.4 to 11.46% in mode 2 and 7.2 to 7.5 in mode 3. At high valve lifts, it can be clearly seen that some of the energy in the large eddies of mode 1 is transferred to the smaller flow structures of modes 2 and 3. This can be clearly seen at valve lift 10 mm where the values of the flow energy were 40.6%, 17.3%, and 8.0% for modes 1, 2, and 3, respectively.

  1. Solid-liquid iron partitioning in Earth's deep mantle. (United States)

    Andrault, Denis; Petitgirard, Sylvain; Lo Nigro, Giacomo; Devidal, Jean-Luc; Veronesi, Giulia; Garbarino, Gaston; Mezouar, Mohamed


    Melting processes in the deep mantle have important implications for the origin of the deep-derived plumes believed to feed hotspot volcanoes such as those in Hawaii. They also provide insight into how the mantle has evolved, geochemically and dynamically, since the formation of Earth. Melt production in the shallow mantle is quite well understood, but deeper melting near the core-mantle boundary remains controversial. Modelling the dynamic behaviour of deep, partially molten mantle requires knowledge of the density contrast between solid and melt fractions. Although both positive and negative melt buoyancies can produce major chemical segregation between different geochemical reservoirs, each type of buoyancy yields drastically different geodynamical models. Ascent or descent of liquids in a partially molten deep mantle should contribute to surface volcanism or production of a deep magma ocean, respectively. We investigated phase relations in a partially molten chondritic-type material under deep-mantle conditions. Here we show that the iron partition coefficient between aluminium-bearing (Mg,Fe)SiO(3) perovskite and liquid is between 0.45 and 0.6, so iron is not as incompatible with deep-mantle minerals as has been reported previously. Calculated solid and melt density contrasts suggest that melt generated at the core-mantle boundary should be buoyant, and hence should segregate upwards. In the framework of the magma oceans induced by large meteoritic impacts on early Earth, our results imply that the magma crystallization should push the liquids towards the surface and form a deep solid residue depleted in incompatible elements.

  2. Dynamical geochemistry of the mantle

    Directory of Open Access Journals (Sweden)

    G. F. Davies


    Full Text Available The reconciliation of mantle chemistry with the structure of the mantle inferred from geophysics and dynamical modelling has been a long-standing problem. This paper reviews three main aspects. First, extensions and refinements of dynamical modelling and theory of mantle processing over the past decade. Second, a recent reconsideration of the implications of mantle heterogeneity for melting, melt migration, mantle differentiation and mantle segregation. Third, a recent proposed shift in the primitive chemical baseline of the mantle inferred from observations of non-chondritic 142Nd in the Earth. It seems most issues can now be resolved, except the level of heating required to maintain the mantle's thermal evolution.

    A reconciliation of refractory trace elements and their isotopes with the dynamical mantle, proposed and given preliminary quantification by Hofmann, White and Christensen, has been strengthened by work over the past decade. The apparent age of lead isotopes and the broad refractory-element differences among and between ocean island basalts (OIBs and mid-ocean ridge basalts (MORBs can now be quantitatively accounted for with some assurance.

    The association of the least radiogenic helium with relatively depleted sources and their location in the mantle have been enigmatic. The least radiogenic helium samples have recently been recognised as matching the proposed non-chondritic primitive mantle. It has also been proposed recently that noble gases reside in a so-called hybrid pyroxenite assemblage that is the result of melt from fusible pods reacting with surrounding refractory peridotite and refreezing. Hybrid pyroxenite that is off-axis may not remelt and erupt at MORs, so its volatile constituents would recirculate within the mantle. Hybrid pyroxenite is likely to be denser than average mantle, and thus some would tend to settle in the D" zone at the base of the mantle, along with some old subducted

  3. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter


    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  4. Development of measurement systems for studies of flow - structure interactions in pipe systems under LWR conditions

    International Nuclear Information System (INIS)

    Kuschewski, Mario; Laurien, Eckart


    The Institute for Nuclear Power Studies and Energy Systems (IKE) of the University of Stuttgart is setting up new test rigs for studies of cyclic thermal load phenomena within the 'Studies of Flow-Structure Interactions in Light Water Reactors' joint project. The project is part of a total of three individual projects within an overarching BMBF joint project on reactor safety research, 'Basic Principles of Systems, Discharge and Materials Behavior of Pipes Under Cyclic Thermal Loads.' The article covers the aspect of experimental studies for fluid mechanics modeling of flow-structure interactions. Detailed points under study are thermal mixing processes or laminar flows in a typical tee-shaped pipe branch. The interaction between a fluid and a pipe structure exerts considerable influence on the loads and stresses acting on a component and on the resultant fatigue of a material. In this connection, modeling the mixing process, including effects of buoyancy, thermal conduction and head transfer between the fluid and the wall, is of decisive importance. The experimental data so far accumulated in studies of non-isothermal mixtures cover but a very narrow range of temperatures. The focus of this work is on the development of technical measurement systems for studies of cyclic thermal loads and stresses to be applied to pipe elements specific to LWRs under realistic thermal and flow conditions. On the basis of reliable experimental data, the processes referred to above and their underlying mechanisms can then be examined in the further course of work, and models can be studied for applicability and extended where necessary. (orig.)

  5. Point-vortex stability under the influence of an external periodic flow (United States)

    Ortega, Rafael; Ortega, Víctor; Torres, Pedro J.


    We provide sufficient conditions for the stability of the particle advection around a fixed vortex in a two-dimensional ideal fluid under the action of a periodic background flow. The proof relies on the identification of closed invariant curves around the origin by means of Moser’s invariant curve theorem. Partially supported by Spanish MINECO and ERDF project MTM2014-52232-P.

  6. Solid and liquid 129Xe NMR signals enhanced by spin-exchange optical pumping under flow

    International Nuclear Information System (INIS)

    Zhou Xin; Luo Jun; Sun Xianping; Zeng Xizhi; Liu Maili; Liu Wuyang


    Laser-polarized 129 Xe gas was produced by spin-exchange with Cs atom optically pumped with diode laser array in a low field under flow. The nuclear spin polarizations of the solid and liquid 129 Xe frozen from the laser-polarized 129 Xe gas were 2.16% and 1.45% respectively in the SY-80M NMR spectrometer, which corresponded to the enhancements of 6000 and 5000 compared to those without optical pumping under the same conditions. It could provide the base and possibility for quantum computers using laser-enhanced solid and liquid 129 Xe. Polarization loss of transport and state change was also discussed

  7. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)


    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  8. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter


    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  9. Strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions

    International Nuclear Information System (INIS)

    Szenknect, St.


    This work is devoted to the quantification and the identification of the predominant processes involved in strontium and caesium transport in unsaturated soil from Chernobyl Pilot Site under steady flow conditions. The transport and fate of radionuclides in the subsurface is affected by various physical and chemical processes including advective and diffusive transport as well as chemical and biological transformations. Laboratory experiments and the use of a multiple tracer approach allow to isolate the contributions of each elementary process and to control the physico-chemical conditions in the system. To be more representative of the field conditions, we decided to perform column miscible displacement experiments. We perform batch and flow-through reactor experiments to characterize the radionuclides sorption mechanisms. Miscible displacement experiments within homogeneous columns and modeling allow to characterize the hydrodynamic properties of the soil and to describe the radionuclides behaviour under dynamic conditions at different water contents. We show that the water content of porous media affect the transport behaviour of inert and strongly sorbing radionuclides. Our results demonstrate that a parametrized transport model that was calibrated under completely saturated conditions was not able to describe the advective-dispersive transport of reactive solutes under unsaturated steady state conditions. Under our experimental conditions, there is no effect of a decrease of the mean water content on the sorption model parameters, but the transport parameters are modified. We established for the studied soil the relation between hydrodynamic dispersion and water content and the relation between pore water velocity and water content. (author)

  10. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez


    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  11. Effect of liquid film velocity and thickness on thinning rate of flow accelerated corrosion under water-steam two-phase flow

    International Nuclear Information System (INIS)

    Satake, Masaaki; Yoneda, Kimitoshi; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio


    Pipe wall thinning phenomena are serious problems for the operation and management of nuclear power plants. Flow accelerated corrosion (FAC) is one of the pipe wall thinning phenomena. Its mechanism under water single-phase flow is generally revealed and the prediction equation of thinning rate is constructed with practical accuracy. Under water-steam two-phase flow, it is considered that FAC is occurred in annular flow and its mechanism is almost the same as that under water single-phase flow. However, the detail of its mechanism is not revealed. In this study, FAC experiments under water-steam two-phase flow are performed by changing the liquid film velocity and thickness. The flow pattern is vertical upward annular flow. From these experiments, the thinning rate increases when the liquid film velocity becomes higher. However, the liquid film thickness does not influence the thinning rate so much. The oxide layer of test piece surface is mainly magnetite. The thickness of oxide layer where FAC occurs is less than 1 μm. On the other hand, the thickness of oxide layer where FAC does not occur is about 1.5 μm and there are porous scales on the oxide layer. It is assumed that one of the reasons why FAC does not occur is that concentration of iron in liquid film is saturated. (author)

  12. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows (United States)

    Chen, Hsing-Ting; Wang, Chuan-Yi


    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge

  13. Mantle transition zone beneath the central Tien Shan: Lithospheric delamination and mantle plumes (United States)

    Kosarev, Grigoriy; Oreshin, Sergey; Vinnik, Lev; Makeyeva, Larissa


    We investigate structure of the mantle transition zone (MTZ) under the central Tien Shan in central Asia by using recordings of seismograph stations in Kyrgyzstan, Kazakhstan and adjacent northern China. We apply P-wave receiver functions techniques and evaluate the differential time between the arrivals of seismic phases that are formed by P to SV mode conversion at the 410-km and 660-km seismic boundaries. The differential time is sensitive to the thickness of the MTZ and insensitive to volumetric velocity anomalies above the 410-km boundary. Under part of the southern central Tien Shan with the lowest S wave velocity in the uppermost mantle and the largest thickness of the crust, the thickness of the MTZ increases by 15-20 km relative to the ambient mantle and the reference model IASP91. The increased thickness is a likely effect of low (about - 150 K) temperature. This anomaly is indicative of delamination and sinking of the mantle lithosphere. The low temperature in the MTZ might also be a relic of subduction of the oceanic lithosphere in the Paleozoic, but this scenario requires strong coupling and coherence between structures in the MTZ and in the lithosphere during plate motions in the last 300 Myr. Our data reveal a reduction of thickness of the MTZ of 10-15 km under the Fergana basin, in the neighborhood of the region of small-scale basaltic volcanism at the time near the Cretaceous-Paleogene boundary. The reduced thickness of the MTZ is the effect of a depressed 410-km discontinuity, similar to that found in many hotspots. This depression suggests a positive temperature anomaly of about 100-150 K, consistent with the presence of a thermal mantle plume. A similar depression on the 410-km discontinuity is found underneath the Tarim basin.

  14. Combining geoelectrical and advanced lysimeter methods to characterize heterogeneous flow and transport under unsaturated transient conditions (United States)

    Wehrer, M.; Skowronski, J.; Binley, A. M.; Slater, L. D.


    driven by textural heterogeneities. As a consequence, preferential transport of the conservative tracer also occurred. However, tracer displacement is subject not only to preferential flow but also to dilution, which complicates the interpretation of the imaging results by ERT. The novelty of our approach includes spatially and temporally highly resolved measurements under transient boundary conditions in combination with a multicompartment suction plate. Through systematic variation of boundary conditions we were able to overcome interpretation bias in the ERT data resulting from simultaneous changes of water content and pore fluid conductivity. We consider this an important step towards field applications of ERT for process identification and model parameterization.

  15. The origin of volatiles in the Earth's mantle (United States)

    Hier-Majumder, Saswata; Hirschmann, Marc M.


    The Earth's deep interior contains significant reservoirs of volatiles such as H, C, and N. Due to the incompatible nature of these volatile species, it has been difficult to reconcile their storage in the residual mantle immediately following crystallization of the terrestrial magma ocean (MO). As the magma ocean freezes, it is commonly assumed that very small amounts of melt are retained in the residual mantle, limiting the trapped volatile concentration in the primordial mantle. In this article, we show that inefficient melt drainage out of the freezing front can retain large amounts of volatiles hosted in the trapped melt in the residual mantle while creating a thick early atmosphere. Using a two-phase flow model, we demonstrate that compaction within the moving freezing front is inefficient over time scales characteristic of magma ocean solidification. We employ a scaling relation between the trapped melt fraction, the rate of compaction, and the rate of freezing in our magma ocean evolution model. For cosmochemically plausible fractions of volatiles delivered during the later stages of accretion, our calculations suggest that up to 77% of total H2O and 12% of CO2 could have been trapped in the mantle during magma ocean crystallization. The assumption of a constant trapped melt fraction underestimates the mass of volatiles in the residual mantle by more than an order of magnitude.Plain Language SummaryThe Earth's deep interior contains substantial amounts of volatile elements like C, H, and N. How these elements got sequestered in the Earth's interior has long been a topic of debate. It is generally assumed that most of these elements escaped the interior of the Earth during the first few hundred thousand years to create a primitive atmosphere, leaving the mantle reservoir nearly empty. In this work, we show that the key to this paradox involves the very early stages of crystallization of the mantle from a global magma ocean. Using numerical models, we show

  16. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.


    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  17. Mantle structure and tectonic history of SE Asia (United States)

    Hall, Robert; Spakman, Wim


    Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs

  18. Assessing leukocyte-endothelial interactions under flow conditions in an ex vivo autoperfused microflow chamber assay. (United States)

    Mulki, Lama; Sweigard, J Harry; Connor, Kip M


    Leukocyte-endothelial interactions are early and critical events in acute and chronic inflammation and can, when dysregulated, mediate tissue injury leading to permanent pathological damage. Existing conventional assays allow the analysis of leukocyte adhesion molecules only after the extraction of leukocytes from the blood. This requires the blood to undergo several steps before peripheral blood leukocytes (PBLs) can be ready for analysis, which in turn can stimulate PBLs influencing the research findings. The autoperfused micro flow chamber assay, however, allows scientists to study early leukocytes functional dysregulation using the systemic flow of a live mouse while having the freedom of manipulating a coated chamber. Through a disease model, the functional expression of leukocyte adhesion molecules can be assessed and quantified in a micro-glass chamber coated with immobilized endothelial adhesion molecules ex vivo. In this model, the blood flows between the right common carotid artery and left external jugular vein of a live mouse under anesthesia, allowing the interaction of native PBLs in the chamber. Real-time experimental analysis is achieved with the assistance of an intravital microscope as well as a Harvard Apparatus pressure device. The application of a flow regulator at the input point of the glass chamber allows comparable physiological flow conditions amongst the experiments. Leukocyte rolling velocity is the main outcome and is measured using the National Institutes of Health open-access software ImageJ. In summary, the autoperfused micro flow chamber assay provides an optimal physiological environment to study leukocytes endothelial interaction and allows researchers to draw accurate conclusions when studying inflammation.

  19. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    The performance of a pressure transducer, with its inlet attached to differing hydromechanical front ends, has been evaluated in flow flume and wave flume experiments in which laminar and turbulent flows, and regular progressive gravity waves...

  20. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.


    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  1. Mantle plumes and hotspot geochemistry (United States)

    Jackson, M. G.; Becker, T. W.; Konter, J.


    Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot

  2. Correlation between vortices and wall shear stress in a curved artery model under pulsatile flow conditions (United States)

    Cox, Christopher; Plesniak, Michael W.


    One of the most physiologically relevant factors within the cardiovascular system is the wall shear stress. The wall shear stress affects endothelial cells via mechanotransduction and atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. In this work, our goal is to assess the correlation between multiple vortex pairs and wall shear stress. To accomplish this, we use an in-house high-order flux reconstruction Navier-Stokes solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180° curved artery model. We use a physiologically relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter motivated by the fact that flow upstream to a curved artery may not be fully developed. Under these two inflow conditions, we characterize the evolution of various vortex pairs and their subsequent effect on several wall shear stress metrics. Supported by GW Center for Biomimetics and Bioinspired Engineering.

  3. A Noninvasive Approach to Determine Viscoelastic Properties of an Individual Adherent Cell under Fluid Flow (United States)

    Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Dong, Cheng; Guo, X. Edward


    Mechanical properties of cells play an important role in their interaction with the extracellular matrix as well as the mechanotransduction process. Several in vitro techniques have been developed to determine the mechanical properties of cells, but none of them can measure the viscoelastic properties of an individual adherent cell in fluid flow non-invasively. In this study, techniques of fluid-structure interaction (FSI) finite element method and quasi-3-dimensional (quasi-3D) cell microscopy were innovatively applied to the frequently used flow chamber experiment, where an adherent cell was subjected to fluid flow. A new non-invasive approach, with cells at close to physiological conditions, was established to determine the viscoelastic properties of individual cells. The results showed an instantaneous modulus of osteocytes of 0.49±0.11 kPa, an equilibrium modulus of 0.31±0.044 kPa, and an apparent viscosity coefficient of 4.07±1.23 kPa·s. This new quantitative approach not only provides an excellent means to measure cell mechanical properties, but also may help to elucidate the mechanotransduction mechanisms for a variety of cells under fluid flow stimulation. PMID:24581798

  4. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. (United States)

    Song, Hongjun; Wang, Yi; Pant, Kapil


    This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.

