Jacobson, Nathan
1979-01-01
Lie group theory, developed by M. Sophus Lie in the 19th century, ranks among the more important developments in modern mathematics. Lie algebras comprise a significant part of Lie group theory and are being actively studied today. This book, by Professor Nathan Jacobson of Yale, is the definitive treatment of the subject and can be used as a textbook for graduate courses.Chapter I introduces basic concepts that are necessary for an understanding of structure theory, while the following three chapters present the theory itself: solvable and nilpotent Lie algebras, Carlan's criterion and its
Leibniz Algebras and Lie Algebras
Directory of Open Access Journals (Sweden)
Geoffrey Mason
2013-10-01
Full Text Available This paper concerns the algebraic structure of finite-dimensional complex Leibniz algebras. In particular, we introduce left central and symmetric Leibniz algebras, and study the poset of Lie subalgebras using an associative bilinear pairing taking values in the Leibniz kernel.
Osborn, J
1989-01-01
During the academic year 1987-1988 the University of Wisconsin in Madison hosted a Special Year of Lie Algebras. A Workshop on Lie Algebras, of which these are the proceedings, inaugurated the special year. The principal focus of the year and of the workshop was the long-standing problem of classifying the simple finite-dimensional Lie algebras over algebraically closed field of prime characteristic. However, other lectures at the workshop dealt with the related areas of algebraic groups, representation theory, and Kac-Moody Lie algebras. Fourteen papers were presented and nine of these (eight research articles and one expository article) make up this volume.
New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology
Pinczon, Georges; Ushirobira, Rosane
2005-01-01
We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.
Iachello, Francesco
2015-01-01
This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...
Associative and Lie deformations of Poisson algebras
Remm, Elisabeth
2011-01-01
Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.
Lie groups and Lie algebras for physicists
Das, Ashok
2015-01-01
The book is intended for graduate students of theoretical physics (with a background in quantum mechanics) as well as researchers interested in applications of Lie group theory and Lie algebras in physics. The emphasis is on the inter-relations of representation theories of Lie groups and the corresponding Lie algebras.
Bicovariant quantum algebras and quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A bicovariant calculus of differential operators on a quantum group is constructed in a natural way, using invariant maps from Fun(G q ) to U q g, given by elements of the pure braid group. These operators - the 'reflection matrix' Y= triple bond L + SL - being a special case - generate algebras that linearly close under adjoint actions, i.e. they form generalized Lie algebras. We establish the connection between the Hopf algebra formulation of the calculus and a formulation in compact matrix form which is quite powerful for actual computations and as applications we find the quantum determinant and an orthogonality relation for Y in SO q (N). (orig.)
Universal enveloping Lie Rota-Baxter algebra of preLie and post-Lie algebras
Gubarev, Vsevolod
2017-01-01
Universal enveloping Lie Rota-Baxter algebras of pre-Lie and post-Lie algebras are constructed. It is proved that the pairs of varieties (Lie Rota-Baxter algebras of zero weight,preLie algebras) and (Lie Rota-Baxter algebras of nonzero weight,post-Lie algebras) are PBW-pairs and the variety of Lie Rota-Baxter algebras is not Schreier.
Invariants of triangular Lie algebras
International Nuclear Information System (INIS)
Boyko, Vyacheslav; Patera, Jiri; Popovych, Roman
2007-01-01
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of Boyko et al (2006 J. Phys. A: Math. Gen.39 5749 (Preprint math-ph/0602046)), developed further in Boyko et al (2007 J. Phys. A: Math. Theor.40 113 (Preprint math-ph/0606045)), is used to determine the invariants. A conjecture of Tremblay and Winternitz (2001 J. Phys. A: Math. Gen.34 9085), concerning the number of independent invariants and their form, is corroborated
A survey on stability and rigidity results for Lie algebras
Crainic, Marius; Schätz, Florian; Struchiner, Ivan
2014-01-01
We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).
Fractional supersymmetry and infinite dimensional lie algebras
International Nuclear Information System (INIS)
Rausch de Traubenberg, M.
2001-01-01
In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed
International Nuclear Information System (INIS)
Baeuerle, G.G.A.; Kerf, E.A. de
1990-01-01
The structure of the laws in physics is largely based on symmetries. This book is on Lie algebras, the mathematics of symmetry. It gives a thorough mathematical treatment of finite dimensional Lie algebras and Kac-Moody algebras. Concepts such as Cartan matrix, root system, Serre's construction are carefully introduced. Although the book can be read by an undergraduate with only an elementary knowledge of linear algebra, the book will also be of use to the experienced researcher. Experience has shown that students who followed the lectures are well-prepared to take on research in the realms of string-theory, conformal field-theory and integrable systems. 48 refs.; 66 figs.; 3 tabs
Particle-like structure of Lie algebras
Vinogradov, A. M.
2017-07-01
If a Lie algebra structure 𝔤 on a vector space is the sum of a family of mutually compatible Lie algebra structures 𝔤i's, we say that 𝔤 is simply assembled from the 𝔤i's. Repeating this procedure with a number of Lie algebras, themselves simply assembled from the 𝔤i's, one obtains a Lie algebra assembled in two steps from 𝔤i's, and so on. We describe the process of modular disassembling of a Lie algebra into a unimodular and a non-unimodular part. We then study two inverse questions: which Lie algebras can be assembled from a given family of Lie algebras, and from which Lie algebras can a given Lie algebra be assembled. We develop some basic assembling and disassembling techniques that constitute the elements of a new approach to the general theory of Lie algebras. The main result of our theory is that any finite-dimensional Lie algebra over an algebraically closed field of characteristic zero or over R can be assembled in a finite number of steps from two elementary constituents, which we call dyons and triadons. Up to an abelian summand, a dyon is a Lie algebra structure isomorphic to the non-abelian 2-dimensional Lie algebra, while a triadon is isomorphic to the 3-dimensional Heisenberg Lie algebra. As an example, we describe constructions of classical Lie algebras from triadons.
Continuum analogues of contragredient Lie algebras
International Nuclear Information System (INIS)
Saveliev, M.V.; Vershik, A.M.
1989-03-01
We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs
Invariants of generalized Lie algebras
International Nuclear Information System (INIS)
Agrawala, V.K.
1981-01-01
Invariants and invariant multilinear forms are defined for generalized Lie algebras with arbitrary grading and commutation factor. Explicit constructions of invariants and vector operators are given by contracting invariant forms with basic elements of the generalized Lie algebra. The use of the matrix of a linear map between graded vector spaces is emphasized. With the help of this matrix, the concept of graded trace of a linear operator is introduced, which is a rich source of multilinear forms of degree zero. To illustrate the use of invariants, a characteristic identity similar to that of Green is derived and a few Racah coefficients are evaluated in terms of invariants
Linear algebra meets Lie algebra: the Kostant-Wallach theory
Shomron, Noam; Parlett, Beresford N.
2008-01-01
In two languages, Linear Algebra and Lie Algebra, we describe the results of Kostant and Wallach on the fibre of matrices with prescribed eigenvalues of all leading principal submatrices. In addition, we present a brief introduction to basic notions in Algebraic Geometry, Integrable Systems, and Lie Algebra aimed at specialists in Linear Algebra.
Lie groups, lie algebras, and representations an elementary introduction
Hall, Brian
2015-01-01
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compac...
New examples of continuum graded Lie algebras
International Nuclear Information System (INIS)
Savel'ev, M.V.
1989-01-01
Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs
Filiform Lie algebras of order 3
International Nuclear Information System (INIS)
Navarro, R. M.
2014-01-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, “Cohomologie des algèbres de Lie nilpotentes. Application à l’étude de la variété des algèbres de Lie nilpotentes,” Bull. Soc. Math. France 98, 81–116 (1970)]. Also we give the dimension, using an adaptation of the sl(2,C)-module Method, and a basis of such infinitesimal deformations in some generic cases
Filiform Lie algebras of order 3
Navarro, R. M.
2014-04-01
The aim of this work is to generalize a very important type of Lie algebras and superalgebras, i.e., filiform Lie (super)algebras, into the theory of Lie algebras of order F. Thus, the concept of filiform Lie algebras of order F is obtained. In particular, for F = 3 it has been proved that by using infinitesimal deformations of the associated model elementary Lie algebra it can be obtained families of filiform elementary lie algebras of order 3, analogously as that occurs into the theory of Lie algebras [M. Vergne, "Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes," Bull. Soc. Math. France 98, 81-116 (1970)]. Also we give the dimension, using an adaptation of the {sl}(2,{C})-module Method, and a basis of such infinitesimal deformations in some generic cases.
Chomology of Heisenberg Hom-Lie algebras
Nejib, Saadaoui
2017-01-01
In this paper, we define the Heisenberg Hom-Lie algebra. We determine the minimal dimension of faithful representation for Heisenberg Hom-Lie algebra.We study the adjoint representation, the trivial representation and the faithful representation of Heisenberg Hom-Lie algebra.
From Rota-Baxter algebras to pre-Lie algebras
International Nuclear Information System (INIS)
An Huihui; Ba, Chengming
2008-01-01
Rota-Baxter algebras were introduced to solve some analytic and combinatorial problems and have appeared in many fields in mathematics and mathematical physics. Rota-Baxter algebras provide a construction of pre-Lie algebras from associative algebras. In this paper, we give all Rota-Baxter operators of weight 1 on complex associative algebras in dimension ≤3 and their corresponding pre-Lie algebras
Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras
Takasaki, K.
1990-02-01
An improved version of Nakamura's self-dual Yang-Mills hierarchy is presentd and its symmetry contents are studied. The new hierarchy as well as the previous one represents a set of commuting dynamical flows in an infinite dimensional manifolds of “loop type”, but includes a large set of dependent variables. Because of new degrees of freedom the theory acquires a more symmetric form with richer structures. For example it allows a large symmetry algebra of Riemann-Hilbert type, which is actually a direct sum of two subalgebras (“left” and “right”). This phenomenon is basically the same as observed recently by Avan and Bellon on the case of principal chiral models. In addition to these rather familiar symmeties, a new type of symmetries referred to as “coordinate transformation type” are also introduced. Generators of the above dynamical flows are all included therein. These two types of symmetries altogether form a big Lie algebra, which lead to more satisfactory understanding of symmetry properties of integrable systems of guage fields.
Computations in finite-dimensional Lie algebras
Cohen, A.M.; Graaf, W.A. de; Rónyai, L.
1997-01-01
This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System), within the computer algebra package GAP. A first sketch of the packagecan be found in Cohen and de Graaf[1]. Since then, in a collaborative
Computations in finite-dimensional Lie algebras
Directory of Open Access Journals (Sweden)
A. M. Cohen
1997-12-01
Full Text Available This paper describes progress made in context with the construction of a general library of Lie algebra algorithms, called ELIAS (Eindhoven Lie Algebra System, within the computer algebra package GAP. A first sketch of the package can be found in Cohen and de Graaf[1]. Since then, in a collaborative effort with G. Ivanyos, the authors have continued to develop algorithms which were implemented in ELIAS by the second author. These activities are part of a bigger project, called ACELA and financed by STW, the Dutch Technology Foundation, which aims at an interactive book on Lie algebras (cf. Cohen and Meertens [2]. This paper gives a global description of the main ways in which to present Lie algebras on a computer. We focus on the transition from a Lie algebra abstractly given by an array of structure constants to a Lie algebra presented as a subalgebra of the Lie algebra of n×n matrices. We describe an algorithm typical of the structure analysis of a finite-dimensional Lie algebra: finding a Levi subalgebra of a Lie algebra.
Post-Lie algebras and factorization theorems
Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans
2017-09-01
In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.
Fractional superLie algebras and groups
Energy Technology Data Exchange (ETDEWEB)
Ahmedov, H. [Feza Gursey Institute, Cengelkoy, Istanbul (Turkey)]. E-mail: hagi@gursey.gov.tr; Yildiz, A. [ Feza Gursey Institute, Cengelkoy, Istanbul (Turkey); Ucan, Y. [Yildiz Technical University, Department of Mathematics, Besiktas, Istanbul (Turkey)
2001-08-24
The nth root of a Lie algebra and its dual (that is the fractional supergroup) based on the permutation group S{sub n} invariant forms is formulated in the Hopf algebra formalism. Detailed discussion of S{sub 3}-graded sl(2) algebras is performed. (author)
Cartan calculus on quantum Lie algebras
International Nuclear Information System (INIS)
Schupp, P.; Watts, P.; Zumino, B.
1993-01-01
A generalization of the differential geometry of forms and vector fields to the case of quantum Lie algebras is given. In an abstract formulation that incorporates many existing examples of differential geometry on quantum spaces we combine an exterior derivative, inner derivations, Lie derivatives, forms and functions au into one big algebra, the ''Cartan Calculus.''
Simple Lie algebras and Dynkin diagrams
International Nuclear Information System (INIS)
Buccella, F.
1983-01-01
The following theorem is studied: in a simple Lie algebra of rank p there are p positive roots such that all the other n-3p/2 positive roots are linear combinations of them with integer non negative coefficients. Dykin diagrams are built by representing the simple roots with circles and drawing a junction between the roots. Five exceptional algebras are studied, focusing on triple junction algebra, angular momentum algebra, weights of the representation, antisymmetric tensors, and subalgebras
Classification and identification of Lie algebras
Snobl, Libor
2014-01-01
The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain cl...
Casimir elements of epsilon Lie algebras
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
The classical framework for investigating the Casimir elements of a Lie algebra is generalized to the case of an epsilon Lie algebra L. We construct the standard L-module isomorphism of the epsilon-symmetric algebra of L onto its enveloping algebra and we introduce the Harish-Chandra homomorphism. In case the generators of L can be written in a canonical two-index form, we construct the associated standard sequence of Casimir elements and derive a formula for their eigenvalues in an arbitrary highest weight module. (orig.)
Computing faithful representations for nilpotent Lie algebras
Burde, Dietrich; Eick, Bettina; de Graaf, Willem
2008-01-01
We describe three methods to determine a faithful representation of small dimension for a finite-dimensional nilpotent Lie algebra over an arbitrary field. We apply our methods in finding bounds for the smallest dimension $\\mu(\\Lg)$ of a faithful $\\Lg$-module for some nilpotent Lie algebras $\\Lg$. In particular, we describe an infinite family of filiform nilpotent Lie algebras $\\Lf_n$ of dimension $n$ over $\\Q$ and conjecture that $\\mu(\\Lf_n) > n+1$. Experiments with our algorithms suggest th...
On Casimir elements of simple Lie algebras
International Nuclear Information System (INIS)
El Houari, M.
1996-08-01
In this letter, we recall briefly the generalized Casimir elements of a finite dimensional Lie algebra. We specify those of orders two and three: when the Lie algebra is simple (even semisimple), we begin by normalizing the former (the quadratic), and then we study some actions of the latter (the cubic). In particular, we introduce a graphical formalism, translating rigorously the tensorial calculus. This allows us to prove the main theorem in a graphic theoretic manner. (author). 11 refs, 1 tab
Jacobson-Witt algebras and Lie-admissible algebras
International Nuclear Information System (INIS)
Tomber, M.L.
1981-01-01
For any field PHI of characteristics p > 0 and integer m greater than or equal to 1, there is a Jacobson-Witt algebra which is a Lie algebra. In this paper, all flexible Lie-admissible algebras U, such that U - is a Jacobson-Witt algebra W/sub m/(p), are determined. For any W/sub m/(p), p > 2 there is exactly one such U and it is isomorphic to W/sub m/(p). There are two non-isomorphic algebras U such that U - is isomorphic to W 1 (2), and there are no algebras U with U - isomorphic to W/sub m/(2), m > 1
Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras
Put, Marius van der
1999-01-01
The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
Lie algebra in quantum physics by means of computer algebra
Kikuchi, Ichio; Kikuchi, Akihito
2017-01-01
This article explains how to apply the computer algebra package GAP (www.gap-system.org) in the computation of the problems in quantum physics, in which the application of Lie algebra is necessary. The article contains several exemplary computations which readers would follow in the desktop PC: such as, the brief review of elementary ideas of Lie algebra, the angular momentum in quantum mechanics, the quark eight-fold way model, and the usage of Weyl character formula (in order to construct w...
Analytic transfer maps for Lie algebraic design codes
International Nuclear Information System (INIS)
van Zeijts, J.; Neri, F.; Dragt, A.J.
1990-01-01
Lie algebraic methods provide a powerful tool for modeling particle transport through Hamiltonian systems. Briefly summarized, Lie algebraic design codes work as follows: first the time t flow generated by a Hamiltonian system is represented by a Lie algebraic map acting on the initial conditions. Maps are generated for each element in the lattice or beamline under study. Next all these maps are concatenated into a one-turn or one-pass map that represents the complete dynamics of the system. Finally, the resulting map is analyzed and design decisions are made based on the linear and nonlinear entries in the map. The authors give a short description of how to find Lie algebraic transfer maps in analytic form, for inclusion in accelerator design codes. As an example they find the transfer map, through third order, for the combined-function quadrupole magnet, and use such magnets to correct detrimental third-order aberrations in a spot forming system
Lie groups and algebraic groups
Indian Academy of Sciences (India)
. These fields are interrelated and each of these fields contributes to the other. 2. Examples and classification. We first give some examples of Lie groups. The most frequently occurring ones are the linear classical groups GLn(R), GLn(C), ...
Lie groups and algebraic groups
Indian Academy of Sciences (India)
M S RAGHUNATHAN and T N VENKATARAMANA. ∗. School of Mathematics, Tata Institute of Fundamental ... linear classical groups GLn(R), GLn(C), SOn(R),. SOn(C), Spn(R) and Spn(C). Let us call a con- nected Lie ..... split groups due respectively to C C Moore and. V Deodhar. B Sury solved the congruence subgroup ...
On split Lie algebras with symmetric root systems
Indian Academy of Sciences (India)
ideal of L, satisfying [Ij ,Ik] = 0 if j = k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Keywords. Infinite dimensional Lie ...
Transformation groups and Lie algebras
Ibragimov, Nail H
2013-01-01
This book is based on the extensive experience of teaching for mathematics, physics and engineering students in Russia, USA, South Africa and Sweden. The author provides students and teachers with an easy to follow textbook spanning a variety of topics. The methods of local Lie groups discussed in the book provide universal and effective method for solving nonlinear differential equations analytically. Introduction to approximate transformation groups also contained in the book helps to develop skills in constructing approximate solutions for differential equations with a small parameter.
Lie algebras and linear differential equations.
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
Higher-Dimensional Automorphic Lie Algebras
Knibbeler, Vincent; Lombardo, Sara; Sanders, Jan A.
2017-01-01
The paper presents the complete classification of Automorphic Lie Algebras based on (Formula presented.), where the symmetry group G is finite and acts on (Formula presented.) by inner automorphisms, (Formula presented.) has no trivial summands, and where the poles are in any of the exceptional
Dimension of the c-nilpotent multiplier of Lie algebras
Indian Academy of Sciences (India)
By a Lie algebra we mean a vector space over a field F with the Lie bracket [ , ]. The finite dimensional Lie algebra analogous to the Schur multiplier was developed in. [4, 5] and has been studied by various authors [7, 8, 14]. Let L be a finite dimensional. Lie algebra, its Schur multiplier, M(L), can be defined as a second ...
Internally connected graphs and the Kashiwara-Vergne Lie algebra
Felder, Matteo
2018-02-01
It is conjectured that the Kashiwara-Vergne Lie algebra \\widehat{krv}_2 is isomorphic to the direct sum of the Grothendieck-Teichmüller Lie algebra grt_1 and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of \\widehat{krv}_2 whose intersection is grt_1 , thus giving a way to interpolate between these two Lie algebras.
Exponentiation and deformations of Lie-admissible algebras
International Nuclear Information System (INIS)
Myung, H.C.
1982-01-01
The exponential function is defined for a finite-dimensional real power-associative algebra with unit element. The application of the exponential function is focused on the power-associative (p,q)-mutation of a real or complex associative algebra. Explicit formulas are computed for the (p,q)-mutation of the real envelope of the spin 1 algebra and the Lie algebra so(3) of the rotation group, in light of earlier investigations of the spin 1/2. A slight variant of the mutated exponential is interpreted as a continuous function of the Lie algebra into some isotope of the corresponding linear Lie group. The second part of this paper is concerned with the representation and deformation of a Lie-admissible algebra. The second cohomology group of a Lie-admissible algebra is introduced as a generalization of those of associative and Lie algebras in the Hochschild and Chevalley-Eilenberg theory. Some elementary theory of algebraic deformation of Lie-admissible algebras is discussed in view of generalization of that of associative and Lie algebras. Lie-admissible deformations are also suggested by the representation of Lie-admissible algebras. Some explicit examples of Lie-admissible deformation are given in terms of the (p,q)-mutation of associative deformation of an associative algebra. Finally, we discuss Lie-admissible deformations of order one
Enveloping algebras of Lie groups with descrete series
International Nuclear Information System (INIS)
Nguyen huu Anh; Vuong manh Son
1990-09-01
In this article we shall prove that the enveloping algebra of the Lie algebra of some unimodular Lie group having discrete series, when localized at some element of the center, is isomorphic to the tensor product of a Weyl algebra over the ring of Laurent polynomials of one variable and the enveloping algebra of some reductive Lie algebra. In particular, it will be proved that the Lie algebra of a unimodular solvable Lie group having discrete series satisfies the Gelfand-Kirillov conjecture. (author). 6 refs
Lie algebra contractions for overlap functions
International Nuclear Information System (INIS)
Izmest'ev, A.A.; Pogosyan, G.S.; Sisakyan, A.N.; Winternitz, P.
1999-01-01
Lie algebra contractions from o(n + 1) to e(n) are used to obtain asymptotic limits of interbases expansions between bases corresponding to different subgroup chains for the group O(n + 1). The contractions lead to interbases expansions for different subgroup chains of the Euclidean group E(n). The article is restricted to the low dimensional cases n = 2 and n = 3
Dimension of the c-nilpotent multiplier of Lie algebras
Indian Academy of Sciences (India)
Abstract. The purpose of this paper is to derive some inequalities for dimension of the c-nilpotent multiplier of finite dimensional Lie algebras and their factor Lie algebras. We further obtain an inequality between dimensions of c-nilpotent multiplier of Lie algebra L and tensor product of a central ideal by its abelianized factor ...
Dobrev, V.K.
2013-01-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of {\\it parabolic relation} between two non-compact semisimple Lie algebras g and g' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E_{7(7)} which is parabolically related to the CLA E_{7(-25)}, the parabolic subalgebras including E_{6(6)} and E_{6(-6)} . Other interesting examples are the orthogonal algebras so(p,q) all of which are parabolically related to the conformal algebra so(n,2) with p+q=n+2, the parabolic subalgebras including the Lorentz subalgebra so(n-1,1) and its analogs so(p-1,...
On Split Lie Algebras with Symmetric Root Systems
Indian Academy of Sciences (India)
... and any I j a well described ideal of , satisfying [ I j , I k ] = 0 if j ≠ k . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected.
Restricted and quasi-toral restricted Lie-Rinehart algebras
Directory of Open Access Journals (Sweden)
Sun Bing
2015-09-01
Full Text Available In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension should be.
On Lie Group-Lie Algebra Correspondences of Unitary Groups in Finite Von Neumann Algebras
Ando, Hiroshi; Ojima, Izumi; Matsuzawa, Yasumichi
2011-01-01
This article is a summary of our talk in QBIC2010. We give an affirmative answer to the question whether there exist Lie algebras for suitable closed subgroups of the unitary group U( {H}) in a Hilbert space {H} with U( {H}) equipped with the strong operator topology. More precisely, for any strongly closed subgroup G of the unitary group U( {M}) in a finite von Neumann algebra {M}, we show that the set of all generators of strongly continuous one-parameter subgroups of G forms a complete topological Lie algebra with respect to the strong resolvent topology. We also characterize the algebra /line {M} of all densely defined closed operators affiliated with {M} from the viewpoint of a tensor category.
Towards a structure theory for Lie-admissible algebras
International Nuclear Information System (INIS)
Wene, G.P.
1981-01-01
The concepts of radical and decomposition of algebras are presented. Following a discussion of the theory for associative algebras, examples are presented that illuminate the difficulties encountered in choosing a structure theory for nonassociative algebras. Suitable restrictions, based upon observed phenomenon, are given that reduce the class of Lie-admissible algebras to a manageable size. The concepts developed in the first part of the paper are then reexamined in the context of this smaller class of Lie-admissible algebras
Construction of Lie algebras and invariant tensors through abelian semigroups
International Nuclear Information System (INIS)
Izaurieta, Fernando; RodrIguez, Eduardo; Salgado, Patricio
2008-01-01
The Abelian Semigroup Expansion Method for Lie Algebras is briefly explained. Given a Lie Algebra and a discrete abelian semigroup, the method allows us to directly build new Lie Algebras with their corresponding non-trivial invariant tensors. The Method is especially interesting in the context of M-Theory, because it allows us to construct M-Algebra Invariant Chern-Simons/Transgression Lagrangians in d = 11.
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Dobrev, V. K.
2013-02-01
In the present paper we continue the project of systematic construction of invariant differential operators for non-compact semisimple Lie groups. Our starting points is the class of algebras, which we call 'conformal Lie algebras' (CLA), which have very similar properties to the conformal algebras of Minkowski space-time, though our aim is to go beyond this class in a natural way. For this we introduce the new notion of parabolic relation between two non-compact semisimple Lie algebras G and G ' that have the same complexification and possess maximal parabolic subalgebras with the same complexification. Thus, we consider the exceptional algebra E 7(7) which is parabolically related to the CLA E 7(-25) , the parabolic subalgebras including E 6(6) and E 6(-26). Other interesting examples are the orthogonal algebras so(p, q) all of which are parabolically related to the conformal algebra so( n, 2) with p + q = n + 2, the parabolic subalgebras including the Lorentz subalgebra so( n - 1, 1) and its analogs so( p - 1, q - 1). We consider also E6(6) and E6(2) which are parabolically related to the hermitian symmetric case E6(-14) , the parabolic subalgebras including real forms of sl(6). We also give a formula for the number of representations in the main multiplets valid for CLAs and all algebras that are parabolically related to them. In all considered cases we give the main multiplets of indecomposable elementary representations including the necessary data for all relevant invariant differential operators. In the case of so( p, q) we give also the reduced multiplets. We should stress that the multiplets are given in the most economic way in pairs of shadow fields. Furthermore we should stress that the classification of all invariant differential operators includes as special cases all possible conservation laws and conserved currents, unitary or not.
The Jordan structure of lie and Kac-Moody algebras
International Nuclear Information System (INIS)
Ferreira, L.A.; Gomes, J.F.; Teotonio Sobrinho, P.; Zimerman, A.H.
1989-01-01
A precise relation between the structures of Lie and Jordan algebras by presenting a method of constructing one type of algebra from the other is established. The method differs in some aspects of the Tits construction and Jordan pairs. The examples of the Lie algebras associated to simple Jordan algebras M m (n ) and Clifford algebras are discussed in detail. This approach will shed light on the role of the realizations of Jordan algebras through some types of Fermi fields used in the construction of Kac-Moodey and Virasoro algebras as well as its relevance in the study of some aspects of conformal fields theories. (author)
Internally connected graphs and the Kashiwara-Vergne Lie algebra
Felder, Matteo
2016-01-01
It is conjectured that the Kashiwara-Vergne Lie algebra $\\widehat{\\mathfrak{krv}}_2$ is isomorphic to the direct sum of the Grothendieck-Teichm\\"uller Lie algebra $\\mathfrak{grt}_1$ and a one-dimensional Lie algebra. In this paper, we use the graph complex of internally connected graphs to define a nested sequence of Lie subalgebras of $\\widehat{\\mathfrak{krv}}_2$ whose intersection is $\\mathfrak{grt}_1$, thus giving a way to interpolate between these two Lie algebras.
Renormalization group flows and continual Lie algebras
International Nuclear Information System (INIS)
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models using the one-loop beta functions, and demonstrate that they provide a continual analogue of the Toda field equations in conformally flat coordinates. In this algebraic setting, the logarithm of the world-sheet length scale, t, is interpreted as Dynkin parameter on the root system of a novel continual Lie algebra, denoted by (d/dt;1), with anti-symmetric Cartan kernel K(t,t') = δ'(t-t'); as such, it coincides with the Cartan matrix of the superalgebra sl(N vertical bar N+1) in the large-N limit. The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time, t. We provide the general solution of the renormalization group flows in terms of free fields, via Baecklund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra (d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown. (author)
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
International Nuclear Information System (INIS)
Ammar, F; Makhlouf, A; Silvestrov, S
2010-01-01
In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
Energy Technology Data Exchange (ETDEWEB)
Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)
2010-07-02
In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.
Lie n-derivations on 7 -subspace lattice algebras
Indian Academy of Sciences (India)
all x ∈ K and all A ∈ Alg L. Based on this result, a complete characterization of linear n-Lie derivations on Alg L is obtained. Keywords. J -subspace lattice algebras; Lie derivations; Lie n-derivations; derivations. 2010 Mathematics Subject Classification. 47B47, 47L35. 1. Introduction. Let A be an algebra. Recall that a linear ...
Representations of Lie algebras and partial differential equations
Xu, Xiaoping
2017-01-01
This book provides explicit representations of finite-dimensional simple Lie algebras, related partial differential equations, linear orthogonal algebraic codes, combinatorics and algebraic varieties, summarizing the author’s works and his joint works with his former students. Further, it presents various oscillator generalizations of the classical representation theorem on harmonic polynomials, and highlights new functors from the representation category of a simple Lie algebra to that of another simple Lie algebra. Partial differential equations play a key role in solving certain representation problems. The weight matrices of the minimal and adjoint representations over the simple Lie algebras of types E and F are proved to generate ternary orthogonal linear codes with large minimal distances. New multi-variable hypergeometric functions related to the root systems of simple Lie algebras are introduced in connection with quantum many-body systems in one dimension. In addition, the book identifies certai...
Bagger-Lambert Theory for General Lie Algebras
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f^{ABCD} of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f^{ABCD} can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the "center-of-mass" mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which under...
Lie 3-algebra and multiple M2-branes
International Nuclear Information System (INIS)
Ho, Pei-Ming; Hou, Ru-Chuen; Matsuo, Yutaka
2008-01-01
Motivated by the recent proposal of an N = 8 supersymmetric action for multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not known in the literature are found. Next we consider cubic matrix representations of Lie 3-algebras. We show how to obtain higher dimensional representations by tensor products for a generic 3-algebra. A criterion of reducibility is presented. We also discuss the application of Lie 3-algebra to the membrane physics, including the Basu-Harvey equation and the Bagger-Lambert model.
Finely homogeneous computations in free Lie algebras
Directory of Open Access Journals (Sweden)
Philippe Andary
1997-12-01
Full Text Available We first give a fast algorithm to compute the maximal Lyndon word (with respect to lexicographic order of Ly α (A for every given multidegree alpha in N k. We then give an algorithm to compute all the words living in Ly α (A for any given α in N k. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go from every Lyndon word of length n to its successor (with respect to lexicographic order by length, in space and worst case time complexity O(n. Finally, we give a simple algorithm which uses Duval's method (the one above to compute the next standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting application of this algorithm in control theory, where one wants to compute within the command Lie algebra of a dynamical system (letters are actually vector fields.
