WorldWideScience

Sample records for underlying lattice structure

  1. Measurement of deforming mode of lattice truss structures under impact loading

    Directory of Open Access Journals (Sweden)

    Zhao H.

    2012-08-01

    Full Text Available Lattice truss structures, which are used as a core material in sandwich panels, were widely investigated experimentally and theoretically. However, explanation of the deforming mechanism using reliable experimental results is almost rarely reported, particularly for the dynamic deforming mechanism. The present work aimed at the measurement of the deforming mode of lattice truss structures. Indeed, quasi-static and Split Hopkinson Pressure Bar (SHPB tests have been performed on the tetrahedral truss cores structures made of Aluminum 3003-O. Global values such as crushing forces and displacements between the loading platens are obtained. However, in order to understand the deforming mechanism and to explain the observed impact strength enhancement observed in the experiments, images of the truss core element during the tests are recorded. A method based on the edge detection algorithm is developed and applied to these images. The deforming profiles of one beam are extracted and it allows for calculating the length of beam. It is found that these lengths diminish to a critical value (due to compression and remain constant afterwards (because of significant bending. The comparison between quasi-static and impact tests shows that the beam were much more compressed under impact loading, which could be understood as the lateral inertia effect in dynamic bucking. Therefore, the impact strength enhancement of tetrahedral truss core sandwich panel can be explained by the delayed buckling of beam under impact (more compression reached, together with the strain hardening of base material.

  2. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  3. Localized structures in Kagome lattices

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  4. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  5. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  6. First-principles study of structural, elastic, electronic, lattice dynamic and optical properties of XN (X=Ga, Al and B) compounds under pressure

    International Nuclear Information System (INIS)

    Fatmi, M; Ghebouli, B; Ghebouli, M A; Hieba, Z K

    2011-01-01

    We have applied the pseudo-potential plane wave method to study the structural, elastic, electronic, lattice dynamic and optical properties of GaN and AlN in the wurtzite lattice and BN with zinc-blende structure. We have found that all elastic constants depend strongly on hydrostatic pressure, except for C 44 in wurtzite AlN and GaN that shows a weaker dependence. AlN and GaN present a direct band gap Γ-Γ, whereas BN has an indirect band gap Γ-X. The indirect Γ-K band gap in AlN occurs at about 35 GPa. The top of the valence bands reflects the p electronic character for all structures. There is a gap between optical and acoustic modes only for wurtzite phases AlN and GaN. All peaks in the imaginary part of the dielectric function for the wurtzite lattice GaN and AlN move towards lower energies, while those in the zinc-blende BN structure shift towards higher energies with increasing pressure. The decrease of the static dielectric constant and static refractive index in zinc-blende BN is weaker and it can be explained by its higher elastic constants.

  7. DFT computations of the lattice constant, stable atomic structure and ...

    African Journals Online (AJOL)

    This paper presents the most stable atomic structure and lattice constant of Fullerenes (C60). FHI-aims DFT code was used to predict the stable structure and the computational lattice constant of C60. These were compared with known experimental structures and lattice constants of C60. The results obtained showed that ...

  8. Lattice QCD Calculation of Nucleon Structure

    International Nuclear Information System (INIS)

    Liu, Keh-Fei; Draper, Terrence

    2016-01-01

    It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D s meson decay constant f D s , the strangeness and charmness, the meson mass decomposition and the

  9. Lattice QCD Calculation of Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs, the strangeness and charmness, the meson mass

  10. Characterization of 2d Lattice Structures Using Laser Ultrasonics

    Science.gov (United States)

    Samala, Praveen R.; Smith, James A.; Shi, Zhiqiang

    2009-03-01

    As requirements for structural performance increases with time, engineered structures and materials are becoming much more complex. Lattice structural elements are a prime example of high performance structural elements that maintain structural rigidity, resistance to vibration, and functionality while keeping weight down. Unfortunately, the lattice network makes characterizing the structure for material and structural defects very challenging. The focus of this paper is to understand the ultrasonic wave propagation through 2D lattice structures for characterization purposes. Understanding the response of ultrasonic waves to lattice structures will help to optimize the design of ultrasonic/acoustic testing techniques as well as outline the boundaries of applicability for ultrasonic testing.

  11. Lattice dynamics of solid xenon under pressure.

    Science.gov (United States)

    Dewhurst, J K; Ahuja, R; Li, S; Johansson, B

    2002-02-18

    We use density-functional perturbation theory to obtain the phonon spectrum of fcc xenon under pressure. Thermodynamic properties obtained within the quasiharmonic approximation are in fair to good agreement with experiment at zero pressure. The transition pressure from the fcc to hcp phase is predicted to occur at 5 GPa. The fcc structure is found to be dynamically stable up to a pressure of 100 GPa, beyond which the phonon modes at the X and L symmetry points soften. We attribute the observed sluggish kinetics of the fcc-hcp transition to the small energy difference between the phases as well as to the high dynamical stability of the fcc phase.

  12. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  13. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  14. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  15. The Developement of A Lattice Structured Database

    DEFF Research Database (Denmark)

    Bruun, Hans

    In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology specification and knowledge representation. It is a distributive lattice extended with attribution operations. One of the main...... to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. The database is the dual representation of this most disjoint lattice. We develop algorithms to construct and make queries to the database....

  16. Program LATTICE for Calculation of Parameters of Targets with Heterogeneous (Lattice) Structure

    CERN Document Server

    Bznuni, S A; Soloviev, A G; Sosnin, A N

    2002-01-01

    Program LATTICE, with which help it is possible to describe lattice structure for the program complex CASCAD, is created in the C++ language. It is shown that for model-based electronuclear system on a basis of molten salt reactor with graphite moderator at transition from homogeneous structure to heterogeneous at preservation of a chemical compound there is a growth of k_{eff} by approximately 6 %.

  17. One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Mosekilde, Erik

    1996-01-01

    The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....

  18. Piezoelectricity and pyroelectricity in polyvinylidene fluoride - Influence of the lattice structure

    Science.gov (United States)

    Purvis, C. K.; Taylor, P. L.

    1983-01-01

    Piezoelectric and pyroelectric responses of beta-phase (Phase I) polyvinylidene fluoride are predicted for a model system of polarizable point dipoles. The model incorporates the influence of the orthorhombic crystal structure by including the dependence of the internal electric field on the lattice parameters. Strong anisotropy in the piezoelectric response under uniaxial stress is predicted as a consequence of the orthorhombic lattice structure. Predictions are found to be in reasonable agreement with room-temperature experimental data.

  19. Designing lattice structures with maximal nearest-neighbor entanglement

    International Nuclear Information System (INIS)

    Navarro-Munoz, J C; Lopez-Sandoval, R; Garcia, M E

    2009-01-01

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  20. Designing lattice structures with maximal nearest-neighbor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  1. Ab initio Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Bratt, J D; Edwards, R G; Engelhardt, M; Fleming, G T; Haegler, Ph; Musch, B; Negele, J W; Orginos, K; Pochinsky, A V; Renner, D B; Richards, D G; Schroers, W

    2007-01-01

    Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton's momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton

  2. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family

    International Nuclear Information System (INIS)

    Xu Xixiang

    2010-01-01

    An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.

  3. A Few Discrete Lattice Systems and Their Hamiltonian Structures, Conservation Laws

    Science.gov (United States)

    Guo, Xiu-Rong; Zhang, Yu-Feng; Zhang, Xiang-Zhi; Yue, Rong

    2017-04-01

    With the help of three shift operators and r-matrix theory, a few discrete lattice systems are obtained which can be reduced to the well-known Toda lattice equation with a constraint whose Hamiltonian structures are generated by Poisson tensors of some induced Lie–Poisson bracket. The recursion operators of these lattice systems are constructed starting from Lax representations. Finally, reducing the given shift operators to get a simpler one and its expanding shift operators, we produce a lattice system with three vector fields whose recursion operator is given. Furthermore, we reduce the lattice system with three vector fields to get a lattice system whose Lax pair and conservation laws are obtained, respectively. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Innovation Team of Jiangsu Province Hosted by China University of Mining and Technology (2014), the the Key Discipline Construction by China University of Mining and Technology under Grant No. XZD201602, the Shandong Provincial Natural Science Foundation, China under Grant Nos. ZR2016AM31, ZR2016AQ19, ZR2015EM042, the Development of Science and Technology Plan Projects of TaiAn City under Grant No. 2015NS1048, National Social Science Foundation of China under Grant No. 13BJY026, and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58

  4. Neutron scattering studies of the lattice expansion in a ferromagnetic superconductor UGe2 under pressure

    International Nuclear Information System (INIS)

    Sokolov, D A; Huxley, A D; Ritz, R; Pfleiderer, C; Keller, T

    2011-01-01

    We report high-resolution measurements of the lattice constants of UGe 2 under pressure probed by a novel technique which utilises Larmor precession of polarised neutrons and surpasses the resolution of conventional scattering methods by two orders of magnitude. We confirm the presence of sharp anomalies in the lattice parameters at both the Curie and crossover temperatures at ambient pressure. We find that for pressure of 9.3 kbar the anomaly at the Curie temperature shifts to lower temperature in agreement with the known phase diagram. At 9.3 kbar, the pressure corresponding to an onset of superconductivity, the lattice expansion at the ferromagnetic transition is much stronger than at ambient pressure. The results indicate a complex evolution of the electronic structure of UGe 2 with pressure and suggest that magneto-elastic coupling is strengthened at the pressures at which superconductivity appears; magneto-elastic coupling therefore may play an important role in stabilising superconductivity.

  5. Some recent work on lattice structures for digital signal processing

    Indian Academy of Sciences (India)

    Abstract. This paper is concerned with a review of some recent work on derivation and synthesis of lattice structures for digital signal processing (DSP). In particular, synthesis of canonical structures for both finite impulse response (FIR) and infinite impulse response (IIR) transfer functions is presented in detail. This has ...

  6. Vortex lattice structures in YNi2B2C

    International Nuclear Information System (INIS)

    Yethiraj, M.; Paul, D.M.; Tomy, C.V.; Forgan, E.M.

    1997-01-01

    The authors observe a flux lattice with square symmetry in the superconductor YNi 2 B 2 C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi 2 B 2 C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, they show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although they find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed

  7. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  8. Nucleon Structure Functions from Operator Product Expansion on the Lattice.

    Science.gov (United States)

    Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M

    2017-06-16

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  9. Additive-manufactured sandwich lattice structures: A numerical and experimental investigation

    Science.gov (United States)

    Fergani, Omar; Tronvoll, Sigmund; Brøtan, Vegard; Welo, Torgeir; Sørby, Knut

    2017-10-01

    The utilization of additive-manufactured lattice structures in engineered products is becoming more and more common as the competitiveness of AM as a production technology has increased during the past several years. Lattice structures may enable important weight reductions as well as open opportunities to build products with customized functional properties, thanks to the flexibility of AM for producing complex geometrical configurations. One of the most critical aspects related to taking AM into new application areas—such as safety critical products—is currently the limited understanding of the mechanical behavior of sandwich-based lattice structure mechanical under static and dynamic loading. In this study, we evaluate manufacturability of lattice structures and the impact of AM processing parameters on the structural behavior of this type of sandwich structures. For this purpose, we conducted static compression testing for a variety of geometry and manufacturing parameters. Further, the study discusses a numerical model capable of predicting the behavior of different lattice structure. A reasonably good correlation between the experimental and numerical results was observed.

  10. Lattice Boltzmann Simulation of Multiple Bubbles Motion under Gravity

    Directory of Open Access Journals (Sweden)

    Deming Nie

    2015-01-01

    Full Text Available The motion of multiple bubbles under gravity in two dimensions is numerically studied through the lattice Boltzmann method for the Eotvos number ranging from 1 to 12. Two kinds of initial arrangement are taken into account: vertical and horizontal arrangement. In both cases the effects of Eotvos number on the bubble coalescence and rising velocity are investigated. For the vertical arrangement, it has been found that the coalescence pattern is similar. The first coalescence always takes place between the two uppermost bubbles. And the last coalescence always takes place between the coalesced bubble and the bottommost bubble. For four bubbles in a horizontal arrangement, the outermost bubbles travel into the wake of the middle bubbles in all cases, which allows the bubbles to coalesce. The coalescence pattern is more complex for the case of eight bubbles, which strongly depends on the Eotvos number.

  11. Some recent work on lattice structures for digital signal processing

    Indian Academy of Sciences (India)

    Problem cases have been considered and handled with ease. Limitations of the procedure have been pointed out, leading to unsolved problems which form the scope of further ..... tions'. The present author and his student evolved a simple derivation of the FIR lattice structure .... be clubbed into a single multiplier of value.

  12. The fixed point structure of lattice field theories

    International Nuclear Information System (INIS)

    Baier, R.; Reusch, H.J.; Lang, C.B.

    1989-01-01

    Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β

  13. Fractional vortex lattice structures in spin-triplet superconductors

    International Nuclear Information System (INIS)

    Chung, Suk Bum; Agterberg, Daniel F; Kim, Eun-A

    2009-01-01

    Motivated by recent interest in spin-triplet superconductors, we investigate the vortex lattice structures for this class of unconventional superconductors. We discuss how the order parameter symmetry can give rise to U(1)xU(1) symmetry in the same sense as in spinor condensates, making half-quantum vortices (HQVs) topologically stable. We then calculate the vortex lattice structure of HQVs, with particular attention on the roles of the crystalline lattice, the Zeeman coupling and Meissner screening, all absent in spinor condensates. Finally, we consider how spin-orbit coupling leads to a breakdown of the U(1)xU(1) symmetry in free energy and whether the HQV lattice survives this symmetry breaking. As examples, we examine simpler spin-triplet models proposed in the context of Na x CoO 2 ·yH 2 O and Bechgaard salts, as well as the better known and more complex model for Sr 2 RuO 4 .

  14. On the structure of Lattice code WIMSD-5B

    International Nuclear Information System (INIS)

    Kim, Won Young; Min, Byung Joo

    2004-03-01

    The WIMS-D code is a freely available thermal reactor physics lattice code used widely for thermal research and power reactor calculation. Now the code WIMS-AECL, developed on the basis of WIMS-D, has been used as one of lattice codes for the cell calculation in Canada and also, in 1998, the latest version WIMSD-5B is released for OECD/NEA Data Bank. While WIMS-KAERI was developed and has been used, originated from WIMS-D, in Korea, it was adjusted for the cell calculation of research reactor HANARO and so it has no confirmaty to CANDU reactor. Therefore, the code development applicable to cell calculation of CANDU reactor is necessary not only for technological independence and but also for the establishment of CANDU safety analysis system. A lattice code WIMSD-5B was analyzed in order to set the system of reactor physics computer codes, to be used in the assessment of void reactivity effect. In order to improve and validate WIMSD-5B code, the analysis of the structure of WIMSD-5B lattice code was made and so its structure, algorithm and the subroutines of WIMSD-5B were presented for the cluster type and the pij method modelling the CANDU-6 fuel

  15. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  16. Neutron diffraction study of anisotropy of crystal lattice compression in high-Tc superconductors under pressure

    International Nuclear Information System (INIS)

    Voronin, V.; Mirmelstein, A.; Karkin, A.; Teplykh, A.; Goshchitskii, B.; Ivanov, A.; Smirnov, L.

    1996-01-01

    Pressure-induced structural changes in irradiated Y Ba 2 Cu 3 O x (x=6.95) and unirradiated (x = 6.91, 6.54, 6.39) samples have been measured by neutron powder diffraction under high pressure. T c has been measured for irradiated superconductors under pressure and the value of dT c /dP is found to be high(1.5 K/kbar). The increase in T c is associated with charge transfer between the Cu O 2 planes and Cu O chains which is reflected by anisotropy of crystal lattice compression

  17. The gluon structure of hadrons and nuclei from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-04-01

    I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.

  18. Multiplicative congruential generators, their lattice structure, its relation to lattice-sublattice transformations and applications in crystallography

    Science.gov (United States)

    Hornfeck, W.; Harbrecht, B.

    2009-11-01

    An analysis of certain types of multiplicative congruential generators - otherwise known for their application to the sequential generation of pseudo-random numbers - reveals their relation to lattice-sublattice transformations and the coordinate description of crystal structures.

  19. Phonon band structures of the three dimensional latticed pentamode metamaterials

    Directory of Open Access Journals (Sweden)

    Guan Wang

    2017-02-01

    Full Text Available The artificially designed three-dimensional (3D pentamode metamaterials have such an extraordinary characteristic that the solid materials behave like liquids. Meanwhile, the ideal structure of the pentamode metamaterials arranges in the same way as that of the diamond crystals. In the present research, we regard three types of pentamode metamaterials derived from the 3D crystal lattices as research objects. The phonon band structures of the candidate pentamode structures are calculated by using the finite element method (FEM. We illustrate the relation between the ratio of the bulk modulus B and the shear modulus G of different combinations of D and d. Finally, we find out the relationship between the phonon band structure and the structure parameters. It is useful for generating the phonon band structure and controlling elastic wave propagation.

  20. Band structures of graphene hexagonal lattice semiconductor quantum dots

    Science.gov (United States)

    Peng, Juan; Li, Shu-Shen

    2010-12-01

    Electronic structures of coupled semiconductor quantum dots (QDs) arranged as graphene hexagonal lattice are studied theoretically using the tight-binding method. In our calculations, the electrons can hop to the third-nearest-neighbors, and the overlap matrix as well as the multicenter integral are taken into account. The novel two-dimensional Dirac-like electronic excitations in graphene are found in these artificial planar QD structures. The results provide the theoretical basis for searching Dirac fermions in QD materials and have great significance for investigating and making semiconductor QD devices.

  1. Computational Approach for Quantifying Structural Disorder in Biomolecular Lattices

    Science.gov (United States)

    Bratton, Clayton; Reiser, Karen; Knoesen, Andre; Yankelevich, Diego; Wang, Mingshi; Rocha-Mendoza, Israel

    2009-11-01

    We have developed a novel computational approach for quantifying structural disorder in biomolecular lattices with nonlinear susceptibility based on analysis of polarization-modulated second harmonic signal. Transient, regional disorder at the level of molecular organization is identified using a novel signal-processing algorithms sufficiently compact for near real-time analysis with a desktop computer. Global disorder and regional disorder within the biostructure are assessed and scored using a multiple methodologies. Experimental results suggest our signal processing method represents a robust, scalable tool that allows us to detect both regional and global alterations in signal characteristics of biostructures with a high degree of discrimination.

  2. Lattice investigations of nucleon structure at light quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M.; Nakamura, Y.; Schaefer, A. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Konrad-Zuse-Zentrum fuer Informationstechnik Berlin (ZIB) (Germany)

    2009-12-15

    Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes at, e.g. Jefferson Lab, COMPASS/CERN and FAIR/GSI. By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this exciting area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of ordinary parton distribution functions, show some indication of approaching their phenomenological values. (orig.)

  3. Non-Crystallographic Layer Lattice Restrictions in Order-Disorder (OD Structures

    Directory of Open Access Journals (Sweden)

    Berthold Stöger

    2014-07-01

    Full Text Available Symmetry operations of layers periodic in two dimensions restrict the geometry the lattice according to the five two-dimensional Bravais types of lattices. In order-disorder (OD structures, the operations relating equivalent layers generally leave invariant only a sublattice of the layers. The thus resulting restrictions can be expressed in terms of linear relations of the a2, b2 and a · b scalar products of the lattice basis vectors with rational coefficients. To characterize OD families and to check their validity, these lattice restrictions are expressed in the bases of different layers and combined. For a more familiar notation, they can be expressed in terms of the lattice parameters a, b and . Alternatively, the description of the lattice restrictions may be simplified by using centered lattices. The representation of the lattice restrictions in terms of scalar products is dependent on the chosen basis. A basis-independent classification of the lattice restrictions is outlined.

  4. Band structure engineering for ultracold quantum gases in optical lattices

    International Nuclear Information System (INIS)

    Weinberg, Malte

    2014-01-01

    The energy band structure fundamentally influences the physical properties of a periodic system. It may give rise to highly exotic phenomena in yet uncharted physical regimes. Ultracold quantum gases in optical lattices provide an ideal playground for the investigation of a large variety of such intriguing effects. Experiments presented here address several issues that require the systematic manipulation of energy band structures in optical lattices with diverse geometries. These artificial crystals of light, generated by interfering laser beams, allow for an unprecedented degree of control over a wide range of parameters. A major part of this thesis employs time-periodic driving to engineer tunneling matrix elements and, thus, the dispersion relation for bosonic quantum gases in optical lattices. Resonances emerging in the excitation spectrum due to the particularly strong forcing can be attributed to multi-photon transitions that are investigated systematically. By changing the sign of the tunneling, antiferromagnetic spin-spin interactions can be emulated. In a triangular lattice this leads to geometrical frustration with a doubly degenerate ground state as the simultaneous minimization of competing interactions is inhibited. Moreover, complex-valued tunneling matrix elements can be generated with a suitable breaking of time-reversal symmetry in the driving scheme. The associated Peierls phases mimic the presence of an electromagnetic vector gauge potential acting on charged particles. First proof-of-principle experiments reveal an excellent agreement with theoretical calculations. In the weakly interacting superfluid regime, these artificial gauge fields give rise to an Ising-XY model with tunable staggered magnetic fluxes and a complex interplay between discrete and continuous symmetries. A thermal phase transition from an ordered ferromagnetic- to an unordered paramagnetic state could be observed. In the opposite hard-core boson limit of strong interactions

  5. Phase structure of lattice N=4 super Yang-Mills

    DEFF Research Database (Denmark)

    Catterall, Simon; Damgaard, Poul H.; DeGrand, Thomas

    2012-01-01

    We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results are consi......We make a first study of the phase diagram of four-dimensional N = 4 super Yang-Mills theory regulated on a space-time lattice. The lattice formulation we employ is both gauge invariant and retains at all lattice spacings one exactly preserved supersymmetry charge. Our numerical results...

  6. Band structure of semiconductor compounds of Mg sub 2 Si and Mg sub 2 Ge with strained crystal lattice

    CERN Document Server

    Krivosheeva, A V; Shaposhnikov, V L; Krivosheev, A E; Borisenko, V E

    2002-01-01

    The effect of isotopic and unaxial deformation of the crystal lattice on the electronic band structure of indirect band gap semiconductors Mg sub 2 Si and Mg sub 2 Ge has been simulated by means of the linear augmented plane wave method. The reduction of the lattice constant down to 95 % results in a linear increase of the direct transition in magnesium silicide by 48%. The stresses arising under unaxial deformation shift the bands as well as result in splitting of degenerated states. The dependence of the interband transitions on the lattice deformation is nonlinear in this case

  7. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  8. Growth, structure and lattice dynamics of rare earth silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Anja

    2015-07-13

    In the present thesis the epitaxial growth, crystal structure, stoichiometry, thermal stability and lattice dynamics of self-organized EuSi{sub 2} and DySi{sub 2} films, nanoislands and nanowires are investigated. The rare earth silicide (RESi) nanostructures have attracted considerable interest due to their high conductivity, very low Schottky barrier heights, remarkable chemical stability, self-organization in high area density and defects-free nano-objects with tunable size and shape, and the direct integration into the Si technology. The extensive research is driven by the continuous downscaling of the CMOS electronics that require new approaches in the devices architecture and circuits interconnects. Although RESi nanostructures attracted a lot of interest already several years ago and a lot of research has been done in this field, the lattice dynamics of these materials are still unknown. Recent developments at third generation synchrotron radiation sources have brought their performance to a stage where phonon spectroscopy of nanostructures and thin layers became feasible using nuclear inelastic X-ray scattering. This novel experimental technique is based on the process of phonon-assisted nuclear resonant absorption/emission of X-rays from the nuclei of Moessbauer-active isotopes. The method provides direct access to the phonon density of states (DOS) of the investigated element. Together with the ab initio calculations it was possible to get a comprehensive understanding of the lattice dynamics. EuSi{sub 2} films and nanoislands and DySi{sub 2} films, nanoislands and nanowires have been grown on the vicinal Si(001) surface by molecular beam epitaxy. While DySi{sub 2} was grown following known growth procedures, the growth conditions for EuSi{sub 2} had to be established first. EuSi{sub 2} was grown at two different growth conditions to study the influence of crystal structure and morphology upon different growth temperatures. The structure has been

  9. Lattice distortion under an electric field in BaTiO3 piezoelectric single crystal

    International Nuclear Information System (INIS)

    Tazaki, Ryoko; Fu Desheng; Daimon, Masahiro; Koshihara, Shin-ya; Itoh, Mitsuru

    2009-01-01

    Lattice distortions under an electric field in a mono-domain of BaTiO 3 ferroelectric crystal have been detected with synchrotron x-ray radiation. The variation of the lattice constant with an electric field observed with high angle diffraction shows a linear response nature of the piezoelectric effect. When an electric field is applied along the spontaneous polarization direction, the c-axis of the lattice elongates and the a-axis of the lattice shrinks at a rate of d 33 = 149 ± 54 pm V -1 and d 31 = -82 ± 61 pm V -1 ; these represent the longitudinal and transverse piezoelectric coefficients of BaTiO 3 crystal, respectively. These results give an insight into the intrinsic piezoelectric response on the lattice scale in BaTiO 3 that has been widely used to explore high performance lead-free piezoelectric alloys.

  10. Dependency Parsing with Lattice Structures for Resource-Poor Languages

    Science.gov (United States)

    Sudprasert, Sutee; Kawtrakul, Asanee; Boitet, Christian; Berment, Vincent

    In this paper, we present a new dependency parsing method for languages which have very small annotated corpus and for which methods of segmentation and morphological analysis producing a unique (automatically disambiguated) result are very unreliable. Our method works on a morphosyntactic lattice factorizing all possible segmentation and part-of-speech tagging results. The quality of the input to syntactic analysis is hence much better than that of an unreliable unique sequence of lemmatized and tagged words. We propose an adaptation of Eisner's algorithm for finding the k-best dependency trees in a morphosyntactic lattice structure encoding multiple results of morphosyntactic analysis. Moreover, we present how to use Dependency Insertion Grammar in order to adjust the scores and filter out invalid trees, the use of language model to rescore the parse trees and the k-best extension of our parsing model. The highest parsing accuracy reported in this paper is 74.32% which represents a 6.31% improvement compared to the model taking the input from the unreliable morphosyntactic analysis tools.

  11. Electronic structure of disordered binary alloys with short range correlation in Bethe lattice

    International Nuclear Information System (INIS)

    Moreno, I.F.

    1987-01-01

    The determination of the electronic structure of a disordered material along the tight-binding model when applied to a Bethe lattice. The diagonal as well as off-diagonal disorder, are considered. The coordination number on the Bethe is fixed lattice to four (Z=4) that occurs in most compound semiconductors. The main proposal was to study the conditions under which a relatively simple model of a disordered material, i.e, a binary alloy, could account for the basic properties of transport or more specifically for the electronic states in such systems. By using a parametrization of the pair probability the behaviour of the electronic density of states (DOS) for different values of the short range order parameter, σ, which makes possible to treat the segregated, random and alternating cases, was analysed. In solving the problem via the Green function technique in the Wannier representation a linear chain of atoms was considered and using the solution of such a 1-D system the problem of the Bethe lattice which is constructed using such renormalized chains as elements, was solved. The results indicate that the obtained DOS are strongly dependent on the correlation assumed for the occupancy in the lattice. (author) [pt

  12. Nucleon Structure on a Lattice at the Physical Point

    International Nuclear Information System (INIS)

    Syritsyn, Sergey

    2015-01-01

    We report initial nucleon structure results computed on lattices with 2+1 dynamical Mobius domain wall fermions at the physical point generated by the RBC and UKQCD collaborations. At this stage, we evaluate only connected quark contributions. In particular, we discuss the nucleon vector and axial-vector form factors, nucleon axial charge and the isovector quark momentum fraction. From currently available statistics, we estimate the stochastic accuracy of the determination of g A and 〈x〉 u-d to be around 10%, and we expect to reduce that to 5% within the next year. To reduce the computational cost of our calculations, we extensively use acceleration techniques such as low-eigenmode deflation and all-mode-averaging (AMA). We present a method for choosing optimal AMA parameters. (paper)

  13. Phase structure of lattice QCD for general number of flavors

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.

    2004-01-01

    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6

  14. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  15. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  16. Nonlinear lattice structures based on families of complex nondiffracting beams

    International Nuclear Information System (INIS)

    Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2012-01-01

    We present a new concept for the generation of optical lattice waves. For all four families of nondiffracting beams, we are able to realize corresponding nondiffracting intensity patterns in a single setup. The potential of our approach is shown by demonstrating the optical induction of complex photonic discrete, Bessel, Mathieu and Weber lattices in a nonlinear photorefractive medium. However, our technique itself is very general and can be transferred to optical lattices in other fields such as atom optics or cold gases in order to add such complex optical potentials as a new concept to these areas as well. (paper)

  17. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  18. Electron-lattice Interaction and Nonlinear Excitations in Cuprate Structures

    International Nuclear Information System (INIS)

    Paulsen, J.; Eschrig, H.; Drechsler, S.L.; Malek, J.

    1995-01-01

    A low temperature lattice modulation of the chains of the YBa 2 Cu 3 O 7 is considered by deriving a Hamiltonian of electron-lattice interaction from density-functional calculations for deformed lattice and solving it for the groundstate. Hubbard-type Coulomb interaction is included. The obtained groundstate is a charge-density-wave state with a pereodicity of four lattice constants and a gap for one-electron excitations of about 1eV, sensitively depending on parameters of the Hamiltonian. There are lots of polaronic and solitonic excitations with formation energies deep in the gap, which can pin the Fermi level and thus produce again metallicity of the chain. They might also contribute to pairing of holes in adjacent CuO 2 -planes. (author)

  19. Vortex structure in abelian-projected lattice gauge theory

    International Nuclear Information System (INIS)

    Ambjoern, J.; Giedt, J.; Greensite, J.

    2000-01-01

    We report on a breakdown of both monopole dominance and positivity in abelian-projected lattice Yang-Mills theory. The breakdown is associated with observables involving two units of the abelian charge. We find that the projected lattice has at most a global Z 2 symmetry in the confined phase, rather than the global U(1) symmetry that might be expected in a dual superconductor or monopole Coulomb gas picture. Implications for monopole and center vortex theories of confinement are discussed

  20. Mechanical properties of regular hexahedral lattice structure formed by selective laser melting

    International Nuclear Information System (INIS)

    Sun, Jianfeng; Yang, Yongqiang; Wang, Di

    2013-01-01

    The Ti–6Al–4V lattice structure is widely used in the aerospace field. This research first designs a regular hexahedral unit, processes the lattice structure composed of the Ti–6Al–4V units by selective laser melting technology, obtains the experimental fracture load and the compression deformation of them through compression tests, then conducts a simulation of the unit and the lattice structure through ANSYS to analyze the failure point. Later, according to the force condition of the point, the model of maximum load is built, through which the analytical formula of the fracture load of the unit and the lattice structure are obtained. The results of groups of experiments demonstrate that there exists an exponential relationship between the practical fracture load and the porosity of the lattice structure. There also exists a trigonometric function relationship between the compression deformation and the porosity of the lattice structure. The fracture analysis indicates that fracture of the units and lattice structure is brittle fracture due to cleavage fracture. (paper)

  1. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting

    Science.gov (United States)

    Zhang, David Z.; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-01-01

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress–strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength. PMID:29510492

  2. Mechanical Properties of Optimized Diamond Lattice Structure for Bone Scaffolds Fabricated via Selective Laser Melting.

    Science.gov (United States)

    Liu, Fei; Zhang, David Z; Zhang, Peng; Zhao, Miao; Jafar, Salman

    2018-03-03

    Developments in selective laser melting (SLM) have enabled the fabrication of periodic cellular lattice structures characterized by suitable properties matching the bone tissue well and by fluid permeability from interconnected structures. These multifunctional performances are significantly affected by cell topology and constitutive properties of applied materials. In this respect, a diamond unit cell was designed in particular volume fractions corresponding to the host bone tissue and optimized with a smooth surface at nodes leading to fewer stress concentrations. There were 33 porous titanium samples with different volume fractions, from 1.28 to 18.6%, manufactured using SLM. All of them were performed under compressive load to determine the deformation and failure mechanisms, accompanied by an in-situ approach using digital image correlation (DIC) to reveal stress-strain evolution. The results showed that lattice structures manufactured by SLM exhibited comparable properties to those of trabecular bone, avoiding the effects of stress-shielding and increasing longevity of implants. The curvature of optimized surface can play a role in regulating the relationship between density and mechanical properties. Owing to the release of stress concentration from optimized surface, the failure mechanism of porous titanium has been changed from the pattern of bottom-up collapse by layer (or cell row) to that of the diagonal (45°) shear band, resulting in the significant enhancement of the structural strength.

  3. Investigation on Mechanical Properties’ Anisotropy of Rod Units in Lattice Structures Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Jing Chenchen

    2017-01-01

    Full Text Available Lattice structure with high strength and low mass using selective laser melting (SLM has been a hot topic. However, there are some problems in the fabrication of lattice structure by SLM. Rod unit is the basic component of lattice structure and its performance affects the whole structure. It is necessary to investigate the influence of selective laser melting on rod unit’s mechanical properties. A series of rod units with different inclination angle and diameter were fabricated by SLM in this research. And the mechanical properties of these units were measured by tensile test. The results show that the rod units with different diameters and inclination angles have good mechanical properties and show no difference. It is a good news for lattice structure designing for there is no necessary to consider the mechanical properties’ anisotropy of rod units.

  4. General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures.

    Science.gov (United States)

    Chen, Yuntian; Zhang, Yan; Femius Koenderink, A

    2017-09-04

    We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.

  5. Structure and lattice dynamics in non-centrosymmetric borates; Struktur und Gitterdynamik in azentrischen Boraten

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.D.R.

    2007-04-23

    This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB{sub 3}O{sub 6}). The structure of the tetraborates MB{sub 4}O{sub 7} (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal

  6. Electronic Structures of MgB{$_2$} under Uniaxial and Hydrostatic Compression

    OpenAIRE

    Kobayashi, K.; Yamamoto, K.

    2001-01-01

    Electronic and lattice properties of MgB{$_2$} under uniaxial and hydrostatic compression are calculated. Lattice properties are optimized automatically by using the first-principles molecular dynamics (FPMD) method. Features of the electronic band structures under uniaxial and hydrostatic compression are quite different each other.

  7. Lattice strain development in Inconel-690 under bi-axial compression and tension

    Science.gov (United States)

    Toda, Rebecca Midori

    Nuclear reactor steam generator tubes, manufactured from Nickel alloys such as Inconel 690 (INC690), are potentially susceptible to failure by Stress Corrosion Cracking where crack initiation may be exacerbated by internal stress fields. A more comprehensive understanding of this potential failure mechanism was gained via an exploration of a model of INC690.s behaviour under Constrained loading conditions in compression and tension. An Elasto-Plastic Self-Consistent (EPSC) model was used to predict the lattice stresses and strains resulting from Constrained loading in INC690 for four crystallographic planes. The internal strain fields generated under such conditions were shown to be markedly different from those developed under Uniaxial loading. Finite Element Modeling was used to design tensile and compression samples as well as a testing rig that would allow the application of a compressive load along one axis of the specimen with simultaneous constraint along another and free-deformation along the third. Lattice strain measurements were done for both compressive and tensile loading using Time-Of-Flight neutron diffraction. The predicted and experimental values showed reasonable agreement; mainly in terms of crystallographic plane interaction and behaviour. Iterative computer modeling was used to achieve a more realistic depiction of the lattice strains developed. This research allowed for an extension on the Uniaxial findings by examining the material's behaviour under more complex loading that better approximates steam generator tube operating conditions.

  8. Complete flexural vibration band gaps in membrane-like lattice structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Qiu Jing; Wang Gang; Zhao Honggang

    2006-01-01

    The propagation of flexural vibration in the periodical membrane-like lattice structure is studied. The band structure calculated with the plane wave expansion method indicates the existence of complete gaps. The frequency response function of a finite periodic structure is simulated with finite element method. Frequency ranges with vibration attenuation are in good agreement with the gaps found in the band structure. Much larger attenuations are found in the complete gaps comparing to those directional ones. The existence of complete flexural vibration gaps in such a lattice structure provides a new idea for vibration control of thin plates

  9. Physical content of preparation-question structures and Brouwer-Zadeh lattices

    Science.gov (United States)

    Cattaneo, Gianpiero; Nisticó, Giuseppe

    1992-10-01

    We give a criterion to compare the physical content of different mathematical structures derived from a preparation-question structure. Then this criterion is used in order to compare the physical content of the (Jauch-Piron's) property lattice with the physical content of the poset of testable properties. We prove that for complete preparation-question structures these two structures carry the same physical content; moreover the set of testable properties has the algebraic structure of the Brouwer-Zadeh lattice. For more general preparation-question structures the physical content of the poset of testable property can be larger than that of the property lattice. Physically relevant examples of the possible cases are given.

  10. Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study

    DEFF Research Database (Denmark)

    Laver, M.; Bowell, C.J.; Forgan, E.M.

    2009-01-01

    High-purity niobium exhibits a surprisingly rich assortment of vortex lattice (VL) structures for fields applied parallel to a fourfold symmetry axis, with all observed VL phases made up of degenerate domains that spontaneously break some crystal symmetry. Yet a single regular hexagonal VL domain...... is intrinsically tied to the underlying crystal symmetry. We discuss how subtle anisotropies of the crystal may generate the remarkable VLs observed....