  5. Analysis of environmental dispersion in a wetland flow under the effect of wind: Extended solution (United States)

    Wang, Huilin; Huai, Wenxin


    The accurate analysis of the contaminant transport process in wetland flows is essential for environmental assessment. However, dispersivity assessment becomes complicated when the wind strength and direction are taken into consideration. Prior studies illustrating the wind effect on environmental dispersion in wetland flows simply focused on the mean longitudinal concentration distribution. Moreover, the results obtained by these analyses are not accurate when done on a smaller scale, namely, the initial stage of the contaminant transport process. By combining the concentration moments method (the Aris' method) and Gill's expansion theory, the previous researches on environmental dispersion in wetland flows with effect of wind have been extended. By adopting up to 4th-order moments, the wind effect-as illustrated by dimensionless parameters Er (wind force) and ω (wind direction)-on kurtosis and skewness is discussed, the up to 4th-order vertical concentration distribution is obtained, and the two-dimensional concentration distribution is illustrated. This work demonstrates that wind intensity and direction can significantly affect the contaminant dispersion. Moreover, the study presents a more accurate analytical solution of environmental dispersion in wetland flows under various wind conditions.

  6. Rapid release of active tissue factor from human arterial smooth muscle cells under flow conditions. (United States)

    Stampfuss, Jan-Julius; Censarek, Petra; Fischer, Jens W; Schrör, Karsten; Weber, Artur-Aron


    Circulating tissue factor (TF) is an important determinant of coronary thrombosis. Among other cell types, such as monocytes, vascular smooth muscle cells (SMCs) are capable of releasing TF. When studied under static conditions, SMCs do release TF, but this process is slow and, thus, cannot explain the elevated levels of circulating TF, as observed in patients with acute coronary syndromes. The present study demonstrates that cultured human mammary artery SMCs very rapidly (minutes) release active, microparticle-bound TF when exposed to flow conditions. There was a clear log-linear correlation between the shear rate (range 10 s(-1) to 1500 s(-1)) and the procoagulant activity of SMC perfusates. Flow-dependent release of TF was transient (10 minutes) and did not measurably reduce cell surface TF content. Interestingly, a time-dependent (t(1/2) 30 minutes) re-exposure of releasable TF was detected after a no-flow period. These data demonstrate that SMCs may become a pathophysiologically relevant source of TF that can be rapidly released into the circulation in situations in which endothelial damage occurs and SMCs come into a close contact with the flowing blood.

  7. Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions. (United States)

    de la Rosa, G; Gardea-Torresdey, J L; Peralta-Videa, J R; Herrera, I; Contreras, C


    Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.

  8. Theoretical model of laminar flow in a channel or tube under ocean conditions

    International Nuclear Information System (INIS)

    Yan, B.H.; Yu, L.; Yang, Y.H.


    Research highlights: → The theoretical model of laminar flow in channels under ocean conditions is established. → The frictional resistance coefficient and Nusselt number are also obtained. → The theoretical results are in agreement with experimental data. → The oscillation of parameters is induced by the tangential force. -- Abstract: The theoretical model of laminar flow in a channel or tube under ocean conditions is established. The velocity and temperature correlations are derived, and the frictional resistance coefficient and Nusselt number are also obtained. The theoretical results are in agreement with experimental data. The oscillation of parameters is induced by the tangential force due to ocean conditions. The effect of centrifugal and Coriolis forces on the flow is negligible. The effects of several parameters on the frictional resistance coefficient and Nusselt number are investigated. The oscillating amplitude of Nusselt number increases with the increasing of Prandtl number. Both the oscillating amplitudes of frictional resistance coefficient and Nusselt number increase with the increasing of rolling frequency.

  9. Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion

    International Nuclear Information System (INIS)

    Li, Shaodan; Tan, Sichao; Xu, Chao; Gao, Puzhen


    Highlights: • Bubble behavior under rolling motion is studied. • Bubble parameters oscillates appears even no flow fluctuations. • Effects of the rolling motion on bubbles are analyzed. - Abstract: Boiling heat transfer equipment in a vessel can be affected by the additional force which is generated by the rolling, swing and heaving motion of the vessel. Bubble behavior is very important for the research of boiling phenomenon. Bubble behavior under rolling motion condition is experimentally studied by using a high speed camera. The experiment is conducted in a subcooled flow boiling rectangular channel, and the cross section size of the channel is 2 mm × 40 mm. Two types of bubbles with large discrepancies in sliding and condensation behaviors can be observed in the captured images. The first type bubbles disappear quickly after generation and the slide distance is only a few times of bubble maximum diameter, while the second type bubbles can survive a longer time after leaving the nucleation site and slide for a long distance with the flowing fluid. Bubble characteristics under rolling motion are separately studied for different type bubbles based on the above reasons. The results show that the lifetime, maximum diameter, nucleation frequency and sliding velocity of the first type bubble are periodically fluctuated and the period is same with the rolling motion. The fluctuation intensity of the bubble lifetime and maximum diameter can be enhanced by the increase of the rolling amplitude. The peak value of bubble lifetime, maximum diameter, and nucleation frequency appears when the rolling platform plate rolls to the maximum positive angle, while opposite trend can be observed in the variation of bubble sliding velocity. In view of the characteristics of the second type bubbles, lifetime and maximum diameter are not measured. And the variation of nucleation frequency and sliding velocity of the second type bubbles under the effect of rolling motion is same

  10. Investigation of organic matter migrating from polymeric pipes into drinking water under different flow manners. (United States)

    Zhang, Ling; Liu, Shuming; Liu, Wenjun


    Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC

  11. Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes

    DEFF Research Database (Denmark)

    Goyenola, Guillermo; Meerhoff, Marianna; Teixeira-de Mello, Franco


    Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns and the pe...... relevant in currently flashy systems and also in systems where climate change predictions suggest an increase in stream flashiness.......Climate and hydrology are relevant control factors determining the timing and amount of nutrient losses from land to downstream aquatic systems, in particular of phosphorus (P) from agricultural lands. The main objective of the study was to evaluate the differences in P export patterns...... and the performance of alternative monitoring strategies in streams under contrasting climate-driven flow regimes. We compared a set of paired streams draining lowland micro-catchments under temperate climate and stable discharge conditions (Denmark) and under sub-tropical climate and flashy conditions (Uruguay). We...


    Directory of Open Access Journals (Sweden)



    Full Text Available In a world governed by the freedom of movement, production factors – capital, labour and consumption – can “run” from on territory to another bringing along positive and negative effects, just as well. Labour, the second in line of “run away” production factors, has a great impact upon a state economy generating sustainable growth or increasing budgetary revenues This paper presents for a period of 7 years, for both European (UE-28 and international (OECD level, the migration flow under the labour taxation impact (it is well known that more than 75% of the migration flow is work force related. The authors found that even if both areas are attracting labour force the reasons for doing that are completely different – while for the OECD member states and non-EU member states there will always be the “occident fascination” in the Europeans are “voting with their feet”.

  13. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations

    DEFF Research Database (Denmark)

    Feenstra, T.; Schmidt Thøgersen, Mariane; Wieser, E.


    FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different Fim......H mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial...... bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket...

  14. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions. (United States)

    Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V


    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  15. Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow

    DEFF Research Database (Denmark)

    Szlavik, Julie; Soares Paiva, Dionísio; Mørk, Nils


    Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine...... strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk....... In addition, the effect of prior environmental stress (5% NaCl, low nutrient availability) on initial adhesion was investigated. The hydrophobicity of the investigated surfaces was determined by contact angle measurements and the surface properties of the investigated L. monocytogenes strains were determined...

  16. Multidimensional Mantle Convection Models in Eastern Anatolia, the North Arabian Platform, and Caucasus Region (United States)

    Sengul Uluocak, E.; Shahnas, H.; Pysklywec, R.; Gogus, O.; Eken, T.


    Eastern Anatolia, the North Arabian Platform, and Caucasus regions show many features of collisional tectonics with different convergence rates and shortening from south to north. The volcanism, sediment provenience, and thermochronological data suggest that the shortening and exhumation in the Greater Caucasus started during the Eocene-Oligocene synchronously with the collision between Arabia-Bitlis-Pötürge Massif in the south. Previous works indicate that the uplift (up to 2 km) in Eastern Anatolia related to upwelling mantle following the deformation of the Arabian oceanic lithosphere ( 11 Ma) during the ongoing Greater Caucasus closure is the dominant tectonic processes in the center of the region. However, there is no integrated geodynamic model that explains the deformation mechanisms of the region -and their possible interactions with each other -under the dynamic forces. In this study, we use multidimensional mantle-lithosphere convection/deformation models to quantify the geodynamic processes as constrained by the geological/geophysical observations in the region. For the models, seismic studies provide the high-resolution images of the upwelling mantle beneath Eastern Anatolia and the presence -and the locations- of the seismically fast structures associated with the relic/subducted slabs at varying depths such as the Bitlis slab in the south, and the Pontide and Kura slabs in the north. Fast polarization directions observed from splitting analyses exhibit an overall NE-SW oriented mantle anisotropy and a comparison between Pn and SKS derived fast wave azimuths indicates a crust-mantle coupling most likely implying vertically coherent deformation to the north of the study area. For the geodynamic models, we modify the mantle and lithosphere rheology as well as the thermal state. We interpret the estimated uplift and subsidence anomalies related to lithospheric variations (ranging from 54 km to 211 km) and subducting slab behavior with observed

  17. Seismic Imaging of Mantle Plumes (United States)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  18. Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams. (United States)

    Martínez, Aingeru; Pérez, Javier; Molinero, Jon; Sagarduy, Mikel; Pozo, Jesús


    Although temporary streams represent a high proportion of the total number and length of running waters, historically the study of intermittent streams has received less attention than that of perennial ones. The goal of the present study was to assess the effects of flow cessation on litter decomposition in calcareous streams under oceanic climate conditions. For this, leaf litter of alder was incubated in four streams (S1, S2, S3 and S4) with different flow regimes (S3 and S4 with zero-flow periods) from northern Spain. To distinguish the relative importance and contribution of decomposers and detritivores, fine- and coarse-mesh litter bags were used. We determined processing rates, leaf-C, -N and -P concentrations, invertebrate colonization in coarse bags and benthic invertebrates. Decomposition rates in fine bags were similar among streams. In coarse bags, only one of the intermittent streams, S4, showed a lower rate than that in the other ones as a consequence of lower invertebrate colonization. The material incubated in fine bags presented higher leaf-N and -P concentrations than those in the coarse ones, except in S4, pointing out that the decomposition in this stream was driven mainly by microorganisms. Benthic macroinvertebrate and shredder density and biomass were lower in intermittent streams than those in perennial ones. However, the bags in S3 presented a greater amount of total macroinvertebrates and shredders comparing with the benthos. The most suitable explanation is that the fauna find a food substrate in bags less affected by calcite precipitation, which is common in the streambed at this site. Decomposition rate in coarse bags was positively related to associated shredder biomass. Thus, droughts in streams under oceanic climate conditions affect mainly the macroinvertebrate detritivore activity, although macroinvertebrates may show distinct behavior imposed by the physicochemical properties of water, mainly travertine precipitation, which can

  19. Shallow mantle melt stagnation under Gakkel Ridge (United States)

    von der Handt, A.; Snow, J. E.; Hellebrand, E.; Dick, H. J. B.; Michael, P.


    Few studies have been devoted to abyssal plagioclase peridotites, despite their relatively high abundance (30% of AP). Their origin is still unresolved, probably because intense alteration sets limits to spatially controlled geochemical analysis and obliterates textural relationships. Impregnation by a melt is the most widely accepted theory whereas other studies propose an origin by retrogression from spinel to plagioclase facies conditions. During the AMORE cruise along Gakkel Ridge in summer 2001, a dredge haul recovered spinel and plagioclase lherzolites in the axial valley of the amagmatic area. Their exceptional freshness has allowed to analyse all mineral phases. Plagioclase-bearing and -free samples are coarse-grained cpx-rich lherzolites. The plagioclase lherzolites show a wide range of modal plagioclase-contents and often showes textures related to impregnation. Noticeable are the common symplectite textures in the plagioclase peridotites, mostly opx-plag around cpx grains but also one ol-plag around cpx, suggesting a breakdown origin. The spinel lherzolites are characterised by low spinel-Cr# (˜16) and homogeneous flat cpx REE-patterns (~6 x CI). The plagioclase peridotites display strong compositional heterogeneities with pronounced core-rim variations in major and trace elements. Trace element variations in cpx show consistent correlations with textures as contact with plagioclase or symplectite formation. The An-contents of plagioclase range from 76 to 94, spinel Cr# from 10 to 48. Plagioclase trace element data reveal low concentrations for the LREE and no positive Sr-anomaly. Therefore it suggests an impregnation origin for most of the plagioclase by an already fractionated and depleted melt. Yet a minor breakdown component can be observed which was probably triggered by the impregnation. The inferred composition of this melt cannot be correlated with the nearest basalts in this region nor with a melt produced by melting of the spinel lherzolites.

  20. Numerical Simulations of Fluid Flow in a Single Fracture under Loading and Unloading Conditions (United States)

    Kling, T.; Huo, D.; Schwarz, J. O.; Enzmann, F.; Blum, P.; Benson, S. M.


    Hydraulic aperture is one of the most important parameters to describe fluid flow in fractured rocks. Hydraulic apertures are typically determined indirectly by fluid flow experiments or hydraulic field tests based on the cubic law. Alternatively, there are different equations approximating an empirical relation between mechanical and hydraulic aperture. However, these methods most widely neglect mechanisms such as stress changes, where increasing stresses decrease the mechanical aperture and, therefore, also the effective hydraulic aperture. Hence, the objective of the present study is to simulate fluid flow in a single fracture under loading/unloading conditions and validate the results with core flooding experiments. Core flooding data and X-ray CT scans (voxel size 0.5 x 0.5 x 1 mm) of a sandstone sample with a single fracture (measured mean aperture of around 0.1 mm) were obtained by laboratory experiments. The fluid flow simulations are performed by solving the incompressible Navier-Stokes equation by using a finite volume method. Input data are given by experimental flow rates, pressures, applied stress levels and CT images of the fracture. In addition, an error analysis is performed to establish confidence in results. Results of the validation exhibit significant effects of stress on aperture distribution such as channeling and stress-dependent fracture permeability. A significant stress sensitivity of hydraulic aperture compared to the mechanical aperture was found, which can be explained by roughness changes resulting from loading. Observations indicate that with increasing stress, changes in mechanical aperture are small, while changes in hydraulic aperture can be very large. Since previous equations for hydraulic aperture do not consider changes in normal stress, a modification of these equations is proposed, including the stress-dependency of mechanical apertures to provide a better approximation to the observed hydraulic apertures.

  1. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schreck, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sorensen, N. N. [Technical Univ. of Denmark, Lyngby (Denmark); Bergami, L. [Technical Univ. of Denmark, Lyngby (Denmark)


    It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be

  2. Ocular blood flow alterations during inferior turbinate radiofrequency reduction under local anesthesia. (United States)

    Doğan, Sedat; Şimşek, Ali; Bayraktar, Cem; Yazıcı, Haşmet; Sarıkaya, Yasin; Karataş, Mehmet; Karadağ, Ayşe Sevgi; Çapkın, Musa


    Ocular blood flow alterations and blindness are uncommon and less-known adverse effects of nasal local anesthetic infiltrations. Our aim was to investigate ocular blood flow alterations during radiofrequency (RF) tissue reduction of inferior turbinates with the patient under local anesthesia by using a noninvasive method with optical coherence tomography. A total of 120 patients with inferior turbinate hypertrophy were prospectively randomized into two groups. In group 1, a total of 61 patients underwent RF tissue reduction while under local anesthesia with epinephrine. In group 2, a total of 59 patients underwent RF tissue reduction of inferior turbinates while under local anesthesia without epinephrine. Optical coherence tomography measurements were performed before surgery and at 5, 15, 30, 45, and 60 minutes after local anesthetic infiltration. Choroid thickness measurements decreased gradually after local anesthetic infiltration until 30 minutes and increased to the same plane with the baseline at 60 minutes in group 1 (p local anesthetic infiltration at 15 and 45 minutes (p local anesthetic with epinephrine infiltration into inferior turbinates. Otolaryngologists should be careful after local anesthetic infiltration, and monitor the vision. Further studies with larger series would be needed to discuss safety of local anesthetics.