Low-dimensional filiform Lie algebras over finite fields
Falcón Ganfornina, Óscar Jesús; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vasek, Vladimir (Coordinador); Shmaliy, Yuriy S. (Coordinador); Trcek, Denis (Coordinador); Kobayashi, Nobuhiko P. (Coordinador); Choras, Ryszard S. (Coordinador); Klos, Zbigniew (Coordinador)
2011-01-01
In this paper we use some objects of Graph Theory to classify low-dimensional filiform Lie algebras over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As results, which can be applied in several branches of Physics or Engineering, for instance, we find out that there exist, up to isomorphism, six 6-dimensional filiform Lie algebras over Z/pZ, for p = 2, 3, 5. Pl...
The Lie algebra of the N=2-string
International Nuclear Information System (INIS)
Kugel, K.
2006-01-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
The Lie algebra of the N=2-string
Energy Technology Data Exchange (ETDEWEB)
Kugel, K.
2006-07-01
The theory of generalized Kac-Moody algebras is a generalization of the theory of finite dimensional simple Lie algebras. The physical states of some compactified strings give realizations of generalized Kac-Moody algebras. For example the physical states of a bosonic string moving on a 26 dimensional torus form a generalized Kac-Moody algebra and the physical states of a N=1 string moving on a 10 dimensional torus form a generalized Kac-Moody superalgebra. A natural question is whether the physical states of the compactified N=2-string also realize such an algebra. In this thesis we construct the Lie algebra of the compactified N=2-string, study its properties and show that it is not a generalized Kac-Moody algebra. The Fock space of a N=2-string moving on a 4 dimensional torus can be described by a vertex algebra constructed from a rational lattice of signature (8,4). Here 6 coordinates with signature (4,2) come from the matter part and 6 coordinates with signature (4,2) come from the ghost part. The physical states are represented by the cohomology of the BRST-operator. The vertex algebra induces a product on the vector space of physical states that defines the structure of a Lie algebra on this space. This Lie algebra shares many properties with generalized Kac-Moody algebra but we will show that it is not a generalized Kac-Moody algebra. (orig.)
Structures of W(2.2 Lie conformal algebra
Directory of Open Access Journals (Sweden)
Yuan Lamei
2016-01-01
. In this paper, we study conformal derivations, central extensions and conformal modules for this Lie conformal algebra. Also, we compute the cohomology of this Lie conformal algebra with coefficients in its modules. In particular, we determine its cohomology with trivial coefficients both for the basic and reduced complexes.
A note on relations between Hom-Malcev algebras and Hom-Lie-Yamaguti algebras
Gaparayi, Donatien; Issa, A. Nourou
2015-01-01
A Hom-Lie-Yamaguti algebra, whose ternary operation expresses through its binary one in a specific way, is a multiplicative Hom-Malcev algebra. Any multiplicative Hom-Malcev algebra over a field of characteristic zero has a natural Hom-Lie-Yamaguti structure.
Particle-like structure of coaxial Lie algebras
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
Lie 3-Algebra and Multiple M2-branes
Ho, Pei-Ming; Hou, Ru-Chuen; Matsuo, Yutaka
2008-01-01
Motivated by the recent proposal of an N=8 supersymmetric action for multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not known in the literature are found. Next we consider cubic matrix representations of Lie 3-algebras. We show how to obtain higher dimensional representations by tensor products for a generic 3-algebra. A criterion of reducibility is presented. We also ...
The vacuum preserving Lie algebra of a classical W-algebra
International Nuclear Information System (INIS)
Feher, L.; Tsutsui, I.
1993-07-01
We simplify and generalize an argument due to Bowcock and Watts showing that one can associate a finite Lie algebra (the 'classical vacuum preserving algebra') containing the Moebius sl(2) subalgebra to any classical W-algebra. Our construction is based on a kinematical analysis of the Poisson brackets of quasi-fields. In the case of the W S G -subalgebra S of a simple Lie algebra G, we exhibit a natural isomorphism between this finite Lie algebra and G whereby the Moebius sl(2) is identified with S. (orig.)
Fricke Lie algebras and the genus zero property in Moonshine
Carnahan, Scott
2017-10-01
We give a new, simpler proof that the canonical actions of finite groups on Fricke-type Monstrous Lie algebras yield genus zero functions in generalized Monstrous Moonshine, using a Borcherds-Kac-Moody Lie algebra decomposition due to Jurisich. We describe a compatibility condition, arising from the no-ghost theorem in bosonic string theory, that yields the genus zero property. We give evidence for and against the conjecture that such a compatibility for symmetries of the Monster Lie algebra gives a characterization of the Monster group.
Quantum algebras as quantizations of dual Poisson–Lie groups
International Nuclear Information System (INIS)
Ballesteros, Ángel; Musso, Fabio
2013-01-01
A systematic computational approach for the explicit construction of any quantum Hopf algebra (U z (g), Δ z ) starting from the Lie bialgebra (g, δ) that gives the first-order deformation of the coproduct map Δ z is presented. The procedure is based on the well-known ‘quantum duality principle’, namely the fact that any quantum algebra can be viewed as the quantization of the unique Poisson–Lie structure (G*, Λ g ) on the dual group G*, which is obtained by exponentiating the Lie algebra g* defined by the dual map δ*. From this perspective, the coproduct for U z (g) is just the pull-back of the group law for G*, and the Poisson analogues of the quantum commutation rules for U z (g) are given by the unique Poisson–Lie structure Λ g on G* whose linearization is the Poisson analogue of the initial Lie algebra g. This approach is shown to be a very useful technical tool in order to solve the Lie bialgebra quantization problem explicitly since, once a Lie bialgebra (g, δ) is given, the full dual Poisson–Lie group (G*, Λ) can be obtained either by applying standard Poisson–Lie group techniques or by implementing the algorithm presented here with the aid of symbolic manipulation programs. As a consequence, the quantization of (G*, Λ) will give rise to the full U z (g) quantum algebra, provided that ordering problems are appropriately fixed through the choice of certain local coordinates on G* whose coproduct fulfils a precise ‘quantum symmetry’ property. The applicability of this approach is explicitly demonstrated by reviewing the construction of several instances of quantum deformations of physically relevant Lie algebras such as sl(2,R), the (2+1) anti-de Sitter algebra so(2, 2) and the Poincaré algebra in (3+1) dimensions. (paper)
Nonlinear analysis for the electrostatic analyzers with lie algebraic methods
International Nuclear Information System (INIS)
Li Jinhai; Lv Jianqin
2005-01-01
With the Lie algebraic methods, the charged particle trajectories in electrostatic analyzers are analyzed and the third order solutions obtained. The authors briefly describe the Lie algebraic methods and the procedures of calculating the nonlinear orbits. The procedures are: first, set up the Hamiltonian; then expand the Hamiltonian into a sum of homogeneous polynomials of different degrees; next, calculate the Lie map associating to the Hamiltonian; finally, apply the Lie map on the particle initial coordinates in the phase space, and obtain the particle nonlinear trajectories of the first order, the second order, and the third order approximations respectively. Higher orders solutions could be obtained if needed. (author)
Applications of Lie algebras in the solution of dynamic problems
International Nuclear Information System (INIS)
Fellay, G.
1983-01-01
The purpose of this paper is to give some insight into the Lie-algebras and their applications. The first part introduces the elementary properties of such algebras, e.g. nilpotency, solvability, etc. The second part shows how to use the demonstrated theory for solving differential equations with time-dependent coefficients. (Auth.)
Lectures on Lie algebras and their representations: 1
International Nuclear Information System (INIS)
Dobrev, V.K.
1988-05-01
The paper is based on sixteen lectures given by the author in April-June 1988 at the International Centre for Theoretical Physics, Trieste. It covers the basic material on the structure, classification and representations of Lie algebras G associated with a (generalized) Cartan matrix, or Kac-Moody algebras for short. 16 refs, tabs
On split Lie algebras with symmetric root systems
Indian Academy of Sciences (India)
, Spain. E-mail: ajesus.calderon@uca.es. MS received 24 May 2007. Abstract. We develop techniques of connections of roots for split Lie algebras with symmetric root systems. We show that any of such algebras L is of the form L = U +. ∑.
Ideals and primitive elements of some relatively free Lie algebras.
Ekici, Naime; Esmerligil, Zerrin; Ersalan, Dilek
2016-01-01
Let F be a free Lie algebra of finite rank over a field K. We prove that if an ideal [Formula: see text] of the algebra [Formula: see text] contains a primitive element [Formula: see text] then the element [Formula: see text] is primitive. We also show that, in the Lie algebra [Formula: see text] there exists an element [Formula: see text] such that the ideal [Formula: see text] contains a primitive element [Formula: see text] but, [Formula: see text] and [Formula: see text] are not conjugate by means of an inner automorphism.
Czech Academy of Sciences Publication Activity Database
Sati, H.; Schreiber, Urs
2017-01-01
Roč. 2017, č. 3 (2017), č. článku 87. ISSN 1126-6708 Institutional support: RVO:67985840 Keywords : Differential and Algebraic Geometry * p-branes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://link.springer.com/article/10.1007%2FJHEP03%282017%29087
Developments and retrospectives in Lie theory algebraic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Algebraic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Mos...
A discrete variational identity on semi-direct sums of Lie algebras
International Nuclear Information System (INIS)
M, Wenxiu
2007-01-01
The discrete variational identity under general bilinear forms on semi-direct sums of Lie algebras is established. The constant γ involved in the variational identity is determined through the corresponding solution to the stationary discrete zero-curvature equation. An application of the resulting variational identity to a class of semi-direct sums of Lie algebras in the Volterra lattice case furnishes Hamiltonian structures for the associated integrable couplings of the Volterra lattice hierarchy
Classical mechanics on noncommutative space with Lie-algebraic structure
International Nuclear Information System (INIS)
Miao Yangang; Wang Xudong; Yu Shaojie
2011-01-01
Highlights: → Suggest a useful method to look for new Lie-algebraic noncommutative spaces. → Find out two new Lie-algebraic noncommutative spaces. → Derive Newton and Hamilton equations that present unimaginable extra forces. → Analyse the source of unimaginable extra forces from space noncummutativity. → Provide various intriguing classical trajectories. - Abstract: We investigate the kinetics of a nonrelativistic particle interacting with a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two new sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle interacting with a constant external force by means of the Hamiltonian formalism on a Poisson manifold. Our results not only include that of a recent work as our special cases, but also provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable tx-dot-,(xx-dot)-, and (xx-double dot)-dependence besides with the usual t-, x-, and x-dot-dependence, originating from a variety of noncommutativity between different spatial coordinates and between spatial coordinates and momenta as well, deform greatly the particle's ordinary trajectories we are quite familiar with on the Euclidean (commutative) space.
On squares of representations of compact Lie algebras
International Nuclear Information System (INIS)
Zeier, Robert; Zimborás, Zoltán
2015-01-01
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the sum of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems
Renormalization group flows and continual Lie algebras
Bakas, Ioannis
2003-01-01
We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches...
Bagger-Lambert theory for general Lie algebras
International Nuclear Information System (INIS)
Gomis, Jaume; Milanesi, Giuseppe; Russo, Jorge G.
2008-01-01
We construct the totally antisymmetric structure constants f ABCD of a 3-algebra with a Lorentzian bi-invariant metric starting from an arbitrary semi-simple Lie algebra. The structure constants f ABCD can be used to write down a maximally superconformal 3d theory that incorporates the expected degrees of freedom of multiple M2 branes, including the 'center-of-mass' mode described by free scalar and fermion fields. The gauge field sector reduces to a three dimensional BF term, which underlies the gauge symmetry of the theory. We comment on the issue of unitarity of the quantum theory, which is problematic, despite the fact that the specific form of the interactions prevent the ghost fields from running in the internal lines of any Feynman diagram. Giving an expectation value to one of the scalar fields leads to the maximally supersymmetric 3d Yang-Mills Lagrangian with the addition of two U(1) multiplets, one of them ghost-like, which is decoupled at large g YM .
Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
Directory of Open Access Journals (Sweden)
Luigi Accardi
2009-05-01
Full Text Available The present paper reviews some intriguing connections which link together a new renormalization technique, the theory of *-representations of infinite dimensional *-Lie algebras, quantum probability, white noise and stochastic calculus and the theory of classical and quantum infinitely divisible processes.
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Energy Technology Data Exchange (ETDEWEB)
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
On split Lie algebras with symmetric root systems
Indian Academy of Sciences (India)
... family of its minimal ideals, each one being a simple split Lie algebra with a symmetric root system and having all its nonzero roots connected. Author Affiliations. Antonio J Calderón Martín1. Departamento de Matemáticas, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain. Dates. Manuscript received: 24 May 2007 ...
On the intersection of irreducible components of the space of finite-dimensional Lie algebras
International Nuclear Information System (INIS)
Gorbatsevich, Vladimir V
2012-01-01
The irreducible components of the space of n-dimensional Lie algebras are investigated. The properties of Lie algebras belonging to the intersection of all the irreducible components of this kind are studied (these Lie algebras are said to be basic or founding Lie algebras). It is proved that all Lie algebras of this kind are nilpotent and each of these Lie algebras has an Abelian ideal of codimension one. Specific examples of founding Lie algebras of arbitrary dimension are described and, to describe the Lie algebras in general, we state a conjecture. The concept of spectrum of a Lie algebra is considered and some of the most elementary properties of the spectrum are studied. Bibliography: 6 titles.
Non-solvable contractions of semisimple Lie algebras in low dimension
International Nuclear Information System (INIS)
Campoamor-Stursberg, R
2007-01-01
The problem of non-solvable contractions of Lie algebras is analysed. By means of a stability theorem, the problem is shown to be deeply related to the embeddings among semisimple Lie algebras and the resulting branching rules for representations. With this procedure, we determine all deformations of indecomposable Lie algebras having a nontrivial Levi decomposition onto semisimple Lie algebras of dimension n ≤ 8, and obtain the non-solvable contractions of the latter class of algebras
W-realization of Lie algebras. Application to so(4,2) and Poincare algebras
Energy Technology Data Exchange (ETDEWEB)
Barbarin, F.; Ragoucy, E.; Sorba, P.
1996-05-01
The property of some finite W-algebras to appear as the commutant of a particular subalgebra in a simple Lie algebra G is exploited for the obtention of new G-realizations from a `canonical` differential one. The method is applied to the conformal algebra so(4,2) and therefore yields also results for its Poincare subalgebra. Unitary irreducible representations of these algebras are recognized in this approach, which is naturally compared -or associated to - the induced representation technique. (author). 12 refs.
Essays in the history of Lie groups and algebraic groups
Borel, Armand
2001-01-01
Lie groups and algebraic groups are important in many major areas of mathematics and mathematical physics. We find them in diverse roles, notably as groups of automorphisms of geometric structures, as symmetries of differential systems, or as basic tools in the theory of automorphic forms. The author looks at their development, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. Starting from Lie's theory of local analytic transformation groups and early work on Lie algebras, he follows the process of globalization in its two main frameworks: differential geometry and topology on one hand, algebraic geometry on the other. Chapters II to IV are devoted to the former, Chapters V to VIII, to the latter. The essays in the first part of the book survey various proofs of the full reducibility of linear representations of \\mathbf{SL}_2{(\\mathbb{C})}, the contributions of H. Weyl to representations and invariant theory for semisimple Lie groups, and con...
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
International Nuclear Information System (INIS)
Bakalov, Bojko; Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan
2008-01-01
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V M (x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp(∞,R) corresponding to the field R of reals, of u(∞, ∞) associated with the field C of complex numbers, and of so*(4∞) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively
Infinite-dimensional Lie algebras in 4D conformal quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bakalov, Bojko [Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695 (United States); Nikolov, Nikolay M; Rehren, Karl-Henning; Todorov, Ivan [Institute for Nuclear Research and Nuclear Energy, Tsarigradsko Chaussee 72, BG-1784 Sofia (Bulgaria)], E-mail: bojko_bakalov@ncsu.edu, E-mail: mitov@inrne.bas.bg, E-mail: rehren@theorie.physik.uni-goe.de, E-mail: todorov@inrne.bas.bg
2008-05-16
The concept of global conformal invariance (GCI) opens the way of applying algebraic techniques, developed in the context of two-dimensional chiral conformal field theory, to a higher (even) dimensional spacetime. In particular, a system of GCI scalar fields of conformal dimension two gives rise to a Lie algebra of harmonic bilocal fields, V{sub M}(x, y), where the M span a finite dimensional real matrix algebra M closed under transposition. The associative algebra M is irreducible iff its commutant M' coincides with one of the three real division rings. The Lie algebra of (the modes of) the bilocal fields is in each case an infinite-dimensional Lie algebra: a central extension of sp({infinity},R) corresponding to the field R of reals, of u({infinity}, {infinity}) associated with the field C of complex numbers, and of so*(4{infinity}) related to the algebra H of quaternions. They give rise to quantum field theory models with superselection sectors governed by the (global) gauge groups O(N), U(N) and U(N,H)=Sp(2N), respectively.
Generalized quantum statistics and Lie (super)algebras
Energy Technology Data Exchange (ETDEWEB)
Stoilova, N. I. [Institute for Nuclear Research and Nuclear Energy, Bould. Tsarigradsko Chaussee 72, 1784 Sofia (Bulgaria)
2016-03-25
Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation of motion determine the quantum mechanical commutation relation?.
Orbits in real Z(m)-graded semisimple Lie algebras
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
2011-01-01
Roč. 21, č. 2 (2011), s. 285-305 ISSN 0949-5932 R&D Projects: GA AV ČR IAA100190701 Institutional research plan: CEZ:AV0Z10190503 Keywords : Real Z-sub-m-graded Lie algebra * nilpotent elements * homogeneous elements Subject RIV: BA - General Mathematics Impact factor: 0.296, year: 2011 http://www.heldermann.de/JLT/JLT21/JLT212/jlt21013.htm
Integrable finite-dimensional systems related to Lie algebras
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1979-01-01
Some solvable finite-dimensional classical and quantum systems related to the Lie algebras are considered. The dynamics of these systems is closely related to free motion on symmetric spaces. In specific cases the systems considered describe the one-dimensional n-body problem recently considered by many authors. The review represents from general and universal point of view the results obtained during the last few years. Besides, it contains some results both of physical and mathematical type
Fixed points of IA-endomorphisms of a free metabelian Lie algebra
Indian Academy of Sciences (India)
Free metabelian Lie algebra; fixed point. 1. Introduction. One of the important problem in the theory of Lie algebras is to determine the non-trivial fixed points of endomorphisms of free Lie algebras. The most important results about fixed points of a finite group acting on a free alge- bra were obtained by Formanek [5]. Similar ...
The Relative Lie Algebra Cohomology of the Weil Representation
Ralston, Jacob
We study the relative Lie algebra cohomology of so(p,q) with values in the Weil representation piof the dual pair Sp(2k, R) x O(p,q ). Using the Fock model defined in Chapter 2, we filter this complex and construct the associated spectral sequence. We then prove that the resulting spectral sequence converges to the relative Lie algebra cohomology and has E0 term, the associated graded complex, isomorphic to a Koszul complex, see Section 3.4. It is immediate that the construction of the spectral sequence of Chapter 3 can be applied to any reductive subalgebra g ⊂ sp(2k(p + q), R). By the Weil representation of O( p,|q), we mean the twist of the Weil representation of the two-fold cover O(pq)[special character omitted] by a suitable character. We do this to make the center of O(pq)[special character omitted] act trivially. Otherwise, all relative Lie algebra cohomology groups would vanish, see Proposition 4.10.2. In case the symplectic group is large relative to the orthogonal group (k ≥ pq), the E 0 term is isomorphic to a Koszul complex defined by a regular sequence, see 3.4. Thus, the cohomology vanishes except in top degree. This result is obtained without calculating the space of cochains and hence without using any representation theory. On the other hand, in case k BMR], this author wrote with his advisor John Millson and Nicolas Bergeron of the University of Paris.
Surfaces immersed in Lie algebras associated with elliptic integrals
International Nuclear Information System (INIS)
Grundland, A M; Post, S
2012-01-01
The objective of this work is to adapt the Fokas–Gel’fand immersion formula to ordinary differential equations written in the Lax representation. The formalism of generalized vector fields and their prolongation structure is employed to establish necessary and sufficient conditions for the existence and integration of immersion functions for surfaces in Lie algebras. As an example, a class of second-order, integrable, ordinary differential equations is considered and the most general solutions for the wavefunctions of the linear spectral problem are found. Several explicit examples of surfaces associated with Jacobian and P-Weierstrass elliptic functions are presented. (paper)
International Workshop "Groups, Rings, Lie and Hopf Algebras"
2003-01-01
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
On generalized Melvin solution for the Lie algebra E6
International Nuclear Information System (INIS)
Bolokhov, S.V.; Ivashchuk, V.D.
2017-01-01
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H s (z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H s (z), s = 1,.., 6, for the Lie algebra E 6 are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q s , s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E 6 -polynomials at large z are governed by the integer-valued matrix ν = A -1 (I + P), where A -1 is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z 2 -group of symmetry of the Dynkin diagram. The 2-form fluxes Φ s , s = 1,.., 6, are calculated. (orig.)
International Nuclear Information System (INIS)
Le Van Hop.
1989-12-01
The combinatorics computation is used to describe the Casimir operators of the symplectic Lie Algebra. This result is applied for determining the Center of the enveloping Algebra of the semidirect Product of the Heisenberg Lie Algebra and the symplectic Lie Algebra. (author). 10 refs
The geometry of lie algebras and broken SO(6) symmetries
International Nuclear Information System (INIS)
Lawrence, T.R.
2001-10-01
Non-linear realisations of the groups SU(2), SO(1,4) and SO(2,4) are analysed, described by the coset spaces SU(2)/U(1), SO(1,4)/SO(1,3) and SO(2,4)/SO(1,3) x SO(1,1). The Lie algebras of certain special unitary and special orthogonal groups are studied and their projection operators are determined in order to facilitate the above analyses, in particular that of SO(2,4)/SO(l,3) x SO(1,1). The analysis consists of determining the transformation properties of the Goldstone bosons, constructing the most general possible Lagrangian for the realisations and finding the metric of the coset space. (author)
Classification of filiform Lie algebras up to dimension 7 over finite fields
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad
2016-01-01
This paper tries to develop a recent research which consists in using Discrete Mathematics as a tool in the study of the problem of the classification of Lie algebras in general, dealing in this case with filiform Lie algebras up to dimension 7 over finite fields. The idea lies in the representation of each Lie algebra by a certain type of graphs. Then, some properties on Graph Theory make easier to classify the algebras. As main results, we find out that there exist, up to isomor...
International Nuclear Information System (INIS)
Feng, H.; Zheng, Y.; Ding, S.
2007-01-01
Infrared multiphoton vibrational excitation of the linear triatomic molecule has been studied using the quadratic anharmonic Lie-algebra model, unitary transformations, and Magnus approximation. An explicit Lie-algebra expression for the vibrational transition probability is obtained by using a Lie-algebra approach. This explicit Lie-algebra expressions for time-evolution operator and vibrational transition probabilities make the computation clearer and easier. The infrared multiphoton vibrational excitation of the DCN linear tri-atomic molecule is discussed as an example
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Structures of Malcev Bialgebras on a simple non-Lie Malcev algebra
Goncharov, Maxim
2010-01-01
Lie bialgebras were introduced by Drinfeld in studying the solutions to the classical Yang-Baxter equation. The definition of a bialgebra in the sense of Drinfeld (D-bialgebra), related with any variety of algebras, was given by Zhelyabin. In this work, we consider Malcev bialgebras. We describe all structures of a Malcev bialgebra on a simple non-Lie Malcev algebra.
Time-evolution operators for (coupled) time-dependent oscillators and Lie algebraic structure theory
Wolf, F.; Korsch, H. J.
1988-03-01
This paper deals with the application of Lie algebraic structure theory to time-dependent quantum systems making use of the Levi-Malcev decomposition of the Lie algebra generated by the Hamiltonian and the Wei-Norman representation of the time-evolution operator. In particular, (coupled) harmonic-oscillator systems are studied. Explicit formulas for expectation values and transition probabilities are derived.
Test elements of direct sums and free products of free Lie algebras
Indian Academy of Sciences (India)
Abstract. We give a characterization of test elements of a direct sum of free Lie algebras in terms of test elements of the factors. In addition, we construct certain types of test elements and we prove that in a free product of free Lie algebras, product of the homogeneous test elements of the factors is also a test element.
Test elements of direct sums and free products of free Lie algebras
Indian Academy of Sciences (India)
We give a characterization of test elements of a direct sum of free Lie algebras in terms of test elements of the factors. In addition, we construct certain types of test elements and we prove that in a free product of free Lie algebras, product of the homogeneous test elements of the factors is also a test element.
Test rank of an abelian product of a free Lie algebra and a free ...
Indian Academy of Sciences (India)
Introduction. The notions test set, test rank and test elements are interesting for groups and Lie algebras. Examples of test elements of free Lie algebras of rank two were given by Mikhalev and. Yu [10]. Other examples of test elements were considered by Mikhalev, Umirbaev and Yu. [11], Temizyurek and Ekici [13] and ...
Test rank of an abelian product of a free Lie algebra and a free ...
Indian Academy of Sciences (India)
Let be a free Lie algebra of rank ≥ 2 and be a free abelian Lie algebra of rank ≥ 2. We prove that the test rank of the abelian product F × A is . Morever we compute the test rank of the algebra F / k ( F ) ′ . Author Affiliations. Naime Ekici1 Nazar Şahin Öğüşlü1. Department of Mathematics, Çukurova University, ...
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Lie n-derivations on 7 -subspace lattice algebras
Indian Academy of Sciences (India)
tice algebra, or briefly, JSL algebra. Note that a JSL algebra may not be prime. It also should be mentioned that both atomic Boolean subspace lattices and pentagon subspace lattices are 7 .... there exists some P ∈ JL(K) such that A = P AP and B = PBP. So JL(K) is a local matrix algebra. Note that K ∧ K− = {0} and K ∨ K.
Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space
International Nuclear Information System (INIS)
Daszkiewicz, Marcin; Walczyk, Cezary J.
2008-01-01
The Newton equation describing particle motion in a constant external field force on canonical, Lie-algebraic, and quadratic space-time is investigated. We show that for canonical deformation of space-time the dynamical effects are absent, while in the case of Lie-algebraic noncommutativity, when spatial coordinates commute to the time variable, the additional acceleration of the particle is generated. We also indicate that in the case of spatial coordinates commuting in a Lie-algebraic way, as well as for quadratic deformation, there appear additional velocity and position-dependent forces
Constructing towers with skeletons from open Lie algebras and integrability
Palese, Marcella; Winterroth, Ekkehart
2012-02-01
We provide a given algebraic structure with the structure of an infinitesimal algebraic skeleton. The necessary conditions for integrability of the absolute parallelism of a tower with such a skeleton are dispersive nonlinear models and related conservation laws given in the form of associated linear spectral problems.
Advances in geometry and Lie algebras from supergravity
Frè, Pietro Giuseppe
2018-01-01
This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject. .
Algebras of Complete Hörmander Vector Fields, and Lie-Group Construction
Directory of Open Access Journals (Sweden)
Andrea Bonfiglioli
2014-12-01
Full Text Available The aim of this note is to characterize the Lie algebras g of the analytic vector fields in RN which coincide with the Lie algebras of the (analytic Lie groups defined on RN (with its usual differentiable structure. We show that such a characterization amounts to asking that: (i g is N-dimensional; (ii g admits a set of Lie generators which are complete vector fields; (iii g satisfies Hörmander’s rank condition. These conditions are necessary, sufficient and mutually independent. Our approach is constructive, in that for any such g we show how to construct a Lie group G = (RN, * whose Lie algebra is g. We do not make use of Lie’s Third Theorem, but we only exploit the Campbell-Baker-Hausdorff-Dynkin Theorem for ODE’s.
Study of some properties of partial differential equations by Lie algebra method
International Nuclear Information System (INIS)
Chongdar, A.K.; Ludu, A.
1990-05-01
In this note we present a system of optimal subalgebras of the Lie algebra obtained in course of investigating hypergeometric polynomial. In addition to this we have obtained some reduced equation and invariants of the P.D.E. obtained under certain transformation while studying hypergeometric polynomial by Weisner's method. Some topological properties of the solutions of P.D.E. are pointed out by using the extended jet bundle formalism. Some applications of our work on plasma physics and hydrodynamics are also cited. (author). 8 refs
Lie 3-ALGEBRA and Super-Affinization of Split-Octonions
Carrión, Hector L.; Giardino, Sergio
The purpose of this study is to extend the concept of a generalized Lie 3-algebra, known to the divisional algebra of the octonions 𝕆, to split-octonions 𝕊𝕆, which is non-divisional. This is achieved through the unification of the product of both of the algebras in a single operation. Accordingly, a notational device is introduced to unify the product of both algebras. We verify that 𝕊𝕆 is a Malcev algebra and we recalculate known relations for the structure constants in terms of the introduced structure tensor. Finally we construct the manifestly supersymmetric {N} = 1{ SO} affine superalgebra. An application of the split Lie 3-algebra for a Bagger and Lambert gauge theory is also discussed.
Closure of the gauge algebra, generalized Lie equations and Feynman rules
International Nuclear Information System (INIS)
Batalin, I.A.
1984-01-01
A method is given by which an open gauge algebra can always be closed and even made abelian. As a preliminary the generalized Lie equations for the open group are obtained. The Feynman rules for gauge theories with open algebras are derived by reducing the gauge theory to a non-gauge one. (orig.)
International Nuclear Information System (INIS)
Dragt, A.J.
1987-01-01
A review is given of elementary Lie algebraic methods for treating Hamiltonian systems. This review is followed by a brief exposition of advanced Lie algebraic methods including resonance bases and conjugacy theorems. Finally, applications are made to the design of third-order achromats for use in accelerators, to the design of subangstroem resolution electron microscopes, and to the classification and study of high order aberrations in light optics. (orig.)
Semi-direct sums of Lie algebras and continuous integrable couplings
International Nuclear Information System (INIS)
Ma Wenxiu; Xu Xixiang; Zhang Yufeng
2006-01-01
A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems
A non-Lie algebraic framework and its possible merits for symmetry descriptions
International Nuclear Information System (INIS)
Ktorides, C.N.
1975-01-01
A nonassociative algebraic construction is introduced which bears a relation to a Lie algebra L paralleling the relation between an associative enveloping algebra and L. The key ingredient of this algebraic construction is the presence of two parameters which relate it to the enveloping algebra of L. The analog of the Poincare--Birkhoff--Witt theorem is proved for the new algebra. Possibilities of physical relevance are also considered. It is noted that, if fully developed, the mathematical framework suggested by this new algebra should be non-Lie. Subsequently, a certain scheme resulting from specific considerations connected with this (non-Lie) algebraic structure is found to bear striking resemblance to a recent phenomenological theory proposed for explaining CP violation by the K 0 system. Some relevant speculations are also made in view of certain recent trends of thought in elementary particle physics. Finally, in an appendix, a Gell-Mann--Okubo-like mass formula for the new algebra is derived for an SU (3) octet
Attan, Sylvain; Issa, A. Nourou
2014-01-01
Every multiplicative Hom-Malcev algebra has a natural multiplicative Hom-Lie triple system structure. Moreover, there is a natural Hom-Bol algebra structure on every multiplicative Hom-Malcev algebra and on every multiplicative right (or left) Hom-alternative algebra.