  11. Lattice dynamics and the nature of structural transitions in organolead halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.; Herron, Norman; Guise, William E.; Wang, Xiaoping; Whitfield, Pamela S.; Jain, Ankit; Gong, Xiwen; McGaughey, Alan J. H.; Sargent, Edward H.

    2016-09-09

    Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remarkable optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic x-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our findings confirm the displacive nature of the cubic-to-tetragonal phase transition, which is further shown, using neutron and x-ray diffraction, to be close to a tricritical point. Lastly, we detect quasistatic symmetry-breaking nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These findings reveal key structural properties of these materials, and also bear important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.

  12. First in-situ lattice strains measurements under load at VULCAN

    International Nuclear Information System (INIS)

    An, Ke; Skorpenske, Harley David; Stoica, Alexandru Dan; Wang, Xun-Li; Cakmak, Ercan

    2011-01-01

    The engineering materials diffractometer, VULCAN, at the Spallation Neutron Source began commissioning on June 26, 2009. This instrument is designed for materials science and engineering studies. In situ lattice strain measurements of a model metallic material under monotonic tensile load have been performed on VULCAN. The tensile load was applied under two different strain rates, and neutron diffraction measurements were carried out in both high-intensity and high-resolution modes. These experiments demonstrated VULCAN's in situ study capability of deformation behaviors even during the early phases of commissioning.

  13. TEM nano-Moiré evaluation for an invisible lattice structure near the grain interface.

    Science.gov (United States)

    Zhang, Hongye; Wen, Huihui; Liu, Zhanwei; Zhang, Qi; Xie, Huimin

    2017-10-26

    Moiré technique is a powerful, important and effective tool for scientific research, from the nano-scale to the macro-scale, which is essentially the interference between two or more periodic structures with a similar frequency. In this study, an inverse transmission electron microscopy (TEM) nano-Moiré method has been proposed, for the first time, to reconstruct an invisible lattice structure near the grain interface, where only one kind of lattice structure and Moiré fringe were visible in a high resolution TEM (HRTEM) image simultaneously. The inversion process was performed in detail. Three rules were put forward to ensure the uniqueness of the inversion result. The HRTEM image of a top-coat/thermally grown oxide interface in a thermal barrier coating (TBC) structure was observed with coexisting visible lattice and Moiré fringes. Using the inverse TEM nano-Moiré method, the invisible lower layer lattice was inversed and a 3-dimensional structure near the interface was also reconstructed to some degree. The real strain field of oriented invisible and visible lattices and the relative strain field of the Moiré fringe in the grain and near the grain boundary were obtained simultaneously through the subset geometric phase analysis method. The possible failure mechanism and position of the TBC spallation from the nano-scale to the micro-scale were discussed.

  14. A New Adaptive Structural Signature for Symbol Recognition by Using a Galois Lattice as a Classifier.

    Science.gov (United States)

    Coustaty, M; Bertet, K; Visani, M; Ogier, J

    2011-08-01

    In this paper, we propose a new approach for symbol recognition using structural signatures and a Galois lattice as a classifier. The structural signatures are based on topological graphs computed from segments which are extracted from the symbol images by using an adapted Hough transform. These structural signatures-that can be seen as dynamic paths which carry high-level information-are robust toward various transformations. They are classified by using a Galois lattice as a classifier. The performance of the proposed approach is evaluated based on the GREC'03 symbol database, and the experimental results we obtain are encouraging.

  15. The structure and elastic moduli of flux-line lattices in anisotropic superconductors

    International Nuclear Information System (INIS)

    Grishin, A.M.; Martynovich, A.Yu.; Yampol'skiy, S.V.

    1992-01-01

    The elastic moduli of flux-line lattices in anisotropic superconductors are investigated. In addition to the well-known bulk, shear, and tilt moduli the authors observe moduli that relate deformations in the basal plane of the lattice to vortex tilt. These moduli vanish when the superconductor is magnetized along the axis of anisotropy. The vortex structure continuum realized in this case has identical bulk and shear moduli and different tilt moduli. A hexagonal flux-line lattice is realized in superconductors with 'easy axis' anisotropy when a weak magnetic field is applied. When the field H is applied in the ab-plane of the crystal the lattice becomes an oblique lattice with orthorhombic symmetry. This results in a sharp growth of its elastic moduli and the induction in the sample. Vortex chain structures are the only stable structures in 'easy plane' superconductors. The elastic moduli characterizing the rigidity of an isolated chain are exponentially large compared to the moduli describing interchain interaction. The tilt moduli may reverse their sign when H is oriented near the axis of anisotropy c for strongly anisotropic superconductors. In this case, the vortex structure and all related elastic moduli undergo a discontinuous irreversible change

  16. DEVELOPMENT AND VALIDATION OF NUMERICAL METHOD FOR STRENGTH ANALYSIS OF LATTICE COMPOSITE FUSELAGE STRUCTURES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Lattice composite fuselage structures are developed as an alternative to conventional composite structures based on laminated skin and stiffeners. Structure layout of lattice structures allows to realize advantages of current composite materials to a maximal extent, at the same time minimizing their main shortcomings, that allows to provide higher weight efficiency for these structures in comparison with conventional analogues.Development and creation of lattice composite structures requires development of novel methods of strength anal- ysis, as conventional methods, as a rule, are aiming to strength analysis of thin-walled elements and do not allow to get confident estimation of local strength of high-loaded unidirectional composite ribs.In the present work the method of operative strength analysis of lattice composite structure is presented, based onspecialized FE-models of unidirectional composite ribs and their intersections. In the frames of the method, every rib is modeled by a caisson structure, consisting of arbitrary number of flanges and webs, modeled by membrane finite elements. Parameters of flanges and webs are calculated automatically from the condition of stiffness characteristics equality of real rib and the model. This method allows to perform local strength analysis of high-loaded ribs of lattice structure without use of here-dimensional finite elements, that allows to shorten time of calculations and sufficiently simplify the procedure of analysis of results of calculations.For validation of the suggested method, the results of experimental investigations of full-scale prototype of shell of lattice composite fuselage section have been used. The prototype of the lattice section was manufactured in CRISM and tested in TsAGI within the frames of a number of Russian and International scientific projects. The results of validation have shown that the suggested method allows to provide high operability of strength analysis, keeping

  17. Mechanical behavior of open-cell rhombic dodecahedron Ti–6Al–4V lattice structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lijun [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Song, Weidong, E-mail: swdgh@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Cheng [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Liu, Haiyan; Tang, Huiping; Wang, Jianzhong [State Key Laboratory of Porous Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi’an 710016 (China)

    2015-07-29

    The compression behavior of Ti–6Al–4V lattice structure with a cell shape of rhombic dodecahedron, which was fabricated by electron beam melting, was investigated at different temperatures. A series of quasi-static compression tests were performed at ambient temperature, 200 °C, 400 °C and 600 °C with a strain rate of 10{sup −3} s{sup −1}. Two groups of design configurations were adopted by changing the cell size and thickness of struts with the sample size maintained unchanged. The results revealed that their properties varied with different cell sizes and temperatures. Larger cell size leaded to lower modulus and strength of the lattice. Higher temperatures resulted in lower strengths, modulus, densification strains and plateau stresses. The energy absorption of lattice at high temperature was discussed, and the experimental data were compared with aluminum foams, titanium foams and stainless steel lattice. It demonstrated that the rhombic dodecahedron Ti–6Al–4V lattice structure could be applied as load-bearing components and energy absorber at high temperature.

  18. Low-frequency photonic band structures in graphene-like triangular metallic lattice

    Science.gov (United States)

    Wang, Kang

    2016-11-01

    We study the low frequency photonic band structures in triangular metallic lattice, displaying Dirac points in the frequency spectrum, and constructed upon the lowest order regular polygonal tiles. We show that, in spite of the unfavourable geometrical conditions intrinsic to the structure symmetry, the lowest frequency photonic bands are formed by resonance modes sustained by local structure patterns, with the corresponding electric fields following a triangular distribution at low structure filling rate and a honeycomb distribution at high filling rate. For both cases, the lowest photonic bands, and thus the plasma gap, can be described in the framework of a tight binding model, and analysed in terms of local resonance modes and their mutual correlations. At high filling rate, the Dirac points and their movement following the structure deformation are described in the same framework, in relation with local structure patterns and their variations, as well as the particularity of the metallic lattice that enhances the topological anisotropy.

  19. Super-resolution microscopy reveals a preformed NEMO lattice structure that is collapsed in incontinentia pigmenti

    CSIR Research Space (South Africa)

    Scholefield, Janine

    2016-09-01

    Full Text Available control of signal amplification enhancing efficiency of subsequent catalytic reactions. Such cooperativity would be greatly facilitated if a lattice-like structure pre-existed within the cell, before signal induction5. Higher-order structures have been... known as IKKg), responsible for the regulation of the catalytic IKK subunits8,9. Indeed, hints of a higher-order oligomeric structure emerged in a previous study labelling NEMO following IL-1 stimulation10. However, confocal microscopy revealed...

  20. Lattice instabilities and structural phase transformations in La2CuO4 superconductors and insulators

    International Nuclear Information System (INIS)

    Axe, J.D.

    1991-01-01

    Soft-mode structural phase transformations, common in many perovskite-based materials, are also found in La 2 CuO 4 and structurally related oxides. The resulting phase behavior is rather complex, but is a natural consequence of the degeneracy of the soft phonon order parameters. This paper reviews the structural and lattice-dynamical results and their interpretation based upon mean-field statistical mechanical models

  1. Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures

    Science.gov (United States)

    Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.

    2017-10-01

    We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more

  2. The analytic structure of lattice models – Why can't we solve most ...

    Indian Academy of Sciences (India)

    Analytic structure of lattice models implicitly or explicitly. One might settle for a polynomial time algorithm to produce the coefficients in the series expansion of the solution. Here we will show how to conjecture, and then in some cases prove [1–3] that the above list of unsolved problems, as well as bond animals, bond trees, ...

  3. Structure and correlations of the flux line lattice in crystalline Nb through the peak effect

    DEFF Research Database (Denmark)

    Gammel, P.L.; Yaron, U.; Ramirez, Y.P.

    1998-01-01

    We have measured the structure of the field cooled flux line lattice (FLL) in single crystal Nb using small angle neutron scattering. Augmented by transport and thermodynamic data, a scenario for the dramatic disordering of the FLL near the peak effect emerges. A precursor to the peak effect is a...

  4. q-deformed phase-space and its lattice structure

    International Nuclear Information System (INIS)

    Wess, J.

    1998-01-01

    Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)

  5. Coefficient of crystal lattice matching as a parameter of substrate - crystal structure compatibility in silumins

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2009-07-01

    Full Text Available Adding high-melting point elements (Mo, Nb, Ni, Ti, W to complex silumins results in hardening of the latter ones, owing to the formation of new intermetallic phases of the AlxMey type, with refinement of dendrites in α solution and crystals in β phase. The hardening is also due to the effect of various inoculants. An addition of the inoculant is expected to form substrates, the crystal lattice of which, or some (privileged lattice planes and interatomic spaces should bear a strong resemblance to the crystal nucleus. To verify this statement, using binary phase equilibria systems, the coefficient of crystal lattice matching, being one of the measures of the crystallographic similarity, was calculated. A compatibility of this parameter (up to 20% may decide about the structure compatibility between the substrate and crystal which, in turn, is responsible for the effectiveness of alloy modification. Investigations have proved that, given the temperature range of their formation, the density, the lattice type, and the lattice parameter, some intermetallic phases of the AlxMey type can act as substrates for the crystallisation of aluminium and silicon, and some of the silumin hardening phases.

  6. Influence of lattice disorder on the structure of persistent polymer chains

    International Nuclear Information System (INIS)

    Schöbl, Sebastian; Zierenberg, Johannes; Janke, Wolfhard

    2012-01-01

    We study the static properties of a semiflexible polymer exposed to a quenched random environment by means of computer simulations. The polymer is modeled as a two-dimensional Heisenberg chain. For the random environment we consider hard disks arranged on a square lattice. We apply an off-lattice growth algorithm as well as the multicanonical Monte Carlo method to investigate the influence of both disorder occupation probability and polymer stiffness on the equilibrium properties of the polymer. We show that the additional length scale induced by the stiffness of the polymer extends the well-known phenomenology considerably. The polymer’s response to the disorder is either contraction or extension depending on the ratio of polymer stiffness and void-space extension. Additionally, the periodic structure of the lattice is reflected in the observables that characterize the polymer. (paper)

  7. Study of the tunneling effect within lattices with cubic structure on varying temperature

    International Nuclear Information System (INIS)

    Frisone, F.

    2008-01-01

    In this theoretical study, it is underlined that the presence of micro-cracks in the lattice structure increases the probability of tunneling effect between two deuterons by some orders of magnitude with respect to non-deformed lattices. We have derived an expression to compute the tunneling probability within a micro-crack, and hypothesized a D + 2 -D + 2 binding mechanism. Finally, the overall indications provided by these theoretical simulations appear to suggest that the deformation of the crystalline lattice, at varying temperature, seems able to influence the process of tunneling between the deuterons in the metal, while the forced loading with D 2 has, in general, no evident positive effects in pure metals, but in some cases could, on the contrary, condition the phenomenon negatively. (authors)

  8. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  9. Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds

    International Nuclear Information System (INIS)

    Jackman, J.A.; Holden, T.M.; Buyers, W.J.L.; DuPlessis, P. de V.; Vogt, O.; Genossar, J.

    1986-01-01

    The phonon-dispersion relations of USe and UTe have been determined by the inelastic scattering of thermal neutrons. All existing phonon measurements for the UX series, viz., UC, UN, UAs, USb, US, USe, and UTe, have been fitted to the rigid-ion and shell models and dispersion relations have been predicted for UP. The U-X force constants dominate the lattice dynamics and are nearly constant for the series, whereas the U-U force constants vary systematically from being large and positive for the compounds with the smallest lattice parameter to being negative for the chalcogenide series. The negative U-U force constant is identified with destabilizing f-d interactions. Elastic constants, derived from the slopes of the dispersion relations and from ultrasound velocity measurements, have been determined. The bulk modulus decreases unusually rapidly as the lattice parameter increases and is in fair agreement with band-structure calculations

  10. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  11. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  12. Lattice-valued convergence ring and its uniform convergence structure

    African Journals Online (AJOL)

    Considering L a frame, we introduce the notion of stratified L-neighborhood topological ring, produce some characterization theorems including its Luniformizability. With the help of the notions of stratified convergence structures attributed to Gunther J¨ager [10], we introduce and study various subcategories of stratified ...

  13. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  14. Fabricating a regular hexagonal lattice structure by interference pattern of six femtosecond laser beams

    Science.gov (United States)

    Nakata, Yoshiki; Yoshida, Masataka; Osawa, Kazuhito; Miyanaga, Noriaki

    2017-09-01

    Interference of six countering femtosecond (fs) laser beams at a wavelength of 785 nm has been utilized to fabricate nanostructures in a regular hexagonal lattice. A diffractive-optical element for six-beam splitting was introduced to a beam correlation system. The lattice structure was in accordance with the simulated structure based on the principle of superposition of electric fields. The unit structures fabricated on gold thin films were nanobit, nanodrop, and metallic hole array. The height and diameter of a representative nanodrop were 450 and 210 nm, respectively. Molten structures such as nanodrops are believed to have been fabricated via a solid-liquid-solid (SLS) mechanism, as in the case of previous experiments using four beams. In addition, multi-shot processing is examined to fabricate through-holes at lower fluences.

  15. Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, Hesam [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: zandi@ee.sharif.edu; Kokabi, Alireza [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Jafarpour, Aliakbar [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: fardmanesh@sharif.edu; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States)

    2007-12-01

    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity for both orthogonal polarizations, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field, leading to nonlinear behavior of the band structure, which also has nonlinear dependence on the temperature. The similar analysis for every arbitrary lattice structure is also possible to be developed by this approach as presented in this work. We also present some examples and discuss the results.

  16. Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kokabi, Alireza; Zandi, Hesam; Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: fardmanesh@sharif.edu

    2007-09-01

    We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field, leading to nonlinear behavior of the band structure, which also has nonlinear dependence on the temperature. The similar analysis for every arbitrary lattice structure is also possible to be developed by this approach as presented in this work. We also present some examples and discuss the results.

  17. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Science.gov (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  18. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    Science.gov (United States)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  19. Basic research on lattice structures focused on the reliance of the cross sectional area and additional coatings

    Directory of Open Access Journals (Sweden)

    Kessler Julia

    2017-01-01

    Full Text Available This scientific survey is about periodic lattice structures which are made by Selective Laser Melting (SLM. Selective laser melting is based on Additive Manufacturing. The increased use and increasing demand of lattice structures in different fields of applications forms the necessity of a closer look on complex structures. Lattice structures can be found in different fields of applications for example in lightweight applications, filters and heat exchangers. Because of the expanding of application areas and thus arising requirements, the quality improvement is indispensable. Additive manufacturing and especially the SLM process enable the manufacturing of highly complex shapes and structures. Further it allows the integration of lightweight structures within to be manufactured applications. These high performance structures and applications need specific boundary and process conditions [1-3]. The main aim of this survey is an extraction of important parameters concerning the shape of lattices. A first focus will be on mechanical properties and the therefore necessary tensile tests.

  20. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    International Nuclear Information System (INIS)

    Huey-Wen Lin; Shigemi Ohta

    2006-01-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets

  1. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS

    International Nuclear Information System (INIS)

    LIN, H.W.; OHTA, S.

    2006-01-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets

  2. X-ray Tomography Characterisation of Lattice Structures Processed by Selective Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Everth Hernández-Nava

    2017-08-01

    Full Text Available Metallic lattice structures intentionally contain open porosity; however, they can also contain unwanted closed porosity within the structural members. The entrained porosity and defects within three different geometries of Ti-6Al-4V lattices, fabricated by Selective Electron Beam Melting (SEBM, is assessed from X-ray computed tomography (CT scans. The results suggest that horizontal struts that are built upon loose powder show particularly high (~20 × 10−3 vol % levels of pores, as do nodes at which many (in our case 24 struts meet. On the other hand, for struts more closely aligned (0° to 54° to the build direction, the fraction of porosity appears to be much lower (~0.17 × 10−3% arising mainly from pores contained within the original atomised powder particles.

  3. Traveling waves and spreading speed on a lattice model with age structure

    Directory of Open Access Journals (Sweden)

    Zongyi Wang

    2012-09-01

    Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.

  4. De Novo generation of molecular structures using optimization to select graphs on a given lattice

    DEFF Research Database (Denmark)

    Bywater, R.P.; Poulsen, Thomas Agersten; Røgen, Peter

    2004-01-01

    positions. The linkage process takes place on a lattice whose unit step length and overall geometry is designed to match typical architectures of organic molecules. We use an optimization method to select from the many different graphs possible. The approach is demonstrated in an example where crystal......A recurrent problem in organic chemistry is the generation of new molecular structures that conform to some predetermined set of structural constraints that are imposed in an endeavor to build certain required properties into the newly generated structure. An example of this is the pharmacophore...

  5. Lattice Boltzmann Study on Seawall-Break Flows under the Influence of Breach and Buildings

    Science.gov (United States)

    Mei, Qiu-Ying; Zhang, Wen-Huan; Wang, Yi-Hang; Chen, Wen-Wen

    2017-10-01

    In the process of storm surge, the seawater often overflows and even destroys the seawall. The buildings near the shore are usually inundated by the seawater through the breach. However, at present, there is little study focusing on the effects of buildings and breach on the seawall-break flows. In this paper, the lattice Boltzmann (LB) model with nine velocities in two dimensions (D2Q9) for the shallow water equations is adopted to simulate the seawall-break flows. The flow patterns and water depth distributions for the seawall-break flows under various densities, layouts and shapes of buildings and different breach discharges, sizes and locations are investigated. It is found that when buildings with a high enough density are perpendicular to the main flow direction, an obvious backwater phenomenon appears near buildings while this phenomenon does not occur when buildings with the same density are parallel to the main flow direction. Moreover, it is observed that the occurrence of backwater phenomenon is independent of the building shape. As to the effects of breach on the seawall-break flows, it is found that only when the breach discharge is large enough or the breach size is small enough, the effects of asymmetric distribution of buildings on the seawall-break flows become important. The breach location only changes the flow pattern in the upstream area of the first building that seawater meets, but has little impact on the global water depth distribution. Supported by the National Natural Science Foundation of China under Grant No. 11502124, the Natural Science Foundation of Zhejiang Province under Grant No. LQ16A020001, the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No. Y201533808, the Natural Science Foundation of Ningbo under Grant No. 2016A610075, and is sponsored by K.C. Wong Magna Fund in Ningbo University.

  6. Structure determination of the 1918 H1N1 neuraminidase from a crystal with lattice-translocation defects

    International Nuclear Information System (INIS)

    Zhu, Xueyong; Xu, Xiaojin; Wilson, Ian A.

    2008-01-01

    The structure of the 1918 H1N1 neuraminidase was determined to 1.65 Å from crystals with a lattice-translocation defect using uncorrected, as well as corrected, diffraction data. Few examples of macromolecular crystals containing lattice-translocation defects have been published in the literature. Lattice translocation and twinning are believed to be two common but different crystal-growth anomalies. While the successful use of twinned data for structure determination has become relatively routine in recent years, structure determination of crystals with lattice-translocation defects has not often been reported. To date, only four protein crystal structures containing such a crystal defect have been determined, using corrected, but not uncorrected, intensity data. In this report, the crystallization, structure determination and refinement of N1 neuraminidase derived from the 1918 H1N1 influenza virus (18NA) at 1.65 Å resolution are described. The crystal was indexed in space group C222 1 , with unit-cell parameters a = 117.7, b = 138.5, c = 117.9 Å, and the structure was solved by molecular replacement. The lattice-translocation vector in the 18NA crystal was (0, 1/2, 1/2) or its equivalent vector (1/2, 0, 1/2) owing to the C lattice symmetry. Owing to this special lattice-translocation vector in space group C222 1 , structure refinement could be achieved in two different ways: using corrected or uncorrected diffraction data. In the refinement with uncorrected data, a composite model was built to represent the molecules in the translated and untranslated layers, respectively. This composite structure model provided a unique example to examine how the molecules were arranged in the two lattice domains resulting from lattice-translocation defects

  7. Structural Damage Assessment under Uncertainty

    Science.gov (United States)

    Lopez Martinez, Israel

    Structural damage assessment has applications in the majority of engineering structures and mechanical systems ranging from aerospace vehicles to manufacturing equipment. The primary goals of any structural damage assessment and health monitoring systems are to ascertain the condition of a structure and to provide an evaluation of changes as a function of time as well as providing an early-warning of an unsafe condition. There are many structural heath monitoring and assessment techniques developed for research using numerical simulations and scaled structural experiments. However, the transition from research to real-world structures has been rather slow. One major reason for this slow-progress is the existence of uncertainty in every step of the damage assessment process. This dissertation research involved the experimental and numerical investigation of uncertainty in vibration-based structural health monitoring and development of robust detection and localization methods. The basic premise of vibration-based structural health monitoring is that changes in structural characteristics, such as stiffness, mass and damping, will affect the global vibration response of the structure. The diagnostic performance of vibration-based monitoring system is affected by uncertainty sources such as measurement errors, environmental disturbances and parametric modeling uncertainties. To address diagnostic errors due to irreducible uncertainty, a pattern recognition framework for damage detection has been developed to be used for continuous monitoring of structures. The robust damage detection approach developed is based on the ensemble of dimensional reduction algorithms for improved damage-sensitive feature extraction. For damage localization, the determination of an experimental structural model was performed based on output-only modal analysis. An experimental model correlation technique is developed in which the discrepancies between the undamaged and damaged modal data are

  8. The Structural Disorder and Lattice Stability of (Ba,Sr)(Co,Fe)O3 Complex Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    S.N.Rashkeev

    2011-05-01

    The structural disorder and lattice stability of complex perovskite (Ba,Sr)(Co,Fe)O3, a promising cathode material for solid oxide fuel cells and oxygen permeation membranes, is explored by means of first principles DFT calculations. It is predicted that Ba and Sr ions easily exchange their lattice positions (A-cation disorder) similarly to Co and Fe ions (B-cation disorder). The cation antisite defects (exchange of A- and B-type cations) have a relatively high formation energy. The BSCF is predicted to exist in an equilibrium mixture of several phases and can decompose exothermically into the Ba- and Co-rich hexagonal (Ba,Sr)CoO3 and Sr- and Fe-rich cubic (Ba,Sr)FeO3 perovskites.

  9. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  10. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  11. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, A.; Esfahanian, M. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kadkhodapour, J., E-mail: j.kad@srttu.edu [Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Stuttgart (Germany); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1–0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. - Highlights: • Numerical simulation was used to predict fatigue behavior of titanium scaffolds. • Good agreement between numerical and experimental results • S–N curves obeyed the power law. • Fatigue strength of scaffolds was proportional to their Young's modulus. • Failure surface of scaffolds was inclined at an angle of 45° to loading.

  12. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sayantan [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Dick, Viktor [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Karsch, Frithjof [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Laermann, Edwin [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Mukherjee, Swagato [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States)

    2016-12-15

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  13. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  14. The effect of chemical ordering and lattice mismatch on structural transitions in phase segregating nanoalloys.

    Science.gov (United States)

    Rossi, Kevin; Baletto, Francesca

    2017-05-10

    We elucidate the effect of lattice mismatch and chemical ordering on structural transitions in bimetallic nanoalloys of ∼1.5 nm. We show that collective screw dislocation motions happen in small mismatch shell@core systems while strongly mismatched ones favour incomplete outer shell rearrangements. Cooperative transitions can also become hindered when the chemical ordering breaks the geometrical symmetry. Escaping from an unfavourable morphological basin occurs first via re-arrangements of the geometry and then changes towards a better chemical pattern. We observe that the chemical re-ordering mechanisms are independent of system composition and stoichiometry but hinge on the initial and final chemical arrangements.

  15. Lattice vibrations of materials for lithium rechargeable batteries II. Lithium extraction-insertion in spinel structures

    International Nuclear Information System (INIS)

    Julien, C.M.; Camacho-Lopez, M.A.

    2004-01-01

    Lithiated spinel manganese oxides with various amounts of lithium have been prepared through solid-state reaction and electrochemical intercalation and deintercalation. Local structure of the samples are studied using Raman scattering and Fourier transform infrared spectroscopy. We report vibrational spectra of lithiated manganese oxides Li x Mn 2 O 4 as a function of lithium concentration in the range 0.1≤x≤2.0. Raman and Fourier transform infrared (FTIR) spectral results indicated multiple-phase reactions when the lithium content is modified in the spinel lattice. Lattice dynamics of lithiated spinel manganese oxides have been interpreted using either a classical factor-group analysis or a local environment model. The structural modifications have been studied on the basis of vibrations of LiO 4 tetrahedral and MnO 6 octahedral units when Li/Mn≤0.5, and LiO 4 , LiO 6 , and MnO 6 structural units when Li/Mn>0.5

  16. Large-scale grid-enabled lattice Boltzmann simulations of complex fluid flow in porous media and under shear.

    Science.gov (United States)

    Harting, Jens; Venturoli, Maddalena; Coveney, Peter V

    2004-08-15

    Well-designed lattice Boltzmann codes exploit the essentially embarrassingly parallel features of the algorithm and so can be run with considerable efficiency on modern supercomputers. Such scalable codes permit us to simulate the behaviour of increasingly large quantities of complex condensed matter systems. In the present paper, we present some preliminary results on the large-scale three-dimensional lattice Boltzmann simulation of binary immiscible fluid flows through a porous medium, derived from digitized X-ray micro-tomographic data of Bentheimer sandstone, and from the study of the same fluids under shear. Simulations on such scales can benefit considerably from the use of computational steering, and we describe our implementation of steering within the lattice Boltzmann code, called LB3D, making use of the RealityGrid steering library. Our large-scale simulations benefit from the new concept of capability computing, designed to prioritize the execution of big jobs on major supercomputing resources. The advent of persistent computational grids promises to provide an optimal environment in which to deploy these mesoscale simulation methods, which can exploit the distributed nature of computer, visualization and storage resources to reach scientific results rapidly; we discuss our work on the grid-enablement of lattice Boltzmann methods in this context. Copyright 2004 The Royal Society

  17. Fluid-Structure Interaction based on Lattice Boltzmann and p-FEM

    Science.gov (United States)

    Ahrenholz, Benjamin; Geller, Sebastian; Krafczyk, Manfred

    2010-03-01

    Over the last decade the Lattice Boltzmann Method (LBM) has matured as an efficient method for solving the Navier-Stokes equations. The p-version of the Finite Element Method (p-FEM) has proved to be highly efficient for a variety of problems in the field of structural mechanics. The focus of this contribution is to investigate the validity and efficiency of the coupling of two completely different numerical methods to simulate transient bidirectional Fluid-Structure Interaction (FSI) problems with very large structural deflections. In this contribution the treatment of moving boundaries in the fluid solver is presented, the computation of tractions and displacements on the boundary as well as the explicit coupling algorithm itself. In addition, efficiency aspects of the two approaches for two- and three-dimensional laminar flow examples at intermediate Reynolds numbers are discussed. Finally we give an outlook on modeling turbulent FSI problems.

  18. Investigation of electronic lattice structure by positron annihilation in some insulators

    International Nuclear Information System (INIS)

    Coussot, Gerard

    1970-01-01

    The angular distribution of gamma quanta resulting from positron annihilation in single insulator crystals was measured with long slit geometry apparatus for intense positron sources ( 64 Cu ≅ 1 Ci). Two new phenomena were observed in the angular correlation curves. In the f. c. c. MgO, UO 2 , CaF 2 crystals, modulations appeared at angles corresponding to the limit of the first Brillouin zone in relation to the crystallographic direction studied. In SiO 2 , F 2 Mg, F 2 Mn crystals, a narrow peak at 0 mrad and a fine structure superimposed on the broad distribution, were resolved. The fine structure which is correlated with the narrow component is characterized by modulations appearing at angles corresponding to the projection of reciprocal lattice vectors along the crystallographic direction investigated. The narrow peak at p ≅ 0 suggests the formation of a bound state (positron-electron). If this bound state is described by a Bloch wave, the modulations observed correspond to the Fourier components which contribute to every reciprocal lattice vector p = G ('Umklapp' process). This model predicts that the 'Umklapp' process in polycrystals must produce a change in slope which can be experimentally observed. A systematic research of optimal observation conditions shows that the intensity of the narrow component is closely correlated with the purity and the perfection of the crystal where p-Ps is presumably formed as suggested by magnetic experiments. (author) [fr

  19. Optimal Sensor Placement for Latticed Shell Structure Based on an Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xun Zhang

    2014-01-01

    Full Text Available Optimal sensor placement is a key issue in the structural health monitoring of large-scale structures. However, some aspects in existing approaches require improvement, such as the empirical and unreliable selection of mode and sensor numbers and time-consuming computation. A novel improved particle swarm optimization (IPSO algorithm is proposed to address these problems. The approach firstly employs the cumulative effective modal mass participation ratio to select mode number. Three strategies are then adopted to improve the PSO algorithm. Finally, the IPSO algorithm is utilized to determine the optimal sensors number and configurations. A case study of a latticed shell model is implemented to verify the feasibility of the proposed algorithm and four different PSO algorithms. The effective independence method is also taken as a contrast experiment. The comparison results show that the optimal placement schemes obtained by the PSO algorithms are valid, and the proposed IPSO algorithm has better enhancement in convergence speed and precision.

  20. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  1. Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

  2. Spin structures of S = 5/2 antiferromagnetic triangular lattices: AAg{sub 2}M[VO{sub 4}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Angela; Amuneke, Ngozi E.; Tapp, Joshua [Department of Chemistry and TcSUH, University of Houston (United States); Cruz, Clarina R. de la [Quantum Condensed Matter Division, ORNL, Oak Ridge (United States)

    2015-07-01

    The AAg{sub 2}M[VO{sub 4}]{sub 2} compounds present a unique series for studying structure-property relationships. The size of the A cation (Ba{sup 2+}, K{sup +}, Rb{sup +}, or Ag{sup +}) controls (i) the inter-layer distances between the magnetic triangular lattices (M, here Mn{sup 2+} or Fe{sup 3+}) and (ii) the distortion of the non-magnetic vanadate units. The crystal and magnetic structures were refined from neutron diffraction data under applied fields (ORNL, HB2A) and reveal the complex magnetic phase diagrams of frustrated S=5/2 triangular lattices with axial and XY-anisotropy, respectively.

  3. Structural and lattice dynamics studies of microcrystals by means of the Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Pasternak, M.

    1978-05-01

    Moessbauer studies on 129 I, 57 Fe and 119 Sn were conducted in several disordered and microscopic systems in order to investigate properties of lattice dynamics, chemical bonding and phase transitions. The project included the following studies: (1) Granular crystals of Sn embedded in tin-oxide matrix; the nature of the superconductivity transition of very small grains of tin was investigated. (2) Lattice dynamics and characterization of amorphous tin oxide obtained by condensing atoms of Sn and O 2 gas on a 77 K substrate. The hyperfine interaction and the temperature dependence of the Debye-Waller factor were essential to determine the structure of the amorphous tin oxide. (3) The nature of the chemical bond of the alkaly halides ionic crystals and molecules; molecules of Li, Na, K, Rb and Cs iodides were trapped in agron matrices, and the isomer-shift values were obtained from absorption spectra. (4) Binding of single iron and tin atoms to CH 4 , NH 3 , H 2 and C 6 H 6 molecules, with samples at low temperatures between 2 and 77 K; conclusions were derived regarding the cryochemistry of these systems, as related to fundamental problems of catalysis, chemisorption and ''cracking'' of organic molecules

  4. Solid state proton spin-lattice relaxation in four structurally related organic molecules

    International Nuclear Information System (INIS)

    Beckmann, Peter A.; Burbank, Kendra S.; Lau, Matty M.W.; Ree, Jessica N.; Weber, Tracy L.

    2003-01-01

    We report and interpret the temperature dependence of the proton spin-lattice relaxation rate at 8.50 and 22.5 MHz in four polycrystalline solids composed of structurally related molecules: 2-ethylanthracene, 2-t-butylanthracene, 2-ethylanthraquinone, and 2-t-butylanthraquinone. We have been unable to grow single crystals and therefore do not know the crystal structures. Hence, we use the NMR relaxometry data to make predictions about the solid state structures. As expected, we are able to conclude that the ethyl groups do not reorient in the solid state but that the t-butyl groups do. The anthraquinones have a ''simpler'' structure than the anthracenes. The best dynamical models suggest that there is a unique crystallographic site for the t-butyl groups in 2-t-butylanthraquinone and two sites, each with half the molecules, for the ethyl groups in 2-ethylanthraquinone. There are also two sites in 2-ethylanthracene, but with unequal weights, suggesting four sites in the unit cell with lower symmetry than the two anthraquinones. Finally, the observed relaxation rate data in 2-t-butylanthracene is very complex and its interpretation demonstrates the uniqueness problem that arises in interpreting relaxometry data without the knowledge of the crystal structure

  5. Stochastic inflation lattice simulations: Ultra-large scale structure of the universe

    International Nuclear Information System (INIS)

    Salopek, D.S.

    1990-11-01

    Non-Gaussian fluctuations for structure formation may arise in inflation from the nonlinear interaction of long wavelength gravitational and scalar fields. Long wavelength fields have spatial gradients α -1 triangledown small compared to the Hubble radius, and they are described in terms of classical random fields that are fed by short wavelength quantum noise. Lattice Langevin calculations are given for a ''toy model'' with a scalar field interacting with an exponential potential where one can obtain exact analytic solutions of the Fokker-Planck equation. For single scalar field models that are consistent with current microwave background fluctuations, the fluctuations are Gaussian. However, for scales much larger than our observable Universe, one expects large metric fluctuations that are non-Guassian. This example illuminates non-Gaussian models involving multiple scalar fields which are consistent with current microwave background limits. 21 refs., 3 figs

  6. The phase structure of a chirally invariant lattice Higgs-Yukawa model. Numerical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-07-15

    The phase diagram of a chirally invariant lattice Higgs-Yukawa model is explored by means of numerical simulations. The results revealing a rich phase structure are compared to analytical large N{sub f} calculations which we performed earlier. The analytical and numerical results are in excellent agreement at large values of N{sub f}. In the opposite case the large N{sub f} computation still gives a good qualitative description of the phase diagram. In particular we find numerical evidence for the predicted ferrimagnetic phase at intermediate values of the Yukawa coupling constant and for the symmetric phase at strong Yukawa couplings. Emphasis is put on the finite size effects which can hide the existence of the latter symmetric phase. (orig.)

  7. The phase structure of a chirally invariant lattice Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-12-15

    We consider a chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator D{sup (ov)}. As a first step towards the eventual determination of Higgs mass bounds we present the phase structure of the model analytically in the large N{sub f}-limit in the physically interesting region of the Yukawa coupling constant. We confront the analytically obtained phase diagram with corresponding HMC-simulations and find an excellent agreement at large values of N{sub f}. In the opposite case the large N{sub f} computation still gives a good qualitative description of the phase diagram. We also present first and very preliminary results on the Higgs upper bound at one selected cut-off {lambda}. (orig.)

  8. Electronic transport on the spatial structure of the protein: Three-dimensional lattice model

    International Nuclear Information System (INIS)

    Sarmento, R.G.; Frazão, N.F.; Macedo-Filho, A.

