WorldWideScience

Sample records for underlying learning mechanisms

  1. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  2. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    Science.gov (United States)

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  3. The effects of divided attention on encoding processes under incidental and intentional learning instructions: underlying mechanisms?

    Science.gov (United States)

    Naveh-Benjamin, Moshe; Guez, Jonathan; Hara, Yoko; Brubaker, Matthew S; Lowenschuss-Erlich, Iris

    2014-01-01

    Divided attention (DA) at encoding has been shown to significantly disrupt later memory for the studied information. However, what type of processing gets disrupted during DA remains unresolved. In this study, we assessed the degree to which strategic effortful processes are affected under DA by comparing the effects of DA at encoding under intentional and pure incidental learning instructions. In three experiments, participants studied list of words or word pairs under either full or divided attention. Results of three experiments, which used different methodologies, converged to show that the effects of DA at encoding reduce memory performance to the same degree under incidental and intentional learning. Secondary task performance indicated that encoding under intentional learning instructions was more effortful than under incidental learning instructions. In addition, the results indicated enhanced attention to the initial appearance of the words under both types of learning instructions. Results are interpreted to imply that other processes, rather than only strategic effortful ones, might be affected by DA at encoding.

  4. Uncovering the neural mechanisms underlying learning from tests.

    Directory of Open Access Journals (Sweden)

    Xiaonan L Liu

    Full Text Available People learn better when re-study opportunities are replaced with tests. While researchers have begun to speculate on why testing is superior to study, few studies have directly examined the neural underpinnings of this effect. In this fMRI study, participants engaged in a study phase to learn arbitrary word pairs, followed by a cued recall test (recall second half of pair when cued with first word of pair, re-study of each pair, and finally another cycle of cued recall tests. Brain activation patterns during the first test (recall of the studied pairs predicts performance on the second test. Importantly, while subsequent memory analyses of encoding trials also predict later accuracy, the brain regions involved in predicting later memory success are more extensive for activity during retrieval (testing than during encoding (study. Those additional regions that predict subsequent memory based on their activation at test but not at encoding may be key to understanding the basis of the testing effect.

  5. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Guangxin Yuan

    2018-01-01

    Full Text Available Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

  6. Neural oscillatory mechanisms during novel grammar learning underlying language analytical abilities.

    Science.gov (United States)

    Kepinska, Olga; Pereda, Ernesto; Caspers, Johanneke; Schiller, Niels O

    2017-12-01

    The goal of the present study was to investigate the initial phases of novel grammar learning on a neural level, concentrating on mechanisms responsible for individual variability between learners. Two groups of participants, one with high and one with average language analytical abilities, performed an Artificial Grammar Learning (AGL) task consisting of learning and test phases. During the task, EEG signals from 32 cap-mounted electrodes were recorded and epochs corresponding to the learning phases were analysed. We investigated spectral power modulations over time, and functional connectivity patterns by means of a bivariate, frequency-specific index of phase synchronization termed Phase Locking Value (PLV). Behavioural data showed learning effects in both groups, with a steeper learning curve and higher ultimate attainment for the highly skilled learners. Moreover, we established that cortical connectivity patterns and profiles of spectral power modulations over time differentiated L2 learners with various levels of language analytical abilities. Over the course of the task, the learning process seemed to be driven by whole-brain functional connectivity between neuronal assemblies achieved by means of communication in the beta band frequency. On a shorter time-scale, increasing proficiency on the AGL task appeared to be supported by stronger local synchronisation within the right hemisphere regions. Finally, we observed that the highly skilled learners might have exerted less mental effort, or reduced attention for the task at hand once the learning was achieved, as evidenced by the higher alpha band power. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    OpenAIRE

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational app...

  8. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    Science.gov (United States)

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  9. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    Science.gov (United States)

    Marshall, Paul; Bredy, Timothy W.

    2016-07-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. So far, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here, we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram.

  10. Circuit mechanisms of sensorimotor learning

    Science.gov (United States)

    Makino, Hiroshi; Hwang, Eun Jung; Hedrick, Nathan G.; Komiyama, Takaki

    2016-01-01

    SUMMARY The relationship between the brain and the environment is flexible, forming the foundation for our ability to learn. Here we review the current state of our understanding of the modifications in the sensorimotor pathway related to sensorimotor learning. We divide the process in three hierarchical levels with distinct goals: 1) sensory perceptual learning, 2) sensorimotor associative learning, and 3) motor skill learning. Perceptual learning optimizes the representations of important sensory stimuli. Associative learning and the initial phase of motor skill learning are ensured by feedback-based mechanisms that permit trial-and-error learning. The later phase of motor skill learning may primarily involve feedback-independent mechanisms operating under the classic Hebbian rule. With these changes under distinct constraints and mechanisms, sensorimotor learning establishes dedicated circuitry for the reproduction of stereotyped neural activity patterns and behavior. PMID:27883902

  11. High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yiping; Li, Yinxia; Wu, Qiuli; Ye, Huayue; Sun, Lingmei; Ye, Boping; Wang, Dayong

    2013-01-01

    α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.

  12. Underlying mechanisms of mistreatment in the surgical learning environment: A thematic analysis of medical student perceptions.

    Science.gov (United States)

    Brandford, Elena; Hasty, Brittany; Bruce, Janine S; Bereknyei Merrell, Sylvia; Shipper, Edward S; Lin, Dana T; Lau, James N

    2018-02-01

    Medical students experience more psychological distress than the general population. One contributing factor is mistreatment. This study aims to understand the mechanisms of mistreatment as perceived by medical students. Students completed anonymous surveys during the first and last didactic session of their surgery clerkship in which they defined and gave examples of mistreatment. Team-based thematic analysis was performed on responses. Between January 2014 and June 2016, 240 students participated in the surgery clerkship. Eighty-nine percent of students completed a survey. Themes observed included (1) Obstruction of Students' Learning, (2) Exploitation of Student Vulnerability, (3) Exclusion from the Medical Team, and (4) Contextual Amplifiers of Mistreatment Severity. The themes observed in this study improve our understanding of the students' perspective on mistreatment as it relates to their role in the clinical learning context, which can serve as a starting point for interventions that ultimately improve students' experiences in the clinical setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information.

    Science.gov (United States)

    Kumaran, Dharshan; Banino, Andrea; Blundell, Charles; Hassabis, Demis; Dayan, Peter

    2016-12-07

    Knowledge about social hierarchies organizes human behavior, yet we understand little about the underlying computations. Here we show that a Bayesian inference scheme, which tracks the power of individuals, better captures behavioral and neural data compared with a reinforcement learning model inspired by rating systems used in games such as chess. We provide evidence that the medial prefrontal cortex (MPFC) selectively mediates the updating of knowledge about one's own hierarchy, as opposed to that of another individual, a process that underpinned successful performance and involved functional interactions with the amygdala and hippocampus. In contrast, we observed domain-general coding of rank in the amygdala and hippocampus, even when the task did not require it. Our findings reveal the computations underlying a core aspect of social cognition and provide new evidence that self-relevant information may indeed be afforded a unique representational status in the brain. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Deciphering the Cognitive and Neural Mechanisms Underlying ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Deciphering the Cognitive and Neural Mechanisms Underlying Auditory Learning. This project seeks to understand the brain mechanisms necessary for people to learn to perceive sounds. Neural circuits and learning. The research team will test people with and without musical training to evaluate their capacity to learn ...

  15. Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory.

    Science.gov (United States)

    Censor, Nitzan; Cohen, Leonardo G

    2011-01-01

    In the last two decades, there has been a rapid development in the research of the physiological brain mechanisms underlying human motor learning and memory. While conventional memory research performed on animal models uses intracellular recordings, microfusion of protein inhibitors to specific brain areas and direct induction of focal brain lesions, human research has so far utilized predominantly behavioural approaches and indirect measurements of neural activity. Repetitive transcranial magnetic stimulation (rTMS), a safe non-invasive brain stimulation technique, enables the study of the functional role of specific cortical areas by evaluating the behavioural consequences of selective modulation of activity (excitation or inhibition) on memory generation and consolidation, contributing to the understanding of the neural substrates of motor learning. Depending on the parameters of stimulation, rTMS can also facilitate learning processes, presumably through purposeful modulation of excitability in specific brain regions. rTMS has also been used to gain valuable knowledge regarding the timeline of motor memory formation, from initial encoding to stabilization and long-term retention. In this review, we summarize insights gained using rTMS on the physiological and neural mechanisms of human motor learning and memory. We conclude by suggesting possible future research directions, some with direct clinical implications.

  16. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  17. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  18. Learning Mechanics and Game Mechanics Under the Perspective of Self-Determination Theory to Foster Motivation in Digital Game Based Learning

    OpenAIRE

    Proulx, Jean-Nicolas; Romero, Margarida; Arnab, Sylvester

    2018-01-01

    Background: Using digital games for educational purposes has been associated with higher levels of motivation among learners of different educational levels. However, the underlying psychological factors involved in digital game based learning (DGBL) have been rarely analyzed considering self-determination theory (SDT, Ryan \\& Deci, 2000b); the relation of SDT with the flow experience (Csikszentmihalyi, 1990) has neither been evaluated in the context of DGBL.

  19. Naringenin improves learning and memory in an Alzheimer's disease rat model: Insights into the underlying mechanisms.

    Science.gov (United States)

    Ghofrani, Saeed; Joghataei, Mohammad-Taghi; Mohseni, Simin; Baluchnejadmojarad, Tourandokht; Bagheri, Maryam; Khamse, Safoura; Roghani, Mehrdad

    2015-10-05

    Alzheimer's disease (AD) is one of the prevalent neurological disorders of the central nervous system hallmarked by increased beta-amyloid (Aβ) deposition and ensuing learning and memory deficit. In the present study, the beneficial effect of naringenin on improvement of learning and memory was evaluated in an Alzheimer's disease rat model. The Aβ-injected rats showed a lower alternation score in Y-maze task, impairment of retention and recall capability in passive avoidance test, and lower correct choices and higher errors in radial arm maze (RAM) task as compared to sham group in addition to enhanced oxidative stress and apoptosis. Naringenin, but not a combination of naringenin and fulvestrant (an estrogenic receptor antagonist) significantly improved the performance of Aβ-injected rats in passive avoidance and RAM tasks. Naringenin pretreatment of Aβ-injected rats also lowered hippocampal malondialdehyde (MDA) with no significant effect on nitrite and superoxide dismutase (SOD) activity in addition to lowering apoptosis. These results suggest naringenin pretreatment attenuates Aβ-induced impairment of learning and memory through mitigation of lipid peroxidation and apoptosis and its beneficial effect is somewhat mediated via estrogenic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Word learning mechanisms.

    Science.gov (United States)

    He, Angela Xiaoxue; Arunachalam, Sudha

    2017-07-01

    How do children acquire the meanings of words? Many word learning mechanisms have been proposed to guide learners through this challenging task. Despite the availability of rich information in the learner's linguistic and extralinguistic input, the word-learning task is insurmountable without such mechanisms for filtering through and utilizing that information. Different kinds of words, such as nouns denoting object concepts and verbs denoting event concepts, require to some extent different kinds of information and, therefore, access to different kinds of mechanisms. We review some of these mechanisms to examine the relationship between the input that is available to learners and learners' intake of that input-that is, the organized, interpreted, and stored representations they form. We discuss how learners segment individual words from the speech stream and identify their grammatical categories, how they identify the concepts denoted by these words, and how they refine their initial representations of word meanings. WIREs Cogn Sci 2017, 8:e1435. doi: 10.1002/wcs.1435 This article is categorized under: Linguistics > Language Acquisition Psychology > Language. © 2017 Wiley Periodicals, Inc.

  1. Deep Learning Fluid Mechanics

    Science.gov (United States)

    Barati Farimani, Amir; Gomes, Joseph; Pande, Vijay

    2017-11-01

    We have developed a new data-driven model paradigm for the rapid inference and solution of the constitutive equations of fluid mechanic by deep learning models. Using generative adversarial networks (GAN), we train models for the direct generation of solutions to steady state heat conduction and incompressible fluid flow without knowledge of the underlying governing equations. Rather than using artificial neural networks to approximate the solution of the constitutive equations, GANs can directly generate the solutions to these equations conditional upon an arbitrary set of boundary conditions. Both models predict temperature, velocity and pressure fields with great test accuracy (>99.5%). The application of our framework for inferring and generating the solutions of partial differential equations can be applied to any physical phenomena and can be used to learn directly from experiments where the underlying physical model is complex or unknown. We also have shown that our framework can be used to couple multiple physics simultaneously, making it amenable to tackle multi-physics problems.

  2. In the loop: how chromatin topology links genome structure to function in mechanisms underlying learning and memory.

    Science.gov (United States)

    Watson, L Ashley; Tsai, Li-Huei

    2017-04-01

    Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.

    Science.gov (United States)

    Abadi, Shiran; Yan, Winston X; Amar, David; Mayrose, Itay

    2017-10-01

    The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.

  4. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Shiran Abadi

    2017-10-01

    Full Text Available The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA. However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment, a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.

  5. Under Threes' Mathematical Learning

    Science.gov (United States)

    Franzén, Karin

    2015-01-01

    The article focuses on mathematics for toddlers in preschool, with the aim of challenging a strong learning discourse that mainly focuses on cognitive learning. By devoting more attention to other perspectives on learning, the hope is to better promote children's early mathematical development. Sweden is one of few countries to have a curriculum…

  6. Learning mechanisms to limit medication administration errors.

    Science.gov (United States)

    Drach-Zahavy, Anat; Pud, Dorit

    2010-04-01

    This paper is a report of a study conducted to identify and test the effectiveness of learning mechanisms applied by the nursing staff of hospital wards as a means of limiting medication administration errors. Since the influential report ;To Err Is Human', research has emphasized the role of team learning in reducing medication administration errors. Nevertheless, little is known about the mechanisms underlying team learning. Thirty-two hospital wards were randomly recruited. Data were collected during 2006 in Israel by a multi-method (observations, interviews and administrative data), multi-source (head nurses, bedside nurses) approach. Medication administration error was defined as any deviation from procedures, policies and/or best practices for medication administration, and was identified using semi-structured observations of nurses administering medication. Organizational learning was measured using semi-structured interviews with head nurses, and the previous year's reported medication administration errors were assessed using administrative data. The interview data revealed four learning mechanism patterns employed in an attempt to learn from medication administration errors: integrated, non-integrated, supervisory and patchy learning. Regression analysis results demonstrated that whereas the integrated pattern of learning mechanisms was associated with decreased errors, the non-integrated pattern was associated with increased errors. Supervisory and patchy learning mechanisms were not associated with errors. Superior learning mechanisms are those that represent the whole cycle of team learning, are enacted by nurses who administer medications to patients, and emphasize a system approach to data analysis instead of analysis of individual cases.

  7. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer's disease: an exploration of underlying mechanisms.

    Science.gov (United States)

    Kiasalari, Zahra; Heydarifard, Rana; Khalili, Mohsen; Afshin-Majd, Siamak; Baluchnejadmojarad, Tourandokht; Zahedi, Elham; Sanaierad, Ashkan; Roghani, Mehrdad

    2017-06-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with irreversible loss of intellectual abilities. Current therapies for AD are still insufficient. In this study, the effect of ellagic acid on learning and memory deficits was evaluated in intrahippocampal amyloid beta (Aβ 25-35 )-microinjected rats and its modes of action were also explored. AD rat model was induced by bilateral intrahippocampal microinjection of Aβ 25-35 and ellagic acid was daily administered (10, 50, and 100 mg/kg), and learning, recognition memory, and spatial memory were evaluated in addition to histochemical assessment, oxidative stress, cholinesterases activity, and level of nuclear factor-kappaB (NF-κB), Toll-like receptor 4 (TLR4), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The amyloid beta-microinjected rats showed a lower discrimination ratio in novel object and alternation score in Y maze tasks and exhibited an impairment of retention and recall capability in passive avoidance paradigm and higher working and reference memory errors in radial arm maze (RAM). In addition, amyloid beta group showed a lower number of Nissl-stained neurons in CA1 area in addition to enhanced oxidative stress, higher activity of cholinesterases, greater level of NF-κB and TLR4, and lower level of nuclear/cytoplasmic ratio for Nrf2 and ellagic acid at a dose of 100 mg/kg significantly prevented most of these abnormal alterations. Ellagic acid pretreatment of intrahippocampal amyloid beta-microinjected rats could dose-dependently improve learning and memory deficits via neuronal protection and at molecular level through mitigation of oxidative stress and acetylcholinesterase (AChE) activity and modulation of NF-κB/Nrf2/TLR4 signaling pathway.

  8. Automotive Mechanics. Student Learning Guides.

    Science.gov (United States)

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  9. Learn new mechanisms from life

    International Nuclear Information System (INIS)

    Ji Qing; Luo Mingyan; Tong Xiaolin; Zhang Bo; Zhang Hui

    2005-01-01

    On the basis of the important experimental results of molecular motors, it was pointed out that the moving process of molecular motors is a coupling biological process of chemical-electrical-mechanical processes. This clever mechanism of energy conversion on the molecular level with several processes coupled together had never been observed before. The understanding of this new mechanism is an important step towards the understanding of life and an important content of what we can learn from life. The authors introduced here the status of the investigations on the mechanism for the force generation of kinesin and the studies of the authors in this field. (authors)

  10. Machine Learning and Quantum Mechanics

    Science.gov (United States)

    Chapline, George

    The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.

  11. Brain mechanisms of flavor learning.

    Science.gov (United States)

    Yamamoto, Takashi; Ueji, Kayoko

    2011-01-01

    Once the flavor of the ingested food (conditioned stimulus, CS) is associated with a preferable (e.g., good taste or nutritive satisfaction) or aversive (e.g., malaise with displeasure) signal (unconditioned stimulus, US), animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning) are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammillary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  12. Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences.

    Science.gov (United States)

    Seidler, R D; Carson, R G

    2017-07-13

    Here we provide an overview of findings and viewpoints on the mechanisms of sensorimotor learning presented at the 2016 Biomechanics and Neural Control of Movement (BANCOM) conference in Deer Creek, OH. This field has shown substantial growth in the past couple of decades. For example it is now well accepted that neural systems outside of primary motor pathways play a role in learning. Frontoparietal and anterior cingulate networks contribute to sensorimotor adaptation, reflecting strategic aspects of exploration and learning. Longer term training results in functional and morphological changes in primary motor and somatosensory cortices. Interestingly, re-engagement of strategic processes once a skill has become well learned may disrupt performance. Efforts to predict individual differences in learning rate have enhanced our understanding of the neural, behavioral, and genetic factors underlying skilled human performance. Access to genomic analyses has dramatically increased over the past several years. This has enhanced our understanding of cellular processes underlying the expression of human behavior, including involvement of various neurotransmitters, receptors, and enzymes. Surprisingly our field has been slow to adopt such approaches in studying neural control, although this work does require much larger sample sizes than are typically used to investigate skill learning. We advocate that individual differences approaches can lead to new insights into human sensorimotor performance. Moreover, a greater understanding of the factors underlying the wide range of performance capabilities seen across individuals can promote personalized medicine and refinement of rehabilitation strategies, which stand to be more effective than "one size fits all" treatments.

  13. Learn Quantum Mechanics with Haskell

    Directory of Open Access Journals (Sweden)

    Scott N. Walck

    2016-11-01

    Full Text Available To learn quantum mechanics, one must become adept in the use of various mathematical structures that make up the theory; one must also become familiar with some basic laboratory experiments that the theory is designed to explain. The laboratory ideas are naturally expressed in one language, and the theoretical ideas in another. We present a method for learning quantum mechanics that begins with a laboratory language for the description and simulation of simple but essential laboratory experiments, so that students can gain some intuition about the phenomena that a theory of quantum mechanics needs to explain. Then, in parallel with the introduction of the mathematical framework on which quantum mechanics is based, we introduce a calculational language for describing important mathematical objects and operations, allowing students to do calculations in quantum mechanics, including calculations that cannot be done by hand. Finally, we ask students to use the calculational language to implement a simplified version of the laboratory language, bringing together the theoretical and laboratory ideas.

  14. Brain mechanisms of flavor learning

    Directory of Open Access Journals (Sweden)

    Takashi eYamamoto

    2011-09-01

    Full Text Available Once the flavor of the ingested food (conditioned stimulus, CS is associated with a preferable (e.g., good taste or nutritive satisfaction or aversive (e.g., malaise with displeasure signal (unconditioned stimulus, US, animals react to its subsequent exposure by increasing or decreasing ingestion to the food. These two types of association learning (preference learning vs. aversion learning are known as classical conditioned reactions which are basic learning and memory phenomena, leading selection of food and proper food intake. Since the perception of flavor is generated by interaction of taste and odor during food intake, taste and/or odor are mainly associated with bodily signals in the flavor learning. After briefly reviewing flavor learning in general, brain mechanisms of conditioned taste aversion is described in more detail. The CS-US association leading to long-term potentiation in the amygdala, especially in its basolateral nucleus, is the basis of establishment of conditioned taste aversion. The novelty of the CS detected by the cortical gustatory area may be supportive in CS-US association. After the association, CS input is conveyed through the amygdala to different brain regions including the hippocampus for contextual fear formation, to the supramammilary and thalamic paraventricular nuclei for stressful anxiety or memory dependent fearful or stressful emotion, to the reward system to induce aversive expression to the CS, or hedonic shift from positive to negative, and to the CS-responsive neurons in the gustatory system to enhance the responsiveness to facilitate to detect the harmful stimulus.

  15. Glutamate mechanisms underlying opiate memories

    NARCIS (Netherlands)

    Peters, J.; de Vries, T.J.

    2012-01-01

    As the major excitatory neurotransmitter in the brain, glutamate plays an undisputable integral role in opiate addiction. This relates, in part, to the fact that addiction is a disorder of learning and memory, and glutamate is required for most types of memory formation. As opiate addiction

  16. Learning under uncertainty in smart home environments.

    Science.gov (United States)

    Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris

    2008-01-01

    Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

  17. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  18. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Metacognitive mechanisms underlying lucid dreaming.

    Science.gov (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.

  20. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  1. A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time.

    Science.gov (United States)

    Martínez-Martínez, F; Rupérez-Moreno, M J; Martínez-Sober, M; Solves-Llorens, J A; Lorente, D; Serrano-López, A J; Martínez-Sanchis, S; Monserrat, C; Martín-Guerrero, J D

    2017-11-01

    This work presents a data-driven method to simulate, in real-time, the biomechanical behavior of the breast tissues in some image-guided interventions such as biopsies or radiotherapy dose delivery as well as to speed up multimodal registration algorithms. Ten real breasts were used for this work. Their deformation due to the displacement of two compression plates was simulated off-line using the finite element (FE) method. Three machine learning models were trained with the data from those simulations. Then, they were used to predict in real-time the deformation of the breast tissues during the compression. The models were a decision tree and two tree-based ensemble methods (extremely randomized trees and random forest). Two different experimental setups were designed to validate and study the performance of these models under different conditions. The mean 3D Euclidean distance between nodes predicted by the models and those extracted from the FE simulations was calculated to assess the performance of the models in the validation set. The experiments proved that extremely randomized trees performed better than the other two models. The mean error committed by the three models in the prediction of the nodal displacements was under 2 mm, a threshold usually set for clinical applications. The time needed for breast compression prediction is sufficiently short to allow its use in real-time (<0.2 s). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Skill learning and the evolution of social learning mechanisms.

    Science.gov (United States)

    van der Post, Daniel J; Franz, Mathias; Laland, Kevin N

    2016-08-24

    Social learning is potentially advantageous, but evolutionary theory predicts that (i) its benefits may be self-limiting because social learning can lead to information parasitism, and (ii) these limitations can be mitigated via forms of selective copying. However, these findings arise from a functional approach in which learning mechanisms are not specified, and which assumes that social learning avoids the costs of asocial learning but does not produce information about the environment. Whether these findings generalize to all kinds of social learning remains to be established. Using a detailed multi-scale evolutionary model, we investigate the payoffs and information production processes of specific social learning mechanisms (including local enhancement, stimulus enhancement and observational learning) and their evolutionary consequences in the context of skill learning in foraging groups. We find that local enhancement does not benefit foraging success, but could evolve as a side-effect of grouping. In contrast, stimulus enhancement and observational learning can be beneficial across a wide range of environmental conditions because they generate opportunities for new learning outcomes. In contrast to much existing theory, we find that the functional outcomes of social learning are mechanism specific. Social learning nearly always produces information about the environment, and does not always avoid the costs of asocial learning or support information parasitism. Our study supports work emphasizing the value of incorporating mechanistic detail in functional analyses.

  3. Study on modeling of operator's learning mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seichi; Hasegawa, Naoko

    1998-01-01

    One effective method to analyze the causes of human errors is to model the behavior of human and to simulate it. The Central Research Institute of Electric Power Industry (CRIEPI) has developed an operator team behavior simulation system called SYBORG (Simulation System for the Behavior of an Operating Group) to analyze the human errors and to establish the countermeasures for them. As an operator behavior model which composes SYBORG has no learning mechanism and the knowledge of a plant is fixed, it cannot take suitable actions when unknown situations occur nor learn anything from the experience. However, considering actual operators, learning is an essential human factor to enhance their abilities to diagnose plant anomalies. In this paper, Q learning with 1/f fluctuation was proposed as a learning mechanism of an operator and simulation using the mechanism was conducted. The results showed the effectiveness of the learning mechanism. (author)

  4. [Learning and implicit memory: mechanisms and neuroplasticity].

    Science.gov (United States)

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  5. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  6. Organizational Learning in Schools under Sanction

    Directory of Open Access Journals (Sweden)

    Kara S. Finnigan

    2012-01-01

    Full Text Available The focus on “school turnaround” has become central to policy and practice in the United States as a result of school accountability, yet little remains known about school improvement under sanction. This study uses theories of organizational learning to understand the processes through which educators search for and adopt reform strategies, as well as the extent to which these schools’ organizational culture and climate are conducive to this type of learning. Our mixed methods study involves document analysis, intensive case studies, and a survey of teachers in schools under sanction in a large urban school district in the USA. We found limited evidence of organizational learning, and instead evidence suggested superficial use of restructuring planning, rare diagnoses of root causes of low performance, and limited engagement in learning processes of school staff. In addition, schools relied on exploitation resulting in the recycling of previous practices. In part, the limited organizational learning in evidence was the result of structures and climates within these low-performing schools that inhibited a more learning-oriented approach to reform. Our study has implications for school improvement under accountability policies as it uncovers important challenges that limit organizational learning and, as a result, school improvement under sanction.

  7. Olfactory bulb encoding during learning under anaesthesia

    Directory of Open Access Journals (Sweden)

    Alister U Nicol

    2014-06-01

    Full Text Available Neural plasticity changes within the olfactory bulb are important for olfactory learning, although how neural encoding changes support new associations with specific odours and whether they can be investigated under anaesthesia, remain unclear. Using the social transmission of food preference olfactory learning paradigm in mice in conjunction with in vivo microdialysis sampling we have shown firstly that a learned preference for a scented food odour smelled on the breath of a demonstrator animal occurs under isofluorane anaesthesia. Furthermore, subsequent exposure to this cued odour under anaesthesia promotes the same pattern of increased release of glutamate and GABA in the olfactory bulb as previously found in conscious animals following olfactory learning, and evoked GABA release was positively correlated with the amount of scented food eaten. In a second experiment, multiarray (24 electrodes electrophysiological recordings were made from olfactory bulb mitral cells under isofluorane anaesthesia before, during and after a novel scented food odour was paired with carbon disulfide. Results showed significant increases in overall firing frequency to the cued-odour during and after learning and decreases in response to an uncued odour. Analysis of patterns of changes in individual neurons revealed that a substantial proportion (>50% of them significantly changed their response profiles during and after learning with most of those previously inhibited becoming excited. A large number of cells exhibiting no response to the odours prior to learning were either excited or inhibited afterwards. With the uncued odour many previously responsive cells became unresponsive or inhibited. Learning associated changes only occurred in the posterior part of the olfactory bulb. Thus olfactory learning under anaesthesia promotes extensive, but spatially distinct, changes in mitral cell networks to both cued and uncued odours as well as in evoked glutamate and

  8. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  9. Identification of learning mechanisms in a wild meerkat population.

    Directory of Open Access Journals (Sweden)

    Will Hoppitt

    Full Text Available Vigorous debates as to the evolutionary origins of culture remain unresolved due to an absence of methods for identifying learning mechanisms in natural populations. While laboratory experiments on captive animals have revealed evidence for a number of mechanisms, these may not necessarily reflect the processes typically operating in nature. We developed a novel method that allows social and asocial learning mechanisms to be determined in animal groups from the patterns of interaction with, and solving of, a task. We deployed it to analyse learning in groups of wild meerkats (Suricata suricatta presented with a novel foraging apparatus. We identify nine separate learning processes underlying the meerkats' foraging behaviour, in each case precisely quantifying their strength and duration, including local enhancement, emulation, and a hitherto unrecognized form of social learning, which we term 'observational perseverance'. Our analysis suggests a key factor underlying the stability of behavioural traditions is a high ratio of specific to generalized social learning effects. The approach has widespread potential as an ecologically valid tool to investigate learning mechanisms in natural groups of animals, including humans.

  10. Properties and mechanisms of olfactory learning and memory

    Directory of Open Access Journals (Sweden)

    Michelle T Tong

    2014-07-01

    Full Text Available Memories are dynamic physical phenomena with psychometric forms as well as characteristic timescales. Most of our understanding of the cellular mechanisms underlying the neurophysiology of memory, however, derives from one-trial learning paradigms that, while powerful, do not fully embody the gradual, representational, and statistical aspects of cumulative learning. The early olfactory system -- particularly olfactory bulb -- comprises a reasonably well-understood and experimentally accessible neuronal network with intrinsic plasticity that underlies both one-trial (adult aversive, neonatal and cumulative (adult appetitive odor learning. These olfactory circuits employ many of the same molecular and structural mechanisms of memory as, for example, hippocampal circuits following inhibitory avoidance conditioning, but the temporal sequences of post-conditioning molecular events are likely to differ owing to the need to incorporate new information from ongoing learning events into the evolving memory trace. Moreover, the shapes of acquired odor representations, and their gradual transformation over the course of cumulative learning, also can be directly measured, adding an additional representational dimension to the traditional metrics of memory strength and persistence. In this review, we describe some established molecular and structural mechanisms of memory with a focus on the timecourses of post-conditioning molecular processes. We describe the properties of odor learning intrinsic to the olfactory bulb and review the utility of the olfactory system of adult rodents as a memory system in which to study the cellular mechanisms of cumulative learning.