The Adapted Ordering Method for Lie algebras and superalgebras and their generalizations
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, Beatriz [Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); NIKHEF-H, Kruislaan 409, NL-1098 SJ Amsterdam (Netherlands)
2008-02-01
In 1998 the Adapted Ordering Method was developed for the representation theory of the superconformal algebras in two dimensions. It allows us to determine maximal dimensions for a given type of space of singular vectors, to identify all singular vectors by only a few coefficients, to spot subsingular vectors and to set the basis for constructing embedding diagrams. In this paper we present the Adapted Ordering Method for general Lie algebras and superalgebras and their generalizations, provided they can be triangulated. We also review briefly the results obtained for the Virasoro algebra and for the N = 2 and Ramond N = 1 superconformal algebras.
Structure of Lie point and variational symmetry algebras for a class of odes
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
Characterizing ξ-Lie Multiplicative Isomorphisms on Von Neumann Algebras
Directory of Open Access Journals (Sweden)
Yamin Song
2014-01-01
Full Text Available Let ℳ and be von Neumann algebras without central summands of type I1. Assume that ξ∈ℂ with ξ≠1. In this paper, all maps Φ:ℳ→ satisfying ΦAB-ξBA=ΦAΦB-ξΦBΦ(A are characterized.
International Nuclear Information System (INIS)
Dobrev, V.K.
1992-01-01
We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs
Realization of bicovariant differential calculus on the Lie algebra type noncommutative spaces
Meljanac, Stjepan; Krešić–Jurić, Saša; Martinić, Tea
2017-07-01
This paper investigates bicovariant differential calculus on noncommutative spaces of the Lie algebra type. For a given Lie algebra g0, we construct a Lie superalgebra g =g0⊕g1 containing noncommutative coordinates and one-forms. We show that g can be extended by a set of generators TAB whose action on the enveloping algebra U (g ) gives the commutation relations between monomials in U (g0 ) and one-forms. Realizations of noncommutative coordinates, one-forms, and the generators TAB as formal power series in a semicompleted Weyl superalgebra are found. In the special case dim(g0 ) =dim(g1 ) , we also find a realization of the exterior derivative on U (g0 ) . The realizations of these geometric objects yield a bicovariant differential calculus on U (g0 ) as a deformation of the standard calculus on the Euclidean space.
Analysis of higher order optical aberrations in the SLC final focus using Lie Algebra techniques
International Nuclear Information System (INIS)
Walker, N.J.; Irwin, J.; Woodley, M.
1993-04-01
The SLC final focus system is designed to have an overall demagnification of 30:1, with a β at the interaction point (β*) of 5 mm, and an energy band pass of ∼0.4%. Strong sextupole pairs are used to cancel the large chromaticity which accrues primarily from the final triplet. Third-order aberrations limit the performance of the system, the dominating terms being U 1266 and U 3466 terms (in the notation of K. Brown). Using Lie Algebra techniques, it is possible to analytically calculate the soave of these terms in addition to understanding their origin. Analytical calculations (using Lie Algebra packages developed in the Mathematica language) are presented of the bandwidth and minimum spot size as a function of divergence at the interaction point (IP). Comparisons of the analytical results from the Lie Algebra maps and results from particle tracking (TURTLE) are also presented
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
Directory of Open Access Journals (Sweden)
Rutwig Campoamor-Stursberg
2016-03-01
Full Text Available A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebra. In particular, well-known types, such as the Milne-Pinney or Kummer-Schwarz equations, are recovered as special cases of this classification. The analogous problem for systems of second-order differential equations in the real plane is considered for a special case that enlarges the generalized Ermakov systems.
Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach
Lukierski, Jerzy; Meljanac, Daniel; Meljanac, Stjepan; Pikutić, Danijel; Woronowicz, Mariusz
2018-02-01
We consider new Abelian twists of Poincare algebra describing nonsymmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generating quantum Poincare-Hopf algebra providing quantum Poincare symmetries, and by considering the quantization which provides Hopf algebroid describing class of quantum relativistic phase spaces with built-in quantum Poincare covariance. If we assume that Lorentz generators are orbital i.e. do not describe spin degrees of freedom, one can embed the considered generalized phase spaces into the ones describing the quantum-deformed Heisenberg algebras.
Normalization in Lie algebras via mould calculus and applications
Paul, Thierry; Sauzin, David
2017-11-01
We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin
2018-03-01
We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras
Directory of Open Access Journals (Sweden)
Meer Ashwinkumar
2018-03-01
Full Text Available We study the ground states and left-excited states of the Ak−1 N=(2,0 little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU(k. The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.
A classification of generalized quantum statistics associated with classical Lie algebras
Stoilova, N. I.; Van der Jeugt, J.
2004-01-01
Generalized quantum statistics such as para-Fermi statistics is characterized by certain triple relations which, in the case of para-Fermi statistics, are related to the orthogonal Lie algebra B_n=so(2n+1). In this paper, we give a quite general definition of ``a generalized quantum statistics associated to a classical Lie algebra G''. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is then determined by a set of root vectors (the creation an...
Identification of dynamical Lie algebras for finite-level quantum control systems
Energy Technology Data Exchange (ETDEWEB)
Schirmer, S.G.; Pullen, I.C.H.; Solomon, A.I. [Quantum Processes Group and Department of Applied Maths, Open University, Milton Keynes (United Kingdom)]. E-mails: S.G.Schirmer@open.ac.uk; I.C.H.Pullen@open.ac.uk; A.I.Solomon@open.ac.uk
2002-03-08
The problem of identifying the dynamical Lie algebras of finite-level quantum systems subject to external control is considered, with special emphasis on systems that are not completely controllable. In particular, it is shown that the dynamical Lie algebra for an N-level system with symmetrically coupled transitions, such as a system with equally spaced energy levels and uniform transition dipole moments, is a subalgebra of so(N) if N=2l+1, and a subalgebra of sp(l) if N=2l. General criteria for obtaining either so(2l+1) or sp(l) are established. (author)
Lie-algebra expansions, Chern Simons theories and the Einstein Hilbert Lagrangian
Edelstein, José D.; Hassaïne, Mokhtar; Troncoso, Ricardo; Zanelli, Jorge
2006-09-01
Starting from gravity as a Chern-Simons action for the AdS algebra in five dimensions, it is possible to modify the theory through an expansion of the Lie algebra that leads to a system consisting of the Einstein-Hilbert action plus non-minimally coupled matter. The modified system is gauge invariant under the Poincaré group enlarged by an Abelian ideal. Although the resulting action naively looks like general relativity plus corrections due to matter sources, it is shown that the non-minimal couplings produce a radical departure from GR. Indeed, the dynamics is not continuously connected to the one obtained from Einstein-Hilbert action. In a matter-free configuration and in the torsionless sector, the field equations are too strong a restriction on the geometry as the metric must satisfy both the Einstein and pure Gauss-Bonnet equations. In particular, the five-dimensional Schwarzschild geometry fails to be a solution; however, configurations corresponding to a brane-world with positive cosmological constant on the worldsheet are admissible when one of the matter fields is switched on. These results can be extended to higher odd dimensions.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
International Nuclear Information System (INIS)
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-01-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean–Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices. -- Highlights: •Different PT-symmetries lead to qualitatively different systems. •Construction of non-perturbative Dyson maps and isospectral Hermitian counterparts. •Numerical discussion of the eigenvalue spectra for one of the E(2)-systems. •Established link to systems studied in the context of optical lattices. •Setup for the E(3)-algebra is provided
On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra
International Nuclear Information System (INIS)
Ivashchuk, V.D.
2017-01-01
A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H s (z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q s , s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ s over a proper 2d submanifold are finite and obey the relations q s Φ s = 4πn s h s , where the h s > 0 are certain constants (related to dilatonic coupling vectors) and the n s are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A 1 , A 2 , A 3 , C 2 , G 2 and A 1 + A 1 are presented. (orig.)
The Madelung rule, Regge-like sequences and the conformal Lie algebra
International Nuclear Information System (INIS)
Campoamor-Stursberg, Rutwig
2014-01-01
The two main group theoretical models related to the Periodic System of Chemical Elements are reviewed, in connection with the Madelung rule and the construction of orthonormal bases of states for the conformal Lie algebra so (2,4). Basing on discrepancies between the Madelung rule and chemical experience, a new approach to the conformal symmetry, currently in development, is described
On a parametrization of Baker-Campbell-Hausdorf formula for bosonic superfields in Lie algebra
International Nuclear Information System (INIS)
Gabeskiria, M.A.
1984-01-01
A compact form for the Baker-Cambell-Hausdorf formula has been obtained. Here the dependence of bosonic superfields, with their values on the Crassmann hull G(LAMBDA 2 ) of Lie algebra G, on the generators LAMBDA 2 has been factorized as a single exponent
Fixed points of IA-endomorphisms of a free metabelian Lie algebra
Indian Academy of Sciences (India)
Let be a free metabelian Lie algebra of finite rank at least 2. We show the existence of non-trivial fixed points of an -endomorphism of and give an algorithm detecting them. In particular, we prove that the fixed point subalgebra Fix of an -endomorphism of is not finitely generated.
International Nuclear Information System (INIS)
Bonora, Loriano; Bytsenko, Andrey; Elizalde, Emilio
2012-01-01
This review paper contains a concise introduction to highest weight representations of infinite-dimensional Lie algebras, vertex operator algebras and Hilbert schemes of points, together with their physical applications to elliptic genera of superconformal quantum mechanics and superstring models. The common link of all these concepts and of the many examples considered in this paper is to be found in a very important feature of the theory of infinite-dimensional Lie algebras: the modular properties of the characters (generating functions) of certain representations. The characters of the highest weight modules represent the holomorphic parts of the partition functions on the torus for the corresponding conformal field theories. We discuss the role of the unimodular (and modular) groups and the (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of elliptic genera and associated q-series. For mathematicians, elliptic genera are commonly associated with new mathematical invariants for spaces, while for physicists elliptic genera are one-loop string partition function. (Therefore, they are applicable, for instance, to topological Casimir effect calculations.) We show that elliptic genera can be conveniently transformed into product expressions, which can then inherit the homology properties of appropriate polygraded Lie algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (review)
Astashkevich, Alexander
1999-01-01
This volume presents contributions by leading experts in the field. The articles are dedicated to D. B. Fuchs on the occasion of his 60th birthday. Contributors to the book were directly influenced by Professor Fuchs and include his students, friends, and professional colleagues. In addition to their research, they offer personal reminicences about Professor Fuchs, giving insight into the history of Russian mathematics. The main topics addressed in this unique work are infinite-dimensional Lie algebras with applications (vertex operator algebras, conformal field theory, quantum integrable syst
Lie algebraic discussion for affinity based information diffusion in social networks
Directory of Open Access Journals (Sweden)
Shang Yilun
2017-11-01
Full Text Available In this paper we develop a dynamical information diffusion model which features the affinity of people with information disseminated in social networks. Four types of agents, i.e., susceptible, informed, known, and refractory ones, are involved in the system, and the affinity mechanism composing of an affinity threshold which represents the fitness of information to be propagated is incorporated. The model can be generally described by a time-inhomogeneous Markov chain, which is governed by its master (Kolmogorov equation. Based on the Wei-Norman method, we derive analytical solutions of the model by constructing a low-dimensional Lie algebra. Numerical examples are provided to illustrate the obtained theoretical results. This study provides useful insights into the closed-form solutions of complex social dynamics models through the Lie algebra method.
A representation of Weyl-Heisenberg Lie algebra in the quaternionic setting
Muraleetharan, B.; Thirulogasanthar, K.; Sabadini, I.
2017-10-01
Using a left multiplication defined on a right quaternionic Hilbert space, linear self-adjoint momentum operators on a right quaternionic Hilbert space are defined in complete analogy with their complex counterpart. With the aid of the so-obtained position and momentum operators, we study the Heisenberg uncertainty principle on the whole set of quaternions and on a quaternionic slice, namely on a copy of the complex plane inside the quaternions. For the quaternionic harmonic oscillator, the uncertainty relation is shown to saturate on a neighborhood of the origin in the case we consider the whole set of quaternions, while it is saturated on the whole slice in the case we take the slice-wise approach. In analogy with the complex Weyl-Heisenberg Lie algebra, Lie algebraic structures are developed for the quaternionic case. Finally, we introduce a quaternionic displacement operator which is square integrable, irreducible and unitary, and we study its properties.
Lie algebraic discussion for affinity based information diffusion in social networks
Shang, Yilun
2017-11-01
In this paper we develop a dynamical information diffusion model which features the affinity of people with information disseminated in social networks. Four types of agents, i.e., susceptible, informed, known, and refractory ones, are involved in the system, and the affinity mechanism composing of an affinity threshold which represents the fitness of information to be propagated is incorporated. The model can be generally described by a time-inhomogeneous Markov chain, which is governed by its master (Kolmogorov) equation. Based on the Wei-Norman method, we derive analytical solutions of the model by constructing a low-dimensional Lie algebra. Numerical examples are provided to illustrate the obtained theoretical results. This study provides useful insights into the closed-form solutions of complex social dynamics models through the Lie algebra method.
International Nuclear Information System (INIS)
Macfarlane, A J; Pfeiffer, Hendryk
2003-01-01
The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is now well known for powers up to four. The paper describes an extension of this uniformity for the totally antisymmetrized nth powers up to n = 9, identifying families of representations with integer eigenvalues 5, ..., 9 for the quadratic Casimir operator, in each case providing a formula for the dimensions of the representations in the family as a function of D = dim g. This generalizes previous results for powers j and Casimir eigenvalues j, j ≤ 4. Many intriguing, perhaps puzzling, features of the dimension formulae are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered
Exceptional quantum subgroups for the rank two Lie algebras B2 and G2
Coquereaux, R; Tahri, E H
2010-01-01
Exceptional modular invariants for the Lie algebras B2 (at levels 2,3,7,12) and G2 (at levels 3,4) can be obtained from conformal embeddings. We determine the associated alge bras of quantum symmetries and discover or recover, as a by-product, the graphs describing exceptional quantum subgroups of type B2 or G2 which encode their module structure over the associated fusion category. Global dimensions are given.
Magnet alignment tolerances in the SLC final focus system determined by Lie algebra techniques
International Nuclear Information System (INIS)
Zimmermann, F.
1995-01-01
Using Lie algebra techniques, static alignment tolerances are derived for all quadrupole and sextupole magnets in the 1994 SLC final focus. Three different effects are identified which limit the tolerable quadrupole misalignment. The largest amplitude of an offset-compensating closed orbit bump and the maximum allowed displacement between beam orbit and magnet center are evaluated for each sextupole. Multiparticle tracking supplements and confirms the analytical results. (orig.)
On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra
Energy Technology Data Exchange (ETDEWEB)
Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Institute of Gravitation and Cosmology, Moscow (Russian Federation)
2017-10-15
A generalized Melvin solution for an arbitrary simple finite-dimensional Lie algebra G is considered. The solution contains a metric, n Abelian 2-forms and n scalar fields, where n is the rank of G. It is governed by a set of n moduli functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials - the so-called fluxbrane polynomials. These polynomials depend upon integration constants q{sub s}, s = 1,.., n. In the case when the conjecture on the polynomial structure for the Lie algebra G is satisfied, it is proved that 2-form flux integrals Φ{sup s} over a proper 2d submanifold are finite and obey the relations q{sub s} Φ{sup s} = 4πn{sub s}h{sub s}, where the h{sub s} > 0 are certain constants (related to dilatonic coupling vectors) and the n{sub s} are powers of the polynomials, which are components of a twice dual Weyl vector in the basis of simple (co-)roots, s = 1,.., n. The main relations of the paper are valid for a solution corresponding to a finite-dimensional semi-simple Lie algebra G. Examples of polynomials and fluxes for the Lie algebras A{sub 1}, A{sub 2}, A{sub 3}, C{sub 2}, G{sub 2} and A{sub 1} + A{sub 1} are presented. (orig.)
Directory of Open Access Journals (Sweden)
Nader Ali Makboul Hassan
2014-01-01
Full Text Available This paper is an attempt to stress the usefulness of the multi-variable special functions. In this paper, we derive certain generating relations involving 2-indices 5-variables 5-parameters Tricomi functions (2I5V5PTF by using a Lie-algebraic method. Further, we derive certain new and known generating relations involving other forms of Tricomi and Bessel functions as applications.
Canonical realizations of the Lie algebra sp(2n,R)
International Nuclear Information System (INIS)
Havlicek, M.; Lassner, W.
1975-01-01
The generators of the Lie algebra of the symplectic group sp(2n,R) are, rezcurently, realied by means of polynomials in the quantum canonical variables qsub(i) and psub(i), i=1,...,d(2n-d);d=1,...,n. These realisations are skew-hermitean, the Casimir operators are realised by constant multiples of identity element and they depend on d free real parameters
Test elements of direct sums and free products of free Lie algebras
Indian Academy of Sciences (India)
of test elements and we prove that in a free product of free Lie algebras, product of the homogeneous test elements of the ... K. An element u of Fn is a test element if for any endomorphism φ of Fn it follows from φ(u) = u that φ is an automorphism of Fn. ..... (Berlin: Walter de Gruyter) pp. 289–294. [13] Turner E c, Test words ...
Pricing multi-asset financial derivatives with time-dependent parameters—Lie algebraic approach
Directory of Open Access Journals (Sweden)
C. F. Lo
2002-01-01
Full Text Available We present a Lie algebraic technique for the valuation of multi-asset financial derivatives with time-dependent parameters. Exploiting the dynamical symmetry of the pricing partial differential equations of the financial derivatives, the new method enables us to derive analytical closed-form pricing formulae very straightforwardly. We believe that this new approach will provide an efficient and easy-to-use method for the valuation of financial derivatives.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-07-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.
Vercammen, Kim
2013-01-01
The study of simply transitive and crystallographic NIL-affine actions on the Lie algebra level leads to different concepts, including Novikov, LR- and post-Lie algebra structures, which are studied in this thesis. In our research we can distinguish three aspects: construction, existence and structure. In the construction aspect, we search for examples by using different techniques as the lifting of such structures, using theoretical considerations and using computer experiments. In the exist...
An isomorphism for algebra of distributions with compact support on Lie groups
International Nuclear Information System (INIS)
El-Hussein, K.
1991-08-01
Let (H, H 0 ,...,H L L is an element of IN) be a finite sequence of abelian connected Lie Groups, G L = H, G 1 G i+1 χ ρi+1 H i+1 (0 ≤ i ≤ L - 1) and G = G 0 χ ρo H 0 the Lie groups which are the semi-direct product of G i by H-i (0 ≤ i ≤ L), where ρ i : H i → Aut(G i ) is a group homomorphism (0 ≤ i ≤ L). Let G-tilde = H x H L x...xH 0 be the Lie group of the direct product of H, H L ,..., and H 0 and let ε'(G-tilde) the Topological vector space of all distributions with compact support on G-tilde. In this paper, we prove that there is a structure of algebra on ε'(G-tilde) such that the algebra (convolution) of all distributions with compact support on G is isomorphic onto ε'(G-tilde). (author). 7 refs
International Nuclear Information System (INIS)
Govorkov, A.B.
1980-01-01
The density matrix, rather than the wavefunction describing the system of a fixed number of non-relativistic identical particles, is subject to the second quantisation. Here the bilinear operators which move a particle from a given state to another appear and satisfy the Lie algebraic relations of the unitary group SU(rho) when the dimension rho→infinity. The drawing into consideration of the system with a variable number of particles implies the extension of this algebra into one of the simple Lie algebras of classical (orthogonal, symplectic or unitary) groups in the even-dimensional spaces. These Lie algebras correspond to the para-Fermi-, para-Bose- and para-uniquantisation of fields, respectively. (author)
Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space
International Nuclear Information System (INIS)
Vakili, Babak; Khosravi, Nima
2010-01-01
We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in x, y, and z directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the Universe in each direction experiences an endless sequence of contractions and reexpansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.
On generalized Melvin solution for the Lie algebra E{sub 6}
Energy Technology Data Exchange (ETDEWEB)
Bolokhov, S.V. [Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation); Ivashchuk, V.D. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia (RUDN University), Moscow (Russian Federation)
2017-10-15
A multidimensional generalization of Melvin's solution for an arbitrary simple Lie algebra G is considered. The gravitational model in D dimensions, D ≥ 4, contains n 2-forms and l ≥ n scalar fields, where n is the rank of G. The solution is governed by a set of n functions H{sub s}(z) obeying n ordinary differential equations with certain boundary conditions imposed. It was conjectured earlier that these functions should be polynomials (the so-called fluxbrane polynomials). The polynomials H{sub s}(z), s = 1,.., 6, for the Lie algebra E{sub 6} are obtained and a corresponding solution for l = n = 6 is presented. The polynomials depend upon integration constants Q{sub s}, s = 1,.., 6. They obey symmetry and duality identities. The latter ones are used in deriving asymptotic relations for solutions at large distances. The power-law asymptotic relations for E{sub 6}-polynomials at large z are governed by the integer-valued matrix ν = A{sup -1}(I + P), where A{sup -1} is the inverse Cartan matrix, I is the identity matrix and P is a permutation matrix, corresponding to a generator of the Z{sub 2}-group of symmetry of the Dynkin diagram. The 2-form fluxes Φ{sup s}, s = 1,.., 6, are calculated. (orig.)
Nazarov, Anton
2012-11-01
In this paper we present Affine.m-a program for computations in representation theory of finite-dimensional and affine Lie algebras and describe implemented algorithms. The algorithms are based on the properties of weights and Weyl symmetry. Computation of weight multiplicities in irreducible and Verma modules, branching of representations and tensor product decomposition are the most important problems for us. These problems have numerous applications in physics and we provide some examples of these applications. The program is implemented in the popular computer algebra system Mathematica and works with finite-dimensional and affine Lie algebras. Catalogue identifier: AENA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENB_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24 844 No. of bytes in distributed program, including test data, etc.: 1 045 908 Distribution format: tar.gz Programming language: Mathematica. Computer: i386-i686, x86_64. Operating system: Linux, Windows, Mac OS, Solaris. RAM: 5-500 Mb Classification: 4.2, 5. Nature of problem: Representation theory of finite-dimensional Lie algebras has many applications in different branches of physics, including elementary particle physics, molecular physics, nuclear physics. Representations of affine Lie algebras appear in string theories and two-dimensional conformal field theory used for the description of critical phenomena in two-dimensional systems. Also Lie symmetries play a major role in a study of quantum integrable systems. Solution method: We work with weights and roots of finite-dimensional and affine Lie algebras and use Weyl symmetry extensively. Central problems which are the computations of weight multiplicities, branching and fusion coefficients are solved using one general recurrent
On the finite W-algebra for the Lie superalgebra Q(N) in the non-regular case
Poletaeva, Elena; Serganova, Vera
2017-11-01
In this paper, we study the finite W-algebra for the queer Lie superalgebra Q(N) associated with the non-regular even nilpotent coadjoint orbits in the case when N = nl, and the corresponding nilpotent element has Jordan blocks each of size l. We prove that this finite W-algebra is isomorphic to a quotient of the super-Yangian of Q(n).
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2018-01-01
Roč. 16, č. 1 (2018), s. 1-8 ISSN 2391-5455 Institutional support: RVO:67985840 Keywords : Kac-Moody Lie algebras * cocycles Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.682, year: 2016 https://www.degruyter.com/view/j/math.2018.16.issue-1/math-2018-0002/math-2018-0002. xml
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2018-01-01
Roč. 16, č. 1 (2018), s. 1-8 ISSN 2391-5455 Institutional support: RVO:67985840 Keywords : Kac-Moody Lie algebras * cocycles Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.682, year: 2016 https://www.degruyter.com/view/j/math.2018.16.issue-1/math-2018-0002/math-2018-0002.xml
Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean
Energy Technology Data Exchange (ETDEWEB)
Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)
2017-06-21
The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.
The quantum Rabi model and Lie algebra representations of sl2
International Nuclear Information System (INIS)
Wakayama, Masato; Yamasaki, Taishi
2014-01-01
The aim of the present paper is to understand the spectral problem of the quantum Rabi model in terms of Lie algebra representations of sl 2 (R). We define a second order element of the universal enveloping algebra U(sl 2 ) of sl 2 (R), which, through the image of a principal series representation of sl 2 (R), provides a picture equivalent to the quantum Rabi model drawn by confluent Heun differential equations. By this description, in particular, we give a representation theoretic interpretation of the degenerate part of the spectrum (i.e., Judd's eigenstates) of the Rabi Hamiltonian due to Kuś in 1985, which is a part of the exceptional spectrum parameterized by integers. We also discuss the non-degenerate part of the exceptional spectrum of the model, in addition to the Judd eigenstates, from a viewpoint of infinite dimensional irreducible submodules (or subquotients) of the non-unitary principal series such as holomorphic discrete series representations of sl 2 (R). (paper)
Modular invariant representations of infinite-dimensional Lie algebras and superalgebras.
Kac, V G; Wakimoto, M
1988-07-01
In this paper, we launch a program to describe and classify modular invariant representations of infinite-dimensional Lie algebras and superalgebras. We prove a character formula for a large class of highest weight representations L(lambda) of a Kac-Moody algebra [unk] with a symmetrizable Cartan matrix, generalizing the Weyl-Kac character formula [Kac, V. G. (1974) Funct. Anal. Appl. 8, 68-70]. In the case of an affine [unk], this class includes modular invariant representations of arbitrary rational level m = t/u, where t [unk] Z and u [unk] N are relatively prime and m + g >/= g/u (g is the dual Coxeter number). We write the characters of these representations in terms of theta functions and calculate their asymptotics, generalizing the results of Kac and Peterson [Kac, V. G. & Peterson, D. H. (1984) Adv. Math. 53, 125-264] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1988) Adv. Math. 70, 156-234] for the u = 1 (integrable) case. We work out in detail the case [unk] = A(1) ((1)), in particular classifying all its modular invariant representations. Furthermore, we show that the modular invariant representations of the Virasoro algebra Vir are precisely the "minimal series" of Belavin et al. [Belavin, A. A., Polyakov, A. M. & Zamolodchikov, A. B. (1984) Nucl. Phys. B 241, 333-380] using the character formulas of Feigin and Fuchs [Feigin, B. L. & Fuchs, D. B. (1984) Lect. Notes Math. 1060, 230-245]. We show that tensoring the basic representation and modular invariant representations of A(1) ((1)) produces all modular invariant representations of Vir generalizing the results of Goddard et al. [Goddard P., Kent, A. & Olive, D. (1986) Commun. Math. Phys. 103, 105-119] and of Kac and Wakimoto [Kac, V. G. & Wakimoto, M. (1986) Lect. Notes Phys. 261, 345-371] in the unitary case. We study the general branching functions as well. All these results are generalized to the Kac-Moody superalgebras introduced by Kac [Kac, V. G. (1978) Adv. Math. 30, 85-136] and to N
International Nuclear Information System (INIS)
Gabeskiriya, M.A.
1984-01-01
A compact form of the Baker-Campbell-Hausdorff formula is obtained in which the dependence of boson superfields taking values in the Grassmann shell G(Λ 2 ) of Lie algebra G on generating elements Λ 2 is factorised in the form of a single exponenet
International Nuclear Information System (INIS)
Guenaydin, M.
1979-05-01
Quadratic Jordan formulation of quantum mechanics in terms of Jordan triple product is presented. This formulation extends to the case of octonionic quantum mechanics for which no Hilbert space formulation exists. Using ternary algebraic techniques we then five the constructions of the derivation, structure and Tits-Koecher (Moebius) algebras of Jordan superalgebras. (orig.) [de
A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications
International Nuclear Information System (INIS)
Zhang Yu-Feng; Rui Wen-Juan; Wu Li-Xin
2015-01-01
With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. (paper)
Tang, Wanjie; Li, Bin; Huang, Xiaoqi; Jiang, Xiaoyu; Li, Fei; Wang, Lijuan; Chen, Taolin; Wang, Jinhui; Gong, Qiyong; Yang, Yanchun
2013-10-01
Few studies have used neuroimaging to characterize treatment-refractory obsessive-compulsive disorder (OCD). This study sought to explore gray matter structure in patients with treatment-refractory OCD and compare it with that of healthy controls. A total of 18 subjects with treatment-refractory OCD and 26 healthy volunteers were analyzed by MRI using a 3.0-T scanner and voxel-based morphometry (VBM). Diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) was used to identify structural changes in gray matter associated with treatment-refractory OCD. A partial correlation model was used to analyze whether morphometric changes were associated with Yale-Brown Obsessive-Compulsive Scale scores and illness duration. Gray matter volume did not differ significantly between the two groups. Treatment-refractory OCD patients showed significantly lower gray matter density than healthy subjects in the left posterior cingulate cortex (PCC) and mediodorsal thalamus (MD) and significantly higher gray matter density in the left dorsal striatum (putamen). These changes did not correlate with symptom severity or illness duration. Our findings provide new evidence of deficits in gray matter density in treatment-refractory OCD patients. These patients may show characteristic density abnormalities in the left PCC, MD and dorsal striatum (putamen), which should be verified in longitudinal studies. © 2013. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Thierry-Mieg, Jean
2006-01-01
In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space
On the q-deformation of certain infinite dimensional Lie algebras
International Nuclear Information System (INIS)
El Kinani, E.H.; Zakkari, M.
1995-07-01
A representation of the q-deformed centreless Virasoro algebra in terms of the Gauss derivatives D x and D y on the quantum plane C q [x,y] is given. Moreover, we obtain the deformed version of the algebra of the area-preserving diffeomorphisms of the torus T 2 . In the end, the correspondence between Psd(q,p,r) and the a-bar ∞ algebra is pointed out. (author). 11 refs
Parity proofs of the Kochen–Specker theorem based on the Lie algebra E8
International Nuclear Information System (INIS)
Waegell, Mordecai; Aravind, P K
2015-01-01
The 240 root vectors of the Lie algebra E8 lead to a system of 120 rays in a real eight-dimensional Hilbert space that contains a large number of parity proofs of the Kochen–Specker (KS) theorem. After introducing the rays in a triacontagonal representation due to Coxeter, we present their KS diagram in the form of a ‘basis table’ showing all 2025 bases (i.e., sets of eight mutually orthogonal rays) formed by the rays. Only a few of the bases are actually listed, but simple rules are given, based on the symmetries of E8, for obtaining all the other bases from the ones shown. The basis table is an object of great interest because all the parity proofs of E8 can be exhibited as subsets of it. We show how the triacontagonal representation of E8 facilitates the identification of substructures that are more easily searched for their parity proofs. We have found hundreds of different types of parity proofs, ranging from 9 bases (or contexts) at the low end to 35 bases at the high end, and involving projectors of various ranks and multiplicities. After giving an overview of the proofs we found, we present a few concrete examples of the proofs that illustrate both their generic features as well as some of their more unusual properties. In particular, we present a proof involving 34 rays and 9 bases that appears to provide the most compact proof of the KS theorem found to date in eight-dimensions. (paper)
Contraction-based classification of supersymmetric extensions of kinematical lie algebras
International Nuclear Information System (INIS)
Campoamor-Stursberg, R.; Rausch de Traubenberg, M.
2010-01-01
We study supersymmetric extensions of classical kinematical algebras from the point of view of contraction theory. It is shown that contracting the supersymmetric extension of the anti-de Sitter algebra leads to a hierarchy similar in structure to the classical Bacry-Levy-Leblond classification.
Minoru, HIRAYAMA; Hitoshi, YAMAKOSHI; Department of Physics, Toyama University; Toyama National College of Technology
1993-01-01
It is discussed how the representations of the Lie algebra su(1, 1) and its q-deformation su_q(1, 1) are constructed in terms of operators a, a^† and N satisfying [N, a]=-a, [N, a^†]=a^† and N^†=N. It is found that any irreducible unitary representation of su(1, 1) and su_q(1, 1) can be described by a, a^† and N in an infinite number of ways.