    2017-01-01

    Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.

  9. Electronic transport on the spatial structure of the protein: Three-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Ciências Biológicas, Universidade Federal do Piauí, 64800-000 Floriano, PI (Brazil); Frazão, N.F. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, 581750-000 Cuité, PB (Brazil); Macedo-Filho, A., E-mail: amfilho@gmail.com [Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, PI (Brazil)

    2017-01-30

    Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.

  10. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    Science.gov (United States)

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  11. Thermal and structural study on the lattice compound 1,4-diammoniumbutane bis(theophyllinate)

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Margit; Madarasz, Janos; Bombicz, Petra; Pokol, Gyoergy; Gal, Sandor

    2004-10-01

    Crystalline title compound (1) prepared from aqueous solution of theophylline and 1,4-diaminobutane has been structurally and thermally characterized. Both the two-step TG decomposition curve and elemental analysis of the hexagonal crystals show that it consists of theophylline and 1,4-diaminobutane in 2:1 molar ratio. Actually, presence of one type of both theophyllinate anions and 1,4-diammoniumbutane dication have been indicated by FTIR spectroscopy. The molecular structure of lattice compound (1) has been determined by single crystal X-ray diffraction, where the hydrogen positions have been obtained from differential Fourier maps. It has confirmed that the crystal is really built up from these ionic constituents bound together with an extensive net of hydrogen bonds. The coupled TG-FTIR analysis of the evolved gases has revealed that the diamine is released as a whole molecule in the first decomposition step. Clathrate 1 and the proton migration in it might serve as a structural model of solid aminophylline whose crystal structure is still unknown.

  12. HAIM OMLET: An Expert System For Research In Orthomodular Lattices And Related Structures

    Science.gov (United States)

    Dankel, D. D.; Rodriguez, R. V.; Anger, F. D.

    1986-03-01

    This paper describes research towards the construction of an expert system combining the brute force power of algorithmic computation and the inductive reasoning power of a rule-based inference engine in the mathematical area of discrete structures. Little research has been conducted on extending existing expert systems' technology to computationally complex areas. This research addresses the extension of expert systems into areas such as these, where the process of inference by itself will not produce the proper results. Additionally, the research will demonstrate the benefits of combining inference engines and mathematical algorithms to attack computationally complex problems. The specific aim is to produce an expert system which embodies expert level knowledge of orthomodular lattices, graphs, structure spaces, boolean algebras, incidence relations, and projective configurations. The resulting system, implemented on a micro-computer, will provide researchers a powerful and accessible tool for exploring these discrete structures. The system's "shell" will provide a structure for developing other expert systems with similar capabilities in such related areas as coding theory, categories, monoids, automata theory, and non-standard logics.

  13. Front propagation in a regular vortex lattice: Dependence on the vortex structure

    Science.gov (United States)

    Beauvier, E.; Bodea, S.; Pocheau, A.

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  14. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  15. Photoinduced reversible lattice expansion in W-doped TiO2 through the change of its electronic structure

    Science.gov (United States)

    Feng, Fan; Yang, Weiyi; Gao, Shuang; Zhu, Linggang; Li, Qi

    2018-02-01

    External stimulations of applied force or voltage have been reported to induce crystal lattice dimension changes with the order of 0.1% or above by imposing external mechanical or electric forces on atoms forming the lattice for various types of materials, including oxides, metals, polymers, and carbon nanostructures. As far as we know, however, no report is available for similar level changes in oxides from their internal electronic structure changes induced by photoirradiation. We show that reversible lattice expansion comparable to those by applied force or voltage can be induced by UV-irradiation on an oxide of W-doped TiO2 nanotubes through the reversible changes of its internal electronic structure by the accumulation and release of photogenerated electrons in W-dopants when UV-illumination is on and off. This photoirradiation-induced reversible lattice expansion and subsequent optical, electric, and magnetic property changes may also be present in other material systems by proper material design if they possess one component that is able to produce electrons upon photoirradiation and the other component that is able to accumulate photogenerated electrons to induce lattice changes and release them after the photoirradiation is off.

  16. Reversal of lattice, electronic structure, and magnetism in epitaxial SrCoOx thin films

    Science.gov (United States)

    Jeen, H.; Choi, W. S.; Lee, J. H.; Cooper, V. R.; Lee, H. N.; Seo, S. S. A.; Rabe, K. M.

    2014-03-01

    SrCoOx (x = 2.5 - 3.0, SCO) is an ideal material to study the role of oxygen content for electronic structure and magnetism, since SCO has two distinct topotactic phases: the antiferromagnetic insulating brownmillerite SrCoO2.5 and the ferromagnetic metallic perovskite SrCoO3. In this presentation, we report direct observation of a reversible lattice and electronic structure evolution in SrCoOx epitaxial thin films as well as different magnetic and electronic ground states between the topotactic phases.[2] By magnetization measurements, optical absorption, and transport measurements drastically different electronic and magnetic ground states are found in the epitaxially grown SrCoO2.5 and SrCoO3 thin films by pulsed laser epitaxy. First-principles calculations confirm substantial, which originate from the modification in the Co valence states and crystallographic structures. By real-time spectroscopic ellipsometry, the two electronically and magnetically different phases can be reversibly changed by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  18. Lattice vibrations and thermal properties of carbon nitride with defect ZnS structure from first-principles calculations

    NARCIS (Netherlands)

    Fang, C.M.; Wijs, G.A. de

    2004-01-01

    The phonon spectrum Of C3N4 with defect zincblende-type structure (deltaC(3)N(4)) was calculated by density functional theory (DFT) techniques. The results permit an assessment of important mechanical and thermodynamical properties such as the bulk modulus, lattice specific heat, vibration energy,

  19. Effect of lattice relaxation on thermal conductivity of fcc-based structures: an efficient procedure of molecular dynamics simulation

    Science.gov (United States)

    Ha, Min Young; Choi, Garam; Kim, Dong Hyun; Kim, Hyo Seok; Park, Sang Hyun; Lee, Won Bo

    2017-07-01

    This work studied the computational details of the Green-Kubo method with molecular dynamics (MD) simulation for thermal conductivity prediction. In MD thermal conductivity calculation, little consensus has been made about the inclusion of zero-pressure volume relaxation in the isobaric-isothermal (NpT) ensemble, which determines the simulation lattice parameters. Simulations of fcc-based structures with different lattice parameters were performed to calculate lattice thermal conductivities and phonon density of states, and the results were compared to experimental reports and ab initio results to conclude that NpT volume relaxation is crucial for accurate prediction of thermal conductivity. In addition, the relation between thermal conductivity and interatomic potential cutoff distance was also analysed in the context of lattice relaxation. The results suggested that calculated thermal conductivity is strictly dependent on the lattice parameter and essentially independent of the cutoff distance. It was also shown that reducing the cutoff distance can greatly accelerate the thermal conductivity calculation, even without sacrificing the accuracy of thermal conductivity.

  20. The effects of gas diffusion layers structure on water transportation using X-ray computed tomography based Lattice Boltzmann method

    Science.gov (United States)

    Jinuntuya, Fontip; Whiteley, Michael; Chen, Rui; Fly, Ashley

    2018-02-01

    The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) plays a crucial role in overall cell performance. It is responsible for the dissemination of reactant gasses from the gas supply channels to the reactant sites at the Catalyst Layer (CL), and the adequate removal of product water from reactant sites back to the gas channels. Existing research into water transport in GDLs has been simplified to 2D estimations of GDL structures or use virtual stochastic models. This work uses X-ray computed tomography (XCT) to reconstruct three types of GDL in a model. These models are then analysed via Lattice Boltzmann methods to understand the water transport behaviours under differing contact angles and pressure differences. In this study, the three GDL samples were tested over the contact angles of 60°, 80°, 90°, 100°, 120° and 140° under applied pressure differences of 5 kPa, 10 kPa and 15 kPa. By varying the contact angle and pressure difference, it was found that the transition between stable displacement and capillary fingering is not a gradual process. Hydrophilic contact angles in the region of 60°<θ < 90° showed stable displacement properties, whereas contact angles in the region of 100°<θ < 140° displayed capillary fingering characteristics.

  1. Lattice dynamics of A Sb2O6 (A =Cu , Co) with trirutile structure

    Science.gov (United States)

    Maimone, D. T.; Christian, A. B.; Neumeier, J. J.; Granado, E.

    2018-03-01

    Raman spectroscopy experiments on single crystals of CuSb2O6 and CoSb2O6 quasi-one-dimensional antiferromagnets with trirutile crystal structure were performed, with a focus on the first material. The observed Raman-active phonon modes and previously reported infrared-active modes were identified with the aid of ab initio lattice dynamics calculations. The structural transition between monoclinic β -CuSb2O6 and tetragonal α -CuSb2O6 phases at Ts=400 K is manifested in our spectra by a "repulsion" of two accidentally quasidegenerate symmetric modes below Ts, caused by a phonon mixing effect that is only operative in the monoclinic β -CuSb2O6 phase due to symmetry restrictions. Also, two specific phonons, associated with CuO6 octahedra rotation and with a Jahn-Teller elongation mode, soften and broaden appreciably as T →Ts . A crossover from a displacive to an order-disorder transition at Ts is inferred.

  2. Crystal structure and lattice dynamics of Fe-Cr-Mn-Ni-N austenitic steels

    International Nuclear Information System (INIS)

    Beskrovni, A.; Jadrowski, E.; Danilkin, S.; Fuess, H.; Wieder, T.; Neova-Baeva, M.

    1999-01-01

    Complete text of publication follows. High nitrogen austenitic steels are of high strength, corrosion resistance and offer structural stability. The properties of these steels depend on the interstitial (N) and substitution (Cr, Ni, Mn) atom content. The present study investigates the effect of the Mn and Cr content on crystal structure and interatomic bonding. Nitrogen austenitic steels with composition Fe-19Cr-xMn-0.5N (x = 9/23 wt.%) and Fe-xCr-11Ni-0.5N (x=15/29 wt.%) were studied with X-Ray and neutron scattering methods. It was found that Mn and Cr expand FCC lattice in the both steels. However modification of the metal atom frequency spectrum, g(ε), is different. Mn additions cause the decrease of metal atom frequencies. The softening of the Me-Me interaction is an agreement with the theoretical model predictions based on volume changes. Modification of g(ε) caused by Cr atoms is more complicated. It was concluded that alloying with Cr alters the electronic states. The decrease of the width of the nitrogen localised vibrations with increasing Cr content was noted and is probably connected with stress-induced ordering. (author)

  3. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  4. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.

    Science.gov (United States)

    Caroff, Philippe; Messing, Maria E; Mattias Borg, B; Dick, Kimberly A; Deppert, Knut; Wernersson, Lars-Erik

    2009-12-09

    We demonstrate the growth of InSb-based nanowire heterostructures by metalorganic vapour phase epitaxy and use it to integrate InSb on extremely lattice-mismatched III-V nanowire templates made of InAs, InP, and GaAs. Influence of temperature, V/III ratio, and diameter are investigated in order to investigate the growth rate and morphology. The range of growth temperatures used for InSb nanowire growth is very similar to that used for planar growth due to the nature of the precursor decomposition. This makes optimization of growth parameters very important, and more difficult than for most other nanowire III-V materials. Analysis of the InSb nanowire epitaxial quality when grown on InAs, InP, and GaAs, along with InSb segment and particle compositions are reported. This successful direct integration of InSb nanowires, on nanowire templates with unprecedented strain levels show great promise for fabrication of vertical InSb devices.

  5. Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension

    International Nuclear Information System (INIS)

    Wang, H.; Clausen, B.; Tomé, C.N.; Wu, P.D.

    2013-01-01

    Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests

  6. Lattice QCD investigation of the structure of the a0(980 ) meson

    Science.gov (United States)

    Alexandrou, Constantia; Berlin, Joshua; Dalla Brida, Mattia; Finkenrath, Jacob; Leontiou, Theodoros; Wagner, Marc

    2018-02-01

    We investigate the quark content of the low-lying states in the I (JP)=1 (0+) sector, which are the quantum numbers of the a0(980 ) meson, using lattice QCD. To this end, we consider correlation functions of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams, where quarks propagate within a time slice, e.g. with closed quark loops. We demonstrate that diagrams containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected. Our analysis, which is carried out at unphysically heavy u and d quark mass corresponding to mπ=296 (3 ) MeV and in a single spatial volume of extent 2.9 fm, shows that in addition to the expected spectrum of two-meson scattering states there is an additional energy level around the two-particle thresholds of K +K ¯ and η +π . This additional state, which is a candidate for the a0(980 ) meson, couples to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a superposition of an ordinary q ¯q and a tetraquark structure. The analysis is performed using AMIAS, a novel statistical method based on the sampling of all possible spectral decompositions of the considered correlation functions, as well as solving standard generalized eigenvalue problems.

  7. Jamming within Lattices

    Science.gov (United States)

    Wentworth-Nice, Prairie; Graves, Amy

    Numerical methods are used in two dimensions to find the minimum energy configuration of soft bidisperse spheres, in the presence of lattices of fixed, pointlike particles. The lattice provides a supporting structure for the jammed configuration, resulting in changes in the jamming threshold. The excess coordination number and other properties of interest near jamming are calculated as a function of the lattice structure and number density. Acknowledgement is made to the donors of the Petrolium Research Fund, administered by the American Chemical Society.

  8. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    International Nuclear Information System (INIS)

    Ravari, M R Karamooz; Kadkhodaei, M; Ghaei, A; Esfahani, S Nasr; Andani, M Taheri; Elahinia, M; Karaca, H

    2016-01-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress–strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure. (paper)

  9. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  10. CLASSICAL AREAS OF PHENOMENOLOGY: Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    Science.gov (United States)

    Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing

    2009-07-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  11. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method

    Science.gov (United States)

    Sakane, Shinji; Takaki, Tomohiro; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki

    2018-02-01

    Three-dimensional growth morphologies of equiaxed dendrites growing under forced convection, with their preferred growth direction inclined from the flow direction, were investigated by performing large-scale phase-field lattice Boltzmann simulations on a graphical-processing-unit supercomputer. The tip velocities of the dendrite arms with their preferred growth directions inclined toward the upstream and downstream directions increased and decreased, respectively, as a result of forced convection. In addition, the tip velocities decreased monotonically as the angle between the preferred growth direction and the upstream direction increased. Here, the degree of acceleration of the upstream tips was larger than the degree of deceleration of the downstream tips. The angles between the actual tip growth directions and the preferred growth direction of the dendrite arms exhibited a characteristic change with two local maxima and two local minima.

  12. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    Science.gov (United States)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  13. Development of a coupled lattice Boltzmann and finite element method for fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Jo, Jong Chull; Roh, Kyung Wan; Jhung, Myung Jo

    2006-12-01

    During this work period, a preliminary research has been conducted in the three different and related areas as stated in the proposal: literature survey, preliminary feasibility study of LBM and FEM coupling for FSI problems, and benchmark problems. As far as the literature review was concerned, approximately one hundred articles were found for the LBM techniques and critical review has been performed. The reviewed articles were classified into several topics that are useful for a subsequent development of the proposed computer program. Those topics included immiscible multicomponent flows, flow with energy transport, coupled multi-physics applications, application of the boundary conditions, irregular lattices, and turbulence. Furthermore, some fundamental review of the LBM was also included in this report. Secondly, a description of the LBM and FEM coupling program, which has been developed so far, was described here along with some demonstration examples. The preliminary study showed a great potential of the proposed technique for FSI application. A sample computer program list is also attached as Appendix A. As a future benchmark study, a set of test cases were proposed so that experimental data would be obtained in the next phase of the study. These data would be beneficial to understand the fundamental physics of the FSI nature under different basic conditions, and also provide benchmark results against which the developed program at a later stage could be validated. Finally, the future research direction as the extension of the present work is provided with emphasis on its goal, as well as merits and benefits resulting from the proposed research for the regulatory evaluation activities of KINS and the associated technical activities of industries such as design, manufacturing, fabrication, operation and maintenance

  14. A lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Fan Engui

    2008-01-01

    By introducing a discrete spectral problem, we derive a lattice hierarchy which is integrable in Liouville's sense and possesses a multi-Hamiltonian structure. It is show that the discrete spectral problem converges to the well-known AKNS spectral problem under a certain continuous limit. In particular, we construct a sequence of equations in the lattice hierarchy which approximates the AKNS hierarchy as a continuous limit

  15. Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture

    Science.gov (United States)

    Mozafari, Elham; Alling, Björn; Belov, Maxim P.; Abrikosov, Igor A.

    2018-01-01

    Using the disordered local moments approach in combination with the ab initio molecular dynamics method, we simulate the behavior of a paramagnetic phase of NiO at finite temperatures to investigate the effect of magnetic disorder, thermal expansion, and lattice vibrations on its electronic structure. In addition, we study its lattice dynamics. We verify the reliability of our theoretical scheme via comparison of our results with available experiment and earlier theoretical studies carried out within static approximations. We present the phonon dispersion relations for the paramagnetic rock-salt (B1) phase of NiO and demonstrate that it is dynamically stable. We observe that including the magnetic disorder to simulate the paramagnetic phase has a small yet visible effect on the band gap. The amplitude of the local magnetic moment of Ni ions from our calculations for both antiferromagnetic and paramagnetic phases agree well with other theoretical and experimental values. We demonstrate that the increase of temperature up to 1000 K does not affect the electronic structure strongly. Taking into account the lattice vibrations and thermal expansion at higher temperatures have a major impact on the electronic structure, reducing the band gap from ˜3.5 eV at 600 K to ˜2.5 eV at 2000 K. We conclude that static lattice approximations can be safely employed in simulations of the paramagnetic state of NiO up to relatively high temperatures (˜1000 K), but as we get closer to the melting temperature vibrational effects become quite large and therefore should be included in the calculations.

  16. Lattice stabilities, mechanical and thermodynamic properties of Al3Tm and Al3Lu intermetallics under high pressure from first-principles calculations

    Science.gov (United States)

    Xu-Dong, Zhang; Wei, Jiang

    2016-02-01

    The effects of high pressure on lattice stability, mechanical and thermodynamic properties of L12 structure Al3Tm and Al3Lu are studied by first-principles calculations within the VASP code. The phonon dispersion curves and density of phonon states are calculated by using the PHONONPY code. Our results agree well with the available experimental and theoretical values. The vibrational properties indicate that Al3Tm and Al3Lu keep their dynamical stabilities in L12 structure up to 100 GPa. The elastic properties and Debye temperatures for Al3Tm and Al3Lu increase with the increase of pressure. The mechanical anisotropic properties are discussed by using anisotropic indices AG, AU, AZ, and the three-dimensional (3D) curved surface of Young’s modulus. The calculated results show that Al3Tm and Al3Lu are both isotropic at 0 GPa and anisotropic under high pressure. In the present work, the sound velocities in different directions for Al3Tm and Al3Lu are also predicted under high pressure. We also calculate the thermodynamic properties and provide the relationships between thermal parameters and temperature/pressure. These results can provide theoretical support for further experimental work and industrial applications. Project supported by the Scientific Technology Plan of the Educational Department of Liaoning Province and Liaoning Innovative Research Team in University, China (Grant No. LT2014004) and the Program for the Young Teacher Cultivation Fund of Shenyang University of Technology, China (Grant No. 005612).

  17. RHIC lattice

    International Nuclear Information System (INIS)

    Lee, S.Y.; Claus, J.; Courant, E.D.; Hahn, H.; Parzen, G.

    1985-01-01

    An antisymmetric lattice for the proposed Relativistic Heavy Ion Collider at Brookhaven National Laboratory is presented, which has been designed to have (1) and energy range from 7 GeV/amu up to 100 GeV/amu; (2) a good tunability of β and betatron tune; (3) freedom in the choice of crossing angle between beams; and (4) capability of operating unequal species, for example, proton on gold. Suppression of structure resonances is achieved by a proper choice of the phase advances across the insertion and the arc cells. 8 refs., 7 figs

  18. A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    M. AKBARI

    2013-12-01

    Full Text Available Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO2–PUO2 (MOX is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H2O moderated UO2–PuO2 (MOX lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

  19. A Novel Approach to Find Optimized Neutron Energy Group Structure in MOX Thermal Lattices Using Swarm Intelligence

    International Nuclear Information System (INIS)

    Akbari, M.; Khoshahval, F.; Minucheha, A.; Zolfaghari, A.

    2013-01-01

    Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO 2 -PuO 2 (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO 2 fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H 2 O moderated UO 2 -PuO 2 (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure

  20. A Novel Approach to Find Optimized Neutron Energy Group Structure in MOX Thermal Lattices Using Swarm Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, M.; Khoshahval, F.; Minucheha, A.; Zolfaghari, A. [Shahid Beheshti Univ., Tehran (Iran, Islamic Republic of)

    2013-12-15

    Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that UO{sub 2}-PuO{sub 2} (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the UO{sub 2} fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of H{sub 2}O moderated UO{sub 2}-PuO{sub 2} (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

  1. [Structure of the vitreous body over areas with lattice degeneration of the retina (author's transl)].

    Science.gov (United States)

    Slezak, H

    1975-12-04

    The clinical examination of the vitreous in the extreme fundus periphery is difficult; therefore only very little was known up to now about the relations of the posterior limiting membrane of the vitreous and the preretinal tract to retinal lattice degenerations arranged parallel to the ora serrata in several rows. There will be reports of new findings gained by depression biomicroscopy.

  2. Colloidal Aggregate Structure under Shear by USANS

    Science.gov (United States)

    Chatterjee, Tirtha; van Dyk, Antony K.; Ginzburg, Valeriy V.; Nakatani, Alan I.

    2015-03-01

    Paints are complex formulations of polymeric binders, inorganic pigments, dispersants, surfactants, colorants, rheology modifiers, and other additives. A commercially successful paint exhibits a desired viscosity profile over a wide shear rate range from 10-5 s-1 for settling to >104 s-1 for rolling, and spray applications. Understanding paint formulation structure is critical as it governs the paint viscosity profile. However, probing paint formulation structure under shear is a challenging task due to the formulation complexity containing structures with different hierarchical length scales and their alterations under the influence of an external flow field. In this work mesoscale structures of paint formulations under shear are investigated using Ultra Small-Angle Neutron Scattering (rheo-USANS). Contrast match conditions were utilized to independently probe the structure of latex binder particle aggregates and the TiO2 pigment particle aggregates. Rheo-USANS data revealed that the aggregates are fractal in nature and their self-similarity dimensions and correlations lengths depend on the chemistry of the binder particles, the type of rheology modifier present and the shear stress imposed upon the formulation. These results can be explained in the framework of diffusion and reaction limited transient aggregates structure evolution under simple shear.

  3. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  4. Influence of Boundary Conditions on the Simulation of a Diamond-Type Lattice Structure: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Patrick Terriault

    2017-01-01

    Full Text Available Emergent additive manufacturing processes allow the use of metallic porous structures in various industrial applications. Because these structures comprise a large number of ordered unit cells, their design using conventional modeling approaches, such as finite elements, becomes a real challenge. A homogenization technique, in which the lattice structure is simulated as a fully dense volume having equivalent material properties, can then be employed. To determine these equivalent material properties, numerical simulations can be performed on a single unit cell of the lattice structure. However, a critical aspect to consider is the boundary conditions applied to the external faces of the unit cell. In the literature, different types of boundary conditions are used, but a comparative study is definitely lacking. In this publication, a diamond-type unit cell is studied in compression by applying different boundary conditions. If the porous structure’s boundaries are free to deform, then the periodic boundary condition is found to be the most representative, but constraint equations must be introduced in the model. If, instead, the porous structure is inserted in a rigid enclosure, it is then better to use frictionless boundary conditions. These preliminary results remain to be validated for other types of unit cells loaded beyond the yield limit of the material.

  5. Load-Direction-Derived Support Structures for Wind Turbines: A Lattice Tower Concept and Preparations for Future Certifications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Struve, Achim [University of Applied Sciences Flensburg; Faber, Torsten [University of Applied Sciences Flensburg; Ummenhofer, Thomas [Karlsruhe Institute of Technology

    2017-11-07

    The call for more cost-effective and environmentally friendly tower concepts is motivated by tower costs [1] and tower CO2-emission contributions [2], which are high relative to the whole wind turbine system. The proposed rotatable tower concept with yaw bearing at the bottom instead of the top of the tower will provide beneficial economic and environmental impacts to the turbine system. This wind alignment capability indicates a load-direction-derived tower design. By combining this approach with a lattice concept, large material and cost savings for the tower can be achieved. This paper presents a way to analyze and verify the proposed design through aero-servo-elastic simulations, which make future certifications of rotatable tower concepts viable. For this reason, the state-of-the-art, open-source lattice-tower finite-element-method (FEM) module SubDyn [10], developed by the National Renewable Energy Laboratory, has been modified to account for arbitrary member cross-sections. Required changes in the beam element stiffness and mass matrix formulation took place according to an energy method [13]. All validated adaptions will be usable within the aero-servo-elastic simulation framework FAST and are also beneficial for other nonrotatable lattice structures.

  6. The effects of degeneracy of the carrier ensemble on the energy loss rate and the high field mobility characteristics under the conditions of low lattice temperatures

    International Nuclear Information System (INIS)

    Basu, A.; Das, B.; Middya, T.R.; Bhattacharya, D.P.

    2017-01-01

    The rate of loss of energy of the non-equilibrium electrons to the acoustic mode lattice vibration in a degenerate semiconductor is obtained under the condition, when the lattice temperature is low enough, so that the traditional approximations like the elastic nature of the electron-phonon collisions and the truncation of the phonon distribution to the equipartition law are not valid any more. Using the results of the energy loss rate, the non-ohmic mobility is then calculated. Evaluating the loss rate and the non-ohmic mobility in degenerate samples of Si and Ge we find that significant changes in both the characteristics have been effected compared to that in the non-degenerate samples, in the regime of lower energy and for relatively lower fields. The effected changes are more significant the lower the lattice temperature is.

  7. Water Demand Under Alternative Price Structures

    OpenAIRE

    Sheila Olmstead; W. Michael Hanemann; Robert N. Stavins

    2007-01-01

    We estimate the price elasticity of water demand with household-level data, structurally modeling the piecewise-linear budget constraints imposed by increasing-block pricing. We develop a mathematical expression for the unconditional price elasticity of demand under increasing-block prices and compare conditional and unconditional elasticities analytically and empirically. We test the hypothesis that price elasticity may depend on price structure, beyond technical differences in elasticity co...

  8. Efficient Bayesian inference under the structured coalescent.

    Science.gov (United States)

    Vaughan, Timothy G; Kühnert, Denise; Popinga, Alex; Welch, David; Drummond, Alexei J

    2014-08-15

    Population structure significantly affects evolutionary dynamics. Such structure may be due to spatial segregation, but may also reflect any other gene-flow-limiting aspect of a model. In combination with the structured coalescent, this fact can be used to inform phylogenetic tree reconstruction, as well as to infer parameters such as migration rates and subpopulation sizes from annotated sequence data. However, conducting Bayesian inference under the structured coalescent is impeded by the difficulty of constructing Markov Chain Monte Carlo (MCMC) sampling algorithms (samplers) capable of efficiently exploring the state space. In this article, we present a new MCMC sampler capable of sampling from posterior distributions over structured trees: timed phylogenetic trees in which lineages are associated with the distinct subpopulation in which they lie. The sampler includes a set of MCMC proposal functions that offer significant mixing improvements over a previously published method. Furthermore, its implementation as a BEAST 2 package ensures maximum flexibility with respect to model and prior specification. We demonstrate the usefulness of this new sampler by using it to infer migration rates and effective population sizes of H3N2 influenza between New Zealand, New York and Hong Kong from publicly available hemagglutinin (HA) gene sequences under the structured coalescent. The sampler has been implemented as a publicly available BEAST 2 package that is distributed under version 3 of the GNU General Public License at http://compevol.github.io/MultiTypeTree. © The Author 2014. Published by Oxford University Press.

  9. Phase structure of the O(n) model on a random lattice for n > 2

    DEFF Research Database (Denmark)

    Durhuus, B.; Kristjansen, C.

    1997-01-01

    We show that coarse graining arguments invented for the analysis of multi-spin systems on a randomly triangulated surface apply also to the O(n) model on a random lattice. These arguments imply that if the model has a critical point with diverging string susceptibility, then either γ = +1....../2 or there exists a dual critical point with negative string susceptibility exponent, γ̃, related to γ by γ = γ̃/γ̃-1. Exploiting the exact solution of the O(n) model on a random lattice we show that both situations are realized for n > 2 and that the possible dual pairs of string susceptibility exponents are given...... by (γ̃, γ) = (-1/m, 1/m+1), m = 2, 3, . . . We also show that at the critical points with positive string susceptibility exponent the average number of loops on the surface diverges while the average length of a single loop stays finite....

  10. Problems on one-dimensionally disordered lattices, and reliability of structural analysis of liquids and amorphous solids

    International Nuclear Information System (INIS)

    Kakinoki, J.

    1974-01-01

    Methods for obtaining the intensity of X-ray diffraction by one-dimensional by disordered lattices have been studied, and matrix method was developed. The method has been applied for structural analysis. Several problems concerning neutron diffraction were shown in the course of analysis. Large single crystals should be used for measurement. It is hard to grasp the local variation of structure. The technique of topography is still in development. Measurement of weak intensity diffraction is not sufficient. Technique of photography to observe overall feature is not good. General remarks concerning the one-dimensionally disordered lattices are as follows. A large number of parameters for analysis are not practical, and the disorder parameters are preferably two. In case of the disorder between two kinds of layers having same frequency and different structure, peak shift is not caused, and Laue term remains at the position. Reliability of the structural analysis of liquid and amorphous solid is discussed. The analysis is basically the analysis two atom molecule of same kind of atoms. The intensity of diffraction can be obtained from radial distribution function (RDF). Since practical observation is limited to a finite region, termination effect should be taken into consideration. Accuracy of analysis is not good in case of X-ray diffraction. The analysis by neutron diffraction is preferable. (Kato, T.)

  11. Gosset helicoids: II. Second coordination sphere of eight-dimensional lattice E{sub 8} and ordered noncrystalline tetravalent structures

    Energy Technology Data Exchange (ETDEWEB)

    Samoylovich, M. I., E-mail: samoylovich@technomash.ru [Joint-Stock Company Central Research Technological Institute ' Technomash,' (Russian Federation); Talis, A. L. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation)

    2009-12-15

    This paper completes a series of works in which the three-dimensional Euclidean realization of the system of constructions of algebraic geometry determines the three-level (cluster-helicoid-union of helicoids) scheme of the assembly of ordered tetravalent structures. The algebraic and topological properties of the second coordination sphere of the eight-dimensional lattice E{sub 8} have been used to derive an ordered noncrystalline diamond-like structure. An a priori constructed model represents a helicoidal assembly of finite tubes (from allowably distorted <110> diamond chains) with transverse pentacycles, hexacycles, and heptacycles and nonintegral screw axes. It has been assumed that similar structures can be formed in diamond-like thin films, gas hydrates, biological structures, nanostructures, and other ordered systems.

  12. Variational structure of Luttinger-Ward formalism and bold diagrammatic expansion for Euclidean lattice field theory.

    Science.gov (United States)

    Lin, Lin; Lindsey, Michael

    2018-03-06

    The Luttinger-Ward functional was proposed more than five decades ago and has been used to formally justify most practically used Green's function methods for quantum many-body systems. Nonetheless, the very existence of the Luttinger-Ward functional has been challenged by recent theoretical and numerical evidence. We provide a rigorously justified Luttinger-Ward formalism, in the context of Euclidean lattice field theory. Using the Luttinger-Ward functional, the free energy can be variationally minimized with respect to Green's functions in its domain. We then derive the widely used bold diagrammatic expansion rigorously, without relying on formal arguments such as partial resummation of bare diagrams to infinite order.

  13. Phase structure of 3DZ(N) lattice gauge theories at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.

    2013-01-01

    We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models

  14. Finite-temperature phase structure of lattice QCD with Wilson quark action

    International Nuclear Information System (INIS)

    Aoki, S.; Ukawa, A.; Umemura, T.

    1996-01-01

    The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society

  15. Effect of pressure on the structure and lattice dynamics of fullerene crystal C60

    International Nuclear Information System (INIS)

    Prilutski, Yu.I.; Shapovalov, G.G.

    1997-01-01

    The low-temperature orientationally ordered crystalline phase of fullerene C 60 was investigated in dependence on the external pressure. An assumption was made that the energy of the lattice includes two contributions: a Lennard-Jones (12-6) potential and electrostatic interaction. The vibrational spectrum of C 60 crystal was calculated using the atom-atom potential method. The frequencies of intermolecular modes as functions of external pressure were studied. The sound velocities, elastic constants and bulk modulus are calculated. The dependence of sound velocities in fullerene crystal C 60 on the external pressure is investigated. The results obtained are in good agreement with the available experimental data. (orig.)

  16. Conical diffraction in honeycomb lattices

    International Nuclear Information System (INIS)

    Ablowitz, Mark J.; Nixon, Sean D.; Zhu Yi

    2009-01-01

    Conical diffraction in honeycomb lattices is analyzed. This phenomenon arises in nonlinear Schroedinger equations with honeycomb lattice potentials. In the tight-binding approximation the wave envelope is governed by a nonlinear classical Dirac equation. Numerical simulations show that the Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying mechanism for the existence of conical diffraction in honeycomb lattices.

  17. Root lattices and quasicrystals

    Science.gov (United States)

    Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.

    1990-10-01

    It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.

  18. Simplicial lattices in classical and quantum gravity: Mathematical structure and application

    International Nuclear Information System (INIS)

    LaFave, N.J.

    1989-01-01

    Geometrodynamics can be understood more clearly in the language of geometry than in the language of differential equations. This is the primary motivation for the development of calculational schemes based on Regge Calculus as an alternative to those schemes based on Ricci Calculus. The author develops the mathematics of simplicial lattices to the same level of sophistication as the mathematics of pseudo-Riemannian geometry for continuum manifolds. This involves the definition of the simplicial analogues of several concepts from differential topology and differential geometry-the concept of a point, tangent spaces, forms, tensors, parallel transport, covariant derivatives, connections, and curvature. These simplicial analogues are used to define the Einstein tensor and the extrinsic curvature on a simplicial geometry. He applies this mathematical formalism to the solution of several outstanding problems in the development of a Regge Calculus based computational scheme for general geometrodynamic problems. This scheme is based on a 3 + 1 splitting of spacetime within the Regge Calculus prescription known as Null-Strut Calculus (NSC). NSC, developed by Warner Miller, describes the foliation of spacetime into spacelike hypersurfaces built of tetrahedra. The outstanding problems discussed include (a) the rigidification of the 3-layered sandwich and the evolution problem; (b) the formulation of initial data; and (c) in inclusion of matter on the lattice. The resulting calculational scheme is applied to two test problems, the Friedmann model and the second-order Doppler effect. Finally, he describes avenues of investigation for NSC in quantum gravity

  19. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  20. Fatigue in Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    1999-01-01

    test results. Both the fracture mechanics analysis and the fatigue test results indicate that Miner's rule, which is normally used in the design against fatigue in steel structures, may give results, which are unconservative, and that the validity of the results obtained from Miner's rule will depend......Fatigue damage accumulation in steel structures under random loading is studied. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part of the investigation, fatigue test series have been carried through on various...... types of welded plate test specimens and full-scale offshore tubular joints. The materials that have been used are either conventional structural steel with a yield stress of ~ 360-410 MPa or high-strength steel with a yield stress of ~ 810-1010 MPa. The fatigue tests and the fracture mechanics analyses...

  1. The Crystal Structure and Behavior of Fenamic Acid-Acridine Complex Under High Pressure.

    Science.gov (United States)

    Jerzykiewicz, Lucjan; Sroka, Adam; Majerz, Irena

    2016-12-01

    The crystal structure of fenamic acid-acridine complex is determined by X-ray diffraction. The strong OHN hydrogen bond linking the complex components and other interactions responsible for packing of the molecules into a crystal are investigated within the Quantum Theory of Atom in Molecule theory. The crystal structure is compared with the structure optimized at B3LYP/6-311++G** level and with the theoretical structures optimized under systematically changed pressure. Analysis of the lattice constants, hydrogen bond lengths, and angles of the inter- and intramolecular hydrogen bond under compression is performed. The structural transformation observed at 5 GPa is connected with a change in the intermolecular OHN hydrogen bond. The proton shifts to acceptor and a new interaction in the crystal appears. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Structural and magnetic properties of (NdBa)MnO3 films on lattice-matched substrates

    DEFF Research Database (Denmark)

    Khoryushin, Alexey V.; Mozhaeva, Julia E.; Mozhaev, Peter B.

    2013-01-01

    Structural and magnetic properties of (NdBa)MnO3 thin films grown on several perovskite substrates by pulsed laser deposition are presented. A high crystal quality epitaxial film with smooth surface and low level of internal strain may be grown up to thicknesses of 70 nm. The in-plane distortion...... changes of structural and magnetic properties of the material. The temperature of ferromagnetic transition of the films is around 100 K and increases with expansion of the unit cell. The magnetic moment in saturation is usually higher along the longest lattice constant of the film. An increase of the bi......-axial compressive strain introduced by the substrate results in a rapid increase of the magnetic moment of the films. The observed effects may be explained by a high level of local distortions due to difference in the ionic radii of Nd and Ba. © 2012 Elsevier B.V....