  11. The Evolution of Learning Mechanisms.

    Science.gov (United States)

    Garcia, John; Garcia y Robertson, Rodrigo

    This paper introduces seven principles of learning, enduring over the last five centuries of psychological thought, to discuss the evolution of the "Biophyche" (the brain in action) in the development of humans and other large organisms. It describes the conditioning theories of Darwin, Pavlov, and Thorndike and critically reviews the…

  12. Selective social learning in infancy: looking for mechanisms.

    Science.gov (United States)

    Crivello, Cristina; Phillips, Sara; Poulin-Dubois, Diane

    2018-05-01

    Although there is mounting evidence that selective social learning begins in infancy, the psychological mechanisms underlying this ability are currently a controversial issue. The purpose of this study is to investigate whether theory of mind abilities and statistical learning skills are related to infants' selective social learning. Seventy-seven 18-month-olds were first exposed to a reliable or an unreliable speaker and then completed a word learning task, two theory of mind tasks, and a statistical learning task. If domain-general abilities are linked to selective social learning, then infants who demonstrate superior performance on the statistical learning task should perform better on the selective learning task, that is, should be less likely to learn words from an unreliable speaker. Alternatively, if domain-specific abilities are involved, then superior performance on theory of mind tasks should be related to selective learning performance. Findings revealed that, as expected, infants were more likely to learn a novel word from a reliable speaker. Importantly, infants who passed a theory of mind task assessing knowledge attribution were significantly less likely to learn a novel word from an unreliable speaker compared to infants who failed this task. No such effect was observed for the other tasks. These results suggest that infants who possess superior social-cognitive abilities are more apt to reject an unreliable speaker as informant. A video abstract of this article can be viewed at: https://youtu.be/zuuCniHYzqo. © 2017 John Wiley & Sons Ltd.

  13. Time to rethink the neural mechanisms of learning and memory.

    Science.gov (United States)

    Gallistel, Charles R; Balsam, Peter D

    2014-02-01

    Most studies in the neurobiology of learning assume that the underlying learning process is a pairing - dependent change in synaptic strength that requires repeated experience of events presented in close temporal contiguity. However, much learning is rapid and does not depend on temporal contiguity, which has never been precisely defined. These points are well illustrated by studies showing that the temporal relations between events are rapidly learned- even over long delays- and that this knowledge governs the form and timing of behavior. The speed with which anticipatory responses emerge in conditioning paradigms is determined by the information that cues provide about the timing of rewards. The challenge for understanding the neurobiology of learning is to understand the mechanisms in the nervous system that encode information from even a single experience, the nature of the memory mechanisms that can encode quantities such as time, and how the brain can flexibly perform computations based on this information. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. A Bayesian foundation for individual learning under uncertainty

    Directory of Open Access Journals (Sweden)

    Christoph eMathys

    2011-05-01

    Full Text Available Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty. The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next higher level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i are analytical and extremely efficient, enabling real-time learning, (ii have a natural interpretation in terms of RL, and (iii contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty. These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability

  15. A bayesian foundation for individual learning under uncertainty.

    Science.gov (United States)

    Mathys, Christoph; Daunizeau, Jean; Friston, Karl J; Stephan, Klaas E

    2011-01-01

    Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.

  16. Statistical learning: a powerful mechanism that operates by mere exposure.

    Science.gov (United States)

    Aslin, Richard N

    2017-01-01

    How do infants learn so rapidly and with little apparent effort? In 1996, Saffran, Aslin, and Newport reported that 8-month-old human infants could learn the underlying temporal structure of a stream of speech syllables after only 2 min of passive listening. This demonstration of what was called statistical learning, involving no instruction, reinforcement, or feedback, led to dozens of confirmations of this powerful mechanism of implicit learning in a variety of modalities, domains, and species. These findings reveal that infants are not nearly as dependent on explicit forms of instruction as we might have assumed from studies of learning in which children or adults are taught facts such as math or problem solving skills. Instead, at least in some domains, infants soak up the information around them by mere exposure. Learning and development in these domains thus appear to occur automatically and with little active involvement by an instructor (parent or teacher). The details of this statistical learning mechanism are discussed, including how exposure to specific types of information can, under some circumstances, generalize to never-before-observed information, thereby enabling transfer of learning. WIREs Cogn Sci 2017, 8:e1373. doi: 10.1002/wcs.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Studying the mechanisms of language learning by varying the learning environment and the learner.

    Science.gov (United States)

    Goldin-Meadow, Susan

    Language learning is a resilient process, and many linguistic properties can be developed under a wide range of learning environments and learners. The first goal of this review is to describe properties of language that can be developed without exposure to a language model - the resilient properties of language - and to explore conditions under which more fragile properties emerge. But even if a linguistic property is resilient, the developmental course that the property follows is likely to vary as a function of learning environment and learner, that is, there are likely to be individual differences in the learning trajectories children follow. The second goal is to consider how the resilient properties are brought to bear on language learning when a child is exposed to a language model. The review ends by considering the implications of both sets of findings for mechanisms, focusing on the role that the body and linguistic input play in language learning.

  18. Exploring the mechanisms through which computers contribute to learning.

    NARCIS (Netherlands)

    Karasavvidis, I.; Karasavvidis, I.; Pieters, Julius Marie; Plomp, T.

    2003-01-01

    Even though it has been established that the incorporation of computers into the teaching and learning process enhances student performance, the underlying mechanisms through which this is accomplished have been largely unexplored. The present study aims to shed light on this issue. Two groups of 10

  19. The statistical mechanics of learning a rule

    International Nuclear Information System (INIS)

    Watkin, T.L.H.; Rau, A.; Biehl, M.

    1993-01-01

    A summary is presented of the statistical mechanical theory of learning a rule with a neural network, a rapidly advancing area which is closely related to other inverse problems frequently encountered by physicists. By emphasizing the relationship between neural networks and strongly interacting physical systems, such as spin glasses, the authors show how learning theory has provided a workshop in which to develop new, exact analytical techniques

  20. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  1. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  2. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  3. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  4. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  5. Learning the mechanisms of chemical disequilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, Schuyler B.; Alaghemandi, Mohammad [Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States); Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States); Center for Quantum and Nonequilibrium Systems, University of Massachusetts Boston, Boston, Massachusetts 02125 (United States)

    2016-08-28

    When at equilibrium, large-scale systems obey thermodynamics because they have microscopic configurations that are typical. “Typical” states are a fraction of those possible with the majority of the probability. A more precise definition of typical states underlies the transmission, coding, and compression of information. However, this definition does not apply to natural systems that are transiently away from equilibrium. Here, we introduce a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation. While a gaseous mixture of hydrogen and oxygen combusts, reactant molecules transform through a variety of ephemeral species en route to the product, water. Out of the exponentially growing number of possible sequences of chemical species, we find that greater than 95% of the probability concentrates in less than 1% of the possible sequences. Overall, these results extend the notion of typicality across the nonequilibrium regime and suggest that typical sequences are a route to learning mechanisms from experimental measurements. They also open up the possibility of constructing ensembles for computing the macroscopic observables of systems out of equilibrium.

  6. Learning the mechanisms of chemical disequilibria

    International Nuclear Information System (INIS)

    Nicholson, Schuyler B.; Alaghemandi, Mohammad; Green, Jason R.

    2016-01-01

    When at equilibrium, large-scale systems obey thermodynamics because they have microscopic configurations that are typical. “Typical” states are a fraction of those possible with the majority of the probability. A more precise definition of typical states underlies the transmission, coding, and compression of information. However, this definition does not apply to natural systems that are transiently away from equilibrium. Here, we introduce a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation. While a gaseous mixture of hydrogen and oxygen combusts, reactant molecules transform through a variety of ephemeral species en route to the product, water. Out of the exponentially growing number of possible sequences of chemical species, we find that greater than 95% of the probability concentrates in less than 1% of the possible sequences. Overall, these results extend the notion of typicality across the nonequilibrium regime and suggest that typical sequences are a route to learning mechanisms from experimental measurements. They also open up the possibility of constructing ensembles for computing the macroscopic observables of systems out of equilibrium.

  7. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  8. Learning Predictive Statistics: Strategies and Brain Mechanisms.

    Science.gov (United States)

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-08-30

    When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to

  9. Learning as discourse change: A sociocultural mechanism

    Science.gov (United States)

    Wickman, Per-Olof; Östman, Leif

    2002-09-01

    This paper deals with a theoretical mechanism for learning and a methodological approach for analyzing meaning making in classroom talk and action. It examines the potential of the approach for illuminating learning on a discursive level, i.e., how discourses change and how individuals become participants of new practices. Our approach involves a high-resolution analysis of how meaningful relations are built in encounters between individuals and between individuals and the world. The approach is based mainly on the work of the later Wittgenstein, but also on pragmatism and sociocultural research. To demonstrate how our approach can be used, we analyze what university students learn during a practical on insects. We specifically demonstrate how the encounters with physical pinned insects contribute to the meaning students make and how these encounters interact with other experiences during laboratory work.

  10. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  11. The right time to learn: mechanisms and optimization of spaced learning

    Science.gov (United States)

    Smolen, Paul; Zhang, Yili; Byrne, John H.

    2016-01-01

    For many types of learning, spaced training, which involves repeated long inter-trial intervals, leads to more robust memory formation than does massed training, which involves short or no intervals. Several cognitive theories have been proposed to explain this superiority, but only recently have data begun to delineate the underlying cellular and molecular mechanisms of spaced training, and we review these theories and data here. Computational models of the implicated signalling cascades have predicted that spaced training with irregular inter-trial intervals can enhance learning. This strategy of using models to predict optimal spaced training protocols, combined with pharmacotherapy, suggests novel ways to rescue impaired synaptic plasticity and learning. PMID:26806627

  12. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  13. Molecular mechanics of silk nanostructures under varied mechanical loading.

    Science.gov (United States)

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  14. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning.

    Science.gov (United States)

    Hopper, Lm; Holmes, An; Williams, LE; Brosnan, Sf

    2013-01-01

    Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran "open diffusion" tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the "Slide-box"). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a 'ghost' display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys' learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those

  15. Neural Mechanisms Underlying Risk and Ambiguity Attitudes.

    Science.gov (United States)

    Blankenstein, Neeltje E; Peper, Jiska S; Crone, Eveline A; van Duijvenvoorde, Anna C K

    2017-11-01

    Individual differences in attitudes to risk (a taste for risk, known probabilities) and ambiguity (a tolerance for uncertainty, unknown probabilities) differentially influence risky decision-making. However, it is not well understood whether risk and ambiguity are coded differently within individuals. Here, we tested whether individual differences in risk and ambiguity attitudes were reflected in distinct neural correlates during choice and outcome processing of risky and ambiguous gambles. To these ends, we developed a neuroimaging task in which participants ( n = 50) chose between a sure gain and a gamble, which was either risky or ambiguous, and presented decision outcomes (gains, no gains). From a separate task in which the amount, probability, and ambiguity level were varied, we estimated individuals' risk and ambiguity attitudes. Although there was pronounced neural overlap between risky and ambiguous gambling in a network typically related to decision-making under uncertainty, relatively more risk-seeking attitudes were associated with increased activation in valuation regions of the brain (medial and lateral OFC), whereas relatively more ambiguity-seeking attitudes were related to temporal cortex activation. In addition, although striatum activation was observed during reward processing irrespective of a prior risky or ambiguous gamble, reward processing after an ambiguous gamble resulted in enhanced dorsomedial PFC activation, possibly functioning as a general signal of uncertainty coding. These findings suggest that different neural mechanisms reflect individual differences in risk and ambiguity attitudes and that risk and ambiguity may impact overt risk-taking behavior in different ways.

  16. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  17. Mind and activity. Psychic mechanism of learning

    Directory of Open Access Journals (Sweden)

    Zoya A. Reshetova

    2017-09-01

    Full Text Available The paper is devoted to the issue of mechanisms of learning for understanding the nature of the human mind. Learning is regarded as a special activity that is important for developing the human mind in a specific cultural and historical setting and indirect activity. The author’s understanding of the ideas developed by the psychological theory of activity for establishing the principles of developing the human mind is highlighted. Interpretation of dialectical connections of brain processes and mind, and also the objective activity that emerges them is provided. According to the activity theory, the causes of the students’ psychological difficulties and the low efficacy of learning within predominant reproductive method or the use of the trial and error method are revealed. Thus, a new understanding of the renowned didactic principles of scientific rigour, accessibility, objectivity, the connection of learning with life and others is offered. The contribution of the psychological theory in organizing and managing the studies, increasing teaching activity and awareness, and the growth of the internal causes of motivation are shown. Particular attention is paid to the issue of intellectual development and creative abilities. The author believes the creative abilities of the student and the way the latter are taught are interconnected. At the same time, the developers and educators should make efforts to develop in the students a systemic orientation in the subject, primarily mastering the method of system analysis. Once the method of system analysis has been mastered, it becomes a general intellectual and developing tool through which activities are organized to solve any teaching problems with whatever type of content and difficulty level. Summing up, the organization and disclosure to the student of the process of learning as an activity with its social, consciously transformative and sense shaping meaning, the conditions of its development

  18. Developmental Changes in Learning: Computational Mechanisms and Social Influences

    Directory of Open Access Journals (Sweden)

    Florian Bolenz

    2017-11-01

    Full Text Available Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development.

  19. Magnetization reversal mechanisms under oblique magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ntallis, N.; Efthimiadis, K.G., E-mail: kge@auth.gr

    2017-03-01

    In this work finite element micromagnetic simulations were performed in order to study the reversal mechanisms of spherical ferromagnetic particles with uniaxial magnetocrystalline anisotropy, when they are magnetized along an oblique direction with respect to the anisotropy axis. Magnetization loops are taken in different directions of external magnetic field, at different anisotropy constants and particle sizes. In the simulation results, the three reversal mechanisms (coherent, curling and domains) are observed and new phenomena arise due to the action of oblique magnetic fields. Moreover, the dependence of the critical fields with respect to the angle of the external field is presented. - Highlights: • Finite element micromagnetic simulation of the three different reversal mechanisms. • For the curling mechanism, the new phenomenon is the rotation of the vortex. • In the domain reversal mechanism, the formed domain wall is smaller than 180°. • In soft ferromagnetic particles a rearrangement of the magnetic domains is observed.

  20. Space Mechanisms Lessons Learned and Accelerated Testing Studies

    Science.gov (United States)

    Fusaro, Robert L.

    1997-01-01

    A number of mechanism (mechanical moving component) failures and anomalies have recently occurred on satellites. In addition, more demanding operating and life requirements have caused mechanism failures or anomalies to occur even before some satellites were launched (e.g., during the qualification testing of GOES-NEXT, CERES, and the Space Station Freedom Beta Joint Gimbal). For these reasons, it is imperative to determine which mechanisms worked in the past and which have failed so that the best selection of mechanically moving components can be made for future satellites. It is also important to know where the problem areas are so that timely decisions can be made on the initiation of research to develop future needed technology. To chronicle the life and performance characteristics of mechanisms operating in a space environment, a Space Mechanisms Lessons Learned Study was conducted. The work was conducted by the NASA Lewis Research Center and by Mechanical Technologies Inc. (MTI) under contract NAS3-27086. The expectation of the study was to capture and retrieve information relating to the life and performance of mechanisms operating in the space environment to determine what components had operated successfully and what components had produced anomalies.

  1. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    Science.gov (United States)

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  3. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    Uchino, Takashi; Tsutsui, Izumi

    2003-01-01

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  4. Physical and chemical mechanisms underlying hematoma evolution

    International Nuclear Information System (INIS)

    Cho, K.J.; Fanders, B.L.; Smid, A.R.; McLaughlin, P.

    1986-01-01

    Angiostat, a new collagen embolic material supplied at a concentration of 35 mg/ml (Target Therapeutics, Los Angeles) was used for flow-directed hepatic artery embolization in a series of rabbits to examine its acute effects on hepatic microcirculation. Arteriograms were obtained both before and after embolization. The aorta and portal vein were perfused with two different colors of Microfil after the animals were killed,. Cleared liver specimens were examined under a dissection microscope. Extent of dearterialization, status of portal sinusoidal perfusion, and collateral formation after embolization with Angiostat were evaluated. Results will be compared with results achieved using other liquid and particulate embolic agents

  5. Different mechanisms in learning different second languages: Evidence from English speakers learning Chinese and Spanish.

    Science.gov (United States)

    Cao, Fan; Sussman, Bethany L; Rios, Valeria; Yan, Xin; Wang, Zhao; Spray, Gregory J; Mack, Ryan M

    2017-03-01

    Word reading has been found to be associated with different neural networks in different languages, with greater involvement of the lexical pathway for opaque languages and greater invovlement of the sub-lexical pathway for transparent langauges. However, we do not know whether this language divergence can be demonstrated in second langauge learners, how learner's metalinguistic ability would modulate the langauge divergence, or whether learning method would interact with the language divergence. In this study, we attempted to answer these questions by comparing brain activations of Chinese and Spanish word reading in native English-speaking adults who learned Chinese and Spanish over a 2 week period under three learning conditions: phonological, handwriting, and passive viewing. We found that mapping orthography to phonology in Chinese had greater activation in the left inferior frontal gyrus (IFG) and left inferior temporal gyrus (ITG) than in Spanish, suggesting greater invovlement of the lexical pathway in opaque langauges. In contrast, Spanish words evoked greater activation in the left superior temporal gyrus (STG) than English, suggesting greater invovlement of the sublexical pathway for transparant languages. Furthermore, brain-behavior correlation analyses found that higher phonological awareness and rapid naming were associated with greater activation in the bilateral IFG for Chinese and in the bilateral STG for Spanish, suggesting greater language divergence in participants with higher meta-linguistic awareness. Finally, a significant interaction between the language and learning condition was found in the left STG and middle frontal gyrus (MFG), with greater activation in handwriting learning than viewing learning in the left STG only for Spanish, and greater activation in handwriting learning than phonological learning in the left MFG only for Chinese. These findings suggest that handwriting facilitates assembled phonology in Spanish and addressed

  6. Nonassociative learning promotes respiratory entrainment to mechanical ventilation.

    Directory of Open Access Journals (Sweden)

    Shawna M MacDonald

    Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in

  7. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  8. V1 mechanisms underlying chromatic contrast detection

    Science.gov (United States)

    Hass, Charles A.

    2013-01-01

    To elucidate the cortical mechanisms of color vision, we recorded from individual primary visual cortex (V1) neurons in macaque monkeys performing a chromatic detection task. Roughly 30% of the neurons that we encountered were unresponsive at the monkeys' psychophysical detection threshold (PT). The other 70% were responsive at threshold but on average, were slightly less sensitive than the monkey. For these neurons, the relationship between neurometric threshold (NT) and PT was consistent across the four isoluminant color directions tested. A corollary of this result is that NTs were roughly four times lower for stimuli that modulated the long- and middle-wavelength sensitive cones out of phase. Nearly one-half of the neurons that responded to chromatic stimuli at the monkeys' detection threshold also responded to high-contrast luminance modulations, suggesting a role for neurons that are jointly tuned to color and luminance in chromatic detection. Analysis of neuronal contrast-response functions and signal-to-noise ratios yielded no evidence for a special set of “cardinal color directions,” for which V1 neurons are particularly sensitive. We conclude that at detection threshold—as shown previously with high-contrast stimuli—V1 neurons are tuned for a diverse set of color directions and do not segregate naturally into red–green and blue–yellow categories. PMID:23446689

  9. Exploring the Learning Mechanism in Educational Games

    OpenAIRE

    Kiili, Kristian; Ketamo, Harri

    2007-01-01

    The main aim of this paper is to evaluate the problem based gaming model that tries to explain the learning process in educational games. The model was studied through Geometry game aimed for pre-school children (N = 24). The game relays on learning by teaching approach and involves AI-engine modeling the human concept learning structures. The qualitative analyses were used to explore participants learning processes and gaming strategies. The results indicated that the model well describes th...

  10. Physiological mechanisms underlying animal social behaviour.

    Science.gov (United States)

    Seebacher, Frank; Krause, Jens

    2017-08-19

    Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).

  11. Understanding and imitating unfamiliar actions: distinct underlying mechanisms.

    Directory of Open Access Journals (Sweden)

    Joana C Carmo

    Full Text Available The human "mirror neuron system" has been proposed to be the neural substrate that underlies understanding and, possibly, imitating actions. However, since the brain activity with mirror properties seems insufficient to provide a good description for imitation of actions outside one's own repertoire, the existence of supplementary processes has been proposed. Moreover, it is unclear whether action observation requires the same neural mechanisms as the explicit access to their meaning. The aim of this study was two-fold as we investigated whether action observation requires different processes depending on 1 whether the ultimate goal is to imitate or understand the presented actions and 2 whether the to-be-imitated actions are familiar or unfamiliar to the subject. Participants were presented with both meaningful familiar actions and meaningless unfamiliar actions that they had to either imitate or discriminate later. Event-related Potentials were used as differences in brain activity could have been masked by the use of other techniques with lower temporal resolution. In the imitation task, a sustained left frontal negativity was more pronounced for meaningless actions than for meaningful ones, starting from an early time-window. Conversely, observing unfamiliar versus familiar actions with the intention of discriminating them led to marked differences over right centro-posterior scalp regions, in both middle and latest time-windows. These findings suggest that action imitation and action understanding may be sustained by dissociable mechanisms: while imitation of unfamiliar actions activates left frontal processes, that are likely to be related to learning mechanisms, action understanding involves dedicated operations which probably require right posterior regions, consistent with their involvement in social interactions.

  12. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  13. Representation of Coordination Mechanisms in IMS Learning Design to Support Group-based Learning

    NARCIS (Netherlands)

    Miao, Yongwu; Burgos, Daniel; Griffiths, David; Koper, Rob

    2007-01-01

    Miao, Y., Burgos, D., Griffiths, D., & Koper, R. (2008). Representation of Coordination Mechanisms in IMS Learning Design to Support Group-based Learning. In L. Lockyer, S. Bennet, S. Agostinho & B. Harper (Eds.), Handbook of Research on Learning Design and Learning Objects: Issues, Applications and

  14. Distributional Language Learning: Mechanisms and Models of ategory Formation.

    Science.gov (United States)

    Aslin, Richard N; Newport, Elissa L

    2014-09-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.

  15. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  16. Crack assessment of pipe under combined thermal and mechanical load

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae

    2009-01-01

    In this paper, J-integral and transient C(t)-integral, which were key parameters in low temperature and high temperature fracture mechanics, under combined thermal and mechanical load were estimated via 3-dimensional finite element analyses. Various type of thermal and mechanical load, material hardening were considered to decrease conservatism in existing solutions. As a results, V-factor and redistribution time for combined thermal and mechanical load were proposed to calculate J-integral and C(t)-integral, respectively.

  17. Virtual learning environment for interactive engagement with advanced quantum mechanics

    Directory of Open Access Journals (Sweden)

    Mads Kock Pedersen

    2016-04-01

    Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  18. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  19. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    Science.gov (United States)

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  20. Psychomotor skills learning under chronic hypoxia.

    Science.gov (United States)

    Bouquet, C A; Gardette, B; Gortan, C; Abraini, J H

    1999-09-29

    Psychomotor deficits are a prominent feature in subjects exposed to hypoxia. Eight subjects exposed to chronic hypoxia during a simulated climb to 8848 m (Everest-Comex 97) were investigated using both a simple psychomotor task (Purdue pegboard) and two complex psychomotor tasks including a recognition task of either a color stimulus (high semantic level) or an abstract sign (low semantic level). Exposure to hypoxic stress mainly produced psychomotor skills learning deficits compared to control study, with greater deficits in the complex psychomotor task. The pattern of results suggests disruptions of motor strategic process. Our data further suggest that the relative strength of implicit or automatic memory processes associated with semantic information processing may increase when disturbances occur in brain functions.

  1. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, H.P.; Streppel, K.R.; van der Beek, A.J.; van der Woude, L.H.V.; van Harten, W.H.; van Mechelen, W.

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  2. Underlying Mechanisms of Improving Physical Activity Behavior after Rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P.; Streppel, Kitty R.M.; van der Beek, Allard J.; Woude, Luc H.V.; van Harten, Willem H.; Vollenbroek-Hutten, Miriam Marie Rosé; van Mechelen, Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport

  3. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  4. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  5. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia; Laleg-Kirati, Taous-Meriem; Chemori, Ahmed

    2015-01-01

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed

  6. Cooperative Learning in a Soil Mechanics Course at Undergraduate Level

    Science.gov (United States)

    Pinho-Lopes, M.; Macedo, J.; Bonito, F.

    2011-01-01

    The implementation of the Bologna Process enforced a significant change on traditional learning models, which were focused mainly on the transmission of knowledge. The results obtained in a first attempt at implementation of a cooperative learning model in the Soil Mechanics I course of the Department of Civil Engineering of the University of…

  7. Implicit and Explicit Learning Mechanisms Meet in Monkey Prefrontal Cortex.

    Science.gov (United States)

    Chafee, Matthew V; Crowe, David A

    2017-10-11

    In this issue, Loonis et al. (2017) provide the first description of unique synchrony patterns differentiating implicit and explicit forms of learning in monkey prefrontal networks. Their results have broad implications for how prefrontal networks integrate the two learning mechanisms to control behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Development switch in neural circuitry underlying odor-malaise learning.

    Science.gov (United States)

    Shionoya, Kiseko; Moriceau, Stephanie; Lunday, Lauren; Miner, Cathrine; Roth, Tania L; Sullivan, Regina M

    2006-01-01

    Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.

  9. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most research...... in joint action has investigated only one of these mechanisms at a time – low-level processes underlying joint coordination, or high-level cognitive mechanisms that give insight into how people think about another. In real interactions, interplay between these two mechanisms modulates how we interact...

  10. Perceptual learning shapes multisensory causal inference via two distinct mechanisms.

    Science.gov (United States)

    McGovern, David P; Roudaia, Eugenie; Newell, Fiona N; Roach, Neil W

    2016-04-19

    To accurately represent the environment, our brains must integrate sensory signals from a common source while segregating those from independent sources. A reasonable strategy for performing this task is to restrict integration to cues that coincide in space and time. However, because multisensory signals are subject to differential transmission and processing delays, the brain must retain a degree of tolerance for temporal discrepancies. Recent research suggests that the width of this 'temporal binding window' can be reduced through perceptual learning, however, little is known about the mechanisms underlying these experience-dependent effects. Here, in separate experiments, we measure the temporal and spatial binding windows of human participants before and after training on an audiovisual temporal discrimination task. We show that training leads to two distinct effects on multisensory integration in the form of (i) a specific narrowing of the temporal binding window that does not transfer to spatial binding and (ii) a general reduction in the magnitude of crossmodal interactions across all spatiotemporal disparities. These effects arise naturally from a Bayesian model of causal inference in which learning improves the precision of audiovisual timing estimation, whilst concomitantly decreasing the prior expectation that stimuli emanate from a common source.

  11. Amount of fear extinction changes its underlying mechanisms.

    Science.gov (United States)

    An, Bobae; Kim, Jihye; Park, Kyungjoon; Lee, Sukwon; Song, Sukwoon; Choi, Sukwoo

    2017-07-03

    There has been a longstanding debate on whether original fear memory is inhibited or erased after extinction. One possibility that reconciles this uncertainty is that the inhibition and erasure mechanisms are engaged in different phases (early or late) of extinction. In this study, using single-session extinction training and its repetition (multiple-session extinction training), we investigated the inhibition and erasure mechanisms in the prefrontal cortex and amygdala of rats, where neural circuits underlying extinction reside. The inhibition mechanism was prevalent with single-session extinction training but faded when single-session extinction training was repeated. In contrast, the erasure mechanism became prevalent when single-session extinction training was repeated. Moreover, ablating the intercalated neurons of amygdala, which are responsible for maintaining extinction-induced inhibition, was no longer effective in multiple-session extinction training. We propose that the inhibition mechanism operates primarily in the early phase of extinction training, and the erasure mechanism takes over after that.

  12. A blended learning approach to teach fluid mechanics in engineering

    Science.gov (United States)

    Rahman, Ataur

    2017-05-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand written tutorial solutions, discussion board and online practice quizzes. The lecture and tutorial class times have been primarily utilised to discuss confusing topics and engage students with practical issues in applying the theories learnt in fluid mechanics. Based on the data of over 734 students over a 4-year period, it has been shown that a BLA has improved the learning experience of the fluid mechanics students in UWS. The overall percentage of student satisfaction in this subject has increased by 18% in the BLA case compared with the traditional one.

  13. Post-learning molecular reactivation underlies taste memory consolidation

    Directory of Open Access Journals (Sweden)

    Kioko eGuzman-Ramos

    2011-09-01

    Full Text Available It is considered that memory consolidation is a progressive process that requires post-trial stabilization of the information. In this regard, it has been speculated that waves of receptors activation, expression of immediate early genes and replenishment of receptor subunit pools occur to induce functional or morphological changes to maintain the information for longer periods. In this paper, we will review data related to neuronal changes in the post-acquisition stage of taste aversion learning that could be involved in further stabilization of the memory trace. In order to achieve such stabilization, evidence suggests that the functional integrity of the insular cortex (IC and the amygdala (AMY is required. Particularly the increase of extracellular levels of glutamate and activation of N-methyl-D-aspartate (NMDA receptors within the IC shows a main role in the consolidation process. Additionally the modulatory actions of the dopaminergic system in the IC appear to be involved in the mechanisms that lead to taste aversion memory consolidation through the activation of pathways related to enhancement of protein synthesis such as the Protein Kinase A pathway. In summary, we suggest that post-acquisition molecular and neuronal changes underlying memory consolidation are dependent on the interactions between the AMY and the IC.

  14. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms?

    Directory of Open Access Journals (Sweden)

    Xiaoqin Huang

    2017-05-01

    Full Text Available The occurrence of depression is higher in patients with chronic liver disease (CLD than that in the general population. The mechanism described in previous studies mainly focused on inflammation and stress, which not only exists in CLD, but also emerges in common chronic diseases, leaving the specific mechanism unknown. This review was to summarize the prevalence and risk factors of depression in CLD including chronic hepatitis B, chronic hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease, and to point out the possible underlying mechanism of this potential link. Clarifying the origins of this common comorbidity (depression and CLD may provide more information to understand both diseases.

  15. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  16. Study on Mechanical Properties of Barite Concrete under Impact Load

    Science.gov (United States)

    Chen, Z. F.; Cheng, K.; Wu, D.; Gan, Y. C.; Tao, Q. W.

    2018-03-01

    In order to research the mechanical properties of Barite concrete under impact load, a group of concrete compression tests was carried out under the impact load by using the drop test machine. A high-speed camera was used to record the failure process of the specimen during the impact process. The test results show that:with the increase of drop height, the loading rate, the peak load, the strain under peak load, the strain rate and the dynamic increase factor (DIF) all increase gradually. The ultimate tensile strain is close to each other, and the time of impact force decreases significantly, showing significant strain rate effect.

  17. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    Science.gov (United States)

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  18. Application of ICT supported learning in fluid mechanics

    DEFF Research Database (Denmark)

    Brohus, Henrik; Svidt, Kjeld

    2004-01-01

    of tools for knowledge transfer facilitates deep understanding and increases learning efficiency. Air flow is by nature invisible and represents a further challenge in the effort of providing sufficient understanding of typical flow patterns and behaviour of room air flow. An example of visualisation......This paper focuses on the application of ICT, Information & Communication Technology, supported learning in the area of fluid mechanics education. Taking a starting point in a course in Ventilation Technology, including room air flow and contaminant distribution, it explains how ICT may be used...... actively in the learning environment to increase efficiency in the learning process. The paper comprises past experiences and lessons learnt as well as prospect for future development in the area. A model is presented that describes a high efficiency learning environment where ICT plays an important role...