Lie construction affects information storage under high memory load condition.
Liu, Yuqiu; Wang, Chunjie; Jiang, Haibo; He, Hongjian; Chen, Feiyan
2017-01-01
Previous studies indicate that lying consumes cognitive resources, especially working memory (WM) resources. Considering the dual functions that WM might play in lying: holding the truth-related information and turning the truth into lies, the present study examined the relationship between the information storage and processing in the lie construction. To achieve that goal, a deception task based on the old/new recognition paradigm was designed, which could manipulate two levels of WM load (low-load task using 4 items and high-load task using 6 items) during the deception process. The analyses based on the amplitude of the contralateral delay activity (CDA), a proved index of the number of representations being held in WM, showed that the CDA amplitude was lower in the deception process than that in the truth telling process under the high-load condition. In contrast, under the low-load condition, no CDA difference was found between the deception and truth telling processes. Therefore, we deduced that the lie construction and information storage compete for WM resources; when the available WM resources cannot meet this cognitive demand, the WM resources occupied by the information storage would be consumed by the lie construction.
International Nuclear Information System (INIS)
Accardi, Luigi; Boukas, Andreas
2008-01-01
The identification of the *-Lie algebra of the renormalized higher powers of White noise (RHPWN) and the analytic continuation of the second quantized centreless Virasoro (or Witt)-Zamolodchikov-w ∞ *-Lie algebra of conformal field theory and high-energy physics, was recently established on results obtained. In the present paper, we show how the RHPWN Fock kernels must be truncated in order to be positive semi-definite and we obtain a Fock representation of the two algebras. We show that the truncated renormalized higher powers of White noise (TRHPWN) Fock spaces of order ≥2 host the continuous binomial and beta processes
International Nuclear Information System (INIS)
Matone, Marco
2016-01-01
Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp(X) exp(Y) = exp(W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp(X) exp(Y) exp(Z) = exp(W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper. (orig.)
Hentosh, Oksana E.; Prykarpatsky, Yarema A.; Blackmore, Denis; Prykarpatski, Anatolij K.
2017-10-01
The work is devoted to recent investigations of the Lax-Sato compatible linear vector field equations, especially to the related Lie-algebraic structures and integrability properties of a very interesting class of nonlinear dynamical systems called the dispersionless heavenly type equations, which were initiated by Plebański and later analyzed in a series of articles. The AKS-algebraic and related R-structure schemes are used to study the orbits of the corresponding co-adjoint actions, which are intimately related to the classical Lie-Poisson structures on them. It is demonstrated that their compatibility condition coincides with the corresponding heavenly equation being considered. It is shown that all these equations originate in this way and can be represented as a Lax compatibility condition for specially constructed loop vector fields on the torus. The infinite hierarchy of conservations laws related to the heavenly equations is described, and its analytical structure connected with the Casimir invariants is mentioned. In addition, typical examples of such equations, demonstrating in detail their integrability via the scheme devised herein, are presented. The relationship of the very interesting Lagrange-d'Alembert type mechanical interpretation of the devised integrability scheme with the Lax-Sato equations is also discussed.
Object-Image Correspondence for Algebraic Curves under Projections
Directory of Open Access Journals (Sweden)
Joseph M. Burdis
2013-03-01
Full Text Available We present a novel algorithm for deciding whether a given planar curve is an image of a given spatial curve, obtained by a central or a parallel projection with unknown parameters. The motivation comes from the problem of establishing a correspondence between an object and an image, taken by a camera with unknown position and parameters. A straightforward approach to this problem consists of setting up a system of conditions on the projection parameters and then checking whether or not this system has a solution. The computational advantage of the algorithm presented here, in comparison to algorithms based on the straightforward approach, lies in a significant reduction of a number of real parameters that need to be eliminated in order to establish existence or non-existence of a projection that maps a given spatial curve to a given planar curve. Our algorithm is based on projection criteria that reduce the projection problem to a certain modification of the equivalence problem of planar curves under affine and projective transformations. To solve the latter problem we make an algebraic adaptation of signature construction that has been used to solve the equivalence problems for smooth curves. We introduce a notion of a classifying set of rational differential invariants and produce explicit formulas for such invariants for the actions of the projective and the affine groups on the plane.
A new derivation of the highest-weight polynomial of a unitary lie algebra
International Nuclear Information System (INIS)
P Chau, Huu-Tai; P Van, Isacker
2000-01-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
Generalized Pascal's triangles and singular elements of modules of Lie algebras
Lyakhovsky, V. D.; Postnova, O. V.
2015-10-01
We consider the problem of determining the multiplicity function m_ξ ^{{ ⊗ ^p}ω } in the tensor power decomposition of a module of a semisimple algebra g into irreducible submodules. For this, we propose to pass to the corresponding decomposition of a singular element Ψ((L g ω )⊗p) of the module tensor power into singular elements of irreducible submodules and formulate the problem of determining the function M_ξ ^{{ ⊗ ^p}ω }. This function satisfies a system of recurrence relations that corresponds to the procedure for multiplying modules. To solve this problem, we introduce a special combinatorial object, a generalized (g,ω) pyramid, i.e., a set of numbers ( p, { mi})g,ω satisfying the same system of recurrence relations. We prove that M_ξ ^{{ ⊗ ^p}ω } can be represented as a linear combination of the corresponding ( p, { mi})g,ω. We illustrate the obtained solution with several examples of modules of the algebras sl(3) and so(5).
ELEPHANT : A MATLAB-code for Hamiltonians, Lie algebra, normal form and particle tracking
Ögren, Jim
2017-01-01
In this report we explain the structure and functionality of ELEPHANT: a MATLAB-code developed for particle tracking and treating Hamiltonians in the Lie formalism with applications for accelerator physics. The code can operate on Hamiltonians and using the similarity transform and the Campbell-Baker-Hausdorff formula to express a map as an effective Hamiltonian and a linear map.The code can also express a map in a normal form and from this calculate the amplitude-dependenttune-shifts. Finall...
Tabak, John
2004-01-01
Looking closely at algebra, its historical development, and its many useful applications, Algebra examines in detail the question of why this type of math is so important that it arose in different cultures at different times. The book also discusses the relationship between algebra and geometry, shows the progress of thought throughout the centuries, and offers biographical data on the key figures. Concise and comprehensive text accompanied by many illustrations presents the ideas and historical development of algebra, showcasing the relevance and evolution of this branch of mathematics.
Flanders, Harley
1975-01-01
Algebra presents the essentials of algebra with some applications. The emphasis is on practical skills, problem solving, and computational techniques. Topics covered range from equations and inequalities to functions and graphs, polynomial and rational functions, and exponentials and logarithms. Trigonometric functions and complex numbers are also considered, together with exponentials and logarithms.Comprised of eight chapters, this book begins with a discussion on the fundamentals of algebra, each topic explained, illustrated, and accompanied by an ample set of exercises. The proper use of a
International Nuclear Information System (INIS)
Santilli, R.M.
1981-01-01
A primary objective of the research is the achievement of clear experimental knowledge on the intrinsic characteristics of particles (such as magnetic moment, spin, space parity, etc.) under strong interactions. These characteristics, when known, have been measured a number of times, but all times for particles under long range electromagnetic interactions (e.g., for bubble chamber techniques). The same characteristics are then generally assumed to persist under the different physical conditions of the strong interactions, while no direct or otherwise final measurement under strong interactions exists at this time. The advocated physical knowledge is clearly important for controlled fusion, as well as for a serious study of the foundations of strong interactions. The paper initiates the study by considering the following alternatives. A: the electromagnetic characteristics of particles persist in the transition to the strong; or B: variations in these characteristics are physically conceivable, mathematically treatable, and experimentally detectable. The need to conduct additional experiments, and achieve a final resolution of the issue, is stressed throughout the paper. In the hope of contributing toward this future goal, the paper then reviews the quantitative treatment of possible deviations via the Lie-admissible generalization of Lie's theory, with particular reference to the Lie-admissible generalizations of Lie group, Lie algebras, and enveloping associative algebras. A generalized notion of extended particle under nonlocal nonpotential strong interactions emerge from these studies. The theory is applied to the re-elaboration of the data on the spinor symmetry via neutron interferometers. It is shown that the data are indeed consistent with a breaking of the SU(2)-spin symmetry due to nonlocal nonpotential forces. A number of experiments for the future resolution of the issue are indicated
Sumner, J G; Fernández-Sánchez, J; Jarvis, P D
2012-04-07
Recent work has discussed the importance of multiplicative closure for the Markov models used in phylogenetics. For continuous-time Markov chains, a sufficient condition for multiplicative closure of a model class is ensured by demanding that the set of rate-matrices belonging to the model class form a Lie algebra. It is the case that some well-known Markov models do form Lie algebras and we refer to such models as "Lie Markov models". However it is also the case that some other well-known Markov models unequivocally do not form Lie algebras (GTR being the most conspicuous example). In this paper, we will discuss how to generate Lie Markov models by demanding that the models have certain symmetries under nucleotide permutations. We show that the Lie Markov models include, and hence provide a unifying concept for, "group-based" and "equivariant" models. For each of two and four character states, the full list of Lie Markov models with maximal symmetry is presented and shown to include interesting examples that are neither group-based nor equivariant. We also argue that our scheme is pleasing in the context of applied phylogenetics, as, for a given symmetry of nucleotide substitution, it provides a natural hierarchy of models with increasing number of parameters. We also note that our methods are applicable to any application of continuous-time Markov chains beyond the initial motivations we take from phylogenetics. Crown Copyright Â© 2011. Published by Elsevier Ltd. All rights reserved.
Sepanski, Mark R
2010-01-01
Mark Sepanski's Algebra is a readable introduction to the delightful world of modern algebra. Beginning with concrete examples from the study of integers and modular arithmetic, the text steadily familiarizes the reader with greater levels of abstraction as it moves through the study of groups, rings, and fields. The book is equipped with over 750 exercises suitable for many levels of student ability. There are standard problems, as well as challenging exercises, that introduce students to topics not normally covered in a first course. Difficult problems are broken into manageable subproblems
Majid, S.
1997-01-01
We introduce braided Lie bialgebras as the infinitesimal version of braided groups. They are Lie algebras and Lie coalgebras with the coboundary of the Lie cobracket an infinitesimal braiding. We provide theorems of transmutation, Lie biproduct, bosonisation and double-bosonisation relating braided Lie bialgebras to usual Lie bialgebras. Among the results, the kernel of any split projection of Lie bialgebras is a braided-Lie bialgebra. The Kirillov-Kostant Lie cobracket provides a natural bra...
International Nuclear Information System (INIS)
Wu Ming-Zhong; Bai Cheng-Ming
2015-01-01
A compatible Lie algebra is a pair of Lie algebras such that any linear combination of the two Lie brackets is a Lie bracket. We construct a bialgebra theory of compatible Lie algebras as an analogue of a Lie bialgebra. They can also be regarded as a “compatible version” of Lie bialgebras, that is, a pair of Lie bialgebras such that any linear combination of the two Lie bialgebras is still a Lie bialgebra. Many properties of compatible Lie bialgebras as the “compatible version” of the corresponding properties of Lie bialgebras are presented. In particular, there is a coboundary compatible Lie bialgebra theory with a construction from the classical Yang–Baxter equation in compatible Lie algebras as a combination of two classical Yang–Baxter equations in Lie algebras. Furthermore, a notion of compatible pre-Lie algebra is introduced with an interpretation of its close relation with the classical Yang–Baxter equation in compatible Lie algebras which leads to a construction of the solutions of the latter. As a byproduct, the compatible Lie bialgebras fit into the framework to construct non-constant solutions of the classical Yang–Baxter equation given by Golubchik and Sokolov. (paper)
International Nuclear Information System (INIS)
Campoamor-Stursberg, R
2008-01-01
We show that the Inoenue-Wigner contraction naturally associated to a reduction chain s implies s' of semisimple Lie algebras induces a decomposition of the Casimir operators into homogeneous polynomials, the terms of which can be used to obtain additional mutually commuting missing label operators for this reduction. The adjunction of these scalars that are no more invariants of the contraction allow to solve the missing label problem for those reductions where the contraction provides an insufficient number of labelling operators.
Papi, Paolo; Advances in Lie Superalgebras
2014-01-01
The volume is the outcome of the conference "Lie superalgebras," which was held at the Istituto Nazionale di Alta Matematica, in 2012. The conference gathered many specialists in the subject, and the talks held provided comprehensive insights into the newest trends in research on Lie superalgebras (and related topics like vertex algebras, representation theory and supergeometry). The book contains contributions of many leading esperts in the field and provides a complete account of the newest trends in research on Lie Superalgebras.
Quantum cluster algebra structures on quantum nilpotent algebras
Goodearl, K R
2017-01-01
All algebras in a very large, axiomatically defined class of quantum nilpotent algebras are proved to possess quantum cluster algebra structures under mild conditions. Furthermore, it is shown that these quantum cluster algebras always equal the corresponding upper quantum cluster algebras. Previous approaches to these problems for the construction of (quantum) cluster algebra structures on (quantized) coordinate rings arising in Lie theory were done on a case by case basis relying on the combinatorics of each concrete family. The results of the paper have a broad range of applications to these problems, including the construction of quantum cluster algebra structures on quantum unipotent groups and quantum double Bruhat cells (the Berenstein-Zelevinsky conjecture), and treat these problems from a unified perspective. All such applications also establish equality between the constructed quantum cluster algebras and their upper counterparts.
Underlying theory based on quaternions for Alder's algebraic chromodynamics
International Nuclear Information System (INIS)
Horwitz, L.P.; Biedenharn, L.C.
1981-01-01
It is shown that the complex-linear tensor product for quantum quaternionic Hilbert (module) spaces provides an algebraic structure for the non-local gauge field in Adler's algebraic chromodynamics for U
Identities and derivations for Jacobian algebras
International Nuclear Information System (INIS)
Dzhumadil'daev, A.S.
2001-09-01
Constructions of n-Lie algebras by strong n-Lie-Poisson algebras are given. First cohomology groups of adjoint module of Jacobian algebras are calculated. Minimal identities of 3-Jacobian algebra are found. (author)
Indian Academy of Sciences (India)
Introduction and preliminaries. The class of Malcev algebras contains one of the Lie algebras and so a question arises whether some known results on Lie algebras can be extended to the framework of Malcev algebras (see [4, 7, 9, 10]). In the present paper, we are interested in studying the structure of arbitrary Malcev ...
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
Iachello, F
1995-01-01
1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters
Automorphism modular invariants of current algebras
International Nuclear Information System (INIS)
Gannon, T.; Walton, M.A.
1996-01-01
We consider those two-dimensional rational conformal field theories (RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the current algebra formed from some untwisted affine Lie algebra at fixed level. In this case the partition function is specified by an automorphism of the fusion ring and corresponding symmetry of the Kac-Peterson modular matrices. We classify all such partition functions when the underlying finite-dimensional Lie algebra is simple. This gives all possible spectra for this class of RCFTs. While accomplishing this, we also find the primary fields with second smallest quantum dimension. (orig.). With 3 tabs
Algebraic partial Boolean algebras
Smith, D
2003-01-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial...
Planar algebra of the subgroup-subfactor
Indian Academy of Sciences (India)
of planar algebra of a bipartite graph as given by Jones [5], and discuss how it and its dual behave under the action ..... Repeated applications of the compatibility condition for tangle maps with respect to composition of ... The importance of planar algebras in subfactor theory lies in the following theorem of. Jones: Theorem ...
Algebraic partial Boolean algebras
Smith, Derek
2003-04-01
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space Script H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A5 sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E8.
Algebraic partial Boolean algebras
Energy Technology Data Exchange (ETDEWEB)
Smith, Derek [Math Department, Lafayette College, Easton, PA 18042 (United States)
2003-04-04
Partial Boolean algebras, first studied by Kochen and Specker in the 1960s, provide the structure for Bell-Kochen-Specker theorems which deny the existence of non-contextual hidden variable theories. In this paper, we study partial Boolean algebras which are 'algebraic' in the sense that their elements have coordinates in an algebraic number field. Several of these algebras have been discussed recently in a debate on the validity of Bell-Kochen-Specker theorems in the context of finite precision measurements. The main result of this paper is that every algebraic finitely-generated partial Boolean algebra B(T) is finite when the underlying space H is three-dimensional, answering a question of Kochen and showing that Conway and Kochen's infinite algebraic partial Boolean algebra has minimum dimension. This result contrasts the existence of an infinite (non-algebraic) B(T) generated by eight elements in an abstract orthomodular lattice of height 3. We then initiate a study of higher-dimensional algebraic partial Boolean algebras. First, we describe a restriction on the determinants of the elements of B(T) that are generated by a given set T. We then show that when the generating set T consists of the rays spanning the minimal vectors in a real irreducible root lattice, B(T) is infinite just if that root lattice has an A{sub 5} sublattice. Finally, we characterize the rays of B(T) when T consists of the rays spanning the minimal vectors of the root lattice E{sub 8}.
International Nuclear Information System (INIS)
Graev, M M
2007-01-01
To every homogeneous space M=G/H of a Lie group G with a compact isotropy group H, where the isotropy representation consists of d irreducible components of multiplicity 1, we assign a compact convex polytope P=P M in R d-1 , namely, the Newton polytope of the rational function s(t) defined to be the scalar curvature of the invariant metric t on M. If G is a compact semisimple group, then the ratio of the volume of P to the volume of the standard (d-1)-simplex is a positive integer ν(M)>0. We note that in many cases, ν(M) coincides with the number E(M) of isolated invariant holomorphic Einstein metrics (up to homothety) on M C =G C /H C . We deduce from results of Kushnirenko and Bernshtein that in all cases, δ M =ν(M)-E(M)≥0. To every proper face γ of P we assign a non-compact homogeneous space M γ =G γ /H P with Newton polytope γ that is a contraction of M. The appearance of a 'defect' δ M >0 is explained by the fact that there is a Ricci-flat holomorphic invariant metric on the complexification of at least one of the M γ
On Associative Conformal Algebras of Linear Growth
Retakh, Alexander
2000-01-01
Lie conformal algebras appear in the theory of vertex algebras. Their relation is similar to that of Lie algebras and their universal enveloping algebras. Associative conformal algebras play a role in conformal representation theory. We introduce the notions of conformal identity and unital associative conformal algebras and classify finitely generated simple unital associative conformal algebras of linear growth. These are precisely the complete algebras of conformal endomorphisms of finite ...
International Nuclear Information System (INIS)
Yau, Donald
2011-01-01
We study a twisted generalization of Novikov algebras, called Hom-Novikov algebras, in which the two defining identities are twisted by a linear map. It is shown that Hom-Novikov algebras can be obtained from Novikov algebras by twisting along any algebra endomorphism. All algebra endomorphisms on complex Novikov algebras of dimensions 2 or 3 are computed, and their associated Hom-Novikov algebras are described explicitly. Another class of Hom-Novikov algebras is constructed from Hom-commutative algebras together with a derivation, generalizing a construction due to Dorfman and Gel'fand. Two other classes of Hom-Novikov algebras are constructed from Hom-Lie algebras together with a suitable linear endomorphism, generalizing a construction due to Bai and Meng.
Energy Technology Data Exchange (ETDEWEB)
Goto, Masami; Ino, Kenji; Yano, Keiichi [University of Tokyo Hospital, Department of Radiological Technology, Bunkyo-ku, Tokyo (Japan); Abe, Osamu [Nihon University School of Medicine, Department of Radiology, Itabashi-ku, Tokyo (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Bunkyo-ku, Tokyo (Japan); Hayashi, Naoto [University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Miyati, Tosiaki [Kanazawa University, Graduate School of Medical Science, Kanazawa (Japan); Takao, Hidemasa; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo Hospital, Department of Radiology and Department of Computational Diagnostic Radiology and Preventive Medicine, Bunkyo-ku, Tokyo (Japan); Iwatsubo, Takeshi [University of Tokyo, Department of Neuropathology, Bunkyo-ku, Tokyo (Japan); Yamashita, Fumio [Iwate Medical University, Department of Radiology, Yahaba, Iwate (Japan); Matsuda, Hiroshi [Integrative Brain Imaging Center National Center of Neurology and Psychiatry, Department of Nuclear Medicine, Kodaira, Tokyo (Japan); Collaboration: Japanese Alzheimer' s Disease Neuroimaging Initiative
2013-07-15
This study aimed to investigate whether the effect of scanner for cortex volumetry with atlas-based method is reduced using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL) normalization compared with standard normalization. Three-dimensional T1-weighted magnetic resonance images (3D-T1WIs) of 21 healthy subjects were obtained and evaluated for effect of scanner in cortex volumetry. 3D-T1WIs of the 21 subjects were obtained with five MRI systems. Imaging of each subject was performed on each of five different MRI scanners. We used the Voxel-Based Morphometry 8 tool implemented in Statistical Parametric Mapping 8 and WFU PickAtlas software (Talairach brain atlas theory). The following software default settings were used as bilateral region-of-interest labels: ''Frontal Lobe,'' ''Hippocampus,'' ''Occipital Lobe,'' ''Orbital Gyrus,'' ''Parietal Lobe,'' ''Putamen,'' and ''Temporal Lobe.'' Effect of scanner for cortex volumetry using the atlas-based method was reduced with DARTEL normalization compared with standard normalization in Frontal Lobe, Occipital Lobe, Orbital Gyrus, Putamen, and Temporal Lobe; was the same in Hippocampus and Parietal Lobe; and showed no increase with DARTEL normalization for any region of interest (ROI). DARTEL normalization reduces the effect of scanner, which is a major problem in multicenter studies. (orig.)
Carnovale, Giovanna; Caselli, Fabrizio; Concini, Corrado; Sole, Alberto
2017-01-01
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics such as: structure and representation theory of vertex algebras, Lie algebras and superalgebras, as well as hyperplane arrangements with different approaches, ranging from geometry and topology to combinatorics.
International Nuclear Information System (INIS)
Berezin, F.A.
1977-01-01
Generalization of the Laplace-Casimir operator theory on the Lie supergroups is considered. The main result is the formula for radial parts of the Laplace operators under some general assumptions about the Lie supergroup. In particular these assumptions are valid for the Lie suppergroups U(p,g) and C (m,n). The first one is the analogue of the unitary group, the second one is the analogue of the linear group of canonical transformations
The localized longitudinal index theorem for Lie groupoids and the van Est map
Pflaum, M.J.; Posthuma, H.; Tang, X.
2015-01-01
We define the "localized index" of longitudinal elliptic operators on Lie groupoids associated with Lie algebroid cohomology classes. We derive a topological expression for these numbers using the algebraic index theorem for Poisson manifolds on the dual of the Lie algebroid. Underlying the
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
International Nuclear Information System (INIS)
Mohammad, N.; Siddiqui, A.H.
1987-11-01
The notion of a 2-Banach algebra is introduced and its structure is studied. After a short discussion of some fundamental properties of bivectors and tensor product, several classical results of Banach algebras are extended to the 2-Banach algebra case. A condition under which a 2-Banach algebra becomes a Banach algebra is obtained and the relation between algebra of bivectors and 2-normed algebra is discussed. 11 refs
Evolution algebras and their applications
Tian, Jianjun Paul
2008-01-01
Behind genetics and Markov chains, there is an intrinsic algebraic structure. It is defined as a type of new algebra: as evolution algebra. This concept lies between algebras and dynamical systems. Algebraically, evolution algebras are non-associative Banach algebras; dynamically, they represent discrete dynamical systems. Evolution algebras have many connections with other mathematical fields including graph theory, group theory, stochastic processes, dynamical systems, knot theory, 3-manifolds, and the study of the Ihara-Selberg zeta function. In this volume the foundation of evolution algebra theory and applications in non-Mendelian genetics and Markov chains is developed, with pointers to some further research topics.
Real division algebras and other algebras motivated by physics
Energy Technology Data Exchange (ETDEWEB)
Benkart, G.; Osborn, J.M.
1981-02-01
In this survey we discuss several general techniques which have been productive in the study of real division algebras, flexible Lie-admissible algebras, and other nonassociative algebras, and we summarize results obtained using these methods. The principal method involved in this work is to view an algebra A as a module for a semisimple Lie algebra of derivations of A and to use representation theory to study products in A. In the case of real division algebras, we also discuss the use of isotopy and the use of a generalized Peirce decomposition. Most of the work summarized here has appeared in more detail in various other papers. The exceptions are results on a class of algebras of dimension 15, motivated by physics, which admit the Lie algebra sl(3) as an algebra of derivations.
Indian Academy of Sciences (India)
We also introduced in [1] techniques of connection of roots in the framework of split Lie algebras. In the present paper we extend these techniques to the framework of split Lie triple systems so as to obtain a generalization of the results in [1]. We consider the wide class of split Lie triple systems (which contains the class of.
Indian Academy of Sciences (India)
Lie triple system; system of roots; root space; split Lie algebra; structure theory. 1. Introduction and previous definitions. Throughout this paper, Lie triple systems T are considered of arbitrary dimension and over an arbitrary field K. It is worth to mention that, unless otherwise stated, there is not any restriction on dim Tα or {k ...
Cyclic theory of Lie algebroids
Blom, A.
2017-01-01
In this thesis we study the cyclic theory of universal enveloping algebras of Lie algebroids. Lie algebroids are geometrical objects that encode infinitesimal symmetries, and the concept encompasses many classical objects from geometry, such as Poisson manifolds, foliations and actions of Lie
Solutions and laws of conservation for coupled nonlinear Schrödinger equations: Lie group analysis
Pulov, V. I.; Uzunov, I. M.; Chacarov, E. J.
1998-03-01
A set of two coupled nonlinear Schrödinger equations is systematically analyzed by means of Lie group technique. The physical situations under consideration include nonlinear propagation in strongly birefringent and multimode optical fibers. The most general Lie group of point symmetries, its Lie algebra, and a group of adjoint representations that correspond to the Lie algebra are identified. As a result, a complete list of group-invariant exact solutions is obtained and compared with earlier results. The corresponding laws of conservation are derived employing Noether's theorem.
Nakatsuka, Tomoya; Imabayashi, Etsuko; Matsuda, Hiroshi; Sakakibara, Ryuji; Inaoka, Tsutomu; Terada, Hitoshi
2013-05-01
The purpose of this study was to identify brain atrophy specific for dementia with Lewy bodies (DLB) and to evaluate the discriminatory performance of this specific atrophy between DLB and Alzheimer's disease (AD). We retrospectively reviewed 60 DLB and 30 AD patients who had undergone 3D T1-weighted MRI. We randomly divided the DLB patients into two equal groups (A and B). First, we obtained a target volume of interest (VOI) for DLB-specific atrophy using correlation analysis of the percentage rate of significant whole white matter (WM) atrophy calculated using the Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) based on statistical parametric mapping 8 (SPM8) plus diffeomorphic anatomic registration through exponentiated Lie algebra, with segmented WM images in group A. We then evaluated the usefulness of this target VOI for discriminating the remaining 30 DLB patients in group B from the 30 AD patients. Z score values in this target VOI obtained from VSRAD were used as the determinant in receiver operating characteristic (ROC) analysis. Specific target VOIs for DLB were determined in the right-side dominant dorsal midbrain, right-side dominant dorsal pons, and bilateral cerebellum. ROC analysis revealed that the target VOI limited to the midbrain exhibited the highest area under the ROC curves of 0.75. DLB patients showed specific atrophy in the midbrain, pons, and cerebellum. Midbrain atrophy demonstrated the highest power for discriminating DLB and AD. This approach may be useful for determining the contributions of DLB and AD pathologies to the dementia syndrome.
Free Malcev algebra of rank three
Kornev, Alexandr
2011-01-01
We find a basis of the free Malcev algebra on three free generators over a field of characteristic zero. The specialty and semiprimity of this algebra are proved. In addition, we prove the decomposability of this algebra into subdirect sum of the free Lie algebra rank three and the free algebra of rank three of variety of Malcev algebras generated by a simple seven-dimensional Malcev algebra.
Yangian of the Queer Lie Superalgebra
Nazarov, Maxim
Consider the complex matrix Lie superalgebra with the standard generators , where . Define an involutory automorphism η of by . The twisted polynomial current Lie superalgebra has a natural Lie co-superalgebra structure. We quantise the universal enveloping algebra as a co-Poisson Hopf superalgebra. For the quantised algebra we give a description of the centre, and construct the double in the sense of Drinfeld. We also construct a wide class of irreducible representations of the quantised algebra.
Holme, Audun
1988-01-01
This volume presents selected papers resulting from the meeting at Sundance on enumerative algebraic geometry. The papers are original research articles and concentrate on the underlying geometry of the subject.
Dzhumadil'daev, A. S.
2002-01-01
Algebras with identity $(a\\star b)\\star (c\\star d) -(a\\star d)\\star(c\\star b)$ $=(a,b,c)\\star d-(a,d,c)\\star b$ are studied. Novikov algebras under Jordan multiplication and Leibniz dual algebras satisfy this identity. If algebra with such identity has unit, then it is associative and commutative.
Star product and invariant integration for Lie Type noncommutative spacetimes
International Nuclear Information System (INIS)
Chryssomalakos, Chryssomalis; Okon, Elias
2007-01-01
We present a star product for noncommutative spaces of Lie type, including the so called 'canonical' case by introducing a central generator, which is compatible with translations and admits a simple, manageable definition of an invariant integral. A quasi-cyclicity property for the latter is shown to hold, which reduces to exact cyclicity when the adjoint representation of the underlying Lie algebra is traceless. Several explicit examples illuminate the formalism, dealing with κ-Minkowski spacetime and the Heisenberg algebra ('canonical' noncommutative 2-plane)
String Topology for Lie Groups
DEFF Research Database (Denmark)
A. Hepworth, Richard
2010-01-01
In 1999 Chas and Sullivan showed that the homology of the free loop space of an oriented manifold admits the structure of a Batalin-Vilkovisky algebra. In this paper we give a direct description of this Batalin-Vilkovisky algebra in the case that the manifold is a compact Lie group G. Our answer ...
The central extension of Kac-Moody-Malcev algebras
Osipov, Edward P.
1989-07-01
We introduce a class of infinite-dimensional Kac-Moody-Malcev algebras. These algebras are the generalization of Lie algebras of the Kac-Moody type to Malcev algebras. We demonstrate that the central extensions of the Kac-Moody-Malcev algebras are given by the same cocycles as in the case of Lie algebras. Analogues of Kac-Moody-Malcev algebras may be also introduced in the case of an arbitrary Riemann surface.
Quantum Lie theory a multilinear approach
Kharchenko, Vladislav
2015-01-01
This is an introduction to the mathematics behind the phrase “quantum Lie algebra”. The numerous attempts over the last 15-20 years to define a quantum Lie algebra as an elegant algebraic object with a binary “quantum” Lie bracket have not been widely accepted. In this book, an alternative approach is developed that includes multivariable operations. Among the problems discussed are the following: a PBW-type theorem; quantum deformations of Kac--Moody algebras; generic and symmetric quantum Lie operations; the Nichols algebras; the Gurevich--Manin Lie algebras; and Shestakov--Umirbaev operations for the Lie theory of nonassociative products. Opening with an introduction for beginners and continuing as a textbook for graduate students in physics and mathematics, the book can also be used as a reference by more advanced readers. With the exception of the introductory chapter, the content of this monograph has not previously appeared in book form.
Sakuraba, Takao
The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A
Algebraic structure of the Green's ansatz and its q-deformed analogue
International Nuclear Information System (INIS)
Palev, T.D.