  3. Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions. (United States)

    Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan


    2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (HMX. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Structural Changes of International Trade Flows under the Impact of Globalization

    Directory of Open Access Journals (Sweden)

    Anca Dachin


    Full Text Available Structural changes of international trade flows indicate modifications in competitiveness of countries, in terms of production, technological upgrading and exports under the pressure of globalization. The paper aims to point out sources of competitive advantages especially in manufacturing exports of different groups of countries. The focus is on the shifts in the structure of manufacturing in the European Union and their effects on international rankings in export performances. An important issue refers to the opportunities given by the enlargement of the European Union and their impact on EU trade structures.

  5. Probing the cytoadherence of malaria infected red blood cells under flow.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xu

    Full Text Available Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P. species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF, and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM. With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.

  6. Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows (United States)

    Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.


    We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.

  7. Modeling and Optimization of Collaborative Passenger Control in Urban Rail Stations under Mass Passenger Flow

    Directory of Open Access Journals (Sweden)

    Lili Wang


    Full Text Available With the rapid development of urban rail transit, the phenomenon of outburst passenger flows flocking to stations is occurring much more frequently. Passenger flow control is one of the main methods used to ensure passengers’ safety. While most previous studies have only focused on control measures inside the target station, ignoring the collaboration between stops, this paper puts emphasis on joint passenger control methods during the occurrence of large passenger flows. To provide a theoretic description for the problem under consideration, an integer programming model is built, based on the analysis of passenger delay and the processes by which passengers alight and board. Taking average passenger delay as the objective, the proposed model aims to disperse the pressure of oversaturated stations into others, achieving the optimal state for the entire line. The model is verified using a case study and the results show that restricted access measures taken collaboratively by stations produce less delay and faster evacuation. Finally, a sensitivity analysis is conducted, from which we find that the departure interval and maximum conveying capacity of the train affect passenger delay markedly in the process of passenger control and infer that control measures should be taken at stations near to the one experiencing an emergency.

  8. Experimental and Numerical Investigations of Silver Nanoparticle Transport under Variable Flow and Ionic Strength in Soil. (United States)

    Makselon, Joanna; Zhou, Dan; Engelhardt, Irina; Jacques, Diederik; Klumpp, Erwin


    Unsaturated column experiments were conducted with an undisturbed loamy sand soil to investigate the influence of flow interruption (FI) and ionic strength (IS) on the transport and retention of surfactant-stabilized silver nanoparticles (AgNP) and the results were compared to those obtained under continuous flow conditions. AgNP concentrations for breakthrough curves (BTCs) and retention profiles (RPs) were analyzed by ICP-MS. Experimental results were simulated by the numerical code HP1 (Hydrus-PhreeqC) with the DLVO theory, extended colloid filtration theory and colloid release model. BTCs of AgNP showed a dramatic drop after FI compared to continuous flow conditions. Evaporation increased due to FI, resulting in increased electrical conductivity of the soil solution, which led to a totally reduced mobility of AgNP. A reduction of IS after FI enhanced AgNP mobility slightly. Here the strongly increased Al and Fe concentration in the effluent suggested that soil colloids facilitated the release of AgNP (cotransport). The numerical model reproduced the measured AgNP BTCs and indicated that attachment to the air-water interface (AWI) occurring during FI was the key process for AgNP retention.

  9. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications. (United States)

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash


    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  10. The importance of grain size to mantle dynamics and seismological observations (United States)

    Gassmoeller, R.; Dannberg, J.; Eilon, Z.; Faul, U.; Moulik, P.; Myhill, R.


    Grain size plays a key role in controlling the mechanical properties of the Earth's mantle, affecting both long-timescale flow patterns and anelasticity on the timescales of seismic wave propagation. However, dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity, and a limited treatment of changes in mineral assemblage. We study grain size evolution, its interplay with stress and strain rate in the convecting mantle, and its influence on seismic velocities and attenuation. Our geodynamic models include the simultaneous and competing effects of dynamic recrystallization resulting from dislocation creep, grain growth in multiphase assemblages, and recrystallization at phase transitions. They show that grain size evolution drastically affects the dynamics of mantle convection and the rheology of the mantle, leading to lateral viscosity variations of six orders of magnitude due to grain size alone, and controlling the shape of upwellings and downwellings. Using laboratory-derived scaling relationships, we convert model output to seismologically-observable parameters (velocity, attenuation) facilitating comparison to Earth structure. Reproducing the fundamental features of the Earth's attenuation profile requires reduced activation volume and relaxed shear moduli in the lower mantle compared to the upper mantle, in agreement with geodynamic constraints. Faster lower mantle grain growth yields best fit to seismic observations, consistent with our re-examination of high pressure grain growth parameters. We also show that ignoring grain size in interpretations of seismic anomalies may underestimate the Earth's true temperature variations.

  11. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle (United States)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.


    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  12. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail:, E-mail: [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental


    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  13. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Delos, A.; Schaefer, T.; Geckeis, H.; Guimera, J.; Carrera, J.; Fanghaenel, T.


    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  14. Influence of precipitating light elements on stable stratification below the core/mantle boundary (United States)

    O'Rourke, J. G.; Stevenson, D. J.


    Stable stratification below the core/mantle boundary is often invoked to explain anomalously low seismic velocities in this region. Diffusion of light elements like oxygen or, more slowly, silicon could create a stabilizing chemical gradient in the outermost core. Heat flow less than that conducted along the adiabatic gradient may also produce thermal stratification. However, reconciling either origin with the apparent longevity (>3.45 billion years) of Earth's magnetic field remains difficult. Sub-isentropic heat flow would not drive a dynamo by thermal convection before the nucleation of the inner core, which likely occurred less than one billion years ago and did not instantly change the heat flow. Moreover, an oxygen-enriched layer below the core/mantle boundary—the source of thermal buoyancy—could establish double-diffusive convection where motion in the bulk fluid is suppressed below a slowly advancing interface. Here we present new models that explain both stable stratification and a long-lived dynamo by considering ongoing precipitation of magnesium oxide and/or silicon dioxide from the core. Lithophile elements may partition into iron alloys under extreme pressure and temperature during Earth's formation, especially after giant impacts. Modest core/mantle heat flow then drives compositional convection—regardless of thermal conductivity—since their solubility is strongly temperature-dependent. Our models begin with bulk abundances for the mantle and core determined by the redox conditions during accretion. We then track equilibration between the core and a primordial basal magma ocean followed by downward diffusion of light elements. Precipitation begins at a depth that is most sensitive to temperature and oxygen abundance and then creates feedbacks with the radial thermal and chemical profiles. Successful models feature a stable layer with low seismic velocity (which mandates multi-component evolution since a single light element typically

  15. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions. (United States)

    Usman, Muhammad; Tascone, Oriane; Rybnikova, Victoria; Faure, Pierre; Hanna, Khalil


    This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg -1 ) and γ-HCH (lindane, 25 mg kg -1 ) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H 2 O 2 alone, H 2 O 2 /Fe II , Na 2 S 2 O 8 alone, Na 2 S 2 O 8 /Fe II , and KMnO 4 . Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H 2 O 2 improved the oxidation efficiency while in Na 2 S 2 O 8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by Fe II -activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO 4  > Na 2 S 2 O 8 /Fe II  > Na 2 S 2 O 8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO 4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

  16. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows (United States)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan


    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  17. Dilute suspensions in annular shear flow under gravity: simulation and experiment

    Directory of Open Access Journals (Sweden)

    Schröer Kevin


    Full Text Available A dilute suspension in annular shear flow under gravity was simulated using multi-particle collision dynamics (MPC and compared to experimental data. The focus of the analysis is the local particle velocity and density distribution under the influence of the rotational and gravitational forces. The results are further supported by a deterministic approximation of a single-particle trajectory and OpenFOAM CFD estimations of the overcritical frequency range. Good qualitative agreement is observed for single-particle trajectories between the statistical mean of MPC simulations and the deterministic approximation. Wall contact and detachment however occur earlier in the MPC simulation, which can be explained by the inherent thermal noise of the method. The multi-particle system is investigated at the point of highest particle accumulation that is found at 2/3 of the particle revolution, starting from the top of the annular gap. The combination of shear flow and a slowly rotating volumetric force leads to strong local accumulation in this section that increases the particle volume fraction from overall 0.7% to 4.7% at the outer boundary. MPC simulations and experimental observations agree well in terms of particle distribution and a close to linear velocity profile in radial direction.

  18. Glycocalyx Degradation Induces a Proinflammatory Phenotype and Increased Leukocyte Adhesion in Cultured Endothelial Cells under Flow.

    Directory of Open Access Journals (Sweden)

    Karli K McDonald

    Full Text Available Leukocyte adhesion to the endothelium is an early step in the pathogenesis of atherosclerosis. Effective adhesion requires the binding of leukocytes to their cognate receptors on the surface of endothelial cells. The glycocalyx covers the surface of endothelial cells and is important in the mechanotransduction of shear stress. This study aimed to identify the molecular mechanisms underlying the role of the glycocalyx in leukocyte adhesion under flow. We performed experiments using 3-D cell culture models, exposing human abdominal aortic endothelial cells to steady laminar shear stress (10 dynes/cm2 for 24 hours. We found that with the enzymatic degradation of the glycocalyx, endothelial cells developed a proinflammatory phenotype when exposed to uniform steady shear stress leading to an increase in leukocyte adhesion. Our results show an up-regulation of ICAM-1 with degradation compared to non-degraded controls (3-fold increase, p<0.05 and we attribute this effect to a de-regulation in NF-κB activity in response to flow. These results suggest that the glycocalyx is not solely a physical barrier to adhesion but rather plays an important role in governing the phenotype of endothelial cells, a key determinant in leukocyte adhesion. We provide evidence for how the destabilization of this structure may be an early and defining feature in the initiation of atherosclerosis.

  19. Transient critical heat flux under flow coast-down in vertical annulus with non-uniform heat flux distribution

    International Nuclear Information System (INIS)

    Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.


    An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)

  20. Miniaturized, High Flow, Low Dead Volume Pre-Concentrator for Trace Contaminants in Water under Microgravity Conditions, Phase I (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high flow, low dead-volume pre-concentrator for monitoring trace levels of contaminants in water under...

  1. Transition region of the earth's upper mantle (United States)

    Anderson, D. L.; Bass, J. D.


    The chemistry of the earth's mantle is discussed using data from cosmochemistry, geochemistry, petrology, seismology, and mineral physics. The chondritic earth, the upper mantle and the 400-km discontinuity, the transition region, lower mantle mineralogy, and surface wave tomography are examined. Three main issues are addressed: (1) whether the mantle is homogeneous in composition or chemically stratified, (2) whether the major element chemistry of the mantle is more similar to upper mantle peridotites or to chondrites, and (3) the nature of the composition of the source region of basalts erupted at midocean ridges.

  2. Spin Transition in the Lower Mantle: Deep Learning and Pattern Recognition of Superplumes from the Mid-mantle and Mid-mantle Slab Stagnation (United States)

    Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.


    The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different

  3. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    DEFF Research Database (Denmark)

    Scott, James M.; Hodgkinson, A.; Palin, J.M.


    Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand record evidence for the complex evolution of the underlying mantle lithosphere. Spinel Cr# records melt extraction with some values indicative of near complete r...

  4. MANTLE: A finite element program for the thermal-mechanical analysis of mantle convection. A user's manual with examples (United States)

    Thompson, E.


    A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.

  5. Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia (United States)

    Ryu, In-Chang; Lee, Changyeol


    A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the

  6. Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)


    We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.

  7. Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves (United States)

    Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.


    A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed ( 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.

  8. Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow (United States)

    Cherrey, Kelly D.; Flury, Markus; Harsh, James B.


    At the U.S. Department of Energy's Hanford Reservation, colloid-facilitated transport is a potential mechanism for accelerated movement of radionuclides like Cs-137. Here we investigate the transport of colloids through Hanford sediments under steady state, unsaturated flow conditions. We isolated colloids from Hanford sediments by dispersion and sedimentation and determined colloid breakthrough curves in packed sediment columns. A column system was developed with which we could control volumetric water contents with accuracy better than 0.01 effective saturation and the water potentials to better than 0.06 cm-H2O. Inflow and outflow boundary conditions had to be meticulously controlled to ensure uniformity of water contents and water potentials inside the column. Colloid breakthrough curves were determined under a series of water contents ranging from 0.2 to 1.0 effective saturation. Colloids were mobile under all water saturations, but the total amount of colloids transported decreased with decreasing water saturation. Colloid behavior was described with the mobile-immobile model concept, including first-order deposition from the mobile phase only.

  9. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow. (United States)

    Ji, Shichen; Jiang, Run; Winkler, Roland G; Gompper, Gerhard


    In order to study the dynamics of colloidal suspensions with viscoelastic solvents, a simple mesoscopic model of the solvent is required. We propose to extend the multiparticle collision dynamics (MPC) technique--a particle-based simulation method, which has been successfully applied to study the hydrodynamic behavior of many complex fluids with Newtonian solvent--to shear-thinning viscoelastic solvents. Here, the normal MPC particles are replaced by dumbbells with finite-extensible nonlinear elastic (FENE) springs. We have studied the properties of FENE-dumbbell fluids under simple shear flow with shear rate ̇γ. The stress tensor is calculated, and the viscosity η and the first normal-stress coefficient Ψ(1) are obtained. Shear-thinning behavior is found for reduced shear rates Γ= ̇γτ>1, where τ is a characteristic dumbbell relaxation time. Here, both η and Ψ(1) display power-law behavior in the shear-thinning regime. Thus, the FENE-dumbbell fluid with MPC collisions provides a good description of viscoelastic fluids. As a first application, we study the flow behavior of a colloid in a shear-thinning viscoelastic fluid in two dimensions. A slowing down of the colloid rotation in a viscoelastic fluid compared to a Newtonian fluid is obtained, in agreement with recent numerical calculations and experimental results. © 2011 American Institute of Physics

  10. Salt removal using multiple microbial desalination cells under continuous flow conditions

    KAUST Repository

    Qu, Youpeng


    Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..

  11. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. (United States)

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong


    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  12. A single dumbbell falling under gravity in a cellular flow field

    CERN Document Server

    Piva, M F


    We study the motion of a single polymer chain settling under gravity in an ensemble of periodic, cellular flow fields, which are steady in time. The molecule is an elastic dumbbell composed of two beads connected by a nonbendable Hookean spring. Each bead is subject to a Stokes drag and a Brownian force from the flow. In the absence of particle inertia, the molecule settles out at a rate which depends on three parameters: the particle velocity in a fluid at rest, V sub g , the spring constant, B, and the diffusion coefficient, D. We investigate the dependence of the molecule settling velocity on B, for fixed V sub g and D. It is found that this velocity strongly depends on B and it has a minimum value less than V sub g. We also find that the molecule is temporarily trapped at fixed points for certain values of the parameters. We analyse one fixed point in detail and conclude that its stability is the main factor which contributes to slowing down the settling process.

  13. Morphological evaluation of heterogeneous oolitic limestone under pressure and fluid flow using X-ray microtomography (United States)

    Zhang, Yihuai; Lebedev, Maxim; Al-Yaseri, Ahmed; Yu, Hongyan; Nwidee, Lezorgia N.; Sarmadivaleh, Mohammad; Barifcani, Ahmed; Iglauer, Stefan


    Pore-scale analysis of carbonate rock is of great relevance to the oil and gas industry owing to their vast application potentials. Although, efficient fluid flow at pore scale is often disrupted owing to the tight rock matrix and complex heterogeneity of limestone microstructures, factors such as porosity, permeability and effective stress greatly impact the rock microstructures; as such an understanding of the effect of these variables is vital for various natural and engineered processes. In this study, the Savonnières limestone as a carbonate mineral was evaluated at micro scales using X-ray micro-computed tomography at high resolutions (3.43 μm and 1.25 μm voxel size) under different effective stress (0 MPa, 20 MPa) to ascertain limestone microstructure and gas permeability and porosity effect. The waterflooding (5 wt% NaCl) test was conducted using microCT in-situ scanning and nanoindentation test was also performed to evaluate microscale geomechanical heterogeneity of the rock. The nanoindentation test results showed that the nano/micro scale geomechanical properties are quite heterogeneous where the indentation modulus for the weak consolidated area was as low as 1 GPa. We observed that the fluid flow easily broke some less-consolidated areas (low indentation modulus) area, coupled with increase in porosity; and consistent with fines/particles migration and re-sedimentation were identified, although the effective stress showed only a minor effect on the rock microstructure.