  3. Simulation of capillary infiltration into packing structures for the optimization of ceramic materials using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Danilo Sergi

    2016-01-01

    Full Text Available This study uses the lattice Boltzmann method (LBM to simulate in 2D the capillary infiltration into porous structures obtained from the packing of particles. The experimental problem motivating the work is the densification of carbon preforms by reactive melt infiltration. The aim is to determine the optimization principles for the manufacturing of high-performance ceramics. Simulations are performed for packings with varying structural properties. The results suggest that the observed slow infiltrations can be ascribed to interface dynamics. Pinning represents the primary factor retarding fluid penetration. The mechanism responsible for this phenomenon is analyzed in detail. When surface growth is allowed, it is found that the phenomenon of pinning becomes stronger. Systems trying to reproduce typical experimental conditions are also investigated. It turns out that the standard for accurate simulations is challenging. The primary obstacle to overcome for enhanced accuracy seems to be the over-occurrence of pinning.

  4. Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates

    Science.gov (United States)

    Moewe, Michael; Chuang, Linus C.; Dubrovskii, Vladimir G.; Chang-Hasnain, Connie

    2008-08-01

    We present a growth model that predicts the growth phase and mechanism of InP nanowires (NWs) and the experimental verifications of the model. The NWs were grown on lattice-mismatched GaAs substrates using metal-organic chemical vapor deposition via Au nanodrop-assisted vapor-liquid-solid growth. Nanodrops with larger diameters are shown to grow longer NWs because growth is governed mainly by direct precursor impingement on the nanodrop surface. The theoretical and experimental results also show that growth phase is dependent on NW diameter. We show that InP NWs with a diameter less than a certain value exhibit coherent growth of a single crystalline wurtzite (WZ) phase, whereas larger diameter InP NWs often contain sequences of WZ and zincblende phases and stacking faults. These findings allow one to achieve coherent NW growth and WZ phases free from twinning if the NW diameter is below certain material-dependent critical diameters.

  5. Lattice dynamics of alkali hydrides and deuterides with the NaCl type structure

    International Nuclear Information System (INIS)

    Dyck, W.; Jex, H.

    1981-01-01

    The deformation dipole model, the shell model, and also extended versions of these models have been investigated for the lattice dynamics of LiH and LiD. A deformation dipole model with 13 adjustable parameters gave the best fit to the phonon dispersion of LiD known from neutron and Raman experiments. The model has been used to compute elastic and dielectric constants, Szigeti effective charges, phonon densities of states, Debye temperatures and second-order Raman spectra of LiD and LiH. Good agreement with the experimental data was obtained. The contributions of short-range three- and four-body forces to the model force constants are discussed. First calculations of the phonon dispersion curves of the hydrides and deuterides of Na, K, Rb and Cs, which are based on shell models, are presented. (author)

  6. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  7. STABILITY OF UNDERWATER STRUCTURE UNDER WAVE ATTACK

    Directory of Open Access Journals (Sweden)

    C. Paotonan

    2012-02-01

    Full Text Available Geotube is, among others, a type of coastal structure that is increasingly accepted for coastal protection especially underwater breakwater. Besides its relatively low cost, it has other advantages such as flexibility, ease of construction and the fact that it can be filled with local sand material. Similar to all other coastal structures, it should also be stable under wave attack. A simple theoretical approach based on linear wave was adopted to estimate the stability of such structure. The theoretical solution was then compared with an experimental study. The experimental study was conducted at the Hydraulics and Hydrology Laboratory of Universitas Gadjah Mada. However, instead of a real geotube, PVC pipe was used where the weight of the PVC was varied by adjusting the volume of sand in the pipe. The result indicated that the agreement between the theoretical solution and the experiment was encouraging. The analytical solution may be utilized to predict underwater pipe stability under wave attack with certain degree of accuracy.

  8. Structure of polymer-stabilized magnetic fluids: small-angle neutron scattering and mean-field lattice modeling.

    Science.gov (United States)

    Moeser, Geoffrey D; Green, William H; Laibinis, Paul E; Linse, Per; Hatton, T Alan

    2004-06-22

    Small-angle neutron scattering and mean-field lattice modeling were used to characterize a class of water-based magnetic fluids tailored specifically to extract soluble organic compounds from water. The fluids consist of a suspension of approximately 7 nm magnetite (Fe3O4) nanoparticles coated with a bifunctional polymer layer comprised of an outer hydrophilic poly(ethylene oxide) (PEO) region for colloidal stability and an inner hydrophobic poly(propylene oxide) (PPO) region for solubilization of organic compounds. The inner region of the polymer shell is increasingly depleted of water as the fraction of PPO side chains increases. The incorporation of PPO side chains also leads to a small increase in interparticle attraction. The lattice model predicted a shell structure similar to that of a PEO-PPO-PEO triblock copolymer (Pluronic) micelle, with equivalent levels of hydration but with more PEO present in the PPO-rich regions, as the side chains grafted to the surface are less able to segregate than when in free micellar systems.

  9. Electronic structure and magnetism in the layered triangular lattice compound CeAuAl4Ge2

    Science.gov (United States)

    Zhang, S.; Aryal, N.; Huang, K.; Chen, K.-W.; Lai, Y.; Graf, D.; Besara, T.; Siegrist, T.; Manousakis, E.; Baumbach, R. E.

    2017-09-01

    Results are reported for the f -electron intermetallic CeAuAl4Ge2 , where the atomic arrangement of the cerium ions creates the conditions for possible geometric frustration. The magnetic susceptibility follows a Curie-Weiss temperature dependence at elevated temperatures, revealing that the cerium ions are trivalent. At lower temperatures the crystal electric field splits the Hund's rule multiplet, resulting in a weak low-temperature magnetic exchange interaction and ordering near TM≈1.4 K . This occurs within a metallic Kondo lattice, where electrical resistivity and heat capacity measurements show that the Kondo-driven electronic correlations are negligible. Quantum oscillations are detected in ac-magnetic susceptibility measurements and uncover small charge carrier effective masses. Electronic structure calculations reveal that inclusion of an on-f -site Coulomb repulsion (Hubbard) U results in antiferromagnetic order and causes the f -electron bands to move away from the Fermi level, resulting in electronic behavior that is dominated by the s ,p , and d bands, which are all characterized by light electron masses. Thus, CeAuAl4Ge2 may provide a starting point for investigating geometric magnetic frustration in a cerium lattice without strong Kondo hybridization, where calculations provide useful guidance.

  10. Strength of concrete structures under dynamic loading

    Science.gov (United States)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  11. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  12. Concrete structures under impact and impulsive loading

    International Nuclear Information System (INIS)

    Plauk, G.

    1982-05-01

    This book contains papers contributed to the RILEM/CEB/IABSE/IASS-Interassociation Symposium on 'Concrete Structures under Impact and Impulsive Loading'. The essential aim of this symposium is to provide an international forum for the exchange of information on existing and current research relating to impact problems as well as to identify areas to which further research activities should be directed. The subject of the symposium is far ranging. Fifty five papers were proposed and arranged in six technical sessions, a task which sometimes posed difficulties for the Organization Committee and the Advisory Group, because some of the papers touched several topics and were difficult to integrate. However, we are confident that these minor difficulties were solved to the satisfaction of everyone involved. Each session of the symposium is devoted to a major subject area and introduced by a distinguished Introductory Reporter. The large international attendance, some 21 countries are represented, and the large number of excellent papers will certainly produce a lively discussion after each session and thus help to further close the gaps in our knowledge about the behaviour of structures and materials under impact and impulsive loading. (orig./RW)

  13. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K₈Si46 under High Pressure.

    Science.gov (United States)

    Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo

    2016-07-25

    For a further understanding of the phase transitions mechanism in type-I silicon clathrates K₈Si 46 , ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K₈Si 46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K₈Si 46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K₈Si 46 under different temperature and pressure were also predicted.

  14. Permutohedral Lattice CNNs

    OpenAIRE

    Kiefel, Martin; Jampani, Varun; Gehler, Peter V.

    2014-01-01

    This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....

  15. APPLICATION OF A LATTICE GAS MODEL FOR SUBPIXEL PROCESSING OF LOW-RESOLUTION IMAGES OF BINARY STRUCTURES

    Directory of Open Access Journals (Sweden)

    Zbisław Tabor

    2011-05-01

    Full Text Available In the study an algorithm based on a lattice gas model is proposed as a tool for enhancing quality of lowresolution images of binary structures. Analyzed low-resolution gray-level images are replaced with binary images, in which pixel size is decreased. The intensity in the pixels of these new images is determined by corresponding gray-level intensities in the original low-resolution images. Then the white phase pixels in the binary images are assumed to be particles interacting with one another, interacting with properly defined external field and allowed to diffuse. The evolution is driven towards a state with maximal energy by Metropolis algorithm. This state is used to estimate the imaged object. The performance of the proposed algorithm and local and global thresholding methods are compared.

  16. Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods

    International Nuclear Information System (INIS)

    Music, Denis; Ahuja, Rajeev; Schneider, Jochen M.

    2006-01-01

    Using first-principles methods, we have studied the electronic structure and lattice dynamics of CaPd 3 B and compared them to isostructural MgNi 3 C. CaPd 3 B possesses less electronic states at the Fermi level, but more phonon modes at low frequencies, than MgNi 3 C. According to the phonon density of states, low frequency acoustic modes are dominated by Pd states, corresponding to Ni in MgNi 3 C. Furthermore, these Pd modes show soft phonons, which may be significant for second-order phase transitions. Based on the comparison to MgNi 3 C, we suggest that the properties of these two compounds may be similar

  17. Structural behavior of supercritical fluids under confinement

    Science.gov (United States)

    Ghosh, Kanka; Krishnamurthy, C. V.

    2018-01-01

    The existence of the Frenkel line in the supercritical regime of a Lennard-Jones (LJ) fluid shown through molecular dynamics (MD) simulations initially and later corroborated by experiments on argon opens up possibilities of understanding the structure and dynamics of supercritical fluids in general and of the Frenkel line in particular. The location of the Frenkel line, which demarcates two distinct physical states, liquidlike and gaslike within the supercritical regime, has been established through MD simulations of the velocity autocorrelation (VACF) and radial distribution function (RDF). We, in this article, explore the changes in the structural features of supercritical LJ fluid under partial confinement using atomistic walls. The study is carried out across the Frenkel line through a series of MD simulations considering a set of thermodynamics states in the supercritical regime (P =5000 bar, 240 K ≤T ≤1500 K ) of argon well above the critical point. Confinement is partial, with atomistic walls located normal to z and extending to "infinity" along the x and y directions. In the "liquidlike" regime of the supercritical phase, particles are found to be distributed in distinct layers along the z axis with layer spacing less than one atomic diameter and the lateral RDF showing amorphous-like structure for specific spacings (packing frustration) and non-amorphous-like structure for other spacings. Increasing the rigidity of the atomistic walls is found to lead to stronger layering and increased structural order. For confinement with reflective walls, layers are found to form with one atomic diameter spacing and the lateral RDF showing close-packed structure for the smaller confinements. Translational order parameter and excess entropy assessment confirms the ordering taking place for atomistic wall and reflective wall confinements. In the "gaslike" regime of the supercritical phase, particle distribution along the spacing and the lateral RDF exhibit features

  18. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  19. Structural modifications of spinels under radiation

    International Nuclear Information System (INIS)

    Quentin, A.

    2010-12-01

    This work is devoted to the study of spinel structure materials under radiation. For that purpose, samples of polycrystalline ZnAl 2 O 4 and monocrystalline MgAl 2 O 4 were irradiated by different heavy ions with different energies. Samples of ZnAl 2 O 4 were studied par electron transmission microscopy, and by grazing incidence X-Ray diffraction and Rietveld analysis. Samples of MgAl 2 O 4 were studied by optical spectroscopy. Most of the results concern amorphization and crystalline structure modification of ZnAl 2 O 4 especially the inversion. We were able to determine a stopping power threshold for amorphization, between 11 keV/nm and 12 keV/nm, and also the amorphization process, which is a multiple impacts process. We studied the evolution of the amorphous phase by TEM and showed a nano-patterning phenomenon. Concerning the inversion, we determined that it did happen by a single impact process, and the saturation value did not reach the random cation distribution value. Inversion and amorphization have different, but close, stopping power threshold. However, amorphization seems to be conditioned by a pre-damage of the material which consists in inversion. (author)

  20. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  1. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...

  2. Hofstadter butterfly evolution in the space of two-dimensional Bravais lattices

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2017-06-01

    The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yılmaz et al., Phys. Rev. A 91, 063628 (2015), 10.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.

  3. An alternative lattice field theory formulation inspired by lattice supersymmetry

    Science.gov (United States)

    D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun

    2017-12-01

    We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedom on the lattice corresponds to 2 d degrees of freedom in the continuum, but all these doublers have (in the case of fermions) the same chirality and can be either identified, thus removing the degeneracy, or, in some theories with extended supersymmetry, identified with different members of the same supermultiplet. 2) The derivative operator, defined on the lattice as a suitable periodic function of the lattice momentum, is an addittive and conserved quantity, thus assuring that the Leibniz rule is satisfied. This implies that the product of two fields on the lattice is replaced by a non-local "star product" which is however in general non-associative. Associativity of the "star product" poses strong restrictions on the form of the lattice derivative operator (which becomes the inverse Gudermannian function of the lattice momentum) and has the consequence that the degrees of freedom of the lattice theory and of the continuum theory are in one-to-one correspondence, so that the two theories are eventually equivalent. We can show that the non-local star product of the fields effectively turns into a local one in the continuum limit. Regularization of the ultraviolet divergences on the lattice is not associated to the lattice spacing, which does not act as a regulator, but may be obtained by a one parameter deformation of the lattice derivative, thus preserving the lattice structure even in the limit of infinite momentum cutoff. However this regularization breaks gauge invariance and a gauge invariant regularization within the lattice formulation is still lacking.

  4. Electronic band structure calculations for GaxIn1−xASyP1−y alloys lattice matched to InP

    International Nuclear Information System (INIS)

    Bechiri, A; Benmakhlouf, F; Allouache, H; Bacha, S; Bouarissa, N

    2012-01-01

    A pseudopotential formalism coupled with the virtual crystal approximation are applied to study the effect of compositional disorder upon electronic band structure of cubic Ga x In 1−x As y P 1−y quarternary alloys lattice matched to InP. The effects of compositional variations are properly included in the calculations. Very good agreement is obtained between the calculated values and the available experimental data for the lattice–matched alloy to InP. The absorption at the fundamental optical gaps is found to be direct within a whole range of the y composition whatever the lattice-matching to the substrate of interest. The alloy system Ga x In 1−x As y P 1−y lattice matched to InP is suggested to be suitable for an efficient light emitting device (ELED) material.

  5. Stress distribution and lattice distortions in Nb3Sn multifilament wires under uniaxial tensile loading at 4.2 K

    International Nuclear Information System (INIS)

    Scheuerlein, C; Flükiger, R; Kadar, J; Bordini, B; Ballarino, A; Bottura, L; Di Michiel, M; Buta, F; Seeber, B; Senatore, C; Siegrist, T; Besara, T

    2014-01-01

    The lattice parameter changes in three types of Nb 3 Sn superconducting wires during uniaxial stress–strain measurements at 4.2 K have been measured by high-energy synchrotron x-ray diffraction. The nearly-stress-free Nb 3 Sn lattice parameter has been determined using extracted filaments, and the elastic strain in the axial and transverse wire directions in the different wire phases has been calculated. The mechanical properties of the PIT and RRP wire are mainly determined by the properties of Nb 3 Sn and unreacted Nb. This is in contrast to the bronze route wire, where the matrix can carry substantial loads. In straight wires the axial Nb 3 Sn pre-strain is strongest in the bronze route wire, its value being smaller in the PIT and RRP wires. A strong reduction of the non-Cu elastic modulus of about 30% is observed during cool-down from ambient temperature to 4.2 K. The Nb 3 Sn Poisson ratio at 4.2 K measured in the untwisted bronze route wire is 0.35. The present study also shows that the process route has a strong influence on the Nb 3 Sn texture. (paper)

  6. Investigation of Bucket Wheel Excavator Lattice Structure Internal Stress in Harsh Environment through a Remote Measurement System

    Science.gov (United States)

    Risteiu, M.; Dobra, R.; Andras, I.; Roventa, M.; Lorincz, A.

    2017-06-01

    The paper shows the results of a lab model for strain gauges based measuring system for multiple measuring heads of the mechanical stress in lattice structures of the bucket wheel excavator for open pit mines-harsh environment. The system is designed around a microcontroller system. Because of specific working conditions, the measuring system sends data to a processing system (a PC with Matlab software), we have implemented a secure communication solution based on ISM standard, by using NRF24L01 module. The transceiver contains a fully integrated frequency synthesizer based on crystal oscillator, and a Enhanced ShockBurst™ protocol engine. The proposed solution has a current consumption around 9.0 mA at an output power of -6dBm and 12.3mA in RX mode. Built-in Power Down and Standby modes makes power saving easily realizable for our solution battery powered. The stress from structures is taken by specific strain gauges adapted to low frequency vibrations. We are using a precision 24-bit analog-to-digital converter (ADC) designed for weigh scales and industrial control applications to interface directly with a bridge sensor-instrumentation device, with low drift voltage, low noise, common mode rejection signal, frequency and temperature stability. As backup implementation for measurements a high speed storage implementation is used.

  7. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    Science.gov (United States)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  8. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  9. An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies.

    Science.gov (United States)

    Zhang, Guo-Qiang; Xing, Guangming; Cui, Licong

    2018-04-01

    One of the basic challenges in developing structural methods for systematic audition on the quality of biomedical ontologies is the computational cost usually involved in exhaustive sub-graph analysis. We introduce ANT-LCA, a new algorithm for computing all non-trivial lowest common ancestors (LCA) of each pair of concepts in the hierarchical order induced by an ontology. The computation of LCA is a fundamental step for non-lattice approach for ontology quality assurance. Distinct from existing approaches, ANT-LCA only computes LCAs for non-trivial pairs, those having at least one common ancestor. To skip all trivial pairs that may be of no practical interest, ANT-LCA employs a simple but innovative algorithmic strategy combining topological order and dynamic programming to keep track of non-trivial pairs. We provide correctness proofs and demonstrate a substantial reduction in computational time for two largest biomedical ontologies: SNOMED CT and Gene Ontology (GO). ANT-LCA achieved an average computation time of 30 and 3 sec per version for SNOMED CT and GO, respectively, about 2 orders of magnitude faster than the best known approaches. Our algorithm overcomes a fundamental computational barrier in sub-graph based structural analysis of large ontological systems. It enables the implementation of a new breed of structural auditing methods that not only identifies potential problematic areas, but also automatically suggests changes to fix the issues. Such structural auditing methods can lead to more effective tools supporting ontology quality assurance work. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled Lattice Boltzmann algorithm

    Science.gov (United States)

    Munk, David J.; Kipouros, Timoleon; Vio, Gareth A.; Steven, Grant P.; Parks, Geoffrey T.

    2017-11-01

    Recently, the study of micro fluidic devices has gained much interest in various fields from biology to engineering. In the constant development cycle, the need to optimise the topology of the interior of these devices, where there are two or more optimality criteria, is always present. In this work, twin physical situations, whereby optimal fluid mixing in the form of vorticity maximisation is accompanied by the requirement that the casing in which the mixing takes place has the best structural performance in terms of the greatest specific stiffness, are considered. In the steady state of mixing this also means that the stresses in the casing are as uniform as possible, thus giving a desired operating life with minimum weight. The ultimate aim of this research is to couple two key disciplines, fluids and structures, into a topology optimisation framework, which shows fast convergence for multidisciplinary optimisation problems. This is achieved by developing a bi-directional evolutionary structural optimisation algorithm that is directly coupled to the Lattice Boltzmann method, used for simulating the flow in the micro fluidic device, for the objectives of minimum compliance and maximum vorticity. The needs for the exploration of larger design spaces and to produce innovative designs make meta-heuristic algorithms, such as genetic algorithms, particle swarms and Tabu Searches, less efficient for this task. The multidisciplinary topology optimisation framework presented in this article is shown to increase the stiffness of the structure from the datum case and produce physically acceptable designs. Furthermore, the topology optimisation method outperforms a Tabu Search algorithm in designing the baffle to maximise the mixing of the two fluids.

  11. Interplay of structural instability and lattice dynamics in Ni{sub 2}MnAl shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mehaddene, T.

    2007-02-12

    The work presented here is devoted to investigate the interplay of lattice dynamics and structural instability in Ni{sub 2}MnAl shape memory alloys. Inelastic neutron scattering is used to get more insight on the dynamic precursors of structural instability in Ni{sub 2}MnAl. Differential Scanning Calorimetry was used to characterise the martensitic transition in Ni{sub 2}MnAl alloys. Effects of composition and heat treatments have been investigated. The measured martensitic transition temperature in Ni-Mn-Al alloys depends linearly on the valence electron concentration. Two single crystals with different compositions have been succesfully grown using the Czochralski technique. Acoustic and optical phonon modes have been measured at room temperature in the high symmetry directions of the cubic B2 phase. The force constants have been fitted to the measured data using the Born-von Karman model. The character of the phonon softening measured in Ni{sub 2}MnAl corresponds to the pattern of atomic displacements of the modulations 2M, 10M, 12M and 14M observed in bulk and thin-films of Ni{sub 2}MnAl. The effect of the composition on the lattice instability has been investigated by measuring normal modes of vibration in two different crystals, Ni{sub 51}Mn{sub 18}Al{sub 31} and Ni{sub 53}Mn{sub 22}Al{sub 25}, with e/a ratios of 7.29 and 7.59 respectively. The stabilisation of a single L2{sub 1} phase in Ni{sub 2}MnAl by annealing a Ni{sub 51}Mn{sub 18}Al{sub 31} single crystal at 673 K during 45 days has been attempted. Despite of the long-time annealing, a single L2{sub 1} phase could not be stabilised because of either a slow diffusion kinetics or the establishment of an equilibrium between the L2{sub 1} and the B2 phases. Phonon measurements of the TA{sub 2}[{xi}{xi}0] branch in the annealed sample revealed a substantial effect. The wiggle, associated with the anomalous softening, is still present but the degree of softening is smaller below 673 K and changes

  12. Lattice gases

    International Nuclear Information System (INIS)

    Boghosian, B.M.

    1990-01-01

    In recent years an important class of cellular automata known as lattice gases have been successfully used to model a variety of physical systems, traditionally modeled by partial differential equations. The 2-D and 3-D Navier Stokes equations for single-phase and multiphase flow, Burgers' equation, and various types of diffusion equations are all examples. The first section of this chapter is meant to be a survey of the different ideas and techniques used in this simulations. In the second section, using lattice gases for the diffusion equation and for Burgers' equation as examples, the discrete Chapman-Enskog method is demonstrated. Beginning with rules governing particle motion on a lattice, the lattice Boltzmann equation is derived, and the Chapman-Enskog method is used to derive hydrodynamical equations for the conserved quantities. The approximations used at each step are discussed in detail. The intent is to provide an introduction to the Chapman-Enskog analysis for simple lattice gases in order to prepare the reader to better understand that for the (generally more complicated) models proposed for the simulation of the Navier-Stokes equations. 29 refs., 5 figs., 4 tabs

  13. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    Directory of Open Access Journals (Sweden)

    Nazipov D.V.

    2017-01-01

    Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  14. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  15. Electronic structure of Ca, Sr, and Ba under pressure.

    Science.gov (United States)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  16. Band structure properties of (BGa)P semiconductors for lattice matched integration on (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Nadir; Sweeney, Stephen [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Hosea, Jeff [Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK and Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Johor Bahru 81310 (Malaysia); Liebich, Sven; Zimprich, Martin; Volz, Kerstin; Stolz, Wolfgang [Material Sciences Center and Faculty of Physics, Philipps-University, 35032 Marburg (Germany); Kunert, Bernerdette [NAsP III/V GmbH, Am Knechtacker 19, 35041 Marburg (Germany)

    2013-12-04

    We report the band structure properties of (BGa)P layers grown on silicon substrate using metal-organic vapour-phase epitaxy. Using surface photo-voltage spectroscopy we find that both the direct and indirect band gaps of (BGa)P alloys (strained and unstrained) decrease with Boron content. Our experimental results suggest that the band gap of (BGa)P layers up to 6% Boron is large and suitable to be used as cladding and contact layers in GaP-based quantum well heterostructures on silicon substrates.

  17. Superconducting properties and the structural transition in compounds with the A-15 lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gor' kov, L.P.; Dorokhov, O.N.

    1976-11-01

    The dependence of T/sub c/ on composition and strain is computed and compared with the corresponding dependence of T/sub m/. It is shown that the superconducting and structural properties of the A-15 compounds can be described, at least qualitatively, in the quasi-one-dimensional model previously developed by the authors. It is assumed that the superconductivity mechanism is analogous to that of the BCS theory. The upper critical field, H/sub c//sub 2/, of the V/sub 3/Si and Nb/sub 3/Sn compounds turns out to be much higher than that of V or Nb.

  18. Hero’s Journey as a Lattice Structure: A Case Study of Star Wars

    OpenAIRE

    Başarıcı, Samsun Mustafa; Kılıçaslan, Yılmaz

    2017-01-01

    Storytelling is one of the oldest human activities for sharing information, entertainment, etc., and it is not wrong to say that myths were the most common form of storytelling through all ages in all cultures. Thanks to the researchers starting with Adolf Bastian and followed by Carl Gustav Jung and Joseph Campbell we now know that there is a common structure in myths regardless the cultural environment they are told in. Among the monomyths of Jung maybe the most interesting one is the hero ...

  19. Species coexistence in a lattice-structured habitat: effects of species dispersal and interactions.

    Science.gov (United States)

    Ying, Zhixia; Liao, Jinbao; Wang, Shichang; Lu, Hui; Liu, Yongjie; Ma, Liang; Li, Zhenqing

    2014-10-21

    Opinions differ on how the spatial distribution of species over space affects species coexistence. Here, we constructed both mean-field and pair approximation (PA) models to explore the effects of interspecific and intraspecific interactions and dispersal modes on species coexistence. We found that spatial structure resulting from species dispersal traits and neighboring interactions in PA model did not promote coexistence if two species had the same traits, though it might intensify the contact frequency of intraspecific competition. If two species adopt different dispersal modes, the spatial structure in PA would make the coexistence or founder control less likely since it alters the species effective birth rate. This suggests that the spatial distribution caused by neighboring interactions and local dispersal does not affect species coexistence unless it adequately alters the effective birth rate for two species. Besides, we modeled how the initial densities and patterns affected population dynamics and revealed how the final spatial pattern was generated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Lattice QCD

    International Nuclear Information System (INIS)

    Mackenzie, Paul

    2007-01-01

    Modern lattice gauge theory calculations are making it possible for lattice QCD to play an increasingly important role in the quantitative investigation of the Standard Model. The fact that QCD is strongly coupled at large distances has required the development of nonperturbative methods and large-scale computer simulations to solve the theory. The development of successful numerical methods for QCD calculations puts us in a good position to be ready for the possible discovery of new strongly coupled forces beyond the Standard Model in the era of the Large Hadron Collider. (author)

  1. Operator lattices

    International Nuclear Information System (INIS)

    Bender, C.M.

    1984-01-01

    The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value

  2. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  3. Possible lattice organs in Cretaceous Thylacocephala

    NARCIS (Netherlands)

    Lange, Sven; Schram, Frederick R.

    2002-01-01

    Structures, reminiscent of the lattice organs in thecostracan crustaceans, are described from the carapace cuticle of Cretaceous thylacocephalans. The new lattice organ like structures occur in pairs along the dorsal midline. While these have a similar outline to true lattice organs, they seem to

  4. Effect of lattice strain on structural and optical properties of ZnO nanorods grown by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Khyati, E-mail: khyati34@gmail.com; Nirwal, Varun Singh; Singh, Joginder; Peta, Koteswara Rao; Bhatnagar, P. K. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Singh, Inderpreet [Department of Electronics, SGTB KhalsaCollege, University of Delhi, Delhi-110007 (India)

    2016-05-06

    In this work, we have synthesized ZnO nanorods over ZnO seeds/ITO/glass substrate by the facile hydrothermal method. ZnO seeds are grown at different temperatures ranging from 150°C to 550°C in steps of 100°C. We have studied the effect of strain on the structural and optical properties of ZnO nanorods. It was observed that the growth temperature of seed layer has an influence over the lattice strain present in the nanorods. The as synthesized nanorods were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and photoluminescence (PL). SEM images confirm the formation of dense arrays of vertically aligned nanorods on seeds which are grown at 350°C. In addition to this, XRD patterns reveal that these ZnO nanorods are preferentially oriented along (002) direction. The strain analysis based on the XRD results reveals that the minimum value of strain is obtained at 350°C which is attributed to the improved crystalline quality of the interface of seed layer and nanorods leading to their c-axis alignment and enhancement of ultraviolet emission as observed in the PL spectra.

  5. A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures

    Science.gov (United States)

    Zhang, Li-Zhi; Yuan, Wu-Zhi

    2018-04-01

    The motion of coalescence-induced condensate droplets on superhydrophobic surface (SHS) has attracted increasing attention in energy-related applications. Previous researches were focused on regularly rough surfaces. Here a new approach, a mesoscale lattice Boltzmann method (LBM), is proposed and used to model the dynamic behavior of coalescence-induced droplet jumping on SHS with randomly distributed rough structures. A Fast Fourier Transformation (FFT) method is used to generate non-Gaussian randomly distributed rough surfaces with the skewness (Sk), kurtosis (K) and root mean square (Rq) obtained from real surfaces. Three typical spreading states of coalesced droplets are observed through LBM modeling on various rough surfaces, which are found to significantly influence the jumping ability of coalesced droplet. The coalesced droplets spreading in Cassie state or in composite state will jump off the rough surfaces, while the ones spreading in Wenzel state would eventually remain on the rough surfaces. It is demonstrated that the rough surfaces with smaller Sks, larger Rqs and a K at 3.0 are beneficial to coalescence-induced droplet jumping. The new approach gives more detailed insights into the design of SHS.

  6. Modified corrections for London forces in solid-state density functional theory calculations of structure and lattice dynamics of molecular crystals.

    Science.gov (United States)

    King, Matthew D; Korter, Timothy M

    2012-06-28

    Dispersion forces are critical for defining the crystal structures and vibrational potentials of molecular crystals. It is, therefore, important to include corrections for these forces in periodic density functional theory (DFT) calculations of lattice vibrational frequencies. In this study, DFT was augmented with a correction term for London-type dispersion forces in the simulations of the structures and terahertz (THz) vibrational spectra of the dispersion-bound solids naphthalene and durene. The parameters of the correction term were modified to best reproduce the experimental crystal structures and THz spectra. It was found that the accurate reproduction of the lattice dimensions by adjusting the magnitude of the applied dispersion forces resulted in the highest-quality fit of the calculated vibrational modes with the observed THz absorptions. The method presented for the modification of the dispersion corrections provides a practical approach to accurately simulating the THz spectra of molecular crystals, accounting for inherent systematic errors imposed by computational and experimental factors.

  7. Response of masonry structure under impact load

    International Nuclear Information System (INIS)

    Makovicka, D.

    1993-01-01

    The paper deals with interaction of a short gaseous impact wave with a plate structure. Analyses of dynamic bending, depending on the parameters of the structure and the impact wave (i.e. the stress and displacement field produced by the resulting incident and reflected wave) have been made by FEM. The calculated data was based on the real material properties of this structure. Pressures greater than computed limit pressures result in the failure of the structure. The calculated and experimental data are compared. (author)

  8. Anomalous lattice compression and magnetic ordering in CuO at high pressures: A structural study and first-principles calculations

    Science.gov (United States)

    Kozlenko, D. P.; DruŻbicki, K.; Kichanov, S. E.; Lukin, E. V.; Liermann, H.-P.; Glazyrin, K. V.; Savenko, B. N.

    2017-02-01

    The structural and magnetic properties of multiferroic CuO have been studied by means of neutron and x-ray powder diffraction at pressures up to 11 and 38 GPa, respectively, and by first-principles theoretical calculations. Anomalous lattice compression is observed, with enlargement of the lattice parameter a , reaching a maximum at P = 13 GPa , followed by its reduction at higher pressures. The lattice distortion of the monoclinic structure at high pressures is accompanied by a progressive change of the oxygen coordination around Cu atoms from the square fourfold towards the octahedral sixfold coordination. The pressure-induced evolution of the structural properties and electronic structure of CuO was successfully elucidated in the framework of full-electronic density functional theory calculations with range-separated HSE06, and meta-generalized gradient approximation hybrid M06 functionals. The antiferromagnetic (AFM) ground state with a propagation vector q = (0.5 , 0 , -0.5 ) remains stable in the studied pressure range. From the obtained structural parameters, the pressure dependencies of the principal superexchange magnetic interactions were analyzed, and the pressure behavior of the Néel temperature as well as the magnetic transition temperature from the intermediate incommensurate AFM multiferroic state to the commensurate AFM ground state were evaluated. The estimated upper limit of the Néel temperature at P = 38 GPa is about 260 K, not supporting the previously predicted existence of the multiferroic phase at room temperature and high pressure.

  9. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)

    2014-11-15

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.

  10. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.

    2014-01-01

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures

  11. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  12. Effect of electron correlations on the electronic structure and phase stability of FeSe upon lattice expansion

    Science.gov (United States)

    Skornyakov, S. L.; Anisimov, V. I.; Vollhardt, D.; Leonov, I.

    2017-07-01

    We present results of a detailed theoretical study of the electronic, magnetic, and structural properties of the chalcogenide parent system FeSe using a fully charge-self-consistent implementation of the density functional theory plus dynamical mean-field theory (DFT+DMFT) method. In particular, we predict a remarkable change of the electronic structure of FeSe which is accompanied by a complete reconstruction of the Fermi surface topology (Lifshitz transition) upon a moderate expansion of the lattice volume. The phase transition results in a change of the in-plane magnetic nesting wave vector from (π ,π ) to (π ,0 ) and is associated with a transition from itinerant to orbital-selective localized magnetic moments. We attribute this behavior to a correlation-induced shift of the Van Hove singularity of the Fe t2 bands at the M point across the Fermi level. Our results reveal a strong orbital-selective renormalization of the effective mass m*/m of the Fe 3 d electrons upon expansion. The largest effect occurs in the Fe x y orbital, which gives rise to a non-Fermi-liquid-like behavior above the transition. The behavior of the momentum-resolved magnetic susceptibility χ (q ) demonstrates that magnetic correlations are also characterized by a pronounced orbital selectivity, suggesting a spin-fluctuation origin of the nematic phase of paramagnetic FeSe. We conjecture that the anomalous behavior of FeSe upon expansion is associated with the proximity of the Fe t2 Van Hove singularity to the Fermi level and the sensitive dependence of its position on external conditions.

  13. MACS, Lattice Vibrations Structure Factors for Thermal Neutron Scattering in Moderators

    International Nuclear Information System (INIS)

    McMurry, H.L.; Suitt, W.J.; Worlton, T.G.; Martin, R.M.

    1974-01-01

    1 - Description of problem or function: This package of seven related codes is basically aimed at giving maximum capability for calculating slow-neutron scattering by moderators. MACS-C computes crystal vibrations when the potential energy is a sum of parts arising from short-range forces and long-range Coulomb interactions. It also obtains Jacobian matrices for determining adjustments in force constants and ionic charge which can lead to improved agreement with data. Structure factors for neutron inelastic scattering can also be calculated. MACS-J computes the dynamical matrix for the harmonic oscillations of a crystal, its eigenvalues and eigenvectors, the corresponding structure factors for coherent single-phonon scattering of neutrons, and Jacobian matrices for use in adjusting force constants to fit calculated to observed dispersion curves. REVISED-D calculates valance coordinates in terms of mass adjusted atom displacements, together with coordinates which define rigid group rotations. REVISED-MVFC constructs force constant matrices for use in valance force potential functions which are used in other programs dealing with molecular and crystal vibrations. ADJUSTER is a force adjuster program to obtain a least squares fit to observed frequencies of molecules and crystals. DIPOLE-SUM calculates dipole sums for an arbitrary crystal. MODEL-PI calculates crystal vibrations when the potential energy is a sum of short-range and long- or intermediate-range terms in the dipole coordinate approximation. It also obtains Jacobian matrices for use in adjusting input parameters. 2 - Method of solution: In MACS-C, ADJUSTER, and REVISED-D, matrix manipulations are applied to matrices which describe physical conditions. In MACS-J, first-order difference equations are substituted for partial differential equations for Jacobian elements. In MVFC the user employs a set of criteria for defining different types of interactions to prepare by hand the input to the program. For

  14. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  15. Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion.

    Science.gov (United States)

    Heping, Wang; Xingguo, Geng; Xiaoguang, Li; Duyang, Zang

    2016-10-01

    This paper presents an exploration of the separation behavior and pattern formation in a shear binary fluid with dynamic temperature after slow cooling via coupled lattice Boltzmann method. The phase separation procedure can be divided into three different stages: spinodal decomposition, domain growth, and domain stretch. The effect of thermal diffusion was observed to be more significant than that of shear convection in the spinodal decomposition stage, while the opposite was observed in the domain growth stage. The slow cooling temperature field significantly prolonged the spinodal decomposition stage, and decreased the separated domain size in domain growth stage. The phase behavior and pattern formation from the disordered state into the coexistence state after slow cooling was investigated during the domain stretch stage. Two typical length scales were obtained according to the equilibrium of two phases, where the number of layers in the corresponding domains was controllable by adjusting the Prandtl number for systems of different scales. The manner in which various viscosities and thermal diffusivities influence the morphologies and kinetic characterizations of the materials was also demonstrated: numerical results indicated that decrease in viscosity can cause increase in the growth exponents of separation fronts and velocity of domain growth, as well as increase in thermal diffusion.