1994-08-01
The algebraic structure of the Green's ansatz is analyzed in such a way that its generalization to the case of q-deformed para-Bose and para-Fermi operators is becoming evident. To this end the underlying Lie (super) algebraic properties of the parastatistics are essentially used. (author). 41 refs
Algebraic conformal field theory
International Nuclear Information System (INIS)
Fuchs, J.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica
1991-11-01
Many conformal field theory features are special versions of structures which are present in arbitrary 2-dimensional quantum field theories. So it makes sense to describe 2-dimensional conformal field theories in context of algebraic theory of superselection sectors. While most of the results of the algebraic theory are rather abstract, conformal field theories offer the possibility to work out many formulae explicitly. In particular, one can construct the full algebra A-bar of global observables and the endomorphisms of A-bar which represent the superselection sectors. Some explicit results are presented for the level 1 so(N) WZW theories; the algebra A-bar is found to be the enveloping algebra of a Lie algebra L-bar which is an extension of the chiral symmetry algebra of the WZW theory. (author). 21 refs., 6 figs
Discrete Minimal Surface Algebras
Directory of Open Access Journals (Sweden)
Joakim Arnlind
2010-05-01
Full Text Available We consider discrete minimal surface algebras (DMSA as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sl_n (any semi-simple Lie algebra providing a trivial example by itself. A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.
Directory of Open Access Journals (Sweden)
Ian D. Washington
2015-07-01
Full Text Available A technique for optimizing large-scale differential-algebraic process models under uncertainty using a parallel embedded model approach is developed in this article. A combined multi-period multiple-shooting discretization scheme is proposed, which creates a significant number of independent numerical integration tasks for each shooting interval over all scenario/period realizations. Each independent integration task is able to be solved in parallel as part of the function evaluations within a gradient-based non-linear programming solver. The focus of this paper is on demonstrating potential computation performance improvement when the embedded differential-algebraic equation model solution of the multi-period discretization is implemented in parallel. We assess our parallel dynamic optimization approach on two case studies; the first is a benchmark literature problem, while the second is a large-scale air separation problem that considers a robust set-point transition under parametric uncertainty. Results indicate that focusing on the speed-up of the embedded model evaluation can significantly decrease the overall computation time; however, as the multi-period formulation grows with increased realizations, the computational burden quickly shifts to the internal computation performed within the non-linear programming algorithm. This highlights the need for further decomposition, structure exploitation and parallelization within the non-linear programming algorithm and is the subject for further investigation.
Algebraic isotopy in genetics.
Campos, T M; Holgate, P
1987-01-01
It is shown that many of the algebras arising in nonselective genetics are isotopes of the algebras for particularly simple systems of inheritance. Moreover, interesting aspects of the structure are preserved under the relevant isotopies.
Contraction of graded su(2) algebra
International Nuclear Information System (INIS)
Patra, M.K.; Tripathy, K.C.
1989-01-01
The Inoenu-Wigner contraction scheme is extended to Lie superalgebras. The structure and representations of extended BRS algebra are obtained from contraction of the graded su(2) algebra. From cohomological consideration, we demonstrate that the graded su(2) algebra is the only superalgebra which, on contraction, yields the full BRS algebra. (orig.)
Uncertainty relations and semi-groups in B-algebras
International Nuclear Information System (INIS)
Papaloucas, L.C.
1980-07-01
Starting from a B-algebra which satisfies the conditions of a structure theorem, we obtain directly a Lie algebra for which the Lie ring satisfies automatically the Heisenberg uncertainty relations. (author)
Supersymmetry in physics: an algebraic overview
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
In 1970, while attempting to generalize the Veneziano model (string model) to include fermions, I introduced a new algebraic structure which turned out to be a graded Lie algebra; it was used as a spectrum-generating algebra. This approach was soon after generalized to include interactions, yielding a complete model of fermions and boson (RNS model). In an unrelated work in the Soviet Union, it was shown how to generalize the Poincare group to include fermionic charges. However it was not until 1974 that an interacting field theory invariant under the Graded Poincare group in 3 + 1 dimensions was built (WZ model). Supersymmetric field theories turned out to have less divergent ultraviolet behavior than non-supersymmetric field theories. Gravity was generalized to include supersymmetry, to a theory called supergravity. By now many interacting local field theories exhibiting supersymmetry have been built and studied from 1 + 1 to 10 + 1 dimensions. Supersymmetric local field theories in less than 9 + 1 dimensions, can be understood as limits of multilocal (string) supersymmetric theories, in 9 + 1 dimensions. On the other hand, graded Lie algebras have been used in non-relativistic physics as approximate symmetries of Hamiltonians. The most striking such use so far helps comparing even and odd nuclei energy levels. It is believed that graded Lie algebras can be used whenever paired and unpaired fermions excitations can coexist. In this overview of a tremendously large field, I will only survey finite graded Lie algebras and their representations. For non-relativistic applications, all of GLA are potentially useful, while for relativistic applications, only these which include the Poincare group are to be considered
Hsiang, Wu-Yi
2017-01-01
This volume consists of nine lectures on selected topics of Lie group theory. We provide the readers a concise introduction as well as a comprehensive 'tour of revisiting' the remarkable achievements of S Lie, W Killing, É Cartan and H Weyl on structural and classification theory of semi-simple Lie groups, Lie algebras and their representations; and also the wonderful duet of Cartans' theory on Lie groups and symmetric spaces.With the benefit of retrospective hindsight, mainly inspired by the outstanding contribution of H Weyl in the special case of compact connected Lie groups, we develop the above theory via a route quite different from the original methods engaged by most other books.We begin our revisiting with the compact theory which is much simpler than that of the general semi-simple Lie theory; mainly due to the well fittings between the Frobenius-Schur character theory and the maximal tori theorem of É Cartan together with Weyl's reduction (cf. Lectures 1-4). It is a wonderful reality of the Lie t...
Differential Geometry and Lie Groups for Physicists
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Sugawara's construction for Kac-Moody-Malcev algebras
Osipov, Edward P.
1988-11-01
We give a construction of the Virasoro algebra in terms of bilinear combinations of currents. The currents satisfy the Kac-Moody-Malcev commutation relations. The Kac-Moody-Malcev algebras are the generalization of Lie algebras of Kac-Moody type to the Malcev algebras. Thus, we give the generalization of the Sugawara construction to the case of Kac-Moody-Malcev algebras.
Sakamoto, Kentaro Q; Sato, Katsufumi; Kato, Akiko; Fukui, Daisuke; Bando, Gen; Naito, Yasuhiko; Habara, Yoshiaki; Ishizuka, Mayumi; Fujita, Shoichi
2010-01-01
Prolonged abnormal vomiting causes metabolic alkalosis. Many seabirds are known to feed their chicks by regurgitation. We hypothesized that metabolic alkalosis occurs in seabirds even under natural conditions during the breeding season. Adélie penguins Pygoscelis adeliae feed their chicks by regurgitating food for 50-60 d until the chicks fledge. In this study, the concentrations of Cl(-), HCO(3)(-), Na+, K+, pH, and PCO2 in the blood of breeding Adélie penguins were measured throughout the chick-rearing season. The pH of penguin venous blood shifted from 7.54 in the guarding period to 7.47 in the crèche period. Decreasing Cl(-) and increasing HCO(3)(-) blood concentrations in parents were associated with increasing mass of their brood in the guarding period, the early phase of the rearing season, indicating that regurgitating to feed chicks causes loss of gastric acid and results in relative metabolic alkalosis. The inverse trend was observed during the crèche period, the latter phase of the rearing season, when parents spent more time at sea and have fewer opportunities for gastric acid loss. This was assumed to be the recovery phase. These results indicate that regurgitation might cause metabolic alkalosis in breeding Adélie penguins. To our knowledge, this is the first report to indicate that seabirds exhibit metabolic alkalosis due to regurgitation to feed chicks under natural conditions.
The path group construction of Lie group extensions
Vizman, Cornelia
2007-01-01
We present an explicit realization of abelian extensions of infinite dimensional Lie groups using abelian extensions of path groups, by generalizing Mickelsson's approach to loop groups and the approach of Losev-Moore-Nekrasov-Shatashvili to current groups. We apply our method to coupled cocycles on current Lie algebras and to Lichnerowicz cocycles on the Lie algebra of divergence free vector fields.
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
Energy Technology Data Exchange (ETDEWEB)
Yoshiura, Takashi; Hiwatashi, Akio; Yamashita, Koji; Takayama, Yukihisa; Kamano, Norihiro; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka (Japan); Ohyagi, Yasumasa; Kira, Jun-ichi [Kyushu University, Department of Neurology, Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka (Japan); Monji, Akira; Kawashima, Toshiro [Kyushu University, Department of Neuropsychiatry, Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka (Japan)
2011-02-15
To determine which brain regions are relevant to deterioration in abstract reasoning as measured by Raven's Colored Progressive Matrices (CPM) in the context of dementia. MR images of 37 consecutive patients including 19 with Alzheimer's disease (AD) and 18 with amnestic mild cognitive impairment (aMCI) were retrospectively analyzed. All patients were administered the CPM. Regional grey matter (GM) volume was evaluated according to the regimens of voxel-based morphometry, during which a non-linear registration algorithm called Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra was employed. Multiple regression analyses were used to map the regions where GM volumes were correlated with CPM scores. The strongest correlation with CPM scores was seen in the left middle frontal gyrus while a region with the largest volume was identified in the left superior temporal gyrus. Significant correlations were seen in 14 additional regions in the bilateral cerebral hemispheres and right cerebellum. Deterioration of abstract reasoning ability in AD and aMCI measured by CPM is related to GM loss in multiple regions, which is in close agreement with the results of previous activation studies. (orig.)
Twisted statistics and the structure of Lie-deformed Minkowski spaces
Meljanac, D.; Meljanac, S.; Pikutić, D.; Gupta, Kumar S.
2017-11-01
We show that the realizations of noncommutative coordinates that are linear in the Lorentz generators form a closed Lie algebra under certain conditions. The star product and the coproduct for the momentum generators are obtained for these Lie algebras and the corresponding twist satisfies the cocycle and normalization conditions. We also obtain the twisted flip operator and the R -matrix that define the statistics of particles or quantum fields propagating in these noncommutative spacetimes. The Lie algebra obtained in this work contains a special case which has been used in the literature to put bounds on noncommutative parameters from the experimental limits on Pauli forbidden transitions. The general covariant framework presented here is suitable for analyzing the properties of particles or quantum fields at the Planck scale.
Kashy, D A; DePaulo, B M
1996-05-01
Seventy-seven undergraduates and 70 demographically diverse members of the community completed 12 individual differences measures hypothesized to predict lie-telling in everyday life and then kept a diary every day for a week of all of their social interactions and all of the lies that they told during those interactions. Consistent with predictions, the people who told more lies were more manipulative, more concerned with self-presentation, and more sociable. People who told fewer lies were more highly socialized and reported higher quality same-sex relationships. Manipulative people, less highly socialized people, and people with less gratifying same-sex relationships also told especially more self-serving lies, whereas people with higher quality same-sex relationships told relatively more other oriented lies.
International Nuclear Information System (INIS)
Garcia, R.L.
1983-11-01
The Grassmann algebra is presented briefly. Exponential and logarithm of matrices functions, whose elements belong to this algebra, are studied with the help of the SCHOONSCHIP and REDUCE 2 algebraic manipulators. (Author) [pt
Lefschetz, Solomon
2005-01-01
An introduction to algebraic geometry and a bridge between its analytical-topological and algebraical aspects, this text for advanced undergraduate students is particularly relevant to those more familiar with analysis than algebra. 1953 edition.
Lie Markov models with purine/pyrimidine symmetry.
Fernández-Sánchez, Jesús; Sumner, Jeremy G; Jarvis, Peter D; Woodhams, Michael D
2015-03-01
Continuous-time Markov chains are a standard tool in phylogenetic inference. If homogeneity is assumed, the chain is formulated by specifying time-independent rates of substitutions between states in the chain. In applications, there are usually extra constraints on the rates, depending on the situation. If a model is formulated in this way, it is possible to generalise it and allow for an inhomogeneous process, with time-dependent rates satisfying the same constraints. It is then useful to require that, under some time restrictions, there exists a homogeneous average of this inhomogeneous process within the same model. This leads to the definition of "Lie Markov models" which, as we will show, are precisely the class of models where such an average exists. These models form Lie algebras and hence concepts from Lie group theory are central to their derivation. In this paper, we concentrate on applications to phylogenetics and nucleotide evolution, and derive the complete hierarchy of Lie Markov models that respect the grouping of nucleotides into purines and pyrimidines-that is, models with purine/pyrimidine symmetry. We also discuss how to handle the subtleties of applying Lie group methods, most naturally defined over the complex field, to the stochastic case of a Markov process, where parameter values are restricted to be real and positive. In particular, we explore the geometric embedding of the cone of stochastic rate matrices within the ambient space of the associated complex Lie algebra.
Indian Academy of Sciences (India)
project of the Spanish Ministerio de Educación y Ciencia MTM2007-60333. References. [1] Calderón A J, On split Lie algebras with symmetric root systems, Proc. Indian. Acad. Sci (Math. Sci.) 118(2008) 351–356. [2] Calderón A J, On split Lie triple systems, Proc. Indian. Acad. Sci (Math. Sci.) 119(2009). 165–177.
Krňávek, Jan; Kühr, Jan
2011-12-01
Basic algebras are a generalization of MV-algebras, also including orthomodular lattices and lattice effect algebras. A pre-ideal of a basic algebra is a non-empty subset that is closed under the addition ⊕ and downwards closed with respect to the underlying order. In this paper, we study the pre-ideal lattices of algebras in a particular subclass of basic algebras which are closer to MV-algebras than basic algebras in general. We also prove that finite members of this subclass are exactly finite MV-algebras.
Multiplication: From Thales to Lie1
Indian Academy of Sciences (India)
of Technology and. Science, Pilani. His research interests are algebraic geometry, and. Galois theory. Keywords. Ruler constructions, addition, multiplication, unslanting, infinite- simals, Lie algebra, exponential map. The ancient Greek mathematician Thales of Mile- tus devised a method to make large measure- ments like ...
Quantum groups and double quiver algebras
International Nuclear Information System (INIS)
Huang Hualin; Yang Shilin
2004-07-01
For a finite dimensional sernisimple Lie algebra g and a root q of unity in a field k we associate to these data a double quiver Q-bar. It is shown that a restricted version of the quantized enveloping algebras U q (g) is a quotient of the double quiver algebra kQ-bar. (author)
Lipkin, Harry J
2002-01-01
According to the author of this concise, high-level study, physicists often shy away from group theory, perhaps because they are unsure which parts of the subject belong to the physicist and which belong to the mathematician. However, it is possible for physicists to understand and use many techniques which have a group theoretical basis without necessarily understanding all of group theory. This book is designed to familiarize physicists with those techniques. Specifically, the author aims to show how the well-known methods of angular momentum algebra can be extended to treat other Lie group
Introduction to abstract algebra
Smith, Jonathan D H
2008-01-01
Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduc
Certain extensions of vertex operator algebras of affine type
International Nuclear Information System (INIS)
Li Haisheng
2001-01-01
We generalize Feigin and Miwa's construction of extended vertex operator (super)algebras A k (sl(2)) for other types of simple Lie algebras. For all the constructed extended vertex operator (super)algebras, irreducible modules are classified, complete reducibility of every module is proved and fusion rules are determined modulo the fusion rules for vertex operator algebras of affine type. (orig.)
Superalgebras with Grassmann algebra-valued structure constants from superfields
International Nuclear Information System (INIS)
Azcarraga, J.A. de; Lukierski, J.
1987-05-01
We introduce generalized Lie algebras and superalgebras with generators and structure constants taking values in a Grassmann algebra. Such algebraic structures describe the equal time algebras in the superfield formalism. As an example we consider the equal time commutators and anticommutators among bilinears made out of the D=1 quantum superfields describing the supersymmetric harmonic oscillator. (author). 10 refs
Algebraic monoids, group embeddings, and algebraic combinatorics
Li, Zhenheng; Steinberg, Benjamin; Wang, Qiang
2014-01-01
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly π-regular. Graduate students as well a...
Kac-Moody-Malcev and super-Kac-Moody-Malcev algebras
Osipov, Edward P.
1992-01-01
We define infinite-dimensional Malcev algebras generalizing infinite-dimensional Kac-Moody type algebras and consider their central extensions. The Kac-Moody-Malcev algebras, associated with the simple non-Lie Malcev algebras, have trivial central extensions only and super-Kac-Moody-Malcev algebras, associated with the simple non-Lie Malcev algebras, have nontrivial central extensions for Grassmann generators only.
Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in modular case
International Nuclear Information System (INIS)
Hu Naihong; Wang Xiuling
2006-12-01
We quantize the generalized-Witt algebra in characteristic 0 with its Lie bialgebra structures discovered by Song-Su ([10]). Via a modulo p reduction and a modulo 'restrictedness' reduction process, we get 2 n -1 families of truncated p-polynomial noncommutative deformations of the restricted universal enveloping algebra of the Jacobson-Witt algebra W (n; 1) (for the Cartan type simple modular restricted Lie algebra of W type). They are new families of noncommutative and noncommutative Hopf algebras of dimension p 1+np n in characteristic p. Our results generalize a work of Grunspan (J. Algebra 280 (2004), 145-161]) in the rank n = 1 case in characteristic 0, whereas in the modular case, the argument for a refined version needs to follow a different modulo reductions' approach with some techniques from the modular Lie algebra theory. (author)
Algebra, Geometry and Mathematical Physics Conference
Paal, Eugen; Silvestrov, Sergei; Stolin, Alexander
2014-01-01
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization, and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers a...
Correlation functions from a unified variational principle: Trial Lie groups
Energy Technology Data Exchange (ETDEWEB)
Balian, R., E-mail: roger.balian@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Vénéroni, M. [Institut de Physique Nucléaire, Université Paris-Sud and IN2P3-CNRS, F-91406 Orsay cedex (France)
2015-11-15
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill
Integrable systems on semidirect product Lie groups
Capriotti, S.; Montani, H.
2014-05-01
We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler-Kostant-Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson-Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.
Lie-Hamilton systems on curved spaces: a geometrical approach
Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz
2017-12-01
A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.
Warner, Seth
1990-01-01
Standard text provides an exceptionally comprehensive treatment of every aspect of modern algebra. Explores algebraic structures, rings and fields, vector spaces, polynomials, linear operators, much more. Over 1,300 exercises. 1965 edition.
Goodstein, R L
2007-01-01
This elementary treatment by a distinguished mathematician employs Boolean algebra as a simple medium for introducing important concepts of modern algebra. Numerous examples appear throughout the text, plus full solutions.
Krichever-Novikov type algebras theory and applications
Schlichenmaier, Martin
2014-01-01
Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are
Sugawara's construction for Kac-Moody-Malcev algebras
Energy Technology Data Exchange (ETDEWEB)
Osipov, E.P.
1988-11-24
We give a construction of the Virasoro algebra in terms of bilinear combinations of currents. The currents satisfy the Kac-Moody-Malcev commutation relations. The Kac-Moody-Malcev algebras are the generalization of Lie algebras of Kac-Moody type to the Malcev algebras. Thus, we give the generalization of the Sugawara construction to the case of Kac-Moody-Malcev algebras.
International Nuclear Information System (INIS)
Ribeiro, Rafael S.; Hermes, Christian J.L.
2014-01-01
In this study, the method of entropy generation minimization (i.e., design aimed at facilitating both heat, mass and fluid flows) is used to assess the evaporator design (aspect ratio and fin density) considering the thermodynamic losses due to heat and mass transfer, and viscous flow processes. A fully algebraic model was put forward to simulate the thermal-hydraulic behavior of tube-fin evaporator coils running under frosting conditions. The model predictions were validated against experimental data, showing a good agreement between calculated and measured counterparts. The optimization exercise has pointed out that high aspect ratio heat exchanger designs lead to lower entropy generation in cases of fixed cooling capacity and air flow rate constrained by the characteristic curve of the fan. - Highlights: • An algebraic model for frost accumulation on tube-fin heat exchangers was advanced. • Model predictions for cooling capacity and air flow rate were compared with experimental data, with errors within ±5% band. • Minimum entropy generation criterion was used to optimize the evaporator geometry. • Thermodynamic analysis led to slender designs for fixed cooling capacity and fan characteristics
International Nuclear Information System (INIS)
Gulshani, P.; So, C.B.
1986-10-01
In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
A master identity for homotopy Gerstenhaber algebras
Energy Technology Data Exchange (ETDEWEB)
Akman, F. [Coastal Carolina Univ., Conway, SC (United States). Dept. of Math.
2000-01-01
We produce a master identity {l_brace}m{r_brace}{l_brace}m,m,..{r_brace}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
A master identity for homotopy Gerstenhaber algebras
International Nuclear Information System (INIS)
Akman, F.
2000-01-01
We produce a master identity {m}{m,m,..}=0 for a certain type of homotopy Gerstenhaber algebras, in particular suitable for the prototype, namely the Hochschild complex of an associative algebra. This algebraic master identity was inspired by the work of Getzler-Jones and Kimura-Voronov-Zuckerman in the context of topological conformal field theories. To this end, we introduce the notion of a ''partitioned multilinear map'' and explain the mechanics of composing such maps. In addition, many new examples of pre-Lie algebras and homotopy Gerstenhaber algebras are given. (orig.)
Homomorphisms of certain Banach function algebras
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
. } < ∞ is denoted by Lipα(X, d). These algebras are called Lipschitz algebras of order α and were first studied by Sherbert. The Lipschitz algebras Lipα(X, d) for α ≤ 1 are natural. Banach function algebras on X under the norm f α = f X + pα(f ) ...
International Nuclear Information System (INIS)
Dadashyan, K.Yu.; Khoruzhii, S.S.
1987-01-01
The construction of a modular theory for weakly closed J-involutive algebras of bounded operators on Pontryagin spaces is continued. The spectrum of the modular operator Δ of such an algebra is investigated, the existence of a strongly continuous J-unitary group is established and, under the condition that the spectrum lies in the right half-plane, Tomita's fundamental theorem is proved
On Quantum Lie Nilpotency of Order 2
Directory of Open Access Journals (Sweden)
E. A. Kireeva
2016-01-01
Full Text Available The paper investigates the free algebras of varieties of associative algebras modulo identities of quantum Lie nilpotency of order 1 and 2. Let q be an invertible element of the ground field K (or of its extension. The element[x,y]q = xy-qyxof the free associative algebra is called a quantum commutator. We consider the algebras modulo identities [x,y]q = 0 (1and [[x,y]q ,z]q = 0. (2It is natural to consider the aforementioned algebras as the quantum analogs of commutative algebras and algebras of Lie nilpotency of order 2. The free algebras of the varieties of associative algebras modulo the identity of Lie nilpotency of order 2, that is the identity[[x,y] ,z] =0,where [x,y]=xy-yx is a Lie commutator, are of great interest in the theory of algebras with polynomial identities, since it was proved by A.V.Grishin for algebras over fields of characteristic 2, and V.V.Shchigolev for algebras over fields of characteristic p>2, that these algebras contain non-finitely generated T-spaces.We prove in the paper that the algebras modulo identities (1 and (2 are nilpotent in the usual sense and calculate precisely the nilpotency order of these algebras. More precisely, we prove that the free algebra of the variety of associative algebras modulo identity (1 is nilpotent of order 2 if q ≠ ± 1, and nilpotent of order 3 if q = - 1 and the characteristic of K is not equal to 2. It is also proved that the free algebra of the variety of associative algebras modulo identity (2 is nilpotent of order 3 if q3 ≠ 1, q ≠ ± 1, nilpotent of order 4 if q3 = 1, q ≠ 1, and nilpotent of
Critical analysis of algebraic collective models
International Nuclear Information System (INIS)
Moshinsky, M.
1986-01-01
The author shall understand by algebraic collective models all those based on specific Lie algebras, whether the latter are suggested through simple shell model considerations like in the case of the Interacting Boson Approximation (IBA), or have a detailed microscopic foundation like the symplectic model. To analyze these models critically, it is convenient to take a simple conceptual example of them in which all steps can be implemented analytically or through elementary numerical analysis. In this note he takes as an example the symplectic model in a two dimensional space i.e. based on a sp(4,R) Lie algebra, and show how through its complete discussion we can get a clearer understanding of the structure of algebraic collective models of nuclei. In particular he discusses the association of Hamiltonians, related to maximal subalgebras of our basic Lie algebra, with specific types of spectra, and the connections between spectra and shapes
Chern-Simons and Born-Infeld gravity theories and Maxwell algebras type
International Nuclear Information System (INIS)
Concha, P.K.; Penafiel, D.M.; Rodriguez, E.K.; Salgado, P.
2014-01-01
Recently it was shown that standard odd- and even-dimensional general relativity can be obtained from a (2n + 1)-dimensional Chern-Simons Lagrangian invariant under the B 2n+1 algebra and from a (2n)-dimensional Born-Infeld Lagrangian invariant under a subalgebra L B 2n+1 , respectively. Very recently, it was shown that the generalized Inoenue-Wigner contraction of the generalized AdS-Maxwell algebras provides Maxwell algebras of types M m which correspond to the so-called B m Lie algebras. In this article we report on a simple model that suggests a mechanism by which standard odd-dimensional general relativity may emerge as the weak coupling constant limit of a (2p + 1)-dimensional Chern-Simons Lagrangian invariant under the Maxwell algebra type M 2m+1 , if and only if m ≥ p. Similarly, we show that standard even-dimensional general relativity emerges as the weak coupling constant limit of a (2p)-dimensional Born-Infeld type Lagrangian invariant under a subalgebra L M 2m of theMaxwell algebra type, if and only if m ≥ p. It is shown that when m 2m+1 and for a (2p)-dimensional Born-Infeld type Lagrangian invariant under the L M 2m algebra. (orig.)
Ford, Timothy J
2017-01-01
This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.
International Nuclear Information System (INIS)
Odesskii, A V
2002-01-01
This survey is devoted to associative Z ≥0 -graded algebras presented by n generators and n(n-1)/2 quadratic relations and satisfying the so-called Poincare-Birkhoff-Witt condition (PBW-algebras). Examples are considered of such algebras, depending on two continuous parameters (namely, on an elliptic curve and a point on it), that are flat deformations of the polynomial ring in n variables. Diverse properties of these algebras are described, together with their relations to integrable systems, deformation quantization, moduli spaces, and other directions of modern investigations
National Research Council Canada - National Science Library
Hartshorne, Robin
1977-01-01
.... 141 BECKERIWEISPFENNINGIKREDEL. Grabner Bases. A Computational Approach to Commutative Algebra. 142 LANG. Real and Functional Analysis. 3rd ed. 143 DOOB. Measure Theory. 144 DENNIS/FARB. Noncommutat...
n-ary algebras: a review with applications
International Nuclear Information System (INIS)
De Azcarraga, J A; Izquierdo, J M
2010-01-01
This paper reviews the properties and applications of certain n-ary generalizations of Lie algebras in a self-contained and unified way. These generalizations are algebraic structures in which the two-entry Lie bracket has been replaced by a bracket with n entries. Each type of n-ary bracket satisfies a specific characteristic identity which plays the role of the Jacobi identity for Lie algebras. Particular attention will be paid to generalized Lie algebras, which are defined by even multibrackets obtained by antisymmetrizing the associative products of its n components and that satisfy the generalized Jacobi identity, and to Filippov (or n-Lie) algebras, which are defined by fully antisymmetric n-brackets that satisfy the Filippov identity. 3-Lie algebras have surfaced recently in multi-brane theory in the context of the Bagger-Lambert-Gustavsson model. As a result, Filippov algebras will be discussed at length, including the cohomology complexes that govern their central extensions and their deformations (it turns out that Whitehead's lemma extends to all semisimple n-Lie algebras). When the skewsymmetry of the Lie or n-Lie algebra bracket is relaxed, one is led to a more general type of n-algebras, the n-Leibniz algebras. These will be discussed as well, since they underlie the cohomological properties of n-Lie algebras. The standard Poisson structure may also be extended to the n-ary case. We shall review here the even generalized Poisson structures, whose generalized Jacobi identity reproduces the pattern of the generalized Lie algebras, and the Nambu-Poisson structures, which satisfy the Filippov identity and determine Filippov algebras. Finally, the recent work of Bagger-Lambert and Gustavsson on superconformal Chern-Simons theory will be briefly discussed. Emphasis will be made on the appearance of the 3-Lie algebra structure and on why the A 4 model may be formulated in terms of an ordinary Lie algebra, and on its Nambu bracket generalization. (topical
Lie-superalgebraical aspects of quantum statistics
International Nuclear Information System (INIS)
Palev, T.D.
1978-01-01
The Lie-superalgebraical properties of the ordinary quantum statistics are discussed with the aim of possible generalization in quantum theory and in theoretical physics. It is indicated that the algebra generated by n pairs of Fermi or paraFermi operators is isomorphic to the classical simple Lie algebra Bsub(n) of the SO(2n+1) orthogonal group, whereas n pairs of Bose or paraBose operators generate the simple orthosympletic superalgebra B(O,n). The transition to infinite number of creation and annihilation operators (n → infinity) does not change a superalgebraic structure. Hence, ordinary Bose and Fermi quantization can be considered as quantization over definite irreducible representations of two simple Lie superalgebras. The idea is given of how one can introduce creation and annihilation operators that satisfy the second quantization postulates and generate other simple Lie superalgebras
G-identities of non-associative algebras
International Nuclear Information System (INIS)
Bakhturin, Yu A; Zaitsev, M V; Sehgal, S K
1999-01-01
The main class of algebras considered in this paper is the class of algebras of Lie type. This class includes, in particular, associative algebras, Lie algebras and superalgebras, Leibniz algebras, quantum Lie algebras, and many others. We prove that if a finite group G acts on such an algebra A by automorphisms and anti-automorphisms and A satisfies an essential G-identity, then A satisfies an ordinary identity of degree bounded by a function that depends on the degree of the original identity and the order of G. We show in the case of ordinary Lie algebras that if L is a Lie algebra, a finite group G acts on L by automorphisms and anti-automorphisms, and the order of G is coprime to the characteristic of the field, then the existence of an identity on skew-symmetric elements implies the existence of an identity on the whole of L, with the same kind of dependence between the degrees of the identities. Finally, we generalize Amitsur's theorem on polynomial identities in associative algebras with involution to the case of alternative algebras with involution
African Journals Online (AJOL)
Tadesse
Department of Mathematics, Faculty of Computer and Mathematical Sciences, Addis Ababa. University, Addis Ababa, Ethiopia(*drkvenkateswarlu@gmail.com, **berhanufk@yahoo.co.uk). ABSTRACT. In this paper we introduce the concept of implicative algebras which is an equivalent definition of lattice implication algebra ...
African Journals Online (AJOL)
Tadesse
metric space. Also we prove that every implicative algebra can be made into a regular. Autometrized Algebra of Swamy (1964) (see theorem 2.9). We recall the definition of Xu (1993). Defintion [2]: Let (L,∨,∧,0,1) be a bounded lattice with order reversing involution. “ ' ”and a binary operation → satisfying the following ...
Linear Algebra and Smarandache Linear Algebra
Vasantha, Kandasamy
2003-01-01
The present book, on Smarandache linear algebra, not only studies the Smarandache analogues of linear algebra and its applications, it also aims to bridge the need for new research topics pertaining to linear algebra, purely in the algebraic sense. We have introduced Smarandache semilinear algebra, Smarandache bilinear algebra and Smarandache anti-linear algebra and their fuzzy equivalents. Moreover, in this book, we have brought out the study of linear algebra and vector spaces over finite p...