  19. Neurocomputational mechanisms of prosocial learning and links to empathy.

    Science.gov (United States)

    Lockwood, Patricia L; Apps, Matthew A J; Valton, Vincent; Viding, Essi; Roiser, Jonathan P

    2016-08-30

    Reinforcement learning theory powerfully characterizes how we learn to benefit ourselves. In this theory, prediction errors-the difference between a predicted and actual outcome of a choice-drive learning. However, we do not operate in a social vacuum. To behave prosocially we must learn the consequences of our actions for other people. Empathy, the ability to vicariously experience and understand the affect of others, is hypothesized to be a critical facilitator of prosocial behaviors, but the link between empathy and prosocial behavior is still unclear. During functional magnetic resonance imaging (fMRI) participants chose between different stimuli that were probabilistically associated with rewards for themselves (self), another person (prosocial), or no one (control). Using computational modeling, we show that people can learn to obtain rewards for others but do so more slowly than when learning to obtain rewards for themselves. fMRI revealed that activity in a posterior portion of the subgenual anterior cingulate cortex/basal forebrain (sgACC) drives learning only when we are acting in a prosocial context and signals a prosocial prediction error conforming to classical principles of reinforcement learning theory. However, there is also substantial variability in the neural and behavioral efficiency of prosocial learning, which is predicted by trait empathy. More empathic people learn more quickly when benefitting others, and their sgACC response is the most selective for prosocial learning. We thus reveal a computational mechanism driving prosocial learning in humans. This framework could provide insights into atypical prosocial behavior in those with disorders of social cognition.

  20. Inner-Learning Mechanism Based Control Scheme for Manipulator with Multitasking and Changing Load

    Directory of Open Access Journals (Sweden)

    Fangzheng Xue

    2014-05-01

    Full Text Available With the rapid development of robot technology and its application, manipulators may face complex tasks and dynamic environments in the coming future, which leads to two challenges of control: multitasking and changing load. In this paper, a novel multicontroller strategy is presented to meet such challenges. The presented controller is composed of three parts: subcontrollers, inner-learning mechanism, and switching rules. Each subcontroller is designed with self-learning skills to fit the changing load under a special task. When a new task comes, switching rule reselects the most suitable subcontroller as the working controller to handle current task instead of the older one. Inner-learning mechanism makes the subcontrollers learn from the working controller when load changes so that the switching action causes smaller tracking error than the traditional switch controller. The results of the simulation experiments on two-degree manipulator show the proposed method effect.

  1. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  2. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1979-06-01

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  3. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  4. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    Science.gov (United States)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  5. Concurrence of rule- and similarity-based mechanisms in artificial grammar learning.

    Science.gov (United States)

    Opitz, Bertram; Hofmann, Juliane

    2015-03-01

    A current theoretical debate regards whether rule-based or similarity-based learning prevails during artificial grammar learning (AGL). Although the majority of findings are consistent with a similarity-based account of AGL it has been argued that these results were obtained only after limited exposure to study exemplars, and performance on subsequent grammaticality judgment tests has often been barely above chance level. In three experiments the conditions were investigated under which rule- and similarity-based learning could be applied. Participants were exposed to exemplars of an artificial grammar under different (implicit and explicit) learning instructions. The analysis of receiver operating characteristics (ROC) during a final grammaticality judgment test revealed that explicit but not implicit learning led to rule knowledge. It also demonstrated that this knowledge base is built up gradually while similarity knowledge governed the initial state of learning. Together these results indicate that rule- and similarity-based mechanisms concur during AGL. Moreover, it could be speculated that two different rule processes might operate in parallel; bottom-up learning via gradual rule extraction and top-down learning via rule testing. Crucially, the latter is facilitated by performance feedback that encourages explicit hypothesis testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Turing mechanism underlying a branching model for lung morphogenesis.

    Science.gov (United States)

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  7. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    M. (1995). Bearing Strength of Autoclave and oven cured kevlar / epoxy laminates under static and dynamic loading. Compostes, 451-456. Kretsis, G...Joints in Glass Fibre/ Epoxy Laminates. Composites, Volume 16. No 2. Kolsky, H. (1949). An Investigation of the Mechanical Properties of Materials at...elongating the pulse width. The responses are read by the strain gages bonded on the incident and transmission bar with Vishay AE-10 epoxy . The gages

  8. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  9. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  10. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  11. The Survival Advantage: Underlying Mechanisms and Extant Limitations

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas

    2015-04-01

    Full Text Available Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007, the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.. However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007 original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving.

  12. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    Science.gov (United States)

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning

    Science.gov (United States)

    Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat

    2013-01-01

    The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…

  15. A new approach to teaching and learning mechanics

    NARCIS (Netherlands)

    Westra, A.S.

    2006-01-01

    In this thesis a research project is described that took place from 2000 until 2004 in the Centre for Science and Mathematics Education in Utrecht. It involves a didactical research into the teaching and learning of an introduction to mechanics for fourth grade pre-university level students (Dutch:

  16. Mechanical properties of graphene nanoribbons under uniaxial tensile strain

    Science.gov (United States)

    Yoneyama, Kazufumi; Yamanaka, Ayaka; Okada, Susumu

    2018-03-01

    Based on the density functional theory with the generalized gradient approximation, we investigated the mechanical properties of graphene nanoribbons in terms of their edge shape under a uniaxial tensile strain. The nanoribbons with armchair and zigzag edges retain their structure under a large tensile strain, while the nanoribbons with chiral edges are fragile against the tensile strain compared with those with armchair and zigzag edges. The fracture started at the cove region, which corresponds to the border between the zigzag and armchair edges for the nanoribbons with chiral edges. For the nanoribbons with armchair edges, the fracture started at one of the cove regions at the edges. In contrast, the fracture started at the inner region of the nanoribbons with zigzag edges. The bond elongation under the tensile strain depends on the mutual arrangement of covalent bonds with respect to the strain direction.

  17. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  18. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  19. Dual mechanisms governing reward-driven perceptual learning [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dongho Kim

    2015-09-01

    Full Text Available In this review, we explore how reward signals shape perceptual learning in animals and humans. Perceptual learning is the well-established phenomenon by which extensive practice elicits selective improvement in one’s perceptual discrimination of basic visual features, such as oriented lines or moving stimuli. While perceptual learning has long been thought to rely on ‘top-down’ processes, such as attention and decision-making, a wave of recent findings suggests that these higher-level processes are, in fact, not necessary.  Rather, these recent findings indicate that reward signals alone, in the absence of the contribution of higher-level cognitive processes, are sufficient to drive the benefits of perceptual learning. Here, we will review the literature tying reward signals to perceptual learning. Based on these findings, we propose dual underlying mechanisms that give rise to perceptual learning: one mechanism that operates ‘automatically’ and is tied directly to reward signals, and another mechanism that involves more ‘top-down’, goal-directed computations.

  20. Temporomandibular disorders and painful comorbidities: clinical association and underlying mechanisms.

    Science.gov (United States)

    Costa, Yuri Martins; Conti, Paulo César Rodrigues; de Faria, Flavio Augusto Cardoso; Bonjardim, Leonardo Rigoldi

    2017-03-01

    The association between temporomandibular disorders (TMDs) and headaches, cervical spine dysfunction, and fibromyalgia is not artefactual. The aim of this review is to describe the comorbid relationship between TMD and these three major painful conditions and to discuss the clinical implications and the underlying pain mechanisms involved in these relationships. Common neuronal pathways and central sensitization processes are acknowledged as the main factors for the association between TMD and primary headaches, although the establishment of cause-effect mechanisms requires further clarification and characterization. The biomechanical aspects are not the main factors involved in the comorbid relationship between TMD and cervical spine dysfunction, which can be better explained by the neuronal convergence of the trigeminal and cervical spine sensory pathways as well as by central sensitization processes. The association between TMD and fibromyalgia also has supporting evidence in the literature, and the proposed main mechanism underlying this relationship is the impairment of the descending pain inhibitory system. In this particular scenario, a cause-effect relationship is more likely to occur in one direction, that is, fibromyalgia as a risk factor for TMD. Therefore, clinical awareness of the association between TMD and painful comorbidities and the support of multidisciplinary approaches are required to recognize these related conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Statistical mechanics of learning orthogonal signals for general covariance models

    International Nuclear Information System (INIS)

    Hoyle, David C

    2010-01-01

    Statistical mechanics techniques have proved to be useful tools in quantifying the accuracy with which signal vectors are extracted from experimental data. However, analysis has previously been limited to specific model forms for the population covariance C, which may be inappropriate for real world data sets. In this paper we obtain new statistical mechanical results for a general population covariance matrix C. For data sets consisting of p sample points in R N we use the replica method to study the accuracy of orthogonal signal vectors estimated from the sample data. In the asymptotic limit of N,p→∞ at fixed α = p/N, we derive analytical results for the signal direction learning curves. In the asymptotic limit the learning curves follow a single universal form, each displaying a retarded learning transition. An explicit formula for the location of the retarded learning transition is obtained and we find marked variation in the location of the retarded learning transition dependent on the distribution of population covariance eigenvalues. The results of the replica analysis are confirmed against simulation

  2. Vascular mechanisms underlying the hypotensive effect of Rumex acetosa.

    Science.gov (United States)

    Qamar, Hafiz Misbah-Ud-Din; Qayyum, Rahila; Salma, Umme; Khan, Shamim; Khan, Taous; Shah, Abdul Jabbar

    2018-12-01

    Rumex acetosa L. (Polygonaceae) is well known in traditional medicine for its therapeutic efficacy as an antihypertensive. The study investigates antihypertensive potential of crude methanol extract (Ra.Cr) and fractions of Rumex acetosa in normotensive and hypertensive rat models and probes the underlying vascular mechanisms. Ra.Cr and its fractions were tested in vivo on normotensive and hypertensive Sprague-Dawley rats under anaesthesia for blood pressure lowering effect. In vitro experiments on rat and Oryctolagus cuniculus rabbit aortae were employed to probe the underlying vasorelaxant mechanism. In normotensive rats under anaesthesia, Ra.Cr caused fall in MAP (40 mmHg) at 50 mg/kg with % fall of 27.88 ± 4.55. Among the fractions tested, aqueous fraction was more potent at the dose of 50 mg/kg with % fall of 45.63 ± 2.84. In hypertensive rats under similar conditions, extract and fractions showed antihypertensive effect at same doses while aqueous fraction being more potent, exhibited 68.53 ± 4.45% fall in MAP (70 mmHg). In isolated rat aortic rings precontracted with phenylephrine (PE), Ra.Cr and fractions induced endothelium-dependent vasorelaxation, which was partially blocked in presence of l-NAME, indomethacin and atropine. In isolated rabbit aortic rings pre-contracted with PE and K + -(80 mM), Ra.Cr induced vasorelaxation and shifted Ca 2+ concentration-response curves to the right and suppressed PE peak formation, similar to verapamil, in Ca 2+ -free medium. The data indicate that l-NAME and atropine-sensitive endothelial-derived NO and COX enzyme inhibitors and Ca 2+ entry blocking-mediated vasodilator effect of the extract explain its antihypertensive potential.

  3. The mechanism underlying fast germination of tomato cultivar LA2711.

    Science.gov (United States)

    Yang, Rongchao; Chu, Zhuannan; Zhang, Haijun; Li, Ying; Wang, Jinfang; Li, Dianbo; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2015-09-01

    Seed germination is important for early plant morphogenesis as well as abiotic stress tolerance, and is mainly controlled by the phytohormones abscisic acid (ABA) and gibberellic acid (GA). Our previous studies identified a salt-tolerant tomato cultivar, LA2711, which is also a fast-germinating genotype, compared to its salt-sensitive counterpart, ZS-5. In an effort to further clarify the mechanism underlying this phenomenon, we compared the dynamic levels of ABA and GA4, the transcript abundance of genes involved in their biosynthesis and catabolism as well as signal transduction between the two cultivars. In addition, we tested seed germination sensitivity to ABA and GAs. Our results revealed that insensitivity of seed germination to exogenous ABA and low ABA content in seeds are the physiological mechanisms conferring faster germination rates of LA2711 seeds. SlCYP707A2, which encodes an ABA catabolic enzyme, may play a decisive role in the fast germination rate of LA2711, as it showed a significantly higher level of expression in LA2711 than ZS-5 at most time points tested during germination. The current results will enable us to gain insight into the mechanism(s) regarding seed germination of tomato and the role of fast germination in stress tolerance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  5. Failure Mechanisms of Brittle Rocks under Uniaxial Compression

    Science.gov (United States)

    Liu, Taoying; Cao, Ping

    2017-09-01

    The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.

  6. Learning and memory under stress: implications for the classroom

    Science.gov (United States)

    Vogel, Susanne; Schwabe, Lars

    2016-06-01

    Exams, tight deadlines and interpersonal conflicts are just a few examples of the many events that may result in high levels of stress in both students and teachers. Research over the past two decades identified stress and the hormones and neurotransmitters released during and after a stressful event as major modulators of human learning and memory processes, with critical implications for educational contexts. While stress around the time of learning is thought to enhance memory formation, thus leading to robust memories, stress markedly impairs memory retrieval, bearing, for instance, the risk of underachieving at exams. Recent evidence further indicates that stress may hamper the updating of memories in the light of new information and induce a shift from a flexible, 'cognitive' form of learning towards rather rigid, 'habit'-like behaviour. Together, these stress-induced changes may explain some of the difficulties of learning and remembering under stress in the classroom. Taking these insights from psychology and neuroscience into account could bear the potential to facilitate processes of education for both students and teachers.

  7. Underlying mechanism in the water chemistry of nuclear systems

    International Nuclear Information System (INIS)

    Walton, G.N.

    1978-01-01

    The equilibrium between dissolved hydrogen and oxygen in the molecular decomposition of water, and the equilibrium between hydrogen ions and hydroxyl ions in the ionic dissociation of water, both constitute important underlying mechanisms in the corrosion behaviour of water. The two equilibria, and the rates of the reactions involved in water and steam, will be compared and contrasted as a function of temperature, pressure and radiation. The effects of the equilibria on the hydrolysis and solubility of ferrous and ferric ions, and the ions of other metals, will be discussed in relation to the control of conditions in the coolant circuits of nuclear reactors. A third mechanism to discussed is the electrochemical exchange reactions that can contribute to the contamination of circuits. (author)

  8. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  9. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have implicitly...

  10. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  11. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  12. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Jayet-Gendrot, S.; Gilles, P.

    2000-01-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  13. Age differences in the underlying mechanisms of stereotype threat effects.

    Science.gov (United States)

    Popham, Lauren E; Hess, Thomas M

    2015-03-01

    The goals of the present study were to (a) examine whether age differences exist in the mechanisms underlying stereotype threat effects on cognitive performance and (b) examine whether emotion regulation abilities may buffer against threat effects on performance. Older and younger adults were exposed to positive or negative age-relevant stereotypes, allowing us to examine the impact of threat on regulatory focus and working memory. Self-reported emotion regulation measures were completed prior to the session. Older adults' performance under threat suggested a prevention-focused approach to the task, indexed by increased accuracy and reduced speed. The same pattern was observed in younger adults, but the effects were not as strong. Age differences emerged when examining the availability of working memory resources under threat, with young adults showing decrements, whereas older adults did not. Emotion regulation abilities moderated threat effects in young adults but not in older adults. The results provide support for the notion that stereotype threat may lead to underperformance through somewhat different pathways in older and younger adults. Future research should further examine whether the underlying reason for this age difference is rooted in age-related improvements in emotion regulation. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  15. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Akira Yoshinari

    2017-11-01

    Full Text Available Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed.

  16. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  17. Behavior of duplex stainless steel casting defects under mechanical loadings

    Energy Technology Data Exchange (ETDEWEB)

    Jayet-Gendrot, S [Electricite de France, 77 - Moret-sur-Loing (France). Dept. of Materials Study; Gilles, P; Migne, C [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-04-01

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster`s envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author) 18 refs.

  18. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  19. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  20. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  1. Individual differences in discriminatory fear learning under conditions of ambiguity: A vulnerability factor for anxiety disorders?

    Directory of Open Access Journals (Sweden)

    Inna eArnaudova

    2013-05-01

    Full Text Available Complex fear learning procedures might be better suited than the common differential fear conditioning paradigm for detecting individual differences related to vulnerability for anxiety disorders. Two such procedures are the blocking procedure and the protection-from-overshadowing procedure. Their comparison allows for the examination of discriminatory fear learning under conditions of ambiguity. The present study examined the role of individual differences in such discriminatory fear learning. We hypothesized that heightened trait anxiety would be related to a deficit in discriminatory fear learning. Participants gave US-expectancy ratings as an index for the threat value of individual CSs following blocking and protection-from-overshadowing training. The difference in threat value at test between the protected-from-overshadowing CS and the blocked CS was negatively correlated with scores on a self-report tension-stress scale that approximates facets of generalized anxiety disorder (DASS-S, but not with other individual difference variables. In addition, a behavioral test showed that only participants scoring high on the DASS-S avoided the protected-from-overshadowing CS. This observed deficit in discriminatory fear learning for participants with high levels of tension-stress might be an underlying mechanism for fear overgeneralization in diffuse anxiety disorders such as generalized anxiety disorder.

  2. Mechanisms of radiation-induced conditioned taste aversion learning

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.

    1986-01-01

    The literature on taste aversion learning is reviewed and discussed, with particular emphasis on those studies that have used exposure to ionizing radiation as an unconditioned stimulus to produce a conditioned taste aversion. The primary aim of the review is to attempt to define the mechanisms that lead to the initiation of the taste aversion response following exposure to ionizing radiation. Studies using drug treatments to produce a taste aversion have been included to the extent that they are relevant to understanding the mechanisms by which exposure to ionizing radiation can affect the behavior of the organism. 141 references

  3. The Application of Problem-Based Learning in Mechanical Engineering

    Science.gov (United States)

    Putra, Z. A.; Dewi, M.

    2018-02-01

    The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.

  4. Implementation of Simulation Based-Concept Attainment Method to Increase Interest Learning of Engineering Mechanics Topic

    Science.gov (United States)

    Sultan, A. Z.; Hamzah, N.; Rusdi, M.

    2018-01-01

    The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.

  5. Autonomous physics-based color learning under daylight

    Science.gov (United States)

    Berube Lauziere, Yves; Gingras, Denis J.; Ferrie, Frank P.

    1999-09-01

    An autonomous approach for learning the colors of specific objects assumed to have known body spectral reflectances is developed for daylight illumination conditions. The main issue is to be able to find these objects autonomously in a set of training images captured under a wide variety of daylight illumination conditions, and to extract their colors to determine color space regions that are representative of the objects' colors and their variations. The work begins by modeling color formation under daylight using the color formation equations and the semi-empirical model of Judd, MacAdam and Wyszecki (CIE daylight model) for representing the typical spectral distributions of daylight. This results in color space regions that serve as prior information in the initial phase of learning which consists in detecting small reliable clusters of pixels having the appropriate colors. These clusters are then expanded by a region growing technique using broader color space regions than those predicted by the model. This is to detect objects in a way that is able to account for color variations which the model cannot due to its limitations. Validation on the detected objects is performed to filter out those that are not of interest and to eliminate unreliable pixel color values extracted from the remaining ones. Detection results using the color space regions determined from color values obtained by this procedure are discussed.

  6. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  7. Neural mechanisms underlying human consensus decision-making.

    Science.gov (United States)

    Suzuki, Shinsuke; Adachi, Ryo; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2015-04-22

    Consensus building in a group is a hallmark of animal societies, yet little is known about its underlying computational and neural mechanisms. Here, we applied a computational framework to behavioral and fMRI data from human participants performing a consensus decision-making task with up to five other participants. We found that participants reached consensus decisions through integrating their own preferences with information about the majority group members' prior choices, as well as inferences about how much each option was stuck to by the other people. These distinct decision variables were separately encoded in distinct brain areas-the ventromedial prefrontal cortex, posterior superior temporal sulcus/temporoparietal junction, and intraparietal sulcus-and were integrated in the dorsal anterior cingulate cortex. Our findings provide support for a theoretical account in which collective decisions are made through integrating multiple types of inference about oneself, others, and environments, processed in distinct brain modules. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Molecular mechanisms underlying memory consolidation of taste information in the cortex.

    Science.gov (United States)

    Gal-Ben-Ari, Shunit; Rosenblum, Kobi

    2011-01-01

    The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste-memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.

  9. Molecular mechanisms underlying memory consolidation of taste information in the cortex

    Directory of Open Access Journals (Sweden)

    Shunit eGal-Ben-Ari

    2012-01-01

    Full Text Available The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste memory consolidation in the gustatory cortex. Specifically, the role of neurotransmitters, meuromodulators, immediate early genes, and translation regulation are addressed.

  10. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  11. Possible Mechanisms Underlying the Therapeutic Effects of Transcranial Magnetic Stimulation

    Science.gov (United States)

    Chervyakov, Alexander V.; Chernyavsky, Andrey Yu.; Sinitsyn, Dmitry O.; Piradov, Michael A.

    2015-01-01

    Transcranial magnetic stimulation (TMS) is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS) has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson’s disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation and long-term depression. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells, and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals). It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols. PMID:26136672

  12. Simulated airplane headache: a proxy towards identification of underlying mechanisms.

    Science.gov (United States)

    Bui, Sebastian Bao Dinh; Petersen, Torben; Poulsen, Jeppe Nørgaard; Gazerani, Parisa

    2017-12-01

    Airplane Headache (AH) occurs during flights and often appears as an intense, short lasting headache during take-off or landing. Reports are limited on pathological mechanisms underlying the occurrence of this headache. Proper diagnosis and treatments would benefit from identification of potential pathways involved in AH pathogenesis. This study aimed at providing a simulated airplane headache condition as a proxy towards identification of its underlying mechanisms. Fourteen participants including 7 volunteers suffering from AH and 7 healthy matched controls were recruited after meeting the diagnostic and safety criteria based on an approved study protocol. Simulation of AH was achieved by entering a pressure chamber with similar characteristics of an airplane flight. Selected potential biomarkers including salivary prostaglandin E 2 (PGE 2 ), cortisol, facial thermo-images, blood pressure, pulse, and saturation pulse oxygen (SPO) were defined and values were collected before, during and after flight simulation in the pressure chamber. Salivary samples were analyzed with ELISA techniques, while data analysis and statistical tests were handled with SPSS version 22.0. All participants in the AH-group experienced a headache attack similar to AH experience during flight. The non-AH-group did not experience any headaches. Our data showed that the values for PGE 2 , cortisol and SPO were significantly different in the AH-group in comparison with the non-AH-group during the flight simulation in the pressure chamber. The pressure chamber proved useful not only to provoke AH-like attack but also to study potential biomarkers for AH in this study. PGE 2 , and cortisol levels together with SPO presented dysregulation during the simulated AH-attack in affected individuals compared with healthy controls. Based on these findings we propose to use pressure chamber as a model to induce AH, and thus assess new potential biomarkers for AH in future studies.

  13. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  14. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  15. MECHANICAL BEHAVIOR OF PRESTRESSED VISCOELASTIC ADHESIVE AREAS UNDER COMBINING LOADINGS

    Directory of Open Access Journals (Sweden)

    Halil Murat Enginsoy

    2017-12-01

    Full Text Available In this article, mechanical behaviors of adhesive tape VHB 4950 elastomeric material, which is an element of acrylic polymer group and which is in viscoelastic behavior, under different pre-stress conditions and complex forces of different geometric parameters created by combining loadings have been experimentally and numerically investigated. In experimental studies, loading-unloading cyclic tests, one of the different standardized tests for the mechanical characterization of viscoelastic material, have been applied which give the most suitable convergent optimization parameters for the finite element model. Different material models were also investigated by using the data obtained from loading-unloading test results in all numerical models. According to the experimental results, the most suitable material parameters were determined with the Abaqus Parallel Rheological Framework Model (PRF for 4 Yeoh Networks with Bergstrom-Boyce Flow model created in the Mcalibration software for finite element analysis. Subsequently, using these material parameters, finite element analysis was performed as three dimension non-linear viscoelastic with a commercial finite element software Abaqus. The finite element analysis results showed good correlation to the Force (N-Displacement (mm experimental data for maximum load-carrying capacity of structural specimens.

  16. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  17. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Science.gov (United States)

    2017-01-01

    The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415

  18. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M; Struis, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  19. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  20. Interpreting Students’ Perceptions in Fluid Mechanics Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Filomena SOARES

    2015-11-01

    Full Text Available The objective of this study is to analyse the impact of introducing a practical work in the learning process of the Fluid Transport Systems course in Chemical Engineering degree. The students, in groups of two or three elements, were free to choose the application case in order to develop the practical work proposed by the responsible teachers. The students selected a centrifugal pump to supply water to houses or buildings and designed the piping system. The practical work was evaluated through the written report. The students’ perceptions were analysed through a questionnaire. The learning outcomes were also considered in order to understand how the fluid mechanics concepts were acquired. In the teachers’ point of view the teamwork should enable the development of students’ soft skills and competencies, promoting the ability to integrate and work in teams. The students changed their learning processing and perception becoming more reflective and less accommodative, forcing them to think critically and share opinions. Regarding the Fluid Mechanics assessment, the practical work increased, in average, the final grade at least one value.

  1. Teaching-Learning-Based Optimization with Learning Enthusiasm Mechanism and Its Application in Chemical Engineering

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2018-01-01

    Full Text Available Teaching-learning-based optimization (TLBO is a population-based metaheuristic search algorithm inspired by the teaching and learning process in a classroom. It has been successfully applied to many scientific and engineering applications in the past few years. In the basic TLBO and most of its variants, all the learners have the same probability of getting knowledge from others. However, in the real world, learners are different, and each learner’s learning enthusiasm is not the same, resulting in different probabilities of acquiring knowledge. Motivated by this phenomenon, this study introduces a learning enthusiasm mechanism into the basic TLBO and proposes a learning enthusiasm based TLBO (LebTLBO. In the LebTLBO, learners with good grades have high learning enthusiasm, and they have large probabilities of acquiring knowledge from others; by contrast, learners with bad grades have low learning enthusiasm, and they have relative small probabilities of acquiring knowledge from others. In addition, a poor student tutoring phase is introduced to improve the quality of the poor learners. The proposed method is evaluated on the CEC2014 benchmark functions, and the computational results demonstrate that it offers promising results compared with other efficient TLBO and non-TLBO algorithms. Finally, LebTLBO is applied to solve three optimal control problems in chemical engineering, and the competitive results show its potential for real-world problems.

  2. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  3. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  4. Age-related similarities and differences in brain activity underlying reversal learning

    Directory of Open Access Journals (Sweden)

    Kaoru eNashiro

    2013-05-01

    Full Text Available The ability to update associative memory is an important aspect of episodic memory and a critical skill for social adaptation. Previous research with younger adults suggests that emotional arousal alters brain mechanisms underlying memory updating; however, it is unclear whether this applies to older adults. Given that the ability to update associative information declines with age, it is important to understand how emotion modulates the brain processes underlying memory updating in older adults. The current study investigated this question using reversal learning tasks, where younger and older participants (age ranges 19-35 and 61-78 respectively learn a stimulus–outcome association and then update their response when contingencies change. We found that younger and older adults showed similar patterns of activation in the frontopolar OFC and the amygdala during emotional reversal learning. In contrast, when reversal learning did not involve emotion, older adults showed greater parietal cortex activity than did younger adults. Thus, younger and older adults show more similarities in brain activity during memory updating involving emotional stimuli than during memory updating not involving emotional stimuli.

  5. Modulatory mechanisms of cortisol effects on emotional learning and memory: novel perspectives.

    Science.gov (United States)

    van Ast, Vanessa A; Cornelisse, Sandra; Marin, Marie-France; Ackermann, Sandra; Garfinkel, Sarah N; Abercrombie, Heather C

    2013-09-01

    It has long been known that cortisol affects learning and memory processes. Despite a wealth of research dedicated to cortisol effects on learning and memory, the strength or even directionality of the effects often vary. A number of the factors that alter cortisol's effects on learning and memory are well-known. For instance, effects of cortisol can be modulated by emotional arousal and the memory phase under study. Despite great advances in understanding factors that explain variability in cortisol's effects, additional modulators of cortisol effects on memory exist that are less widely acknowledged in current basic experimental research. The goal of the current review is to disseminate knowledge regarding less well-known modulators of cortisol effects on learning and memory. Since several models for the etiology of anxiety, such as post-traumatic stress disorder (PTSD), incorporate stress and the concomitant release of cortisol as important vulnerability factors, enhanced understanding of mechanisms by which cortisol exerts beneficial as opposed to detrimental effects on memory is very important. Further elucidation of the factors that modulate (or alter) cortisol's effects on memory will allow reconciliation of seemingly inconsistent findings in the basic and clinical literatures. The present review is based on a symposium as part of the 42nd International Society of Psychoneuroendocrinology Conference, New York, USA, that highlighted some of those modulators and their underlying mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The behavior of the planetary rings under the Kozai Mechanism

    Science.gov (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  7. Mechanisms underlying recovery of zooplankton in Lake Orta after liming

    Directory of Open Access Journals (Sweden)

    Roberta Piscia

    2016-04-01

    Full Text Available The goal of this study was to improve the understanding of the large-scale mechanisms underlying the recovery of the zooplankton of Lake Orta from historical contamination, following reduced input of ammonia and metals and the subsequent 1989/90 liming intervention. The industrial pollution had been severe and long-lasting (1929-1990. Zooplankton biodiversity has improved, but most of the new taxa appearing in our counts are rotifers, while many calanoids and the large cladoceran predators (Bythotrephes and Leptodora that are common in the nearby Lake Maggiore, were still absent from Lake Orta 17 years after liming. To aid understanding of the large-scale mechanisms controlling changes in annual richness, we assessed the annual persistence (P of Crustacea and Rotifera taxa as an estimator of whether propagules that survived introduction, as result of the natural recolonization process, also thrived. We found that the rate of introduction of zooplankton colonists and their persistence in the water column of Lake Orta changed from 1971 to 2007. New rotifer taxa appeared in the lake after the mid-1980s, when discharge of toxic substances decreased, but their annual persistence was low (P<0.5 until the turn of the century. The numerical values of rotifer and crustacean persistence in Lake Orta were unexpectedly high in 2001 and 2007 (0.55 and 0.72 for rotifers, 0.85 and 0.86 for crustacean, respectively, much higher than in limed lakes in Sudbury, Canada, and in adjacent Lake Maggiore. We hypothesize this could be related to the lack of Cladoceran predators and zooplanktivorous fish in the pelagic waters of Lake Orta.

  8. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  9. Underlying Mechanisms of Tinnitus: Review and Clinical Implications

    Science.gov (United States)

    Henry, James A.; Roberts, Larry E.; Caspary, Donald M.; Theodoroff, Sarah M.; Salvi, Richard J.

    2016-01-01

    Background The study of tinnitus mechanisms has increased tenfold in the last decade. The common denominator for all of these studies is the goal of elucidating the underlying neural mechanisms of tinnitus with the ultimate purpose of finding a cure. While these basic science findings may not be immediately applicable to the clinician who works directly with patients to assist them in managing their reactions to tinnitus, a clear understanding of these findings is needed to develop the most effective procedures for alleviating tinnitus. Purpose The goal of this review is to provide audiologists and other health-care professionals with a basic understanding of the neurophysiological changes in the auditory system likely to be responsible for tinnitus. Results It is increasingly clear that tinnitus is a pathology involving neuroplastic changes in central auditory structures that take place when the brain is deprived of its normal input by pathology in the cochlea. Cochlear pathology is not always expressed in the audiogram but may be detected by more sensitive measures. Neural changes can occur at the level of synapses between inner hair cells and the auditory nerve and within multiple levels of the central auditory pathway. Long-term maintenance of tinnitus is likely a function of a complex network of structures involving central auditory and nonauditory systems. Conclusions Patients often have expectations that a treatment exists to cure their tinnitus. They should be made aware that research is increasing to discover such a cure and that their reactions to tinnitus can be mitigated through the use of evidence-based behavioral interventions. PMID:24622858

  10. Rules and mechanisms governing octahedral tilts in perovskites under pressure

    Science.gov (United States)

    Xiang, H. J.; Guennou, Mael; Íñiguez, Jorge; Kreisel, Jens; Bellaiche, L.