  14. Modeling the release of Escherichia coli from soil into overland flow under raindrop impact (United States)

    Wang, C.; Parlange, J.-Y.; Rasmussen, E. W.; Wang, X.; Chen, M.; Dahlke, H. E.; Walter, M. T.


    Pathogen transport through the environment is complicated, involving a variety of physical, chemical, and biological processes. This study considered the transfer of microorganisms from soil into overland flow under rain-splash conditions. Although microorganisms are colloidal particles, they are commonly quantified as colony-forming units (CFUs) per volume rather than as a mass or number of particles per volume, which poses a modeling challenge. However, for very small particles that essentially remain suspended after being ejected into ponded water and for which diffusion can be neglected, the Gao model, originally derived for solute transfer from soil, describes particle transfer into suspension and is identical to the Hairsine-Rose particle erosion model for this special application. Small-scale rainfall experiments were conducted in which an Escherichia coli (E. coli) suspension was mixed with a simple soil (9:1 sand-to-clay mass ratio). The model fit the experimental E. coli data. Although re-conceptualizing the Gao solute model as a particle suspension model was convenient for accommodating the unfortunate units of CFU ml-1, the Hairsine-Rose model is insensitive to assumptions about E. coli per CFU as long as the assumed initial mass concentration of E. coli is very small compared to that of the soil particle classes. Although they undoubtedly actively interact with their environment, this study shows that transport of microorganisms from soil into overland storm flows can be reasonably modeled using the same principles that have been applied to small mineral particles in previous studies.

  15. Interaction between Edge-Driven Convection and Mantle Plumes (United States)

    Manjón-Cabeza Córdoba, A.; Ballmer, M.


    Intraplate volcanism can occur in a variety of geodynamic settings. Its characteristics can inform about the underlying mantle dynamics. A non-negligible number of intraplate oceanic volcanoes are located close to continental shelves (e.g. Bermuda, Canary Islands, Cape Verde…). In these regions, any putative plumes would interact with Edge-Driven Convection (EDC), a mode of Small-Scale Convection that is triggered along steps of lithospheric thickness. We have systematically explored 2-D geodynamic models of EDC, varying e.g. the viscosity of the mantle, geometry of the edge, potential temperature, etc. In addition, we study the influence of a mantle plume with variable excess temperature and buoyancy flux at a given distance to the edge. The mantle-convection code is coupled with a new melting parameterization that considers the depletion effect on productivity. We apply this parameterization not only to predict the extent of melting for a given lithology, but also the major-element composition of extracted melts for comparison with geochemical data. Results show that the first EDC upwellings are always localized in the oceanic domain at a distance from the continental margin that depends on mantle viscosity. The initial geometry of the edge does not have a significant influence on the "steady-state" shape of EDC. Depending on the distance of the plume from the edge and plume vigor, the plume is either deflected or enhanced by EDC. The mix of materials that melts in the mantle, as well as the amount of melting, is controlled by the interaction of the plume with EDC (e.g., with melting restricted to fertile heterogeneities in the end-member EDC case). Because several model parameters affect this interaction and related melting, a joint analysis of major-element and trace-element composition of hotspot lavas is required to constrain mantle processes.

  16. Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    Full Text Available Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BAECs to visualize the real-time activation of Rac in living cell under fluorescence microscope. The imaging of the fluorescence intensity was analyzed by Matlab and the normalized data was converted into 3D spatiotemporal map. Then the changes of data upon chemical interference were fitted with logistic curve to explore the rule and mechanism of Rac polarity under laminar or disturbed flow. A polarized Rac activation was observed at the downstream edge along the laminar flow, which was enhanced by benzol alcohol-enhanced membrane fluidity but inhibited by nocodazole-disrupted microtubules or cholesterol-inhibited membrane fluidity, while no obvious polarized Rac activation could be found upon disturbed flow application. It is concluded that disturbed flow inhibits the flow-induced Rac polarized activation, which is related to the interaction of cell membrane and cytoskeleton, especially the microtubules.

  17. Mechanical vibrations of tubes bundles under transversal flow; Vibration des faisceaux de tubes sous ecoulement trasversal

    Energy Technology Data Exchange (ETDEWEB)

    Hadj-Sadok, C. [ENSTA - Laboratoire de Mecanique Groupe Structure et Proprietes des Materiaux, 91 Palaiseau (France)


    Flow-induced vibrations have been a major cause of tube failure in heat exchangers. Among the various fluid excitation mechanisms, fluid-elastic coupling can cause dynamic instability and induce rapid deterioration of tubes. We present in this paper a methodology to determine fluid-elastic forces in tube bundles vibrating freely under-induced excitation. Computations of the response of loosely supported tube to fluid-elastic forces and turbulence are performed. The fluid-elastic forces were modelled as reduced velocity dependent fluid-stiffness and fluid-damping coefficients. A corrective methodology is proposed to account for the frequency dependence associated with fluid-stiffness and fluid-damping coefficients. (author). 40 refs.

  18. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.


    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  19. Suppression of peak noise by reshaping coaxial flow circumferentially under static conditions (United States)

    Takeda, K.; Nishiwaki, H.

    The combination of a circular fan/elliptic core nozzle was tested and compared with the results of a conventional circular core/circular fan nozzle under static flow conditions. The results show that there occurred a change of the directiveness of jet noise around the nozzle when using the circular/elliptic nozzle combination. In a 30 to approximately 50 degree direction from the jet axis, a 3 to approximately 5 dB reduction was observed. Radial velocity distribution was measured by using LDV and axial sound source distribution by the polar correlation method in an anechoic room. Based on these measurements the relation between sound pressure generation and velocity distribution around the exhaust nozzle was discussed. A circular/elliptic nozzle combination for turbo-fan engine exhaust nozzle combination for turbo-fan engine exhaust nozzle was recommended.

  20. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand (United States)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark


    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  1. Upper mantle fluids evolution, diamond formation, and mantle metasomatism (United States)

    Huang, F.; Sverjensky, D. A.


    During mantle metasomatism, fluid-rock interactions in the mantle modify wall-rock compositions. Previous studies usually either investigated mineral compositions in xenoliths and xenocrysts brought up by magmas, or examined fluid compositions preserved in fluid inclusions in diamonds. However, a key study of Panda diamonds analysed both mineral and fluid inclusions in the diamonds [1] which we used to develop a quantitative characterization of mantle metasomatic processes. In the present study, we used an extended Deep Earth Water model [2] to simulate fluid-rock interactions at upper mantle conditions, and examine the fluids and mineral assemblages together simultaneously. Three types of end-member fluids in the Panda diamond fluid inclusions include saline, rich in Na+K+Cl; silicic, rich in Si+Al; and carbonatitic, rich in Ca+Mg+Fe [1, 3]. We used the carbonatitic end-member to represent fluid from a subducting slab reacting with an excess of peridotite + some saline fluid in the host environment. During simultaneous fluid mixing and reaction with the host rock, the logfO2 increased by about 1.6 units, and the pH increased by 0.7 units. The final minerals were olivine, garnet and diamond. The Mg# of olivine decreased from 0.92 to 0.85. Garnet precipitated at an early stage, and its Mg# also decreased with reaction progress, in agreement with the solid inclusions in the Panda diamonds. Phlogopite precipitated as an intermediate mineral and then disappeared. The aqueous Ca, Mg, Fe, Si and Al concentrations all increased, while Na, K, and Cl concentrations decreased during the reaction, consistent with trends in the fluid inclusion compositions. Our study demonstrates that fluids coming from subducting slabs could trigger mantle metasomatism, influence the compositions of sub-lithospherc cratonic mantle, precipitate diamonds, and change the oxygen fugacity and pH of the upper mantle fluids. [1] Tomlinson et al. EPSL (2006); [2] Sverjensky, DA et al., GCA (2014

  2. The upper-mantle transition zone beneath the Chile-Argentina flat subduction zone (United States)

    Bagdo, Paula; Bonatto, Luciana; Badi, Gabriela; Piromallo, Claudia


    The main objective of the present work is the study of the upper mantle structure of the western margin of South America (between 26°S and 36°S) within an area known as the Chile-Argentina flat subduction zone. For this purpose, we use teleseismic records from temporary broad band seismic stations that resulted from different seismic experiments carried out in South America. This area is characterized by on-going orogenic processes and complex subduction history that have profoundly affected the underlying mantle structure. The detection and characterization of the upper mantle seismic discontinuities are useful to understand subduction processes and the dynamics of mantle convection; this is due to the fact that they mark changes in mantle composition or phase changes in mantle minerals that respond differently to the disturbances caused by mantle convection. The discontinuities at a depth of 410 km and 660 km, generally associated to phase changes in olivine, vary in width and depth as a result of compositional and temperature anomalies. As a consequence, these discontinuities are an essential tool to study the thermal and compositional structure of the mantle. Here, we analyze the upper-mantle transition zone discontinuities at a depth of 410 km and 660 km as seen from Pds seismic phases beneath the Argentina-Chile flat subduction.

  3. Internal Nozzle Flow Simulations of Gasoline-Like Fuels under Diesel Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Torelli, R.; Som, S.; Pei, Y.; Zhang, Yu; Traver, Michael


    Spray formation in internal combustion engines with direct injection is strictly correlated with internal nozzle flow characteristics, which are in turn influenced by fuel physical properties and injector needle motion. This paper pre-sents a series of 3D simulations that model the in-nozzle flow in a 5-hole mini-sac diesel injector. Two gasoline-like naphtha fuels, namely full-range and light naphtha, were tested under operating conditions typical of diesel applica-tions and were compared with n-dodecane, selected from a palette used as diesel surrogates. Validated methodolo-gies from our previous work were employed to account for realistic needle motion. The multi-phase nature of the problem was described by the mixture model assumption with the Volume of Fluid method. Cavitation effects were included by means of the Homogeneous Relaxation Model and turbulence closure was achieved with the Standard k-ε model in an Unsteady Reynolds-Averaged Navier-Stokes formulation. The results revealed that injector perfor-mance and propensity to cavitation are influenced by the fuel properties. Analyses of several physical quantities were carried out to highlight the fuel-to-fuel differences in terms of mass flow rate, discharge coefficients, and fuel vapor volume fraction inside the orifices. A series of parametric investigations was also performed to assess the fuel response to varied fuel injection temperature, injection pressure, and cross-sectional orifice area. For all cases, the strict correlation between cavitation magnitude and saturation pressure was confirmed. Owing to their higher volatil-ity, the two gasoline-like fuels were characterized by higher cavitation across all the simulated conditions. Occur-rence of cavitation was mostly found at the needle seat and at the orifice inlets during the injection event’s transient, when very small gaps exist between the needle and its seat. This behavior tended to disappear at maximum needle lift, where cavitation was

  4. Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth (United States)

    Walzer, Uwe; Hendel, Roland


    We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic

  5. Combined convective heat and airborne pollutant removals in a slot vented enclosure under different flow schemes: Parametric investigations and non unique flow solutions

    International Nuclear Information System (INIS)

    Ren, Xiu-Hong; Hu, Jiang-Tao; Liu, Di; Zhao, Fu-Yun; Li, Xiao-Hong; Wang, Han-Qing


    Highlights: • Combined convective heat and airborne transports under different flow schemes. • Natural and forced convection dominated regimes were identified with transition. • Dual solution branches were sustained for the transitional mixing flow scheme. • Rest solutions evolving from motionless flows coincided with other solution branch. • Heat and species lines were presented to delineate heat and mass transport structures. - Abstract: This paper reports a numerical study of mixed convection on a heated and polluted strip within a slot ventilated enclosure in which the displacement and mixing flow schemes are considered. Contours of streamfunction, heatfunction, and massfunction are presented to clearly scrutinize the mechanism of heat and airborne pollutant transports. For the displacement flow scheme, thermal Nusselt and pollutant Sherwood numbers under different Reynolds numbers remain almost constant as the value of Gr/Re 2 decreases down to the regime of forced convection dominated. However, as Ar increases up to the regime of natural convection dominated, both Nu and Sh increase sharply with Ar (Gr/Re 2 ). Similar trends could be observed for the situation of mixing ventilated flow scheme. In the mixing scheme, non unique steady flow solutions could be observed for the range of transitional flow regime. Upward solutions, downward solutions and rest solutions have been exemplified with varying Gr/Re 2 . Dual solution branches could be sustained at the range of 39.0 ≤ Gr/Re 2  ≤ 6.0 × 10 3 , while the rest solutions obtained from rest states were completely coinciding with former continuous solutions. The present work could be significant for the natural optimization and passive control of heat and pollutant removals from the electronic boxes or building enclosures.


    African Journals Online (AJOL)

    ... the southwest Indian ridge appears to be tapping the same portion of mantle as did the Central Indian ridge. These results have important thermo-chemical implications, such as variations in the extent of melting and mineralogicalcomposition of the mantle beneath diflerent ridges, which may influence mantle dynamics.

  7. Helium Isotope Variations in Basalts Along Gakkel Ridge and Heterogeneity of the Arctic Upper Mantle (United States)

    Graham, D. W.; Lupton, J. E.; Goldstein, S. L.; Langmuir, C. H.; Michael, P. J.


    We report helium isotope compositions, determined by crushing in vacuum to release the gas trapped in vesicles, for 57 basalt glasses from the ultra-slow spreading Gakkel Ridge. Other geochemical data, especially radiogenic isotopes (Pb, Nd, Sr) reveal the presence of an isotopic boundary in the mid-section of this ridge that separates basalts in the west (west of 14°E longitude) having “Indian Ocean” (Dupal) isotopic signatures, from basalts in the east which resemble the North Atlantic/Pacific domain (Goldstein et al. 2008). This boundary reflects heterogeneity in the underlying mantle related to the tectonic history of continental land masses surrounding the Arctic Ocean. In the west there is a narrow range of 3He/4He with lower values (7.0-7.9 RA), while in the east there is a wider range of 3He/4He with higher values (7.9-9.3 RA) and effectively no overlap with the western group. Off-axis lavas do not fit this simple picture however, revealing some systematic temporal variability, perhaps associated with mantle flow beneath the ridge. All Gakkel Ridge basalts are deeply erupted and most have high helium contents, in some cases at the upper end of the MORB range (>50 μccSTP/g). The few exceptions, having He contents below 0.1 μccSTP/g, have the highest 3He/4He (>8.8 RA). This effect appears to reflect earlier (recent) melting of isotopically heterogeneous mantle, during which the initial melt fractions were slightly enriched in 4He, perhaps due to a larger modal contribution of clinopyroxene and/or garnet to those melts. The temporal variability and the melting effects, while significant, do not account for the large 3He/4He signal observed along the ridge axis. Overall, 3He/4He shows systematic covariation with other isotopic indicators of mantle heterogeneity (Pb, Nd, Sr and Hf), indicating that the helium isotope variations are a long-lived feature of the Arctic upper mantle. The 3He/4He ratio is as effective a discriminant of eastern and western

  8. Experimental investigation on local parameter measurement using optical probes in two-phase flow under rolling condition

    International Nuclear Information System (INIS)

    Tian Daogui; Sun Licheng; Yan Changqi; Liu Guoqiang


    In order to get more local interfacial information as well as to further comprehend the intrinsic mechanism of two-phase flow under rolling condition, a method was proposed to measure the local parameters by using optical probes under rolling condition in this paper. An experimental investigation of two-phase flow under rolling condition was conducted using the probe fabricated by the authors. It is verified that the probe method is feasible to measure the local parameters in two'-phase flow under rolling condition. The results show that the interfacial parameters distribution near wall region has a distinct periodicity due to the rolling motion. The averaged deviation of the void fraction measured by the probe from that obtained from measured pressure drop is about 8%. (authors)

  9. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  10. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie; Copping, Andrea E.


    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of the inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.

  11. Mapping the mantle transition zone beneath Hawaii from Ps receiver functions: Evidence for a hot plume and cold mantle downwellings (United States)

    Agius, Matthew R.; Rychert, Catherine A.; Harmon, Nicholas; Laske, Gabi


    Hawaii is the archetypal example of hotspot volcanism. Classic plume theory suggests a vertical plume ascent from the core-mantle boundary to the surface. However, recently it has been suggested that the plume path may be more complex. Determining the exact trajectory of the Hawaiian plume seismic anomaly in the mantle has proven challenging. We determine P-to-S (Ps) receiver functions to illuminate the 410- and 660-km depth mantle discontinuities beneath the Hawaiian Islands using waveforms recorded on land and ocean-bottom seismometers, applying new corrections for tilt and coherence to the ocean bottom data. Our 3-D depth-migrated maps provide enhanced lateral resolution of the mantle transition zone discontinuities. The 410 discontinuity is characterised by a deepened area beneath central Hawaii, surrounded by an elevated shoulder. At the 660 discontinuity, shallow topography is located to the north and far south of the islands, and a deep topographic anomaly is located far west and east. The transition zone thickness varies laterally by ±13 km depth: thin beneath north-central Hawaii and thick farther away in a horseshoe-like feature. We infer that at 660-km depth a broad or possibly a double region of upwelling converges into a single plume beneath central Hawaii at 410-km depth. As the plume rises farther, uppermost mantle melting and flow results in the downwelling of cold material, down to at least 410 km surrounding the plume stem. This result in the context of others supports complex plume dynamics including a possible non-vertical plume path and adjacent mantle downwellings.