Differential geometry on Hopf algebras and quantum groups
International Nuclear Information System (INIS)
Watts, P.
1994-01-01
The differential geometry on a Hopf algebra is constructed, by using the basic axioms of Hopf algebras and noncommutative differential geometry. The space of generalized derivations on a Hopf algebra of functions is presented via the smash product, and used to define and discuss quantum Lie algebras and their properties. The Cartan calculus of the exterior derivative, Lie derivative, and inner derivation is found for both the universal and general differential calculi of an arbitrary Hopf algebra, and, by restricting to the quasitriangular case and using the numerical R-matrix formalism, the aforementioned structures for quantum groups are determined
q-Derivatives, quantization methods and q-algebras
International Nuclear Information System (INIS)
Twarock, Reidun
1998-01-01
Using the example of Borel quantization on S 1 , we discuss the relation between quantization methods and q-algebras. In particular, it is shown that a q-deformation of the Witt algebra with generators labeled by Z is realized by q-difference operators. This leads to a discrete quantum mechanics. Because of Z, the discretization is equidistant. As an approach to a non-equidistant discretization of quantum mechanics one can change the Witt algebra using not the number field Z as labels but a quadratic extension of Z characterized by an irrational number τ. This extension is denoted as quasi-crystal Lie algebra, because this is a relation to one-dimensional quasicrystals. The q-deformation of this quasicrystal Lie algebra is discussed. It is pointed out that quasicrystal Lie algebras can be considered also as a 'deformed' Witt algebra with a 'deformation' of the labeling number field. Their application to the theory is discussed
3-Lie bialgebras (Lb,Cd and (Lb,Ce
Directory of Open Access Journals (Sweden)
Bai Ruipu
2016-05-01
Full Text Available Four dimensional $3$-Lie coalgebras with two-dimensional derived algebras, and four-dimensional $3$-Lie bialgebras of type $(L_b, C_c$ are classified. It is proved that there exist three classes of four dimensional $3$-Lie coalgebras with two-dimensional derived algebra which are $(L, C_{c_i}$, $i=1, 2, 3$ (Lemma 3.1, and ten classes of four dimensional $3$-Lie bialgebras of type $(L_b, C_c$ (Theorem 3.2.
Some remarks on Lie-isotopic lifting of Minkowski metric
Energy Technology Data Exchange (ETDEWEB)
Aringazin, A.K. [Karaganda State Univ. (Kazakhstan)]| [Inst. for Basic Research, Palm Harbor, FL (United States)
1993-06-01
Generalization of the Lorentz invariance based on Lie-isotopic approach is considered. Lie-isotopy permits metric tensor to be more general than the Minkoweld one in a way that it may depend on local variables, the inverse of it being the unit of the associated Lie-isotopic algebra. The problem of specific Lie-isotopic liftings, which may be realized in various ways, is discussed. 44 refs.
Fields and forms on ρ-algebras
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
It is known [1] that the ρ-commutator of two ρ-derivations is again a ρ-derivation and the linear space of all ρ-derivations is a ρ-Lie algebra, denoted by ρ-Der A. One verifies immediately that for such an algebra A, ρ-Der A is not only a ρ-Lie algebra but also a left A-module with the action of A on ρ-Der A defined by. (f X)g = f ...
Lie-theoretic generating relations of two variable Laguerre polynomials
International Nuclear Information System (INIS)
Khan, Subuhi; Yasmin, Ghazala
2002-07-01
Generating relations involving two variable Lagneire polynonuals L n (x, y) are derived. The process involves the construction of a three dimensional Lie algebra isomorphic to special linear algebra sl(2) with the help of Weisner's method by giving suitable interpretations to the index n of the polynomials L n (x, y). (author)
The structure of complex Lie groups
Lee, Dong Hoon
2001-01-01
Complex Lie groups have often been used as auxiliaries in the study of real Lie groups in areas such as differential geometry and representation theory. To date, however, no book has fully explored and developed their structural aspects.The Structure of Complex Lie Groups addresses this need. Self-contained, it begins with general concepts introduced via an almost complex structure on a real Lie group. It then moves to the theory of representative functions of Lie groups- used as a primary tool in subsequent chapters-and discusses the extension problem of representations that is essential for studying the structure of complex Lie groups. This is followed by a discourse on complex analytic groups that carry the structure of affine algebraic groups compatible with their analytic group structure. The author then uses the results of his earlier discussions to determine the observability of subgroups of complex Lie groups.The differences between complex algebraic groups and complex Lie groups are sometimes subtle ...
On a class of smooth Frechet subalgebras of C-algebras
Indian Academy of Sciences (India)
Keywords. Smooth subalgebra of a *-algebra; spectral invariance; closure under functional calculus; Arens–Michael decomposition of a Frechet algebra; Banach ( D p ∗ ) -algebra; Frechet ( D ∞ ∗ ) -algebra.
Analytic factorization of Lie group representations
DEFF Research Database (Denmark)
Gimperlein, Heiko; Krötz, Bernhard; Lienau, Christoph
2012-01-01
For every moderate growth representation (p,E)(p,E) of a real Lie group G on a Fréchet space, we prove a factorization theorem of Dixmier–Malliavin type for the space of analytic vectors E¿E¿. There exists a natural algebra of superexponentially decreasing analytic functions A(G)A(G), such that E...
On q-deformed infinite-dimensional n-algebra
Directory of Open Access Journals (Sweden)
Lu Ding
2016-03-01
Full Text Available The q-deformation of the infinite-dimensional n-algebras is investigated. Based on the structure of the q-deformed Virasoro–Witt algebra, we derive a nontrivial q-deformed Virasoro–Witt n-algebra which is nothing but a sh-n-Lie algebra. Furthermore in terms of the pseud-differential operators, we construct the (cosine n-algebra and the q-deformed SDiff(T2 n-algebra. We find that they are the sh-n-Lie algebras for the n even case. In terms of the magnetic translation operators, an explicit physical realization of the (cosine n-algebra is given.
Fine, Henry Burchard
2005-01-01
At the beginning of the twentieth century, college algebra was taught differently than it is nowadays. There are many topics that are now part of calculus or analysis classes. Other topics are covered only in abstract form in a modern algebra class on field theory. Fine's College Algebra offers the reader a chance to learn the origins of a variety of topics taught in today's curriculum, while also learning valuable techniques that, in some cases, are almost forgotten. In the early 1900s, methods were often emphasized, rather than abstract principles. In this book, Fine includes detailed discus
Garrett, Paul B
2007-01-01
Designed for an advanced undergraduate- or graduate-level course, Abstract Algebra provides an example-oriented, less heavily symbolic approach to abstract algebra. The text emphasizes specifics such as basic number theory, polynomials, finite fields, as well as linear and multilinear algebra. This classroom-tested, how-to manual takes a more narrative approach than the stiff formalism of many other textbooks, presenting coherent storylines to convey crucial ideas in a student-friendly, accessible manner. An unusual feature of the text is the systematic characterization of objects by universal
Kolman, Bernard
1985-01-01
College Algebra, Second Edition is a comprehensive presentation of the fundamental concepts and techniques of algebra. The book incorporates some improvements from the previous edition to provide a better learning experience. It provides sufficient materials for use in the study of college algebra. It contains chapters that are devoted to various mathematical concepts, such as the real number system, the theory of polynomial equations, exponential and logarithmic functions, and the geometric definition of each conic section. Progress checks, warnings, and features are inserted. Every chapter c
International Nuclear Information System (INIS)
Kedem, Rinat
2008-01-01
Q-systems first appeared in the analysis of the Bethe equations for the XXX model and generalized Heisenberg spin chains (Kirillov and Reshetikhin 1987 Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Steklov. 160 211-21, 301). Such systems are known to exist for any simple Lie algebra and many other Kac-Moody algebras. We formulate the Q-system associated with any simple, simply-laced Lie algebras g in the language of cluster algebras (Fomin and Zelevinsky 2002 J. Am. Math. Soc. 15 497-529), and discuss the relation of the polynomiality property of the solutions of the Q-system in the initial variables, which follows from the representation-theoretical interpretation, to the Laurent phenomenon in cluster algebras (Fomin and Zelevinsky 2002 Adv. Appl. Math. 28 119-44)
Implications of the Hopf algebra properties of noncommutative differential calculi
International Nuclear Information System (INIS)
Vladimirov, A.A.
1997-01-01
A noncommutative algebra of four basic objects is defined within a differential calculus on quantum groups - functions, 1-forms, Lie derivatives, and inner derivations - as the cross-product algebra associated with Woronowicz's (differential) algebra of functions and forms. This definition properly takes into account the Hopf algebra structure of the Woronowicz calculus. It also provides a direct proof of the Cartan identity. (author). 9 refs
Current algebra, baryons and quark confinement
International Nuclear Information System (INIS)
Witten, E.
1983-01-01
It is shown that ordinary baryons can be understood as solitons in current algebra effective lagrangiangs. The formation of color flux tubes can also be seen in current algebra, under certain conditions. (orig.)
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
International Nuclear Information System (INIS)
Ton-That, Tuong
2005-01-01
In a previous paper we gave a generalization of the notion of Casimir invariant differential operators for the infinite-dimensional Lie groups GL ∞ (C) (or equivalently, for its Lie algebra gj ∞ (C)). In this paper we give a generalization of the Casimir invariant differential operators for a class of infinite-dimensional Lie groups (or equivalently, for their Lie algebras) which contains the infinite-dimensional complex classical groups. These infinite-dimensional Lie groups, and their Lie algebras, are inductive limits of finite-dimensional Lie groups, and their Lie algebras, with some additional properties. These groups or their Lie algebras act via the generalized adjoint representations on projective limits of certain chains of vector spaces of universal enveloping algebras. Then the generalized Casimir operators are the invariants of the generalized adjoint representations. In order to be able to explicitly compute the Casimir operators one needs a basis for the universal enveloping algebra of a Lie algebra. The Poincare-Birkhoff-Witt (PBW) theorem gives an explicit construction of such a basis. Thus in the first part of this paper we give a generalization of the PBW theorem for inductive limits of Lie algebras. In the last part of this paper a generalization of the very important theorem in representation theory, namely the Chevalley-Racah theorem, is also discussed
"Lost chains" in algebraic models
Fortunato, L.; de Graaf, W. A.
2011-03-01
The algebraic structure of some of the simplest algebraic models u(2), u(3) and u(4), widely used in several branches of physics either as toy models or as working instruments, are reanalyzed under a new perspective that releases the requirement that chains should terminate or pass through the angular momentum algebra. Unitary algebras are non-semisimple, therefore we first apply the Levi-Malcev decomposition. Then we use the theory of weighted Dynkin diagrams to identify conjugacy classes of A1 ~ su(2) ~ so(3) subalgebras: a complete classification of new angular momentum non conserving (AMNC) dynamical symmetries follows that we substantiate with examples.
Yao, Ruo-Xia; Lou, Sen-Yue
2008-06-01
Armed with the computer algebra system Maple, using a direct algebraic substitution method, we obtain Lie point symmetries, Lie symmetry groups and the corresponding symmetry reductions of one component nonlinear integrable and nonintegrable equations only by clicking the 'Enter' key. Abundant (1+1)-dimensional nonlinear mathematical physical systems are analysed effectively by using a Maple package LieSYMGRP proposed by us.
Artin, Emil
2007-01-01
The present text was first published in 1947 by the Courant Institute of Mathematical Sciences of New York University. Published under the title Modern Higher Algebra. Galois Theory, it was based on lectures by Emil Artin and written by Albert A. Blank. This volume became one of the most popular in the series of lecture notes published by Courant. Many instructors used the book as a textbook, and it was popular among students as a supplementary text as well as a primary textbook. Because of its popularity, Courant has republished the volume under the new title Algebra with Galois Theory.
Basic algebraic topology and its applications
Adhikari, Mahima Ranjan
2016-01-01
This book provides an accessible introduction to algebraic topology, a ﬁeld at the intersection of topology, geometry and algebra, together with its applications. Moreover, it covers several related topics that are in fact important in the overall scheme of algebraic topology. Comprising eighteen chapters and two appendices, the book integrates various concepts of algebraic topology, supported by examples, exercises, applications and historical notes. Primarily intended as a textbook, the book oﬀers a valuable resource for undergraduate, postgraduate and advanced mathematics students alike. Focusing more on the geometric than on algebraic aspects of the subject, as well as its natural development, the book conveys the basic language of modern algebraic topology by exploring homotopy, homology and cohomology theories, and examines a variety of spaces: spheres, projective spaces, classical groups and their quotient spaces, function spaces, polyhedra, topological groups, Lie groups and cell complexes, etc. T...
New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra
International Nuclear Information System (INIS)
Boukraa, S.; Maillet, J.M.; Nijhoff, F.
1988-09-01
Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs
Polynomial deformations of oscillator algebras in quantum theories with internal symmetries
International Nuclear Information System (INIS)
Karassiov, V.P.
1992-01-01
This paper reports that for last years some new Lie-algebraic structures (quantum groups or algebras, W-algebras, Casimir algebras) have been introduced in different areas of modern physics. All these objects are non-linear generalizations (deformations) of usual (linear) Lie algebras which are generated by a set B = {T a } of their generators T a satisfying a commutation relations (CR) of the form [T a , T b ] = f ab ({T c }) where f ab (...) are some functions of the generators T c given by power series. From the mathematical viewpoint such objects called as nonlinear or deformed Lie algebras G d may be treated as universal algebras or algebraic systems G d = left-angle B; +, · , [,] right-angle generated by a basic set B and the usual operations of the addition (+) and the multiplication (·) together with the Lie product ([T a , T b ] = T a T b - T b T a )
Degenerate representation from tensorial identities and quantum realisations of YBZF algebras
International Nuclear Information System (INIS)
Iosifescu, M.; Scutaru, H.
1987-06-01
The second- degree irreducible tensors in the enveloping algebra of the classical semisimple Lie algebras are determined and the irreducible representations on which these tensors vanish are derived.(authors)
A direct link between the Lie group SU (3) and the singular ...
Indian Academy of Sciences (India)
A classical phase space with a suitable symplectic structure is constructed together with functions which have Poisson brackets algebraically identical to the Lie algebra structure of the Lie group SU(3). It is shown that in this phase space there are two spheres which intersect at one point. Such a system has a representation ...
Liesen, Jörg
2015-01-01
This self-contained textbook takes a matrix-oriented approach to linear algebra and presents a complete theory, including all details and proofs, culminating in the Jordan canonical form and its proof. Throughout the development, the applicability of the results is highlighted. Additionally, the book presents special topics from applied linear algebra including matrix functions, the singular value decomposition, the Kronecker product and linear matrix equations. The matrix-oriented approach to linear algebra leads to a better intuition and a deeper understanding of the abstract concepts, and therefore simplifies their use in real world applications. Some of these applications are presented in detailed examples. In several ‘MATLAB-Minutes’ students can comprehend the concepts and results using computational experiments. Necessary basics for the use of MATLAB are presented in a short introduction. Students can also actively work with the material and practice their mathematical skills in more than 300 exerc...
Edwards, Harold M
1995-01-01
In his new undergraduate textbook, Harold M Edwards proposes a radically new and thoroughly algorithmic approach to linear algebra Originally inspired by the constructive philosophy of mathematics championed in the 19th century by Leopold Kronecker, the approach is well suited to students in the computer-dominated late 20th century Each proof is an algorithm described in English that can be translated into the computer language the class is using and put to work solving problems and generating new examples, making the study of linear algebra a truly interactive experience Designed for a one-semester course, this text adopts an algorithmic approach to linear algebra giving the student many examples to work through and copious exercises to test their skills and extend their knowledge of the subject Students at all levels will find much interactive instruction in this text while teachers will find stimulating examples and methods of approach to the subject
The algebras of large N matrix mechanics
Energy Technology Data Exchange (ETDEWEB)
Halpern, M.B.; Schwartz, C.
1999-09-16
Extending early work, we formulate the large N matrix mechanics of general bosonic, fermionic and supersymmetric matrix models, including Matrix theory: The Hamiltonian framework of large N matrix mechanics provides a natural setting in which to study the algebras of the large N limit, including (reduced) Lie algebras, (reduced) supersymmetry algebras and free algebras. We find in particular a broad array of new free algebras which we call symmetric Cuntz algebras, interacting symmetric Cuntz algebras, symmetric Bose/Fermi/Cuntz algebras and symmetric Cuntz superalgebras, and we discuss the role of these algebras in solving the large N theory. Most important, the interacting Cuntz algebras are associated to a set of new (hidden!) local quantities which are generically conserved only at large N. A number of other new large N phenomena are also observed, including the intrinsic nonlocality of the (reduced) trace class operators of the theory and a closely related large N field identification phenomenon which is associated to another set (this time nonlocal) of new conserved quantities at large N.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
of Pauli matrices follow from the underlying algebra. Clif- ford algebraic approach provides a geometrical and hence intuitive way to understand quantum theory of spin, and is a natural formalism to study spin. Clifford algebraic formal- ism has lot of applications in every field where spin plays an important role. Introduction.
DEFF Research Database (Denmark)
Zimmermann, Ralf
2017-01-01
We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm...... converges locally and exhibits a linear rate of convergence....
Zimmermann, Ralf
2016-01-01
We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the optimization-based approach known from the literature, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.
Bell, Eric T
1927-01-01
The central topic of this book is the presentation of the author's principle of arithmetical paraphrases, which won him the BÃ´cher Prize in 1924. This general principle served to unify and extend many isolated results in the theory of numbers. The author successfully provides a systematic attempt to find a unified theory for each of various classes of related important problems in the theory of numbers, including its interrelations with algebra and analysis. This book will be of interest to advanced students in various branches of mathematics, including number theory, abstract algebra, ellipti
Stoll, R R
1968-01-01
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understand
Jacobson, Nathan
2009-01-01
A classic text and standard reference for a generation, this volume and its companion are the work of an expert algebraist who taught at Yale for two decades. Nathan Jacobson's books possess a conceptual and theoretical orientation, and in addition to their value as classroom texts, they serve as valuable references.Volume I explores all of the topics typically covered in undergraduate courses, including the rudiments of set theory, group theory, rings, modules, Galois theory, polynomials, linear algebra, and associative algebra. Its comprehensive treatment extends to such rigorous topics as L
Smith, David C.
2003-08-01
A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.
Bloch, Spencer J
2000-01-01
This book is the long-awaited publication of the famous Irvine lectures. Delivered in 1978 at the University of California at Irvine, these lectures turned out to be an entry point to several intimately-connected new branches of arithmetic algebraic geometry, such as regulators and special values of L-functions of algebraic varieties, explicit formulas for them in terms of polylogarithms, the theory of algebraic cycles, and eventually the general theory of mixed motives which unifies and underlies all of the above (and much more). In the 20 years since, the importance of Bloch's lectures has not diminished. A lucky group of people working in the above areas had the good fortune to possess a copy of old typewritten notes of these lectures. Now everyone can have their own copy of this classic work.
Bergstra, J.A.; Middelburg, C.A.
2015-01-01
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution
Oliver, Bob; Pawałowski, Krzystof
1991-01-01
As part of the scientific activity in connection with the 70th birthday of the Adam Mickiewicz University in Poznan, an international conference on algebraic topology was held. In the resulting proceedings volume, the emphasis is on substantial survey papers, some presented at the conference, some written subsequently.
Indian Academy of Sciences (India)
tion - 6. How Architectural Features Affect. Building During Earthquakes? C VRMurty. 48 Turbulence and Dispersion. K 5 Gandhi. BOOK REVIEWS. 86 Algebraic Topology. Siddhartha Gadgil. Front Cover. - .. ..-.......... -. Back Cover. Two-dimensional vertical section through a turbulent plume. (Courtesy: G S Shat, CAOS, IISc.).
Wess-Zumino-Novikov-Witten models based on Lie superalgebras
International Nuclear Information System (INIS)
Mohammedi, N.
1994-04-01
The affine current algebra for Lie superalgebras is examined. The bilinear invariant forms of the Lie superalgebra can be either degenerate or non-degenerate. We give the conditions for a Virasoro construction, in which the currents are primary fields of weight one, to exist. In certain cases, the Virasoro central charge is an integer equal to the super dimension of the group supermanifold. A Wess-Zumino-Novikov-Witten action based on these Lie superalgebras is also found. (orig.)
Comments on N=4 superconformal algebras
International Nuclear Information System (INIS)
Rasmussen, J.
2001-01-01
We present a new and asymmetric N=4 superconformal algebra for arbitrary central charge, thus completing our recent work on its classical analogue with vanishing central charge. Besides the Virasoro generator and 4 supercurrents, the algebra consists of an internal SU(2)xU(1) Kac-Moody algebra in addition to two spin 1/2 fermions and a bosonic scalar. The algebra is shown to be invariant under a linear twist of the generators, except for a unique value of the continuous twist parameter. At this value, the invariance is broken and the algebra collapses to the small N=4 superconformal algebra. The asymmetric N=4 superconformal algebra may be seen as induced by an affine SL(2 vertical bar 2) current superalgebra. Replacing SL(2 vertical bar 2) with the coset SL(2 vertical bar 2)/U(1), results directly in the small N=4 superconformal algebra
The dual algebra of the Poincare group on Fock space
International Nuclear Information System (INIS)
Klink, W.H.; Iowa Univ., Iowa City, IA
1989-01-01
The Lie algebra of operators commuting with the Poincare group on the Fock space appropriate for a massive spinless particle is constructed in terms of raising and lowering operators indexed by a Lorentz invariant function. From the assumption that the phase operator is an element of this Lie algebra, it is shown that the scattering operator can be written as a unitary representation operator of the group associated with the Lie algebra. A simple choice of the phase operator shows that the Lorentz invariant function can be interpreted as a basic scattering amplitude, in the sense that all multiparticle scattering amplitudes can be written in terms of this basic scattering amplitude. (orig.)
Geometric approach to the (BRS-) differential algebras of supersymmetric YM-theories
International Nuclear Information System (INIS)
Gieres, F.
1987-01-01
The (BRS-) differential algebra of susy YM-theories is defined in terms of superfields and forms on rigid U(N)-superspace. For d = 4 and N = 1.2 we show that it projects to the ''BRS-component field algebra in the WZ-gauge'' without any supergauge fixing. In this process the supergeometry is destroyed with the result that the final algebra becomes a prototype for a differential algebra which cannot be associated with an ordinary Lie algebra
On the algebraic structure of differential calculus on quantum groups
International Nuclear Information System (INIS)
Rad'ko, O.V.; Vladimirov, A.A.
1997-01-01
Intrinsic Hopf algebra structure of the Woronowicz differential complex is shown to generate quite naturally a bicovariant algebra of four basic objects within a differential calculus on quantum groups - coordinate functions, differential forms, Lie derivatives, and inner derivatives - as the cross-product algebra of two mutually dual graded Hopf algebras. This construction, properly taking into account Hopf-algebraic properties of Woronowicz's bicovariant calculus, provides a direct proof of the Cartan identity and of many other useful relations. A detailed comparison with other approaches is also given
Elliptic genera and vertex operator super-algebras
Tamanoi, Hirotaka
1999-01-01
This monograph deals with two aspects of the theory of elliptic genus: its topological aspect involving elliptic functions, and its representation theoretic aspect involving vertex operator super-algebras. For the second aspect, elliptic genera are shown to have the structure of modules over certain vertex operator super-algebras. The vertex operators corresponding to parallel tensor fields on closed Riemannian Spin Kähler manifolds such as Riemannian tensors and Kähler forms are shown to give rise to Virasoro algebras and affine Lie algebras. This monograph is chiefly intended for topologists and it includes accounts on topics outside of topology such as vertex operator algebras.
Relation of deformed nonlinear algebras with linear ones
International Nuclear Information System (INIS)
Nowicki, A; Tkachuk, V M
2014-01-01
The relation between nonlinear algebras and linear ones is established. For a one-dimensional nonlinear deformed Heisenberg algebra with two operators we find the function of deformation for which this nonlinear algebra can be transformed to a linear one with three operators. We also establish the relation between the Lie algebra of total angular momentum and corresponding nonlinear one. This relation gives a possibility to simplify and to solve the eigenvalue problem for the Hamiltonian in a nonlinear case using the reduction of this problem to the case of linear algebra. It is demonstrated in an example of a harmonic oscillator. (paper)
Algebraic characterizations of measure algebras
Czech Academy of Sciences Publication Activity Database
Jech, Thomas
2008-01-01
Roč. 136, č. 4 (2008), s. 1285-1294 ISSN 0002-9939 R&D Projects: GA AV ČR IAA100190509 Institutional research plan: CEZ:AV0Z10190503 Keywords : Von - Neumann * sequential topology * Boolean-algebras * Souslins problem * Submeasures Subject RIV: BA - General Mathematics Impact factor: 0.584, year: 2008
Cluster algebras in mathematical physics
International Nuclear Information System (INIS)
Francesco, Philippe Di; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-01-01
This special issue of Journal of Physics A: Mathematical and Theoretical contains reviews and original research articles on cluster algebras and their applications to mathematical physics. Cluster algebras were introduced by S Fomin and A Zelevinsky around 2000 as a tool for studying total positivity and dual canonical bases in Lie theory. Since then the theory has found diverse applications in mathematics and mathematical physics. Cluster algebras are axiomatically defined commutative rings equipped with a distinguished set of generators (cluster variables) subdivided into overlapping subsets (clusters) of the same cardinality subject to certain polynomial relations. A cluster algebra of rank n can be viewed as a subring of the field of rational functions in n variables. Rather than being presented, at the outset, by a complete set of generators and relations, it is constructed from the initial seed via an iterative procedure called mutation producing new seeds successively to generate the whole algebra. A seed consists of an n-tuple of rational functions called cluster variables and an exchange matrix controlling the mutation. Relations of cluster algebra type can be observed in many areas of mathematics (Plücker and Ptolemy relations, Stokes curves and wall-crossing phenomena, Feynman integrals, Somos sequences and Hirota equations to name just a few examples). The cluster variables enjoy a remarkable combinatorial pattern; in particular, they exhibit the Laurent phenomenon: they are expressed as Laurent polynomials rather than more general rational functions in terms of the cluster variables in any seed. These characteristic features are often referred to as the cluster algebra structure. In the last decade, it became apparent that cluster structures are ubiquitous in mathematical physics. Examples include supersymmetric gauge theories, Poisson geometry, integrable systems, statistical mechanics, fusion products in infinite dimensional algebras, dilogarithm
W algebra in the SU(3) parafermion model
International Nuclear Information System (INIS)
Ding, X.; Fan, H.; Shi, K.; Wang, P.; Zhu, C.
1993-01-01
A construction of W 3 algebra for the SU(3) parafermion model is proposed, in which a Z algebra technique is used instead of the popular free-field realization. The central charge of the underlying algebra is different from known W algebras
Lie groups and grand unified theories
International Nuclear Information System (INIS)
Gubitoso, M.D.
1987-01-01
This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt
Mulligan, Jeffrey B.
2017-01-01
A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.
Algebraic properties of compatible Poisson brackets
Zhang, Pumei
2014-05-01
We discuss algebraic properties of a pencil generated by two compatible Poisson tensors A( x) and B( x). From the algebraic viewpoint this amounts to studying the properties of a pair of skew-symmetric bilinear forms A and B defined on a finite-dimensional vector space. We describe the Lie group G P of linear automorphisms of the pencil P = { A + λB}. In particular, we obtain an explicit formula for the dimension of G P and discuss some other algebraic properties such as solvability and Levi-Malcev decomposition.
Spin-zero mesons and current algebras
International Nuclear Information System (INIS)
Wellner, M.
1977-01-01
Large chiral algebras, using the f and d coefficients of SU(3) can be constructed with spin-1/2 baryons. Such algebras have been found useful in some previous investigations. This article examines under what conditions similar or identical current algebras may be realized with spin-0 mesons. A curious lack of analogy emerges between meson and baryon currents. Second-class currents, made of mesons, are required in some algebras. If meson and baryon currents are to satisfy the same extended SU(3) algebra, four meson nonets are needed, in terms of which we give an explicit construction for the currents
Representations of the algebra Uq'(son) related to quantum gravity
International Nuclear Information System (INIS)
Klimyk, A.U.
2002-01-01
The aim of this paper is to review our results on finite dimensional irreducible representations of the nonstandard q-deformation U q ' (so n ) of the universal enveloping algebra U(so(n)) of the Lie algebra so(n) which does not coincide with the Drinfeld-Jimbo quantum algebra U q (so n ).This algebra is related to algebras of observables in quantum gravity and to algebraic geometry.Irreducible finite dimensional representations of the algebra U q ' (so n ) for q not a root of unity and for q a root of unity are given
Intervals in Generalized Effect Algebras and their Sub-generalized Effect Algebras
Directory of Open Access Journals (Sweden)
Zdenka Riečanová
2013-01-01
Full Text Available We consider subsets G of a generalized effect algebra E with 0∈G and such that every interval [0, q]G = [0, q]E ∩ G of G (q ∈ G , q ≠ 0 is a sub-effect algebra of the effect algebra [0, q]E. We give a condition on E and G under which every such G is a sub-generalized effect algebra of E.
Algebraic and stochastic coding theory
Kythe, Dave K
2012-01-01
Using a simple yet rigorous approach, Algebraic and Stochastic Coding Theory makes the subject of coding theory easy to understand for readers with a thorough knowledge of digital arithmetic, Boolean and modern algebra, and probability theory. It explains the underlying principles of coding theory and offers a clear, detailed description of each code. More advanced readers will appreciate its coverage of recent developments in coding theory and stochastic processes. After a brief review of coding history and Boolean algebra, the book introduces linear codes, including Hamming and Golay codes.
A program for computing cohomology of Lie superalgebras of vector fields
International Nuclear Information System (INIS)
Kornyak, V.V.
1998-01-01
An algorithm and its C implementation for computing the cohomology of Lie algebras and superalgebras is described. When elaborating the algorithm we paid primary attention to cohomology in trivial, adjoint and coadjoint modules for Lie algebras and superalgebras of the formal vector fields. These algebras have found many applications to modern supersymmetric models of theoretical and mathematical physics. As an example, we present 3- and 5-cocycles from the cohomology in the trivial module for the Poisson algebra Po (2), as found by computer
Vibrational spectrum of CF4 isotopes in an algebraic model
Indian Academy of Sciences (India)
This new model appears to describe the molecular spectra successfully even in complex situations. The use of Lie algebra did not develop fully until 1970s when it was introduced in a systematic fashion by Iachello and Arima to study the spectra of atomic nuclei (interacting boson model) [3]. The algebraic model which was ...
Affine Kac-Moody algebras and their representations
International Nuclear Information System (INIS)
Slansky, R.
1988-01-01
Highest weight representation theory of finite dimensional and affine Kac-Moody algebras is summarized from a unified point of view. Lattices of discrete additive quantum numbers and the presentation of Lie algebras on Cartan matrices are the central points of departure for the analysis. (author)
Breathing difficulty - lying down
... short of breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea; Heart failure - orthopnea ... Heart failure Obesity (does not directly cause difficulty breathing while lying down but often worsens other conditions ...
Mahé, Louis; Roy, Marie-Françoise
1992-01-01
Ten years after the first Rennes international meeting on real algebraic geometry, the second one looked at the developments in the subject during the intervening decade - see the 6 survey papers listed below. Further contributions from the participants on recent research covered real algebra and geometry, topology of real algebraic varieties and 16thHilbert problem, classical algebraic geometry, techniques in real algebraic geometry, algorithms in real algebraic geometry, semialgebraic geometry, real analytic geometry. CONTENTS: Survey papers: M. Knebusch: Semialgebraic topology in the last ten years.- R. Parimala: Algebraic and topological invariants of real algebraic varieties.- Polotovskii, G.M.: On the classification of decomposing plane algebraic curves.- Scheiderer, C.: Real algebra and its applications to geometry in the last ten years: some major developments and results.- Shustin, E.L.: Topology of real plane algebraic curves.- Silhol, R.: Moduli problems in real algebraic geometry. Further contribu...