    2017-08-01

    The rotation of octahedra (octahedral tilting) is common in A B O3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper, we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A -O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR /dP ) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A -O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in A B O3 perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR /dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites—the orthorhombic Pbnm state—the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the

  11. The Mechanical Behaviors of Various Dental Implant Materials under Fatigue

    Directory of Open Access Journals (Sweden)

    Fatma Bayata

    2018-01-01

    Full Text Available The selection of materials has a considerable role on long-term stability of implants. The materials having high resistance to fatigue are required for dental implant applications since these implants are subjected to cyclic loads during chewing. This study evaluates the performance of different types of materials (AISI 316L stainless steel, alumina and its porous state, CoCr alloys, yttrium-stabilized zirconia (YSZ, zirconia-toughened alumina (ZTA, and cp Ti with the nanotubular TiO2 surface by finite element analysis (FEA under real cyclic biting loads and researches the optimum material for implant applications. For the analysis, the implant design generated by our group was utilized. The mechanical behavior and the life of the implant under biting loads were estimated based on the material and surface properties. According to the condition based on ISO 14801, the FEA results showed that the equivalent von Mises stress values were in the range of 226.95 MPa and 239.05 MPa. The penetration analysis was also performed, and the calculated penetration of the models onto the bone structure ranged between 0.0037389 mm and 0.013626 mm. L-605 CoCr alloy-assigned implant model showed the least penetration, while cp Ti with the nanotubular TiO2 surface led to the most one. However, the difference was about 0.01 mm, and it may not be evaluated as a distinct difference. As the final numerical evaluation item, the fatigue life was executed, and the results were achieved in the range of 4 × 105 and 1 × 109 cycles. These results indicated that different materials showed good performance for each evaluation component, but considering the overall mechanical performance and the treatment process (implant adsorption by means of surface properties, cp Ti with the nanotubular TiO2 surface material was evaluated as the suitable one, and it may also be implied that it displayed enough performance in the designed dental implant model.

  12. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  13. Latent memory facilitates relearning through molecular signaling mechanisms that are distinct from original learning.

    Science.gov (United States)

    Menges, Steven A; Riepe, Joshua R; Philips, Gary T

    2015-09-01

    A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Local Feature Learning for Face Recognition under Varying Poses

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    In this paper, we present a local feature learning method for face recognition to deal with varying poses. As opposed to the commonly used approaches of recovering frontal face images from profile views, the proposed method extracts the subject related part from a local feature by removing the pose...... related part in it on the basis of a pose feature. The method has a closed-form solution, hence being time efficient. For performance evaluation, cross pose face recognition experiments are conducted on two public face recognition databases FERET and FEI. The proposed method shows a significant...... recognition improvement under varying poses over general local feature approaches and outperforms or is comparable with related state-of-the-art pose invariant face recognition approaches. Copyright ©2015 by IEEE....

  15. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Failure mechanisms of aluminium foams under compressive loads

    Directory of Open Access Journals (Sweden)

    Sáenz, E.

    2000-08-01

    Full Text Available The purpose of this paper is the investigation of the major failure mechanisms of aluminium foams, which were obtained by powder metallurgy route, under compressive loads. The study was focused on two commonly aluminium alloys AlMg1Si or A 6061 and AlSi12. Due to the fact that the failure mechanisms strongly depend on the density and the macrostructural properties of the material, the mechanical properties always have to be correlated to the structural properties. Therefore, macrostructural investigations were used as a basis to establish the correlation between structural and mechanical properties. This was done with a commercially available image analysis system. The average cell size, the cell size distribution and the cell density (number of cells/area were obtained. In order to evaluate the influence of foaming direction on the cell morphology, some cross sections parallel to the foaming direction were prepared. For the characterization of the mechanical compression properties the compressive or upper yield strength (UYS, the densification strain (eD, the energy absorption (Ea and the efficiency (Eff were obtained. Furthermore, the failure behavior of the samples was in-situ observed with a digital video camera and continuously recorded during the test.

    El objetivo de este estudio es investigar los principales mecanismos de fallo de espumas de aluminio sometidas a cargas de compresión. Las espumas metálicas fueron obtenidas mediante el proceso pulvimetalúrgico, utilizándose como materia prima dos aleaciones comerciales AlMg1Si o A 6061 y AlSi12. Debido a que los mecanismos de fallo en este tipo de materiales depende fuertemente de la densidad y las características macroestructurales del material, en este estudio se busca correlacionar las propiedades mecánicas con estas características. La macroestructura se caracterizó mediante análisis de imagen. El tamaño de celda promedio, la distribución de tamaño y la densidad de

  17. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation.

    Science.gov (United States)

    Pearce, Marcus T

    2018-05-11

    Music perception depends on internal psychological models derived through exposure to a musical culture. It is hypothesized that this musical enculturation depends on two cognitive processes: (1) statistical learning, in which listeners acquire internal cognitive models of statistical regularities present in the music to which they are exposed; and (2) probabilistic prediction based on these learned models that enables listeners to organize and process their mental representations of music. To corroborate these hypotheses, I review research that uses a computational model of probabilistic prediction based on statistical learning (the information dynamics of music (IDyOM) model) to simulate data from empirical studies of human listeners. The results show that a broad range of psychological processes involved in music perception-expectation, emotion, memory, similarity, segmentation, and meter-can be understood in terms of a single, underlying process of probabilistic prediction using learned statistical models. Furthermore, IDyOM simulations of listeners from different musical cultures demonstrate that statistical learning can plausibly predict causal effects of differential cultural exposure to musical styles, providing a quantitative model of cultural distance. Understanding the neural basis of musical enculturation will benefit from close coordination between empirical neuroimaging and computational modeling of underlying mechanisms, as outlined here. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  18. From inverse problems to learning: a Statistical Mechanics approach

    Science.gov (United States)

    Baldassi, Carlo; Gerace, Federica; Saglietti, Luca; Zecchina, Riccardo

    2018-01-01

    We present a brief introduction to the statistical mechanics approaches for the study of inverse problems in data science. We then provide concrete new results on inferring couplings from sampled configurations in systems characterized by an extensive number of stable attractors in the low temperature regime. We also show how these result are connected to the problem of learning with realistic weak signals in computational neuroscience. Our techniques and algorithms rely on advanced mean-field methods developed in the context of disordered systems.

  19. Shared mechanisms of perceptual learning and decision making.

    Science.gov (United States)

    Law, Chi-Tat; Gold, Joshua I

    2010-04-01

    Perceptual decisions require the brain to weigh noisy evidence from sensory neurons to form categorical judgments that guide behavior. Here we review behavioral and neurophysiological findings suggesting that at least some forms of perceptual learning do not appear to affect the response properties of neurons that represent the sensory evidence. Instead, improved perceptual performance results from changes in how the sensory evidence is selected and weighed to form the decision. We discuss the implications of this idea for possible sites and mechanisms of training-induced improvements in perceptual processing in the brain. Copyright © 2009 Cognitive Science Society, Inc.

  20. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease.

    Science.gov (United States)

    Presti, Rachel M; Flores, Sonia C; Palmer, Brent E; Atkinson, Jeffrey J; Lesko, Catherine R; Lau, Bryan; Fontenot, Andrew P; Roman, Jesse; McDyer, John F; Twigg, Homer L

    2017-11-01

    Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  1. [Underlying Mechanisms and Management of Refractory Gastroesophageal Reflux Disease].

    Science.gov (United States)

    Lee, Kwang Jae

    2015-08-01

    The prevalence of gastroesophageal reflux disease (GERD) in South Korea has increased over the past 10 years. Patients with erosive reflux disease (ERD) shows better response to proton pump inhibitors (PPIs) than those with non-erosive reflux disease (NERD). NERD is a heterogeneous condition, showing pathological gastroesophageal reflux or esophageal hypersensitivity to reflux contents. NERD patients with pathological gastroesophageal reflux or hypersensitivity to acid may respond to PPIs. However, many patients with esophageal hypersensitivity to nonacid or functional heartburn do not respond to PPIs. Therefore, careful history and investigations are required when managing patients with refractory GERD who show poor response to conventional dose PPIs. Combined pH-impedance studies and a PPI diagnostic trial are recommended to reveal underlying mechanisms of refractory symptoms. For those with ongoing reflux-related symptoms, split dose administration, change to long-acting PPIs or PPIs less influenced by CYP2C19 genotypes, increasing dose of PPIs, and the addition of alginate preparations, prokinetics, selective serotonin reuptake inhibitors, or tricyclic antidepressants can be considered. Pain modulators, selective serotonin reuptake inhibitors, or tricyclic antidepressants are more likely to be effective for those with reflux-unrelated symptoms. Surgery or endoscopic per oral fundoplication may be effective in selected patients.

  2. Enabling optimal energy options under the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Gilau, Asmerom M.; Van Buskirk, Robert; Small, Mitchell J.

    2007-01-01

    This paper addresses the cost effectiveness of renewable energy technologies in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism (CDM). According to the results of our optimal energy option's analysis, at project scale, compared with a diesel-only energy option, photovoltaic (PV)-diesel (PVDB), wind-diesel (WDB) and PV-wind-diesel (PVWDB) hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy, including 100% renewables, have the lowest net present cost and they are already cost effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries, among others. Thus, in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market-oriented approach to investigating how to facilitate renewable energy projects through barrier removal. Thus, we recommend that further research should focus on how to efficiently remove renewable energy implementation barriers as a means to improve developing countries' participation in meaningful emission reduction while at the same time meeting the needs of sustainable economic development

  3. Underlying mechanisms and the evolving influence of diet

    DEFF Research Database (Denmark)

    Larsen, Lesli Hingstrup

    2012-01-01

    Obesity is determined by both genetic and environmental factors. Since 2007, 52 genes have been associated with obesity and obesity-related measurements in genome-wide association studies (GWAS), among these the fat and obesity-associated gene (FTO). Despite the success in identifying genes predi...... and the microbiome that can be modified by diet, and by genotype, adding to the complexity of determining the contributors to obesity....... has been shown to attenuate the effect of FTO on obesity. Several studies have examined gene-diet interactions in relation to obesity, but only a few suggestive interactions have been identified. This is most probably due to small effect sizes of the interactions and thereby a demand for large samples...... to increased risk of developing obesity. Recently, the intestinal microbiome, the collected genome of the bacteria, also has been associated with obesity and with specific dietary profiles. The underlying mechanisms determining the susceptibility to obesity do not only include the genome but also the epigenome...

  4. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  5. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  6. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  7. From Tootsie Rolls to Composites: Assessing a Spectrum of Active Learning Activities in Engineering Mechanics

    Science.gov (United States)

    2009-05-01

    The introduction of active learning exercises into a traditional lecture has been shown to improve students’ learning. Hands-on learning...opportunities in labs and projects provide are additional tools in the active learning toolbox. This paper presents a series of innovative hands-on active ... learning activities for mechanics of materials topics. These activities are based on a Methodology for Developing Hands-on Active Learning Activities, a

  8. Learning outdoors: male lizards show flexible spatial learning under semi-natural conditions

    Science.gov (United States)

    Noble, Daniel W. A.; Carazo, Pau; Whiting, Martin J.

    2012-01-01

    Spatial cognition is predicted to be a fundamental component of fitness in many lizard species, and yet some studies suggest that it is relatively slow and inflexible. However, such claims are based on work conducted using experimental designs or in artificial contexts that may underestimate their cognitive abilities. We used a biologically realistic experimental procedure (using simulated predatory attacks) to study spatial learning and its flexibility in the lizard Eulamprus quoyii in semi-natural outdoor enclosures under similar conditions to those experienced by lizards in the wild. To evaluate the flexibility of spatial learning, we conducted a reversal spatial-learning task in which positive and negative reinforcements of learnt spatial stimuli were switched. Nineteen (32%) male lizards learnt both tasks within 10 days (spatial task mean: 8.16 ± 0.69 (s.e.) and reversal spatial task mean: 10.74 ± 0.98 (s.e.) trials). We demonstrate that E. quoyii are capable of flexible spatial learning and suggest that future studies focus on a range of lizard species which differ in phylogeny and/or ecology, using biologically relevant cognitive tasks, in an effort to bridge the cognitive divide between ecto- and endotherms. PMID:23075525

  9. Mixed-Handedness Advantages in Episodic Memory Obtained under Conditions of Intentional Learning Extend to Incidental Learning

    Science.gov (United States)

    Christman, Stephen D.; Butler, Michael

    2011-01-01

    The existence of handedness differences in the retrieval of episodic memories is well-documented, but virtually all have been obtained under conditions of intentional learning. Two experiments are reported that extend the presence of such handedness differences to memory retrieval under conditions of incidental learning. Experiment 1 used Craik…

  10. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  11. Mechanisms underlying the antihypertensive properties of Urtica dioica.

    Science.gov (United States)

    Qayyum, Rahila; Qamar, Hafiz Misbah-Ud-Din; Khan, Shamim; Salma, Umme; Khan, Taous; Shah, Abdul Jabbar

    2016-09-01

    Urtica dioica has traditionally been used in the management of cardiovascular disorders especially hypertension. The aim of this study was to explore pharmacological base of its use in hypertension. Crude methanolic extract of U. dioica (Ud.Cr) and its fractions (Ud.EtAc, Ud.nHex, Ud.Chl and Ud.Aq) were tested in vivo on normotensive and hypertensive rats under anesthesia for blood pressure lowering effect. In-vitro experiments on rat and rabbit aortae were employed to probe the vasorelaxation mechanism(s). The responses were measured using pressure and force transducers connected to PowerLab Data Acquisition System. Ud.Cr and fractions were found more effective antihypertensive in hypertensive rats than normotensive with remarkable potency exhibited by the ethyl acetate fraction. The effect was same in the presence of atropine. In isolated rat aortic rings, Ud.Cr and all its fractions exhibited L-NAME sensitive endothelium-dependent vasodilator effect and also inhibit K(+) (80 mM)-induced pre-contractions. In isolated rabbit thoracic aortic rings Ud.Cr and its fractions induced relaxation with more potency against K(+) (80 mM) than phenylephrine (1 µM) like verapamil, showing Ud.EtAc fraction the most potent one. Pre-incubation of aortic rings with Ud.Cr and its fractions exhibited Ca(2+) channel blocking activity comparable with verapamil by shifting Ca(2+) concentration response curves to the right. Ud.Cr and its fractions also ablated the intracellular Ca(2+) release by suppressing PE peak formation in Ca(2+) free medium. When tested on basal tension, the crude extract and all fractions were devoid of any vasoconstrictor effect. These data indicate that crude methanolic extract and its fractions possess antihypertensive effect. Identification of NO-mediated vasorelaxation and calcium channel blocking effects explain the antihypertensive potential of U. dioica and provide a potential pharmacological base to its medicinal use in the management of hypertension.

  12. Mechanisms of microstructure formation under the influence of ultrasonic vibrations

    Science.gov (United States)

    Rakita, Milan

    Positive effects of ultrasound on crystallization have been known for almost 90 years. Application of ultrasound has been very successful in many industries, most notably in chemistry, creating a new branch of science - sonochemistry. However, ultrasonication has not found wide commercial application in the solidification processing. The reason for that is the complexity of underlying phenomena and the lack of predicting models which correlate processing parameters with the properties of a product. The purpose of this study is to give some contribution toward better understanding of mechanisms that lead to changes in the solidifying microstructure. It has been found that, under experimental conditions used in this work, cavitation-induced nucleation is the major contributor to the grain refinement. Ultrasonication at minimal supercoolings is expected to give maximal grain refinement. Dendrite fragmentation has not shown to be a significant contributor to the grain refinement. Dendrite fragmentation is maximal if done by bubbles that come in contact with the solidifying phase, or that are created there. Alloys/solutions with long solidification interval, or wide mushy zone, are expected to exhibit more dendrite fragmentation. Bubbles are recognized as a crucial feature in ultrasonication. Their size distribution in the liquid phase prior to ultrasonication dictates the cavitation threshold and intensity of cavitation. For the first time, radiation pressure has been recognized as potentially significant factor in grain refinement. In the experimental setup used in this study, acoustic pressure at the main (driving) frequency is not substantial to cause significant fragmentation, and only dendrites close to the sonotrode were fragmented. However, application of ultrasound with frequencies that are several times higher than the current industrial practice could substantially increase dendrite fragmentation. Appearance of fractional harmonics has also been recognized

  13. A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning.

    Science.gov (United States)

    Theofanopoulou, Constantina; Boeckx, Cedric; Jarvis, Erich D

    2017-08-30

    Language acquisition in humans and song learning in songbirds naturally happen as a social learning experience, providing an excellent opportunity to reveal social motivation and reward mechanisms that boost sensorimotor learning. Our knowledge about the molecules and circuits that control these social mechanisms for vocal learning and language is limited. Here we propose a hypothesis of a role for oxytocin (OT) in the social motivation and evolution of vocal learning and language. Building upon existing evidence, we suggest specific neural pathways and mechanisms through which OT might modulate vocal learning circuits in specific developmental stages. © 2017 The Authors.

  14. Polymer Composite Rebars under Moisture and Mechanical Loading

    Science.gov (United States)

    Adam, Mohamed Ibrahim

    structural GFRP composites will, through their design life, be exposed to a range of hygrothermal and other environmental conditions. This study aims to investigate the durability of glass fiber reinforced vinyl ester rebars exposed to moisture at different temperatures and under mechanical loading. Rebars of 10 mm, 13 mm, and 16 mm diameter were immersed in deionized water until saturation for 220 days at three different temperatures 30°C, 70°C, and 100°C. The rebars were examined as-received and following exposure to moisture by scanning electron microscopy and CT scan for possible microvoids and for modes of failures after being tested in both compression as well as non-tested specimens. Diffusion parameters were calculated and the accelerated hygrothermal effect on the compressive strength, modulus, and porosity was investigated. Significant decrease in compressive modulus and a much less degree of degradation in strength was observed. Three modes of failure were noted: splitting, fiber microbuckling, and fiber kinking. Presence of microvoids on both as-received and exposed to moisture specimens was evident. Despite this degradation due to hygrothermal exposure, GFRP rebars were able to maintain their strength. This can be regarded as an edge in their performance compared to steel. However this advantage may not hold with prolonged exposure. It was also noted that the specimens exposed to moisture and temperature exhibited an increase in microvoids of approximately 33% and new distribution of microvoids sizes was recorded. The degradation of the mechanical properties of the GFRP rebars was attributed to the hygrothermal effect that was facilitated by the presence of microvoids which allow moisture to diffuse. Presence and growth of Microvoids due to exposure to moisture and temperature was deemed the primary reason causing the degradation of GFRP rebars. Presence of microvoids needs to be addressed in order to enhance the durability and performance of GFRP rebar.

  15. Mechanisms underlying reduced fertility in anovular dairy cows.

    Science.gov (United States)

    Santos, J E P; Bisinotto, R S; Ribeiro, E S

    2016-07-01

    Resumption of ovulation after parturition is a coordinated process that involves recoupling of the GH/insulin-like growth factor 1 axis in the liver, increase in follicular development and steroidogenesis, and removal of negative feedback from estradiol in the hypothalamus. Infectious diseases and metabolic disorders associated with extensive negative energy balance during early lactation disrupt this pathway and delay first ovulation postpartum. Extended periods of anovulation postpartum exert long-lasting effects on fertility in dairy cows including the lack of spontaneous estrus, reduced pregnancy per artificial insemination (P/AI), and increased risk of pregnancy loss. Concentrations of progesterone in anovular cows subjected to synchronized programs for AI are insufficient to optimize follicular maturation, oocyte competence, and subsequent fertility to AI. Ovulation of first wave follicles, which develop under low concentrations of progesterone, reduces embryo quality in the first week after fertilization and P/AI in dairy cows. Although the specific mechanisms by which anovulation and low concentrations of progesterone impair oocyte quality have not been defined, studies with persistent follicles support the involvement of premature resumption of meiosis and degradation of maternal RNA. Suboptimal concentrations of progesterone before ovulation also increase the synthesis of PGF2α in response to oxytocin during the subsequent estrous cycle, which explains the greater incidence of short luteal phases after the first AI postpartum in anovular cows compared with estrous cyclic herd mates. It is suggested that increased spontaneous luteolysis early in the estrous cycle is one of the mechanisms that contributes to early embryonic losses in anovular cows. Anovulation also leads to major shifts in gene expression in elongated conceptuses during preimplantation stages of pregnancy. Transcripts involved with control of energy metabolism and DNA repair were

  16. Learner Characteristic Based Learning Effort Curve Mode: The Core Mechanism on Developing Personalized Adaptive E-Learning Platform

    Science.gov (United States)

    Hsu, Pi-Shan

    2012-01-01

    This study aims to develop the core mechanism for realizing the development of personalized adaptive e-learning platform, which is based on the previous learning effort curve research and takes into account the learner characteristics of learning style and self-efficacy. 125 university students from Taiwan are classified into 16 groups according…

  17. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    Muzeau, B.

    2008-06-01

    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO 2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO 2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g -1 and 33 MBq.g -1 , was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m -2 .d -1 , even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  18. Theoretical Perspectives Underlying the Application of Cooperative Learning in Classrooms

    Science.gov (United States)

    Tran, Van Dat

    2013-01-01

    Cooperative learning has been the centre of worldwide attention because it has been shown to have strong effects on student learning, as well as other positive outcomes. Although the academic, social, affective and psychological outcomes of students taught by cooperative learning are more positive compared with students taught by the traditional…

  19. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  20. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    , especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  1. An agent-based simulation of power generation company behavior in electricity markets under different market-clearing mechanisms

    International Nuclear Information System (INIS)

    Aliabadi, Danial Esmaeili; Kaya, Murat; Şahin, Güvenç

    2017-01-01

    Deregulated electricity markets are expected to provide affordable electricity for consumers through promoting competition. Yet, the results do not always fulfill the expectations. The regulator's market-clearing mechanism is a strategic choice that may affect the level of competition in the market. We conceive of the market-clearing mechanism as composed of two components: pricing rules and rationing policies. We investigate the strategic behavior of power generation companies under different market-clearing mechanisms using an agent-based simulation model which integrates a game-theoretical understanding of the auction mechanism in the electricity market and generation companies' learning mechanism. Results of our simulation experiments are presented using various case studies representing different market settings. The market in simulations is observed to converge to a Nash equilibrium of the stage game or to a similar state under most parameter combinations. Compared to pay-as-bid pricing, bid prices are closer to marginal costs on average under uniform pricing while GenCos' total profit is also higher. The random rationing policy of the ISO turns out to be more successful in achieving lower bid prices and lower GenCo profits. In minimizing GenCos' total profit, a combination of pay-as-bid pricing rule and random rationing policy is observed to be the most promising. - Highlights: • An agent-based simulation of generation company behavior in electricity markets is developed. • Learning dynamics of companies is modeled with an extended Q-learning algorithm. • Different market clearing mechanisms of the regulator are compared. • Convergence to Nash equilibria is analyzed under different cases. • The level of competition in the market is studied.

  2. The effects of acute alcohol intoxication on the cognitive mechanisms underlying false facial recognition.

    Science.gov (United States)

    Colloff, Melissa F; Flowe, Heather D

    2016-06-01

    False face recognition rates are sometimes higher when faces are learned while under the influence of alcohol. Alcohol myopia theory (AMT) proposes that acute alcohol intoxication during face learning causes people to attend to only the most salient features of a face, impairing the encoding of less salient facial features. Yet, there is currently no direct evidence to support this claim. Our objective was to test whether acute alcohol intoxication impairs face learning by causing subjects to attend to a salient (i.e., distinctive) facial feature over other facial features, as per AMT. We employed a balanced placebo design (N = 100). Subjects in the alcohol group were dosed to achieve a blood alcohol concentration (BAC) of 0.06 %, whereas the no alcohol group consumed tonic water. Alcohol expectancy was controlled. Subjects studied faces with or without a distinctive feature (e.g., scar, piercing). An old-new recognition test followed. Some of the test faces were "old" (i.e., previously studied), and some were "new" (i.e., not previously studied). We varied whether the new test faces had a previously studied distinctive feature versus other familiar characteristics. Intoxicated and sober recognition accuracy was comparable, but subjects in the alcohol group made more positive identifications overall compared to the no alcohol group. The results are not in keeping with AMT. Rather, a more general cognitive mechanism appears to underlie false face recognition in intoxicated subjects. Specifically, acute alcohol intoxication during face learning results in more liberal choosing, perhaps because of an increased reliance on familiarity.

  3. Neural Mechanisms Underlying Cross-Modal Phonetic Encoding.

    Science.gov (United States)

    Shahin, Antoine J; Backer, Kristina C; Rosenblum, Lawrence D; Kerlin, Jess R

    2018-02-14

    Audiovisual (AV) integration is essential for speech comprehension, especially in adverse listening situations. Divergent, but not mutually exclusive, theories have been proposed to explain the neural mechanisms underlying AV integration. One theory advocates that this process occurs via interactions between the auditory and visual cortices, as opposed to fusion of AV percepts in a multisensory integrator. Building upon this idea, we proposed that AV integration in spoken language reflects visually induced weighting of phonetic representations at the auditory cortex. EEG was recorded while male and female human subjects watched and listened to videos of a speaker uttering consonant vowel (CV) syllables /ba/ and /fa/, presented in Auditory-only, AV congruent or incongruent contexts. Subjects reported whether they heard /ba/ or /fa/. We hypothesized that vision alters phonetic encoding by dynamically weighting which phonetic representation in the auditory cortex is strengthened or weakened. That is, when subjects are presented with visual /fa/ and acoustic /ba/ and hear /fa/ ( illusion-fa ), the visual input strengthens the weighting of the phone /f/ representation. When subjects are presented with visual /ba/ and acoustic /fa/ and hear /ba/ ( illusion-ba ), the visual input weakens the weighting of the phone /f/ representation. Indeed, we found an enlarged N1 auditory evoked potential when subjects perceived illusion-ba , and a reduced N1 when they perceived illusion-fa , mirroring the N1 behavior for /ba/ and /fa/ in Auditory-only settings. These effects were especially pronounced in individuals with more robust illusory perception. These findings provide evidence that visual speech modifies phonetic encoding at the auditory cortex. SIGNIFICANCE STATEMENT The current study presents evidence that audiovisual integration in spoken language occurs when one modality (vision) acts on representations of a second modality (audition). Using the McGurk illusion, we show

  4. The local enhancement conundrum: in search of the adaptive value of a social learning mechanism.

    Science.gov (United States)

    Arbilly, Michal; Laland, Kevin N

    2014-02-01

    Social learning mechanisms are widely thought to vary in their degree of complexity as well as in their prevalence in the natural world. While learning the properties of a stimulus that generalize to similar stimuli at other locations (stimulus enhancement) prima facie appears more useful to an animal than learning about a specific stimulus at a specific location (local enhancement), empirical evidence suggests that the latter is much more widespread in nature. Simulating populations engaged in a producer-scrounger game, we sought to deploy mathematical models to identify the adaptive benefits of reliance on local enhancement and/or stimulus enhancement, and the alternative conditions favoring their evolution. Surprisingly, we found that while stimulus enhancement readily evolves, local enhancement is advantageous only under highly restricted conditions: when generalization of information was made unreliable or when error in social learning was high. Our results generate a conundrum over how seemingly conflicting empirical and theoretical findings can be reconciled. Perhaps the prevalence of local enhancement in nature is due to stimulus enhancement costs independent of the learning task itself (e.g. predation risk), perhaps natural habitats are often characterized by unreliable yet highly rewarding payoffs, or perhaps local enhancement occurs less frequently, and stimulus enhancement more frequently, than widely believed. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response. Copyright © 2016. Published by Elsevier Ltd.

  6. Learning to learn - intrinsic plasticity as a metaplasticity mechanism for memory formation.

    Science.gov (United States)

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2013-10-01

    "Use it or lose it" is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity - a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability - this can prevent or provide treatment for cognitive decline not only in patients with clinical disorders but

  7. Learning to learn – intrinsic plasticity as a metaplasticity mechanism for memory formation

    Science.gov (United States)

    Sehgal, Megha; Song, Chenghui; Ehlers, Vanessa L.; Moyer, James R.

    2013-01-01

    “Use it or lose it” is a popular adage often associated with use-dependent enhancement of cognitive abilities. Much research has focused on understanding exactly how the brain changes as a function of experience. Such experience-dependent plasticity involves both structural and functional alterations that contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, including anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our population, understanding how use-dependent plasticity changes across the lifespan may also help to promote healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associative learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes can impact the allocation of a memory trace within a brain structure, and when compromised, can contribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide insight into how memories are formed and, more interestingly, how neurons that participate in a memory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of learning ability – this can prevent or provide treatment for cognitive decline not only in patients with clinical

  8. Mechanical response of collagen molecule under hydrostatic compression

    International Nuclear Information System (INIS)

    Saini, Karanvir; Kumar, Navin

    2015-01-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  9. Mechanical response of collagen molecule under hydrostatic compression.

    Science.gov (United States)

    Saini, Karanvir; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials. Copyright © 2015 Elsevier B.V. All rights

  10. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  11. Stochastic upscaling in solid mechanics: An excercise in machine learning

    International Nuclear Information System (INIS)

    Koutsourelakis, P.S.

    2007-01-01

    This paper presents a consistent theoretical and computational framework for upscaling in random microstructures. We adopt an information theoretic approach in order to quantify the informational content of the microstructural details and find ways to condense it while assessing quantitatively the approximation introduced. In particular, we substitute the high-dimensional microscale description by a lower-dimensional representation corresponding for example to an equivalent homogeneous medium. The probabilistic characteristics of the latter are determined by minimizing the distortion between actual macroscale predictions and the predictions made using the coarse model. A machine learning framework is essentially adopted in which a vector quantizer is trained using data generated computationally or collected experimentally. Several parallels and differences with similar problems in source coding theory are pointed out and an efficient computational tool is employed. Various applications in linear and non-linear problems in solid mechanics are examined

  12. Potentials of Industrie 4.0 and Machine Learning for Mechanical Joining

    OpenAIRE

    Jäckel, Mathias

    2017-01-01

    -Sensitivity analysis of the influence of component properties and joining parameters on the joining result for self-pierce riveting -Possibilities to link mechanical joining technologies with the automotive process chain for quality and flexibility improvements -Potential of using machine learning to reduce automotive product development cycles in relation to mechanical joining -Datamining for machine learning at mechanical joining

  13. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  14. An Analysis of the Dispute Settlement Mechanism under the

    African Journals Online (AJOL)

    user

    This article examines and evaluates the consumer redress mechanism, .... 23 The behaviour or conduct must be prohibited in terms of the Competition Act ...... appropriate orders and provide "sufficient" remedies to avoid the involvement of the.