  16. Eshelby Twist as a Possible Source of Lattice Rotation in a Perfectly Ordered Protein/Silica Structure Grown by a Simple Organism.

    Science.gov (United States)

    Zlotnikov, Igor; Werner, Peter; Fratzl, Peter; Zolotoyabko, Emil

    2015-11-11

    The formation mechanism of a perfectly ordered protein/silica structure in the axial filament of the anchor spicule of the silica sponge Monorhaphis chuni is suggested. Experimental evidence shows that the growth of this architecture is realized by a thermodynamically driven dislocation-mediated spiral growth mechanism, resulting in a specific rotation of the mesoscopic crystal lattice (Eshelby twist). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Extreme lattices: symmetries and decorrelation

    Science.gov (United States)

    Andreanov, A.; Scardicchio, A.; Torquato, S.

    2016-11-01

    We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.

  18. Structure of polymer chains under confinement

    Indian Academy of Sciences (India)

    cluded volume interactions (so-called regime of “semi-dilute cigars”). For confined charged polymers, a peak is observed whose intensity increases with molecular weight and the asymptotic 1/q scattering region is extended compared to the bulk. We infer that the chains are sufficiently extended, under the influence of ...

  19. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  20. Structural, Mechanical and Thermodynamic Properties under Pressure Effect of Rubidium Telluride: First Principle Calculations

    Directory of Open Access Journals (Sweden)

    Bidai K.

    2017-06-01

    Full Text Available First-principles density functional theory calculations have been performed to investigate the structural, elastic and thermodynamic properties of rubidium telluride in cubic anti-fluorite (anti-CaF2-type structure. The calculated ground-state properties of Rb2Te compound such as equilibrium lattice parameter and bulk moduli are investigated by generalized gradient approximation (GGA-PBE that are based on the optimization of total energy. The elastic constants, Young’s and shear modulus, Poisson ratio, have also been calculated. Our results are in reasonable agreement with the available theoretical and experimental data. The pressure dependence of elastic constant and thermodynamic quantities under high pressure are also calculated and discussed.

  1. Local lattice distortions vs. structural phase transition in NdFeAsO{sub 1−x}F{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Calamiotou, M., E-mail: mcalam@phys.uoa.gr [Solid State Physics Department, Faculty of Physics, University of Athens, GR-15784 Athens (Greece); Lampakis, D. [TEI Larissa, GR 41334 Larissa (Greece); Zhigadlo, N.D.; Katrych, S.; Karpinski, J. [Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich (Switzerland); Fitch, A. [ESRF, The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble (France); Tsiaklagkanos, P.; Liarokapis, E. [Department of Physics, National Technical University of Athens, GR15780, Athens (Greece)

    2016-08-15

    Highlights: • We studied two concentrations, representatives of the superconducting and the non-superconducting regions of the phase diagram of NdFeAsO{sub 1−x}F{sub x} system, by combining high resolution high statistics synchrotron diffraction with micro-Raman data as a function of temperature. • The evolution of the atomic displacement parameters, which agree with modifications in the phonon spectra, point to an isostructural disorded phase in the superconducting sample, in contrast to a tetragonal to orthorhombic long range phase transition that occurs at low doping. • Based on the absence of magnetic effects in this temperature range for the superconducting sample, we attribute the observed lattice anomalies to the formation of local lattice distortions that, being screened by the carriers, can only acquire long-range coherence by means of a structural phase transition at low doping levels. - Abstract: The lattice properties at low temperatures of two samples of NdFeAsO{sub 1−x}F{sub x} (x = 0.05 and 0.25) have been examined in order to investigate possible structural phase transition that may occur in the optimally doped superconducting sample with respect to the non-superconducting low-F concentration compound. In order to detect small modifications in the ion displacements with temperature micro-Raman and high resolution synchrotron powder diffraction measurements were carried out. No increase of the width of the (2 2 0) or (3 2 2) tetragonal diffraction peaks and microstrains could be found in the superconducting sample from synchrotron XRD measurements. On the other hand, the atomic displacement parameters deviate from the expected behavior, in agreement with modifications in the phonon width, as obtained by Raman scattering. These deviations occur around 150 K for both F dopings, with distinct differences among the two compounds, i.e., they decrease at low doping and increase for the superconducting sample. The data do not support a hidden

  2. Concurrent Structural Fatigue Damage Prognosis Under Uncertainty

    Science.gov (United States)

    2014-04-30

    same experiment is carried on AISI 4340 steel. AISI 4340 steel is a heat treatable, low alloy steel containing nickel, chromium and molybdenum. The...but after the unstable crack growth after the overload, it is 82 83 hard to measure the crack growth per cycle which is smaller than 20...structural and macro materials level. The extension to include material microstructure effect for the fatigue prognosis needs further investigations

  3. Robustness Assessment of Building Structures under Explosion

    Directory of Open Access Journals (Sweden)

    Mark Waggoner

    2012-12-01

    Full Text Available Over the past decade, much research has focused on the behaviour of structures following the failure of a key structural component. Particular attention has been given to sudden column loss, though questions remain as to whether this event-independent scenario is relevant to actual extreme events such as explosion. Few studies have been conducted to assess the performance of floor slabs above a failed column, and the computational tools used have not been validated against experimental results. The research program presented in this paper investigates the adequacy of sudden column loss as an idealisation of local damage caused by realistic explosion events, and extends prior work by combining the development of accurate computational models with large-scale testing of a typical floor system in a prototypical steel-framed structure. The floor system consists of corrugated decking topped by a lightly reinforced concrete slab that is connected to the floor beams through shear studs. The design is consistent with typical building practices in the US. The first test has been completed, and subsequent tests are currently being planned. This paper addresses the importance of robustness design for localized damage and includes a detailed description regarding how the research program advances the current state of knowledge for assessing robustness of compositely constructed steel-framed buildings.

  4. Materials and structures under shock and impact

    CERN Document Server

    Bailly, Patrice

    2013-01-01

    In risk studies, engineers often have to consider the consequences of an accident leading to a shock on a construction. This can concern the impact of a ground vehicle or aircraft, or the effects of an explosion on an industrial site.This book presents a didactic approach starting with the theoretical elements of the mechanics of materials and structures, in order to develop their applications in the cases of shocks and impacts. The latter are studied on a local scale at first. They lead to stresses and strains in the form of waves propagating through the material, this movement then extending

  5. Doping Li-rich cathode material Li2MnO3 : Interplay between lattice site preference, electronic structure, and delithiation mechanism

    Science.gov (United States)

    Hoang, Khang

    2017-12-01

    We report a detailed first-principles study of doping in Li2MnO3 , in both the dilute doping limit and heavy doping, using hybrid density-functional calculations. We find that Al, Fe, Mo, and Ru impurities are energetically most favorable when incorporated into Li2MnO3 at the Mn site, whereas Mg is most favorable when doped at the Li sites. Nickel, on the other hand, can be incorporated at the Li site and/or the Mn site, and the distribution of Ni over the lattice sites can be tuned by tuning the material preparation conditions. There is a strong interplay among the lattice site preference and charge and spin states of the dopant, the electronic structure of the doped material, and the delithiation mechanism. The calculated electronic structure and voltage profile indicate that in Ni-, Mo-, or Ru-doped Li2MnO3 , oxidation occurs on the electrochemically active transition-metal ion(s) before it does on oxygen during the delithiation process. The role of the dopants is to provide charge compensation and bulk electronic conduction mechanisms in the initial stages of delithiation, hence enabling the oxidation of the lattice oxygen in the later stages. This work thus illustrates how the oxygen-oxidation mechanism can be used in combination with the conventional mechanism involving transition-metal cations in design of high-capacity battery cathode materials.

  6. Synthesis, X-ray structure, and characterization of a complex containing the hexakis(urea)cobalt(II) cation and lattice urea molecules.

    Science.gov (United States)

    Drakopoulou, Labrini; Papatriantafyllopoulou, Constantina; Terzis, Aris; Perlepes, Spyros P; Manessi-Zoupa, Evy; Papaefstathiou, Giannis S

    2007-01-01

    The 12: 1 reaction of urea (U) with CoI(2) in EtOH yielded the "clathrate-coordination" compound [CoU(6)]I2.4U (1). The complex crystallizes in the monoclinic space group P2(1)/c. The lattice constants are a = 9.844(4), b = 7.268(3), c = 24.12(1) A, and beta=98.12(1) degrees composite function. The crystal structure determination demonstrates the existence of octahedral [CoU6](2+) cations, I(-) counterions, and two different types (two U(1) and two U(2)) of hydrogen-bonded, lattice urea molecules. The [CoU(6)](2+) cations and the U(1) lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to the ab plane. The I(-) anions are placed above and below each layer, and are hydrogen bonded both to U(1) molecules and [CoU(6)](2+) cations. Each U(2) molecule is connected to a [CoU(6)](2+) cation through an N-Hcdots, three dots, centeredO hydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of 1 are discussed in terms of the nature of bonding and the known structure.

  7. Factor structure underlying components of allostatic load.

    Directory of Open Access Journals (Sweden)

    Jeanne M McCaffery

    Full Text Available Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental demands (e.g., stress engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation. Here, we employ confirmatory factor analysis to test: 1 whether a single common factor underlies variation in physiological systems associated with allostatic load; and 2 whether allostatic load parameters continue to load on a single common factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny County, PA (30-54 years old, 82% non-Hispanic white, 52% female who were free of confounding medications. Model fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study (metabolic, inflammatory and vagal measures. Further, this common factor reflecting covariation among allostatic load components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized. Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the metabolic syndrome.

  8. Electronic structure and lattice properties of metastable III-(N,V) semiconductor systems; Elektronische Struktur und Kristallgittereigenschaften von metastabilen III-(N,V)-Halbleitersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Guengerich, M.

    2007-12-18

    This thesis gives an overview of these influences for Ga-V semiconductors (V=P,As,Sb). Lattice vibrations of the ternary alloys Ga(N,P), Ga(N,As) und Ga(N,Sb) are studied and analyzed with respect to the local binding of the N atoms in the host lattices. For the first time, pressure coefficients of the extended host phonons as well as of the N local vibrational modes in Ga(N,As) und Ga(N,P) are determined by Raman spectroscopy under hydrostatic pressure. The relationship between the force constant of the Ga-N bond and the bond length is determined. A central aspect of the thesis is the concentration dependence of optical transitions in Ga(N,P) and Ga(N,As), studied by spectroscopic methods. The impurity levels in both materials are determined by the spatial statistics of the N atoms. (orig.)

  9. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  10. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations

    OpenAIRE

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-01-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator tran...

  11. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    Science.gov (United States)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  12. Geometry of lattice field theory

    International Nuclear Information System (INIS)

    Honan, T.J.

    1986-01-01

    Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus

  13. Hyper-lattice algebraic model for data warehousing

    CERN Document Server

    Sen, Soumya; Chaki, Nabendu

    2016-01-01

    This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

  14. Observations on structural features and characteristics of biological apatite crystals. 7. Observation on lattice imperfection of human tooth and bone crystals II.

    Science.gov (United States)

    Ichijo, T; Yamashita, Y; Terashima, T

    1993-12-01

    In a series of studies to investigate the structural features of the biological crystal, such as the tooth and bone, using an electron microscope, we examined the ultrastructure of the human enamel, dentin, and bone crystals at near atomic resolution and showed the configuration of the hydroxyapatite structure through the cross and longitudinal sections of the enamel, dentin, and bone crystals. Subsequently, based on the results of our observations of the ultrastructure of the tooth and bone crystals, we attempted to clarify the essential structural features and characteristics of the lattice imperfections in the hydroxyapatite structure composing of the human enamel, dentin, and bone crystals from the morphological viewpoint. Therefore, using the same approach, we examined the images of the lattice imperfection of the normal human enamel, dentin, and bone crystals. In this report, following the previous observation of the lattice imperfection on the point defect structure and the dislocations appearing in the inner structure of the crystal, we describe the image of the face defect structure obtained by using the same approach from the sections of the human enamel, dentin, and bone crystals, such as the stacking fault, grain boundary, and others. The materials used for this study were the human enamel, dentin, and bone crystals. The small cubes of the material were fixed in glutaraldehyde and osmium tetroxide and embedded in epoxy resin using the routine methods. The ultrathin sections were cut with a diamond knife without decalcification. The sections were examined with the HITACHI H-800 H and H-9000 type transmission electron microscopes operated at 200 kV and 300 kV respectively. Each crystal was observed at an initial magnification of 300,000 times and at a final magnification of 10,000,000 times and over. We sincerely believe that the electron micrographs shown in this report are the first to show the images of the lattice imperfections from the sections

  15. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  16. Empirical Analysis of Farm Credit Risk under the Structure Model

    Science.gov (United States)

    Yan, Yan

    2009-01-01

    The study measures farm credit risk by using farm records collected by Farm Business Farm Management (FBFM) during the period 1995-2004. The study addresses the following questions: (1) whether farm's financial position is fully described by the structure model, (2) what are the determinants of farm capital structure under the structure model, (3)…

  17. Lattice-matched double dip-shaped BAlGaN/AlN quantum well structures for ultraviolet light emission devices

    Science.gov (United States)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-05-01

    Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.

  18. Structural evolution of defective graphene under heat treatment and gamma irradiation

    Science.gov (United States)

    Zhang, Yifei; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Liu, Liangsen; Zhao, Lihuan; Li, Jing; Jing, Miaolei

    2018-03-01

    We have studied the structural change of defective graphene built by annealing in different temperature under the condition of gamma irradiation. Firstly, we found the heat treatment not only reduced but also striped the graphene. This behavior made defects become more firstly and then become less with the increase of temperature. And then gamma irradiation removed some oxygen-containing groups, by a simultaneous changed over carbon in the graphitic lattice from sp3 to sp2. Also, the gamma irradiation decreased the interlayer spacing between graphene lowest to 3.391 Å and made a crosslink which resulting in the size of the ordered gaining. A variation was detected by Raman spectroscopy that the amorphous carbon was declined after gamma irradiation. Furtherly we found the degree of this decline raised first and then diminished with the increase in the number of defects. The change in repair capacity of gamma irradiation presented a strategy for repairing the defects of graphene.

  19. Structural Irreversibility and Enhanced Brittleness under Fatigue in Zr-Based Amorphous Solids

    Directory of Open Access Journals (Sweden)

    Yiming Qiu

    2012-12-01

    Full Text Available The effect of fatigue on ZrCuAl amorphous metals induced by mechanical cyclic loading is investigated using inelastic neutron scattering and the pair density function analysis of neutron diffraction data. With cooling, the local atomic structure undergoes reorganization under fatigue that is directly related to the number of fatigue cycles. Also under fatigue, suppression in the atomic dynamics is observed as well. A structural restructuring occurs within a 4 Å radius and intensifies with increasing the compression cycles, whereas the vibrational density of states is attenuated as the intensity shifts towards the elastic, zero-energy transfer peak. The combined static and dynamic structural effects are a signature of the microscopic changes brought about by fatigue, and together may be the onset for subsequent behaviors following extended cyclic loading such as fracture. Even after the load is removed, the structural changes described here remain and increase with repeated cyclic loading which is an indication that the lattice deforms even before shear bands are formed.

  20. Mechanical cloak design by direct lattice transformation.

    Science.gov (United States)

    Bückmann, Tiemo; Kadic, Muamer; Schittny, Robert; Wegener, Martin

    2015-04-21

    Spatial coordinate transformations have helped simplifying mathematical issues and solving complex boundary-value problems in physics for decades already. More recently, material-parameter transformations have also become an intuitive and powerful engineering tool for designing inhomogeneous and anisotropic material distributions that perform wanted functions, e.g., invisibility cloaking. A necessary mathematical prerequisite for this approach to work is that the underlying equations are form invariant with respect to general coordinate transformations. Unfortunately, this condition is not fulfilled in elastic-solid mechanics for materials that can be described by ordinary elasticity tensors. Here, we introduce a different and simpler approach. We directly transform the lattice points of a 2D discrete lattice composed of a single constituent material, while keeping the properties of the elements connecting the lattice points the same. After showing that the approach works in various areas, we focus on elastic-solid mechanics. As a demanding example, we cloak a void in an effective elastic material with respect to static uniaxial compression. Corresponding numerical calculations and experiments on polymer structures made by 3D printing are presented. The cloaking quality is quantified by comparing the average relative SD of the strain vectors outside of the cloaked void with respect to the homogeneous reference lattice. Theory and experiment agree and exhibit very good cloaking performance.

  1. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) - Applications to the design of 3D-printed architectured materials

    Science.gov (United States)

    Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro

    2018-01-01

    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

  2. Lattice of quantum predictions

    Science.gov (United States)

    Drieschner, Michael

    1993-10-01

    What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.

  3. Lattice positions of Sn in Cu2ZnSnS4 nanoparticles and thin films studied by synchrotron X-ray absorption near edge structure analysis

    Science.gov (United States)

    Zillner, E.; Paul, A.; Jutimoosik, J.; Chandarak, S.; Monnor, T.; Rujirawat, S.; Yimnirun, R.; Lin, X. Z.; Ennaoui, A.; Dittrich, Th.; Lux-Steiner, M.

    2013-06-01

    Lattice positions of Sn in kesterite Cu2ZnSnS4 and Cu2SnS3 nanoparticles and thin films were investigated by XANES (x-ray absorption near edge structure) analysis at the S K-edge. XANES spectra were analyzed by comparison with simulations taking into account anti-site defects and vacancies. Annealing of Cu2ZnSnS4 nanoparticle thin films led to a decrease of Sn at its native and defect sites. The results show that XANES analysis at the S K-edge is a sensitive tool for the investigation of defect sites, being critical in kesterite thin film solar cells.

  4. Thermal behavior of spatial structures under solar irradiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Liao, Xiangwei; Chen, Zhihua; Zhang, Qian

    2015-01-01

    The temperature, particularly the non-uniform temperature under solar irradiation, is the main load for large-span steel structures. Due the shortage of in-site temperature test in previous studies, an in-site test was conducted on the large-span steel structures under solar irradiation, which was covered by glass roof and light roof, to gain insight into the temperature distribution of steel members under glass roof or light roof. A numerical method also was presented and verified to forecast the temperature of steel member under glass roof or light roof. Based on the on-site measurement and numerical analyses conducted, the following conclusions were obtained: 1) a remarkable temperature difference exists between the steel member under glass roof and that under light roof, 2) solar irradiation has a significant effect on the temperature distribution and thermal behavior of large-span spatial structures, 3) negative thermal load is the controlling factor for member stress, and the positive thermal load is the controlling factor for nodal displacement. - Highlights: • Temperature was measured for a steel structures under glass roof and light roof. • Temperature simulation method was presented and verified. • The thermal behavior of steel structures under glass or light roof was presented

  5. Lattice gauge theory for QCD

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    1997-06-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.

  6. Lattice gauge theory for QCD

    International Nuclear Information System (INIS)

    DeGrand, T.

    1997-01-01

    These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs

  7. Fermions on the low-buckled honey-comb structured lattice plane and classical Casimir-Polder force

    Science.gov (United States)

    Goswami, Partha

    2016-05-01

    We start with the well-known expression for the vacuum polarization and suitably modify it for 2+1-dimensional spin-orbit coupled (SOC) fermions on the low-buckled honey-comb structured lattice plane described by the low-energy Liu-Yao-Feng-Ezawa (LYFE) model Hamiltonian involving the Dirac matrices in the chiral representation obeying the Clifford algebra. The silicene and germanene fit this description suitably. They have the Dirac cones similar to those of graphene and SOC is much stronger. The system could be normal or ferromagnetic in nature. The silicene turns into the latter type if there is exchange field arising due to the proximity coupling to a ferromagnet (FM) such as depositing Fe atoms to the silicene surface. For the silicene, we find that the many-body effects considerably change the bare Coulomb potential by way of the dependence of the Coulomb propagator on the real-spin, iso-spin and the potential due to an electric field applied perpendicular to the silicene plane. The computation aspect of the Casimir-Polder force (CPF) needs to be investigated in this paper. An important quantity in this process is the dielectric response function (DRF) of the material. The plasmon branch was obtained by finding the zeros of DRF in the long-wavelength limit. This leads to the plasmon frequencies. We find that the collective charge excitations at zero doping, i.e., intrinsic plasmons, in this system, are absent in the Dirac limit. The valley-spin-split intrinsic plasmons, however, come into being in the case of the massive Dirac particles with characteristic frequency close to 10 THz. Our scheme to calculate the Casimir-Polder interaction (CPI) of a micro-particle with a sheet involves replacing the dielectric constant of the sample in the CPI expression obtained on the basis of the Lifshitz theory by the static DRF obtained using the expressions for the polarization function we started with. Though the approach replaces a macroscopic constant by a microscopic

  8. Lattices for laymen: a non-specialist's introduction to lattice gauge theory

    International Nuclear Information System (INIS)

    Callaway, D.J.E.

    1985-01-01

    The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)

  9. Liquid Metallic Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational Settling and Their Consequences Relative to Internal Structure, Surface Activity, and Solar Winds in the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available Invocation of a liquid metallic hydrogen model (Robitaille P.M. Liquid Metallic Hydro- gen: A Building Block for the Liquid Sun. Progr. Phys ., 2011, v. 3, 60–74; Robitaille P.M. Liquid Metallic Hydrogen II: A Critical Assessment of Current and Primordial He- lium Levels in Sun. Progr. Phys ., 2013, v. 2, 35–47 brings with it a set of advantages for understanding solar physics which will always remain unavailable to the gaseous models. Liquids characteristically act as solvents and incorporate solutes within their often fleeting structural matrix. They possess widely varying solubility products and often reject the solute altogether. In that case, the solute becomes immiscible. “Lattice exclusion” can be invoked for atoms which attempt to incorporate themselves into liquid metallic hydrogen. In order to conserve the integrity of its conduction bands, it is antic- ipated that a graphite-like metallic hydrogen lattice should not permit incorporation of other elements into its in-plane hexagonal hydrogen framework. Based on the physics observed in the intercalation compounds of graphite, non-hydrogen atoms within liq- uid metallic hydrogen could reside between adjacent hexagonal proton planes. Conse- quently, the forces associated with solubility products and associated lattice exclusion envisioned in liquid metallic hydrogen for solutes would restrict gravitational settling. The hexagonal metallic hydrogen layered lattice could provide a powerful driving force for excluding heavier elements from the solar body. Herein lies a new exfoliative force to drive both surface activity (flares, coronal mass ejections, prominences and solar winds with serious consequences relative to the p–p reaction and CNO cycle in the Sun. At the same time, the idea that non-hydrogen atomic nuclei can exist between layers of metallic hydrogen leads to a fascinating array of possibilities with respect to nucleosyn- thesis. Powerful parallels can be drawn to the

  10. Congruence amalgamation of lattices

    CERN Document Server

    Grätzer, G; Wehrung, F; Gr\\"{a}tzer, George; Lakser, Harry; Wehrung, Friedrich

    2000-01-01

    J. Tuma proved an interesting "congruence amalgamation" result. We are generalizing and providing an alternate proof for it. We then provide applications of this result: --A.P. Huhn proved that every distributive algebraic lattice $D$ with at most $\\aleph\\_1$ compact elements can be represented as the congruence lattice of a lattice $L$. We show that $L$ can be constructed as a locally finite relatively complemented lattice with zero. --We find a large class of lattices, the $\\omega$-congruence-finite lattices, that contains all locally finite countable lattices, in which every lattice has a relatively complemented congruence-preserving extension.

  11. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  12. Lattice Codes for Physical Layer Communications

    OpenAIRE

    Barreal, Amaro

    2017-01-01

    Lattices are deceptively simple mathematical structures that have become indispensable for code design for physical layer communications. While lattice-related problems are interesting in their own right, the usefulness of these discrete structures in wireless communications provides additional motivation for their study and enables a multidisciplinary line of research.  This thesis is devoted to the study of lattice code design for physical layer communications. Modern wireless communica...

  13. Three-dimensional structure of the enveloped bacteriophage phi12: an incomplete T = 13 lattice is superposed on an enclosed T = 1 shell.

    Directory of Open Access Journals (Sweden)

    Hui Wei

    2009-09-01

    Full Text Available Bacteriophage phi12 is a member of the Cystoviridae, a unique group of lipid containing membrane enveloped bacteriophages that infect the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. The genomes of the virus species contain three double-stranded (dsRNA segments, and the virus capsid itself is organized in multiple protein shells. The segmented dsRNA genome, the multi-layered arrangement of the capsid and the overall viral replication scheme make the Cystoviridae similar to the Reoviridae.We present structural studies of cystovirus phi12 obtained using cryo-electron microscopy and image processing techniques. We have collected images of isolated phi12 virions and generated reconstructions of both the entire particles and the polymerase complex (PC. We find that in the nucleocapsid (NC, the phi12 P8 protein is organized on an incomplete T = 13 icosahedral lattice where the symmetry axes of the T = 13 layer and the enclosed T = 1 layer of the PC superpose. This is the same general protein-component organization found in phi6 NC's but the detailed structure of the entire phi12 P8 layer is distinct from that found in the best classified cystovirus species phi6. In the reconstruction of the NC, the P8 layer includes protein density surrounding the hexamers of P4 that sit at the 5-fold vertices of the icosahedral lattice. We believe these novel features correspond to dimers of protein P7.In conclusion, we have determined that the phi12 NC surface is composed of an incomplete T = 13 P8 layer forming a net-like configuration. The significance of this finding in regard to cystovirus assembly is that vacancies in the lattice could have the potential to accommodate additional viral proteins that are required for RNA packaging and synthesis.

  14. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  15. On elastic response of disordered triangular lattice during dynamic loading

    Directory of Open Access Journals (Sweden)

    Mastilović Sreten

    2008-01-01

    Full Text Available The present investigation focuses on an observation regarding the initial elastic response of a triangular geometrically and structurally disordered lattice during medium-to-high strain rate loading. Namely: a transition from the short-time modulus of elasticity to the long-time one, which is not accompanied by the corresponding change of the stiffness tensor. It is demonstrated that the difference between the two moduli is, in the case of the homogeneous biaxial test simulations performed herein, a consequence of the geometrical and structural disorder "quenched" within the lattice. The investigation is performed on the triangular lattice with the first-neighbor central interactions under practically identical in-plane conditions over eight decades of strain rate.

  16. Band-edge electronic structure of β-In2S3: the role of s or p orbitals of atoms at different lattice positions.

    Science.gov (United States)

    Zhao, Zongyan; Cao, Yuechan; Yi, Juan; He, Xijia; Ma, Chenshuo; Qiu, Jianbei

    2012-04-23

    As a promising solar-energy material, the electronic structure and optical properties of Beta phase indium sulfide (β-In(2)S(3)) are still not thoroughly understood. This paper devotes to solve these issues using density functional theory calculations. β-In(2)S(3) is found to be an indirect band gap semiconductor. The roles of its atoms at different lattice positions are not exactly identical because of the unique crystal structure. Additonally, a significant phenomenon of optical anisotropy was observed near the absorption edge. Owing to the low coordination numbers of the In3 and S2 atoms, the corresponding In3-5s states and S2-3p states are crucial for the composition of the band-edge electronic structure, leading to special optical properties and excellent optoelectronic performances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Reversal of the Lattice Structure in SrCoOx Epitaxial Thin Films Studied by Real-Time Optical Spectroscopy and First-Principles Calculations

    Science.gov (United States)

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-08-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  18. Reversal of the lattice structure in SrCoO(x) epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations.

    Science.gov (United States)

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S S Ambrose; Cooper, Valentino R; Rabe, Karin M; Lee, Ho Nyung

    2013-08-30

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoO(x) (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  19. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  20. Observations on structural features and characteristics of biological apatite crystals. 6. Observation on lattice imperfection of human tooth and bone crystals. I.

    Science.gov (United States)

    Ichijo, T; Yamashita, Y; Terashima, T

    1993-09-01

    In a series of studies to investigate the basic structural features and characteristics of the biological apatite crystals, using an electron microscope, we examined the ultrastructure of the human enamel, dentin, and bone crystals at near atomic resolution and showed the configuration of the hydroxyapatite structure through the cross and longitudinal sections of the crystals. Subsequently, based on the results of the observations by the authors of the ultrastructure of the tooth and bone, using the same approach, we have been able to directly examine the images of the lattice imperfections in the human enamel, dentin, and bone crystals, such as the point defect structures and dislocations in the crystals. In this report, we describe the image of the point defect structures and line defect structures obtained, using the same approach from the sections of the human enamel, dentin, and bone crystals. The materials used for this study were the noncarious enamel and dentin from the freshly extracted human erupted lower first molars, and bone tissue obtained from the alveolar compact bone. The small cubes of the material were fixed in glutaraldehyde and osmium tetroxide and embedded in epoxy resin using the routine methods. The ultrathin sections were cut with a diamond knife without decalcification. The sections were examined with the HITACHI H-800 H and H-9000 types of transmission electron microscopes operated at 200 kV and 300 kV. Each crystal was observed at the initial magnification of 300,000-500,000 times and at the final magnification of 10,000,000 times and over. We sincerely believe that the electron micrographs shown in this report are the first to show the images of the lattice imperfections in the human enamel, dentin, and bone crystals, such as the point defect and line defect structures, at near atomic resolution.

  1. Lattices for the lattice Boltzmann method.

    Science.gov (United States)

    Chikatamarla, Shyam S; Karlin, Iliya V

    2009-04-01

    A recently introduced theory of higher-order lattice Boltzmann models [Chikatamarla and Karlin, Phys. Rev. Lett. 97, 190601 (2006)] is elaborated in detail. A general theory of the construction of lattice Boltzmann models as an approximation to the Boltzmann equation is presented. New lattices are found in all three dimensions and are classified according to their accuracy (degree of approximation of the Boltzmann equation). The numerical stability of these lattices is argued based on the entropy principle. The efficiency and accuracy of many new lattices are demonstrated via simulations in all three dimensions.

  2. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering

    Science.gov (United States)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage

  3. Graphene on graphene antidot lattices

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen

    2015-01-01

    Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...

  4. Factors limiting the operation of structures under high gradient

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1986-01-01

    Factors limiting the operation of rf structures under high-gradient conditions are described. Included are recent rf measurements at laboratories in Europe, Asia, and North America and how these measurements relate to earlier data as exemplified by the use of the Kilpatrick criterion (Kp). Operation limitations will cover mechanical, geometry, thermal, and surface constraints and the associated impact on structure design, fabrication, and material selection. Generally, structures operating continuous wave (100% duty factor) appear to be limited to peak surface fields at about twice the Kilpatrick limit, whereas pulsed structures operating with pulse lengths less than a millisecond can attain peak surface fields five times the Kilpatrick limit

  5. Manufacturing and Characterization of 18Ni Marage 300 Lattice Components by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Luciano Lamberti

    2013-08-01

    Full Text Available The spreading use of cellular structures brings the need to speed up manufacturing processes without deteriorating mechanical properties. By using Selective Laser Melting (SLM to produce cellular structures, the designer has total freedom in defining part geometry and manufacturing is simplified. The paper investigates the suitability of Selective Laser Melting for manufacturing steel cellular lattice structures with characteristic dimensions in the micrometer range. Alternative lattice topologies including reinforcing bars in the vertical direction also are considered. The selected lattice structure topology is shown to be superior over other lattice structure designs considered in literature. Compression tests are carried out in order to evaluate mechanical strength of lattice strut specimens made via SLM. Compressive behavior of samples also is simulated by finite element analysis and numerical results are compared with experimental data in order to assess the constitutive behavior of the lattice structure designs considered in this study. Experimental data show that it is possible to build samples of relative density in the 0.2456–0.4367 range. Compressive strength changes almost linearly with respect to relative density, which in turns depends linearly on the number of vertical reinforces. Specific strength increases with cell and strut edge size. Numerical simulations confirm the plastic nature of the instability phenomena that leads the cellular structures to collapse under compression loading.

  6. Observation of a field-driven structural phase transition in the flux line lattice in ErNi2B2C

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Gammel, P.L.; Barber, B.P.

    1997-01-01

    Small-angle neutron scattering and magnetic decoration both demonstrate a topological transition in the flux line lattice (FLL) in ErNi2B2C. The high-field square lattice slowly transforms into a hexagonal lattice via an area preserving [100] rhombohedral distortion below roughly 500 Oe. The square...

  7. Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics

    Directory of Open Access Journals (Sweden)

    Bruce L. Davis

    2011-12-01

    Full Text Available The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell and the phononic crystal lattice (defined by a supercell contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant, dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.

  8. Improved methods for the study of hadronic physics from lattice QCD

    International Nuclear Information System (INIS)

    Orginos, Kostas; Richards, David

    2015-01-01

    The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD. (paper)

  9. Improved methods for the study of hadronic physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-02-05

    The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.

  10. Numerical Analysis of Vibrations of Structures under Moving Inertial Load

    CERN Document Server

    Bajer, Czeslaw I

    2012-01-01

    Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Frýba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations ...

  11. Lattice vibrations in α-boron

    International Nuclear Information System (INIS)

    Richter, W.

    1976-01-01

    α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)

  12. Electronic structure and thermoelectric transport properties of the golden Th2S3-type Ti2O3 under pressure

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2016-05-01

    Full Text Available A lot of physical properties of Th2S3-type Ti2O3 have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30GP to 35GP, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease with increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.

  13. Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. [Seoul National Univ. (Korea). School of Mechanical and Aerospace Engineering; Hodson, H.P. [Cambridge Univ. (United Kingdom). Dept. of Engineering; Lu, T.J. [Cambridge Univ. (United Kingdom). Dept. of Engineering; Xian Jiaotong Univ., Xian (China). School of Aerospace

    2005-09-01

    Ultra lightweight lattice-frame materials (LFMs) with open, periodic microstructures are attractive multifunctional systems that can perform structural, thermal, actuation, power storage and other functions [A.G. Evans, J.W. Hutchinson, M.F. Ashby, Multifunctionality of cellular metal systems, Prog. Mater. Sci. 43 (1999) 171-221]. This paper presents experimental and numerical studies of local fluid flow behaviour and its contribution to local and overall pressure and heat transfer characteristics of such a lattice material with tetrahedral unit cells. A single layer of the LFM with porosity of 0.938 is sandwiched between impermeable endwalls that receive uniform heat flux and the heat transfer is subjected to forced air convection. Experimental measurements with particle image velocity (PIV) and thermochromic liquid crystal (TLC), backed by computational fluid mechanics (CFD) simulations, revealed two dominant local flow features in the LFM. Distinctive vortex structures near the vertices where the LFM meets the endwalls and flow separation on the surface of LFM struts were observed. The vortex structures formed around the vertices include horseshoe vortices and arch-shaped vortices. The horseshoe vortex increases local heat transfer on the endwall region up to 180% more than that in regions where the least influence of the horseshoe vortex is present. The arch-shaped vortex behind the vertices creates regions of flow recirculation and reattachment, leading to relatively high heat transfer. The location of flow separation along the struts varies with the spanwise position due to the presence of vertices (or endwalls). The regions on the strut surface before flow separation contribute approximately 40% of the total heat transfer in the LFM. The delay of the flow separation leads to an increase in the overall heat transfer. Comparisons with foams and other heat dissipation media such as packed beds, louvered fins and microtruss materials suggest that the LFMs

  14. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  15. Characterizing Thematized Derivative Schema by the Underlying Emergent Structures

    Science.gov (United States)

    Garcia, Mercedes; Llinares, Salvador; Sanchez-Matamoros, Gloria

    2011-01-01

    This paper reports on different underlying structures of the derivative schema of three undergraduate students that were considered to be at the trans level of development of the derivative schema (action-process-object-schema). The derivative schema is characterized in terms of the students' ability to explicitly transfer the relationship between…

  16. Colloidal hard dumbbells under gravity: structure and crystallization

    NARCIS (Netherlands)

    Marechal, M.A.T.; Dijkstra, M.

    2011-01-01

    We study the structure and phase behavior of hard dumbbells under gravity. The fluid shows layering near the wall, where subsequent layers of dumbbells align alternatingly parallel or perpendicular to the wall. We observe coexistence of a fluid with a plastic crystal (PC) and an aligned crystal

  17. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2009-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...

  18. The Fatigue Behavior of Steel Structures under Random Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning

    2008-01-01

    Fatigue damage accumulation in steel structures under random loading has been studied in a number of investigations at the Technical University of Denmark. The fatigue life of welded joints has been determined both experimentally and from a fracture mechanics analysis. In the experimental part...

  19. Structural composite panel performance under long-term load

    Science.gov (United States)

    Theodore L. Laufenberg

    1988-01-01

    Information on the performance of wood-based structural composite panels under long-term load is currently needed to permit their use in engineered assemblies and systems. A broad assessment of the time-dependent properties of panels is critical for creating databases and models of the creep-rupture phenomenon that lead to reliability-based design procedures. This...