Cappelen, Alexander W.; Sørensen, Erik Ø.; Tungodden, Bertil
2012-01-01
The paper reports from an experiment studying how the aversion to lying is affected by non-economic dimensions of the choice situation. Specifically, we study whether people are more or less likely to lie when the content of the lie is personal, when they base decisions on intuition, and when they are in a market context. We also study how aversion to lying depends on personal characteristics, including age, gender, cognitive ability, personality and social preferences. Our ...
Cappelen, Alexander W.; Sørensen, Erik Ø.; Tungodden, Bertil
2012-01-01
The paper reports from an experiment studying how the aversion to lying is affected by non-economic dimensions of the choice situation. Specifically, we study whether people are more or less likely to lie when the content of the lie is personal, when they base decisions on intuition, and when they are in a market context. We also study how aversion to lying depends on personal characteristics, including age, gender, cognitive ability, personality and social preferences. Our main finding is th...
Vertex algebras and mirror symmetry
International Nuclear Information System (INIS)
Borisov, L.A.
2001-01-01
Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)
Bliss, Gilbert Ames
1933-01-01
This book, immediately striking for its conciseness, is one of the most remarkable works ever produced on the subject of algebraic functions and their integrals. The distinguishing feature of the book is its third chapter, on rational functions, which gives an extremely brief and clear account of the theory of divisors.... A very readable account is given of the topology of Riemann surfaces and of the general properties of abelian integrals. Abel's theorem is presented, with some simple applications. The inversion problem is studied for the cases of genus zero and genus unity. The chapter on t
van der Noort, V.
2009-01-01
This thesis is written in the subfield of mathematics known as representation theory of real reductive Lie groups. Let G be a Lie group in the Harish-Chandra class with maximal compact subgroup K and Lie algebra g. Let Omega be a connected complex manifold. By a family of G-representations
Developments and Trends in Infinite-Dimensional Lie Theory
Neeb, Karl-Hermann
2011-01-01
This collection of invited expository articles focuses on recent developments and trends in infinite-dimensional Lie theory, which has become one of the core areas of modern mathematics. The book is divided into three parts: infinite-dimensional Lie (super-)algebras, geometry of infinite-dimensional Lie (transformation) groups, and representation theory of infinite-dimensional Lie groups.Contributors: B. Allison, D. BeltiAGBPAE, W. Bertram, J. Faulkner, Ph. Gille, H. Glockner, K.-H. Neeb, E. Neher, I. Penkov, A. Pianzola, D. Pickrell, T.S. Ratiu, N.R. Scheithauer, C. Schweigert, V. Serganova,
Algebraic generalization of quantum statistics
International Nuclear Information System (INIS)
Stoilova, N I; Van der Jeugt, J
2008-01-01
Generalized quantum statistics such as para-Bose and para-Fermi statistics are related to the basic classical Lie superalgebras B(0|n) and B n . We give a quite general definition of 'a generalized quantum statistics associated to a Lie superalgebra G'. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is determined by a set of root vectors (the creation and annihilation operators of the statistics) and the set of algebraic relations for these operators. Then we give a complete classification of all generalized quantum statistics associated to the Lie superalgebras A n , B n , C n , D n , G 2 , F 4 , E 6 , E 7 , E 8 , A(m|n), B(m|n), C(n), D(m|n), G(3), F(4) and D(2; 1; α).
Grätzer, George
1979-01-01
Universal Algebra, heralded as ". . . the standard reference in a field notorious for the lack of standardization . . .," has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well-selected additional bibliography of over 1250 papers and books which makes this a fine work for students, instructors, and researchers in the field. "This book will certainly be, in the years to come, the basic reference to the subject." --- The American Mathematical Monthly (First Edition) "In this reviewer's opinion [the author] has more than succeeded in his aim. The problems at the end of each chapter are well-chosen; there are more than 650 of them. The book is especially sui...
Free probability on Hecke algebras and certain group C^{*}-algebras induced by Hecke algebras
Directory of Open Access Journals (Sweden)
Ilwoo Cho
2016-01-01
Full Text Available In this paper, by establishing free-probabilistic models on the Hecke algebras \\(\\mathcal{H}\\left(GL_{2}(\\mathbb{Q}_{p}\\right\\ induced by \\(p\\-adic number fields \\(\\mathbb{Q}_{p}\\, we construct free probability spaces for all primes \\(p\\. Hilbert-space representations are induced by such free-probabilistic structures. We study \\(C^{*}\\-algebras induced by certain partial isometries realized under the representations.
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
Abstract. Let k be an algebraically closed field, A a finite dimensional connected. (p,q)-Koszul self-injective algebra with p, q ≥ 2. In this paper, we prove that the. Yoneda algebra of A is isomorphic to a twisted polynomial algebra A![t; β] in one inde- terminate t of degree q +1 in which A! is the quadratic dual of A, β is an ...
Third order Lie map for the sextupole magnets
International Nuclear Information System (INIS)
Lu Jianqin
2001-01-01
Sextupole magnets are usually used in beam analyzing systems with high resolving power, micro-beam systems and storage rings of high energy accelerators. It is well known that sextupoles are equivalent to the drift spaces under first order approximation. Therefore, this kind of optical elements is often used to correct the second order aberrations of beam optics systems. When it is necessary to calculate the third order aberrations of a system, or to correct the third order aberrations with octupole magnets, one should know the analytical expressions of the third order terms of sextupoles. Lie algebraic methods were used in the analysis of relativistic particle trajectories in the sextupole magnets, and the solutions of third order approximation in the six dimensional phase spaces were obtained
Algebraic special functions and SO(3,2)
International Nuclear Information System (INIS)
Celeghini, E.; Olmo, M.A. del
2013-01-01
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L 2 functions defined on (−1,1)×Z and on the sphere S 2 , respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining in this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L 2 functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L 2 functions
Controllability of linear vector fields on Lie groups
International Nuclear Information System (INIS)
Ayala, V.; Tirao, J.
1994-11-01
In this paper, we shall deal with a linear control system Σ defined on a Lie group G with Lie algebra g. The dynamic of Σ is determined by the drift vector field which is an element in the normalizer of g in the Lie algebra of all smooth vector field on G and by the control vectors which are elements in g considered as left-invariant vector fields. We characterize the normalizer of g identifying vector fields on G with C ∞ -functions defined on G into g. For this class of control systems we study algebraic conditions for the controllability problem. Indeed, we prove that if the drift vector field has a singularity then the Lie algebra rank condition is necessary for the controllability property, but in general this condition does not determine this property. On the other hand, we show that the rank (ad-rank) condition is sufficient for the controllability of Σ. In particular, we extend the fundamental Kalman's theorem when G is an Abelian connected Lie group. Our work is related with a paper of L. Markus and we also improve his results. (author). 7 refs
Miyanishi, Masayoshi
2000-01-01
Open algebraic surfaces are a synonym for algebraic surfaces that are not necessarily complete. An open algebraic surface is understood as a Zariski open set of a projective algebraic surface. There is a long history of research on projective algebraic surfaces, and there exists a beautiful Enriques-Kodaira classification of such surfaces. The research accumulated by Ramanujan, Abhyankar, Moh, and Nagata and others has established a classification theory of open algebraic surfaces comparable to the Enriques-Kodaira theory. This research provides powerful methods to study the geometry and topology of open algebraic surfaces. The theory of open algebraic surfaces is applicable not only to algebraic geometry, but also to other fields, such as commutative algebra, invariant theory, and singularities. This book contains a comprehensive account of the theory of open algebraic surfaces, as well as several applications, in particular to the study of affine surfaces. Prerequisite to understanding the text is a basic b...
Generalized Hermitian Algebras
Foulis, David J.; Pulmannová, Sylvia
2009-05-01
We refer to the real Jordan Banach algebra of bounded Hermitian operators on a Hilbert space as a Hermitian algebra. In this paper we define and launch a study of a class of generalized Hermitian (GH) algebras. Among the examples of GH-algebras are ordered special Jordan algebras, JW-algebras, and AJW-algebras, but unlike these more restricted cases, a GH-algebra is not necessarily a Banach space and its lattice of projections is not necessarily complete. In this paper we develop the basic theory of GH-algebras, identify their unit intervals as effect algebras, and observe that their projection lattices are sigma-complete orthomodular lattices. We show that GH-algebras are spectral order-unit spaces and that they admit a substantial spectral theory.
Universal enveloping algebras for Malcev color algebras
de-la-Concepción, Daniel
2015-01-01
In this paper we give a construction of the universal enveloping algebra of a Malcev algebra in categories of group algebra comodules with a symmetry given by a bicharacter of the group. A particular example of such categories is the category of super vector spaces.
Remarks on the differential algebraic approach to particle beam optics by M. Berz
Energy Technology Data Exchange (ETDEWEB)
Garczynski, V.
1992-12-31
The underlying mathematical structure of the differential algebraic approach of M. Berz to particle beam optics is isomorphic to the familiar truncated polynomial algebra. Concrete examples of derivations in this algebra, consistent with the truncation operation, are given.
Developments and retrospectives in Lie theory geometric and analytic methods
Penkov, Ivan; Wolf, Joseph
2014-01-01
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Geometric and Analytic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current re...
The algebra and geometry of SU(3) matrices
International Nuclear Information System (INIS)
Mallesh, K.S.; Mukunda, N.
1997-01-01
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of multiplying two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level system is outlined. (author)
The algebra and geometry of SU(3) matrices
Mallesh, KS; Mukunda, N
1997-01-01
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed...
Said-Houari, Belkacem
2017-01-01
This self-contained, clearly written textbook on linear algebra is easily accessible for students. It begins with the simple linear equation and generalizes several notions from this equation for the system of linear equations and introduces the main ideas using matrices. It then offers a detailed chapter on determinants and introduces the main ideas with detailed proofs. The third chapter introduces the Euclidean spaces using very simple geometric ideas and discusses various major inequalities and identities. These ideas offer a solid basis for understanding general Hilbert spaces in functional analysis. The following two chapters address general vector spaces, including some rigorous proofs to all the main results, and linear transformation: areas that are ignored or are poorly explained in many textbooks. Chapter 6 introduces the idea of matrices using linear transformation, which is easier to understand than the usual theory of matrices approach. The final two chapters are more advanced, introducing t...
An introduction to abstract algebra
Robinson, Derek JS
2003-01-01
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader''s skill and progress. The book should be suitable for students ...
An algebraic approach to solving evolution problems in some nonlinear quantum models
International Nuclear Information System (INIS)
Karassiov, Valery P.; Klimov, Andrei B.
1994-01-01
A new general Lie-algebraic approach is proposed to solve evolution problems in some nonlinear models of quantum physics with polynomially deformed Lie algebras su pd (2) as their dynamic symmetry algebras. The method makes use of an expansion of the evolution operators by power series in the su pd (2) shift operators and a (recursive) reduction of finding coefficient functions to solve auxiliary exactly solvable su(2) problems with quadratic Hamiltonians. ((orig.))
An algebraic approach for solving evolution problems in some nonlinear quantum models
International Nuclear Information System (INIS)
Karassiov, Valery P.; Klimov, Andrei B.
1994-01-01
A new general Lie-algebraic approach is proposed for solving evolution tasks in some nonlinear problems of quantum physics with polynomially deformed Lie algebras su pd (2) as their dynamic symmetry algebras. The method makes use of an expansion of the evolution operators by power series in the su pd (2) shift operators and a (recursive) reduction finding coefficient functions for solving auxiliary exactly solvable su(2) problems with quadratic Hamiltonians. ((orig.))
Embeddings of Heyting Algebras
Jongh, D.H.J. de; Visser, A.
In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably
Introduction to relation algebras relation algebras
Givant, Steven
2017-01-01
The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly ...
López Pérez, Raúl; Spiegelman, Eli
2012-01-01
Recent experimental evidence suggests that some people dislike telling lies, and tell the truth even at a cost. We use experiments as well to study the socio-demographic covariates of such lie aversion, and find gender and religiosity to be without predictive value. However, subjects’ major is predictive: Business and Economics (B&E) subjects lie significantly more frequently than other majors. This is true even after controlling for subjects’ beliefs about the overall rate ...
International Nuclear Information System (INIS)
Ludu, A.; Greiner, M.
1995-09-01
A non-linear associative algebra is realized in terms of translation and dilation operators, and a wavelet structure generating algebra is obtained. We show that this algebra is a q-deformation of the Fourier series generating algebra, and reduces to this for certain value of the deformation parameter. This algebra is also homeomorphic with the q-deformed su q (2) algebra and some of its extensions. Through this algebraic approach new methods for obtaining the wavelets are introduced. (author). 20 refs
"Lie to me"-Oxytocin impairs lie detection between sexes.
Pfundmair, Michaela; Erk, Wiebke; Reinelt, Annika
2017-10-01
The hormone oxytocin modulates various aspects of social behaviors and even seems to lead to a tendency for gullibility. The aim of the current study was to investigate the effect of oxytocin on lie detection. We hypothesized that people under oxytocin would be particularly susceptible to lies told by people of the opposite sex. After administration of oxytocin or a placebo, male and female participants were asked to judge the veracity of statements from same- vs. other-sex actors who either lied or told the truth. Results showed that oxytocin decreased the ability of both male and female participants to correctly classify other-sex statements as truths or lies compared to placebo. This effect was based on a lower ability to detect lies and not a stronger bias to regard truth statements as false. Revealing a new effect of oxytocin, the findings may support assumptions about the hormone working as a catalyst for social adaption. Copyright © 2017. Published by Elsevier Ltd.
Lie algebras of conservation laws of variational ordinary differential equations
Fiorani, Emanuele; Spiro, Andrea
2015-02-01
We establish a new version of the first Noether Theorem, according to which the (equivalence classes of) first integrals of given Euler-Lagrange equations in one independent variable are in exact one-to-one correspondence with the (equivalence classes of) vector fields satisfying two simple geometric conditions, namely they simultaneously preserve the holonomy distribution of the jets space and the action from which the Euler-Lagrange equations are derived.
Lie n-derivations on 7-subspace lattice algebras
Indian Academy of Sciences (India)
Abstract. Let L be a J -subspace lattice on a Banach space X over the real or complex field F with dim X ≥ 3 and let n ≥ 2 be an integer. Suppose thatdim K ≠ 2 for every K ∈ J ( L ) and L : A l g L → A l g L is a linear map. Itis shown that L satisfies ∑ i = 1 n p n ( A 1 , ⋯ , A i − 1 , L ( A i ) , A i + 1 , ⋯ , A n ) = 0 whenever p n ( A ...
Lie algebra symmetries and quantum phase transitions in nuclei
Indian Academy of Sciences (India)
2014-04-05
Apr 5, 2014 ... pairing SU(2) and its extension to proton–neutron pairing with j–j coupling giv- ing SO(5), Hecht and ... change from one type of symmetry to another, as we change neutron or proton number is indeed a ..... [QPT studied using [QQQ]0 where Q is the quadrupole generator of SO(6) of IBM]. There are other ...
Lie algebra symmetries and quantum phase transitions in nuclei
Indian Academy of Sciences (India)
2014-04-05
Apr 5, 2014 ... li and S+(2) = ∑q j=1 b† lj. · b† lj . For the combined system, the pair creation operator S+ = S+(1) − S+(2) and annihilation operator is S− = (S+)†. Note that S+S− is related to the quadratic Casimir invariant of SO(n1 + n2) in a simple manner. Now, N-boson coherent state can be written as [19]. |N,α 〉 = 1. √.
Dimension of the c-nilpotent multiplier of Lie algebras
Indian Academy of Sciences (India)
Author Affiliations. MEHDI ARASKHAN1 MOHAMMAD REZA RISMANCHIAN 2. Department of Mathematics, Yazd Branch, Islamic Azad University, Yazd, Iran; Department of Pure Mathematics, Shahrekord University, Shahrekord, Iran ...
Lie algebra contractions on two-dimensional hyperboloid
International Nuclear Information System (INIS)
Pogosyan, G. S.; Yakhno, A.
2010-01-01
The Inoenue-Wigner contraction from the SO(2, 1) group to the Euclidean E(2) and E(1, 1) group is used to relate the separation of variables in Laplace-Beltrami (Helmholtz) equations for the four corresponding two-dimensional homogeneous spaces: two-dimensional hyperboloids and two-dimensional Euclidean and pseudo-Euclidean spaces. We show how the nine systems of coordinates on the two-dimensional hyperboloids contracted to the four systems of coordinates on E 2 and eight on E 1,1 . The text was submitted by the authors in English.
Prime alternative algebras that are nearly commutative
International Nuclear Information System (INIS)
Pchelintsev, S V
2004-01-01
We prove that by deforming the multiplication in a prime commutative alternative algebra using a C-operation we obtain a prime non-commutative alternative algebra. Under certain restrictions on non-commutative algebras this relation between algebras is reversible. Isotopes are special cases of deformations. We introduce and study a linear space generated by the Bruck C-operations. We prove that the Bruck space is generated by operations of rank 1 and 2 and that 'general' Bruck operations of rank 2 are independent in the following sense: a sum of n operations of rank 2 cannot be written as a linear combination of (n-1) operations of rank 2 and an arbitrary operation of rank 1. We describe infinite series of non-isomorphic prime non-commutative algebras of bounded degree that are deformations of a concrete prime commutative algebra
Structure of biprojective Banach algebras with non-trivial radical
International Nuclear Information System (INIS)
Aristov, O Yu
2008-01-01
We study the structure of biprojective Banach algebras. In contrast to earlier results of Selivanov, we admit the presence of nilpotent ideals in the algebras under consideration, and the structure theorem covers almost all known examples. As a corollary, we obtain a complete classification of finite-dimensional biprojective Banach algebras. A major role in the proof is played by the approximation property for certain Banach spaces related to the algebras under consideration
Verschuere, B.; Spruyt, A.; Meijer, E.H.; Otgaar, H.
2011-01-01
Brain imaging studies suggest that truth telling constitutes the default of the human brain and that lying involves intentional suppression of the predominant truth response. By manipulating the truth proportion in the Sheffield lie test, we investigated whether the dominance of the truth response
Vrij, Aldert; Taylor, Paul J.; Picornell, Isabel; Oxburgh, Gavin; Myklebust, Trond; Grant, Tim; Milne, Rebecca
2015-01-01
In this chapter, we discuss verbal lie detection and will argue that speech content can be revealing about deception. Starting with a section discussing the, in our view, myth that non-verbal behaviour would be more revealing about deception than speech, we then provide an overview of verbal lie
Webb, G. M.; Zank, G. P.
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated.
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated
Soliton surfaces associated with sigma models: differential and algebraic aspects
International Nuclear Information System (INIS)
Goldstein, P P; Grundland, A M; Post, S
2012-01-01
In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP N-1 sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler–Lagrange equations for sigma models. On the other hand, we show that the Euler–Lagrange equations for surfaces immersed in the Lie algebra su(N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler–Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. (paper)
The Lagrangian Map and Lie Symmetries in Magnetohydrodynamics and Gas Dynamics
Ko, C. M.; Webb, G. M.; Ratkiewicz, R. E.; Zank, G. P.
2007-12-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilean group to Lagrange label space, in which the Eulerian position is regarded as a function of the Lagrange fluid label and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Lie point symmetry. This involves the solution of the Lie determining equations for the fluid relabeling symmetries. We also consider a class of scaling symmetries for a gas with a constant adiabatic index. These symmetries map onto a modified form of the fluid relabeling symmetry determining equations with non-zero source terms. We investigate under what conditions the scaling symmetries give rise to conservation laws, and find that the conservation laws depend on the initial entropy, density and magnetic field of the fluid. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated.
Goldmann, H
1990-01-01
The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
The kinematic algebras from the scattering equations
International Nuclear Information System (INIS)
Monteiro, Ricardo; O’Connell, Donal
2014-01-01
We study kinematic algebras associated to the recently proposed scattering equations, which arise in the description of the scattering of massless particles. In particular, we describe the role that these algebras play in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex which is associated to each solution of those equations. We also identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant
On the Structure of С*-Algebras Generated by Representations of the Elementary Inverse Semigroup
Directory of Open Access Journals (Sweden)
S.A. Grigoryan
2016-06-01
Full Text Available The class of С*-algebras generated by the elementary inverse semigroup and being deformations of the Toeplitz algebra has been introduced and studied. The properties of these algebras have been investigated. All their irreducible representations and automorphism groups have been described. These algebras have been proved to be Z-graded С*-algebras. For a certain class of algebras in the family under consideration the compact quantum semigroup structure has been constructed.
Geometry of Spin: Clifford Algebraic Approach
Indian Academy of Sciences (India)
... all the propertiesof Pauli matrices follow from the underlying algebra. Cliffordalgebraic approach provides a geometrical and henceintuitive way to understand quantum theory of spin, and isa natural formalism to study spin. Clifford algebraic formalismhas lot of applications in every field where spin plays animportant role.
Homology and cohomology of Rees semigroup algebras
DEFF Research Database (Denmark)
Grønbæk, Niels; Gourdeau, Frédéric; White, Michael C.
2011-01-01
Let S by a Rees semigroup, and let 1¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of l¹(S) is isomorphic to those of the underlying discrete group algebra....
Samuel, Pierre
2008-01-01
Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics - algebraic geometry, in particular.This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Gal
Forces Unification in the Framework of Transitive Lie Algebroids
Ramandi, Gh. Fasihi; Boroojerdian, N.
2015-05-01
Yang-Mills field equations describe non gravitational forces in the context of principal bundles, and Einstein field equation describes gravity in the context of semi-Riemannian metrics. Transitive Lie algebroids simultaneously contain tangent bundle of its base manifold and some Lie algebra bundle, so in this framework we can describe both gravity and other forces. Fortunately, suitable metrics on transitive algebroids provide us good apparatus to describe gravity and other forces in the same manner. The field equations are derived from an action which is formed naturally by scalar curvature of the metrics on a transitive Lie algebroid. The derived equations contain Einstein and Yang-Mills equations in vacuum, simultaneously.
Compensation and Honesty: Gender Differences in Lying
Nieken, Petra; Dato, Simon
2016-01-01
We compare gender differences in lying under two incentive schemes that are widely used in companies: individual performance-pay and tournament incentives. While we do not observe significantly different behavior of males and females given individual performance-pay, females lie significantly less than males if the compensation scheme is switched to tournament incentives. This result is mainly driven by a decrease in the propensity to lie of females in a competitive environment. The gender ga...
Relation between dual S-algebras and BE-algebras
Directory of Open Access Journals (Sweden)
Arsham Borumand Saeid
2015-05-01
Full Text Available In this paper, we investigate the relationship between dual (Weak Subtraction algebras, Heyting algebras and BE-algebras. In fact, the purpose of this paper is to show that BE-algebra is a generalization of Heyting algebra and dual (Weak Subtraction algebras. Also, we show that a bounded commutative self distributive BE-algebra is equivalent to the Heyting algebra.
Anti-Kählerian Geometry on Lie Groups
Fernández-Culma, Edison Alberto; Godoy, Yamile
2018-03-01
Let G be a Lie group of even dimension and let ( g, J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure ( g, J) where J is abelian then the Lie algebra of G is unimodular and ( G, g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple ( G, g, J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor 𝜃 on its Lie algebra and prove that such structure is anti-Kähler if and only if 𝜃 is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).
11th Workshop Lie Theory and Its Applications in Physics
LT-11
2016-01-01
This volume presents modern trends in the area of symmetries and their applications based on contributions from the workshop "Lie Theory and Its Applications in Physics", held near Varna, Bulgaria, in June 2015. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend has been towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry, which is very helpful in understanding its structure. Geometrization and symmetries are employed in their widest sense, embracing representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators (PDO), special functions, and others. Furthermore, the necessary tools from functional analysis are included.< This is a large interdisciplinary a...
Algebra of charges in the supersymmetric nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J.; Das, A.; Maharana, J.
1986-03-01
We examine the algebra of the nonlocal charges in the supersymmetric nonlinear sigma model and show that they satisfy a nonlinear algebra at the tree-level. We also discuss other interesting questions like the transformation of these charges under a supersymmetry transformation and speculate that this algebra possibly continues to hold in the full quantum theory. (orig.).
Rudiments of algebraic geometry
Jenner, WE
2017-01-01
Aimed at advanced undergraduate students of mathematics, this concise text covers the basics of algebraic geometry. Topics include affine spaces, projective spaces, rational curves, algebraic sets with group structure, more. 1963 edition.
Fixed point algebras for easy quantum groups
DEFF Research Database (Denmark)
Gabriel, Olivier; Weber, Moritz
2016-01-01
Compact matrix quantum groups act naturally on Cuntz algebras. The first author isolated certain conditions under which the fixed point algebras under this action are Kirchberg algebras. Hence they are completely determined by their K-groups. Building on prior work by the second author,we prove...... that free easy quantum groups satisfy these conditions and we compute the K-groups of their fixed point algebras in a general form. We then turn to examples such as the quantum permutation group S+ n,the free orthogonal quantum group O+ n and the quantum reflection groups Hs+ n. Our fixed point......-algebra construction provides concrete examples of free actions of free orthogonal easy quantum groups,which are related to Hopf-Galois extensions....
Cylindric-like algebras and algebraic logic
Ferenczi, Miklós; Németi, István
2013-01-01
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin.
Algebraic statistics computational commutative algebra in statistics
Pistone, Giovanni; Wynn, Henry P
2000-01-01
Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Gröbner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case with new application to coherent systems in reliability and two level factorial designs. The work paves the way, in the last two chapters, for the application of computer algebra to discrete probability and statistical modelling through the important concept of an algebraic statistical model.As the first book on the subject, Algebraic Statistics presents many opportunities for spin-off research and applications and should become a landmark work welcomed by both the statistical community and its relatives in mathematics and computer science.
Jorgensen, Palle E T
1987-01-01
Historically, operator theory and representation theory both originated with the advent of quantum mechanics. The interplay between the subjects has been and still is active in a variety of areas.This volume focuses on representations of the universal enveloping algebra, covariant representations in general, and infinite-dimensional Lie algebras in particular. It also provides new applications of recent results on integrability of finite-dimensional Lie algebras. As a central theme, it is shown that a number of recent developments in operator algebras may be handled in a particularly e
Indian Academy of Sciences (India)
We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form M = U + ∑ j I j with U a subspace of the abelian Malcev subalgebra and any I j a well described ideal of satisfying [ I j , I k ] = 0 if ≠ .
Foundations of algebraic geometry
Weil, A
1946-01-01
This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.
Visualizing automorphisms of graph algebras
DEFF Research Database (Denmark)
Avery, James Emil; Johansen, Rune; Szymanski, Wojciech
2018-01-01
Graph C*-algebras have been celebrated as C*-algebras that can be seen, because many important properties may be determined by looking at the underlying graph. This paper introduces the permutation graph for a permutative endomorphism of a graph C*-algebra as a labeled directed multigraph...... that gives a visual representation of the endomorphism and facilitates computations. Combinatorial criteria have previously been developed for deciding when such an endomorphism is an automorphism, but here the question is reformulated in terms of the permutation graph and new proofs are given. Furthermore......, it is shown how to use permutation graphs to efficiently generate exhaustive collections of permutative automorphisms. Permutation graphs provide a natural link to the textile systems representing induced endomorphisms on the edge shift of the given graph, and this allows the powerful tools of the theory...
String field theory. Algebraic structure, deformation properties and superstrings
International Nuclear Information System (INIS)
Muenster, Korbinian
2013-01-01
This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the
A convenient criterion under which Z{sub 2}-graded operators are Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Hussin, Veronique [Departement de Mathematiques et de Statistique, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Kiselev, Arthemy V, E-mail: hussin@dms.umontreal.ca, E-mail: A.V.Kiselev@rug.nl [Mathematical Institute, University of Utrecht, PO Box 80.010, 3508 TA Utrecht (Netherlands)
2011-03-01
We formulate a simple and convenient criterion under which skew-adjoint Z{sub 2}-graded total differential operators are Hamiltonian, provided that their images are closed under commutation in the Lie algebras of evolutionary vector fields on the infinite jet spaces for vector bundles over smooth manifolds.
A note on the Akivis algebra of a smooth hyporeductive loop
International Nuclear Information System (INIS)
Issa, A.N.
2002-05-01
Using the fundamental tensors of a smooth loop and the differential geometric characterization of smooth hyporeductive loops, the Akivis operations of a local smooth hyporeductive loop are expressed through the two binary and the one ternary operations of the hyporeductive triple algebra (h.t.a.) associated with the given hyporeductive loop. Those Akivis operations are also given in terms of Lie brackets of a Lie algebra of vector fields with the hyporeductive decomposition which generalizes the reductive decomposition of Lie algebras. A nontrivial real two-dimensional h.t.a. is presented. (author)
International Nuclear Information System (INIS)
Krivonos, S.O.; Sorin, A.S.
1994-06-01
We show that the Zamolodchikov's and Polyakov-Bershadsky nonlinear algebras W 3 and W (2) 3 can be embedded as subalgebras into some linear algebras with finite set of currents. Using these linear algebras we find new field realizations of W (2) 3 and W 3 which could be a starting point for constructing new versions of W-string theories. We also reveal a number of hidden relationships between W 3 and W (2) 3 . We conjecture that similar linear algebras can exist for other W-algebra as well. (author). 10 refs
Algorithms in Algebraic Geometry
Dickenstein, Alicia; Sommese, Andrew J
2008-01-01
In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its
Super-pp-wave algebra from super-AdSxS algebras in eleven dimensions
International Nuclear Information System (INIS)
Hatsuda, Machiko; Kamimura, Kiyoshi; Sakaguchi, Makoto
2002-01-01
Maximally supersymmetric spacetime algebras in eleven dimensions, which are the isometry superalgebras of Minkowski space, AdS 7 xS 4 , AdS 4 xS 7 and pp-wave background, are related by Inoenue-Wigner contractions. The super-AdS 4(7) xS 7(4) algebras allow to introduce two contraction parameters, the one for the flat limit to the super-Poincare algebra and the other for a Penrose limit to the super-pp-wave algebra. Under these contractions supersymmetries are maintained because the Jacobi identity of three supercharges holds for any values of contraction parameters
Linear algebra and group theory for physicists
Rao, K N Srinivasa
2006-01-01
Professor Srinivasa Rao's text on Linear Algebra and Group Theory is directed to undergraduate and graduate students who wish to acquire a solid theoretical foundation in these mathematical topics which find extensive use in physics. Based on courses delivered during Professor Srinivasa Rao's long career at the University of Mysore, this text is remarkable for its clear exposition of the subject. Advanced students will find a range of topics such as the Representation theory of Linear Associative Algebras, a complete analysis of Dirac and Kemmer algebras, Representations of the Symmetric group via Young Tableaux, a systematic derivation of the Crystallographic point groups, a comprehensive and unified discussion of the Rotation and Lorentz groups and their representations, and an introduction to Dynkin diagrams in the classification of Lie groups. In addition, the first few chapters on Elementary Group Theory and Vector Spaces also provide useful instructional material even at an introductory level. An author...