  15. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  16. COOPERATIVE LEARNING AND TEACHING OF GEOGRAPHY UNDER THE EHEA

    Directory of Open Access Journals (Sweden)

    Ana María Luque Gil

    Full Text Available The university is in the process of change by the new society of knowledge that emerged with globalization. The working methods of teachers must adapt to new needs of the European Higher Education Area. The article has the following objectives clarify what is cooperative learning, present the advantages and disadvantages of cooperative learning, learn the main techniques and present the results of an innovative educational project which has experimented with these techniques in two courses geography; methodology values the opinion of students and teachers on cooperative learning. The results are clarifying and highlighting the strengths and weaknesses of these techniques.

  17. Fracture behavior and deformation mechanisms under fast neutron irradiation

    International Nuclear Information System (INIS)

    Boutard, J.L.; Dupouy, J.M.

    1980-09-01

    We have established the out-of-pile and in-pile deformation mechanism maps of a 316 stainless steel irradiated in a fast reactor. The knowledge of the dominating deformation mechanism either in post irradiation creep experiments or during the in-pile steady state operating conditions allows to rationalize the apparent discrepancy between the very low out-of-pile ductility and the rather high plastic diametral strains which are obtained in the fast reactor environment without fracture

  18. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  19. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  20. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  1. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  2. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  3. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.

    1976-01-01

    The critical current of a commercial multifilamentary Nb 3 Sn conductor has been measured under the application of uniaxial tension at 4.2 K and following bending at room temperature. Significant reductions in J/subc/ are observed under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  4. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  5. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the

  6. Wire bond degradation under thermo- and pure mechanical loading

    DEFF Research Database (Denmark)

    Pedersen, Kristian Bonderup; Nielsen, Dennis Achton; Czerny, Bernhard

    2017-01-01

    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate...

  7. Transcriptome profiling reveals regulatory mechanisms underlying Corolla Senescence in Petunia

    Science.gov (United States)

    Genetic regulatory mechanisms that govern petal natural senescence in petunia is complicated and unclear. To identify key genes and pathways that regulate the process, we initiated a transcriptome analysis in petunia petals at four developmental time points, including petal opening without anthesis ...

  8. Survival under stress: molecular mechanisms of metabolic rate ...

    African Journals Online (AJOL)

    Studies in my laboratory are analysing the molecular mechanisms and regulatory events that underlie transitions to and from hypometabolic states In systems including anoxia-tolerant turtles and molluscs, estivating snails and toads, hibernating small mammals, and freeze tolerant frogs and insects. Our newest research ...

  9. Underlying mechanisms of transient luminous events: a review

    Directory of Open Access Journals (Sweden)

    V. V. Surkov

    2012-08-01

    Full Text Available Transient luminous events (TLEs occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency and ELF (extremely low frequency phenomena associated with sprites.

  10. B-learning under examination: Advantages, disadvantages, and opinions

    Directory of Open Access Journals (Sweden)

    Sergio Bemposta Rosende

    2011-04-01

    Full Text Available In recent years, learning management systems (LMS have become very popular in almost all traditional universities, generating a new learning strategy approach, mixing elements from both traditional and online learning: the blended learning or b-learning. How these new environments influence teaching activities and learning processes are the main topic of this paper.  References about this subject are also analyzed, enriching them with the expertise and opinion of authors and other teachers. Finally, the students’ point of view is presented, through the results of a survey of Polytechnic School students at Universidad Europea de Madrid. ------ El b-learning a examen: Ventajas, desventajas y opiniones Resumen Desde hace ya varios años, han proliferado los espacios virtuales de enseñanza en la práctica totalidad de centros universitarios de enseñanza presencial, dando origen a una nueva modalidad de enseñanza que recoge elementos de la enseñanza presencial y de la enseñanza en línea: el blended learning o b-learning. La posible influencia de estos espacios en la actividad docente y en el proceso de aprendizaje es el objeto de este artículo. Se analizan referencias sobre el tema, enriqueciéndolas con la opinión y experiencia de los autores y su entorno laboral concreto. Finalmente, se presenta la opinión de los alumnos a través de los resultados de una encuesta realizada a un grupo de estudiantes de la Escuela Politécnica de la Universidad Europea de Madrid. DOI: 10.18870/hlrc.v1i1.36 PDF document contains both the original in Spanish and an English translation.

  11. Mechanical response of human female breast skin under uniaxial stretching.

    Science.gov (United States)

    Kumaraswamy, N; Khatam, Hamed; Reece, Gregory P; Fingeret, Michelle C; Markey, Mia K; Ravi-Chandar, Krishnaswamy

    2017-10-01

    Skin is a complex material covering the entire surface of the human body. Studying the mechanical properties of skin to calibrate a constitutive model is of great importance to many applications such as plastic or cosmetic surgery and treatment of skin-based diseases like decubitus ulcers. The main objective of the present study was to identify and calibrate an appropriate material constitutive model for skin and establish certain universal properties that are independent of patient-specific variability. We performed uniaxial tests performed on breast skin specimens freshly harvested during mastectomy. Two different constitutive models - one phenomenological and another microstructurally inspired - were used to interpret the mechanical responses observed in the experiments. Remarkably, we found that the model parameters that characterize dependence on previous maximum stretch (or preconditioning) exhibited specimen-independent universal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    . Even though a range of mechanisms contributing to polyQ diseases have been uncovered, there is still no treatment available. One of the more common polyQ diseases is SCA3, which is caused by a polyQ expansion in the ataxin-3 protein that normally functions as a deubiquitinating enzyme involved...... in protein quality control. In SCA3 patients polyQ expanded ataxin-3 forms intranuclear inclusions in various brain areas, but why the polyQ expansion of ataxin-3 leads to neuronal dysfunction is still not well understood. This thesis describes molecular biological investigations of ataxin-3 biology, aimed...... at furthering our understanding of SCA3 disease mechanisms. In manuscript I, we investigated if post-translational modifications of ataxin-3 were changed by the polyQ expansion. The ubiquitin chain topology and ubiquitination pattern of ataxin-3 were unaltered by the polyQ expansion. In contrast...

  13. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  14. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  15. Pore closure in zeolitic imidazolate frameworks under mechanical pressure.

    Science.gov (United States)

    Henke, Sebastian; Wharmby, Michael T; Kieslich, Gregor; Hante, Inke; Schneemann, Andreas; Wu, Yue; Daisenberger, Dominik; Cheetham, Anthony K

    2018-02-14

    We investigate the pressure-dependent mechanical behaviour of the zeolitic imidazolate framework ZIF-4 (M(im) 2 ; M 2+ = Co 2+ or Zn 2+ , im - = imidazolate) with high pressure, synchrotron powder X-ray diffraction and mercury intrusion measurements. A displacive phase transition from a highly compressible open pore ( op ) phase with continuous porosity (space group Pbca , bulk modulus ∼1.4 GPa) to a closed pore ( cp ) phase with inaccessible porosity (space group P 2 1 / c , bulk modulus ∼3.3-4.9 GPa) is triggered by the application of mechanical pressure. Over the course of the transitions, both ZIF-4 materials contract by about 20% in volume. However, the threshold pressure, the reversibility and the immediate repeatability of the phase transition depend on the metal cation. ZIF-4(Zn) undergoes the op-cp phase transition at a hydrostatic mechanical pressure of only 28 MPa, while ZIF-4(Co) requires about 50 MPa to initiate the transition. Interestingly, ZIF-4(Co) fully returns to the op phase after decompression, whereas ZIF-4(Zn) remains in the cp phase after pressure release and requires subsequent heating to switch back to the op phase. These variations in high pressure behaviour can be rationalised on the basis of the different electron configurations of the respective M 2+ ions (3d 10 for Zn 2+ and 3d 7 for Co 2+ ). Our results present the first examples of op-cp phase transitions ( i.e. breathing transitions) of ZIFs driven by mechanical pressure and suggest potential applications of these functional materials as shock absorbers, nanodampers, or in mechanocalorics.

  16. Underlying mechanisms of transient luminous events: a review

    OpenAIRE

    V. V. Surkov; M. Hayakawa

    2012-01-01

    Transient luminous events (TLEs) occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric...

  17. Mechanical Characterization of Femoral Cartilage Under Unicompartimental Osteoarthritis

    OpenAIRE

    Vidal-Lesso, A.; Ledesma-Orozco, E.; Daza-Benítez, L.; Lesso-Arroyo, R.

    2014-01-01

    The aim of this study was to determine the mechanical properties and thickness of articular cartilage in the unaffected femoral regions in cases of unicompartimental osteoarthritis on the knees. The specimens were tested using a 3mm plane-ended cylindrical indenter and a displacement of 0.5mm was applied at specific points in seven femoral knee cartilages with unicompartimental osteoarthritis. The thickness, stiffness, elastic modulus, shear modulus and bulk modulus were obtained. These prope...

  18. Passive and active response of bacteria under mechanical compression

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Byophysics Team; Institute of Medical Sciences Collaboration

    Bacteria display simple but fascinating cellular structures and geometries. Their shapes are the result of the interplay between osmotic pressure and cell wall construction. Typically, bacteria maintain a high difference of osmotic pressure (on the order of 1 atm) to the environment. This pressure difference (turgor pressure) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. The response of the cell envelope to mechanical perturbations such as geometrical confinements is important for the cells survival. Another key property of bacteria is the ability to regulate turgor pressure after abrupt changes of external osmotic conditions. This response relies on the activity of mechanosensitive (MS) channels: membrane proteins that release solutes in response to excessive stress in the cell envelope. We here present experimental data on the mechanical response of the cell envelope and on turgor regulation of bacteria subjected to compressive forces. We indent living cells with micron-sized beads attached to the cantilever of an atomic force microscope (AFM). This approach ensures global deformation of the cell. We show that such mechanical loading is sufficient to gate mechanosensitive channels in isosmotic conditions.

  19. Learning Crisis Unit through Post-Crisis: Characteristics and Mechanisms

    Science.gov (United States)

    Chebbi, Hela; Pündrich, Aline Pereira

    2015-01-01

    Purpose: This paper aims to identify the characteristics that a crisis unit should have to achieve effective learning after crisis. Literature has identified many relations between learning organizations and crisis; yet, there is a dearth of research on specific studies about crisis units and their post-crisis learning features. Thus, this paper…

  20. Expected utility violations evolve under status-based selection mechanisms.

    Science.gov (United States)

    Dickson, Eric S

    2008-10-07

    The expected utility theory of decision making under uncertainty, a cornerstone of modern economics, assumes that humans linearly weight "utilities" for different possible outcomes by the probabilities with which these outcomes occur. Despite the theory's intuitive appeal, both from normative and from evolutionary perspectives, many experiments demonstrate systematic, though poorly understood, patterns of deviation from EU predictions. This paper offers a novel theoretical account of such patterns of deviation by demonstrating that EU violations can emerge from evolutionary selection when individual "status" affects inclusive fitness. In humans, battles for resources and social standing involve high-stakes decision making, and assortative mating ensures that status matters for fitness outcomes. The paper therefore proposes grounding the study of decision making under uncertainty in an evolutionary game-theoretic framework.

  1. Phosphorene under strain:electronic, mechanical and piezoelectric responses

    Science.gov (United States)

    Drissi, L. B.; Sadki, S.; Sadki, K.

    2018-01-01

    Structural, electronic, elastic and piezoelectric properties of pure phosphorene under in-plane strain are investigated using first-principles calculations based on density functional theory. The two critical yielding points are determined along armchair and zigzag directions. It is shown that the buckling, the band gap and the charge transfer can be controlled under strains. A semiconductor to metallic transition is observed in metastable region. Polar plots of Young's modulus, Poisson ratio, sound velocities and Debye temperature exhibit evident anisotropic feature of phosphorene and indicate auxetic behavior for some angles θ. Our calculations show also that phosphorene has both in-plane and out-of-plane piezoelectric responses comparable to known 2D materials. The findings of this work reveal the great potential of pure phosphorene in nanomechanical applications.

  2. Corrosion mechanisms of spent fuel under oxidizing conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Finch, R.; Buck, E.; Bates, J.

    1997-01-01

    The release of 99 Tc can be used as a reliable marker for the extent of spent oxide fuel reaction under unsaturated high-drip-rate conditions at 90 degrees C. Evidence from leachate data and from scanning and transmission electron microscopy (SEM and TEM) examination of reacted fuel samples is presented for radionuclide release, potential reaction pathways, and the formation of alteration products. In the ATM-103 fuel, 0.03 of the total inventory of 99 Tc is released in 3.7 years under unsaturated and oxidizing conditions. Two reaction pathways that have been identified from SEM are (1) through-grain dissolution with subsequent formation of uranyl alteration products, and (2) grain-boundary dissolution. The major alteration product identified by x-ray diffraction (XRD) and SEM, is Na-boltwoodite, Na[(UO 2 )(SiO 3 OH)]lg-bullet H 2 O, which is formed from sodium and silicon in the water leachant

  3. Performance of multifilamentary Nb3Sn under mechanical load

    International Nuclear Information System (INIS)

    Easton, D.S.; Schwall, R.E.

    1976-11-01

    The critical current density of commercial multifilamentary Nb 3 Sn conductor has been measured during the application of uniaxial tension at 4.2 0 K and after bending at room temperature. Significant reductions in the critical current density J/sub c/ occurred under uniaxial loading. Results are presented for a monolithic conductor manufactured by the bronze diffusion technique and for cable conductors formed by the tin-dip technique

  4. Using Formal Game Design Methods to Embed Learning Outcomes into Game Mechanics and Avoid Emergent Behaviour

    Science.gov (United States)

    Grey, Simon; Grey, David; Gordon, Neil; Purdy, Jon

    2017-01-01

    This paper offers an approach to designing game-based learning experiences inspired by the Mechanics-Dynamics-Aesthetics (MDA) model (Hunicke et al., 2004) and the elemental tetrad model (Schell, 2008) for game design. A case for game based learning as an active and social learning experience is presented including arguments from both teachers and…

  5. Problems in classical and quantum mechanics extracting the underlying concepts

    CERN Document Server

    Kelley, J Daniel

    2017-01-01

    This book is a collection of problems intended to aid students in their graduate courses in physics and in preparing for the PhD qualifying exam. Thus, the included problems are of the type that could be on a qualifying exam or are problems that are meant to elucidate a principle that is important for the exam. Unlike other compilations of problems, the problems in this text are placed in the broader context of the subject. The goal of the book is to develop the problem solving skills of the reader to insure a complete understanding of the physics. Problems and solutions are presented in detail, and, additionally, their significance is discussed within the context of the physical principle(s) that they illustrate. The solution of the problem is only the beginning of the learning process--it is in manipulating the solution and changing the parameters that a great deal of insight can be gleaned. This technique is referred to by the authors as "massaging the problem," and it is a technique that the authors have ...

  6. Electronic, mechanical and dielectric properties of silicane under tensile strain

    International Nuclear Information System (INIS)

    Jamdagni, Pooja; Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-01-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices

  7. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications.

    Science.gov (United States)

    Cartenì, Fabrizio; Bonanomi, Giuliano; Giannino, Francesco; Incerti, Guido; Vincenot, Christian Ernest; Chiusano, Maria Luisa; Mazzoleni, Stefano

    2016-01-01

    DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence.

  8. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  9. Effects of the Badge Mechanism on Self-Efficacy and Learning Performance in a Game-Based English Learning Environment

    Science.gov (United States)

    Yang, Jie Chi; Quadir, Benazir; Chen, Nian-Shing

    2016-01-01

    A growing number of studies have been conducted on digital game-based learning (DGBL). However, there has been a lack of attention paid to individuals' self-efficacy and learning performance in the implementation of DGBL. This study therefore investigated how the badge mechanism in DGBL enhanced users' self-efficacy in the subject domain of…

  10. Parametric study of control mechanism of cortical bone remodeling under mechanical stimulus

    Science.gov (United States)

    Wang, Yanan; Qin, Qing-Hua

    2010-03-01

    The control mechanism of mechanical bone remodeling at cellular level was investigated by means of an extensive parametric study on a theoretical model described in this paper. From a perspective of control mechanism, it was found that there are several control mechanisms working simultaneously in bone remodeling which is a complex process. Typically, an extensive parametric study was carried out for investigating model parameter space related to cell differentiation and apoptosis which can describe the fundamental cell lineage behaviors. After analyzing all the combinations of 728 permutations in six model parameters, we have identified a small number of parameter combinations that can lead to physiologically realistic responses which are similar to theoretically idealized physiological responses. The results presented in the work enhanced our understanding on mechanical bone remodeling and the identified control mechanisms can help researchers to develop combined pharmacological-mechanical therapies to treat bone loss diseases such as osteoporosis.

  11. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  12. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Directory of Open Access Journals (Sweden)

    Marcos D. Caballero

    2017-04-01

    Full Text Available Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1 at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  13. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C and CON (25°C conditions.Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting.Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001 and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05 temperatures, together with thermal comfort (P<0.001 were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001 and contact time (+3.2±2.4%; P<0.01 higher in HOT for the mean of sets 1-3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001, with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06. Mean vertical (-2.6±5.5%; P<0.01, horizontal (-9.1±4.4%; P<0.001 and resultant ground reaction forces (-3.0±2.8%; P<0.01 along with vertical stiffness (-12.9±2.3%; P<0.001 and leg stiffness (-8.4±2.7%; P<0.01 decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001, with lower propulsive power values in set 2 (-6.6%; P<0.05 in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise.Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations.

  14. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  15. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  16. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2012-02-01

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  17. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-03-17

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  18. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  19. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    Freitas, C.T. de.

    1980-06-01

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO 2 gels and UO 2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO 2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author) [pt

  20. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  1. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  2. Mechanism and kinetics of parathion degradation under ultrasonic irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yao Juanjuan, E-mail: yao_juanjuan@yahoo.cn [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China); Gao Naiyun; Li Cong; Li Lei; Xu Bin [State Key laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092 (China)

    2010-03-15

    The parathion degradation under ultrasonic irradiation in aqueous solution was investigated. The results indicate that at the conditions in question, degradation rate of parathion decreased with increasing initial concentration and decreasing power. The optimal frequency for parathion degradation was 600 kHz. The free radical reactions predominate in the sonochemical degradation of parathion and the reaction zones are predominately at the bubble interface and, to a much lesser extent, in bulk solution. The gas/liquid interfacial regions are the real effective reaction sites for sonochemical degradation of parathion. The reaction can be well described as a gas/liquid heterogeneous reaction which obeys a kinetic model based on Langmuir-Hinshelwood model. The main pathways of parathion degradation by ultrasonic irradiation were also proposed by qualitative and quantitative analysis of organic and inorganic byproducts. It is indicated that the N{sub 2} in air takes part in the parathion degradation through the formation of {center_dot}NO{sub 2} under ultrasonic irradiation. Parathion is decomposed into paraoxon and 4-nitrophenol in the first step via two different pathways, respectively, which is in agreement with the theoretical molecular orbital (MO) calculations.

  3. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Protein metabolism in marine animals: the underlying mechanism of growth.

    Science.gov (United States)

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  5. Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

    Science.gov (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel

    2015-01-01

    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  6. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Garcia, P.; Carlot, G.; Dorado, B.; Maillard, S.; Sabathier, C.; Martin, G.; Oh, J.Y.; Welland, M.J.

    2015-01-01

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  7. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  8. Neural Mechanisms of Updating under Reducible and Irreducible Uncertainty.

    Science.gov (United States)

    Kobayashi, Kenji; Hsu, Ming

    2017-07-19

    Adaptive decision making depends on an agent's ability to use environmental signals to reduce uncertainty. However, because of multiple types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of reducible and irreducible uncertainty. We show behaviorally that subjects' value updating was sensitive to the reducibility of uncertainty, and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions. Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere expectancy violation. SIGNIFICANCE STATEMENT To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particularly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as the network they constitute, and dissociate them from brain regions that respond to mere surprise. Copyright © 2017 the authors 0270-6474/17/376972-11$15.00/0.

  9. Towards an intelligent learning management system under blended learning trends, profiles and modeling perspectives

    CERN Document Server

    Dias, Sofia B; Hadjileontiadis, Leontios J

    2013-01-01

    This book offers useful information that evokes initiatives towards rethinking of the value, efficiency, inclusiveness, effectiveness and personalization of the intelligent learning management systems-based blended-learning environment.

  10. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram. To investigate the effect of material hardening the authors verify Halphen's Theorem which states that a structure made of material with kinematic hardening behavior and constant properties with temperature will always shake down to a periodic behavior. (Auth.)

  11. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  12. Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Manal Fardoun

    2016-11-01

    Full Text Available Raynaud's phenomenon (RP is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR. In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  13. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Antonio F. Hernández

    2016-03-01

    Full Text Available Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation. Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events.

  14. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  15. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  17. Adhesive wear mechanism under combined electric diamond grinding

    Directory of Open Access Journals (Sweden)

    Popov Vyacheslav

    2017-01-01

    Full Text Available The article provides a scientific substantiation of loading of metal-bond diamond grinding wheels and describes the mechanism of contact interaction (interlocking of wheels with tool steel as well as its general properties having an influence on combined electric diamond grinding efficiency. The study concluded that a loaded layer can be formed in a few stages different by nature. It is known, that one of the causes of grinding degradation is a continuous loading of active grits (abrasive grinding tool by workpiece chips. It all affects the diamond grinding wheels efficiency and grinding ability with a result in increase of tool pressure, contact temperature and wheels specific removal rate. Science has partially identified some various methods to minimize grinding wheel loading, however, as to loading of metal-bond diamond grinding wheels the search is still in progress. Therefore, research people have to state, that in spite of the fact that the wheels made of cubic boron nitride are of little use as applied to ceramic, ultrahard, hard-alloyed hard-to-machine and nano-materials of the time, but manufactures have to apply cubic boron nitride wheels wherein diamond ones preferable.

  18. RISK FACTORS FOR PANCREATIC CANCER: UNDERLYING MECHANISMS AND POTENTIAL TARGETS

    Directory of Open Access Journals (Sweden)

    Thomas eKolodecik

    2014-01-01

    Full Text Available Purpose of the review:Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer.Recent Findings:Intracellular activation of both pancreatic enzymes and the transcription factor NF-kB are important mechanisms that induce acute pancreatitis. Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogneic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16 can ultimately lead to development of pancreatic cancer. Summary:Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.

  19. Under-Threes' Mathematical Learning--Teachers' Perspectives

    Science.gov (United States)

    Franzén, Karin

    2014-01-01

    This project highlights preschool teachers' views of toddlers' learning in mathematics. The Swedish national curriculum covers even the youngest children who are 1-3?years old. Interesting questions are thus: what should mathematics be for this age group and how should preschool teachers work with maths to achieve the curriculum objectives? Data…

  20. Infrastructure under construction: continuous improvement and learning in projects

    NARCIS (Netherlands)

    Gieskes, J.F.B.; ten Broeke, André M.

    2000-01-01

    Continuous improvement and learning are popular concepts in management literature and practice. Often they are situated in an environment where the work is of a repetitive nature. However, there are a lot of organisations where (part of) the primary processes are carried out by means of projects. An

  1. FACTORS INFLUENCING VICARIOUS LEARNING MECHANISM EFFECTIVENESS WITHIN ORGANIZATIONS

    OpenAIRE

    JOHN R. VOIT; COLIN G. DRURY

    2013-01-01

    As organizations become larger it becomes increasingly difficult to share lessons-learned across their disconnected units allowing individuals to learn vicariously from each other's experiences. This lesson-learned information is often unsolicited by the recipient group or individual and required an individual or group to react to the information to yield benefits for the organization. Data was collected using 39 interviews and 582 survey responses that proved the effects of information usefu...

  2. Thin circular cylinder under axisymmetrical thermal and mechanical loading

    International Nuclear Information System (INIS)

    Arnaudeau, F.; Zarka, J.; Gerij, J.

    1977-01-01

    To assess structural integrity of components subjected to cyclic thermal loadings one must look at thermal ratchetting as a possible failure mode. Considering a thin circular cylinder subjected to constant internal pressure and cyclically varying thermal gradient through the thickness Bree, J. Strain Analysis 2 (1967) No.3, obtained a diagram that serves as a foundation for many design rules (e.g.: ASME code). The upper part of the french LMFBR main vessel is subjected to an axisymmetrical axial thermal loading and an axial load (own weight). Operation of the reactor leads to cyclic variations of the axial thermal loading. The question that arises is whether or not the Bree diagram is realistic for such loading conditions. A special purpose computer code (Ratch) was developed to analyse a thin circular cylinder subjected to axisymmetrical mechanical and thermal loadings. The Mendelson's approach of this problem is followed. Classical Kirchoff-Love hypothesis of thin shells is used and a state of plane stress is assumed. Space integrations are performed by Gaussian quadrature in the axial direction and by Simpson's one third rule throughout the thickness. Thermoelastic-plastic constitutive equations are solved with an implicit scheme (Nguyen). Thermovisco-plastic constitutive equations are solved with an explicit time integration scheme (Treanor's algorithm especially fitted). A Bree type diagram is obtained for an axial step of temperature which varies cyclically and a sustained constant axial load. The material behavior is assumed perfectly plastic and creep effect is not considered. Results show that the domain where no ratchetting occurs is reduced when compared with the domain predicted by the Bree diagram

  3. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, pglove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  4. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  5. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  6. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  7. The Neural Mechanisms Underlying Internally and Externally Guided Task Selection

    Science.gov (United States)

    Orr, Joseph M.; Banich, Marie T.

    2013-01-01

    While some prior work suggests that medial prefrontal cortex (MFC) regions mediate freely chosen actions, other work suggests that the lateral frontal pole (LFP) is responsible for control of abstract, internal goals. The present study uses fMRI to determine whether the voluntary selection of a task in pursuit of an overall goal relies on MFC regions or the LFP. To do so, we used a modified voluntary task switching (VTS) paradigm, in which participants choose an individual task to perform on each trial (i.e., a subgoal), under instructions to perform the tasks equally often and in a random order (i.e. the overall goal). In conjunction, we examined patterns of activation in the face of irrelevant, but task-related external stimuli that might nonetheless influence task selection. While there was some evidence that the MFC was involved in voluntary task selection, we found that the LFP and anterior insula (AI) were crucial to task selection in the pursuit of an overall goal. In addition, activation of the LFP and AI increased in the face of environmental stimuli that might serve as an interfering or conflicting external bias on voluntary task choice. These findings suggest that the LFP supports task selection according to abstract, internal goals, and leaves open the possibility that MFC may guide action selection in situations lacking in such top-down biases. As such, the current study represents a critical step towards understanding the neural underpinnings of how tasks are selected voluntarily to enable an overarching goal. PMID:23994316

  8. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  9. Design principles and developmental mechanisms underlying retinal mosaics.

    Science.gov (United States)

    Reese, Benjamin E; Keeley, Patrick W

    2015-08-01

    Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  10. Mechanism underlying the development of unilateral spatial neglect

    International Nuclear Information System (INIS)

    Nishikiori, Etsuko

    1992-01-01

    To test the hypothesis that functional disturbance of the neural network involving the inferior parietal lobule (IPL), anterior cingulate gyrus (ACG), dorsolateral frontal lobe (DLF), and thalamus (TH) as components of the right hemisphere underlies the development of unilateral spatial neglect (USN), cerebral perfusion was measured by 123 I-IMP SPECT in 32 patients with cerebrovascular right brain damage, 20 of whom had USN and 12 of whom did not. In analyzing the SPECT data, RI uptake in the four component regions and cerebellum (serving as a control) were estimated by symmetrically placing 'regions of interest' from both hemispheres on SPECT slices, most suitable for each region. The 'regional to cerebellar ratio' (R/CE ratio) for each component region was calculated and the values were compared. In the USN group, R/CE ratio values for each component region in the right hemisphere were significantly lower than those in the left, whereas in the non-USN group there was no right-left difference. When R/CE ratio values for each component region in the right hemisphere were compared between the USN and non-USN group, those for the IPL, ACG and TH were significantly lower in the USN group; the value for the DLF was also lower in the USN group, although the difference was not significant. Significantly lower values of R/CE for each component region in the right hemisphere were noticed when the regions showed apparent involvement on X-ray CT/MRI. Furthermore, in seven of the USN patients where lesions revealed by CT/MRI did not involve network components, the R/CE ratio values for the components in the right hemisphere were lower than those in the left; the difference was significant for the IPL, ACG and TH, but not for the DLF. It is suggested that functional disturbance of the neural network involving the IPL, ACG, DLF and TH in the right hemisphere might underlie the development of USN. (author)

  11. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  12. Sampling capacity underlies individual differences in human associative learning.

    Science.gov (United States)

    Byrom, Nicola C; Murphy, Robin A

    2014-04-01

    Though much work has studied how external factors, such as stimulus properties, influence generalization of associative strength, there has been limited exploration of the influence that internal dispositions may contribute to stimulus processing. Here we report 2 studies using a modified negative patterning discrimination to test the relationship between global processing and generalization. Global processing was associated with stronger negative patterning discrimination, indicative of limited generalization between distinct stimulus compounds and their constituent elements. In Experiment 2, participants pretrained to adopt global processing similarly showed strong negative patterning discrimination. These results demonstrate considerable individual difference in capacity to engage in negative patterning discrimination and suggest that the tendency toward global processing may be one factor explaining this variability. The need for models of learning to account for this variability in learning is discussed.

  13. Steps toward Learning Mechanics Using Fan Cart Video Demonstrations

    Science.gov (United States)

    Lattery, Mark

    2011-01-01

    The Newtonian force concept is very difficult for introductory students to learn. One obstacle to learning is a premature focus on gravity-driven motions, such as vertical free fall, rolling motion on an inclined plane, and the Atwood's machine. In each case, the main agent of motion ("gravity") cannot be seen, heard, or controlled by the student.…

  14. Embedding Diagnostic Mechanisms in a Digital Game for Learning Mathematics

    Science.gov (United States)

    Huang, Yueh-Min; Huang, Shu-Hsien; Wu, Ting-Ting

    2014-01-01

    Mathematics is closely related to daily life, but it is also one of the lessons which often cause anxiety to primary school students. Digital game-based learning (DGBL) has been regarded as a sound learning strategy in raising learner willingness and interest in many disciplines. Thus, ways of designing a DGBL system to mitigate anxiety are well…

  15. Unravelling salutogenic mechanisms in the workplace: the role of learning.

    Science.gov (United States)

    Pijpker, Roald; Vaandrager, Lenneke; Bakker, Evert Jan; Koelen, Maria

    To explore the moderating and mediating role(s) of learning within the relationship between sense of coherence (SOC) and generalized resistance resources. Cross-sectional study (N=481), using a self-administered questionnaire, of employees working in the healthcare sector in the Netherlands in 2017. Four residential healthcare settings and one healthcare-related Facebook group were involved. Multiple linear regression models were used to test for moderating and mediating effects of learning. Social relations, task significance, and job control significantly explained variance in SOC. Conceptual, social, and instrumental learning, combined, moderated the relationship between SOC and task significance. Instrumental learning moderated the relationship between job control and SOC. Social learning also mediated this relationship. Conceptual learning did not show any moderating or mediating effect. The relationship between SOC and the three GRRs seems to be strengthened or explained-to a certain extent-by instrumental and social learning. Healthcare organizations are recommended to promote learning through formal activities as well as through cooperation, feedback, sharing experiences, and job challenges. This requires employee participation and a multilevel interdisciplinary approach. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Asset pricing under rational learning about rare disasters

    OpenAIRE

    Koulovatianos, Christos; Wieland, Volker

    2011-01-01

    This paper proposes a new approach for modeling investor fear after rare disasters. The key element is to take into account that investors’ information about fundamentals driving rare downward jumps in the dividend process is not perfect. Bayesian learning implies that beliefs about the likelihood of rare disasters drop to a much more pessimistic level once a disaster has occurred. Such a shift in beliefs can trigger massive declines in price-dividend ratios. Pessimistic beliefs persist for s...