  12. Critical heat-flux experiments under low-flow conditions in a vertical annulus

    International Nuclear Information System (INIS)

    Mishima, K.; Ishii, M.


    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF

  13. Stability of Spatially Distributed, Intersecting Aircraft Flows Under Sequential Conflict Resolution Schemes (United States)

    National Aeronautics and Space Administration — This paper discusses the effect of sequential conflict resolution maneuvers of an infinite aircraft flow through a finite control volume. Aircraft flow models are...

  14. Quantifying Km-scale Hydrological Exchange Flows under Dynamic Flows and Their Influences on River Corridor Biogeochemistry (United States)

    Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.


    Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on

  15. Mantle cell leukemia as a cause of leukostasis

    Directory of Open Access Journals (Sweden)

    Rappaport E


    Full Text Available Daniel Smith1, Christian Cable2, Cary Chisholm1, Walter Linz1, William Koss1, Sheila Dobin1, Edward Rappaport11Department of Pathology, 2Internal Medicine, Scott and White Healthcare/Texas A & M Health Science Center College of Medicine, Temple, TX, USAAbstract: A 72-year-old man was admitted with hypoxemic respiratory distress. Given a white blood cell count of 600 × 109/L and symptoms of leukostasis, emergency leukapheresis was initiated. The white blood cell count immediately after the first leukapheresis was paradoxically increased to over 700 × 109/L. Peripheral blood smear findings showed morphologically immature mononuclear cells and numerous circulating mitotic figures. Initial flow cytometry results showed a lambda light chain-restricted B lymphoid population positive for CD20, CD19, CD5, and FMC-7, and negative for TdT, CD10, CD23, CD34, CD117, and myeloid markers, suggesting classification as a blastoid variant of mantle cell lymphoma in a leukemic phase. Subsequent testing using DNA fluorescence in situ hybridization was positive for t(11;14, confirming the diagnosis of mantle cell leukemia. Although mantle cell lymphoma occasionally transforms or can even present as leukemia (leukocytes >40 × 109/L, it is rare for it to present with such profound leukocytosis and an overwhelming number of pleomorphic/blastoid forms. Although morphology suggested acute lymphoblastic leukemia, a more specific diagnosis of blastoid variant mantle cell lymphoma was obtained in 12 hours by applying complementary techniques of flow cytometry and rapid cytogenetics.Keywords: mantle cell lymphoma, chemotherapy, leukapheresis, lymphocytic leukemia

  16. Superweak asthenosphere in light of upper mantle seismic anisotropy (United States)

    Becker, Thorsten W.


    Earth's upper mantle includes a ˜200 km thick asthenosphere underneath the plates where viscosity and seismic velocities are reduced compared to the background. This zone of weakness matters for plate dynamics and may be required for the generation of plate tectonics itself. However, recent seismological and electromagnetic studies indicate strong heterogeneity in thinner layers underneath the plates which, if related to more extreme, global viscosity reductions, may require a revision of our understanding of mantle convection. Here, I use dynamically consistent mantle flow modeling and the constraints provided by azimuthal seismic anisotropy as well as plate motions to explore the effect of a range of global and local viscosity reductions. The fit between mantle flow model predictions and observations of seismic anisotropy is highly sensitive to radial and lateral viscosity variations. I show that moderate suboceanic viscosity reductions, to ˜0.01-0.1 times the upper mantle viscosity, are preferred by the fit to anisotropy and global plate motions, depending on layer thickness. Lower viscosities degrade the fit to azimuthal anisotropy. Localized patches of viscosity reduction, or layers of subducted asthenosphere, however, have only limited additional effects on anisotropy or plate velocities. This indicates that it is unlikely that regional observations of subplate anomalies are both continuous and indicative of dramatic viscosity reduction. Locally, such weak patches may exist and would be detectable by regional anisotropy analysis, for example. However, large-scale plate dynamics are most likely governed by broad continent-ocean asthenospheric viscosity contrasts rather than a thin, possibly high melt fraction layer.

  17. On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia (United States)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.


    Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.

  18. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions. (United States)

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis


    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  19. Thermoresponsive Microcarriers for Smart Release of Hydrate Inhibitors under Shear Flow. (United States)

    Lee, Sang Seok; Park, Juwoon; Seo, Yutaek; Kim, Shin-Hyun


    The hydrate formation in subsea pipelines can cause oil and gas well blowout. To avoid disasters, various chemical inhibitors have been developed to prevent or delay the hydrate formation and growth. Nevertheless, direct injection of the inhibitors results in environmental contamination and cross-suppression of inhibition performance in the presence of other inhibitors against corrosion and/or formation of scale, paraffin, and asphaltene. Here, we suggest a new class of microcarriers that encapsulate hydrate inhibitors at high concentration and release them on demand without active external triggering. The key to the success in microcarrier design lies in the temperature dependence of polymer brittleness. The microcarriers are microfluidically created to have an inhibitor-laden water core and polymer shell by employing water-in-oil-in-water (W/O/W) double-emulsion drops as a template. As the polymeric shell becomes more brittle at a lower temperature, there is an optimum range of shell thickness that renders the shell unstable at temperature responsible for hydrate formation under a constant shear flow. We precisely control the shell thickness relative to the radius by microfluidics and figure out the optimum range. The microcarriers with the optimum shell thickness are selectively ruptured by shear flow only at hydrate formation temperature and release the hydrate inhibitors. We prove that the released inhibitors effectively retard the hydrate formation without reduction of their performance. The microcarriers that do not experience the hydration formation temperature retain the inhibitors, which can be easily separated from ruptured ones for recycling by exploiting the density difference. Therefore, the use of microcarriers potentially minimizes the environmental damages.

  20. Water surface elevation from the upcoming SWOT mission under different flows conditions (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando


    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  1. Validation of the TRACR3D code for soil water flow under saturated/unsaturated conditions in three experiments

    International Nuclear Information System (INIS)

    Perkins, B.; Travis, B.; DePoorter, G.


    Validation of the TRACR3D code in a one-dimensional form was obtained for flow of soil water in three experiments. In the first experiment, a pulse of water entered a crushed-tuff soil and initially moved under conditions of saturated flow, quickly followed by unsaturated flow. In the second experiment, steady-state unsaturated flow took place. In the final experiment, two slugs of water entered crushed tuff under field conditions. In all three experiments, experimentally measured data for volumetric water content agreed, within experimental errors, with the volumetric water content predicted by the code simulations. The experiments and simulations indicated the need for accurate knowledge of boundary and initial conditions, amount and duration of moisture input, and relevant material properties as input into the computer code. During the validation experiments, limitations on monitoring of water movement in waste burial sites were also noted. 5 references, 34 figures, 9 tables

  2. Flow and Turbulence at Rubble-Mound Breakwater Armor Layers under Solitary Wave

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu


    This paper presents the results of an experimental investigation of the flow and turbulence at the armor layer of rubble-mound breakwaters during wave action. The study focused on the details of the flow and turbulence in the armor layer and on the effect of the porous core on flow and stability....

  3. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.


    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  4. Power Flow Calculation for Traction Networks under Regenerative Braking Condition Based on Locomotive-Traction Network Coupling


    Han Xudong; Gao Shibin; Hu Haitao; Wang Bin


    The regenerative braking technology is widely applied in high-speed electric multiple units (EMUs). And the voltage rise problem at end of the traction network would be caused by regenerative braking attracts more and more attention. The arm of this paper is to analyze the power flow calculation for EMUs under regenerative braking condition. Power flow calculation was done for two different EMU operation conditions by using a “locomotive-traction network” coupling model. In this model, a cons...

  5. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen


    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  6. Investigation of heat transfer in liquid-metal flows under fusion-reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poddubnyi, I. I., E-mail: [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, V. G.; Sviridov, E. V. [Russian Academy of Science, Joint Institute of High Temperatures (Russian Federation); Leshukov, A. Yu. [Joint Stock Company Dollezhal Research and Development Institute of Power Engineering (JSC NIKIET) (Russian Federation); Aleskovskiy, K. V. [National Research University Moscow Power Engineering Institute (MPEI) (Russian Federation); Obukhov, D. M. [Joint Stock Company Efremov Institute of Electrophysical Apparatus (Russian Federation)


    The effect discovered in studying a downward liquid-metal flow in vertical pipe and in a channel of rectangular cross section in, respectively, a transverse and a coplanar magnetic field is analyzed. In test blanket modules (TBM), which are prototypes of a blanket for a demonstration fusion reactor (DEMO) and which are intended for experimental investigations at the International Thermonuclear Experimental Reactor (ITER), liquid metals are assumed to fulfil simultaneously the functions of (i) a tritium breeder, (ii) a coolant, and (iii) neutron moderator and multiplier. This approach to testing experimentally design solutions is motivated by plans to employ, in the majority of the currently developed DEMO blanket projects, liquid metals pumped through pipes and/or rectangular channels in a transvers magnetic field. At the present time, experiments that would directly simulate liquid-metal flows under conditions of ITER TBM and/or DEMO blanket operation (irradiation with thermonuclear neutrons, a cyclic temperature regime, and a magnetic-field strength of about 4 to 10 T) are not implementable for want of equipment that could reproduce simultaneously the aforementioned effects exerted by thermonuclear plasmas. This is the reason why use is made of an iterative approach to experimentally estimating the performance of design solutions for liquid-metal channels via simulating one or simultaneously two of the aforementioned factors. Therefore, the investigations reported in the present article are of considerable topical interest. The respective experiments were performed on the basis of the mercury magneto hydrodynamic (MHD) loop that is included in the structure of the MPEI—JIHT MHD experimental facility. Temperature fields were measured under conditions of two- and one-sided heating, and data on averaged-temperature fields, distributions of the wall temperature, and statistical fluctuation features were obtained. A substantial effect of counter thermo gravitational

  7. Investigation of severe slugging under flow conditions of a parabolic trough power plant with direct steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Alexander [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety


    The DISS test facility at the Plataforma Solar de Almeria, Spain, produces high pressure steam directly within the parabolic trough collectors. Two collectors are connected with a U-shaped connection pipe which can suffer under the flow phenomenon of severe slugging at low mass flow operation. The objective is to investigate numerically the flow situations with ATHLET and state the relevance of severe slugging in the installed U-shaped pipes. The simulation results reveal that normal operation conditions are uncritical and no severe slugging can be expected.

  8. Reconciling laboratory and observational models of mantle rheology in geodynamic modelling (United States)

    King, Scott D.


    -stress regions of the lower mantle, may be in the dislocation creep (power-law) regime. Due to our limited knowledge of mantle grain size, the best hope to resolve the question of whether a region is in diffusion creep (Newtonian rheology) or dislocation or grain-boundary creep (power-law rheology), may be the presence of absence of seismic anisotropy, because there is no mechanism to rotate crystals in diffusion creep which would be necessary to develop anisotropy from lattice preferred orientation. While non-intuitive, the presence or absence of a weak region in the upper mantle has a profound effect on lower mantle flow. With an asthenosphere, the lower mantle organizes into a long-wavelength plan form with one or two (degree 1 or degree 2) large downwellings and updrafts, which may contain a cluster of plumes. The boundary between the long-wavelength lower mantle flow and upper region flow may be deeper, likely 800-1200 km, than the usually assumed base of the transition zone. There are competing hypotheses as to whether this change in flow pattern is caused by a change in rheology, composition, or phase.

  9. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik


    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  10. A 3D DLM/FD method for simulating the motion of spheres and ellipsoids under creeping flow conditions (United States)

    Pan, Tsorng-Whay; Guo, Aixia; Chiu, Shang-Huan; Glowinski, Roland


    We present in this article a novel distributed Lagrange multiplier/fictitious domain (DLM/FD) method for simulating fluid-particle interaction in three-dimensional (3D) Stokes flow. The methodology is validated by comparing the numerical results for a neutrally buoyant particle, of either spherical or prolate shape, with the associated Jeffrey's solutions for a simple shear flow. The results concerning two balls, interacting under creeping flow conditions in a bounded shear flow, are consistent with those available in the literature. We will discuss also the interactions of two balls in a bounded shear flow, when these balls are very close initially. For a prolate ellipsoid rotating in a shear flow under the sole effect of the particle inertia, shear plane tumbling is stable, while log-rolling is unstable. For two prolate ellipsoids interacting in a bounded shear flow, the results are similar to those for two balls if the major axes are initially orthogonal to the shear plane (a result not at all surprising considering that the intersections of the ellipsoids with the shear pane are circular).

  11. Computational Analysis of Intra-Ventricular Flow Pattern Under Partial and Full Support of BJUT-II VAD. (United States)

    Zhang, Qi; Gao, Bin; Chang, Yu


    BACKGROUND Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. MATERIAL AND METHODS In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions - "heart failure", "partial support", and "full support" - were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. RESULTS The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. CONCLUSIONS In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.

  12. Using pattern recognition to infer parameters governing mantle convection (United States)

    Atkins, Suzanne; Valentine, Andrew P.; Tackley, Paul J.; Trampert, Jeannot


    The results of mantle convection simulations are fully determined by the input parameters and boundary conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many input parameters are very poorly constrained, introducing large uncertainties into the simulation of mantle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to recover past configurations over more than very short periods of time, which makes finding both initial and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for making inferences about simulation input parameters from observations of the mantle temperature field after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct probability density functions for convection simulation input parameters, which are represented using neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this approach much more computationally tractable than other probabilistic inversion methods. As a proof of concept, we show that our method can invert the amplitude spectra of temperature fields from 2D convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably well after several billion years of convection.

  13. Initiation of the Andean orogeny by lower mantle subduction (United States)

    Faccenna, C.; Oncken, O.; Holt, A.; Becker, T. W.


    The Cordillera of the Andes is a double-vergent orogenic belt built up by thickening of South American plate crust. Several models provide plausible explanations for the evolution of the Andes, but the reason why shortening started at 50 Ma is still unclear. We explore the evolution of the subduction zone through time by restoring the position of the Nazca trench in an absolute reference frame, comparing its position with seismic tomography models and balancing the evolution of the subducting slab. Reconstructions show that the slab enters into the lower mantle at 50+10 Ma, and then progressed, moving horizontally at shallow lower mantle depth while thickening and folding in the transition zone. We test this evolutionary scenario by numerical models, which illustrate that compression in the upper plate emerges once the slab is anchored in the lower mantle. We conclude that onset of significant shortening and crustal thickening in the Andes and its sustained action over tens of million years is related to the penetration of the slab into the lower mantle, producing a slowdown of lateral slab migration, and dragging the upper plate against the subduction zone by large-scale return flow.

  14. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight (United States)

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao


    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m−2 s−1. Compared with leaves exposed to a constant light of 1200 μmol photons m−2 s−1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m−2 s−1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m−2 s−1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m−2 s−1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow. PMID:26322062

  15. Anisotropy of the upper mantle beneath the equatorial part of the Mid-Atlantic Ridge (United States)

    Kendall, J. M.; Rychert, C.; Harmon, N.; Tharimena, S.; Agius, M. R.