Algebraic theory of locally nilpotent derivations
Freudenburg, Gene
2017-01-01
This book explores the theory and application of locally nilpotent derivations, a subject motivated by questions in affine algebraic geometry and having fundamental connections to areas such as commutative algebra, representation theory, Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane and the Cancellation Theorem for Curves. More recent results, such as Makar-Limanov's theorem for locally nilpotent derivations of polynomial rings, are also discussed. Topics of special interest include progress in classifying additive actions on three-dimensional affine space, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. A lot of new material is included in this expanded second edition, such as canonical factoriza...
't Hooft's solution for arbitrary semisimple Lie group
International Nuclear Information System (INIS)
Leznov, A.N.; Mukhtarov, M.A.
1990-07-01
The generalization of the 't Hooft's A 1 solution for every semisimple Lie algebra is found. The solution depends on r-independent chains of linear self-dual systems (Δ s α ) z = (Δ s+1 α ) y -bar, (Δ s α ) y -bar = -(Δ s+1 α ) z (1 ≤ α ≤ r); the length of α chain is equal to 2ω α + 1, where ω α are the indexes of the semisimple algebra and r is its rank. In the special case the O(4)-invariant solutions with instanton number equal to one arises. (author). 6 refs
Seron, X
2014-10-01
The issue of lying occurs in neuropsychology especially when examinations are conducted in a forensic context. When a subject intentionally either presents non-existent deficits or exaggerates their severity to obtain financial or material compensation, this behaviour is termed malingering. Malingering is discussed in the general framework of lying in psychology, and the different procedures used by neuropsychologists to evidence a lack of collaboration at examination are briefly presented and discussed. When a lack of collaboration is observed, specific emphasis is placed on the difficulty in unambiguously establishing that this results from the patient's voluntary decision. Copyright © 2014. Published by Elsevier SAS.
International Nuclear Information System (INIS)
Feigin, B.L.; Semikhatov, A.M.
2004-01-01
We construct W-algebra generalizations of the sl-circumflex(2) algebra-W algebras W n (2) generated by two currents E and F with the highest pole of order n in their OPE. The n=3 term in this series is the Bershadsky-Polyakov W 3 (2) algebra. We define these algebras as a centralizer (commutant) of the Uqs-bar (n vertical bar 1) quantum supergroup and explicitly find the generators in a factored, 'Miura-like' form. Another construction of the W n (2) algebras is in terms of the coset sl-circumflex(n vertical bar 1)/sl-circumflex(n). The relation between the two constructions involves the 'duality' (k+n-1)(k'+n-1)=1 between levels k and k' of two sl-circumflex(n) algebras
Vertex operator algebras and conformal field theory
International Nuclear Information System (INIS)
Huang, Y.Z.
1992-01-01
This paper discusses conformal field theory, an important physical theory, describing both two-dimensional critical phenomena in condensed matter physics and classical motions of strings in string theory. The study of conformal field theory will deepen the understanding of these theories and will help to understand string theory conceptually. Besides its importance in physics, the beautiful and rich mathematical structure of conformal field theory has interested many mathematicians. New relations between different branches of mathematics, such as representations of infinite-dimensional Lie algebras and Lie groups, Riemann surfaces and algebraic curves, the Monster sporadic group, modular functions and modular forms, elliptic genera and elliptic cohomology, Calabi-Yau manifolds, tensor categories, and knot theory, are revealed in the study of conformal field theory. It is therefore believed that the study of the mathematics involved in conformal field theory will ultimately lead to new mathematical structures which would be important to both mathematics and physics
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
On the algebraic realization of SU(4) symmetry
International Nuclear Information System (INIS)
Asatryan, G.M.; Zaslavsky, A.N.
1976-01-01
A possibility of nonlinear realization of the symmetry with linearization on the SU(4)xYxC group is discussed. Algebraic properties of SU(4) are restored from the Weinberg condition: amplitudes of goldstone scattering on particles should have a reasonable (as in the Regge theory) asymptotic behaviour. In this case the breaking appears to be minimal. Large values of psi meson masses lead to high-lying charmed trajectories in the SU(4) algebraic realization
The Boolean algebra and central Galois algebras
Directory of Open Access Journals (Sweden)
George Szeto
2001-01-01
Full Text Available Let B be a Galois algebra with Galois group G, Jg={b∈B∣bx=g(xb for all x∈B} for g∈G, and BJg=Beg for a central idempotent eg. Then a relation is given between the set of elements in the Boolean algebra (Ba,≤ generated by {0,eg∣g∈G} and a set of subgroups of G, and a central Galois algebra Be with a Galois subgroup of G is characterized for an e∈Ba.
Algebraic definition of topological W gravity
International Nuclear Information System (INIS)
Hosono, S.
1992-01-01
In this paper, the authors propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In the authors' definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, the authors will present some explicit calculations for the W 3 gravity
Indian Academy of Sciences (India)
Home; Journals; Journal of Biosciences. ZHI-LIE CAO. Articles written in Journal of Biosciences. Volume 42 Issue 2 June 2017 pp 209-218 Article. Genetic diagnosis of a Chinese multiple endocrine neoplasia type 2A family through whole genome sequencing · ZHEN-FANG DU PENG-FEI LI JIAN-QIANG ZHAO ZHI-LIE ...
Representations of the q-deformed algebras Uq (so2,1) and Uq (so3,1)
International Nuclear Information System (INIS)
Gavrilik, O.M.; Klimyk, A.U.
1993-01-01
Representations of algebra U q (so 2 ,1) are studied. This algebra is a q-deformation of the universal enveloping algebra U(so 2 ,1) of the Lie algebra of the group SO 0 (2,1) and differs from the quantum algebra U q (SU 1 ,1). Classifications of irreducible representations and of infinitesimally irreducible representations of U q (SU 1 ,1). The sets of irreducible representations and of infinitesimally unitary irreducible representations of the algebra U q (so 3 ,1) are given. We also consider representations of U q (so n ,1) which are of class 1 with respect to subalgebra U q (so n ). (author). 22 refs
c-fans and Newton polyhedra of algebraic varieties
International Nuclear Information System (INIS)
Kazarnovskii, B Ya
2003-01-01
To every algebraic subvariety of a complex torus there corresponds a Euclidean geometric object called a c-fan. This correspondence determines an intersection theory for algebraic varieties. c-fans form a graded commutative algebra with visually defined operations. The c-fans of algebraic varieties lie in the subring of rational c-fans. It seems that other subrings may be used to construct an intersection theory for other categories of analytic varieties. We discover a relation between an old problem in the theory of convex bodies (the so-called Minkowski problem) and the ring of c-fans. This enables us to define a correspondence that sends any algebraic curve to a convex polyhedron in the space of characters of the torus
Hurwitz Algebras and the Octonion Algebra
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
AT -algebras and extensions of AT-algebras
Indian Academy of Sciences (India)
algebra by an AT-algebra and E has real rank zero, then E is an AT-algebra if and only if the index maps are both zero. Accordingly, in this paper, we attempt to describe a characterization of an extension E of an AT-algebra by an AF-algebra if E ...
Non commutative geometry methods for group C*-algebras
International Nuclear Information System (INIS)
Do Ngoc Diep.
1996-09-01
This book is intended to provide a quick introduction to the subject. The exposition is scheduled in the sequence, as possible for more understanding for beginners. The author exposed a K-theoretic approach to study group C * -algebras: started in the elementary part, with one example of description of the structure of C * -algebra of the group of affine transformations of the real straight line, continued then for some special classes of solvable and nilpotent Lie groups. In the second advanced part, he introduced the main tools of the theory. In particular, the conception of multidimensional geometric quantization and the index of group C * -algebras were created and developed. (author). Refs
Yoneda algebras of almost Koszul algebras
Indian Academy of Sciences (India)
a left (2, hQ − 2)-Koszul algebra (see Definition 2.1 below), and the Yoneda algebra of. A is isomorphic to a twisted ... is quadratic if R is a subspace of V ⊗ V . The quadratic dual A! of A is defined to be. T (V ∗)/(R⊥) .... (Q, ρ) is a stable bound quiver of Loewy length p + 1, and the Nakayama translation on. Q0 is induced by a ...
Approximation Properties for Groups and von Neumann Algebras
DEFF Research Database (Denmark)
Knudby, Søren
The main topic of the thesis is approximation properties for locally compact groups with applications to operator algebras. In order to study the relationship between weak amenability and the Haagerup property, the weak Haagerup property and the weak Haagerup constant are introduced. The weak......, the weak Haagerup constants of all connected simple Lie groups are determined. In order to determine the weak Haagerup constants of the rank one simple Lie groups, knowledge about the Fourier algebras of their minimal parabolic subgroups is needed. We prove that for these minimal parabolic subgroups...
On higher-dimensional loop algebras, pseudodifferential operators and Fock space realizations
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
We discuss a previously discovered extension of the infinite-dimensional Lie algebra map(M,g) which generalizes the Kac-Moody algebras in 1+1 dimensions and the Mickelsson-Faddeev algebras in 3+1 dimensions to manifolds M of general dimensions. Furthermore, we review the method of regularizing current algebras in higher dimensions using pseudodifferential operator (PSDO) symbol calculus. In particular, we discuss the issue of Lie algebra cohomology of PSDOs and its relation to the Schwinger terms arising in the quantization process. Finally, we apply this regularization method to the algebra with partial success, and discuss the remaining obstacles to the construction of a Fock space representation. (orig.)
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
International Nuclear Information System (INIS)
Gurau, Razvan
2012-01-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
Borzooei, R. A.; Dudek, W. A.; Koohestani, N.
2006-01-01
We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Directory of Open Access Journals (Sweden)
R. A. Borzooei
2006-01-01
Full Text Available We study hyper BCC-algebras which are a common generalization of BCC-algebras and hyper BCK-algebras. In particular, we investigate different types of hyper BCC-ideals and describe the relationship among them. Next, we calculate all nonisomorphic 22 hyper BCC-algebras of order 3 of which only three are not hyper BCK-algebras.
Givant, Steven
2017-01-01
This monograph details several different methods for constructing simple relation algebras, many of which are new with this book. By drawing these seemingly different methods together, all are shown to be aspects of one general approach, for which several applications are given. These tools for constructing and analyzing relation algebras are of particular interest to mathematicians working in logic, algebraic logic, or universal algebra, but will also appeal to philosophers and theoretical computer scientists working in fields that use mathematics. The book is written with a broad audience in mind and features a careful, pedagogical approach; an appendix contains the requisite background material in relation algebras. Over 400 exercises provide ample opportunities to engage with the material, making this a monograph equally appropriate for use in a special topics course or for independent study. Readers interested in pursuing an extended background study of relation algebras will find a comprehensive treatme...
Twisted classical Poincare algebras
International Nuclear Information System (INIS)
Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.
1993-11-01
We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)
Hestenes, David
2015-01-01
This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...
Cardy Algebras and Sewing Constraints, I
Kong, Liang; Runkel, Ingo
2009-12-01
This is part one of a two-part work that relates two different approaches to two-dimensional open-closed rational conformal field theory. In part one we review the definition of a Cardy algebra, which captures the necessary consistency conditions of the theory at genus 0 and 1. We investigate the properties of these algebras and prove uniqueness and existence theorems. One implication is that under certain natural assumptions, every rational closed CFT is extendable to an open-closed CFT. The relation of Cardy algebras to the solutions of the sewing constraints is the topic of part two.
Kurosh, A G; Stark, M; Ulam, S
1965-01-01
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary relations, equivalence relations, partial ordering, minimum condition, and theorems equivalent to the axiom of choice. The text gives the definition of binary algebraic operation and the concepts of groups, groupoids, and semigroups. The book examines the parallelism between the theory of groups and the theory of rings; such examinations show the
Solomon, Alan D
2012-01-01
REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Boolean Algebra includes set theory, sentential calculus, fundamental ideas of Boolean algebras, lattices, rings and Boolean algebras, the structure of a Boolean algebra, and Boolean
Directory of Open Access Journals (Sweden)
Frank Roumen
2017-01-01
Full Text Available We will define two ways to assign cohomology groups to effect algebras, which occur in the algebraic study of quantum logic. The first way is based on Connes' cyclic cohomology. The resulting cohomology groups are related to the state space of the effect algebra, and can be computed using variations on the Kunneth and Mayer-Vietoris sequences. The second way involves a chain complex of ordered abelian groups, and gives rise to a cohomological characterization of state extensions on effect algebras. This has applications to no-go theorems in quantum foundations, such as Bell's theorem.
Albert, A A
1939-01-01
The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI con
Non Abelian Sugawara construction and the q-deformed N=2 superconformal algebra
Energy Technology Data Exchange (ETDEWEB)
Batista, E.; Gomes, J.F.; Lautenschleguer, I.J.
1996-03-01
The construction of a q-deformed N=2 superconformal algebra is proposed in terms of level 1 current of U{sub q}(su(2)) quantum affine Lie algebra and a single real Fermi field. In particular, it suggests the expression for the q-deformed Energy-Momentum tensor in the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The generalization to U{sub q}(su(N+1)) is also proposed. (author). 17 refs.
Simple Lie groups without the approximation property
DEFF Research Database (Denmark)
Haagerup, Uffe; de Laat, Tim
2013-01-01
For a locally compact group G, let A(G) denote its Fourier algebra, and let M0A(G) denote the space of completely bounded Fourier multipliers on G. The group G is said to have the Approximation Property (AP) if the constant function 1 can be approximated by a net in A(G) in the weak-∗ topology...... on the space M0A(G). Recently, Lafforgue and de la Salle proved that SL(3,R) does not have the AP, implying the first example of an exact discrete group without it, namely, SL(3,Z). In this paper we prove that Sp(2,R) does not have the AP. It follows that all connected simple Lie groups with finite center...... and real rank greater than or equal to two do not have the AP. This naturally gives rise to many examples of exact discrete groups without the AP....
Police lie detection accuracy: the effect of lie scenario.
O'Sullivan, Maureen; Frank, Mark G; Hurley, Carolyn M; Tiwana, Jaspreet
2009-12-01
Although most people are not better than chance in detecting deception, some groups of police professionals have demonstrated significant lie detection accuracy. One reason for this difference may be that the types of lies police are asked to judge in scientific experiments often do not represent the types of lies they see in their profession. Across 23 studies, involving 31 different police groups in eight countries, police officers tested with lie detection scenarios using high stakes lies (i.e., the lie was personally involving and/or resulted in substantial rewards or punishments for the liar) were significantly more accurate than law enforcement officials tested with low stakes lies. Face validity and construct validity of various lie scenarios are differentiated.
Bär, Christian; Becker, Christian
In this chapter we will collect those basic concepts and facts related to C*-algebras that will be needed later on. We give complete proofs. In Sects. 1, 2, 3, and 6 we follow closely the presentation in [1]. For more information on C*-algebras, see, e.g. [2-6].
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
Seo, Young Joo; Kim, Young Hee
2016-01-01
In this paper we construct some real algebras by using elementary functions, and discuss some relations between several axioms and its related conditions for such functions. We obtain some conditions for real-valued functions to be a (edge) d -algebra.
Hayden, Dunstan; Cuevas, Gilberto
The pre-algebra lexicon is a set of classroom exercises designed to teach the technical words and phrases of pre-algebra mathematics, and includes the terms most commonly found in related mathematics courses. The lexicon has three parts, each with its own introduction. The first introduces vocabulary items in three groups forming a learning…
International Nuclear Information System (INIS)
Calmet, J.
1982-01-01
A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)
Indian Academy of Sciences (India)
Discourses on Algebra. Rajaram Nityananda. Discourses on Algebra. Igor R Shafarevich. Narosa Publishing. Pages: 273, Price in India: | 1750. To the Indian reader, the word discourse, evokes a respected figure interpreting divine wisdom to common folk in an accessible fash- ion. I dug a bit deeper with Google trans-.
Algebraic Description of Motion
Davidon, William C.
1974-01-01
An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)
International Nuclear Information System (INIS)
Talon, M.
1987-01-01
The algebraic set up for anomalies, a la Stora, is reviewed. Then a brief account is provided of the work of M. Dubois Violette, M. Talon, C. Viallet, in which the general algebraic solution to the consistency conditions is described. 34 references
Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco
2017-04-01
In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water
Elements of mathematics algebra
Bourbaki, Nicolas
2003-01-01
This is a softcover reprint of the English translation of 1990 of the revised and expanded version of Bourbaki's, Algèbre, Chapters 4 to 7 (1981). This completes Algebra, 1 to 3, by establishing the theories of commutative fields and modules over a principal ideal domain. Chapter 4 deals with polynomials, rational fractions and power series. A section on symmetric tensors and polynomial mappings between modules, and a final one on symmetric functions, have been added. Chapter 5 was entirely rewritten. After the basic theory of extensions (prime fields, algebraic, algebraically closed, radical extension), separable algebraic extensions are investigated, giving way to a section on Galois theory. Galois theory is in turn applied to finite fields and abelian extensions. The chapter then proceeds to the study of general non-algebraic extensions which cannot usually be found in textbooks: p-bases, transcendental extensions, separability criterions, regular extensions. Chapter 6 treats ordered groups and fields and...
Lagrangian submanifolds and dynamics on Lie algebroids
International Nuclear Information System (INIS)
Leon, Manuel de; Marrero, Juan C; MartInez, Eduardo
2005-01-01
In some previous papers, a geometric description of Lagrangian mechanics on Lie algebroids has been developed. In this topical review, we give a Hamiltonian description of mechanics on Lie algebroids. In addition, we introduce the notion of a Lagrangian submanifold of a symplectic Lie algebroid and we prove that the Lagrangian (Hamiltonian) dynamics on Lie algebroids may be described in terms of Lagrangian submanifolds of symplectic Lie algebroids. The Lagrangian (Hamiltonian) formalism on Lie algebroids permits us to deal with Lagrangian (Hamiltonian) functions not defined necessarily on tangent (cotangent) bundles. Thus, we may apply our results to the projection of Lagrangian (Hamiltonian) functions which are invariant under the action of a symmetry Lie group. As a consequence, we obtain that Lagrange-Poincare (Hamilton-Poincare) equations are the Euler-Lagrange (Hamilton) equations associated with the corresponding Atiyah algebroid. Moreover, we prove that Lagrange-Poincare (Hamilton-Poincare) equations are the local equations defining certain Lagrangian submanifolds of symplectic Atiyah algebroids. (topical review)
Telling lies: the irrepressible truth?
Directory of Open Access Journals (Sweden)
Emma J Williams
Full Text Available Telling a lie takes longer than telling the truth but precisely why remains uncertain. We investigated two processes suggested to increase response times, namely the decision to lie and the construction of a lie response. In Experiments 1 and 2, participants were directed or chose whether to lie or tell the truth. A colored square was presented and participants had to name either the true color of the square or lie about it by claiming it was a different color. In both experiments we found that there was a greater difference between lying and telling the truth when participants were directed to lie compared to when they chose to lie. In Experiments 3 and 4, we compared response times when participants had only one possible lie option to a choice of two or three possible options. There was a greater lying latency effect when questions involved more than one possible lie response. Experiment 5 examined response choice mechanisms through the manipulation of lie plausibility. Overall, results demonstrate several distinct mechanisms that contribute to additional processing requirements when individuals tell a lie.
Telling lies: the irrepressible truth?
Williams, Emma J; Bott, Lewis A; Patrick, John; Lewis, Michael B
2013-01-01
Telling a lie takes longer than telling the truth but precisely why remains uncertain. We investigated two processes suggested to increase response times, namely the decision to lie and the construction of a lie response. In Experiments 1 and 2, participants were directed or chose whether to lie or tell the truth. A colored square was presented and participants had to name either the true color of the square or lie about it by claiming it was a different color. In both experiments we found that there was a greater difference between lying and telling the truth when participants were directed to lie compared to when they chose to lie. In Experiments 3 and 4, we compared response times when participants had only one possible lie option to a choice of two or three possible options. There was a greater lying latency effect when questions involved more than one possible lie response. Experiment 5 examined response choice mechanisms through the manipulation of lie plausibility. Overall, results demonstrate several distinct mechanisms that contribute to additional processing requirements when individuals tell a lie.
Scaling algebras and renormalization group in algebraic quantum field theory
International Nuclear Information System (INIS)
Buchholz, D.; Verch, R.
1995-01-01
For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined. (orig.)
L{sub ∞} algebras and field theory
Energy Technology Data Exchange (ETDEWEB)
Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University, Stony Brook, NY (United States); Zwiebach, Barton [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States)
2017-03-15
We review and develop the general properties of L{sub ∞} algebras focusing on the gauge structure of the associated field theories. Motivated by the L{sub ∞} homotopy Lie algebra of closed string field theory and the work of Roytenberg and Weinstein describing the Courant bracket in this language we investigate the L{sub ∞} structure of general gauge invariant perturbative field theories. We sketch such formulations for non-abelian gauge theories, Einstein gravity, and for double field theory. We find that there is an L{sub ∞} algebra for the gauge structure and a larger one for the full interacting field theory. Theories where the gauge structure is a strict Lie algebra often require the full L{sub ∞} algebra for the interacting theory. The analysis suggests that L{sub ∞} algebras provide a classification of perturbative gauge invariant classical field theories. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Operator algebras and conformal field theory
International Nuclear Information System (INIS)
Gabbiani, F.; Froehlich, J.
1993-01-01
We define and study two-dimensional, chiral conformal field theory by the methods of algebraic field theory. We start by characterizing the vacuum sectors of such theories and show that, under very general hypotheses, their algebras of local observables are isomorphic to the unique hyperfinite type III 1 factor. The conformal net determined by the algebras of local observables is proven to satisfy Haag duality. The representation of the Moebius group (and presumably of the entire Virasoro algebra) on the vacuum sector of a conformal field theory is uniquely determined by the Tomita-Takesaki modular operators associated with its vacuum state and its conformal net. We then develop the theory of Mebius covariant representations of a conformal net, using methods of Doplicher, Haag and Roberts. We apply our results to the representation theory of loop groups. Our analysis is motivated by the desire to find a 'background-independent' formulation of conformal field theories. (orig.)
Vibrational spectra of nickel metalloporphyrins: An algebraic approach
Indian Academy of Sciences (India)
... molecules. In view of the considerable amount of experimental activity in this area, one needs theoretical models within which to interpret experimental data. Using Lie algebraic method, the vibrational energy levels of nickel metalloporphyrins like Ni(OEP), Ni porphyrin and Ni(TPP) are calculated for 16 vibrational modes.
Algebraic resolution of the Burgers equation with a forcing term
Indian Academy of Sciences (India)
2017-04-07
s 2A1. In all the cases, the Burgers equation is reduced to the equation for a linear oscillator with nonconstant coefficient. Keywords. Lie algebra; Burgers equation; symmetry reduction. PACS Nos 02.20.Sv; 02.30.Ik; 02.30.Jr. 1.
Regular algebraic monoids | Oduwale | Journal of the Nigerian ...
African Journals Online (AJOL)
... in terms of their unit groups, and related toroidal data. That is what we accomplish here. Keywords: Unipotent radical, . toroidal data, normal, irreducible, regular, zero element, maximal torus, Zariski closure, Lie algebra. Journal of the Nigerian Association of Mathematical Physics, Volume 19 (November, 2011), pp 37 – 40 ...
Cluster algebras bases on vertex operator algebras
Czech Academy of Sciences Publication Activity Database
Zuevsky, Alexander
2016-01-01
Roč. 30, 28-29 (2016), č. článku 1640030. ISSN 0217-9792 Institutional support: RVO:67985840 Keywords : cluster alegbras * vertex operator algebras * Riemann surfaces Subject RIV: BA - General Mathematics Impact factor: 0.736, year: 2016 http://www.worldscientific.com/doi/abs/10.1142/S0217979216400300
Debey, E.; De Houwer, J.; Verschuere, B.
2014-01-01
Cognitive models of deception focus on the conflict-inducing nature of the truth activation during lying. Here we tested the counterintuitive hypothesis that the truth can also serve a functional role in the act of lying. More specifically, we examined whether the construction of a lie can involve a
How People Really Detect Lies.
Park, Hee Sun; Levine, Timothy R.; McCornack, Steven A.; Morrison, Kelly; Ferrara, Merissa
2002-01-01
Considers that participants in previous deception detection experiments may not have had access to the types of information people most often use to detect real-life lies. Suggests that people most often rely on information from third parties and physical evidence when detecting lies, and that the detection of a lie is a process that takes days,…
Barcelona Conference on Algebraic Topology
Castellet, Manuel; Cohen, Frederick
1992-01-01
The papers in this collection, all fully refereed, original papers, reflect many aspects of recent significant advances in homotopy theory and group cohomology. From the Contents: A. Adem: On the geometry and cohomology of finite simple groups.- D.J. Benson: Resolutions and Poincar duality for finite groups.- C. Broto and S. Zarati: On sub-A*-algebras of H*V.- M.J. Hopkins, N.J. Kuhn, D.C. Ravenel: Morava K-theories of classifying spaces and generalized characters for finite groups.- K. Ishiguro: Classifying spaces of compact simple lie groups and p-tori.- A.T. Lundell: Concise tables of James numbers and some homotopyof classical Lie groups and associated homogeneous spaces.- J.R. Martino: Anexample of a stable splitting: the classifying space of the 4-dim unipotent group.- J.E. McClure, L. Smith: On the homotopy uniqueness of BU(2) at the prime 2.- G. Mislin: Cohomologically central elements and fusion in groups.
Quantum algebras in phenomenological description of particle properties
International Nuclear Information System (INIS)
Gavrilik, A.M.
2001-01-01
Quantum and q-deformed algebras find their application not only in mathematical physics and field theoretical context, but also in phenomenology of particle properties. We describe (i) the use of quantum algebras U q (su n ) corresponding to Lie algebras of the groups SU n , taken for flavor symmetries of hadrons, in deriving new high-accuracy hadron mass sum rules, and (ii) the use of (multimode) q-oscillator algebras along with q-Bose gas picture in modelling the properties of the intercept λ of two-pion (two-kaon) correlations in heavy-ion collisions, as λ shows sizable observed deviation from the expected Bose-Einstein type behavior. The deformation parameter q is in case (i) argued and in case (ii) conjectured to be connected with the Cabibbo angle θ c
Endomorphisms of graph algebras
DEFF Research Database (Denmark)
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D......_E of C*(E). Our results pertain both automorphisms and proper endomorphisms. Firstly, the Weyl group and the restricted Weyl group of a graph C*-algebra are introduced and investigated. In particular, criteria of outerness for automorphisms in the restricted Weyl group are found. We also show...
Schneider, Hans
1989-01-01
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it.This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related t
Chatterjee, D
2007-01-01
About the Book: This book provides exposition of the subject both in its general and algebraic aspects. It deals with the notions of topological spaces, compactness, connectedness, completeness including metrizability and compactification, algebraic aspects of topological spaces through homotopy groups and homology groups. It begins with the basic notions of topological spaces but soon going beyond them reaches the domain of algebra through the notions of homotopy, homology and cohomology. How these approaches work in harmony is the subject matter of this book. The book finally arrives at the
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
algebra over a field K, can be regarded as the Clifford algebra of a suitable nondegenerate quadratic form q over the base field K. In [13], such a form q is also explicitly constructed. The Grassmann algebra (or the exterior algebra) may also be regarded as the Clifford alge- bra of the null (totally isotropic) quadratic form.
Coreflections in Algebraic Quantum Logic
Jacobs, Bart; Mandemaker, Jorik
2012-07-01
Various generalizations of Boolean algebras are being studied in algebraic quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras and effect algebras. This paper contains a systematic study of the structure in and between categories of such algebras. It does so via a combination of totalization (of partially defined operations) and transfer of structure via coreflections.
International Nuclear Information System (INIS)
Chen Famin; Wu Yongshi
2010-01-01
We present a superspace formulation of the D=3, N=4, 5 superconformal Chern-Simons Matter theories, with matter supermultiplets valued in a symplectic 3-algebra. We first construct an N=1 superconformal action and then generalize a method used by Gaitto and Witten to enhance the supersymmetry from N=1 to N=5. By decomposing the N=5 supermultiplets and the symplectic 3-algebra properly and proposing a new superpotential term, we construct the N=4 superconformal Chern-Simons matter theories in terms of two sets of generators of a (quaternion) symplectic 3-algebra. The N=4 theories can also be derived by requiring that the supersymmetry transformations are closed on-shell. The relationship between the 3-algebras, Lie superalgebras, Lie algebras, and embedding tensors (proposed in [E. A. Bergshoeff, O. Hohm, D. Roest, H. Samtleben, and E. Sezgin, J. High Energy Phys. 09 (2008) 101.]) is also clarified. The general N=4, 5 superconformal Chern-Simons matter theories in terms of ordinary Lie algebras can be re-derived in our 3-algebra approach. All known N=4, 5 superconformal Chern-Simons matter theories can be recovered in the present superspace formulation for super-Lie algebra realization of symplectic 3-algebras.
Infinite-parametric extension of the conformal algebra in D>2 space-time dimension
International Nuclear Information System (INIS)
Fradkin, E.S.; Linetsky, V.Ya.
1990-09-01
On the basis of the analytic continuations of semisimple Lie algebras discovered recently by us we construct manifestly quasiconformal infinite-dimensional algebras AC(so(4,1)) and PAC(so(3,2)) extending the conformal algebras in three-dimensional Euclidean and Minkowski space-time like the Virasoro algebra extends so(2,1). Their higher spin generalizations are also constructed. A counterpart of the central extension for D>2 and possible applications in exactly solvable conformal quantum field models in D>2 are discussed. (author). 31 refs, 2 figs
Celse, Jérémy; Chang, Kirk
2017-11-30
This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liars) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (including general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e., bigger lies) and frequency (i.e., lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights into organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior.
Quantum deformations of conformal algebras with mass-like deformation parameters
International Nuclear Information System (INIS)
Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek; Minnaert, Pierre
1998-01-01
We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2)≅su(2,2) reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices
Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra
International Nuclear Information System (INIS)
Gerdt, V.P.; Kostov, N.A.
1989-01-01
In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs
Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation
Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Zhang, Tian-Tian
2017-01-01
Under investigation in this paper is a generalized (2 + 1)-dimensional coupled Burger equation with variable coefficients, which describes lots of nonlinear physical phenomena in geophysical fluid dynamics, condense matter physics and lattice dynamics. By employing the Lie group method, the symmetry reductions and exact explicit solutions are obtained, respectively. Based on a direct method, the conservations laws of the equation are also derived. Furthermore, by virtue of the Painlevé analysis, we successfully obtain the integrable condition on the variable coefficients, which plays an important role in further studying the integrability of the equation. Finally, its auto-Bäcklund transformation as well as some new analytic solutions including solitary and periodic waves are also presented via algebraic and differential manipulation.
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Ruiz Ruiz, F.
2016-02-01
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary.
Perturbative quantization of Yang-Mills theory with classical double as gauge algebra
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, F. [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2016-02-15
Perturbative quantization of Yang-Mills theory with a gauge algebra given by the classical double of a semisimple Lie algebra is considered. The classical double of a real Lie algebra is a nonsemisimple real Lie algebra that admits a nonpositive definite invariant metric, the indefiniteness of the metric suggesting an apparent lack of unitarity. It is shown that the theory is UV divergent at one loop and that there are no radiative corrections at higher loops. One-loop UV divergences are removed through renormalization of the coupling constant, thus introducing a renormalization scale. The terms in the classical action that would spoil unitarity are proved to be cohomologically trivial with respect to the Slavnov-Taylor operator that controls gauge invariance for the quantum theory. Hence they do not contribute gauge invariant radiative corrections to the quantum effective action and the theory is unitary. (orig.)