  17. Learning and performance under alternative instructional manifestations of experimental practice

    Science.gov (United States)

    Ford, Michael J.

    Before we can understand how students learn "to do" science, we must make explicit our assumptions about what scientific practice is. This study compares the learning outcomes of two sixth-grade instructional units on experimentation, each based on a particular characterization of practice. In one unit, instruction focused on acquisition and application of the control of variables strategy (CVS; Chen & Klahr, 1999), which is consistent with a popular conception of science education, stemming from Piaget, as the mastery of logical forms. In the other unit, students designed experimental apparatus to answer a target question, and instruction emphasized practices of rendering and transforming the material world in ways that support scientific understanding. Students in both groups were assessed for CVS acquisition and subsequent experimental performance on a novel task, and group performances on these assessments different across instructional conditions. I will argue that student understandings of goals, norms of instructional expectation, and strategies explain these differences, in some cases by supporting performance and in other cases by hindering it. I will also argue that the results question the role typically attributed to logical method in learning to design experiments.

  18. Learning and dynamic choices under uncertainty: from weighted regret and rejoice to expected utility

    OpenAIRE

    Zagonari, Fabio

    2016-01-01

    This paper identifies the globally stable conditions under which an individual facing the same choice in many subsequent times learns to behave as prescribed by the expected-utility model. To do so, the analysis moves from the relevant behavioural models suggested by psychology (i.e., weighted probabilities applied to regret and rejoice theory), and by updating probability estimations and outcome preferences according to the learning models suggested by neuroscience (i.e., adaptive learning a...

  19. Longitudinal investigation on learned helplessness tested under negative and positive reinforcement involving stimulus control.

    Science.gov (United States)

    Oliveira, Emileane C; Hunziker, Maria Helena

    2014-07-01

    In this study, we investigated whether (a) animals demonstrating the learned helplessness effect during an escape contingency also show learning deficits under positive reinforcement contingencies involving stimulus control and (b) the exposure to positive reinforcement contingencies eliminates the learned helplessness effect under an escape contingency. Rats were initially exposed to controllable (C), uncontrollable (U) or no (N) shocks. After 24h, they were exposed to 60 escapable shocks delivered in a shuttlebox. In the following phase, we selected from each group the four subjects that presented the most typical group pattern: no escape learning (learned helplessness effect) in Group U and escape learning in Groups C and N. All subjects were then exposed to two phases, the (1) positive reinforcement for lever pressing under a multiple FR/Extinction schedule and (2) a re-test under negative reinforcement (escape). A fourth group (n=4) was exposed only to the positive reinforcement sessions. All subjects showed discrimination learning under multiple schedule. In the escape re-test, the learned helplessness effect was maintained for three of the animals in Group U. These results suggest that the learned helplessness effect did not extend to discriminative behavior that is positively reinforced and that the learned helplessness effect did not revert for most subjects after exposure to positive reinforcement. We discuss some theoretical implications as related to learned helplessness as an effect restricted to aversive contingencies and to the absence of reversion after positive reinforcement. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014. Published by Elsevier B.V.

  20. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    Science.gov (United States)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated

  1. PKC in motorneurons underlies self-learning, a form of motor learning in Drosophila

    Directory of Open Access Journals (Sweden)

    Julien Colomb

    2016-04-01

    Full Text Available Tethering a fly for stationary flight allows for exquisite control of its sensory input, such as visual or olfactory stimuli or a punishing infrared laser beam. A torque meter measures the turning attempts of the tethered fly around its vertical body axis. By punishing, say, left turning attempts (in a homogeneous environment, one can train a fly to restrict its behaviour to right turning attempts. It was recently discovered that this form of operant conditioning (called operant self-learning, may constitute a form of motor learning in Drosophila. Previous work had shown that Protein Kinase C (PKC and the transcription factor dFoxP were specifically involved in self-learning, but not in other forms of learning. These molecules are specifically involved in various forms of motor learning in other animals, such as compulsive biting in Aplysia, song-learning in birds, procedural learning in mice or language acquisition in humans. Here we describe our efforts to decipher which PKC gene is involved in self-learning in Drosophila. We also provide evidence that motorneurons may be one part of the neuronal network modified during self-learning experiments. The collected evidence is reminiscent of one of the simplest, clinically relevant forms of motor learning in humans, operant reflex conditioning, which also relies on motorneuron plasticity.

  2. Design Learning of Teaching Factory in Mechanical Engineering

    Science.gov (United States)

    Putra, R. C.; Kusumah, I. H.; Komaro, M.; Rahayu, Y.; Asfiyanur, E. P.

    2018-02-01

    The industrial world that is the target of the process and learning outcomes of vocational high school (SMK) has its own character and nuance. Therefore, vocational education institutions in the learning process should be able to make the appropriate learning approach and in accordance with the industrial world. One approach to learning that is based on production and learning in the world of work is by industry-based learning or known as Teaching Factory, where in this model apply learning that involves direct students in goods or service activities are expected to have the quality so it is worth selling and accepted by consumers. The method used is descriptive approach. The purpose of this research is to get the design of the teaching factory based on the competency requirements of the graduates of the spouse industry, especially in the engineering department. The results of this study is expected to be one of the choice of model factory teaching in the field of machinery engineering in accordance with the products and competencies of the graduates that the industry needs.

  3. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  4. Effect of Kolb's Learning Styles under Inductive Guided-Inquiry Learning on Learning Outcomes

    Science.gov (United States)

    Sudria, Ida Bagus Nyoman; Redhana, I. Wayan; Kirna, I. Made; Aini, Diah

    2018-01-01

    This study aimed to examine the effect of Kolb's learning styles on chemical learning activities and achievement of reaction rate taught by inductive guided inquiry learning. The population was eleventh grade Science students of a senior secondary school having relatively good academic input based on national testing results in Bali, Indonesia.…

  5. MDMA-assisted psychotherapy for PTSD: Are memory reconsolidation and fear extinction underlying mechanisms?

    Science.gov (United States)

    Feduccia, Allison A; Mithoefer, Michael C

    2018-06-08

    MDMA-assisted psychotherapy for treatment of PTSD has recently progressed to Phase 3 clinical trials and received Breakthrough Therapy designation by the FDA. MDMA used as an adjunct during psychotherapy sessions has demonstrated effectiveness and acceptable safety in reducing PTSD symptoms in Phase 2 trials, with durable remission of PTSD diagnosis in 68% of participants. The underlying psychological and neurological mechanisms for the robust effects in mitigating PTSD are being investigated in animal models and in studies of healthy volunteers. This review explores the potential role of memory reconsolidation and fear extinction during MDMA-assisted psychotherapy. MDMA enhances release of monoamines (serotonin, norepinephrine, dopamine), hormones (oxytocin, cortisol), and other downstream signaling molecules (BDNF) to dynamically modulate emotional memory circuits. By reducing activation in brain regions implicated in the expression of fear- and anxiety-related behaviors, namely the amygdala and insula, and increasing connectivity between the amygdala and hippocampus, MDMA may allow for reprocessing of traumatic memories and emotional engagement with therapeutic processes. Based on the pharmacology of MDMA and the available translational literature of memory reconsolidation, fear learning, and PTSD, this review suggests a neurobiological rationale to explain, at least in part, the large effect sizes demonstrated for MDMA in treating PTSD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  7. Nutritional links to plausible mechanisms underlying pancreatic cancer: a conference report.

    Science.gov (United States)

    Hine, R Jean; Srivastava, Sudhir; Milner, John A; Ross, Sharon A

    2003-11-01

    Adenocarcinoma of the pancreas is one of most catastrophic and least understood of cancers. Evidence from clinical studies indicates that the development of pancreas cancer progresses over many years before symptoms appear. Most people with pancreatic cancer die within six months of diagnosis. The lack of early disease markers, the paucity of direct subject/patient interview data and limited availability of high quality biological samples have slowed progress toward identifying environmental and genetic disease risk factors. Much remains to be learned about the development of pancreatic cancer and about potential interventions for disease prevention. Epidemiological and mechanistic studies examining risk factors for pancreatic cancer supply little consistent or strong evidence to provide a cohesive prevention strategy for this cancer, but offer clues for future research concerning the prevention and early detection of this devastating disease. This Executive Summary provides background discussion on pancreatic cancer and summaries of each of the topics discussed at the workshop, including 1) Molecular aspects, 2) Dietary and other risk factors for pancreatic cancer, 3) The metabolic hypothesis for pancreatic cancer, 4) Preclinical studies on pancreatic cancer, 5) Methylation, 6) Oxidative stress and 7) Biomarker Profiling. This document also contains a compilation of recommendations for future research, concluding remarks, a list of speakers and participants attending the workshop, and a selection of key references to aid future research into nutritional links to mechanisms underlying pancreas cancer. The recommendations section suggests gaps in current knowledge and articulates future directions for this area of investigation.

  8. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  9. Learning Similar Actions by Reinforcement or Sensory-Prediction Errors Rely on Distinct Physiological Mechanisms.

    Science.gov (United States)

    Uehara, Shintaro; Mawase, Firas; Celnik, Pablo

    2017-09-14

    Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Two different motor learning mechanisms contribute to learning reaching movements in a rotated visual environment [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Virginia Way Tong Chu

    2014-12-01

    Full Text Available Practice of movement in virtual-reality and other artificially altered environments has been proposed as a method for rehabilitation following neurological injury and for training new skills in healthy humans.  For such training to be useful, there must be transfer of learning from the artificial environment to the performance of desired skills in the natural environment.  Therefore an important assumption of such methods is that practice in the altered environment engages the same learning and plasticity mechanisms that are required for skill performance in the natural environment.  We test the hypothesis that transfer of learning may fail because the learning and plasticity mechanism that adapts to the altered environment is different from the learning mechanism required for improvement of motor skill.  In this paper, we propose that a model that separates skill learning and environmental adaptation is necessary to explain the learning and aftereffects that are observed in virtual reality experiments.  In particular, we studied the condition where practice in the altered environment should lead to correct skill performance in the original environment. Our 2-mechanism model predicts that aftereffects will still be observed when returning to the original environment, indicating a lack of skill transfer from the artificial environment to the original environment. To illustrate the model prediction, we tested 10 healthy participants on the interaction between a simple overlearned motor skill (straight hand movements to targets in different directions and an artificially altered visuomotor environment (rotation of visual feedback of the results of movement.  As predicted by the models, participants show adaptation to the altered environment and after-effects on return to the baseline environment even when practice in the altered environment should have led to correct skill performance.  The presence of aftereffect under all conditions that

  11. College radio as a mechanism for participatory learning: Exploring the scope for online radio based learning among undergraduates

    Directory of Open Access Journals (Sweden)

    Bahaeldin Ibrahim

    2016-03-01

    Full Text Available This paper explores the prospects of online college radio at Sur College of Applied Sciences, its need among students and the possible scope of its contributions to student learning, engagement and community service. It explores the method of developing a holistic mechanism to capture the possibilities of maximizing learning experience by employing college radio as an educational tool to understand the micro-dynamics and localized necessities that deem it necessary or unnecessary. Through this, it attempts to locate an appropriate mechanism, and targeted use of the college radio in contributing to the learning outcomes and educational experience of the students. The study finds considerable scope for radio based learning at Sur College of Applied Sciences across a range of uses and gratification indicators consistent with the primary objectives of the college. The study discusses the theoretical and practical implications of the findings, and the pedagogical significance of the college radio as an alternative.

  12. Ruby under a microscope learning Ruby internals through experiment

    CERN Document Server

    Shaughnessy, Pat

    2013-01-01

    How Ruby Works Under the HoodRuby is a powerful programming language with a focus on simplicity, but beneath its elegant syntax it performs countless unseen tasks.Ruby Under a Microscope gives you a hands-on look at Ruby's core, using extensive diagrams and thorough explanations to show you how Ruby is implemented (no C skills required). Author Pat Shaughnessy takes a scientific approach, laying out a series of experiments with Ruby code to take you behind the scenes of how programming languages work. You'll even find information on JRuby and Rubinius (two alternative implementations of Ruby),

  13. Mixed-handedness advantages in episodic memory obtained under conditions of intentional learning extend to incidental learning.

    Science.gov (United States)

    Christman, Stephen D; Butler, Michael

    2011-10-01

    The existence of handedness differences in the retrieval of episodic memories is well-documented, but virtually all have been obtained under conditions of intentional learning. Two experiments are reported that extend the presence of such handedness differences to memory retrieval under conditions of incidental learning. Experiment 1 used Craik and Tulving's (1975) classic levels-of-processing paradigm and obtained handedness differences under incidental and intentional conditions of deep processing, but not under conditions of shallow incidental processing. Experiment 2 looked at incidental memory for distracter items from a recognition memory task and again found a mixed-handed advantage. Results are discussed in terms of the relation between interhemispheric interaction, levels of processing, and episodic memory retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Looking under the Bonnet: Factors Affecting Student Adoption of E-Learning Systems in Jordan

    Directory of Open Access Journals (Sweden)

    Muneer Mahmood Abbad, David Morris, Carmel de Nahlik

    2009-04-01

    Full Text Available The primary questions addressed in this paper are the following: what are the factors that affect students’ adoption of an e-learning system and what are the relationships among these factors?This paper investigates and identifies some of the major factors affecting students’ adoption of an e-learning system in a university in Jordan. E-learning adoption is approached from the information systems acceptance point of view. This suggests that a prior condition for learning effectively using e-learning systems is that students must actually use them. Thus, a greater knowledge of the factors that affect IT adoption and their interrelationships is a pre-cursor to a better understanding of student acceptance of e-learning systems. In turn, this will help and guide those who develop, implement, and deliver e-learning systems.In this study, an extended version of the Technology Acceptance Model (TAM was developed to investigate the underlying factors that influence students’ decisions to use an e-learning system. The TAM was populated using data gathered from a survey of 486 undergraduate students using the Moodle based e-learning system at the Arab Open University. The model was estimated using Structural Equation Modelling (SEM. A path model was developed to analyze the relationships between the factors to explain students’ adoption of the e-learning system. Whilst findings support existing literature about prior experience affecting perceptions, they also point to surprising group effects, which may merit future exploration.

  15. Six habits to enhance MET performance under stress: A discussion paper reviewing team mechanisms for improved patient outcomes.

    Science.gov (United States)

    Fein, Erich C; Mackie, Benjamin; Chernyak-Hai, Lily; O'Quinn, C Richard V; Ahmed, Ezaz

    2016-05-01

    Effective team decision making has the potential to improve the quality of health care outcomes. Medical Emergency Teams (METs), a specific type of team led by either critical care nurses or physicians, must respond to and improve the outcomes of deteriorating patients. METs routinely make decisions under conditions of uncertainty and suboptimal care outcomes still occur. In response, the development and use of Shared Mental Models (SMMs), which have been shown to promote higher team performance under stress, may enhance patient outcomes. This discussion paper specifically focuses on the development and use of SMMs in the context of METs. Within this process, the psychological mechanisms promoting enhanced team performance are examined and the utility of this model is discussed through the narrative of six habits applied to MET interactions. A two stage, reciprocal model of both nonanalytic decision making within the acute care environment and analytic decision making during reflective action learning was developed. These habits are explored within the context of a MET, illustrating how applying SMMs and action learning processes may enhance team-based problem solving under stress. Based on this model, we make recommendations to enhance MET decision making under stress. It is suggested that the corresponding habits embedded within this model could be imparted to MET members and tested by health care researchers to assess the efficacy of this integrated decision making approach in respect to enhanced team performance and patient outcomes. Copyright © 2015. Published by Elsevier Ltd.

  16. Teacher Opinions on the Innovation Management Skills of School Administrators and Organizational Learning Mechanisms

    Science.gov (United States)

    Omur, Yunus Emre; Argon, Turkan

    2016-01-01

    Problem Statement: In modern society, schools, just as other institutions, are required to be innovative organizations. For this purpose, they must not only be learning organizations, they must also be innovative. In this sense, the purpose of this study is to discover the relationship between organizational learning mechanisms at schools and…

  17. Value innovation, deliberate learning mechanisms and information from supply chain partners

    NARCIS (Netherlands)

    Berghman, L.A.; Matthyssens, P.; Vandenbempt, K.

    2012-01-01

    Although marketing scholars have emphasized both the importance of internal learning mechanisms and of external learning through supply chain partners research findings on how these factors influence each other are merely lacking. Analyzing survey data of 182 industrial firms, we examine how

  18. Learning and adaptation: neural and behavioural mechanisms behind behaviour change

    Science.gov (United States)

    Lowe, Robert; Sandamirskaya, Yulia

    2018-01-01

    This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.

  19. The evolution of social learning mechanisms and cultural phenomena in group foragers.

    Science.gov (United States)

    van der Post, Daniel J; Franz, Mathias; Laland, Kevin N

    2017-02-10

    Advanced cognitive abilities are widely thought to underpin cultural traditions and cumulative cultural change. In contrast, recent simulation models have found that basic social influences on learning suffice to support both cultural phenomena. In the present study we test the predictions of these models in the context of skill learning, in a model with stochastic demographics, variable group sizes, and evolved parameter values, exploring the cultural ramifications of three different social learning mechanisms. Our results show that that simple forms of social learning such as local enhancement, can generate traditional differences in the context of skill learning. In contrast, we find cumulative cultural change is supported by observational learning, but not local or stimulus enhancement, which supports the idea that advanced cognitive abilities are important for generating this cultural phenomenon in the context of skill learning. Our results help to explain the observation that animal cultures are widespread, but cumulative cultural change might be rare.

  20. Improving students' meaningful learning on the predictive nature of quantum mechanics

    Directory of Open Access Journals (Sweden)

    Rodolfo Alves de Carvalho Neto

    2009-03-01

    Full Text Available This paper deals with research about teaching quantum mechanics to 3rd year high school students and their meaningful learning of its predictive aspect; it is based on the Master’s dissertation of one of the authors (CARVALHO NETO, 2006. While teaching quantum mechanics, we emphasized its predictive and essentially probabilistic nature, based on Niels Bohr’s complementarity interpretation (BOHR, 1958. In this context, we have discussed the possibility of predicting measurement results in well-defined experimental contexts, even for individual events. Interviews with students reveal that they have used quantum mechanical ideas, suggesting their meaningful learning of the essentially probabilistic predictions of quantum mechanics.

  1. Perceptual Organization of Visual Structure Requires a Flexible Learning Mechanism

    Science.gov (United States)

    Aslin, Richard N.

    2011-01-01

    Bhatt and Quinn (2011) provide a compelling and comprehensive review of empirical evidence that supports the operation of principles of perceptual organization in young infants. They also have provided a comprehensive list of experiences that could serve to trigger the learning of at least some of these principles of perceptual organization, and…

  2. Mapping learning and game mechanics for serious games analysis

    NARCIS (Netherlands)

    Arnab, S.; Lim, T.; Brandao Carvalho, M.; Bellotti, F.; De Freitas, S.; Louchart, S.; Suttie, N.; Berta, R.; De Gloria, A.

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu)

  3. Undergraduate Teaching and Learning Evaluation: Focus on the Mechanism

    Science.gov (United States)

    Dongmei, Zeng; Jiangbo, Chen

    2009-01-01

    It is obvious to all that the National Undergraduate Teaching and Learning Evaluation plan for higher education institutions launched in 2003 has promoted undergraduate teaching at universities and colleges. At the same time, however, the authors have also witnessed problems with the evaluation work itself, for example, unified evaluation…

  4. Statistical mechanics of learning: A variational approach for real data

    International Nuclear Information System (INIS)

    Malzahn, Doerthe; Opper, Manfred

    2002-01-01

    Using a variational technique, we generalize the statistical physics approach of learning from random examples to make it applicable to real data. We demonstrate the validity and relevance of our method by computing approximate estimators for generalization errors that are based on training data alone

  5. Mapping Learning and Game Mechanics for Serious Games Analysis

    Science.gov (United States)

    Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

  6. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  7. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms.

    Science.gov (United States)

    Meltzoff, Andrew N.; Moore, M. Keith

    1989-01-01

    Evaluated psychological mechanisms underlying imitation of facial actions in 40 newborn infants. Results showed imitation of head movement and a tongue-protrusion gesture. Subjects imitated from memory after displays had stopped. (RJC)

  8. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis

    NARCIS (Netherlands)

    Beijers, R.; Buitelaar, J.K.; Weerth, C. de

    2014-01-01

    Accumulating evidence from preclinical and clinical studies indicates that maternal psychosocial stress and anxiety during pregnancy adversely affect child outcomes. However, knowledge on the possible mechanisms underlying these relations is limited. In the present paper, we review the most often

  9. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  10. Mechanisms of social avoidance learning can explain the emergence of adaptive and arbitrary behavioral traditions in humans.

    Science.gov (United States)

    Lindström, Björn; Olsson, Andreas

    2015-06-01

    Many nonhuman animals preferentially copy the actions of others when the environment contains predation risk or other types of danger. In humans, the role of social learning in avoidance of danger is still unknown, despite the fundamental importance of social learning for complex social behaviors. Critically, many social behaviors, such as cooperation and adherence to religious taboos, are maintained by threat of punishment. However, the psychological mechanisms allowing threat of punishment to generate such behaviors, even when actual punishment is rare or absent, are largely unknown. To address this, we used both computer simulations and behavioral experiments. First, we constructed a model where simulated agents interacted under threat of punishment and showed that mechanisms' (a) tendency to copy the actions of others through social learning, together with (b) the rewarding properties of avoiding a threatening punishment, could explain the emergence, maintenance, and transmission of large-scale behavioral traditions, both when punishment is common and when it is rare or nonexistent. To provide empirical support for our model, including the 2 mechanisms, we conducted 4 experiments, showing that humans, if threatened with punishment, are exceptionally prone to copy and transmit the behavior observed in others. Our results show that humans, similar to many nonhuman animals, use social learning if the environment is perceived as dangerous. We provide a novel psychological and computational basis for a range of human behaviors characterized by the threat of punishment, such as the adherence to cultural norms and religious taboos. (c) 2015 APA, all rights reserved).

  11. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, L.

    2012-01-01

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  12. Learning process mapping heuristics under stochastic sampling overheads

    Science.gov (United States)

    Ieumwananonthachai, Arthur; Wah, Benjamin W.

    1991-01-01

    A statistical method was developed previously for improving process mapping heuristics. The method systematically explores the space of possible heuristics under a specified time constraint. Its goal is to get the best possible heuristics while trading between the solution quality of the process mapping heuristics and their execution time. The statistical selection method is extended to take into consideration the variations in the amount of time used to evaluate heuristics on a problem instance. The improvement in performance is presented using the more realistic assumption along with some methods that alleviate the additional complexity.

  13. Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0652 TITLE: Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity PRINCIPAL INVESTIGATOR...5a. CONTRACT NUMBER W81XWH-16-1-0652 Mechanisms Underlying Stress Fracture and the Influence of Sex and Race/Ethnicity 5b. GRANT NUMBER W81XWH...to stress fracture risk. In particular, in Study 1, we will perform advanced skeletal imaging along with gait-assessments in subjects with history of

  14. Learning quantum field theory from elementary quantum mechanics

    International Nuclear Information System (INIS)

    Gosdzinsky, P.; Tarrach, R.

    1991-01-01

    The study of the Dirac delta potentials in more than one dimension allows the introduction within the framework of elementary quantum mechanics of many of the basic concepts of modern quantum field theory: regularization, renormalization group, asymptotic freedom, dimensional transmutation, triviality, etc. It is also interesting, by itself, as a nonstandard quantum mechanical problem

  15. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may

  16. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  17. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  18. Molecular Mechanisms Underlying the Epileptogenesis and Seizure Progression in Tuberous Sclerosis Complex 1 Deficient Mouse Models

    Science.gov (United States)

    2016-10-01

    dysregulation in epileptogenesis in the developing brain? 2) What are the molecular mechanisms downstream of mTOR hyperactivation that trigger epileptogenesis...underlying epilepsy. Hopefully, a knowledge of these mechanisms will aid in a rational development of therapies. KEYWORDS Tuberous Sclerosis, Epilepsy

  19. TA Mentorship in Lecture significantly enhances students' learning in mechanics in large introductory physics classes

    Science.gov (United States)

    Cheng, K.; Caglar, Mehmet

    2011-10-01

    Lab is an important component of students' learning in a traditional lecture-lab setting of introductory physics courses. Using standard mechanics concepts and baseline surveys as well as independent classroom observations, the effects of TA mentorship in Lecture on students' learning of physics concepts and problem-solving skills among different student subgroups taught by other TAs and lecturers using different level of student interactive engagement in classes have been analyzed. Our data indicate that in lecture training of TA promotes lecture/lab synergism in improvement students' learning of mechanics in large introductory physics classes.

  20. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  1. [Possible evolutionary mechanisms of 'culture' in animals: The hypothesis of distributed social learning].

    Science.gov (United States)

    Reznikova, Zh I; Panteleeva, S N

    2015-01-01

    There is a plethora of works on the origin and genesis of behavioral traditions in different animal species. Nevertheless, it still remains unclear as for which factors facilitate and which factors hinder the spreading those forms of behavior that are new for a population. Here, we present an analytical review on the topic, considering also the results of studies on 'culture' in animals and analyzing contradictions that arise when attempting to clarify the ethological mechanisms of cultural succession. The hypothesis of 'distributed social learning' is formulated, meaning that for spreading of complex behavioral stereotypes in a population the presence of few carriers of consistent stereotypes is enough under the condition that the rest of animals carry incomplete genetic programmes that start up these stereotypes. Existence of 'dormant' fragments of such programmes determines an inborn predisposition of their bearer to perform a certain sequence of acts. To complete the consistent stereotype, the simplest forms of social learning ('social alleviation') turn to be enough. The hypothesis is examined at the behavioral level and supported by experimental data obtained when studying the scenarios of hunting behavior development in ants Myrmica rubra L. It makes possible to explain the spreading of behavioral models in animal communities in a simpler way than cultural succession.

  2. Development of a web-based learning medium on mechanism of labour for nursing students.

    Science.gov (United States)

    Gerdprasert, Sailom; Pruksacheva, Tassanee; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-07-01

    This study aimed to develop a web-based learning media on the process and mechanism of labour for the third-year university nursing and midwifery students. This media was developed based on integrating principles of the mechanism of labour with the 5Es inquiry cycle and interactive features of information technology. In this study, the web-based learning unit was used to supplement the conventional lecture as in the traditional teaching. Students' achievements were assessed by using the pre- and post-test on factual knowledge and semi-structured interviews on attitude to the unit. Supplementation with this learning unit made learning significantly more effective than the traditional lecture by itself. The students also showed positive attitude toward the learning unit. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Statistical-Mechanical Analysis of Pre-training and Fine Tuning in Deep Learning

    Science.gov (United States)

    Ohzeki, Masayuki

    2015-03-01

    In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning — pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer perceptron model, rather than directly analyzing a multi-layer neural network, we find a nontrivial phase transition that is dependent on the number of unlabelled data in the generalization error of the resultant classifier. In this sense, we evaluate the efficacy of the unsupervised learning component of deep learning. The analysis is performed by the replica method, which is a sophisticated tool in statistical mechanics. We validate our result in the manner of deep learning, using a simple iterative algorithm to learn the weight vector on the basis of belief propagation.

  4. Formation and adaptation of memory : Neurobiological mechanisms underlying learning and reversal learning

    NARCIS (Netherlands)

    Havekes, Robbert

    2008-01-01

    The hippocampus is a brain region that plays a critical role in memory formation. In addition, it has been suggested that this brain region is important for ‘updating’ information that is incorrect or outdated. The main goal of this thesis project was to investigate which neurobiological processes

  5. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  6. Mechanism for Promoting Motivation, Confidence, and Autonomy through Synchronic Communication Sessions in Virtual Learning Environments

    Science.gov (United States)

    Valencia, Jorge Andrick Parra; Dallos, Adriana Rocío Lizcano; Ballesteros, Eliécer Pineda

    2017-01-01

    This study presents a mechanism which explains the effect of synchronous communication on students' perception of the training process in virtual learning methodology used in a postgraduate programme at the University of Santander. We use System Dynamics to design a mechanism that integrates motivation, confidence, trust, and autonomy in students.…

  7. Mechanical and tribological behaviour of molten salt processed self-lubricated aluminium composite under different treatments

    Science.gov (United States)

    Kannan, C.; Ramanujam, R.

    2018-05-01

    The aim of this research work is to evaluate the mechanical and tribological behaviour of Al 7075 based self-lubricated hybrid nanocomposite under different treated conditions viz. as-cast, T6 and deep cryo treated. In order to overcome the drawbacks associated with conventional stir casting, a combinational approach that consists of molten salt processing, ultrasonic assistance and optimized mechanical stirring is adopted in this study to fabricate the nanocomposite. The mechanical characterisation tests carried out on this nanocomposite reveals an improvement of about 39% in hardness and 22% in ultimate tensile strength possible under T6 condition. Under specific conditions, the wear rate can be reduced to the extent of about 63% through the usage of self-lubricated hybrid nanocomposite under T6 condition.

  8. Into the Weeds: A Critical Analysis of Game Mechanics and Learning Goals in Games for Learning

    Science.gov (United States)

    Horstman, Theresa

    2013-01-01

    In the broadest scope, the purpose of this research is to expose the range and complexity of how educational games support learning. In a more narrowed scope, the purpose is to develop a method to help identify the qualities of educational video games that support learning. This is accomplished by analyzing the design of the game and the…

  9. Exploring the underlying factors influencing e-learning adoption in nurse education.

    Science.gov (United States)

    Petit dit Dariel, Odessa; Wharrad, Heather; Windle, Richard

    2013-06-01

    To report a study undertaken to explore the underlying factors influencing e-learning adoption in nurse education. Despite e-learning's high profile it has not been readily integrated into teaching practice in nurse education. Previous research has identified generic, cross-disciplinary factors but has left out 'soft' factors. The study adopted an exploratory descriptive design. Q-methodology was used to explore e-learning adoption in a Division of Nursing located in an institution of Higher Education in the UK. Between September-December 2009, 38 participants were recruited to participate in Q-sorts and post-sort interviews. The Q-sort data were factor analysed and the interviews were coded to their respective factors to develop in-depth narratives. Four factors were identified: 'E-learning advocates' saw e-learning's potential to improve nurse education and prepare future nurses for their evolving role; the 'Humanists' had avoided e-learning because they valued human interaction; the 'Sceptics' doubted that technology could improve learning outcomes; and the 'Pragmatics,' only used e-learning as a tool to post lecture notes online to supplement what they covered in class. The findings point to the variety of responses existing among nurse academics faced with integrating e-learning into their teaching. Moving beyond the binary labels commonly attributed to those considered either 'early adopters' or 'laggards,' the findings contribute to the literature by revealing a wider breadth of views and responses towards technology. Acknowledging these views can inform future e-learning strategies and lead to improvement in e-learning use in nurse education. © 2012 Blackwell Publishing Ltd.

  10. Collaborative testing for key-term definitions under representative conditions: Efficiency costs and no learning benefits.