  20. Characteristic analysis on the deformation behaviour of shell-like lattice structures subjected to follower forces; Judo kaju wo ukeru kosa arch kozo no daihenkei kyodo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, N.; Okada, K. [Kyushu University, Fukuoka (Japan); Fujii, M. [Namura Shipbuilding Co. Ltd., Osaka (Japan); Shiraki, M. [Toyota Motor Corp., Aichi (Japan)

    1998-09-04

    The deformation mechanisms of submerged shell-like lattice structures with membrane are in principle of a non-conservative nature since the follower type hydrostatic pressure. In the region of large deformations, especially in the case of geometrically deep shell-like lattice structures, the system could be much more accurately defined in a mono-clinically convected coordinate description than the conventional spatial description. Also, a complete analysis of a non-conservative system requires a criterion since the system can have multiple ranges of stability and instability involving buckling and snapping. This paper presents the development of the governing equations for the finite deformations of shell-like lattices defined in a mono-clincally convected coordinate description and applies the same to different cases of lattice deformations. The validity of the formulations is verified for finite deformation. The examples of some geometrically special shell-like lattice structures are presented as well to show the feasibility of the present formulation. 5 refs., 11 figs.

  1. Lattice-Boltzmann method applied to the pattern formation on periodic surface structures generated by multiline nanosecond laser

    Directory of Open Access Journals (Sweden)

    Frank Rodolfo Fonseca-Fonseca

    2014-01-01

    Full Text Available Hemos simulado la formación de patrones en superficies de silic io. Para este propósito, se utilizó el método de Lattice-Boltzm ann suponiendo dos fluidos no ideales, que interactúan, utilizando una rejilla de velocidades D2Q9 . El experimento se llevó a cabo con un láser de pulsos multilínea (1064, 532 y 355 nm de Nd: YAG, qu e emplea un rango de energía 310 a 3.100 J, en una superficie d e silicio monocristalino , tipo p, orientado en la dirección [111]. Todo el sistema se som etió a soplado de gas de argón que es clave en la formación de los patrones. La simulación computacional reproduc e bastante bien, el comportamiento global de los patrones geomé tricos experimentales, expresados en ondulaciones paralelas oblicuas.

  2. Frustrated lattices of Ising chains

    International Nuclear Information System (INIS)

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  3. Design of mild steel structures under unequal cyclic loads

    International Nuclear Information System (INIS)

    In this paper a method is proposed to investigate the behavior and life of structural components under unequal cyclic loading conditions. Appropriate cyclic moment-curvature relations and life information, in the form of life versus extreme fiber strain, are developed from tests on beams under pure bending conditions. Theoretical predictions of behavior are based on structural geometry and the cyclic moment-curvature relations used in association with the simple curvature-area method. Structural life is also predicted using the life information developed and the theoretical strain history at the critical section in conjunction with a linear damage summation criterion. Theoretical predictions of behavior and life compare reasonably well with the experiments. Based on this study, a design procedure is proposed for mild steel components subjected to unequal cyclic loading conditions. The loads on the tested components were such that they failed due to low cyclic fatigue (i.e., at less than 10 5 cycles)

  4. Effect of pressure on the lattice structure and dynamics of elpasolites Cs2Na RF6 ( R = Y, Yb): ab initio calculation

    Science.gov (United States)

    Chernyshev, V. A.; Petrov, V. P.; Nikiforov, A. E.; Zakir'yanov, D. O.

    2015-06-01

    The effect of hydrostatic compression on the lattice structure and dynamics of elpasolites Cs2NaYbF6 and Cs2NaYF6 (sp. gr. 225) has been investigated ab initio. The frequencies and types of fundamental oscillations are determined, and elastic constants are calculated. The computation is performed within the molecular orbitals-linear combinations of atomic orbitals (MO LCAO) approach using the density functional theory (DFT) method with hybrid functionals B3LYP and PBE0 in the CRYSTAL09 program. The rare-earth ion was described by representing the inner (in particular, 4 f) orbitals in the form of a pseudopotential. The outer 5 s and 5 p orbitals, which determine chemical bonding, were described using valence basis sets.

  5. Structural defect accumulation in tungsten and tungsten-5wt.% tantalum under incremental proton damage

    Science.gov (United States)

    Ipatova, I.; Harrison, R. W.; Wady, P. T.; Shubeita, S. M.; Terentyev, D.; Donnelly, S. E.; Jimenez-Melero, E.

    2018-04-01

    We have performed proton irradiation of W and W-5wt.%Ta materials at 350 °C with a step-wise damage level increase up to 0.7 dpa and using two beam energies, namely 40 keV and 3 MeV, in order to probe the accumulation of radiation-induced lattice damage in these materials. Interstitial-type a/2 dislocation loops are formed under irradiation, and their size increases in W-5Ta up to a loop width of 21 ± 4 nm at 0.3 dpa, where loop saturation takes place. In contrast, the loop length in W increases progressively up to 183 ± 50 nm at 0.7 dpa, whereas the loop width remains relatively constant at 29 ± 7 nm at >0.3 dpa, giving rise to dislocation strings. The dislocation loops and tangles are observed in both materials examined after a 3 MeV proton irradiation at 350 °C. Ta doping delays the evolution of radiation-induced dislocation structures in W, and can consequently impact the hydrogen isotope retention under plasma exposure.

  6. Neutron scattering study of structure and dynamics of ammonium halides under high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Balagurov, A.M.; Savenko, B.N.; Glazkov, V.P.; Somenkov, V.A.; Hull, S.

    1999-01-01

    Complete text of publication follows. Structural changes in ammonium halides ND 4 Cl, ND 4 Br and ND 4 F at pressures up to 40 kbar and ND 4 I at pressures up to 86 kbar have been studied bz means of neutron diffraction at room temperature. The pressure dependencies of the lattice parameter a and the deuterium position parameter u were obtained. It was found that the order - disorder II-IV phase transition in ND 4 Br and ND 4 Cl occurs at equal critical values of u, u cr =0.152(2). For ND 4 F, u is initially higher than u cr and only the ordered CsCl type phase III exists at high pressure. For ND 4 I, no II-IV phase transition was observed. A phase transition into the recently discovered high pressure phase V was detected in ND 4 I at 80 4 I(V) was found to be the same as the structure of the low temperature phase ND 4 I(III) - tetragonal one with antiparallel ordering of ammonium ions, space group P4/nmm. Vibrational spectra of NH 4 I and HN 4 F have been studied by means of incoherent inelastic neutron scattering at pressure up to 40 kbar. Vibration and transverse optical (TO) modes frequencies as functions of pressure were obtained. Both frequencies increase under pressure. (author)

  7. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression.

    Science.gov (United States)

    McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles

    2016-11-28

    Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.

  8. Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure.

    Science.gov (United States)

    Rosciano, Fabio; Pescarmona, Paolo P; Houthoofd, Kristof; Persoons, Andre; Bottke, Patrick; Wilkening, Martin

    2013-04-28

    Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.

  9. Working Group Report: Lattice Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Blum, T.; et al.,

    2013-10-22

    This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.

  10. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    Science.gov (United States)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  11. Modulation of endothelial glycocalyx structure under inflammatory conditions.

    Science.gov (United States)

    Kolářová, Hana; Ambrůzová, Barbora; Svihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš

    2014-01-01

    The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed.

  12. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions

    Directory of Open Access Journals (Sweden)

    Hana Kolářová

    2014-01-01

    Full Text Available The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed.

  13. Lattice dynamics of ferromagnetic superconductor UGe2

    Indian Academy of Sciences (India)

    This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.

  14. Crystal structure and anisotropic magnetic properties of new ferromagnetic Kondo lattice compound Ce(Cu,Al,Si)2

    Science.gov (United States)

    Maurya, A.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Pani, M.; Costa, G. A.

    2017-03-01

    Single crystals of the new compound CeCu0.18Al0.24Si1.58 have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi2 (tetragonal α-ThSi2-type, Pearson symbol tI12, space group I41/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi2 is a well-known valence-fluctuating paramagnetic compound, the CeCu0.18Al0.24Si1.58 phase orders ferromagnetically at TC=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K2) show that CeCu0.18Al0.24Si1.58 is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of TC in CeCu0.18Al0.24Si1.58.

  15. Crystal structure and anisotropic magnetic properties of new ferromagnetic Kondo lattice compound Ce(Cu,Al,Si){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, A.; Thamizhavel, A.; Dhar, S.K. [Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Provino, A.; Pani, M.; Costa, G.A. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2017-03-15

    Single crystals of the new compound CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi{sub 2} (tetragonal α-ThSi{sub 2}-type, Pearson symbol tI12, space group I4{sub 1}/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi{sub 2} is a well-known valence-fluctuating paramagnetic compound, the CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} phase orders ferromagnetically at T{sub C}=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K{sup 2}) show that CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of T{sub C} in CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58}.

  16. Categorical Equivalence Between Orthomodular Dynamic Algebras and Complete Orthomodular Lattices

    Science.gov (United States)

    Kishida, Kohei; Rafiee Rad, Soroush; Sack, Joshua; Zhong, Shengyang

    2017-12-01

    This paper provides a categorical equivalence between two types of quantum structures. One is a complete orthomodular lattice, which is used for reasoning about testable properties of a quantum system. The other is an orthomodular dynamic algebra, which is a quantale used for reasoning about quantum actions. The result extends to more restrictive lattices than orthomodular lattices, and includes Hilbert lattices of closed subspaces of a Hilbert space. These other lattice structures have connections to a wide range of different quantum structures; hence our equivalence establishes a categorical connection between quantales and a great variety of quantum structures.

  17. Light-induced lattice expansion leads to high-efficiency and stable perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Oliver; Strzalka, Joseph W.; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Nie, Wanyi; Mohite, Aditya D.

    2018-04-05

    Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.

  18. The mystery of the fifteenth Bravais lattice

    Science.gov (United States)

    Nussbaum, Allen

    2000-10-01

    An understanding of the principles of crystal structure is necessary for the study of solids. There are contradictions in the literature dealing with the nature of crystal lattices, and there is also a miscounting of the number of possible lattices. This paper clarifies the situation in a systematic and simple way.

  19. Safety margins of containment structures under impulsive loading

    International Nuclear Information System (INIS)

    Lu, S.C.H.

    1978-01-01

    Containment structures for nuclear power plants are designed to a large extent to satisfy the various stress limits specified by ASME Boiler and Pressure Vessel Code. For short-duration impulsive loads, the common practice of meeting the Code stress limits based on a quasi-static approach is a poor measure of the reserve load-carrying capacity of a structure and always results in a conservative design with a greater than desired margin of safety. There are situations, however, where one might wish to quantify this additional conservatism to avoid excessive or unnecessary field modification. Typical examples were found in re-evaluation studies of MARK I Boiling Water Reactor containment structures under the hydrodynamic loads expected during a postulated loss-of-coolant accident. The paper is based on the results of a plane strain, large displacement, elastic-plastic, finite-element analysis of a thin cylindrical shell subjected to external pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure and, subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  20. Effect of support conditions on structural response under dynamic loading

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.

    2008-01-01

    In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)

  1. Designs, groups and lattices

    OpenAIRE

    Bachoc, Christine

    2005-01-01

    We study the Grassmannian 4-designs contained in lattices, in connection with the local property of the Rankin constant. We prove that the sequence of Barnes-Wall lattices contain Grassmannian 6-designs.

  2. Generalized Minimum Variance Control for MDOF Structures under Earthquake Excitation

    Directory of Open Access Journals (Sweden)

    Lakhdar Guenfaf

    2016-01-01

    Full Text Available Control of a multi-degree-of-freedom structural system under earthquake excitation is investigated in this paper. The control approach based on the Generalized Minimum Variance (GMV algorithm is developed and presented. Our approach is a generalization to multivariable systems of the GMV strategy designed initially for single-input-single-output (SISO systems. Kanai-Tajimi and Clough-Penzien models are used to generate the seismic excitations. Those models are calculated using the specific soil parameters. Simulation tests using a 3DOF structure are performed and show the effectiveness of the control method.

  3. Residuation in orthomodular lattices

    Directory of Open Access Journals (Sweden)

    Chajda Ivan

    2017-04-01

    Full Text Available We show that every idempotent weakly divisible residuated lattice satisfying the double negation law can be transformed into an orthomodular lattice. The converse holds if adjointness is replaced by conditional adjointness. Moreover, we show that every positive right residuated lattice satisfying the double negation law and two further simple identities can be converted into an orthomodular lattice. In this case, also the converse statement is true and the corresponence is nearly one-to-one.

  4. Lattice dynamics of lithium oxide

    Indian Academy of Sciences (India)

    Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. E-mail: knp@apsara.barc.ernet.in ... stants and equation of state have also been calculated which are in good agreement with the available ... Li2O crystallizes in the anti-fluorite structure with a face-centered cubic lattice and belongs to ...

  5. Structural Evaluation on HIC Transport Packaging under Accident Conditions

    International Nuclear Information System (INIS)

    Chung, Sung Hwan; Kim, Duck Hoi; Jung, Jin Se; Yang, Ke Hyung; Lee, Heung Young

    2005-01-01

    HIC transport packaging to transport a high integrity container(HIC) containing dry spent resin generated from nuclear power plants is to comply with the regulatory requirements of Korea and IAEA for Type B packaging due to the high radioactivity of the content, and to maintain the structural integrity under normal and accident conditions. It must withstand 9 m free drop impact onto an unyielding surface and 1 m drop impact onto a mild steel bar in a position causing maximum damage. For the conceptual design of a cylindrical HIC transport package, three dimensional dynamic structural analysis to ensure that the integrity of the package is maintained under all credible loads for 9 m free drop and 1 m puncture conditions were carried out using ABAQUS code.

  6. Chiral symmetry on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  7. [Lattice degeneration of the retina].

    Science.gov (United States)

    Boĭko, E V; Suetov, A A; Mal'tsev, D S

    2014-01-01

    Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.

  8. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  9. Infinite resistive lattices

    NARCIS (Netherlands)

    Atkinson, D; van Steenwijk, F.J.

    The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American

  10. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  11. Equations Holding in Hilbert Lattices

    Science.gov (United States)

    Mayet, René

    2006-07-01

    We produce and study several sequences of equations, in the language of orthomodular lattices, which hold in the ortholattice of closed subspaces of any classical Hilbert space, but not in all orthomodular lattices. Most of these equations hold in any orthomodular lattice admitting a strong set of states whose values are in a real Hilbert space. For some of these equations, we give conditions under which they hold in the ortholattice of closed subspaces of a generalised Hilbert space. These conditions are relative to the dimension of the Hilbert space and to the characteristic of its division ring of scalars. In some cases, we show that these equations cannot be deduced from the already known equations, and we study their mutual independence. To conclude, we suggest a new method for obtaining such equations, using the tensorial product.

  12. Portfolio optimization with structured products under return constraint

    Directory of Open Access Journals (Sweden)

    Baweja Meena

    2015-01-01

    Full Text Available A new approach for optimizing risk in a portfolio of financial instruments involving structured products is presented. This paper deals with a portfolio selection model which uses optimization methodology to minimize conditional Value-at-Risk (CVaR under return constraint. It focuses on minimizing CVaR rather than on minimizing value-at-Risk VaR, as portfolios with low CVaR necessarily have low VaR as well. We consider a simple investment problem where besides stocks and bonds, the investor can also include structured products into the investment portfolio. Due to possible intermediate payments from structured product, we have to deal with a re-investment problem modeled as a linear optimization problem.

  13. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  14. Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.

    Science.gov (United States)

    Cui, Licong; Bodenreider, Olivier; Shi, Jay; Zhang, Guo-Qiang

    2018-02-01

    We introduce a structural-lexical approach for auditing SNOMED CT using a combination of non-lattice subgraphs of the underlying hierarchical relations and enriched lexical attributes of fully specified concept names. Our goal is to develop a scalable and effective approach that automatically identifies missing hierarchical IS-A relations. Our approach involves 3 stages. In stage 1, all non-lattice subgraphs of SNOMED CT's IS-A hierarchical relations are extracted. In stage 2, lexical attributes of fully-specified concept names in such non-lattice subgraphs are extracted. For each concept in a non-lattice subgraph, we enrich its set of attributes with attributes from its ancestor concepts within the non-lattice subgraph. In stage 3, subset inclusion relations between the lexical attribute sets of each pair of concepts in each non-lattice subgraph are compared to existing IS-A relations in SNOMED CT. For concept pairs within each non-lattice subgraph, if a subset relation is identified but an IS-A relation is not present in SNOMED CT IS-A transitive closure, then a missing IS-A relation is reported. The September 2017 release of SNOMED CT (US edition) was used in this investigation. A total of 14,380 non-lattice subgraphs were extracted, from which we suggested a total of 41,357 missing IS-A relations. For evaluation purposes, 200 non-lattice subgraphs were randomly selected from 996 smaller subgraphs (of size 4, 5, or 6) within the "Clinical Finding" and "Procedure" sub-hierarchies. Two domain experts confirmed 185 (among 223) suggested missing IS-A relations, a precision of 82.96%. Our results demonstrate that analyzing the lexical features of concepts in non-lattice subgraphs is an effective approach for auditing SNOMED CT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Photoreflectance studies of electronic transitions in quantum well structures under high presure

    Science.gov (United States)

    Chandrasekhar, Holakere R.; Chandrasekhar, Meera

    1990-08-01

    Superlattices of alternating layers of semiconductors were first proposed1 in 1970, and since then a variety of structures have been grown. Their technological importance has spurred considerable experimental and theoretical work. The unique feature of quantum confinement of carriers has made possible unusual devices. By combining various semiconductors and alloys of ffl-V, 11-TV and group IV materials, unusual band lineups between neighboring layers have been obtained. Both lattice matched and strained layer structures have been grown. In this article we will focus on the electronic structure of the quantum well heterostructures under the external perturbation of hydrostatic pressure. Pressure has been used extensively to investigate materials in regions of phase space not otherwise accessib1. lu the study of quantum well structures, it has also been used to move band edges in a controlled fashion, and alter band lineups, allowing the determination of band offsets with an accuracy that was not possible without the use of pressure. As in bulk semiconductors, optical techniques provide powerful tools in studying the electronic states in quantum well heterostructures (QWH). Photoluminescence (PL) spectroscopy is only sensitive to spectral features associated with energy states close to the bottom of the well due to rapid thermalization of carriers. Photoluminescence excitation (PLE) is often limited by the availability of tunable lasers. Photoreflectance (PR), on the other hand, can provide a rich structure due to both symmetry allowed and forbidden transitions encompassing the entire quantum well. This sensitivity is due to the derivative nature of the spectroscopy. Experiments can be carried out easily at different temperatures and over wide spectral regions. This article is organized as follows. In section 2 we will review some of the theoretical calculations of electronic bands in quantum wells and discuss the changes expected under pressure. In Sec. 3, we

  16. Optimal Tuned Mass Damper for Nonlinear Structure under Different Earthquakes

    Directory of Open Access Journals (Sweden)

    K. Shakeri

    2015-07-01

    Full Text Available Since there is no closed-form formula for designing TMD (Tuned Mass Damper for nonlinear structures, some researchers have proposed numerical optimization procedures such as a genetic algorithm to obtain the optimal values of TMD parameters for nonlinear structures. These methods are based on determining the optimal values of TMD parameters to minimize the maximum response (e.g. inter story drift of the controlled structure subjected to a specific earthquake record. Therefore, the performance of TMD that has been designed using a specific record strongly depends on the characteristics of the earthquake record. By changing the characteristics of the input earthquake record, the efficiency of TMD is changed and in some cases, it is possible that the response of the controlled structure is increased. To overcome the shortcomings of the previous researches, in this paper, an efficient method for designing optimal TMD on nonlinear structures is proposed, in which the effect of different ground motion records is considered in the design procedure. In the proposed method, the optimal value of the TMD parameters are determined so that the average maximum response (e.g. inter story drift resulting from different records in the controlled structure is minimized. To illustrate the procedure of the propose method, the method is used to design optimal TMD for a sample structure. The results of numerical simulations show that the average maximum response of controlled structure resulting from different records is reduced significantly. Hence, it can be concluded that the proposed method for designing optimal TMD under different earthquakes is effective.

  17. Crystalline structures of poly(L-lactide) formed under pressure and structure transitions with heating

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Yu, Donghong

    2013-01-01

    The isothermally crystallized poly(L-lactide) (PLLA) samples were obtained at 135 °C under pressures (Pc) ranging from 1 bar to 2.5 kbar. The crystalline structures, the structure transition, and thermal properties of the prepared samples were investigated by wide-angle X-ray diffraction (WAXD...

  18. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M.; Mikhailov, V.S.; Pronin, V.N.; Pakhomov, Ya.D. [State Scientific Center of Russian Federation `A.A. Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM)`, Moscow (Russian Federation)

    1998-01-01

    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  19. Structural stability of the square flux line lattice in YNi2B2C and LuNi2B2C studied with small angle neutron scattering

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Gammel, P.L.; Barber, B.P.

    1997-01-01

    We have studied the flux line lattice in YNi2B2C and LuNi2B2C, the nonmagnetic end members of the borocarbide superconductors using small angle neutron scattering and transport. For fields, H parallel to c, we find a square symmetric lattice which disorders rapidly above H/H-c2 similar to 0.2, well...

  20. Lattice dynamics of ZnAl{sub 2}O{sub 4} and ZnGa{sub 2}O{sub 4} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Moreno, S.; Rodriguez-Hernandez, P.; Munoz, A. [Departamento de Fisica Fundamental II, MALTA Consolider Team, Instituto de Materiales y Nanotecnologia Universidad de La Laguna, La Laguna 38205, Tenerife (Spain); Romero, A.H. [CINVESTAV-Queretaro Libramiento Norponiente No 2000 Real de Juriquilla 76230 Queretaro, Qro (Mexico); Manjon, F.J. [Instituto de Diseno para la Fabricacion y Produccion Automatizada, MALTA Consolider Team, Universitat Politecnica de Valencia, 46022 Valencia (Spain); Errandonea, D. [Fundacion General de la Universidad de Valencia ICMUV, MALTA Consolider Team, Edificio de Investigacion, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Rusu, E.; Ursaki, V.V. [Institute of Applied Physics, Academy of Sciences of Moldova, 2028 Chisinau (Moldova)

    2011-01-15

    In this work we present a first-principles density functional study of the vibrational properties of ZnAl{sub 2}O{sub 4} and ZnGa{sub 2}O{sub 4} as function of hydrostatic pressure. Based on our previous structural characterization of these two compounds under pressure, herewith, we report the pressure dependence on both systems of the vibrational modes for the cubic spinel structure, for the CaFe{sub 2}O{sub 4}-type structure (Pnma) in ZnAl{sub 2}O{sub 4} and for marokite (Pbcm) ZnGa{sub 2}O{sub 4}. Additionally we report a second order phase transition in ZnGa{sub 2}O{sub 4} from the marokite towards the CaTi{sub 2}O{sub 4}-type structure (Cmcm), for which we also calculate the pressure dependence of the vibrational modes at the {gamma} point. Our calculations are complemented with Raman scattering measurements up to 12 GPa that show a good overall agreement between our calculated and measured mode frequencies. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation.

    Science.gov (United States)

    Cheng, Jian; Guo, Xiaoxian; Cai, Pengli; Cheng, Xiaozhi; Piškur, Jure; Ma, Yanhe; Jiang, Huifeng; Gu, Zhenglong

    2017-11-01

    Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Fatigue life prediction of mechanical structures under stochastic loading

    Directory of Open Access Journals (Sweden)

    Leitner Bohuš

    2018-01-01

    Full Text Available Problems of fatigue life prediction of materials and structures are discussed in the paper. Service loading is assumed as a continuous loading process with possible discontinuous events, which are caused by various operating conditions. The damage in a material is due to a cumulative degradation process. The damaging process is then represented either by rain-flow matrices or by a fatigue damage function which is derived using some hypothesis of a fatigue failure criterion. Presented theoretical procedure enables a very effective estimation of a service life and/or reliable evaluation of residual life of any structures under various types of loading and environmental conditions. This approach creates a good basis for powerful expert systems in structural and mechanical engineering. The aim of the paper is to present briefly some results of analysis of load-bearing steel structure loads of special railway crane PKP 25/20i which was utilized in some specific ad relatively hard operating conditions. Virtual models of the structure were being used in an analysis of acting working dynamics loads influence to be able to forecast fatigue life of load-bearing of the crane jib.

  3. Structural and textural study of Ni and/or Co in a common molybdate lattice as catalysts

    Directory of Open Access Journals (Sweden)

    Boukhlouf H.

    2013-09-01

    Full Text Available This work deals with the search for new molybdate catalyst formulations, which are known to be active in light alkane oxidative dehydrogenation, a process which could be replace in the near future the common steam cracking and pure dehydrogenation processes currently used for the production of alkenes. Co, Ni and mixed Ni-Co molybdates of various compositions are prepared by a modified coprecipitation procedure from metal nitrates and ammonium heptamolybdate. Their structural and textural properties were studied by XRD, Raman, B.E.T and XPS. Textural and structural properties of the materials are correlated to the composition.

  4. Mean ergodic operators and reflexive Fréchet lattices

    NARCIS (Netherlands)

    Bonet, J.; De Pagter, B.; Ricker, W.J.

    2011-01-01

    Connections between (positive) mean ergodic operators acting in Banach lattices and properties of the underlying lattice itself are well understood (see the works of Emel'yanov, Wolff and Zaharopol). For Fréchet lattices (or more general locally convex solid Riesz spaces) there is virtually no

  5. The critical point of quantum chromodynamics through lattice and ...

    Indian Academy of Sciences (India)

    Abstract. This talk discusses methods of extending lattice computations at finite temperature into regions of finite chemical potential, and the conditions under which such results from the lattice may be compared to experiments. Such comparisons away from a critical point are absolutely essential for quantitative use of lattice ...

  6. Modelling heterogeneity of concrete using 2D lattice network for ...

    Indian Academy of Sciences (India)

    The algorithm determines the position of the lattice .... coordinate and the y coordinate of centre a circle with diameter D. The algorithm developed ... Method of analysis. A computer program for analysis of lattice structure has been developed. Fracture is simu- lated by performing a linear elastic analysis of the lattice and ...

  7. Modularity, Atomicity and States in Archimedean Lattice Effect Algebras

    Science.gov (United States)

    Paseka, Jan

    2010-01-01

    Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o)-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.

  8. Superhard Mo-Al-Ni films composed of grains with different crystallographic orientations and/or lattice structures

    Czech Academy of Sciences Publication Activity Database

    Musil, Jindřich; Stadnik, T.; Čerňanský, Marian

    2003-01-01

    Roč. 36, č. 1 (2003), s. 22-26 ISSN 1225-8024 R&D Projects: GA MŠk ME 529 Institutional research plan: CEZ:AV0Z1010914; CEZ:MSM 235200002 Keywords : Mo-Al-N film * hardness * structure * grain size * mixture of grains Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Crystal lattice imaging of the silica and alumina faces of kaolinite using atomic force microscopy.

    Science.gov (United States)

    Gupta, Vishal; Hampton, Marc A; Nguyen, Anh V; Miller, Jan D

    2010-12-01

    The crystal lattice images of the two faces of kaolinite (the silica face and the alumina face) have been obtained using contact-mode atomic force microscopy (AFM) under ambient conditions. Lattice resolution images reveal the hexagonal surface lattice of these two faces of kaolinite. Analysis of the silica face of kaolinite showed that the hexagonal surface lattice ring of oxygen atoms had a periodicity of 0.50±0.04nm between neighboring oxygen atoms, which is in good agreement with the surface lattice structure of the mica basal plane. The center of the hexagonal ring of oxygen atoms is vacant. Analysis of the alumina face of kaolinite showed that the hexagonal surface lattice ring of hydroxyls surround a hydroxyl in the center of the ring. The atomic spacing between neighboring hydroxyls was determined as 0.36±0.04nm. Ordering of the kaolinite particles for examination of the silica and alumina surfaces was accomplished using different substrates, a procedure previously established. Crystal lattice imaging supports previous results and independently confirms that the two faces of kaolinite have been properly identified. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. CARIBBEAN OFFSHORE CORPORATE STRUCTURES UNDER A SWOT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ana-Maria GEAMÃNU

    2015-04-01

    Full Text Available Tax havens have long been under the attention of numerous Governments and International Organizations which triggered the concern of an uneven playing field in the taxation area. As a result numerous amendments have been made to both their commercial and tax legislations in order to be in line with the internationally agreed tax standards. The aim of this article is to conduct a SWOT analysis on the offshore corporate structures found in the Caribbean landscape. Based on a selection process of the most commonly recognized tax havens in the Caribbean region and an analysis of their offshore companies at the level of incorporation, administration, activities conducted and costs, a set of frequently met characteristics have been identified which stand at the basis of the SWOT analysis. The results stand to present a comprehensive four dimension framework of the offshore corporate structures in regards to their strengths, weaknesses, opportunities and threats.

  11. Capital Structure Arbitrage under a Risk-Neutral Calibration

    Directory of Open Access Journals (Sweden)

    Peter J. Zeitsch

    2017-01-01

    Full Text Available By reinterpreting the calibration of structural models, a reassessment of the importance of the input variables is undertaken. The analysis shows that volatility is the key parameter to any calibration exercise, by several orders of magnitude. To maximize the sensitivity to volatility, a simple formulation of Merton’s model is proposed that employs deep out-of-the-money option implied volatilities. The methodology also eliminates the use of historic data to specify the default barrier, thereby leading to a full risk-neutral calibration. Subsequently, a new technique for identifying and hedging capital structure arbitrage opportunities is illustrated. The approach seeks to hedge the volatility risk, or vega, as opposed to the exposure from the underlying equity itself, or delta. The results question the efficacy of the common arbitrage strategy of only executing the delta hedge.

  12. Structural characterization of lipidic systems under nonequilibrium conditions

    DEFF Research Database (Denmark)

    Yaghmur, Anan; Rappolt, Michael

    2012-01-01

    manipulation techniques including, for instance, stop-flow mixing or rapid temperature-jump perturbation is given. Second, our recent synchrotron SAXS findings on the dynamic structural response of gold nanoparticle-loaded vesicles upon exposure to an ultraviolet light source, the impact of rapidly mixing...... and the possible formation of intermediate states in the millisecond to second range. The need for investigating self-assembled systems, mainly stimuli-responsive drug nanocarriers, under nonequilibrium conditions is discussed. For pharmaceutically relevant applications, it is essential to combine...

  13. Structural Behavior of SC and RC Panels under Impact Loading

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyuk-Kee; Kim, Seung-Eock [Sejong University, Seoul (Korea, Republic of)

    2015-05-15

    NPP structures have been generally constructed using reinforced concrete (RC) structures. In recent studies, however, it has been confirmed that a steel-plate concrete (SC) structures has a much better impact resistance than an RC structure. In this paper, the impact resistance of SC and RC panels is evaluated using the commercial software LS-DYNA. To verify finite element (FE) models, the analysis results for SC and half steel-plate concrete panels under impact loading are compared with the test results conducted in other research. The impact analysis according to the different steel ratios with four different concrete thicknesses is performed in order to compare the impact resistance of SC and RC panels. To compare the impact resistance of SC and RC panels, the impact analysis was performed according to the different steel ratios with four different concrete thicknesses. Based on this study, the following conclusions have been obtained: (1) The rear face steel plate of SC panel plays more important role than the rear rebar of RC panel in preventing perforation. (2) When the perforation failure occurs, RC panel is more effective than SC panel to reduce the velocity of the missile.

  14. On structural design optimization under uncertainty and risk

    International Nuclear Information System (INIS)

    Teofilo Beck, Andre; Santana Gomes, Wellison Jose de

    2010-01-01

    In this paper, the effects of uncertainty and risk on structural design optimization are investigated, by comparing results of Deterministic Design Optimization (DDO), Reliability-based Design Optimization (RBDO) and Reliability-based Risk Optimization (RBRO). DDO yields a structural topology (or shape) which is optimum in terms of mechanics, but does not explicitly address parameter uncertainties and their effects on structural safety. RBDO properly models safety-under-uncertainty, allowing the optimum structure to maintain an acceptable level of safety. Results, however, are dependent on the failure probability used as constraint. Risk optimization (RBRO) increases the scope of the problem, by addressing the compromising goals of economy and safety. This is accomplished by quantifying the costs associated to construction, operation and maintenance, as well as the monetary consequences of failure. RBRO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RBRO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when the optimum safety coefficients are used as constraint in DDO, the formulation leads to optimum configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected cost of failure). If the (optimum) system failure probability is used as constraint in RBDO, the optimum solution reduces manufacturing costs, but by increasing total expected costs. This happens when the costs associated to different failure modes are distinct.

  15. Topological spin-singlet superconductors with underlying sublattice structure

    Science.gov (United States)

    Dutreix, C.

    2017-07-01

    Majorana boundary quasiparticles may naturally emerge in a spin-singlet superconductor with Rashba spin-orbit interactions when a Zeeman magnetic field breaks time-reversal symmetry. Their existence and robustness against adiabatic changes is deeply related, via a bulk-edge correspondence, to topological properties of the band structure. The present paper shows that the spin-orbit may be responsible for topological transitions when the superconducting system has an underlying sublattice structure, as it appears in a dimerized Peierls chain, graphene, and phosphorene. These systems, which belong to the Bogoliubov-de Gennes class D, are found to have an extra symmetry that plays the role of the parity. It enables the characterization of the topology of the particle-hole symmetric band structure in terms of band inversions. The topological phase diagrams this leads to are then obtained analytically and exactly. They reveal that, because of the underlying sublattice structure, the existence of topological superconducting phases requires a minimum doping fixed by the strength of the Rashba spin orbit. Majorana boundary quasiparticles are finally predicted to emerge when the Fermi level lies in the vicinity of the bottom (top) of the conduction (valence) band in semiconductors such as the dimerized Peierls chain and phosphorene. In a two-dimensional topological superconductor based on (stretched) graphene, which is semimetallic, Majorana quasiparticles cannot emerge at zero and low doping, that is, when the Fermi level is close to the Dirac points. Nevertheless, they are likely to appear in the vicinity of the van Hove singularities.

  16. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  17. Electronic properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.

    2009-01-01

    Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...

  18. Stability assessment of structures under earthquake hazard through GRID technology

    Science.gov (United States)

    Prieto Castrillo, F.; Boton Fernandez, M.

    2009-04-01

    This work presents a GRID framework to estimate the vulnerability of structures under earthquake hazard. The tool has been designed to cover the needs of a typical earthquake engineering stability analysis; preparation of input data (pre-processing), response computation and stability analysis (post-processing). In order to validate the application over GRID, a simplified model of structure under artificially generated earthquake records has been implemented. To achieve this goal, the proposed scheme exploits the GRID technology and its main advantages (parallel intensive computing, huge storage capacity and collaboration analysis among institutions) through intensive interaction among the GRID elements (Computing Element, Storage Element, LHC File Catalogue, federated database etc.) The dynamical model is described by a set of ordinary differential equations (ODE's) and by a set of parameters. Both elements, along with the integration engine, are encapsulated into Java classes. With this high level design, subsequent improvements/changes of the model can be addressed with little effort. In the procedure, an earthquake record database is prepared and stored (pre-processing) in the GRID Storage Element (SE). The Metadata of these records is also stored in the GRID federated database. This Metadata contains both relevant information about the earthquake (as it is usual in a seismic repository) and also the Logical File Name (LFN) of the record for its later retrieval. Then, from the available set of accelerograms in the SE, the user can specify a range of earthquake parameters to carry out a dynamic analysis. This way, a GRID job is created for each selected accelerogram in the database. At the GRID Computing Element (CE), displacements are then obtained by numerical integration of the ODE's over time. The resulting response for that configuration is stored in the GRID Storage Element (SE) and the maximum structure displacement is computed. Then, the corresponding

  19. Wave structure and flow amplitude-frequency characteristics in the turbine nozzle lattice in the presence of phase transition

    Science.gov (United States)

    Gribin, V. G.; Gavrilov, I. Yu.; Tishchenko, A. A.; Tishchenko, V. A.; Alekseev, R. A.

    2017-05-01

    This paper is devoted to the wave structure of a flow at its near- and supersonic velocities in a flat turbine cascade of profiles in the zone of phase transitions. The main task was investigation of the mechanics of interaction of the condensation jump with the adiabatic jumps of packing in a change of the initial condition of the flow. The obtained results are necessary for verification of the calculation models of the moisture-steam flow in the elements of lotic parts of the steam turbines. The experimental tests were made on a stand of the wet steam contour (WSC-2) in the Moscow Power Engineering Institute (MPEI, National Research University) at various initial states of steam in a wide range of Mach numbers. In the investigation of the wave structure, use was made of an instrument based on the Schlieren-method principle. The amplitude-frequency characteristics of the flow was found by measurement of static pressure pulsations by means of the piezo resistive sensors established on a bandage plate along the bevel cut of the cascade. It is shown that appearance of phase transitions in the bevel cut of the nozzle turbine cascade leads to a change in the wave structure of the flow. In case of condensation jump, the system of adiabatic jumps in the bevel cut of the cascade becomes nonstationary, and the amplitude-frequency characteristics of static pressure pulsations are restructured. In this, a change in the frequency pulsations of pressure and amplitude takes place. It is noted that, at near-sonic speeds of the flow and the state of saturation at the input, the low-frequency pulsations of static pressure appear that lead to periodic disappearance of the condensation jump and of the adiabatic jump. As a result, in this mode, the flow discharge variations take place.