    It has been long-known that the mantle beneath ocean spreading centres is anisotropic, holding the signature of the formation of new oceanic lithosphere and its coupling with the underlying convecting asthenosphere. Numerical studies have suggested that there should be significant differences between the anisotropy at slow versus fast spreading centres, but there is little observational evidence to calibrate these simulations, especially at slow spreading centres. Near the ridge axis, the anisotropic effects of melt versus the lattice preferred orientation of minerals is not well understood. Finally, the mantle flow near ridge-transform interactions is also poorly understood. Here we present observations of SKS splitting in a region of the Mid-Atlantic Ridge near the equator and offset by the Romanche and Chain Fracture Zones. An array of 37 ocean-bottom seismometers were deployed for a year in depths of up to nearly 6000m, with the aim of studying the nature of the lithosphere-asthenosphere boundary as it forms (the PiLAB - Passive Imaging of the lithosphere-asthenosphere boundary - experiment). Stations were deployed on crust that varies from newly formed to 80 My old. We analyse 40 teleseismic events of magnitude greater than 5.8 and with epicentral distances between 88 and 130 degrees. The ocean-bottom is a noisy environment and a range of filters are used to isolate the SKS, SKKS, and related signals. Furthermore, stacking splitting error envelopes is used to improve confidence in the splitting parameters. Many of the splitting measurements show an orientation parallel to the direction of plate spreading, as expected, but variability in the orientation of the anisotropy increases towards the ridge axis. The magnitude of the anisotropy is also quite variable and suggests larger delay times near the ridge axis. Off-axis anisotropy is interpreted in terms of deformation of peridotite due to mantle flow. Near the ridge axis, the effect of ridge-parallel melt

  16. Experimental study on flow-induced vibration of propeller blades under non-uniform inflow

    Directory of Open Access Journals (Sweden)

    LI Jing


    Full Text Available [Objectives] This article presents an experimental study of the flow-induced vibration of propeller blades under periodic inflow, and the dependence of the response on its modes.[Methods] Two seven-bladed highly skewed model propellers of identical proportions but different material are operated in four-cycle and six-cycle inflows to produce a blade vibratory strain response. Two kinds of wire mesh wake screens located 400 mm upstream of the propeller plane are used to generate the four-cycle and six-cycle inflows. A laser Doppler velocimetry system located 100 mm downstream of the wake screen plane is used to measure the axial velocity distributions produced by the wake screens. Strain gauges are attached to the propeller blades at different positions. The data from the strain gauges quantifies the excitation frequencies induced by the wake screens. It is shown that the response will reach peak axial propeller frequency, four times axial propeller frequency and six times axial propeller frequency under uniform inflow, four-cycle inflow and six-cycle inflow respectively.[Results] The effect of resonance on the vibratory strain response is revealed. When six times axial propeller frequency induced by six-cycle inflow coincides with the natural frequency of a flexible propeller, the response of the propeller is at its greatest.[Conclusions] This research reveals that when designing a propeller, it is not sufficient to only focus on its hydrodynamic properties; the effects of the modes of the propeller should also be considered.

  17. GyPSuM: A Detailed Tomographic Model of Mantle Density and Seismic Wave Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, N A; Forte, A M; Boschi, L; Grand, S P


    GyPSuM is a tomographic model fo mantle seismic shear wave (S) speeds, compressional wave (P) speeds and detailed density anomalies that drive mantle flow. the model is developed through simultaneous inversion of seismic body wave travel times (P and S) and geodynamic observations while considering realistic mineral physics parameters linking the relative behavior of mantle properties (wave speeds and density). Geodynamic observations include the (up to degree 16) global free-air gravity field, divergence of the tectonic plates, dynamic topography of the free surface, and the flow-induced excess ellipticity of the core-mantle boundary. GyPSuM is built with the philosophy that heterogeneity that most closely resembles thermal variations is the simplest possible solution. Models of the density field from Earth's free oscillations have provided great insight into the density configuration of the mantle; but are limited to very long-wavelength solutions. Alternatively, simply scaling higher resolution seismic images to density anomalies generates density fields that do not satisfy geodynamic observations. The current study provides detailed density structures in the mantle while directly satisfying geodynamic observations through a joint seismic-geodynamic inversion process. Notable density field observations include high-density piles at the base of the superplume structures, supporting the fundamental results of past normal mode studies. However, these features are more localized and lower amplitude than past studies would suggest. When we consider all seismic anomalies in GyPSuM, we find that P and S-wave speeds are strongly correlated throughout the mantle. However, correlations between the high-velocity S zones in the deep mantle ({approx} 2000 km depth) and corresponding P-wave anomalies are very low suggesting a systematic divergence from simplified thermal effects in ancient subducted slab anomalies. Nevertheless, they argue that temperature variations are

  18. Quantifying mantle structure and dynamics using plume tracing in seismic tomography (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.


    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  19. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids. (United States)

    Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V


    This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  20. Measurement of the combined heat and water-vapour flow through clothing under transient conditions (United States)

    Farnworth, B.; Nordli, B.


    A sweating hot plate for the study of combined heat and water-vapor flow through clothing under Transient conditions is described. The results are in good agreement with the mathematical model reported in a previous paper for several model clothing systems. The heat loss through wool clothing was found to be smaller than that through similar polyester clothing during periods of sweating and larger during subsequent periods of drying, because of the effects of absorption of water vapor by hygroscopic materials. A comparison was made of the heat and vapor transmission of the clothing systems by incorporating a vapor-impermeable fabric or the waterproof but vapor-permeable fabric Gore-TEx. Liquid water was observed to condence on the inner surface of both fabrics during periods of sweating but the Gore-TEx dried within a few minutes of the end of the sweating period. Gore-TEx was found to be vapor permeable even at temperatures below 0 degrees C when frost was forming on its inner surface.

  1. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    Directory of Open Access Journals (Sweden)

    Philippe Thomen

    Full Text Available Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  2. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow. (United States)

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao


    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Performances of Three Miniature Bio-inspired Optic Flow Sensors under Natural Conditions

    Directory of Open Access Journals (Sweden)

    Stéphane Viollet


    Full Text Available Considerable attention has been paid during the last decade to vision-based navigation systems based on optic flow (OF cues. OF-based systems have been implemented on an increasingly large number of sighted autonomous robotic platforms. Nowadays, the OF is measured using conventional cameras, custom-made sensors and even optical mouse chips. However, very few studies have dealt so far with the reliability of these OF sensors in terms of their precision, range and sensitivity to illuminance variations. Three miniature custom-made OF sensors developed at our laboratory, which were composed of photosensors connected to an OF processing unit were tested and compared in this study, focusing on their responses and characteristics in real indoor and outdoor environments in a large range of illuminance. It was concluded that by combining a custom-made aVLSI retina equipped with Adaptive Pixels for Insect-based Sensor (APIS with a bio-inspired visual processing system, it is possible to obtain highly effective miniature sensors for measuring the OF under real environmental conditions.

  4. Clustering and relative velocity of heavy particles under gravitational settling in isotropic turbulent flows (United States)

    Jin, Guodong; He, Guo-Wei


    Clustering and intermittency in radial relative velocity (RRV) of heavy particles of same size settling in turbulent flows can be remarkably changed due to gravity. Clustering is monotonically reduced at Stokes number less than 1 under gravity due to the disability of the centrifugal mechanism, however it is non-monotonically enhanced at Stokes number greater than 1 due to the multiplicative amplification in the case that the proposed effective Kubo number is less than 1. Although gravity causes monotonical reduction in the rms of RRV of particles at a given Stokes number with decreasing Froude number, the variation tendency in the tails of standardized PDF of RRV versus Froude number is obviously different: the tails become narrower at a small Stokes number, while they become broader at a large Stokes number. The mechanism of this variation stems from the compromise between the following two competing factors. The mitigation of correlation of particle positions and the regions of high strain rate which are more intermittent reduces the intermittency in RRV at small Stokes numbers, while the significant reduction in the backward-in-time relative separations will make particle pairs see small-scale structures, leading to a higher intermittency in RRV at large Stokes numbers. NSAF of China (grant number U1230126); NSFC (grant numbers 11072247 and 11232011).

  5. Assimilation of SWARM and CHAMP data under realistic spatial and temporal core flow constraints (United States)

    Barrois, Olivier; Finlay, Christopher; Gillet, Nicolas; Hammer, Magnus


    We assimilate geomagnetic data from both ground-based and virtual observatories (from CHAMP and SWARM satellite records) to simultaneously build models of the magnetic field and of fluid motions at the core surface. We consider data cleaned from external magnetic field contributions, equally distributed in space and time. We use spatial constraints from geodynamo simulations and dense observation error covariance matrices. We use an augmented state ensemble Kalman filter that allows to estimate uncertainties on core motions and the magnetic model as a function of length and time-scales. The model is time-stepped using stochastic equations coherent with the occurrence of geomagnetic jerks. The algorithm is applied to observations over the period 2000-2017. It gives reasonable solutions in terms of misfit to the data. The geomagnetic model obtained is in agreement with alternative models such as CHAOS or COV-OBS. We retrieve the eccentric westward gyre, and core motions are essentially in agreement with the quasi-geostrophic approximation - with local violation under Indonesia. The method is able to provide probability densities for core flows, magnetic field and secular variation forecasts both at the core surface and at observatory locations.

  6. Damage classification of pipelines under water flow operation using multi-mode actuated sensing technology

    International Nuclear Information System (INIS)

    Lee, Changgil; Park, Seunghee


    In a structure, several types of damage can occur, ranging from micro-cracking to corrosion or loose bolts. This makes identifying the damage difficult with a single mode of sensing. Therefore, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In self-sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this experimental study, a pipeline system under water flow operation was examined to verify the effectiveness and robustness of the proposed structural health monitoring approach. Different types of structural damage were inflicted artificially on the pipeline system. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented by composing a three-dimensional space using the damage indices extracted from the impedance and guided wave features as well as temperature variations. For a more systematic damage classification, several control parameters were optimized to determine an optimal decision boundary for the supervised learning-based pattern recognition. Further research issues are also discussed for real-world implementations of the proposed approach

  7. Flow of liquid metals in curved channels under a transversely applied magnetic field, (3)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou.


    With the development of electromagnetic pumps in nuclear, metallurgical and casting industries, investigations of not only laminar flow but also transient and turbulent flows in magnetohydrodynamic (MHD) channels are the matters of much concern. However, it is no exaggeration to say that there was no investigation of transient and turbulent flows in curved MHD channels. In this report, the influences of Reynolds number, Hartmann number, radius of curvature and aspect ratio on the coefficient of friction in transient and turbulent flow channels are discussed. In transient flow region, the curve representing the product of the coefficient of channel friction in curved channels and Reynolds number has no clear transition point in the flow of comparatively small Hartmann number. However, as the intensity of magnetic field is increased, the curve transfers to the transition due to the effect of suppressing secondary flow, and if the magnetic field is further increased, it was found that it approached the crisis-free type transition. In turbulent flow region, the coefficient of channel friction can be expressed approximately by the empirical equation given first in this report. Also the effect of magnetic field on the turbulent flow in curved channels can be explained by using Hartmann effect, turbulence suppression effect, and the effect of suppressing secondary flow based on Lorentz's force. (Wakatsuki, Y.)


    Directory of Open Access Journals (Sweden)

    Alexander V. Pospeev


    Full Text Available The article is aimed at discussion of geological and geophysical aspects of the ‘asthenospheric’ interpretation of the ‘anomalous’ mantle layer that is revealed in the Baikal rift zone by deep seismic sounding (DSS methods. Based on the analysis of the geoelectrical model, estimations of rheological properties, regional geothermal and deep petrological data, it is concluded that the ‘anomalous’ mantle phenomenon should be interpreted within the framework of solid-phase models. It is shown that the actual minimum depth to the top of the asthenosphere is about 60–70 km in the region under study, and temperatures at the surface of the Earth’s mantle varies from 600 to 900 °С. It is most probable that velocities are reduced in the ‘anomalous’ mantle layer due to the presence of hightemperature spinel-pyroxene facies of the mantle rocks.

  9. Asthenospheric flow and lithospheric evolution near the Mendocino Triple Junction (United States)

    Liu, Kaijian; Levander, Alan; Zhai, Yongbo; Porritt, Robert W.; Allen, Richard M.


    The migration of the Mendocino Triple Junction in northern California creates a complicated lithosphere-asthenosphere boundary system at shallow depths (Gorda plate, the joint inversion Vs model further identifies three other young asthenospheres resulting from different partial melting mechanisms. Northward motion of the triple junction causes asthenospheric flow both from under the Gorda plate and from the cooling former mantle wedge left under the Great Valley and Sierra Nevada, imaged from the joint inversion as a relatively deep (> 75 km) low-Vs anomaly. These two mantle flows appear to begin mixing ~ 100 km south of the southern edge of the Gorda plate in the slab window region. We speculate that the latter provides the wedge-type geochemical signature seen in the Coast Range volcanic rocks, reconciling slab window models and volcanic geochemistry. This 'staggered' upwelling model proposed here also explains the ~ 3 Myr delay in onset of volcanism after triple junction migration.

  10. Joint risk of interbasin water transfer and impact of the window size of sampling low flows under environmental change (United States)

    Tu, Xinjun; Du, Xiaoxia; Singh, Vijay P.; Chen, Xiaohong; Du, Yiliang; Li, Kun


    Constructing a joint distribution of low flows between the donor and recipient basins and analyzing their joint risk are commonly required for implementing interbasin water transfer. In this study, daily streamflow data of bi-basin low flows were sampled at window sizes from 3 to183 days by using the annual minimum method. The stationarity of low flows was tested by a change point analysis and non-stationary low flows were reconstructed by using the moving mean method. Three bivariate Archimedean copulas and five common univariate distributions were applied to fit the joint and marginal distributions of bi-basin low flows. Then, by considering the window size of sampling low flows under environmental change, the change in the joint risk of interbasin water transfer was investigated. Results showed that the non-stationarity of low flows in the recipient basin at all window sizes was significant due to the regulation of water reservoirs. The general extreme value distribution was found to fit the marginal distributions of bi-basin low flows. Three Archimedean copulas satisfactorily fitted the joint distribution of bi-basin low flows and then the Frank copula was found to be the comparatively better. The moving mean method differentiated the location parameter of the GEV distribution, but did not differentiate the scale and shape parameters, and the copula parameters. Due to environmental change, in particular the regulation of water reservoirs in the recipient basin, the decrease of the joint synchronous risk of bi-basin water shortage was slight, but those of the synchronous assurance of water transfer from the donor were remarkable. With the enlargement of window size of sampling low flows, both the joint synchronous risk of bi-basin water shortage, and the joint synchronous assurance of water transfer from the donor basin when there was a water shortage in the recipient basin exhibited a decreasing trend, but their changes were with a slight fluctuation, in

  11. Mantle dynamics and basalt petrogenesis (United States)

    Ringwood, A. E.


    Differentiation at mid-ocean ridges generates a layered lithosphere consisting of a basaltic crust, immediately underlain by harzburgite and further underlain by pyrolite which has experienced depletion only of highly incompatible elements. The body forces driving subduction are concentrated mainly in the upper half of the lithosphere which is relatively cool and brittle. During subduction, the lower layer of relatively ductile, slightly depleted pyrolite is stripped off and resorbed into the upper mantle, thereby providing a future source region for MORB magmas. The slab which sinks to ~ 600 km is comprised mainly of differentiated former basalt and harzburgite which undergo a different series of phase transformations to those experienced by mantle pyrolite. In consequence, the former basaltic crust remains denser than surrounding mantle whereas former harzburgite becomes relatively buoyant below the 650 km seismic discontinuity. The resulting non-uniformity in stress distribution causes the slab to buckle at this depth and accrete to form a large, relatively cool ovoid "megalith" of mixed former harzburgite and basaltic crust. Heating of the megalith occurs over 1-2 b.y., leading to partial melting of the former basaltic crust. The resultant liquids contaminate regions of former harzburgite, rendering them fertile in the sense of future capacity to produce basaltic magmas. After thermal equilibration, the newly fertile, former harzburgite becomes buoyant, leading to the separation of diapirs which rise into the upper mantle. Such diapirs rising beneath sub-oceanic lithosphere experience small degrees of partial melting to produce ocean island basalts, mainly of the alkaline suite. Diapirs of fertile former harzburgite rising beneath continents become incorporated into the sub-continental lithosphere. This is a cumulative process and is ultimately responsible for the development of the chemical, physical and isotopic characteristics of the sub

  12. Global-scale modelling of melting and isotopic evolution of Earth's mantle: Melting modules for TERRA

    NARCIS (Netherlands)

    Van Heck, H.J.; Huw Davies, J.; Elliott, T.; Porcelli, D.