    Science.gov (United States)

    Wissman, Kathryn T; Rawson, Katherine A

    2018-01-01

    Students are expected to learn key-term definitions across many different grade levels and academic disciplines. Thus, investigating ways to promote understanding of key-term definitions is of critical importance for applied purposes. A recent survey showed that learners report engaging in collaborative practice testing when learning key-term definitions, with outcomes also shedding light on the way in which learners report engaging in collaborative testing in real-world contexts (Wissman & Rawson, 2016, Memory, 24, 223-239). However, no research has directly explored the effectiveness of engaging in collaborative testing under representative conditions. Accordingly, the current research evaluates the costs (with respect to efficiency) and the benefits (with respect to learning) of collaborative testing for key-term definitions under representative conditions. In three experiments (ns = 94, 74, 95), learners individually studied key-term definitions and then completed retrieval practice, which occurred either individually or collaboratively (in dyads). Two days later, all learners completed a final individual test. Results from Experiments 1-2 showed a cost (with respect to efficiency) and no benefit (with respect to learning) of engaging in collaborative testing for key-term definitions. Experiment 3 evaluated a theoretical explanation for why collaborative benefits do not emerge under representative conditions. Collectively, outcomes indicate that collaborative testing versus individual testing is less effective and less efficient when learning key-term definitions under representative conditions.

  11. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  12. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  13. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  14. Cognitive Mechanisms Underlying Risky Decision-Making in Chronic Cannabis Users.

    Science.gov (United States)

    Fridberg, Daniel J; Queller, Sarah; Ahn, Woo-Young; Kim, Woojae; Bishara, Anthony J; Busemeyer, Jerome R; Porrino, Linda; Stout, Julie C

    2010-02-01

    Chronic cannabis users are known to be impaired on a test of decision-making, the Iowa Gambling Task (IGT). Computational models of the psychological processes underlying this impairment have the potential to provide a rich description of the psychological characteristics of poor performers within particular clinical groups. We used two computational models of IGT performance, the Expectancy-Valence Learning model (EVL) and the Prospect-Valence Learning model (PVL), to assess motivational, memory, and response processes in 17 chronic cannabis abusers and 15 control participants. Model comparison and simulation methods revealed that the PVL model explained the observed data better than the EVL model. Results indicated that cannabis abusers tended to be under-influenced by loss magnitude, treating each loss as a constant and minor negative outcome regardless of the size of the loss. In addition, they were more influenced by gains, and made decisions that were less consistent with their expectancies relative to non-using controls.

  15. An investigation of the mechanism underlying teacher aggression : Testing I3 theory and the General Aggression Model

    NARCIS (Netherlands)

    Montuoro, Paul; Mainhard, Tim

    2017-01-01

    Background: Considerable research has investigated the deleterious effects of teachers responding aggressively to students who misbehave, but the mechanism underlying this dysfunctional behaviour remains unknown. Aims: This study investigated whether the mechanism underlying teacher aggression

  16. Android Used in The Learning Innovation Atwood Machines on Lagrange Mechanics Methods

    Directory of Open Access Journals (Sweden)

    Shabrina Shabrina

    2017-12-01

    Full Text Available Android is one of the smartphone operating system platforms that is now widely developed in learning media. Android allows the learning process to be more flexible and not oriented to be teacher center, but it allows to be student center. The Atwood machines is an experimental tool that is often used to observe mechanical laws in constantly accelerated motion which can also be described by the Lagrange mechanics methods. As an innovative and alternative learning activity, Atwood Android-based learning apps are running for two experimental variations, which are variations in load in cart and load masses that are hung. The experiment of load-carrier mass variation found that the larger load mass in the cart, the smaller the acceleration experienced by the system. Meanwhile, the experiment on the variation of the loaded mass found that the larger the loaded mass, the greater the acceleration experienced by the system.

  17. Efficient learning mechanisms hold in the social domain and are implemented in the medial prefrontal cortex.

    Science.gov (United States)

    Seid-Fatemi, Azade; Tobler, Philippe N

    2015-05-01

    When we are learning to associate novel cues with outcomes, learning is more efficient if we take advantage of previously learned associations and thereby avoid redundant learning. The blocking effect represents this sort of efficiency mechanism and refers to the phenomenon in which a novel stimulus is blocked from learning when it is associated with a fully predicted outcome. Although there is sufficient evidence that this effect manifests itself when individuals learn about their own rewards, it remains unclear whether it also does when they learn about others' rewards. We employed behavioral and neuroimaging methods to address this question. We demonstrate that blocking does indeed occur in the social domain and it does so to a similar degree as observed in the individual domain. On the neural level, activations in the medial prefrontal cortex (mPFC) show a specific contribution to blocking and learning-related prediction errors in the social domain. These findings suggest that the efficiency principle that applies to reward learning in the individual domain also applies to that in the social domain, with the mPFC playing a central role in implementing it. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading

    Directory of Open Access Journals (Sweden)

    Wanlei Liu

    Full Text Available A multiscale model based bridge theory is proposed for the progressive damage analysis of carbon/epoxy laminates under couple laser and mechanical loading. The ablation model is adopted to calculate ablation temperature changing and ablation surface degradation. The polynomial strengthening model of matrix is used to improve bridging model for reducing parameter input. Stiffness degradation methods of bridging model are also improved in order to analyze the stress redistribution more accurately when the damage occurs. Thermal-mechanical analyses of the composite plate are performed using the ABAQUS/Explicit program with the developed model implemented in the VUMAT. The simulation results show that this model can be used to proclaim the mesoscale damage mechanism of composite laminates under coupled loading. Keywords: Laser irradiation, Multiscale analysis, Bridge model, Thermal-mechanical

  19. How diagnostic tests help to disentangle the mechanisms underlying neuropathic pain symptoms in painful neuropathies.

    Science.gov (United States)

    Truini, Andrea; Cruccu, Giorgio

    2016-02-01

    Neuropathic pain, ie, pain arising directly from a lesion or disease affecting the somatosensory afferent pathway, manifests with various symptoms, the commonest being ongoing burning pain, electrical shock-like sensations, and dynamic mechanical allodynia. Reliable insights into the mechanisms underlying neuropathic pain symptoms come from diagnostic tests documenting and quantifying somatosensory afferent pathway damage in patients with painful neuropathies. Neurophysiological investigation and skin biopsy studies suggest that ongoing burning pain primarily reflects spontaneous activity in nociceptive-fiber pathways. Electrical shock-like sensations presumably arise from high-frequency ectopic bursts generated in demyelinated, nonnociceptive, Aβ fibers. Although the mechanisms underlying dynamic mechanical allodynia remain debatable, normally innocuous stimuli might cause pain by activating spared and sensitized nociceptive afferents. Extending the mechanistic approach to neuropathic pain symptoms might advance targeted therapy for the individual patient and improve testing for new drugs.

  20. Underlying Processes of an Inverted Personalization Effect in Multimedia Learning – An Eye-Tracking Study

    Directory of Open Access Journals (Sweden)

    Steffi Zander

    2017-12-01

    Full Text Available One of the frequently examined design principles in multimedia learning is the personalization principle. Based on empirical evidence this principle states that using personalized messages in multimedia learning is more beneficial than using formal language (e.g., using ‘you’ instead of ‘the’. Although there is evidence that these slight changes in regard to the language style affect learning, motivation and the perceived cognitive load, it remains unclear, (1 whether the positive effects of personalized language can be transferred to all kinds of content of learning materials (e.g., specific potentially aversive health issues and (2 which are the underlying processes (e.g., attention allocation of the personalization effect. German university students (N = 37 learned symptoms and causes of cerebral hemorrhages either with a formal or a personalized version of the learning material. Analysis revealed comparable results to the few existing previous studies, indicating an inverted personalization effect for potentially aversive learning material. This effect was specifically revealed in regard to decreased average fixation duration and the number of fixations exclusively on the images in the personalized compared to the formal version. These results can be seen as indicators for an inverted effect of personalization on the level of visual attention.

  1. Underlying Dimensions and Organizational Values in Organizational Learning: Strategy for Capacity Building in Developing Countries

    Directory of Open Access Journals (Sweden)

    María Isabel Rivera Vargas

    2013-09-01

    Full Text Available The idea that organizational learning is closely linked to innovation became firmly established by the end of the nineties (Argyris and Schön, 1978; Watkins and Marsick, 1993; Nonaka and Takeuchi, 1995, however, very little research in these topics is done in developing countries. Therefore, the objective of this article is to expose the underlying dimensions as well as the organizational values that should characterize an organizational learning process, as a strategy for technological capacities construction in small and medium size firms. Consequently, through analytical-synthetic methodology including a case study analysis, this article evidence those determinants characteristics of an organizational learning approach to promote the planning of technological learning processes for catching up in order for developing countries to get into the path of innovation.

  2. PHYSIOLOGICAL QUALITY OF SOYBEAN SEEDS UNDER MECHANICAL INJURIES CAUSED BY COMBINES

    OpenAIRE

    FÁBIO PALCZEWSKI PACHECO; LÚCIA HELENA PEREIRA NÓBREGA; GISLAINE PICOLLO DE LIMA; MÁRCIA SANTORUM; WALTER BOLLER; LORIVAN FORMIGHIERI

    2015-01-01

    The mechanical harvesting causes injuries on seeds and may affect their quality. Different threshing mechanisms and their adjustments may also affect the intensity of impacts that machines cause on seeds. So, this study aimed at diagnosing and evaluating the effect of two combines: the first one with a threshing system of axial flow and the other one with a threshing system of tangential flow, under adjustments of concave opening (10 mm, 30 mm and 10 mm for a combine with axial ...

  3. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    International Nuclear Information System (INIS)

    Xu Li; Chu Xiakun; Yan Zhiqiang; Zheng Xiliang; Zhang Kun; Zhang Feng; Yan Han; Wu Wei; Wang Jin

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. (topical review)

  4. Dynamic optimal strategies in transboundary pollution game under learning by doing

    Science.gov (United States)

    Chang, Shuhua; Qin, Weihua; Wang, Xinyu

    2018-01-01

    In this paper, we present a transboundary pollution game, in which emission permits trading and pollution abatement costs under learning by doing are considered. In this model, the abatement cost mainly depends on the level of pollution abatement and the experience of using pollution abatement technology. We use optimal control theory to investigate the optimal emission paths and the optimal pollution abatement strategies under cooperative and noncooperative games, respectively. Additionally, the effects of parameters on the results have been examined.

  5. Imitation Learning Based on an Intrinsic Motivation Mechanism for Efficient Coding

    Directory of Open Access Journals (Sweden)

    Jochen eTriesch

    2013-11-01

    Full Text Available A hypothesis regarding the development of imitation learning is presented that is rooted in intrinsic motivations. It is derived from a recently proposed form of intrinsically motivated learning (IML for efficient coding in active perception, wherein an agent learns to perform actions with its sense organs to facilitate efficient encoding of the sensory data. To this end, actions of the sense organs that improve the encoding of the sensory data trigger an internally generated reinforcement signal. Here it is argued that the same IML mechanism might also support the development of imitation when general actions beyond those of the sense organs are considered: The learner first observes a tutor performing a behavior and learns a model of the the behavior's sensory consequences. The learner then acts itself and receives an internally generated reinforcement signal reflecting how well the sensory consequences of its own behavior are encoded by the sensory model. Actions that are more similar to those of the tutor will lead to sensory signals that are easier to encode and produce a higher reinforcement signal. Through this, the learner's behavior is progressively tuned to make the sensory consequences of its actions match the learned sensory model. I discuss this mechanism in the context of human language acquisition and bird song learning where similar ideas have been proposed. The suggested mechanism also offers an account for the development of mirror neurons and makes a number of predictions. Overall, it establishes a connection between principles of efficient coding, intrinsic motivations and imitation.

  6. Investigation on the interaction of catalase with sodium lauryl sulfonate and the underlying mechanisms.

    Science.gov (United States)

    Wang, Jing; Jia, Rui; Wang, Jiaxi; Sun, Zhiqiang; Wu, Zitao; Liu, Rutao; Zong, Wansong

    2018-02-01

    As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity. © 2017 Wiley Periodicals, Inc.

  7. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    Science.gov (United States)

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions

    NARCIS (Netherlands)

    Alnajar, F.; Shan, C.; Gevers, T.; Geusebroek, J.M.

    2012-01-01

    In this paper we propose to adopt a learning-based encoding method for age estimation under unconstrained imaging conditions. A similar approach [Cao et al., 2010] is applied to face recognition in real-life face images. However, the feature vectors are encoded in hard manner i.e. each feature

  9. Neurochemical Manipulation of Procedural Memory Sequential Stimuli Learning Under Influence of Phentermine and Pentobarbital

    NARCIS (Netherlands)

    Volkerts, E; van Laar, M.W; Verbaten, M.N; Mulder, G.; Maes, R.A A

    Within the scope of implicit, procedural memory research a large number of empirical studies have been conducted to explore the conditions under which structured sequence learning will emerge in healthy volunteers. Up to now, a few studies have been carried out to determine the effects of

  10. The Effects of Hypertext Gloss on Comprehension and Vocabulary Retention under Incidental and Intentional Learning Conditions

    Science.gov (United States)

    Zandieh, Zeinab; Jafarigohar, Manoochehr

    2012-01-01

    The present study investigated comprehension, immediate and delayed vocabulary retention under incidental and intentional learning conditions via computer mediated hypertext gloss. One hundred and eighty four (N = 184) intermediate students of English as a foreign language at an English school participated in the study. They were randomly assigned…

  11. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    CUI, Yu Jun; DING, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  12. Crack formation and crack propagation under multiaxial mechanical and thermal stresses. Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    The 25th meeting of the DV Fracture Group was held on 16/17 February 1993 at Karlsruhe Technical University. The main topic, ''Crack formation and crack propagation under multiaxial mechanical and thermal stresses'', was discussed by five invited papers (by K.J. Miller, D. Loehe, H.A. Richard, W. Brocks, A. Brueckner-Foit) and 23 short papers. The other 21 papers were devoted to various domains of fracture mechanics, with emphasis on elastoplastic fracture mechanics. (orig./MM) [de

  13. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  14. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  15. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  16. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  17. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  18. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.C.; Weerdesteijn, V.G.M.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also

  19. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Mortensen, Laust; Andersen, Anne-Marie Nybo

    2011-01-01

    The mechanisms underlying the association between maternal age (both young and older maternal age) and adverse perinatal outcomes are unclear. Methods We examined the association of maternal age at first birth with preterm birth (<37 weeks gestation) and small for gestational age (SGA) in a cohor...

  20. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  1. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  2. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse.

    Science.gov (United States)

    Cross, Sarah J; Lotfipour, Shahrdad; Leslie, Frances M

    2017-03-01

    Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.

  3. Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings

    Science.gov (United States)

    Singh, K. K.; Rawat, Prashant

    2018-05-01

    This paper investigates the mechanical response of three phased (glass/MWCNTs/epoxy) composite laminate under three different loadings. Flexural strength, short beam strength and low-velocity impact (LVI) testing are performed to find an optimum doping percentage value for maximum enhancement in mechanical properties. In this work, MWCNTs were used as secondary reinforcement for three-phased composite plate. MWCNT doping was done in a range of 0–4 wt% of the thermosetting matrix system. Symmetrical design eight layered glass/epoxy laminate with zero bending extension coupling laminate was fabricated using a hybrid method i.e. hand lay-up technique followed by vacuum bagging method. Ranging analysis of MWCNT mixing highlighted the enhancement in flexural, short beam strength and improvement in damage tolerance under LVI loading. While at higher doping wt%, agglomeration of MWCNTs are observed. Results of mechanical testing proposed an optimized doping value for maximum strength and damage resistance of the laminate.

  4. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions.

    Science.gov (United States)

    Derwent, Richard

    2017-07-01

    The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NO x . Photochemical ozone production rates responded differently to 30% NO x and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NO x and VOCs also produced changes in OH. The responses in OH to 30% reductions in NO x and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NO x reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NO x and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NO x and VOC reductions under consideration. The purpose of this paper is to compare predicted ozone responses to NO x and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their

  5. Predicting memory performance under conditions of proactive interference: immediate and delayed judgments of learning.

    Science.gov (United States)

    Wahlheim, Christopher N

    2011-07-01

    Four experiments examined the monitoring accuracy of immediate and delayed judgments of learning (JOLs) under conditions of proactive interference (PI). PI was produced using paired-associate learning tasks that conformed to variations of classic A-B, A-D paradigms. Results revealed that the relative monitoring accuracy of interference items was better for delayed than for immediate JOLs. However, delayed JOLs were overconfident for interference items, but not for items devoid of interference. Intrusions retrieved prior to delayed JOLs produced inflated predictions of performance. These results show that delayed JOLs enhance monitoring accuracy in PI situations, except when intrusions are mistaken for target responses.

  6. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Directory of Open Access Journals (Sweden)

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  7. Feeding Problems and Their Underlying Mechanisms in the Esophageal Atresia–Tracheoesophageal Fistula Patient

    Science.gov (United States)

    Mahoney, Lisa; Rosen, Rachel

    2017-01-01

    Feeding difficulties such as dysphagia, coughing, choking, or vomiting during meals, slow eating, oral aversion, food refusal, and stressful mealtimes are common in children with repaired esophageal atresia (EA) and the reasons for this are often multifactorial. The aim of this review is to describe the possible underlying mechanisms contributing to feeding difficulties in patients with EA and approaches to management. Underlying mechanisms for these feeding difficulties include esophageal dysphagia, oropharyngeal dysphagia and aspiration, and aversions related to prolonged gastrostomy tube feeding. The initial diagnostic evaluation for feeding difficulties in a patient with EA may involve an esophagram, videofluoroscopic imaging or fiberoptic endoscopic evaluation during swallowing, upper endoscopy with biopsies, pH-impedance testing, and/or esophageal motility studies. The main goal of management is to reduce the factors contributing to feeding difficulties and may include reducing esophageal stasis, maximizing reflux therapies, treating underlying lung disease, dilating strictures, and altering feeding methods, routes, or schedules. PMID:28620597

  8. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    Science.gov (United States)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  9. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    Science.gov (United States)

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  10. Learning mechanisms in multidisciplinary teamwork with real customers and open-ended problems

    Science.gov (United States)

    Heikkinen, Juho; Isomöttönen, Ville

    2015-11-01

    Recently, there has been a trend towards adding a multidisciplinary or multicultural element to traditional monodisciplinary project courses in computing and engineering. In this article, we examine the implications of multidisciplinarity for students' learning experiences during a one-semester project course for real customers. We use a qualitative research approach and base our analysis on students' learning reports on three instances of a project course titled Multidisciplinary working life project. The main contribution of this article is the unified theoretical picture of the learning mechanisms stemming from multidisciplinarity. Our main conclusions are that (1) students generally have a positive view of multidisciplinarity; (2) multidisciplinary teams enable students to better identify their own expertise, which leads to increased occupational identity; and (3) learning experiences are not fixed, as team spirit and student attitude play an important role in how students react to challenging situations arising from introduction of the multidisciplinarity.

  11. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory.

    Science.gov (United States)

    Sigurdsson, Torfi; Doyère, Valérie; Cain, Christopher K; LeDoux, Joseph E

    2007-01-01

    Much of the research on long-term potentiation (LTP) is motivated by the question of whether changes in synaptic strength similar to LTP underlie learning and memory. Here we discuss findings from studies on fear conditioning, a form of associative learning whose neural circuitry is relatively well understood, that may be particularly suited for addressing this question. We first review the evidence suggesting that fear conditioning is mediated by changes in synaptic strength at sensory inputs to the lateral nucleus of the amygdala. We then discuss several outstanding questions that will be important for future research on the role of synaptic plasticity in fear learning. The results gained from these studies may shed light not only on fear conditioning, but may also help unravel more general cellular mechanisms of learning and memory.

  12. Essential Features of Serious Games Design in Higher Education: Linking Learning Attributes to Game Mechanics

    Science.gov (United States)

    Lameras, Petros; Arnab, Sylvester; Dunwell, Ian; Stewart, Craig; Clarke, Samantha; Petridis, Panagiotis

    2017-01-01

    This paper consolidates evidence and material from a range of specialist and disciplinary fields to provide an evidence-based review and synthesis on the design and use of serious games in higher education. Search terms identified 165 papers reporting conceptual and empirical evidence on how learning attributes and game mechanics may be planned,…

  13. Introducing Innovative Approaches to Learning in Fluid Mechanics: A Case Study

    Science.gov (United States)

    Gynnild, Vidar; Myrhaug, Dag; Pettersen, Bjornar

    2007-01-01

    The purpose of the current article is to examine the impact of laboratory demonstrations and computer visualizations on learning in a third-year fluid mechanics course at Norwegian University of Science and Technology (NTNU). As a first step, on entering the course, students were exposed to a laboratory demonstration focusing on the nature of…

  14. Dense Neighborhoods and Mechanisms of Learning: Evidence from Children with Phonological Delay

    Science.gov (United States)

    Gierut, Judith A.; Morrisette, Michele L.

    2015-01-01

    There is a noted advantage of dense neighborhoods in language acquisition, but the learning mechanism that drives the effect is not well understood. Two hypotheses--long-term auditory word priming and phonological working memory--have been advanced in the literature as viable accounts. These were evaluated in two treatment studies enrolling twelve…

  15. "Gamestar Mechanic": Learning a Designer Mindset through Communicational Competence with the Language of Games

    Science.gov (United States)

    Games, Ivan Alex

    2010-01-01

    This article presents the results of a three-year study of "Gamestar Mechanic" (www.gamestarmechanic.com), a flash-based multiplayer online role-playing game developed for the MacArthur Foundation's digital media learning initiative by the University of Wisconsin-Madison, and Gamelab in New York. The game's objective is to help children…

  16. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    Science.gov (United States)

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  17. Auto Mechanics I. Learning Activity Packets (LAPs). Section E--Brakes.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) that outline the study activities for the "brakes" instructional area for an Auto Mechanics I course. The two LAPs cover the following topics: brake systems and power disc brakes. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included…

  18. IMPLEMENTATION OF MULTIAGENT REINFORCEMENT LEARNING MECHANISM FOR OPTIMAL ISLANDING OPERATION OF DISTRIBUTION NETWORK

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2008-01-01

    among electric power utilities to utilize modern information and communication technologies (ICT) in order to improve the automation of the distribution system. In this paper we present our work for the implementation of a dynamic multi-agent based distributed reinforcement learning mechanism...

  19. Using Game Mechanics to Measure What Students Learn from Programming Games

    Science.gov (United States)

    Denner, Jill; Werner, Linda; Campe, Shannon; Ortiz, Eloy

    2014-01-01

    Despite the growing popularity of teaching children to program games, little is known about the benefits for learning. In this article, the authors propose that game mechanics can be used as a window into how the children are thinking and describe a strategy for using them to analyze students' games. The study involved sixty 10-14 year old…

  20. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?

    Science.gov (United States)

    Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn

    2014-10-08

    Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.

  1. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  2. Reverse inference of memory retrieval processes underlying metacognitive monitoring of learning using multivariate pattern analysis.

    Science.gov (United States)

    Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique

    2016-05-15

    Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  4. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    Science.gov (United States)

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  5. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  6. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  7. Inspection Mechanism and Experimental Study of Prestressed Reverse Tension Method under PC Beam Bridge Anchorage

    Science.gov (United States)

    Peng, Zhang

    2018-03-01

    the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.

  8. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  9. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective.

    Science.gov (United States)

    Bartoli, Claudia; Roux, Fabrice; Lamichhane, Jay Ram

    2016-02-01

    The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  10. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  11. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  12. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  13. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  14. Study of the changes in the magnetic properties of stainless steels under mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Iankov, R.; Rusanov, V., E-mail: rusanov@phys.uni-sofia.bg [Magna Powertrain Ltd., Industrial Zone Rakowski (Bulgaria); Paneva, D.; Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Trautwein, A. X. [Institut für Physik, Universität zu Lübeck (Germany)

    2016-12-15

    Six types of stainless steels (SS) were studied for changes in its structure and magnetic properties under mechanical treatment. Depending on intensity and duration of the process of plastic deformation and the SS type the paramagnetic austenite structure transforms partially to completely into ferrite structure with ferromagnetic behaviour. Some of the SS tested were found slightly modified yet in the process of its manufacturing. Only one SS type with high Ni content preserved its structure and paramagnetic properties even after very intense mechanical treatment.

  15. The underlying mechanism of action for various medicinal properties of Piper betle (betel).

    Science.gov (United States)

    Haslan, H; Suhaimi, F H; Thent, Zar Chi; Das, S

    2015-01-01

    Piper betle (betel) plant belongs to the Piperaceae family. Piper. betle is widely known for its potent medicinal properties. Various active compounds are present in Piper. betle such as allylpyrocatechol, hydroxychavicol, piperbetol, ethylpiperbetol, piperol A, piperol B, chavibetol, and alkaloids which account for these beneficial medicinal properties. In the present narrative review, we looked into the various active compounds present in the Piper betle and attempted to understand their underlying mechanism of action. Proper understanding of the molecular biology involving the mechanism of action may help in better drug formulation and provide better therapeutic actions in the field of alternative and complementary medicine.

  16. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anna Jarosz

    2016-01-01

    Full Text Available Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.

  17. Push-and-stick mechanism for charged and excited small cluster emission under ion bombardment

    International Nuclear Information System (INIS)

    Bitensky, I.S.; Parilis, E.S.; Wojciechowski, I.A.

    1992-01-01

    The mechanism for the formation, excitation and ionization of small clusters emitted under ion bombardment is discussed. It is shown that the increased degree of ionization for the transition metal dimers, trimers and tetramers can be explained by the existence of an additional effective channel for their formation, namely the associative ionization process. A simple estimate shows that the sticking together of a fast cascade atom and the pushed out surface atom is 30-40 times more effective for dimer formation, than the recombination of two fast atoms. This push-and-stick mechanism of cluster formation could also be effective for the formation of trimers and tetramers. (orig.)

  18. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2012-01-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  19. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    Science.gov (United States)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  20. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  1. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  2. CISM course on mechanical behaviour of soils under environmentally induced cyclic loads

    CERN Document Server

    Wood, David; Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads

    2012-01-01

    The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.

  3. Examining Opportunity-to-Learn and Success in High School Mathematics Performance in California under NCLB

    Science.gov (United States)

    Gavrilovic, Daniel Miodrag

    2013-01-01

    The No Child Left Behind Act of 2001 has put many schools under a lot of pressure to meet its high demands. In this quantitative study, the effects that the NCLB act has had on students' opportunity to learn (OTL) and Subject Level Success (SS) from 2004 to 2012 in 9th, 10th, and 11th grade math coursework (Algebra 1, Geometry, Algebra 2, and…

  4. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.

    1997-01-01

    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  5. From Sound to Significance: Exploring the Mechanisms Underlying Emotional Reactions to Music.

    Science.gov (United States)

    Juslin, Patrik N; Barradas, Gonçalo; Eerola, Tuomas

    2015-01-01

    A common approach to studying emotional reactions to music is to attempt to obtain direct links between musical surface features such as tempo and a listener's responses. However, such an analysis ultimately fails to explain why emotions are aroused in the listener. In this article we explore an alternative approach, which aims to account for musical emotions in terms of a set of psychological mechanisms that are activated by different types of information in a musical event. This approach was tested in 4 experiments that manipulated 4 mechanisms (brain stem reflex, contagion, episodic memory, musical expectancy) by selecting existing musical pieces that featured information relevant for each mechanism. The excerpts were played to 60 listeners, who were asked to rate their felt emotions on 15 scales. Skin conductance levels and facial expressions were measured, and listeners reported subjective impressions of relevance to specific mechanisms. Results indicated that the target mechanism conditions evoked emotions largely as predicted by a multimechanism framework and that mostly similar effects occurred across the experiments that included different pieces of music. We conclude that a satisfactory account of musical emotions requires consideration of how musical features and responses are mediated by a range of underlying mechanisms.

  6. Contact force and mechanical loss of multistage cable under tension and bending

    Science.gov (United States)

    Ru, Yanyun; Yong, Huadong; Zhou, Youhe

    2016-10-01

    A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.

  7. Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory.

    Science.gov (United States)

    Gopnik, Alison; Wellman, Henry M

    2012-11-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and nontechnical way, and review an extensive but relatively recent body of empirical results that supports these ideas. These include new studies of the mechanisms of learning. Children infer causal structure from statistical information, through their own actions on the world and through observations of the actions of others. Studies demonstrate these learning mechanisms in children from 16 months to 4 years old and include research on causal statistical learning, informal experimentation through play, and imitation and informal pedagogy. They also include studies of the variability and progressive character of intuitive theory change, particularly theory of mind. These studies investigate both the physical and the psychological and social domains. We conclude with suggestions for further collaborative projects between developmental and computational cognitive scientists.

  8. Damage evolution of TBC system under in-phase thermo-mechanical tests

    International Nuclear Information System (INIS)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y.; Liu, Y.F.

    2010-01-01

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y 2 O 3 -ZrO 2 thermal barrier coating (TBC) system (8 wt% Y 2 O 3 -ZrO 2 /CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  9. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  10. Damage evolution of TBC system under in-phase thermo-mechanical tests

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, R.; Tanaka, M.; Kagawa, Y. [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Liu, Y.F., E-mail: yfliu@hyper.rcast.u-tokyo.ac.jp [Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2010-10-15

    In-phase thermo-mechanical tests (TMF) of EB-PVD Y{sub 2}O{sub 3}-ZrO{sub 2} thermal barrier coating (TBC) system (8 wt% Y{sub 2}O{sub 3}-ZrO{sub 2}/CoNiCrAlY/IN-738 substrate) were done under a through-the-thick-direction thermal gradient from TBC surface temperature at 1150 deg. C to substrate temperature at 1000 deg. C. Deformation and failure behaviors of the TBC system were observed at the macroscopic and microscopic scales and damage evolution of the system under in-phase thermo-mechanical test was discussed. Special attention was paid to TBC layer cracking, thermally grown oxide (TGO) layer formation and void formation in bond coat and substrate. Effect of TMF conditions on the damage evolution behaviors was also discussed.

  11. Exact solution for stresses/displacements in a multilayered hollow cylinder under thermo-mechanical loading

    International Nuclear Information System (INIS)

    Yeo, W.H.; Purbolaksono, J.; Aliabadi, M.H.; Ramesh, S.; Liew, H.L.

    2017-01-01

    In this study, a new analytical solution by the recursive method for evaluating stresses/displacements in multilayered hollow cylinder under thermo-mechanical loading was developed. The results for temperature distribution, displacements and stresses obtained by using the proposed solution were shown to be in good agreement with the FEM results. The proposed analytical solution was also found to produce more accurate results than those by the analytical solution reported in literature. - Highlights: • A new analytical solution for evaluating stresses in multilayered hollow cylinder under thermo-mechanical loading. • A simple computational procedure using a recursive method. • A promising technique for evaluating the operating axial and hoop stresses in pressurized composite vessels.

  12. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H.W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-01-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2x10 22 m -2 (E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite

  13. Mechanical strength of an ITER coil insulation system under static and dynamic load after reactor irradiation

    Science.gov (United States)

    Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.

    2002-12-01

    The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.