  20. Designing Pattern Recognition-Based Method for Fast Visual Inspection of the Bucket Wheel Excavator Lattice Structure

    Science.gov (United States)

    Risteiu, M.; Lorincz, A.; Dobra, R.; Dasic, P.; Andras, I.; Roventa, M.

    2017-06-01

    The proposed paper shows some experimental results of a research in metallic structures inspection by using a high definition camera controller by high processing capabilities. The dedicated ARM Cortex-M4 initializes the ARM Cortex-M0 system for image acquiring. Then, by programming options, we are action for patterns (abnormal situations like metal cracks, or discontinuities) types and tuning, for enabling overexposure highlighting and adjusting camera brightness/exposure, to adjust minimum brightness, and to adjust the pattern’s teach threshold. The proposed system has been tested in normal lighting conditions from the typical site.

  1. Lattice gravity near the continuum limit

    International Nuclear Information System (INIS)

    Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

    1984-01-01

    We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

  2. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  3. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  4. Enhanced photocatalytic activity of Te-doped Bi{sub 2}MoO{sub 6} under visible light irradiation: Effective separation of photogenerated carriers resulted from inhomogeneous lattice distortion and improved electron capturing ability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuguang, E-mail: csustcsg@yahoo.com; Li, Yuhan; Wu, Zixu; Wu, Baoxin; Li, Haibin; Li, Fujin

    2017-05-15

    Te-doped Bi{sub 2}MoO{sub 6} photocatalyst was hydrothermally synthesized, and nonmetal atoms Te were homogeneously incorporated into Bi{sub 2}MoO{sub 6} lattice with the substitution of Te{sup 4+} to Mo{sup 6+}. With increasing Te-doping concentration in Bi{sub 2}MoO{sub 6}, no detectable band-gap narrowing but more and more severe inhomogeneous lattice distortions were determined. The activity of Bi{sub 2}MoO{sub 6} photocatalyst was evaluated through methylene blue degradation under visible light irradiation (λ>410 nm) and was greatly enhanced by Te-doping. When Te-doped Bi{sub 2}MoO{sub 6} was synthesized at Te/Mo molar ratio of 7.5%, a maximum first-order rate constant of methylene blue degradation was obtained. The inhomogeneous lattice distortion generated an internal dipole moment, and the holes generated with the substitution of Te{sup 4+} to Mo{sup 6+} acted as the capturing centers of photogenerated electrons, thus the effective separation of photogenerated carriers was facilitated to result in a relatively high concentration of holes on the surface of Te-doped Bi{sub 2}MoO{sub 6} to be favorable for the efficient methylene blue degradation. - Graphical abstract: With the substitution of Te{sup 4+} to Mo{sup 6+}, effective separation of photogenerated carriers resulted from inhomogeneous lattice distortion and improved electron capturing ability is achieved to be responsible for enhanced photocatalytic activity of Te-doped Bi{sub 2}MoO{sub 6}. - Highlights: • Nonmetal Te is incorporated into Bi{sub 2}MoO{sub 6} with the substitution of Te{sup 4+} to Mo{sup 6+}. • Revealing inhomogeneous lattice distortion and improved electron capturing ability. • Effective separation of photogenerated carriers in Te-doped Bi{sub 2}MoO{sub 6} is achieved. • The mechanism of methylene blue degradation over Te-doped Bi{sub 2}MoO{sub 6} is proposed.

  5. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    Science.gov (United States)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  6. Facile synthesis, structural characterization, and photoluminescence mechanism of Dy3+ doped YVO4 and Ca2+ co-doped YVO4:Dy3+ nano-lattices

    Science.gov (United States)

    Dhiren Meetei, Sanoujam; Deben Singh, Mutum; Dorendrajit Singh, Shougaijam

    2014-05-01

    Light plays a vital role in the evolution of life. From sunlight to candle-light and then to other form of lighting devices, human beings are utilizing light since time immemorial. Lighting devices such as conventional incandescent lamp and fluorescent lamp have been replaced by Light Emitting Diodes (LEDs) for the later is cheap, durable, etc. Now-a-days, phosphor converted LEDs have been burning issues in the fabrication of lighting devices. Especially, lanthanide ion(s) doped phosphors are of great interest for the same. However, doped phosphors have a limitation of luminescence quenching, i.e., instead of increasing luminescence on increasing dopant concentration, the luminescence decreases. Therefore, it must be rectified by one or other means so as to get maximum desirable intensity for uses in display or lighting devices. In the present work, YVO4:Dy3+ and YVO4:Dy3+/Ca2+ nano-lattices are synthesized by a facile technique. Structural characterizations such as x-ray diffraction, SEM, TEM, HRTEM, and Selected Area Electron Diffraction (SAED) of the samples are reported. Photoluminescence (PL) excitation and emission, enhanced mechanism, and lifetime are thoroughly discussed. PL intensity of the quenched YVO4:Dy3+ is made increased up to 432.63% by Ca2+ co-doping. Role of the Ca2+ on the luminescence enhanced mechanism of YVO4:Dy3+/Ca2+ is elucidated.

  7. Negative refractive behaviors of 2D triangular-lattice photonic crystals by structure of SiO2/TiO2 layers

    Science.gov (United States)

    Li, Mengxue; Liu, Mengnan; Jiang, Chengyi; Liu, Tongtong; Sun, Peng; Wan, Yong

    2018-01-01

    In this paper, we propose a two-dimensional (2-D) triangular lattice photonic crystal plate by close-packed SiO2/ TiO2 layers with the stacking mode of ABABABA. By using the finite-difference time-domain (FDTD) method, negative refraction of a single Gaussian beam incident plate with different angles are respectively demonstrated; clear image spots of a point source with normalized frequency ω=0.3605(2πc/a) vertical incident media plate are obtained in the image plane. It can be found that the imaging properties are as same as the isotropic homogeneous medium with refractive index n=-1. The measurement results show that when the distance between the image and the upper surface of the sample V is 5.12a, 3.09a and 1.15a, the distance between the source and the lower surface of the sample U is a, 3a and 5a, respectively. This means that the sum of U and V is mostly equal to the thickness of the plate L and the negative effect of near-perfect lens is realized. This proposed structure with negative refraction properties may have great applications for the design of photonic crystal focusing devices.

  8. Anatomical position of the asterion and its underlying structure.

    Science.gov (United States)

    Sripairojkul, B; Adultrakoon, A

    2000-09-01

    Surface anatomy is important for surgical planning. The asterion has been believed and used for locating the underlying posterior fossa dura. To prove whether this landmark is reliable or not, forty-three fixed heads of cadaver were dissected. A burr hole was made on the asterion and its underlying structure was examined. Seventy-four point four per cent (74.4%) of the asterion on the right side were adjacent to the transverse-sigmoid sinus complex when compared to 58.1 per cent on the left. Twenty-three point three per cent (23.3%) of the asterion on the right side were found over the infratentorial dura while that on the left side were 32.6 per cent. Two point three per cent (2.3%) of the asterion were located over the supratentorial dura on the right and 9.3 per cent on the left side. It is concluded, therefore, that the asterion is not an appropriate landmark to locate the underlying posterior fossa dura.

  9. Size-dependent structure of silver nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Koski, Kristie Jo [Univ. of California, Berkeley, CA (United States)

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  10. Metaharmonic Lattice Point Theory

    CERN Document Server

    Freeden, Willi

    2011-01-01

    Metaharmonic Lattice Point Theory covers interrelated methods and tools of spherically oriented geomathematics and periodically reflected analytic number theory. The book establishes multi-dimensional Euler and Poisson summation formulas corresponding to elliptic operators for the adaptive determination and calculation of formulas and identities of weighted lattice point numbers, in particular the non-uniform distribution of lattice points. The author explains how to obtain multi-dimensional generalizations of the Euler summation formula by interpreting classical Bernoulli polynomials as Green

  11. Sound transmission loss characteristics of sandwich panels with a truss lattice core.

    Science.gov (United States)

    Ehsan Moosavimehr, S; Srikantha Phani, A

    2017-04-01

    Sandwich panels are extensively used in constructional, naval, and aerospace structures due to the high stiffness and strength-to-weight ratios. In contrast, the sound transmission properties are adversely influenced by the low effective mass. Phase velocity matching of structural waves propagating within the panel and the incident pressure waves from the fluid medium leads to coincidence effects resulting in reduced impedance and high sound transmission. Truss-like lattice cores with porous microarchitecture and reduced inter panel connectivity offer the potential to satisfy the conflicting structural and vibroacoustic response requirements. This study combines Bloch-wave analysis and the finite element method to understand wave propagation and hence sound transmission in sandwich panels with a truss lattice core. Three dimensional coupled fluid-structure finite element simulations are conducted to compare the performance of a representative set of lattice core topologies. Potential advantages of sandwich structures with a lattice core are identified. The significance of partial band gaps is evident in the sound transmission loss characteristics of the panels studied. This work demonstrates that, even without optimization, significant enhancements in sound transmission loss performance can be achieved in truss lattice core sandwich panels compared to a traditional sandwich panel employing a honeycomb core under constant mass constraint.

  12. Fuel lattice design using heuristics and new strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2010-10-15

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  13. Fuel lattice design using heuristics and new strategies

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R.; Pelta, D. A.; Campos S, Y.

    2010-10-01

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  14. Lattice-Algebraic Morphology

    National Research Council Canada - National Science Library

    McGuire, Dennis

    1998-01-01

    ... invariance present in concrete morphology theories. The other, developed by Banon and Barrera, analyzes general mappings between complete lattices and develops morphological decomposition formulas for such mappings...

  15. Lattice degeneracies of fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-10-01

    We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)

  16. First principles calculations of structural, elastic, electronic properties of Ir{sub 3}Zr with L1{sub 2} structure under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Na; Wang, Xueye, E-mail: wxueye@xtu.edu.cn; Wan, Yali

    2015-07-15

    The effects of pressure on the structural, elastic and electronic properties of Ir{sub 3}Zr are investigated by means of the first-principles calculations based on the density functional theory with generalized gradient approximation and local density approximation methods. The calculated lattice parameters and elastic modulus of Ir{sub 3}Zr at zero pressure are in good agreement with available experimental and theoretical results. The values of elastic constants (C{sub 11}, C{sub 12}, C{sub 44}), bulk modulus (B), shear modulus (G), Young modulus (E), Poisson's ratio (υ), anisotropy index (A) and Debye temperature (T{sub D}) present the linearly increasing dependences on the external pressure. Additionally, the B/G values exhibit an upward trend with increasing pressure, which means that higher pressure can improve its ductility. Ir{sub 3}Zr exhibits a brittle characteristic at zero pressure. When the pressure reaches 10 GPa, the Cauchy pressure and B/G value show ductile feature. In addition, the pressure-dependence behavior of density of states, Mulliken charge and bond length are analyzed. - Graphical abstract: Display Omitted - Highlights: • The elastic and electronic properties of Ir{sub 3}Zr under pressure are investigated. • The elastic constants, elastic moduli increase with the pressure increasing. • When the pressure reaches 10 GPa, Ir{sub 3}Zr changes from brittle to ductile. • Ir{sub 3}Zr remains as a stable structure and no structural transition under pressure.

  17. Instrumental variables estimation under a structural Cox model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Nørbo Sørensen, Ditte; Vansteelandt, Stijn

    2017-01-01

    Instrumental variable (IV) analysis is an increasingly popular tool for inferring the effect of an exposure on an outcome, as witnessed by the growing number of IV applications in epidemiology, for instance. The majority of IV analyses of time-to-event endpoints are, however, dominated by heuristic...... and instruments. We propose a novel class of estimators and derive their asymptotic properties. The methodology is illustrated using two real data applications, and using simulated data....... approaches. More rigorous proposals have either sidestepped the Cox model, or considered it within a restrictive context with dichotomous exposure and instrument, amongst other limitations. The aim of this article is to reconsider IV estimation under a structural Cox model, allowing for arbitrary exposure...

  18. Graded Geometric Structures Underlying F-Theory Related Defect Theories

    Science.gov (United States)

    Oikonomou, V. K.

    2013-08-01

    In the context of F-theory, we study the related eight-dimensional super-Yang-Mills theory and reveal the underlying supersymmetric quantum mechanics algebra that the fermionic fields localized on the corresponding defect theory are related to. Particularly, the localized fermionic fields constitute a graded vector space, and in turn this graded space enriches the geometric structures that can be built on the initial eight-dimensional space. We construct the implied composite fiber bundles, which include the graded affine vector space and demonstrate that the composite sections of this fiber bundle are in one-to-one correspondence to the sections of the square root of the canonical bundle corresponding to the submanifold on which the zero modes are localized.

  19. On Decompositions of Matrices over Distributive Lattices

    Directory of Open Access Journals (Sweden)

    Yizhi Chen

    2014-01-01

    Full Text Available Let L be a distributive lattice and Mn,q (L(Mn(L, resp. the semigroup (semiring, resp. of n × q (n × n, resp. matrices over L. In this paper, we show that if there is a subdirect embedding from distributive lattice L to the direct product ∏i=1m‍Li of distributive lattices L1,L2, …,Lm, then there will be a corresponding subdirect embedding from the matrix semigroup Mn,q(L (semiring Mn(L, resp. to semigroup ∏i=1m‍Mn,q(Li (semiring ∏i=1m‍Mn(Li, resp.. Further, it is proved that a matrix over a distributive lattice can be decomposed into the sum of matrices over some of its special subchains. This generalizes and extends the decomposition theorems of matrices over finite distributive lattices, chain semirings, fuzzy semirings, and so forth. Finally, as some applications, we present a method to calculate the indices and periods of the matrices over a distributive lattice and characterize the structures of idempotent and nilpotent matrices over it. We translate the characterizations of idempotent and nilpotent matrices over a distributive lattice into the corresponding ones of the binary Boolean cases, which also generalize the corresponding structures of idempotent and nilpotent matrices over general Boolean algebras, chain semirings, fuzzy semirings, and so forth.

  20. Behavior of grid-stiffened composite structures under transverse loading

    Science.gov (United States)

    Gan, Changsheng

    The energy absorption characteristics and failure modes of grid-stiffened composite plates under transverse load were studied in detail. Several laboratory scale composite grid plates were fabricated by using co-mingled E-glass fiber/polypropylene matrix and carbon/nylon composites in a thermoplastic stamping process. Both experimental and finite element approaches were used to evaluate and understand the role of major failure modes on the performance of damaged grid-stiffened composite plates under transverse load. The load-deflection responses of grid-stiffened composite plates were determined and compared with those of sandwich composite plates of the same size. The failure modes of grid-stiffened composite plates under different load conditions were investigated and used as the basis for FEA models. The intrinsic strength properties of constituent composite materials were measured by using either three point bending or tensile test and were used as input data to the FEA models. Several FEA models including the major failure modes based on the experimental results were built to simulate the damage processes of grid-stiffened composite plates under transverse load. A FORTRAN subroutine was implemented within the ABAQUS code to incorporate the material failure models. Effects of damage on the modal frequencies and loss factors of grid-stiffened composite plates were also investigated experimentally. Experimental and simulation results showed that sandwich composite specimens failed catastrophically with the load dropping sharply at the displacement corresponding to initial and final failure. However, grid-stiffened composite specimens failed in a more gradual and forgiving way in a sequence of relatively small load drops. No catastrophic load drops were observed in the grid structures over the range of displacements investigated here. The SEA values of the grid composite specimens are typically higher than those of the sandwich specimens with the same boundary

  1. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  2. Structural evolution of zirconium carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D. [CEA Saclay, DEN/DMN/SRMA, F-91191 Gif/Yvette cedex (France)], E-mail: dominique.gosset@cea.fr; Dolle, M. [CEMES-CNRS (UPR 8011), BP 94347, F-31055 Toulouse cedex 4 (France); Simeone, D. [CEA Saclay, DEN/DMN/SRMA, F-91191 Gif/Yvette cedex (France); Baldinozzi, G. [SPMS, Ecole Centrale Paris, F-92295 Chatenay-Malabry cedex (France); Thome, L. [CSNSM, bat. 108, F-91405 Orsay (France)

    2008-02-15

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10{sup 11} to 5 x 10{sup 15} cm{sup -2}) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10{sup 12} cm{sup -2}), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10{sup 14} cm{sup -2}), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10{sup 14} ions/cm{sup 2}, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  3. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  4. BACKSTEPPING ALGORITHM FOR LINEAR SISO PLANTS UNDER STRUCTURAL UNCERTAINTIES

    Directory of Open Access Journals (Sweden)

    I. B. Furtat

    2016-01-01

    Full Text Available The robust algorithm is proposed for parametric and structurally uncertain linear plants under external bounded disturbances. The structural uncertainty is an unknown dynamic order of the model of plants. The developed algorithm provides plant output tracking for a smooth bounded reference signal with a required accuracy at a finite time. It is assumed that only scalar input and output of the plants are available for measurement, but not their derivatives. For the synthesis of the control algorithm we use a modified backstepping algorithm. The synthesis of control algorithm is separated into rsteps, where ris an upper bound of the relative degree of control plant model. At each step we synthesize auxiliary controls that stabilize each subsystem about a zero. At the last step we synthesize a basic control law, which provides output tracking for smooth reference signal. It is shown that for the implementation of the algorithm we need to use only one filter of the control signal and the simplified control laws obtained by application of the real derivative elements. It allows simplifying significantly the calculation and implementation of the control system. Numerical examples and results of computer simulation are given, illustrating the operation of the proposed scheme.

  5. On the underlying gauge group structure of D=11 supergravity

    International Nuclear Information System (INIS)

    Bandos, I.A.; Azcarraga, J.A. de; Izquierdo, J.M.; Picon, M.; Varela, O.

    2004-01-01

    The underlying gauge group structure of D=11 supergravity is revisited. It may be described by a one-parametric family of Lie supergroups Σ-bar (s)x-bar SO(1,10), s 0. The family of superalgebras E-bar (s) associated to Σ-bar (s) is given by a family of extensions of the M-algebra {Pa,Qα,Zab,Za1...a5} by an additional fermionic central charge Qα'. The Chevalley-Eilenberg four-cocycle ω4∼Πα-bar Πβ-bar Πa-bar ΠbΓabαβ on the standard D=11 supersymmetry algebra may be trivialized on E-bar (s), and this implies that the three-form field A3 of D=11 supergravity may be expressed as a composite of the Σ-bar (s) one-form gauge fields ea, ψα, Bab, Ba1...a5 and ηα. Two superalgebras of E-bar (s) recover the two earlier D'Auria and Fre decompositions of A3. Another member of E-bar (s) allows for a simpler composite structure for A3 that does not involve the Ba1...a5 field. Σ-bar (s) is a deformation of Σ-bar (0), which is singularized by having an enhanced Sp(32) (rather than just SO(1,10)) automorphism symmetry and by being an expansion of OSp(1 vertical bar 32)

  6. Screening in graphene antidot lattices

    DEFF Research Database (Denmark)

    Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.

    2011-01-01

    We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....

  7. Structure modification of Mg-Nb films under hydrogen sorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Barucca, G.; Majni, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy); Bazzanella, N.; Checchetto, R.; Miotello, A. [Dipartimento di Fisica, Universita di Trento, Via Sommarive, I-38123 Povo (Italy)

    2011-09-15

    Research highlights: > Influence of Nb additions on the hydrogen kinetics of Mg layers. > Structure modification of the Mg matrix during hydrogen cycling. > Lattice strains induced by Nb tends to decrease during hydrogen cycling. > Nb nanoparticles form during hydrogen cycling. > Nb enhances the porous structure of the Mg layer formed during hydrogen cycling. - Abstract: In the present work we focus our attention on the structural modifications induced by repeated absorption/desorption cycles on Mg-Nb layers. Samples consisting of a 30 {mu}m thick pure Mg or Mg-5 at.% Nb doped films, coated with a 20 nm thick Pd layer were submitted to repeated H{sub 2} sorption cycles in a volumetric apparatus. Isothermal desorption analysis at 350 deg. C was performed to evaluate the amount of absorbed hydrogen. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and electron microscopy techniques (SEM and TEM) were used for the structural characterisation of the samples. Analyses show a deep modification of the material upon cycling. The presence of Nb enhances the structural modifications and induces an initial lattice contraction of the Mg matrix that tends to decrease on cycling via the formation of Nb nanoparticles (with average size of {approx}10 nm). SEM and TEM observations performed in cross section evidenced the formation of a porous structure.

  8. Dynamics of Atomic Matter Waves in Optical Lattices

    Science.gov (United States)

    Reeves, Jeremy Brian

    Quantum gases in optical lattices allow for fundamental studies in atomic and condensed-matter physics and the exploration of novel effects. After a brief introduction to the fundamentals of quantum gas experiments in optical lattices, we discuss two recent experiments focusing on driven matter waves in a one-dimensional optical lattice. The first experiment uses a tilted bichromatic optical lattice to investigate the interplay of disorder and collisional interactions in the accelerated transport of a Bose-Einstein condensate. Here, a screening effect is observed, in which the interactions effectively cancel the damping of Bloch oscillations induced by a (quasi-)disordered potential. This effect can be understood through a modification of the underlying band structure by the interactions. The second experiment studies the dynamics of a weakly trapped condensate resonantly coupled to the orbitals of a strongly confining state-selective lattice. We observe momentum distributions that correspond to matter wave diffraction from a periodic structure; however, the diffractive dynamics remain strongly linked to the internal-state Rabi oscillations. In the regime investigated, which we call the nonadiabatic regime, no diffracting potential can be defined. We show how only for much stronger coupling, the internal and external dynamics decouple, transitioning from nonadiabatic diffraction to the well-studied Kapitza-Dirac diffraction. We further investigate prospects for realizing dissipative spin models in our ultracold atomic gas experiment. To this end, we develop and test in the laboratory several possible implementations of effective spins with differential coupling to a superfluid background and examine their viability for a realization of the spin-boson model.

  9. Racetrack lattices for the TRIUMF KAON factory

    International Nuclear Information System (INIS)

    Servranckx, R.V.; Craddock, M.K.

    1989-05-01

    Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. In the small rings, γ t is kept high enough by choosing a sufficiently large phase advance in the arcs. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. The ion-optical properties of the lattices and the results from tracking studies are discussed

  10. Lattice-induced modulators at terahertz frequencies.

    Science.gov (United States)

    Naranjo, Guillermo A; Peralta, Xomalin G

    2017-12-01

    We measured the transmission spectra of an array of split-ring resonators (SRRs) up to 10 terahertz for parallel and perpendicular polarizations. Calculations of the lattice and plasmon mode dispersion relations, in combination with electromagnetic simulations, confirm the presence of multiple higher-order lattice and plasmon modes. We modify the quality factor of higher-order plasmon resonances by modulating the lattice-plasmon mode coupling via changes in the period of the array. We also propose single frequency switches and a broadband dual-state amplitude modulator based on structured illumination that actively modifies the period of the SRR array.

  11. Nuclear lattice simulations

    Directory of Open Access Journals (Sweden)

    Epelbaum E.

    2010-04-01

    Full Text Available We review recent progress on nuclear lattice simulations using chiral effective field theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb effects, and the binding energy of light nuclei.

  12. Neutron Diffraction Study of Structural Phase Transition in Ternary Mercury Chalcogenides $HgSe_{1-x}S_{x}$ under High Pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    A structure of ternary mercury chalcogenides HgSe_{1-x}S_x has been studied by means of neutron diffraction under high pressure up to 35 kbar. A phase transition from the cubic zinc blende phase to the hexagonal cinnabar phase was observed with the pressure increase. Lattice parameters and positional parameters of Hg and Se/S atoms as functions of pressure were obtained. Coexistence of the cubic and the hexagonal phases was observed in the pressure region close to the phase transition point.

  13. Disconnected Diagrams in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements

  14. An efficient Korringa-Kohn-Rostoker method for ''complex'' lattices

    International Nuclear Information System (INIS)

    Yussouff, M.; Zeller, R.

    1980-10-01

    We present a modification of the exact KKR-band structure method which uses (a) a new energy expansion for structure constants and (b) only the reciprocal lattice summation. It is quite efficient and particularly useful for 'complex' lattices. The band structure of hexagonal-close-packed Beryllium at symmetry points is presented as an example of this method. (author)

  15. First-principles study of structural, elastic, electronic and lattice dynamic properties of AsxPyN1-x-yAl quaternary alloys

    International Nuclear Information System (INIS)

    Ghebouli, B.; Ghebouli, M.A.; Fatmi, M.; Chihi, T.; Boucetta, S.

    2010-01-01

    Research highlights: → The range of compositions for which the alloy is lattice matched to AlP is determined. → We study the variation of elastic constants, the optical phonon frequencies (ω TO and ω LO ), the high-frequency dielectric coefficient ε(∞) and the dynamic effective charge Z * with P concentration. - Abstract: Information on the energy band gaps, the lattice parameters and the lattice matching to available substrates is a prerequisite for many practical applications. A pseudopotential plane-wave method as implemented in the ABINIT code is used to the As x P y N 1-x-y Al quaternary alloys lattice matched to AlP substrate to predict their energy band gaps and optical properties. The range of compositions for which the alloy is lattice-matched to AlP is determined. Very good agreement is obtained between the calculated values and the available experimental data. The Debye temperature increase when the bulk modulus is enhanced. We study the variation of elastic constants, the optical phonon frequencies (ω TO and ω LO ), the static and high-frequency dielectric coefficient ε(0) and ε(∞) and the dynamic effective charge Z * with P concentration (y).

  16. Lattice models and conformal field theories

    International Nuclear Information System (INIS)

    Saleur, H.

    1988-01-01

    Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied

  17. Lattice QCD and the Jefferson Laboratory Program

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos

    2011-06-01

    Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.

  18. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  19. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  20. 3D Metallic Lattices for Accelerator Applications

    CERN Document Server

    Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J

    2005-01-01

    We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...

  1. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  2. Structure activity relationships to assess new chemicals under TSCA

    Energy Technology Data Exchange (ETDEWEB)

    Auletta, A.E. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    Under Section 5 of the Toxic Substances Control Act (TSCA), manufacturers must notify the US Environmental Protection Agency (EPA) 90 days before manufacturing, processing, or importing a new chemical substance. This is referred to as a premanufacture notice (PMN). The PMN must contain certain information including chemical identity, production volume, proposed uses, estimates of exposure and release, and any health or environmental test data that are available to the submitter. Because there is no explicit statutory authority that requires testing of new chemicals prior to their entry into the market, most PMNs are submitted with little or no data. As a result, EPA has developed special techniques for hazard assessment of PMN chemicals. These include (1) evaluation of available data on the chemical itself, (2) evaluation of data on analogues of the PMN, or evaluation of data on metabolites or analogues of metabolites of the PMN, (3) use of quantitative structure activity relationships (QSARs), and (4) knowledge and judgement of scientific assessors in the interpretation and integration of the information developed in the course of the assessment. This approach to evaluating potential hazards of new chemicals is used to identify those that are most in need of addition review of further testing. It should not be viewed as a replacement for testing. 4 tabs.

  3. Interevent relationships and judgment under uncertainty: structure determines strategy.

    Science.gov (United States)

    Sanfey, Alan G; Hastie, Reid

    2002-09-01

    A fundamental empirical question regarding judgments about events is whether experienced absolute frequencies or relative frequencies are relied on when the likelihood of a particular occurrence is judged. The present research explicates the conditions under which people rely on remembered raw absolute frequencies versus on inferred relative frequencies or proportions when making predictions. Participants saw opinion poll results for candidates prior to an election and, on the basis of these, made judgments concerning the likelihood of each candidate's winning this election. Certain candidates demonstrated a high absolute frequency of winning in the polls, whereas other candidates had high relative win frequencies. The results indicated that adults are cognitively flexible with regard to the inputs used in this judgment. Certain stimulus event configurations induced reasoning by way of absolute frequencies, whereas other configurations elicited judgments based on relative frequencies. More specifically, as the relational complexity of the event structure increased and more inferences were required to make predictions, the tendency to rely on absolute, as opposed to relative, frequencies also increased.

  4. Sub-fragmentation of structural reactive material casings under explosion

    Science.gov (United States)

    Zhang, Fan; Gauthier, Maxime; Cojocaru, Cristian

    2017-01-01

    A concept of reactive hot spots intruded in a thick, structural reactive material casing was investigated to generate fine fragments for efficient energy release from casing material under explosive loading. This was achieved through distributing micro MoO3 particles into a granular Al casing, made by hot isostatic pressing, in a fuel-rich ratio of 10Al+MoO3. Reaction of Al and MoO3 during casing primary or secondary fragmentation creates heat and gas products to form micro-scale hot spots, whose expansion initiates local fractures leading to fine fragments of the rest of Al. Explosion experiments, using a 4.4 cm diameter cased charge with a casing-to-explosive mass ratio of 1.78 in a 2.1 m3 cylindrical chamber, demonstrated the presence of fine fragments and more efficient fragment combustion to augment air blast, as compared to a baseline pure Al-cased charge, thus indicating the feasibility of the concept.

  5. Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Silva Diniz, D.; Almeida Silva, A. [Federal University of Campina Grande, Campina Grande-PB (Brazil); Andrade Barbosa, J.M. [Federal University of Pernambuco, Recife-PE (Brazil); Palma Carrasco, J.

    2012-05-15

    This paper presents a numerical simulation of the effect of hydrogen atomic diffusion on fatigue crack propagation on structural steels. The simulation was performed with a specimen type CT of API 5CT P110 steel, loaded in the tensile opening mode, in plane strain state and under the effects of a cyclic mechanical load and the hydrogen concentration at the crack tip. As hydrogen source, a cathodic protection system was considered, commonly used in subsea pipelines. The equations of evolution of variables at the crack tip form a non-linear system of ordinary differential equations that was solved by means of the 4th order Runge-Kutta method. The solid-solid diffusion through the lattice ahead of the crack tip was simulated using the finite difference method. The simulations results show that under these conditions, the fatigue crack evolution process is enhanced by the hydrogen presence in the material, and that the start time of the crack propagation decreases as its concentration increases. These results show good correlation and consistency with macroscopic observations, providing a better understanding of hydrogen embrittlement in fatigue crack propagation processes in structural steels. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The structural, mechanical, and electronic properties of LiAlB{sub 4} under pressure from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Tayran, Ceren; Aydin, Sezgin [Department of Physics, Sciences Faculty, Gazi University, 06500, Ankara (Turkey)

    2017-05-15

    The structural, elastic, mechanical, and electronic properties of lithium aluminum tetraboride (LiAlB{sub 4}) under hydrostatic pressure have been investigated by using first-principles density functional theory calculations. The effects of pressure on the lattice parameters, volume, and bond lengths are studied. It is indicated from the calculated elastic constants that LiAlB{sub 4} compound is mechanically stable on 0-40 GPa pressure range. And, by means of these elastic constants set, some mechanical properties such as bulk, shear and Young's moduli, and then Poisson's ratio are determined as a function of pressure. Also, the ductile or brittle nature of LiAlB{sub 4} is examined. Additionally, using the first-principles data obtained from the geometry optimizations, the hardness of LiAlB{sub 4} is calculated, and its nature is investigated under pressure. Furthermore, in order to reveal the effects of pressure on the electronic and binding behavior of the compound, band structures, total and partial density of states, charge densities, Mulliken atomic charges, and bond overlap populations are searched as a function of pressure. To check the stability of the compound, phonon dispersion curves are calculated. And, the results are compared with the other convenient borides. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Spanning trees in a fractal scale-free lattice

    Science.gov (United States)

    Zhang, Zhongzhi; Liu, Hongxiao; Wu, Bin; Zou, Tao

    2011-01-01

    Spanning trees provide crucial insight into the origin of fractality in fractal scale-free networks. In this paper, we present the number of spanning trees in a particular fractal scale-free lattice (network). We first study analytically the topological characteristics of the lattice and show that it is simultaneously scale-free, highly clustered, “large-world,” fractal, and disassortative. Any previous model does not have all the properties as the studied one. Then, by using the renormalization group technique we derive analytically the number of spanning trees in the network under consideration, based on which we also determine the entropy for the spanning trees of the network. These results shed light on understanding the structural characteristics of and dynamical processes on scale-free networks with fractality. Moreover, our method and process for employing the decimation technique to enumerate spanning trees are general and can be easily extended to other deterministic media with self-similarity.

  8. 31st International Symposium on Lattice Field Theory

    CERN Document Server

    2013-01-01

    The annual lattice symposium brings together a global community of researchers from theoretical particle physics and beyond, who employ numerical and computational methods to study the properties of strongly interacting physical systems, above all Quantum Chromodynamics (QCD), the theory describing the interactions of quarks and gluons. Topics include studies of the spectrum and structure of hadrons, lattice studies of matter under extreme conditions, hadronic contributions to weak decay amplitudes, as well as recent developments in simulation algorithms and computer hardware. The 2013 conference in Mainz was attended by over 500 participants from all over the globe, making it the biggest in this series so far. This proceedings volume is dedicated to the memory of Nobel Laureate Kenneth G. Wilson (June 8, 1936 - June 15, 2013).

  9. A bird’s eye view on the flat and conic band world of the honeycomb and Kagome lattices: towards an understanding of 2D metal-organic frameworks electronic structure

    Science.gov (United States)

    Barreteau, C.; Ducastelle, F.; Mallah, T.

    2017-11-01

    We present a thorough tight-binding analysis of the band structure of a wide variety of lattices belonging to the class of honeycomb and Kagome systems including several mixed forms combining both lattices. The band structure of these systems are made of a combination of dispersive and flat bands. The dispersive bands possess Dirac cones (linear dispersion) at the six corners (K points) of the Brillouin zone although in peculiar cases Dirac cones at the center of the zone (Γ point) appear. The flat bands can be of different nature. Most of them are tangent to the dispersive bands at the center of the zone but some, for symmetry reasons, do not hybridize with other states. The objective of our work is to provide an analysis of a wide class of so-called ligand-decorated honeycomb Kagome lattices that are observed in a 2D metal-organic framework where the ligand occupy honeycomb sites and the metallic atoms the Kagome sites. We show that the p x -p y graphene model is relevant in these systems and there exists four types of flat bands: Kagome flat (singly degenerate) bands, two kinds of ligand-centered flat bands (A2 like and E like, respectively doubly and singly degenerate) and metal-centered (three fold degenerate) flat bands.

  10. Introduction to Louis Michel's lattice geometry through group action

    CERN Document Server

    Zhilinskii, Boris

    2015-01-01

    Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative ...

  11. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  12. Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Peizhen Li

    2017-12-01

    Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.

  13. Reconstruction of ancestral RNA sequences under multiple structural constraints

    OpenAIRE

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldisp?hl, J?r?me

    2016-01-01

    Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given...

  14. Optical lattices: Orbital dance

    Science.gov (United States)

    Lewenstein, Maciej; Liu, W. Vincent

    2011-02-01

    Emulating condensed-matter physics with ground-state atoms trapped in optical lattices has come a long way. But excite the atoms into higher orbital states, and a whole new world of exotic states appears.

  15. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  16. MEETING: Lattice 88

    International Nuclear Information System (INIS)

    Mackenzie, Paul

    1989-01-01

    The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab

  17. Interface stability of granular filter structures under currents

    NARCIS (Netherlands)

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  18. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  19. Mechanical Properties of Laser-Sintered-Nylon Diamond Lattices

    Science.gov (United States)

    Neff, Clayton

    Additive manufacturing offers a manufacturing technique to produce complex geometry prototypes at a rapid pace and low cost. These advantages advocate additive manufacturing for the design and production of cellular structures. Cellular structures are interesting because they contain a large amount of porosity (void space of air) to manifest a lightweight structure. Designs of cellular structures generate a periodic pattern; often of complex geometry, called a lattice. There has been a significant amount of research to maximize specific stiffness of lattice structures but little to evaluate low-stiffness lattices. Low-stiffness structures benefit energy absorbance through bending of the lattice. This research seeks to assess diamond lattices as low stiffness, bending structures. The research involves PA2200 (Nylon 12) laser sintered diamond lattices with experimental compression testing and direct FEA model comparison. A correction factor is applied for a design offset of laser sintered lattices. Once applied, the experimental and FEA data agree in validating the diamond lattice as a bending-dominated structure. Diamond lattices show a 4th order relationship between stiffness and parameters of thickness and unit cell length. For density, stiffness maintains a 2nd order relationship, as predicted by bending dominated structures. The resulting stiffness can be tuned over a stiffness range of four orders of magnitude. Further research shows the results for modifying the diamond lattice and scaling stiffness and density using other materials (like metals) to expand the range of stiffness and compare diamond lattices on material property charts. Lastly, the effective Poisson's ratio varies from 0.5 to 0.4 depending on the (t/L) ratio.

  20. Origami lattices with free-form surface ornaments

    NARCIS (Netherlands)

    Janbaz, S.; Noordzij, N.; Widyaratih (student), Dwisetya Safirna; Hagen, C.W.; Fratila-Apachitei, E.L.; Zadpoor, A.A.

    2017-01-01

    Lattice structures are used in the design of metamaterials to achieve unusual physical, mechanical, or biological properties. The properties of such metamaterials result from the topology of the lattice structures, which are usually three-dimensionally (3D) printed. To incorporate advanced

  1. Optimization and anti-optimization of structures under uncertainty

    National Research Council Canada - National Science Library

    Elishakoff, Isaac; Ohsaki, Makoto

    2010-01-01

    The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years...

  2. An analytical study of double bend achromat lattice

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Singh, Gurnam; Ghodke, A. D. [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-03-15

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  3. Peak earthquake response of structures under multi-component excitations

    Science.gov (United States)

    Song, Jianwei; Liang, Zach; Chu, Yi-Lun; Lee, George C.