    Many outstanding problems in solid-Earth science relate to the geodynamical explanation of geochemical observations. Currently, extensive geochemical databases of surface observations exist, but satisfying explanations of underlying mantle processes are lacking. One way to address these problems is

  13. A model comparison study of large-scale mantle lithosphere dynamics driven by subduction (United States)

    OzBench, Mark; Regenauer-Lieb, Klaus; Stegman, Dave R.; Morra, Gabriele; Farrington, Rebecca; Hale, Alina; May, Dave A.; Freeman, Justin; Bourgouin, Laurent; Mühlhaus, Hans; Moresi, Louis


    Modelling subduction involves solving the dynamic interaction between a rigid (solid yet deformable) plate and the fluid (easily deformable) mantle. Previous approaches neglected the solid-like behavior of the lithosphere by only considering a purely fluid description. However, over the past 5 years, a more self-consistent description of a mechanically differentiated subducting plate has emerged. The key feature in this mechanical description is incorporation of a strong core which provides small resistance to plate bending at subduction zones while simultaneously providing adequate stretching resistance such that slab pull drives forward plate motion. Additionally, the accompanying numerical approaches for simulating large-scale lithospheric deformation processes coupled to the underlying viscous mantle flow, have been become available. Here we put forward three fundamentally different numerical strategies, each of which is capabable of treating the advection of mechanically distinct materials that describe the subducting plate. We demonstrate their robustness by calculating the numerically challenging problem of subduction of a 6000 km wide slab at high-resolution in three-dimensions, the successfuly achievement of which only a few codes in the world can presently even attempt. In spite of the differences of the approaches, all three codes pass the simple qualitative test of developing an "S-bend" trench curvature previously observed in similar models. While reproducing this emergent feature validates that the lithosphere-mantle interaction has been correctly modelled, this is not a numerical benchmark in the traditional sense where the objective is for all codes to achieve exact agreement on a unique numerical solution. However, we do provide some quantitative comparisons such as trench and plate kinematics in addition to discussing the strength and weaknesses of the individual approaches. Consequently, we believe these developed algorithms can now be applied to

  14. Characteristics of turbulent particle transport in human airways under steady and cyclic flows

    International Nuclear Information System (INIS)

    Jedelsky, Jan; Lizal, Frantisek; Jicha, Miroslav


    Highlights: ► PDA data allow to estimate PSD of particle velocity fluctuations in realistic model. ► PSD of micron-sized particles is independent of their size up to 700 Hz. ► Such particles follow air flow and turb. diffusion contributes to their deposition. ► Cyclic flow PSDs contain more TKE at high freq. than equivalent steady-flow PSDs. ► Exp. breathing phase differs from insp. phase at high frequency part of the spectra. - Abstract: Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1–8 μm were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30–500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1–8 μm at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition mechanism and confirms the capability to use the P/DPA data as the air flow velocity estimate.

  15. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture) (United States)

    Morgan, Jason P.


    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  16. Full 2D observation of water surface elevation from SWOT under different flow conditions (United States)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin


    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  17. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Steefel, C.I.; Marcus, M.A.; Bargar, J.R.


    The readsorption of ferrous ions produced by the abiotic and microbially-mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 hours and 150 hours of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot, it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggest that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed.

  18. Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field

    International Nuclear Information System (INIS)

    Ishida, T.; Teshima, N.; Sakurai, S.


    The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)

  19. Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen) (United States)

    Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.


    Detailed petrological and geochemical investigations of an extensive sampling of mantle xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric mantle consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted mantle (DM) towards the enriched OIB mantle (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali mantle xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are

  20. Nonstationary Oscillations of a Cylindrical Shell Located in a Rigid Pipe and Interacting with Flows of Liquid Under Impulsive Disturbances of Pressure in the Internal Flow (United States)

    Podchasov, N. P.


    A technique for analyzing the non-stationary oscillations of cylindrical shells interacting with the external and internal flow of liquid under constant external and internal pressure of liquid. The internal pressure is subject to finite harmonic disturbances linearly decreasing along the shell length. This technique is used to numerically analyze the transient processes in the shell-liquid system for different values of disturbance parameters.

  1. Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion

    International Nuclear Information System (INIS)

    Wei, Y.H.; Zhang, L.X.; Ke, W.


    The degradation of three different fusion-bonded epoxy (FBE) powder coating systems under flowing and static immersion condition has been monitored using electrochemical impedance spectroscopy (EIS) when exposed to 3% NaCl aqueous solution at 60 o C. The aim of this project was to determine the impact of flowing condition on the degradation of the protective properties of polymer coatings during exposure to corrosive medium. Using a rotating cylinder apparatus, the immersion tests under the flowing condition were performed. The relative permittivity of coating, ε r =C c δε 0 A, where the coating capacitance C c was calculated from the high frequency data of impedance spectrum, was selected as the index to monitor property variation with immersion time. Experimental results showed that the flowing condition aggravated the deterioration of coatings. The results were interpreted in terms of a model in which flowing condition changes coating/solution interface state and then accelerates the ions to diffuse through the coating. The electrochemical results were in agreement with the final visual observation. The present investigation suggests that flowing test provides an effective accelerating way to evaluate the degradation of coating system

  2. Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions

    Directory of Open Access Journals (Sweden)

    Mélanie Trudel


    Full Text Available Low-flow is the flow of water in a river during prolonged dry weather. This paper investigated the uncertainty originating from hydrological model calibration and structure in low-flow simulations under climate change conditions. Two hydrological models of contrasting complexity, GR4J and SWAT, were applied to four sub-watersheds of the Yamaska River, Canada. The two models were calibrated using seven different objective functions including the Nash-Sutcliffe coefficient (NSEQ and six other objective functions more related to low flows. The uncertainty in the model parameters was evaluated using a PARAmeter SOLutions procedure (PARASOL. Twelve climate projections from different combinations of General Circulation Models (GCMs and Regional Circulation Models (RCMs were used to simulate low-flow indices in a reference (1970–2000 and future (2040–2070 horizon. Results indicate that the NSEQ objective function does not properly represent low-flow indices for either model. The NSE objective function applied to the log of the flows shows the lowest total variance for all sub-watersheds. In addition, these hydrological models should be used with care for low-flow studies, since they both show some inconsistent results. The uncertainty is higher for SWAT than for GR4J. With GR4J, the uncertainties in the simulations for the 7Q2 index (the 7-day low-flow value with a 2-year return period are lower for the future period than for the reference period. This can be explained by the analysis of hydrological processes. In the future horizon, a significant worsening of low-flow conditions was projected.

  3. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong


    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  4. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail:; Majee, Sreeparna


    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  5. Atmospheric pressure flow reactor: Gas phase chemical kinetics under tropospheric conditions without wall effects (United States)

    Koontz, Steven L. (Inventor); Davis, Dennis D. (Inventor)


    A flow reactor for simulating the interaction in the troposphere is set forth. A first reactant mixed with a carrier gas is delivered from a pump and flows through a duct having louvers therein. The louvers straighten out the flow, reduce turbulence and provide laminar flow discharge from the duct. A second reactant delivered from a source through a pump is input into the flowing stream, the second reactant being diffused through a plurality of small diffusion tubes to avoid disturbing the laminar flow. The commingled first and second reactants in the carrier gas are then directed along an elongated duct where the walls are spaced away from the flow of reactants to avoid wall interference, disturbance or turbulence arising from the walls. A probe connected with a measuring device can be inserted through various sampling ports in the second duct to complete measurements of the first and second reactants and the product of their reaction at selected XYZ locations relative to the flowing system.

  6. Solute dispersion under electric and pressure driven flows; pore scale processes

    NARCIS (Netherlands)

    Li, S.; Raoof, A.; Schotting, R.


    Solute dispersion is one of the major mixing mechanisms in transport through porous media, originating from velocity variations at different scales, starting from the pore scale. Different driving forces, such as pressure driven flow (PDF) and electro-osmotic flow (EOF), establish different velocity

  7. A mathematical model for the motion analysis of embedded straight microcantilevers under a pressure-driven flow

    International Nuclear Information System (INIS)

    Ezkerra, A; Mayora, K; Ruano-López, J M; Wilson, P A


    A mathematical model that estimates the deflection of straight microcantilevers embedded in a microchannel under a pressure-driven flow at low Reynolds numbers is presented. The model makes use of the Schwarz–Christoffel mapping in order to couple the geometry of the structure and the flow passing around it. Therefore, it allows the determination of the most influential parameters and suitable modifications in order to achieve the desired performance. The model does not require specific knowledge of the flow conditions in the vicinity of the structure, which improves its practical use during the early stages of design. Estimations have been made for two straight cantilevers under a range of pressures. The results obtained show good agreement with measurements from experiments

  8. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)


    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  9. Simplified model for a ventilated glass window under forced air flow conditions

    International Nuclear Information System (INIS)

    Ismail, K.A.R.; Henriquez, J.R.


    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance

  10. Numerical modelling of volatiles in the deep mantle (United States)

    Eichheimer, Philipp; Thielmann, Marcel; Golabek, Gregor J.


    The transport and storage of water in the mantle significantly affects several material properties of mantle rocks and thus water plays a key role in a variety of geodynamical processes (tectonics, magmatism etc.). The processes driving transport and circulation of H2O in subduction zones remain a debated topic. Geological and seismological observations suggest different inflow mechanisms of water e.g. slab bending, thermal cracking and serpentinization (Faccenda et al., 2009; Korenaga, 2017), followed by dehydration of the slab. On Earth both shallow and steep subduction can be observed (Li et al., 2011). However most previous models (van Keken et al., 2008; Wilson et al., 2014) did not take different dip angles and subduction velocities of slabs into account. To which extent these parameters and processes influence the inflow of water still remains unclear. We present 2D numerical models simulating the influence of the various water inflow mechanisms on the mantle with changing dip angle and subduction velocity of the slab over time. The results are used to make predictions regarding the rheological behavior of the mantle wedge, dehydration regimes and volcanism at the surface. References: van Keken, P. E., et al. A community benchmark for subduction zone modeling. Phys. Earth Planet. Int. 171, 187-197 (2008). Faccenda, M., T.V. Gerya, and L. Burlini. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790-793 (2009). Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1-9 (2017). Wilson, C. R., et al. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. Earth Planet. Sci. Lett. 401, 261-274 (2014). Li, Z. H., Z. Q. Xu, and T. V. Gerya. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones. Earth Planet. Sci. Lett. 301, 65-77 (2011).

  11. Development of electrical analogue model for studying seepage flow under hydraulic structures - case study: Sukkur barrage

    International Nuclear Information System (INIS)

    Gabriel, H.F.; Umar, I.A.; Khan, G.D.


    For the solution of groundwater problem many types of models are used, but electrical analogue model is preferred due to its close response with its prototype hydrological system. This model is easy to construct and is reusable. In the model voltage is correlated to groundwater head electric current to flow and capacitance to groundwater storage. The analogy of the model is derived based on Kirchhoffs law and Finite difference form of Laplace equation. The network is consisting of square and rectangular meshes. Scaling factor for voltage and resistors are selected. All the equipment needed for assembling the model are prepared. Terminal strips and their connectivity are checked. Calculated resistors with accurate values after cutting and molding are inserted in the terminal strips and desired section is completed. A network of resistors in X and Z direction is used to represent the aquifer. Two stabilized power supply are used to provide the electrical potential. The worst condition is maintained by supplying the maximum head at upstream and dry condition at downstream. After the development of the model conclusion derived shows that the model are in a position to express the groundwater potential for seepage distribution under the floor with high degree of accuracy. Moreover there is a very good proportion between sample and the actual prototype in existence. The actual model when tested by model show very clear results for the sheet pile in relation to floor length to control seepage or uplift pressure caused. The existence design of Sukkur barrage and its overestimation and underestimation with reference to their sheet pile have been specifically determined. (author)

  12. [Removal nitrogen of integrated vertical-flow constructed wetland under aeration condition]. (United States)

    Tao, Min; He, Feng; Xu, Dong; Zhou, Qiao-Hong; Liang, Wei; Chen, Shui-Ping; Wu, Zhen-Bin


    Oxygen is an important limit factor of nitrogen removal in constructed wetlands, so it is the key point for improving nitrogen removal efficiency of constructed wetlands that the optimization of oxygen distribution within wetlands. Therefore, oxygen status, nitrogen removal and purification mechanism of integrated vertical-flow constructed wetland (IVCW) under aeration condition in summer and winter have been studied. The results showed that both oxygen levels and aerobic zones were increased in the wetland substrates. The area of oxic zone I (expressing with depth) extended from 22 cm, 17 cm to 53 cm, 44 cm, in summer and winter, respectively. The electric potential (Eh) profiling demonstrated that artificial aeration maintained the pattern of sequential oxic-anoxic-oxic (O-A-O) redox zones within the aerated IVCW in winter, while only two oxic-anoxic (O-A) zones were present inside the non-aerated IVCW in the cold season. The decomposition of organic matter and nitrification were obviously enhanced by artificial aeration since the removal efficiency of COD, TN and NH4(+) -N were increased by 12.2%, 6.9% and 15.1% in winter, respectively. There was no significant accumulation of NO3(-) -N in the effluent with an aeration cycle of 8 h on and 16 h off in this experiment. Moreover, we found that oxic zone I was the main region of pollutants removal in IVCW system, and artificial aeration mainly acted to enhance the purification capacity of this oxic zone in the aerated IVCW. These results suggest that aeration is important for optimization and application of IVCW system.

  13. Pollen flow of wheat under natural conditions in the Huanghuai River Wheat Region, China (United States)

    Sun, Ai-Qing; Zhang, Chun-Qing; Wu, Cheng-Lai; Gao, Qing-Rong


    abstract The transgenic pollen spread is the main pathway of transgenic plant gene flow. The maximum distance of pollen dispersal (horizontal), the spatial dynamics of pollen movement (vertical), and the patterns of pollen dispersal are important considerations in biosafety assessments of genetically modified crops. To evaluate wheat (Triticum aestivum) pollen dispersal, we measured the pollen suspension velocity and analyzed pollen dispersal patterns under natural conditions in the Huanghuai River wheat-growing region in 2009. The pollen suspension velocity was 0.3–0.4 m/s. The highest pollen densities were detected in the north, northwest, and south of the pollen source. Pollen was dispersed over distances greater than 245 m in the northwest and northeast directions. At the pollen source center, pollen density decreased with increasing vertical height. In the north of the pollen source, the pollen density from 65 m to 225 m showed a wave-mode decrease with increasing height. The horizontal transport of pollen over longer distances fitted polynomial equations. In the north, the pollen density was highest at 45 m from the pollen source, and decreased with increasing distance. In the northwest, the pollen density showed a double-peak trend. In the northeast, pollen density was highest from 45 m to 125 m from the source. Wind speeds greater than the pollen suspension velocity and the duration of continuous gusts were the main factors affecting pollen dispersal. This information will be useful for determining the spatial isolation distances for hybrid seed production and for the commercial production of transgenic wheat. PMID:25658025

  14. Bubble splitting under gas–liquid–liquid three-phase flow in a double T-junction microchannel

    NARCIS (Netherlands)

    Liu, Yanyan; Yue, Jun; Zhao, Shuainan; Yao, Chaoqun; Chen, Guangwen

    Gas–aqueous liquid–oil three-phase flow was generated in a microchannel with a double T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the splitting of bubbles generated from the first T-junction (T1) was investigated. During the bubble splitting process,

  15. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, A.; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.


    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank,

  16. Geomorphic Response of Trinity River Tributary Deltas under High Flow Restoration Hydrology (United States)

    Stewart, R. L.; Gaeuman, D.