  14. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    Science.gov (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  15. Quantum Interactive Learning Tutorial on the Double-Slit Experiment to Improve Student Understanding of Quantum Mechanics

    Science.gov (United States)

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-01-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…

  16. Detecting method for crude oil price fluctuation mechanism under different periodic time series

    International Nuclear Information System (INIS)

    Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue

    2017-01-01

    Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these

  17. Neural mechanisms of human perceptual learning: electrophysiological evidence for a two-stage process.

    Science.gov (United States)

    Hamamé, Carlos M; Cosmelli, Diego; Henriquez, Rodrigo; Aboitiz, Francisco

    2011-04-26

    Humans and other animals change the way they perceive the world due to experience. This process has been labeled as perceptual learning, and implies that adult nervous systems can adaptively modify the way in which they process sensory stimulation. However, the mechanisms by which the brain modifies this capacity have not been sufficiently analyzed. We studied the neural mechanisms of human perceptual learning by combining electroencephalographic (EEG) recordings of brain activity and the assessment of psychophysical performance during training in a visual search task. All participants improved their perceptual performance as reflected by an increase in sensitivity (d') and a decrease in reaction time. The EEG signal was acquired throughout the entire experiment revealing amplitude increments, specific and unspecific to the trained stimulus, in event-related potential (ERP) components N2pc and P3 respectively. P3 unspecific modification can be related to context or task-based learning, while N2pc may be reflecting a more specific attentional-related boosting of target detection. Moreover, bell and U-shaped profiles of oscillatory brain activity in gamma (30-60 Hz) and alpha (8-14 Hz) frequency bands may suggest the existence of two phases for learning acquisition, which can be understood as distinctive optimization mechanisms in stimulus processing. We conclude that there are reorganizations in several neural processes that contribute differently to perceptual learning in a visual search task. We propose an integrative model of neural activity reorganization, whereby perceptual learning takes place as a two-stage phenomenon including perceptual, attentional and contextual processes.

  18. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    Li, Muyuan

    2015-01-01

    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  19. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  20. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    OpenAIRE

    Li Ming Chen; Wen Ping Wang

    2016-01-01

    The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under g...

  1. Modulating Conscious Movement Intention by Noninvasive Brain Stimulation and the Underlying Neural Mechanisms

    OpenAIRE

    Douglas, Zachary H.; Maniscalco, Brian; Hallett, Mark; Wassermann, Eric M.; He, Biyu J.

    2015-01-01

    Conscious intention is a fundamental aspect of the human experience. Despite long-standing interest in the basis and implications of intention, its underlying neurobiological mechanisms remain poorly understood. Using high-definition transcranial DC stimulation (tDCS), we observed that enhancing spontaneous neuronal excitability in both the angular gyrus and the primary motor cortex caused the reported time of conscious movement intention to be ∼60–70 ms earlier. Slow brain waves recorded ∼2–...

  2. MECHANICAL BEHAVIOR OF COLD BITUMINOUS MIXTURE UNDER EFFECTS OF STATIC AND REPEATED LOADS1

    OpenAIRE

    Tamyres Karla da Silva; Carlos Alexandre Braz de Carvalho; Geraldo Luciano de Oliveira Marques; Dario Cardoso de Lima; Taciano Oliveira da Silva; Carlos Cardoso Machado

    2017-01-01

    Abstract This paper presents the results of an experimental research aimed at analyzing the mechanical behavior of a cold bituminous mixture under effects of static and repeated loads. Initially, a Marshall mixture design was performed to determine the mixture design contents according to standard DNER (1994a). After obtaining the mixture design contents, nine bituminous specimens were molded and subjected to the following tests: resilient modulus, tensile strength by diametral compression, a...

  3. Different intra- and interspecific facilitation mechanisms between two Mediterranean trees under a climate change scenario.

    Science.gov (United States)

    Gimeno, Teresa E; Escudero, Adrián; Valladares, Fernando

    2015-01-01

    In harsh environments facilitation alleviates biotic and abiotic constraints on tree recruitment. Under ongoing drier climate change, we expect facilitation to increase as a driver of coexistence. However, this might not hold under extreme abiotic stress and when the outcome depends on the interaction with other drivers such as altered herbivore pressure due to land use change. We performed a field water-manipulation experiment to quantify the importance of facilitation in two coexisting Mediterranean trees (dominant Juniperus thurifera and coexisting Quercus ilex subsp. ballota) under a climate change scenario. Shifts in canopy dominance favouring Q. ilex could be based on the extension of heterospecific facilitation to the detriment of conspecific alleviation. We found that saplings of both species transplanted under the canopy of nurse trees had greater survival probability, growth and photochemical efficiency. Intra- and interspecific facilitation mechanisms differed: alleviation of abiotic stress benefited both species during summer and J. thurifera during winter, whereas browsing protection was relevant only for Q. ilex. Facilitation was greater under the dry treatment only for Q. ilex, which partially agreed with the predictions of the stress gradient hypothesis. We conclude that present rainfall availability limits neither J. thurifera nor Q. ilex establishment. Nevertheless, under current global change scenarios, imposing increasing abiotic stress together with altered herbivore browsing, nurse trees could differentially facilitate the establishment of Q. ilex due to species-specific traits, i.e. palatability; drought, heat and cold tolerance, underlying species differences in the facilitation mechanisms and eventually triggering a change from pure juniper woodlands to mixed formations.

  4. Failing to learn from negative prediction errors: Obesity is associated with alterations in a fundamental neural learning mechanism.

    Science.gov (United States)

    Mathar, David; Neumann, Jane; Villringer, Arno; Horstmann, Annette

    2017-10-01

    Prediction errors (PEs) encode the difference between expected and actual action outcomes in the brain via dopaminergic modulation. Integration of these learning signals ensures efficient behavioral adaptation. Obesity has recently been linked to altered dopaminergic fronto-striatal circuits, thus implying impairments in cognitive domains that rely on its integrity. 28 obese and 30 lean human participants performed an implicit stimulus-response learning paradigm inside an fMRI scanner. Computational modeling and psycho-physiological interaction (PPI) analysis was utilized for assessing PE-related learning and associated functional connectivity. We show that human obesity is associated with insufficient incorporation of negative PEs into behavioral adaptation even in a non-food context, suggesting differences in a fundamental neural learning mechanism. Obese subjects were less efficient in using negative PEs to improve implicit learning performance, despite proper coding of PEs in striatum. We further observed lower functional coupling between ventral striatum and supplementary motor area in obese subjects subsequent to negative PEs. Importantly, strength of functional coupling predicted task performance and negative PE utilization. These findings show that obesity is linked to insufficient behavioral adaptation specifically in response to negative PEs, and to associated alterations in function and connectivity within the fronto-striatal system. Recognition of neural differences as a central characteristic of obesity hopefully paves the way to rethink established intervention strategies: Differential behavioral sensitivity to negative and positive PEs should be considered when designing intervention programs. Measures relying on penalization of unwanted behavior may prove less effective in obese subjects than alternative approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    Science.gov (United States)

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  6. Experimental Investigation on Shock Mechanical Properties of Red Sandstone under Preloaded 3D Static Stresses

    Directory of Open Access Journals (Sweden)

    Niu Yong

    2015-11-01

    Full Text Available Triaxial impact mechanical performance experiment was performed to study the mechanical properties of red sandstone subjected to three-dimensional (3D coupled static and dynamic loads, i.e., three confining pressures (0, 5, and 10 MPa and three axial pressures (11, 27, and 43 MPa. A modified 3D split Hopkinson pressure bar testing system was used. The change trend in the deformation of red sandstone and the strength and failure modes under axial pressures and confining pressures were analyzed. Results show that, when the confining pressure is constant, the compressive strength, secant modulus, and energy absorbed per unit volume of red sandstone initially increases and subsequently decreases, whereas the average strain rate exhibits an opposite trend. When the axial pressure is constant, both the compressive strength and secant modulus of red sandstone are enhanced, but the average strain rate is decreased with increasing confining pressure. The energy absorbed per unit volume is initially increased and subsequently decreased as the confining pressure increases. Red sandstone exhibits a cone-shaped compression–shear failure mode under the 3D coupled static and dynamic loads. The conclusions serve as theoretical basis on the mechanical properties of deep medium-strength rock under a high ground stress and external load disturbance condition

  7. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  8. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  9. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  10. Learning with multiple representations: an example of a revision lesson in mechanics

    Science.gov (United States)

    Wong, Darren; Poo, Sng Peng; Eng Hock, Ng; Loo Kang, Wee

    2011-03-01

    We describe an example of learning with multiple representations in an A-level revision lesson on mechanics. The context of the problem involved the motion of a ball thrown vertically upwards in air and studying how the associated physical quantities changed during its flight. Different groups of students were assigned to look at the ball's motion using various representations: motion diagrams, vector diagrams, free-body diagrams, verbal description, equations and graphs, drawn against time as well as against displacement. Overall, feedback from students about the lesson was positive. We further discuss the benefits of using computer simulation to support and extend student learning.

  11. Design options for cooperation mechanisms under the new European renewable energy directive

    International Nuclear Information System (INIS)

    Klessmann, Corinna; Lamers, Patrick; Ragwitz, Mario; Resch, Gustav

    2010-01-01

    In June 2009, a new EU directive on the promotion of renewable energy sources (RES) entered into effect. The directive 2009/28/EC, provides for three cooperation mechanisms that will allow member states to achieve their national RES target in cooperation with other member states: statistical transfer, joint projects, and joint support schemes. This article analyses the pros and cons of the three mechanisms and explores design options for their implementation through strategic and economic questions: How to counterbalance the major drawbacks of each mechanism? How to reflect a balance of costs and benefits between the involved member states? The analysis identifies a number of design options that respond to these questions, e.g. long term contracts to ensure sufficient flexibility for statistical transfers, a coordinated, standardised joint project approach to increase transparency in the European market, and a stepwise harmonisation of joint support schemes that is based on a cost-effective accounting approach. One conclusion is that the three cooperation mechanisms are closely interlinked. One can consider their relation to be a gradual transition from member state cooperation under fully closed national support systems in case of statistical transfers, to cooperation under fully open national support systems in a joint support scheme.

  12. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    Science.gov (United States)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  13. A mechanical deformation model of metallic fuel pin under steady state conditions

    International Nuclear Information System (INIS)

    Lee, D. W.; Lee, B. W.; Kim, Y. I.; Han, D. H.

    2004-01-01

    As a mechanical deformation model of the MACSIS code predicts the cladding deformation due to the simple thin shell theory, it is impossible to predict the FCMI(Fuel-Cladding Mechanical Interaction). Therefore, a mechanical deformation model used the generalized plane strain is developed. The DEFORM is a mechanical deformation routine which is used to analyze the stresses and strains in the fuel and cladding of a metallic fuel pin of LMRs. The accuracy of the program is demonstrated by comparison of the DEFORM predictions with the result of another code calculations or experimental results in literature. The stress/strain distributions of elastic part under free thermal expansion condition are completely matched with the results of ANSYS code. The swelling and creep solutions are reasonably well agreed with the simulations of ALFUS and LIFE-M codes, respectively. The predicted cladding strains are under estimated than experimental data at the range of high burnup. Therefore, it is recommended that the fine tuning of the DEFORM based on various range of experimental data

  14. Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia.

    Science.gov (United States)

    Barch, Deanna M; Pagliaccio, David; Luking, Katherine

    2016-01-01

    Motivational and hedonic impairments are core aspects of a variety of types of psychopathology. These impairments cut across diagnostic categories and may be critical to understanding major aspects of the functional impairments accompanying psychopathology. Given the centrality of motivational and hedonic systems to psychopathology, the Research Domain Criteria (RDoC) initiative includes a "positive valence" systems domain that outlines a number of constructs that may be key to understanding the nature and mechanisms of motivational and hedonic impairments in psychopathology. These component constructs include initial responsiveness to reward, reward anticipation or expectancy, incentive or reinforcement learning, effort valuation, and action selection. Here, we review behavioral and neuroimaging studies providing evidence for impairments in these constructs in individuals with psychosis versus in individuals with depressive pathology. There are important differences in the nature of reward-related and hedonic deficits associated with psychosis versus depression that have major implications for our understanding of etiology and treatment development. In particular, the literature strongly suggests the presence of impairments in in-the-moment hedonics or "liking" in individuals with depressive pathology, particularly among those who experience anhedonia. Such deficits may propagate forward and contribute to impairments in other constructs that are dependent on hedonic responses, such as anticipation, learning, effort, and action selection. Such hedonic impairments could reflect alterations in dopamine and/or opioid signaling in the striatum related to depression or specifically to anhedonia in depressed populations. In contrast, the literature points to relatively intact in-the-moment hedonic processing in psychosis, but provides much evidence for impairments in other components involved in translating reward to action selection. Particularly, individuals with

  15. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp

    2017-04-01

    According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford

  16. Mechanical behavior of confined self-compacting reinforced concrete circular columns under concentric axial loading

    Directory of Open Access Journals (Sweden)

    Fouad Khairallah

    2013-12-01

    Full Text Available While there is abundant research information on ordinary confined concrete, there are little data on the behavior of Self-Compacting Concrete (SCC under such condition. Due to higher shrinkage and lower coarse aggregate content of SCC compared to that of Normal Concrete (NC, its composite performance under confined conditions needs more investigation. This paper has been devoted to investigate and compare the mechanical behavior of confined concrete circular columns cast with SCC and NC under concentric axial loading. The parameters affecting are including concrete compressive strength and confinement configuration. Twenty column specimens were casted and confined using four confinement techniques, CFRP wrap, FRP tube, GFRP wrap, and spiral steel hoops. The performance of the tested column specimens is evaluated based on mode of failure, load–displacement curve, stress–strain characteristics, ultimate strength, ductility, and degree of confinement.

  17. The proximate memory mechanism underlying the survival-processing effect: richness of encoding or interactive imagery?

    Science.gov (United States)

    Kroneisen, Meike; Erdfelder, Edgar; Buchner, Axel

    2013-01-01

    Nairne and collaborators showed that assessing the relevance of words in the context of an imagined survival scenario boosts memory for these words. Although this survival-processing advantage has attracted a considerable amount of research, little is known about the proximate memory mechanism mediating this effect. Recently, Kroneisen and Erdfelder (2011) argued that it is not survival processing itself that facilitates recall but rather the richness and distinctiveness of encoding that is triggered by the survival-processing task. Alternatively, however, it is also conceivable that survival processing fosters interactive imagery, a process known to improve associative learning. To test these explanations we compared relevance-rating and interactive imagery tasks for survival and control scenarios. Results show that the survival advantage replicates in the relevance-rating condition but vanishes in the interactive imagery condition. This refutes the interactive imagery explanation and corroborates the richness-of-encoding hypothesis of the survival-processing effect.

  18. Reactive Molecular Dynamics Simulations to Understand Mechanical Response of Thaumasite under Temperature and Strain Rate Effects.

    Science.gov (United States)

    Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres

    2017-06-22

    Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.

  19. Under-represented students' engagement in secondary science learning: A non-equivalent control group design

    Science.gov (United States)

    Vann-Hamilton, Joy J.

    Problem. A significant segment of the U.S. population, under-represented students, is under-engaged or disengaged in secondary science education. International and national assessments and various research studies illuminate the problem and/or the disparity between students' aspirations in science and the means they have to achieve them. To improve engagement and address inequities among these students, more contemporary and/or inclusive pedagogy is recommended. More specifically, multicultural science education has been suggested as a potential strategy for increased equity so that all learners have access to and are readily engaged in quality science education. While multicultural science education emphasizes the integration of students' backgrounds and experiences with science learning , multimedia has been suggested as a way to integrate the fundamentals of multicultural education into learning for increased engagement. In addition, individual characteristics such as race, sex, academic track and grades were considered. Therefore, this study examined the impact of multicultural science education, multimedia, and individual characteristics on under-represented students' engagement in secondary science. Method. The Under-represented Students Engagement in Science Survey (USESS), an adaptation of the High School Survey of Student Engagement, was used with 76 high-school participants. The USESS was used to collect pretest and posttest data concerning their types and levels of student engagement. Levels of engagement were measured with Strongly Agree ranked as 5, down to Strongly Disagree ranked at 1. Participants provided this feedback prior to and after having interacted with either the multicultural or the non-multicultural version of the multimedia science curriculum. Descriptive statistics for the study's participants and the survey items, as well as Cronbach's alpha coefficient for internal consistency reliability with respect to the survey subscales, were

  20. New developments on the neurobiological and pharmaco-genetic mechanisms underlying internet and videogame addiction.

    Science.gov (United States)

    Weinstein, Aviv; Lejoyeux, Michel

    2015-03-01

    There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.

  1. Underlying Mechanisms of Cooperativity, Input Specificity, and Associativity of Long-Term Potentiation Through a Positive Feedback of Local Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Lijie Hao

    2018-05-01

    Full Text Available Long-term potentiation (LTP is a specific form of activity-dependent synaptic plasticity that is a leading mechanism of learning and memory in mammals. The properties of cooperativity, input specificity, and associativity are essential for LTP; however, the underlying mechanisms are unclear. Here, based on experimentally observed phenomena, we introduce a computational model of synaptic plasticity in a pyramidal cell to explore the mechanisms responsible for the cooperativity, input specificity, and associativity of LTP. The model is based on molecular processes involved in synaptic plasticity and integrates gene expression involved in the regulation of neuronal activity. In the model, we introduce a local positive feedback loop of protein synthesis at each synapse, which is essential for bimodal response and synapse specificity. Bifurcation analysis of the local positive feedback loop of brain-derived neurotrophic factor (BDNF signaling illustrates the existence of bistability, which is the basis of LTP induction. The local bifurcation diagram provides guidance for the realization of LTP, and the projection of whole system trajectories onto the two-parameter bifurcation diagram confirms the predictions obtained from bifurcation analysis. Moreover, model analysis shows that pre- and postsynaptic components are required to achieve the three properties of LTP. This study provides insights into the mechanisms underlying the cooperativity, input specificity, and associativity of LTP, and the further construction of neural networks for learning and memory.

  2. Alteration of a motor learning rule under mirror-reversal transformation does not depend on the amplitude of visual error.

    Science.gov (United States)

    Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi

    2015-05-01

    Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Microscale experimental investigation of deformation and damage of argillaceous rocks under cyclic hydric and mechanical loads

    International Nuclear Information System (INIS)

    Wang, Linlin; Yang, Diansen; Heripre, Eva; Chanchole, Serge; Bornert, Michel; Pouya, Ahmad; Halphen, Bernard

    2012-01-01

    Document available in abstract form only. Argillaceous rocks are possible host rocks for underground nuclear waste repositories. They exhibit complex coupled thermo-hydro-chemo-mechanical behavior, the description of which would strongly benefit from an improved experimental insight on their deformation and damage mechanisms at microscale. We present some recent observations of the evolution of these rocks at the scale of their composite microstructure, essentially made of a clay matrix with embedded carbonates and quartz particles with sizes ranging from a few to several tens of micrometers, when they are subjected to cyclic variations of relative humidity and mechanical loading. They are based on the combination of high definition and high resolution imaging in an environmental scanning electron microscope (ESEM), in situ hydro-mechanical loading of the samples, and digital image correlation techniques. Samples, several millimeters in diameter, are held at a constant temperature of 2 deg. Celsius while the vapor pressure in the ESEM chamber is varied from a few to several hundreds of Pascals, generating a relative humidity ranging from about 10% up to 90%. Results show a strongly heterogeneous deformation field at microscale, which is the result of complex hydro-mechanical interactions. In particular, it can be shown that local swelling incompatibilities can generate irreversible deformations in the clay matrix, even if the overall hydric deformations seem reversible. In addition, local damage can be generated, in the form of a network of microcracks, located in the bulk of the clay matrix and/or at the interface between clay and other mineral particles. The morphology of this network, described in terms of crack length, orientation and preferred location, has been observed to be dependent on the speed of the variation of the relative humidity, and is different in a saturation or desaturation process. Besides studying the deformation and damage under hydric

  4. Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

    Science.gov (United States)

    Zhu, Xingfu; Ingraham, Thomas; Søvik, Eirik

    2016-01-01

    Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from “innovators” to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority “innovated” and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require “insight”: naïve bees failed a “coiled-string experiment,” in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony’s foragers. We observed that there were several sequential sets (“generations”) of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next “generation” of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition. PMID:27701411

  5. Corporate debts ad credit performance under the new mechanism of reorganization of the Russian banks

    Directory of Open Access Journals (Sweden)

    Sergey A. Andryushin

    2017-09-01

    Full Text Available Objective to explore the dynamics and factors of formation of corporate debts the characteristics of low credit activity of the Russian banks and regulation of liquidity deficit of enterprises under the new reorganization mechanism in the Russian banking sector. Methods systematic approach to the cognition of economic phenomena which allows to study them in their dynamic development taking into account the influence of various environmental factors. The systematic approach determined selection of specific research methods empirical logical comparative and statistical. Results the article is devoted to the problems of declining credit activity of commercial banks under the conditions of economic activity revival as well as to assessing the impact of the new reorganization mechanism on this process. It is shown that in the recent years the nonfinancial sector faces the trend of optimizing the corporate debts and the liquidity deficit which reduced the demand for loans and as a consequence decreased the banksrsquo credit activity. To analyze the dynamics of deficitsurplus of liquidity in the corporate sector a new classification of liquidity deficitsurplus levels was introduced. Based on the proposed classification the risk factors were identified that influenced the dynamics of indebtedness in the corporate sector. The article also analyses the modern monetary mechanism of money supply in the economy and its transformation. It was determined that the main limitation of credit issuance by commercial banks is their capital not the reserve multiplier. The new mechanism of credit institutionsrsquo financial recovery and its impact on the banksrsquo credit activity was estimated. The conditions of liquidity deficiency reduction in the Russian companies were analyzed in the medium term. Scientific novelty for the first time on the basis of system analysis methods the growth factors of the corporate debt load were identified the peculiarities of low

  6. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  7. An investigation of the mechanical behavior of initially curved microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2018-03-28

    In this article, we investigate the mechanical behavior of initially curved microplates under electrostatic actuation. Microplates are essential components of many Micro-Electro-Mechanical System devices; however, they commonly undergo an initial curvature imperfection, due to the microfabrication process. Initial curvature imperfection significantly affects the mechanical behavior of microplates. In this work, we derive a dynamic analogue of the von Kármán governing equation for such plates. These equations are then used to develop a reduced order model based on the Galerkin procedure to simulate the static and dynamic behavior of the microplate. Two profiles of initial curvature commonly encountered in microfabricated structures are considered, where one assumes a variation in shape along one dimension of the plate only (cylindrical bending shape) while the other assumes a variation in shape along both dimensions of the plate. Their effects on both the static and dynamic responses of the microplates are examined and compared. We validate the reduced order model by comparing the calculated static behavior and the fundamental natural frequency with those computed by a finite element model over a range of the initial plate rise. The static behavior of the microplate is investigated when varying the DC voltage. Then, the dynamic behavior of the microplate is examined under the application of a harmonic AC voltage superimposed to a DC voltage.

  8. Morphological and molecular variations induce mitochondrial dysfunction as a possible underlying mechanism of athletic amenorrhea.

    Science.gov (United States)

    Xiong, Ruo-Hong; Wen, Shi-Lei; Wang, Qiang; Zhou, Hong-Ying; Feng, Shi

    2018-01-01

    Female athletes may experience difficulties in achieving pregnancy due to athletic amenorrhea (AA); however, the underlying mechanisms of AA remain unknown. The present study focuses on the mitochondrial alteration and its function in detecting the possible mechanism of AA. An AA rat model was established by excessive swimming. Hematoxylin and eosin staining, and transmission electron microscopic methods were performed to evaluate the morphological changes of the ovary, immunohistochemical examinations and radioimmunoassays were used to detect the reproductive hormones and corresponding receptors. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to test the mtDNA copy number. PCR and western blot analysis were used to test the expression of ND2. The change of morphological features of the rat ovaries revealed evident abnormalities. Particularly, the features of the mitochondria were markedly altered. In addition, reproductive hormones in the serum and tissues of AA rats were also detected to evaluate the function of the ovaries, and the levels of these hormones were significantly decreased. Furthermore, the mitochondrial DNA copy number (mtDNA) and expression of NADH dehydrogenase subunit 2 (ND2) were quantitated by qPCR or western blot analysis. Accordingly, the mtDNA copy number and expression of ND2 expression were markedly reduced in the AA rats. In conclusion, mitochondrial dysfunction in AA may affect the cellular energy supply and, therefore, result in dysfunction of the ovary. Thus, mitochondrial dysfunction may be considered as a possible underlying mechanism for the occurrence of AA.

  9. Neural mechanisms underlying cognitive control of men with lifelong antisocial behavior.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Mu Ller, Bernhard; Forsting, Michael; Gizewski, Elke; Leygraf, Norbert; Hodgins, Sheilagh

    2014-04-30

    Results of meta-analyses suggested subtle deficits in cognitive control among antisocial individuals. Because almost all studies focused on children with conduct problems or adult psychopaths, however, little is known about cognitive control mechanisms among the majority of persistent violent offenders who present an antisocial personality disorder (ASPD). The present study aimed to determine whether offenders with ASPD, relative to non-offenders, display dysfunction in the neural mechanisms underlying cognitive control and to assess the extent to which these dysfunctions are associated with psychopathic traits and trait impulsivity. Participants comprised 21 violent offenders and 23 non-offenders who underwent event-related functional magnetic resonance imaging while performing a non-verbal Stroop task. The offenders, relative to the non-offenders, exhibited reduced response time interference and a different pattern of conflict- and error-related activity in brain areas involved in cognitive control, attention, language, and emotion processing, that is, the anterior cingulate, dorsolateral prefrontal, superior temporal and postcentral cortices, putamen, thalamus, and amygdala. Moreover, between-group differences in behavioural and neural responses revealed associations with core features of psychopathy and attentional impulsivity. Thus, the results of the present study confirmed the hypothesis that offenders with ASPD display alterations in the neural mechanisms underlying cognitive control and that those alterations relate, at least in part, to personality characteristics. Copyright © 2014. Published by Elsevier Ireland Ltd.

  10. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  11. Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.

    Science.gov (United States)

    Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian

    2018-02-01

    Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.

  12. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits.

    Science.gov (United States)

    Wu, Di; Zheng, Chao; Wu, Ji; Xue, Jing; Huang, Rongrong; Wu, Di; Song, Yueming

    2017-11-01

    A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. This is an animal laboratory study. Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Petra Zimmermann

    2018-03-01

    Full Text Available BackgroundThe mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.ObjectivesTo systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.MethodsA systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA. Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin on immunological markers in humans were included.ResultsWe identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL-8, IL-6, IL-1beta, tumor necrosis factor (TNF-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th 2 cells cytokines (IL-4, IL-5, IL-6 was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma.ConclusionMacrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.

  14. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment.

    Science.gov (United States)

    Choudhary, Lokesh; Raman, R K Singh

    2012-02-01

    It is essential that a metallic implant material possesses adequate resistance to cracking/fracture under the synergistic action of a corrosive physiological environment and mechanical loading (i.e. stress corrosion cracking (SCC)), before the implant can be put to actual use. This paper presents a critique of the fundamental issues with an assessment of SCC of a rapidly corroding material such as magnesium alloys, and describes an investigation into the mechanism of SCC of a magnesium alloy in a physiological environment. The SCC susceptibility of the alloy in a simulated human body fluid was established by slow strain rate tensile (SSRT) testing using smooth specimens under different electrochemical conditions for understanding the mechanism of SCC. However, to assess the life of the implant devices that often possess fine micro-cracks, SCC susceptibility of notched specimens was investigated by circumferential notch tensile (CNT) testing. CNT tests also produced important design data, i.e. threshold stress intensity for SCC (KISCC) and SCC crack growth rate. Fractographic features of SCC were examined using scanning electron microscopy. The SSRT and CNT results, together with fractographic evidence, confirmed the SCC susceptibility of both smooth and notched specimens of a magnesium alloy in the physiological environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    Dirras, G.; Bouvier, S.; Gubicza, J.; Hasni, B.; Szilagyi, T.

    2009-01-01

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about ε VM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  16. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    Energy Technology Data Exchange (ETDEWEB)

    Dirras, G., E-mail: dirras@univ-paris13.fr [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Bouvier, S. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Gubicza, J. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary); Hasni, B. [LPMTM - CNRS, Institut Galilee, Universite Paris 13, 99 Avenue J.B. Clement, 93430 Villetaneuse (France); Szilagyi, T. [Department of Materials Physics, Eoetvoes Lorand University, P.O.B. 32, Budapest H-1518 (Hungary)

    2009-11-25

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about {epsilon}{sub VM} = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  17. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'An; Gu, Yuantong

    2016-09-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft.

  18. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.

    Science.gov (United States)

    Khatoon, Amana; Rehman, Shafiq; Hiraga, Susumu; Makino, Takahiro; Komatsu, Setsuko

    2012-10-22

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Ablation characteristics and reaction mechanism of insulation materials under slag deposition condition

    Science.gov (United States)

    Guan, Yiwen; Li, Jiang; Liu, Yang

    2017-07-01

    Current understanding of the physical and chemical processes involved in the ablation of insulation materials by highly aluminized solid propellants is limited. The study on the heat transfer and ablation principle of ethylene propylene diene monomer (EPDM) materials under slag deposition condition is essential for future design or modification of large solid rocket motors (SRMs) for launch application. In this paper, the alumina liquid flow pattern and the deposition principle in full-scale SRM engines are discussed. The interaction mechanism between the alumina droplets and the wall are analyzed. Then, an experimental method was developed to simulate the insulation material ablation under slag deposition condition. Experimental study was conducted based on a laboratory-scale device. Meanwhile, from the analysis of the cross-sectional morphology and chemical composition of the charring layer after ablation, the reaction mechanism of the charring layer under deposition condition was discussed, and the main reaction equation was derived. The numerical simulation and experimental results show the following. (i) The alumina droplet flow in the deposition section of the laboratory-scale device is similar to that of a full-scale SRM. (ii) The charring layer of the EPDM insulator displays a porous tight/loose structure under high-temperature slag deposition condition. (iii) A seven-step carbothermal reduction in the alumina is derived and established under high-pressure and high-temperature environment in the SRM combustion chamber. (iv) The analysis using thermodynamic software indicates that the reaction of the alumina and charring layer initially forms Al4C3 during the operation. Then, Al element and Al2OC compound are subsequently produced with the reduction in the release of gas CO as well with continuous environmental heating.

  20. Mechanical properties of cellulose electro-active paper under different environmental conditions

    International Nuclear Information System (INIS)

    Kim, Heung Soo; Kim, Jaehwan; Jung, Woochul; Ampofo, Joshua; Craft, William; Sankar, Jagannathan

    2008-01-01

    The mechanical properties of cellulose-based electro-active paper (EAPap) are investigated under various environmental conditions. Cellulose EAPap has been discovered as a smart material that can be used as both sensor and actuator. Its advantages include low voltage operation, light weight, low power consumption, biodegradability and low cost. EAPap is made with cellulose paper coated with thin electrodes. EAPap shows a reversible and reproducible bending movement as well as longitudinal displacement under an electric field. However, EAPap is a complex anisotropic material which has not been fully characterized. This study investigates the mechanical properties of cellulose-based EAPap, including Young's modulus, yield strength, ultimate strength and creep, along with orientation directions, humidity and temperature levels. To test the materials in different humidity and temperature levels, a special material testing system was made that can control the testing environmental conditions. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which was higher than that of other polymer materials. Also, the Young's modulus is orientation dependent, which may be associated with the piezoelectricity of EAPap materials. The elastic strength and stiffness gradually decreased when the humidity and temperature were increased. Creep and relaxation were observed under constant stress and strain, respectively. Through scanning electron microscopy, EAPap is shown to exhibit both layered and oriented cellulose macromolecular structures that impact both the elastic and plastic behavior