    Sediments supplied to regulated rivers from unregulated tributaries accelerate sediment transport processes near the tributary confluences. Repeat topographic surveys completed between tributary events and mainstem flows are differenced to investigate sediment transport processes and tributary delta dynamics on the Trinity River in Northern California. The Trinity River was dammed in the 1960's when most of its water was diverted to California's Central Valley, greatly reducing the frequency of flows competent to mobilize course sediments. During the first 20 years after dam completion about 20% of basin inflow was released to the river, and geomorphic flows occurred only during rare safety-of-dams releases. After dam completion, tributaries to the Trinity continued to flow without regulation and many of them delivered increased sediment loads as a result of land use practices in the uplands. Increased sediment supply from tributaries and the reduction in mainstem transport capacity caused by flow regulation led to the formation of large deltas at the major tributary confluences. Recent restoration efforts include geomorphic flows designed to mobilize sediments delivered by the tributaries and restore the river reach to an equilibrium state. Prior to restoration, peak flows at the dam site once exceeded 2,000 cms and had 2-year return interval flow of 400 cms. The partially restored geomorphic flows have maximum release capacity of 350 cms and 2-year return interval of 170 cms. This study compares repeat surveys of two tributary confluences, Rush Creek which enters the mainstem opposite of an alluvial valley bottom and Indian Creek which enters opposite of a non-erodible valley wall. Results indicate lateral channel migration and floodplain building processes occurring during lower magnitude tributary events. Higher magnitude mainstem flow events redistribute sediments to downstream reaches. Both confluences continue to adjust toward a state of equilibrium through

  17. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions. (United States)

    Broda, Ellen; Mickler, Frauke Martina; Lächelt, Ulrich; Morys, Stephan; Wagner, Ernst; Bräuchle, Christoph


    Sophisticated drug delivery systems are coated with targeting ligands to improve the specific adhesion to surface receptors on diseased cells. In our study, we developed a method with which we assessed the potential of peptide ligands to specifically bind to receptor overexpressing target cells. Therefore, a microfluidic setup was used where the cellular adhesion of nanoparticles with ligand and of control nanoparticles was observed in parallel under the same experimental conditions. The effect of the ligand on cellular binding was quantified by counting the number of adhered nanoparticles with ligand and differently labeled control nanoparticles on single cells after incubation under flow conditions. To provide easy-to-synthesize, stable and reproducible nanoparticles which mimic the surface characteristics of drug delivery systems and meet the requirements for quantitative analysis, latex beads based on amine-modified polystyrene were used as model nanoparticles. Two short peptides were tested to serve as targeting ligand on the beads by increasing the specific binding to HuH7 cells. The c-Met binding peptide cMBP2 was used for hepatocyte growth factor receptor (c-Met) targeting and the peptide B6 for transferrin receptor (TfR) targeting. The impact of the targeting peptide on binding was investigated by comparing the beads with ligand to different internal control beads: 1) without ligand and tailored surface charge (electrostatic control) and 2) with scrambled peptide and similar surface charge, but a different amino acid sequence (specificity control). Our results demonstrate that the method is very useful to select suitable targeting ligands for specific nanoparticle binding to receptor overexpressing tumor cells. We show that the cMBP2 ligand specifically enhances nanoparticle adhesion to target cells, whereas the B6 peptide mediates binding to tumor cells mainly by nonspecific interactions. All together, we suggest that cMBP2 is a suitable choice for

  18. A novel bioreactor for mechanobiological studies of engineered heart valve tissue formation under pulmonary arterial physiological flow conditions. (United States)

    Ramaswamy, Sharan; Boronyak, Steven M; Le, Trung; Holmes, Andrew; Sotiropoulos, Fotis; Sacks, Michael S


    The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289-313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 × 10(6) cells/cm(2). The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0-9 dynes/cm(2) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083-6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on

  19. Numerical Simulation on the Performance of a Mixed-Flow Pump under Various Casing Structures

    Directory of Open Access Journals (Sweden)

    Wu Dazhuan


    Full Text Available With regard to the reactor coolant pump and high flow-rate circulating pump, the requirements on the compactness of the structure, safety, and hydraulic performance are particularly important. Thus, the mixed-flow pump with cylindrical casing is adopted in some occasions. Due to the different characteristics between the special cylindrical casing and the common pump casing, the influence of the special casing on a mixed-flow pump characteristics was numerically investigated to obtain better performance and flow structure in the casing. The results show that the models with cylindrical casing have much worse head and efficiency characteristics than the experimental model, and this is caused by the flow in the pump casing. By moving the guide vanes half inside the pump casing, the efficiency gets improved while the low pressure zone at the corner of outlet pipe and pump casing disappeared. When the length of pump casing increases from the size equal to the diameter of outlet pipe to that larger than it, the efficiency drops obviously and the flow field in the outlet pipe improved without curved flow. In addition, the length of the pump casing has greater impacts on the pump performance than the radius of it.

  20. RELAP5/MOD2 benchmarking study: Critical heat flux under low-flow conditions

    International Nuclear Information System (INIS)

    Ruggles, E.; Williams, P.T.


    Experimental studies by Mishima and Ishii performed at Argonne National Laboratory and subsequent experimental studies performed by Mishima and Nishihara have investigated the critical heat flux (CHF) for low-pressure low-mass flux situations where low-quality burnout may occur. These flow situations are relevant to long-term decay heat removal after a loss of forced flow. The transition from burnout at high quality to burnout at low quality causes very low burnout heat flux values. Mishima and Ishii postulated a model for the low-quality burnout based on flow regime transition from churn turbulent to annular flow. This model was validated by both flow visualization and burnout measurements. Griffith et al. also studied CHF in low mass flux, low-pressure situations and correlated data for upflows, counter-current flows, and downflows with the local fluid conditions. A RELAP5/MOD2 CHF benchmarking study was carried out investigating the performance of the code for low-flow conditions. Data from the experimental study by Mishima and Ishii were the basis for the benchmark comparisons

  1. Second law analysis of water flow through smooth microtubes under adiabatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Parlak, Nezaket; Guer, Mesut; Ari, Vedat; Kuecuek, Hasan; Engin, Tahsin [The University of Sakarya, Faculty of Engineering, Department of Mechanical Engineering, Esentepe Campus, 54187 Sakarya (Turkey)


    In the study, a second law analysis for a steady-laminar flow of water in adiabatic microtubes has been conducted. Smooth microtubes with the diameters between 50 and 150 {mu}m made of fused silica were used in the experiments. Considerable temperature rises due to viscous dissipation and relatively high pressure losses of flow were observed in experiments. To identify irreversibility of flow, rate of entropy generation from the experiments have been determined in the laminar flow range of Re = 20-2200. The second law of thermodynamics was applied to predict the entropy generation. The results of model taken from the literature, proposed to predict the temperature rise caused by viscous heating, correspond well with the experimental data. The second law analysis results showed that the flow characteristics in the smooth microtubes distinguish substantially from the conventional theory for flow in the larger tubes with respect to viscous heating/dissipation (temperature rise of flow) total entropy generation rate and lost work. (author)

  2. Radiative conductivity and abundance of post-perovskite in the lowermost mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu; Goncharov, Alexander F. (Texas); (CIW); (Howard)


    Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure–temperature conditions of Earth's core–mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core–mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (~1.1 W/m/K) is almost two times smaller than that of bridgmanite (~2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core–mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.

  3. Radiative conductivity and abundance of post-perovskite in the lowermost mantle (United States)

    Lobanov, Sergey S.; Holtgrewe, Nicholas; Lin, Jung-Fu; Goncharov, Alexander F.


    Thermal conductivity of the lowermost mantle governs the heat flow out of the core energizing planetary-scale geological processes. Yet, there are no direct experimental measurements of thermal conductivity at relevant pressure-temperature conditions of Earth's core-mantle boundary. Here we determine the radiative conductivity of post-perovskite at near core-mantle boundary conditions by optical absorption measurements in a laser-heated diamond anvil cell. Our results show that the radiative conductivity of Mg0.9Fe0.1SiO3 post-perovskite (∼1.1 W/m/K) is almost two times smaller than that of bridgmanite (∼2.0 W/m/K) at the base of the mantle. By combining this result with the present-day core-mantle heat flow and available estimations on the lattice thermal conductivity we conclude that post-perovskite is at least as abundant as bridgmanite in the lowermost mantle which has profound implications for the dynamics of the deep Earth.

  4. Measurement of two-phase flow at the core upper plenum interface under simulated reflood conditions

    International Nuclear Information System (INIS)

    Thomas, D.G.; Combs, S.K.; Bagwell, M.E.


    Objectives of the Instrument Development Loop program were to simulate flows at the core/upper plenum interface during the reflood phase of a LOCA and to develop instruments for measuring mass-flows at this interface. A tie plate drag body was developed and tested successfully, and the data obtained were shown to be equivalent to pressure drops. The tie-plate drag body gave useful measurements in pure downflow, and the drag/turbine combination correlates with mass flow for high upflow


    Directory of Open Access Journals (Sweden)

    Suharso Suharso


    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  6. Characteristics of turbulent particle transport in human airways under steady and cyclic flows

    Energy Technology Data Exchange (ETDEWEB)

    Jedelsky, Jan, E-mail: [Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Lizal, Frantisek, E-mail: [Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic); Jicha, Miroslav, E-mail: [Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 61669 Brno (Czech Republic)


    Highlights: Black-Right-Pointing-Pointer PDA data allow to estimate PSD of particle velocity fluctuations in realistic model. Black-Right-Pointing-Pointer PSD of micron-sized particles is independent of their size up to 700 Hz. Black-Right-Pointing-Pointer Such particles follow air flow and turb. diffusion contributes to their deposition. Black-Right-Pointing-Pointer Cyclic flow PSDs contain more TKE at high freq. than equivalent steady-flow PSDs. Black-Right-Pointing-Pointer Exp. breathing phase differs from insp. phase at high frequency part of the spectra. - Abstract: Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1-8 {mu}m were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30-500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1-8 {mu}m at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition

  7. Short wavelength lateral variability of lithospheric mantle beneath the Middle Atlas (Morocco) as recorded by mantle xenoliths (United States)

    El Messbahi, Hicham; Bodinier, Jean-Louis; Vauchez, Alain; Dautria, Jean-Marie; Ouali, Houssa; Garrido, Carlos J.


    The Middle Atlas is a region where xenolith-bearing volcanism roughly coincides with the maximum of lithospheric thinning beneath continental Morocco. It is therefore a key area to study the mechanisms of lithospheric thinning and constrain the component of mantle buoyancy that is required to explain the Moroccan topography. Samples from the two main xenolith localities, the Bou Ibalghatene and Tafraoute maars, have been investigated for their mineralogy, microstructures, crystallographic preferred orientation, and whole-rock and mineral compositions. While Bou Ibalghatene belongs to the main Middle Atlas volcanic field, in the 'tabular' Middle Atlas, Tafraoute is situated about 45 km away, on the North Middle Atlas Fault that separates the 'folded' Middle Atlas, to the South-East, from the 'tabular' Middle Atlas, to the North-West. Both xenolith suites record infiltration of sub-lithospheric melts that are akin to the Middle Atlas volcanism but were differentiated to variable degrees as a result of interactions with lithospheric mantle. However, while the Bou Ibalghatene mantle was densely traversed by high melt fractions, mostly focused in melt conduits, the Tafraoute suite records heterogeneous infiltration of smaller melt fractions that migrated diffusively, by intergranular porous flow. As a consequence the lithospheric mantle beneath Bou Ibalghaten was strongly modified by melt-rock interactions in the Cenozoic whereas the Tafraoute mantle preserves the record of extensional lithospheric thinning, most likely related to Mesozoic rifting. The two xenolith suites illustrate distinct mechanisms of lithospheric thinning: extensional thinning in Tafraoute, where hydrous incongruent melting triggered by decompression probably played a key role in favouring strain localisation, vs. thermal erosion in Bou Ibalghatene, favoured and guided by a dense network of melt conduits. Our results lend support to the suggestion that lithospheric thinning beneath the Atlas

  8. Self-similar flow behind a spherical shock wave in a non-ideal dusty gas under a gravitational field: Isothermal flow (United States)

    Nath, G.


    Similarity solutions are obtained for one-dimensional unsteady isothermal flow of a dusty gas behind a spherical shock wave with time dependent energy input. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained, and the viscous stress and heat conduction of the mixture are negligible. The medium is taken to be under the influence of the gravitational field due to a heavy nucleus at the origin (Roche model). The total energy of the flow-field behind the shock is increasing. The effects of an increase in the mass concentration of solid particles, the ratio of the density of the solid particles to the initial density of the gas, the gravitational parameter (or shock Mach number), and the parameter of non-idealness of the gas in the mixture, are investigated. It is shown that due to presence of gravitational field the isothermal compressibility of the medium and the flow-variables increases and the shock strength decreases. A comparison has also been made between the medium with and without gravitational field. The shock waves in dusty medium can be important for description of star formation, shocks in supernova explosions, etc.

  9. Seismic Investigations of the Crust and Upper Mantle Structure in Antarctica and Madagascar (United States)

    Ramirez, Cristo

    In the three studies that form this dissertation, seismic data from Antarctica and Madagascar have been analyzed to obtain new insights into crustal structure and mantle flow. Until recently, there have been little seismic data available from these areas for interrogating Earth structure and processes. In Antarctica, I analyzed datasets from temporary deployments of broadband seismic stations in both East and West Antarctica. In Madagascar, I analyzed data from a temporary network of broadband stations, along with data from three permanent stations. The seismic data have been processed and modeled using a wide range of techniques to characterize crust and mantle structure. Crustal structure in the East Antarctic Craton resembles Precambrian terrains around the world in its thickness and shear wave velocities. The West Antarctic Rift System has thinner crust, consistent with crustal thickness beneath other Cretaceous rifts. The Transantarctic Mountains show thickening of the crust from the costal regions towards the interior of the mountain range, and high velocities in the lower crust at several locations, possibly resulting from the Ferrar magmatic event. Ross Island and Marie Byrd Land Dome have elevated crustal Vp/Vs ratios, suggesting the presence of partial melt and/or volcaniclastic material within the crust. The pattern of seismic anisotropy in Madagascar is complex and cannot arise solely due to mantle flow from the African superplume, as previously proposed. To explain the complex pattern of anisotropy, a combination of mechanisms needs to be invoked, including mantle flow from the African superplume, mantle flow from the Comoros hotspot, small scale upwelling in the mantle induced by lithospheric delamination, and fossil anisotropy in the lithospheric mantle along Precambrian shear zones.

  10. Geoelectromagnetic investigation of the earth’s crust and mantle

    CERN Document Server

    Rokityansky, Igor I


    Electrical conductivity is a parameter which characterizes composition and physical state of the Earth's interior. Studies of the state equations of solids at high temperature and pressure indicate that there is a close relation be­ tween the electrical conductivity of rocks and temperature. Therefore, measurements of deep conductivity can provide knowledge of the present state and temperature of the Earth's crust and upper mantle matter. Infor­ mation about the temperature of the Earth's interior in the remote past is derived from heat flow data. Experimental investigation of water-containing rocks has revealed a pronounced increase of electrical conductivity in the temperature range D from 500 to 700 DC which may be attributed to the beginning of fractional melting. Hence, anomalies of electrical conductivity may be helpful in identitying zones of melting and dehydration. The studies of these zones are perspective in the scientific research of the mobile areas of the Earth's crust and upper mantle where t...

  11. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. (United States)

    Navarrete, Fernando; De La Fuente, Leonardo


    The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.

  12. Physical modeling of flow over an axisymmetric knoll under neutral atmospheric conditions

    International Nuclear Information System (INIS)

    Cliff, W.C.; Smith, J.D.


    A glass-walled hydraulic (water) flume was used to model physically air flow near an axisymmetric knoll in a neutral atmospheric boundary layer. The knoll was a 1:250 scale model. An upstream velocity profile (1/7 power law), characteristic of a neutral atmospheric boundary layer, was produced by locating a 10-cm-high (4-in.) trip near the flume entrance and by appropriately roughening the flume floor. Mean velocity, rms velocity, and turbulence intensity profiles were measured at locations near the knoll using an existing laser Doppler anemometer system. The flow accelerated over the knoll and produced a relatively uniform velocity profile at the crest. The measured velocity profile was in close agreement with a theoretical velocity profile developed using potential flow theory and an upstream power law velocity profile. The turbulence intensity decreased at the crest of the knoll as a result of the flow acceleration

  13. Miniaturized, High Flow, Low Dead Volume Preconcentrator for Trace Contaminants in Water under Microgravity Conditions Project (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. has demonstrated feasibility in Phase I and now proposes a Phase II effort to develop a miniaturized high flow, low dead-volume...


    Directory of Open Access Journals (Sweden)

    Giorgio Baiamonte


    Full Text Available This paper deals with the analytical solution of kinematic wave equations for overland flow occurring in an infiltrating hillslope. The infiltration process is described by the Green-Ampt model. The solution is derived only for the case of an intermediate flow regime between laminar and turbulent ones. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to raindrop impact. With reference to the simple case of an impervious hillslope, a comparison was carried out between the present solution and the non-linear storage model. Some applications of the present solution were performed to investigate the effect of main parameter variability on the hillslope response. Particularly, the effect of hillslope geometry and rainfall intensity on the time to equilibrium is shown.

  15. The Effect of Non-Steady Overlying Water Velocity on Oxygen Consumption Under Losing and Gaining Flow Conditions (United States)

    Galloway, J. A.; Wu, L.; Lewandowski, J.; Arnon, S.


    Wastewater treatment plants which discharge treated effluent into river systems can drastically alter downstream flow regime from steady flow velocities to water velocities which fluctuate on a diurnal cycle. The impacts of flow variations are expected to have complex and non-linear impacts on the temporal and spatial redox dynamics within the hyporheic zone. The objective of the current study was to qualitatively describe the effect of non-steady flow on oxygen consumption under losing and gaining conditions. A novel system which allowed for precise control and modulation of pore water velocities was deployed in a specially designed, 260 cm-long by 29 cm-wide flume. Experiments were carried out under various vertical fluxes. Oxygen dynamics were investigated by using planar optodes to measure oxygen concentrations in the hyporheic zone at a high temporal and spatial resolution. These empirical measurements were then used as inputs for a reactive transport model allowing for the calculation of oxygen consumption rates. A complex interplay between direction and magnitude of surface water velocity changes as well as antecedent flow conditions was discovered and quantitatively described. The development and calibration of the model allowed us to explore the relationships discovered in a variety of scenarios. Overall, unsteady flow conditions lead to up to a 2-fold increase in the delivery of dissolved oxygen to the hyporheic zone and lead to a higher rate of oxygen consumption than would have been predicted by a comparable steady surface flow. Vertical fluxes reduce the magnitude of the effect of surface water perturbations. The results of the current study provide an insight into how anthropogenic changes to discharge regimes in river systems can impact the biogeochemistry of the hyporheic zone.

  16. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK) (United States)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.


    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  17. Simulation analysis on the influence of smoke flow in special section tunnel under mechanical ventilation