    2007-12-01

    Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground motions are multi-directional. One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure. Different assumed seismic incidences can result in different peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination. Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle. This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles. The responses can be deformations, internal forces, strains and so on. An irregular building structure model is established using SAP2000 program. Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles. Numerical results show that for many structural parameters, the variation can be greater than 100%. This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles. It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.

  4. Electronic properties of graphene antidot lattices

    International Nuclear Information System (INIS)

    Fuerst, J A; Brandbyge, M; Jauho, A-P; Pedersen, J G; Mortensen, N A; Flindt, C; Pedersen, T G

    2009-01-01

    Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full tight-binding calculations and density functional theory (DFT) are necessary for more reliable predictions of the band structure. We compare the three computational approaches and investigate the role of hydrogen passivation within our DFT scheme.

  5. Rational Manipulation of IrO2 Lattice Strain on α-MnO2 Nanorods as a Highly Efficient Water-Splitting Catalyst.

    Science.gov (United States)

    Sun, Wei; Zhou, Zhenhua; Zaman, Waqas Qamar; Cao, Li-Mei; Yang, Ji

    2017-12-06

    Developing more efficient and stable oxygen evolution reaction (OER) catalysts is critical for future energy conversion and storage technologies. We demonstrate that inducing a lattice strain in IrO 2 crystal structure due to interface lattice mismatch enables an enhancement of the OER catalytic activity. The lattice strain is obtained by the direct growth of IrO 2 nanoparticles on a specially exposed surface of α-MnO 2 nanorods via a simple two-step hydrothermal synthesis. Interestingly, the prepared hydride OER activity increases with a lower IrO 2 grown mass, which offers an opportunity to reduce the usage of precious iridium and ultimately obtains a specific mass activity of 3.7 times than that of IrO 2 prepared under the same conditions and exhibits equivalent stability. The lattice mismatch in the underlying interface induces the formation of lattice strain in IrO 2 rather than the charge transfer between the materials. The lattice strain changes are in good agreement with the order of the OER activity. Our experimental results indicate that using the special exposed surface substrates or tuning the supporting morphology structure can manipulate the catalyst materials lattice strain for the design of more efficient OER catalysts.

  6. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    2003-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  7. Structural convergence under reversible and irreversible monetary unification

    NARCIS (Netherlands)

    Beetsma, R.M.W.J.; Jensen, H.

    1999-01-01

    We explore endogenous monetary unification in the context of a model in which a country with serious structural distortions (and, hence, high inflation) is admitted into a monetary union once its economic structure has converged sufficiently towards that of the existing participants. If unification

  8. Analysis Of Masonry Infilled RC Frame Structures Under Lateral Loading

    Directory of Open Access Journals (Sweden)

    Barnaure Mircea

    2015-03-01

    Full Text Available Partition walls are often made of masonry in Romania. Although they are usually considered non-structural elements in the case of reinforced concrete framed structures, the infill panels contribute significantly to the seismic behaviour of the building. Their impact is difficult to assess, mainly because the interaction between the bounding frame and the infill is an intricate issue. This paper analyses the structural behaviour of a masonry infilled reinforced concrete frame system subjected to in - plane loading. Three numerical models are proposed and their results are compared in terms of stiffness and strength of the structure. The role of the openings in the infill panel on the behaviour is analysed and discussed. The effect of gaps between the frame and the infill on the structural behaviour is also investigated. Comparisons are made with the in-force Romanian and European regulations provisions.

  9. On the hierarchical lattices approximation of Bravais lattices: Specific heat and correlation length

    International Nuclear Information System (INIS)

    Tsallis, C.

    1984-01-01

    Certain types of real-space renormalization groups (which essentially approximate Bravais lattices through hierarchical ones) do not preserve standard thermodynamic convexity properties. It is pointed out that this serious defect is not intrinsic to any real-space renormalization. It can be avoided if form-invariance (under uniform translation of the energy scale) of the equation connecting the Bravais lattice (which is intended to study) to the hierarchical one (which approximates it) is demanded. In addition to that expressions for the critical exponentes ν and α corresponding to hierarchical lattices are analysed; these are consistent with Melrose recent analysis of the fractal intrinsic dimensionality. (Author) [pt

  10. Local covering optimality of lattices: Leech lattice versus root lattice $E_8$

    NARCIS (Netherlands)

    A. Schuermann; F. Vallentin (Frank)

    2005-01-01

    textabstractWe show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice $E_8$. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the

  11. The phase structure of a chirally invariant lattice Higgs-Yukawa model for small and for large values of the Yukawa coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-05-15

    We consider a chirally invariant lattice Higgs-Yukawa model based on the Neuberger overlap operator D{sup (ov)}. As a first step towards the eventual determination of Higgs mass bounds we study the phase diagram of the model analytically in the large N{sub f}-limit. We present an expression for the effective potential at tree-level in the regime of small Yukawa and quartic coupling constants and determine the order of the phase transitions. In the case of strong Yukawa couplings the model effectively becomes an O(4)-symmetric non-linear {sigma}-model for all values of the quartic coupling constant. This leads to the existence of a symmetric phase also in the regime of large values of the Yukawa coupling constant. On finite and small lattices, however, strong finite volume effects prevent the expectation value of the Higgs field from vanishing thus obscuring the existence of the symmetric phase at strong Yukawa couplings. (orig.)

  12. Ground Liquefaction and Deformation Analysis of Breakwater Structures Under Earthquakes

    Directory of Open Access Journals (Sweden)

    Zhao Jie

    2016-10-01

    Full Text Available Ground liquefaction and deformation is one of the important causes that damage engineering structures. Chinese current code for seismic design of breakwater is based on the single-level seismic design method as well as code for port and water-way engineering. However, this code can not exactly reflect the seismic performance of breakwater structures which experience different seismic intensities. In this paper, the author used a finite difference software, namely, FLAC3D, to analyze the state and compute seismic responses of breakwater structure. The breakwater foundation’s pore pressure ratio and displacement due to different earthquake have been studied. And the result show that: Smaller earthquakes have little influence on serviceability of the foundation, and severe earthquakes can liquefy some parts of the foundation; In the latter case , obvious changes of pores and foundation displaces can be found. Particularly, when seismic peak acceleration reachs 0.2g, Liquefaction appears in the foundation and mainly concentrated in the upper right side of the structure. In addition, the survey of ultra-hole pressure and displacement values of sand layers of the breakwater, manifests when the ultra pore pressure near 1.0, displacement and overturning structure is relatively large, resulting in varying degrees of damage to the structure. This paper’s research can provide theoretical and designable reference for similar engineering structures

  13. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex....... The continuous relaxation of the mixed integer programming problems is being solved by an implementation of a primal–dual interior point method for nonlinear programming that updates the barrier parameter adaptively. The method is chosen for its excellent convergence properties and the ability of the method...... design phase results in structures with better structural performance reducing the need of manually post–processing the found designs....

  14. Modularity, Atomicity and States in Archimedean Lattice Effect Algebras

    Directory of Open Access Journals (Sweden)

    Jan Paseka

    2010-01-01

    Full Text Available Effect algebras are a generalization of many structures which arise in quantum physics and in mathematical economics. We show that, in every modular Archimedean atomic lattice effect algebra E that is not an orthomodular lattice there exists an (o-continuous state ω on E, which is subadditive. Moreover, we show properties of finite and compact elements of such lattice effect algebras.

  15. Theory of Equilibrium Flux Lattices in Unconventional Superconductors

    International Nuclear Information System (INIS)

    Franz, M.; Affleck, I.; Amin, M.H.; Affleck, I.

    1997-01-01

    We investigate equilibrium flux lattice structures in superconductors with unconventional order parameters, such as high-T c cuprates, using a generalized London model with nonlocal electrodynamics derived from a simple microscopic model. We find a rich phase diagram containing triangular, centered rectangular, and square lattices with various orientations relative to the ionic lattice, as a function of magnetic field and temperature. copyright 1997 The American Physical Society

  16. Lattice degeneration of the retina.

    Science.gov (United States)

    Byer, N E

    1979-01-01

    Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.

  17. Harvesting Energy from Vibrations of the Underlying Structure

    DEFF Research Database (Denmark)

    Han, Bo; Vssilaras, S; Papadias, C.B.

    2013-01-01

    The use of wireless sensors for structural health monitoring offers several advantages such as small size, easy installation and minimal intervention on existing structures. However the most significant concern about such wireless sensors is the lifetime of the system, which depends heavily...... to the long-term structural health of a building or bridge, but at the same time they can be exploited as a power source to power the wireless sensors that are monitoring this structural health. This paper presents a new energy harvesting method based on a vibration driven electromagnetic harvester. By using...... on the type of power supply. No matter how energy efficient the operation of a battery operated sensor is, the energy of the battery will be exhausted at some point. In order to achieve a virtually unlimited lifetime, the sensor node should be able to recharge its battery in an easy way. Energy harvesting...

  18. Localized Damage Process in Metal Structures Under High Velocity Deformation

    National Research Council Canada - National Science Library

    Vodenicharov, Stefan

    1999-01-01

    The ASB initiation and growth in high strength steel are investigated. An integrated energy theoretical approach is suggested for modeling ASB development and identifying post critical structure state in the bands...

  19. Determining wildlife use of wildlife crossing structures under different scenarios.

    Science.gov (United States)

    2012-05-01

    This research evaluated Utahs wildlife crossing structures to help UDOT and the Utah Division of Wildlife Resources assess crossing efficacy. In this study, remote motion-sensed cameras were used at 14 designated wildlife crossing culverts and bri...

  20. Performance based investigations of structural systems under fire

    DEFF Research Database (Denmark)

    Gentili, Filippo; Crosti, Chiara; Giuliani, Luisa

    2010-01-01

    Prescriptive measures and procedures developed over the past here are mostly aimed at preventing structural failures of single elements for the time required for the evacuation. The response to fire and fire effects of the structural system as a whole remains often unknown and the survival of the...... structures are presented and discussed, with particular attention to methodological aspects. The effects of different assumptions in the modeling and in the definition of the collapse are highlighted, as critical aspects of a performance-based investigation....... these kinds of events, the mitigation of possible collapse induced by fire should be achieved. In this respect, a performance-based investigation of the structure aimed at highlight fire effects and fire-induced collapse mechanisms becomes of interest. In the paper collapse mechanisms of some simple...

  1. Structural analysis of reinforced concrete structures under monotonous and cyclic loadings: numerical aspects

    International Nuclear Information System (INIS)

    Lepretre, C.; Millard, A.; Nahas, G.

    1989-01-01

    The structural analysis of reinforced concrete structures is usually performed either by means of simplified methods of strength of materials type i.e. global methods, or by means of detailed methods of continuum mechanics type, i.e. local methods. For this second type, some constitutive models are available for concrete and rebars in a certain number of finite element systems. These models are often validated on simple homogeneous tests. Therefore, it is important to appraise the validity of the results when applying them to the analysis of a reinforced concrete structure, in order to be able to make correct predictions of the actual behaviour, under normal and faulty conditions. For this purpose, some tests have been performed at I.N.S.A. de Lyon on reinforced concrete beams, subjected to monotonous and cyclic loadings, in order to generate reference solutions to be compared with the numerical predictions given by two finite element systems: - CASTEM, developed by C.E.A./.D.E.M.T. - ELEFINI, developed by I.N.S.A. de Lyon

  2. Grid synchronization structure for wind converters under grid fault conditions

    OpenAIRE

    Garcia, Jose Ignacio; Candela García, José Ignacio; Luna Alloza, Álvaro; Catalan, Pedro

    2016-01-01

    This paper presents a grid synchronization structure for three-phase electric power systems based on the use of a filtered quadrature signal generator (FQSG) and a phase-locked loop (PLL) structure, named Adaptive Vector Grid Synchronization system (AVGS). This system estimates the magnitude, frequency and phase of a signal, specially three-phase voltages and currents, and allows fast and accurate detection of the symmetrical components meet with the transient operating requirements imposed b...

  3. Behavior of auxetic structures under compression and impact forces

    Science.gov (United States)

    Yang, Chulho; Vora, Hitesh D.; Chang, Young

    2018-02-01

    In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilize normal materials that follow Hooke’s law but still show the properties of negative Poisson’s ratios (NPR). One potential application is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industrial workers, law enforcement and military personnel, and athletes. This paper reports an integrated theoretical, computational, and experimental investigation conducted for typical auxetic materials that exhibit NPR properties. Parametric 3D CAD models of auxetic structures such as re-entrant hexagonal cells and arrowheads were developed. Then, key structural characteristics of protection pads were evaluated through static analyses of FEA models. Finally, impact analyses were conducted through dynamic simulations of FEA models to validate the results obtained from the static analyses. Efforts were also made to relate the individual and/or combined effect of auxetic structures and materials to the overall stiffness and shock-absorption performance of the protection pads. An advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic structures. Three different materials typically used for fused deposition modeling technology, namely polylactic acid (PLA) and thermoplastic polyurethane material (NinjaFlex® and SemiFlex®), were used for different stiffness and shock-absorption properties. The 3D printed prototypes were then tested and the results were compared to the computational predictions. The results showed that the auxetic material could be effective in reducing the shock forces. Each structure and material combination demonstrated unique structural properties such as stiffness, Poisson’s ratio, and efficiency in shock absorption. Auxetic structures showed better shock

  4. Oxide glass structure evolution under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Mendoza, C.; Peuget, S.; Charpentier, T.; Moskura, M.; Caraballo, R.; Bouty, O.; Mir, A.H.; Monnet, I.; Grygiel, C.; Jegou, C.

    2014-01-01

    Highlights: • Structure of SHI irradiated glass is similar to the one of a hyper quenched glass. • D2 Raman band associated to 3 members ring is only observed in irradiated glass. • Irradiated state seems slightly different to an equilibrated liquid quenched rapidly. - Abstract: The effects of ion tracks on the structure of oxide glasses were examined by irradiating a silica glass and two borosilicate glass specimens containing 3 and 6 oxides with krypton ions (74 MeV) and xenon ions (92 MeV). Structural changes in the glass were observed by Raman and nuclear magnetic resonance spectroscopy using a multinuclear approach ( 11 B, 23 Na, 27 Al and 29 Si). The structure of irradiated silica glass resembles a structure quenched at very high temperature. Both borosilicate glass specimens exhibited depolymerization of the borosilicate network, a lower boron coordination number, and a change in the role of a fraction of the sodium atoms after irradiation, suggesting that the final borosilicate glass structures were quenched from a high temperature state. In addition, a sharp increase in the concentration of three membered silica rings and the presence of large amounts of penta- and hexacoordinate aluminum in the irradiated 6-oxide glass suggest that the irradiated glass is different from a liquid quenched at equilibrium, but it is rather obtained from a nonequilibrium liquid that is partially relaxed by very rapid quenching within the ion tracks

  5. Reconstruction of ancestral RNA sequences under multiple structural constraints

    Directory of Open Access Journals (Sweden)

    Olivier Tremblay-Savard

    2016-11-01

    Full Text Available Abstract Background Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. Methods In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. Results We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Conclusions Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  6. Structural integrity analysis of an INPP building under external loading

    International Nuclear Information System (INIS)

    Dundulis, G.; Karalevicius, R.; Uspuras, E.; Kulak, R.F.; Marchertas, A.

    2005-01-01

    After the terrorist attacks in New York and Washington D. C. using civil airplanes, the evaluation of civil airplane crashes into civil and NPP structures has become very important. The interceptions of many terrorists' communications reveal that the use of commandeered commercial aircraft is still a major part of their plans for destruction. Aircraft crash or other flying objects in the territory of the Ignalina Nuclear Power Plant (INPP) represents a concern to the plant. Aircraft traveling at high velocity have a destructive potential. The aircraft crash may damage the roof and walls of buildings, pipelines, electric motors, cases of power supplies, power cables of electricity transmission and other elements and systems, which are important for safety. Therefore, the evaluation of the structural response to an of aircraft crash is important and was selected for analysis. The structural integrity analysis due to the effects of an aircraft crash on an NPP building structure is the subject of this paper. The finite element method was used for the structural analysis of a typical Ignalina NPP building. The structural integrity analysis was performed for a portion of the ALS using the dynamic loading of an aircraft crash impact model. The computer code NEPTUNE was used for this analysis. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. (authors)

  7. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  8. Reconstruction of ancestral RNA sequences under multiple structural constraints.

    Science.gov (United States)

    Tremblay-Savard, Olivier; Reinharz, Vladimir; Waldispühl, Jérôme

    2016-11-11

    Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA) families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with high affinity to this structure, which are far from the true ancestors. In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously calculates ancestral RNA sequences for these two families. We test our methodology on simulated data sets, and show that achARNement outperforms classical maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number of candidate sequences. To conclude this study, we apply our algorithms on the Glm clan and the FinP-traJ clan from the Rfam database. Our results show that our methods reconstruct small sets of high-quality candidate ancestors with better agreement to the two target structures than with classical approaches. Our program is freely available at: http://csb.cs.mcgill.ca/acharnement .

  9. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  10. Response of structural elements under non-uniformly distributed dynamic loads

    NARCIS (Netherlands)

    Westerhof, T.A.T.; Huebner, M.; Ferretti, D.L.; Doormaal, J.C.A.M. van; Gebbeken, N.

    2016-01-01

    Determination of the structural response of a structural element under blast loading is of interest to vulnerability / lethality (V/L) studies of military operations in urban terrain. These studies require a quick and easy to use method to simulate the structural response of e.g. a wall under

  11. Modeling of fracture of protective concrete structures under impact loads

    Science.gov (United States)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  12. The cortical topography of tonal structures underlying Western music.

    Science.gov (United States)

    Janata, Petr; Birk, Jeffrey L; Van Horn, John D; Leman, Marc; Tillmann, Barbara; Bharucha, Jamshed J

    2002-12-13

    Western tonal music relies on a formal geometric structure that determines distance relationships within a harmonic or tonal space. In functional magnetic resonance imaging experiments, we identified an area in the rostromedial prefrontal cortex that tracks activation in tonal space. Different voxels in this area exhibited selectivity for different keys. Within the same set of consistently activated voxels, the topography of tonality selectivity rearranged itself across scanning sessions. The tonality structure was thus maintained as a dynamic topography in cortical areas known to be at a nexus of cognitive, affective, and mnemonic processing.

  13. Interevent relationships and judgment under uncertainty: Structure determines strategy

    NARCIS (Netherlands)

    Sanfey, A.G.; Hastie, R.

    2002-01-01

    A fundamental empirical question regarding judgments about events is whether experienced absolute frequencies or relative. frequencies are relied on when the likelihood of a particular occurrence is judged. The present research explicates the conditions under which people rely on remembered raw

  14. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)

    Macromolecule polymers are significant types of chemical amendments because of their special structure, useful functions and low cost. Macromolecule polymers as soil amendment provide new territory for studying China's agricultural practices and for soil and water conservation, because polymers have the ability to ...

  15. Structural performance of HEPA filters under simulated tornado conditions

    International Nuclear Information System (INIS)

    Horak, H.L.; Gregory, W.S.; Ricketts, C.I.; Smith, P.R.

    1982-02-01

    This report contains the results of structural tests to determine the response of High Efficiency Particulate Air filters to simulated tornado conditions. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The type of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 m 3 /s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, faceguards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits

  16. Structure Formation of Thermoresponsive Microgels Suspensions Under Shear Flow

    NARCIS (Netherlands)

    Stieger, M.A.; Lindner, P.; Richtering, W.

    2004-01-01

    Shear-induced structures of concentrated temperature-sensitive poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions have been studied employing small angle neutron scattering (rheo-SANS). The interaction potential of swollen PNiPAM microgels could be varied from repulsive at temperatures below

  17. Sustainability assessment of concrete structure durability under reinforcement corrosion

    DEFF Research Database (Denmark)

    Thybo, Anna Emilie A.; Michel, Alexander; Stang, Henrik

    In the present paper a parametric study is conducted based on an existing finite element based model. The influence of cover layer, reinforcement diameter and water-to-cement ratio is compared to a possible scatter in the results due to insufficient knowledge about the distribution of the corrosi...... and predict the durability of a given structure....

  18. Optimization and anti-optimization of structures under uncertainty

    National Research Council Canada - National Science Library

    Elishakoff, Isaac; Ohsaki, Makoto

    2010-01-01

    ..., architecture, civil, mechanical or ocean engineering, invariably adopt the either/or style. Namely, they devote themselves either to linear or to nonlinear analysis of the structure they are dealing with, they are engaged in analyzing it either in the elastic or in the inelastic range; they deal either with its static or with its dynamic behavior. Al...

  19. Occupational structure in the Czech lands under the second serfdom

    Czech Academy of Sciences Publication Activity Database

    Klein, Alexander; Ogilvie, S.

    2016-01-01

    Roč. 69, č. 2 (2016), s. 493-521 ISSN 0013-0117 R&D Projects: GA ČR GA13-13848S Institutional support: RVO:67985998 Keywords : occupational structure * Czech lands * Bohemia Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 1.233, year: 2016

  20. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions

    Science.gov (United States)

    Akgun, Mehmet A.; Haftka, Raphael T.

    2000-01-01

    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local

  1. The electronic structure of core states under extreme compressions

    International Nuclear Information System (INIS)

    Straub, G.K.

    1992-01-01

    At normal density and for modest compressions, the electronic structure of a metal can be accurately described by treating the conduction electrons and their interactions with the usual methods of band theory. The core electrons remain essentially the same as for an isolated free atom and do not participate in the bonding forces responsible for creating a condensed phase. As the density increases, the core electrons begin to ''see'' one another as the overlap of the tails of wave functions can no longer be neglected. The electronic structure of the core electrons is responsible for an effective repulsive interaction that eventually becomes free-electron-like at very high compressions. The electronic structure of the interacting core electrons may be treated in a simple manner using the Atomic Surface Method (ASM). The ASM is a first-principles treatment of the electronic structure involving a rigorous integration of the Schroedinger equation within the atomic-sphere approximation. Solid phase wave functions are constructed from isolated atom wave functions and the band width W l and the center of gravity of the band C l are obtained from simple formulas. The ASM can also utilize analytic forms of the atomic wave functions and thus provide direct functional dependence of various aspects of the electronic structure. Of particular use in understanding the behavior of the core electrons, the ASM provides the ability to analytically determine the density dependence of the band widths and positions. The process whereby core states interact with one another is best viewed as the formation of narrow electron bands formed from atomic states. As the core-core overlap increases, the bands increase in width and mean energy. In Sec.3 this picture is further developed and from the ASM one obtains the analytic dependence on density of the relative motion of the different bands. Also in Sec. 3 is a discussion of the transition to free electron bands

  2. First Principles Study on Structure Stability and Mechanical Properties of YNi2B2C and LuNi2B2C under Pressure

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2017-06-01

    Full Text Available The pressure effects on the lattice parameters and elastic constants of the tetragonal RNi 2 B 2 C (R=Y, Lu are investigated by means of the first principles. The predicted lattice constants and elastic constants of YNi 2 B 2 C and LuNi 2 B 2 C at 0 GPa agree well with the available data. By the elastic stability criteria under isotropic pressure, it is predicted that YNi 2 B 2 C and LuNi 2 B 2 C with tetragonal structure are not mechanically stable above 93 GPa and 50 GPa, respectively. Pugh’s modulus ratio, Poisson’s ratio, Vickers hardness, elastic anisotropy and Debye temperature of YNi 2 B 2 C in the pressure range of 0–100 GPa and LuNi 2 B 2 C in the pressure range of 0-60 GPa are further investigated. It is shown that the ductility and Debye temperature of tetragonal RNi 2 B 2 C (R=Y, Lu increase with increasing pressure, and LuNi 2 B 2 C is more ductile and lower Debye temperature than YNi 2 B 2 C under different pressures.

  3. Quantum degenerate atomic gases in controlled optical lattice potentials

    Science.gov (United States)

    Gemelke, Nathan D.

    2007-12-01

    Since the achievement of Bose Einstein condensation in cold atomic gases, mean-field treatments of the condensed phase have provided an excellent description for the static and dynamic properties observed in experiments. Recent experimental efforts have focused on studying deviations from mean-field behavior. I will describe work on two experiments which introduce controlled single particle degeneracies with time-dependent optical potentials, aiming to induce correlated motion and nontrivial statistics in the gas. In the first experiment, an optical lattice with locally rotating site potentials is produced to investigate fractional quantum Hall effects (FQHE) in rotating Bose gases. Here, the necessary gauge potential is provided by the rotating reference frame of the gas, which, in direct analogy to the electronic system, organizes single particle states into degenerate Landau levels. At low temperatures the repulsive interaction provided by elastic scattering is expected to produce ground states with structure nearly identical to those in the FQHE. I will discuss how these effects are made experimentally feasible by working at small particle numbers in the tight trapping potentials of an optical lattice, and present first results on the use of photoassociation to probe correlation in this system. In the second experiment, a vibrated optical lattice potential alters the single-particle dispersion underlying a condensed Bose gas and offers tailored phase-matching for nonlinear atom optical processes. I will demonstrate how this leads to parametric instability in the condensed gas, and draw analogy to an optical parametric oscillator operating above threshold.

  4. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    Science.gov (United States)

    Bachmann, Klaus J.

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI(sub 2) and II-IV-V(sub 2) semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI(sub 2) and II-IV-V(sub 2) compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP, or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V(sub 2) compounds and group IV elements are realized, II-IV-V(sub 2) alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  5. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  6. First-Principle Study of the Structural, Electronic, and Optical Properties of Cubic InNxP1-x Ternary Alloys under Hydrostatic Pressure

    Science.gov (United States)

    Hattabi, I.; Abdiche, A.; Moussa, R.; Riane, R.; Hadji, K.; Soyalp, F.; Varshney, Dinesh; Syrotyuk, S. V.; Khenata, R.

    2016-09-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1-x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1-x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  7. The structural behavior of SrTiO{sub 3} under 400 keV Ne{sup 2+} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Su, X.; Liu, C.G.; Yang, D.Y.; Wen, J.; Chen, L.J.; Xu, D.P.; Li, Y.H. [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Fu, E.G. [Peking University, State Key Laboratory of Nuclear Physics and Technology, Beijing (China); Zhang, J. [Xiamen University, School of Energy Research, Xiamen (China); Wang, Y.Q. [Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, NM (United States)

    2015-11-15

    The structural behavior of polycrystalline perovskite SrTiO{sub 3} under 400 keV Ne{sup 2+} ion irradiation at both liquid nitrogen (LN{sub 2}) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO{sub 3} depends strongly on the irradiation temperature. At LN{sub 2} temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne{sup 2+} irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO{sub 3}. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO{sub 3}. (orig.)

  8. Compact flat band states in optically induced flatland photonic lattices

    Science.gov (United States)

    Travkin, Evgenij; Diebel, Falko; Denz, Cornelia

    2017-07-01

    We realize low-dimensional tight-binding lattices that host flat bands in their dispersion relation and demonstrate the existence of optical compact flat band states. The lattices are resembled by arrays of optical waveguides fabricated by the state-of-the-art spatio-temporal Bessel beam multiplexing optical induction in photorefractive media. We work out the decisive details of the transition from the discrete theory to the real optical system ensuring that the experimental lattices stand up to numerical scrutiny exhibiting well-approximated band structures. Our highly flexible system is a promising candidate for further experimental investigation of theoretically studied disorder effects in flat band lattices.

  9. Imaging Photon Lattice States by Scanning Defect Microscopy

    Directory of Open Access Journals (Sweden)

    D. L. Underwood

    2016-06-01

    Full Text Available Microwave photons inside lattices of coupled resonators and superconducting qubits can exhibit surprising matterlike behavior. Realizing such open-system quantum simulators presents an experimental challenge and requires new tools and measurement techniques. Here, we introduce scanning defect microscopy as one such tool and illustrate its use in mapping the normal-mode structure of microwave photons inside a 49-site kagome lattice of coplanar waveguide resonators. Scanning is accomplished by moving a probe equipped with a sapphire tip across the lattice. This locally perturbs resonator frequencies and induces shifts of the lattice resonance frequencies, which we determine by measuring the transmission spectrum. From the magnitude of mode shifts, we can reconstruct photon field amplitudes at each lattice site and thus create spatial images of the photon-lattice normal modes.

  10. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  11. Structural stability and theoretical strength of Cu crystal under equal ...

    Indian Academy of Sciences (India)

    The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain ...

  12. Vortex lattices in superconducting niobium and skyrmion lattices in chiral MnSi. An investigation by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian C.

    2009-12-10

    In this thesis, we present a comprehensive small angle neutron scattering study of the vortex lattice (VL) in an ultra-pure Nb single crystal sample, characterized by a residual resistivity ratio of {proportional_to} 10{sup 4}. We systematically investigate the morphology of vortex structures with the magnetic field applied along a four-fold left angle 100 right angle axis. We succeed to deconvolute the general morphology of the VL and its orientation to three dominant mechanisms: First, non-local contributions, second, the transition between open and closed Fermi surface sheets and, third, the intermediate mixed state (IMS) between the Meissner and the Shubnikov phase. We present first time microscopic measurements of the intrinsic bulk VL tilt modulus c{sub 44} by means of time resolved stroboscopic small angle neutron scattering in combination with a tailored magnetic field setup. In our study we find that the VL in Nb responds to an external force - in the form of a changed magnetic field - with an exponential relaxation. As expected, the relaxation process shows increasing VL stiffness with increasing magnetic field and reduced damping with increasing temperature. Besides this general trend, we observe a dramatic changeover of the relaxation process associated with the non-trivial VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex interaction. Furthermore we use small angle neutron scattering to establish the existence of a skyrmion lattice in the A-phase of MnSi. Due to a parallel alignment of the magnetic field with respect to the neutron beam, we are able to resolve the complete magnetic structure of the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of topological knots of the magnetization with particle-like properties, arranged in a regular six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the applied magnetic field, regardless of the underlying

  13. Vortex lattices in superconducting niobium and skyrmion lattices in chiral MnSi. An investigation by neutron scattering

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian C.

    2009-01-01

    In this thesis, we present a comprehensive small angle neutron scattering study of the vortex lattice (VL) in an ultra-pure Nb single crystal sample, characterized by a residual resistivity ratio of ∝ 10 4 . We systematically investigate the morphology of vortex structures with the magnetic field applied along a four-fold left angle 100 right angle axis. We succeed to deconvolute the general morphology of the VL and its orientation to three dominant mechanisms: First, non-local contributions, second, the transition between open and closed Fermi surface sheets and, third, the intermediate mixed state (IMS) between the Meissner and the Shubnikov phase. We present first time microscopic measurements of the intrinsic bulk VL tilt modulus c 44 by means of time resolved stroboscopic small angle neutron scattering in combination with a tailored magnetic field setup. In our study we find that the VL in Nb responds to an external force - in the form of a changed magnetic field - with an exponential relaxation. As expected, the relaxation process shows increasing VL stiffness with increasing magnetic field and reduced damping with increasing temperature. Besides this general trend, we observe a dramatic changeover of the relaxation process associated with the non-trivial VL morphology in the IMS and the crossover from attractive to repulsive vortex-vortex interaction. Furthermore we use small angle neutron scattering to establish the existence of a skyrmion lattice in the A-phase of MnSi. Due to a parallel alignment of the magnetic field with respect to the neutron beam, we are able to resolve the complete magnetic structure of the A-phase: The structure in the A-phase, reminiscent of a vortex lattice, consists of topological knots of the magnetization with particle-like properties, arranged in a regular six-fold lattice. The orientation of this lattice is strictly driven by the orientation of the applied magnetic field, regardless of the underlying crystal symmetry. The

  14. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    sequence of well–posed optimization problems. They provide us with a discrete feasible solution or correctly determine problem infeasibility. Our aim is to solve the considered problems to proven global optimality. We propose a combination of the convergent Outer Approximation and Local Branching......This thesis considers discrete multi material and thickness optimization of laminated composite structures including local failure criteria and manufacturing constraints. Our models closely follow an immediate extension of the Discrete Material Optimization scheme, which allows simultaneous...... determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex...

  15. Analysis of ADU structure obtained under different precipitation conditions

    International Nuclear Information System (INIS)

    Ramella, Jose L.; Esteban, Adolfo; Mendez De Leo, Lucia P.; Sassone, Ariel; Novara, Oscar E.; Boero, Norma L.; Leyva, Ana G.

    1999-01-01

    ADU is the nominal name for ammonium poly uranate. It is a very complex compound of polymeric structure, which may have, according to precipitation conditions, different chemical composition and crystallographic structure. ADU is used as uranium oxide precursor in the manufacture of fuel elements. In former papers it was proved that if ultrasound is applied during precipitation and digestion the characteristics of the final product (U 3 O 8 UO 2 ) improve. By studying ADU thermal decomposition obtained by ultrasonic application, it was intended to obtain its composition. Therefore, differential thermal gravimetric and differential thermal analyses were performed. Samples were taken from special points and analyzed by X-ray diffraction, infra-red spectroscopy and scanning. An experiment was also designed to identify the products released during heating. Results and conclusions obtained are presented in this work. (author)

  16. Fiscal reaction under endogenous structural changes in Brazil

    Directory of Open Access Journals (Sweden)

    Andrei G. Simonassi

    2014-01-01

    Full Text Available Regarding the importance of fiscal policy in smoothing the impact of shocks such as the international financial and economic crises, the paper analyzes the sustainability of the Brazilian fiscal policy by taking into consideration the possibility of multiple endogenous structural breaks on the coefficients of government reaction function. From monthly data in the period 1991–2008, tests on the reliable estimates dictate the occurrence of structural change in May 1994, and another in February 2003. There has been a situation of fiscal solvency in Brazil, but only from May 1994 the hitherto innocuous actions of government to formulate policies on public debt turn out to be significant, as it rose twofold after February 2003. This reinforces the existence of a more flexible alternative to implement strategic policy in Brazil, if an eventual alternative for increasing public spending is a way of hindering the effects of international financial crises without compromising the fiscal targets.

  17. Structural optimization under overhang constraints imposed by additive manufacturing technologies

    Science.gov (United States)

    Allaire, G.; Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G.

    2017-12-01

    This article addresses one of the major constraints imposed by additive manufacturing processes on shape optimization problems - that of overhangs, i.e. large regions hanging over void without sufficient support from the lower structure. After revisiting the 'classical' geometric criteria used in the literature, based on the angle between the structural boundary and the build direction, we propose a new mechanical constraint functional, which mimics the layer by layer construction process featured by additive manufacturing technologies, and thereby appeals to the physical origin of the difficulties caused by overhangs. This constraint, as well as some variants, is precisely defined; their shape derivatives are computed in the sense of Hadamard's method, and numerical strategies are extensively discussed, in two and three space dimensions, to efficiently deal with the appearance of overhang features in the course of shape optimization processes.

  18. Structure and morphology of mythimna pupa under diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Wanxia; Yuan Qingxi; Zhu Peiping; Wang Junyue; Liu Yijin; Chen Bo; Shu Hang; Hu Tiandou; Wu Ziyu; Ge Siqin

    2007-01-01

    As a technique of X-ray phase contrast imaging, the diffraction enhanced imaging (DEI) attracts much interest due to its high resolution and contrast. The top images of DEI were used to study the growth of a complete metamorphic mythimna in the period of pupa. Clear images about the pupa structure were obtained. The entire growth process of the pupa was observed, including the evolvement of part of organs and tissues from larva to imago. (authors)

  19. Structural performance of HEPA filters under simulated tornado conditions

    Science.gov (United States)

    Horak, H. L.; Gregory, W. S.; Ricketts, C. I.; Smith, P. R.

    1982-02-01

    The response of high efficiency particulate air filters to simulated tornado conditions was determined. The data include the structural limits of the filters, their resistance at high flow rates, and the effects of filter design features and tornado parameters. Considering all the filters tested, the mean break pressure or structural limit was found to be 2.35 pse (16.2 kPa). The maximum value was 2.87 psi (19.8 kPa), and the low value found was 1.31 psi (9.0 kPa). The type of failure was usually a medium break of the downstream filter fold. The types of filters that were evaluated were nuclear grade with design flow rates of 1000 cfm (0.472 cu m/s), standard separators, and folded medium design. The parameters evaluated that are characteristic of the filter included manufacturer, separator type, face-guards, pack tightness, and aerosol loading. Manufacturer and medium properties were found to have a large effect on the structural limits.

  20. Disrupted white matter structure underlies cognitive deficit in hypertensive patients

    International Nuclear Information System (INIS)

    Li, Xin; Ma, Chao; Zhang, Junying; Chen, Yaojing; Zhang, Zhanjun; Sun, Xuan; Chen, Kewei

    2016-01-01

    Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. (orig.)

  1. The Response of Simple Polymer Structures Under Dynamic Loading

    Science.gov (United States)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  2. THE RELATIONSHIP BETWEEN INDUSTRIAL PRODUCTION AND EMPLOYMENT UNDER STRUCTURAL BREAK

    Directory of Open Access Journals (Sweden)

    Umut HALAÇ

    2017-12-01

    Full Text Available For the economies which aim for the sustainable economic growth, one of the most important topic is industrialization. It is thought that it effects employability positively, by increasing the manufacturing. This study investigates the long-term relationship between industrial production and total employment, industrial employment and youth employment in Turkey using monthly data for the period from 2005:01 to 2017:06. Since the period involving structural changes, the stability of series was tested by standart Augmented Dickey Fuller unit root test and Zivot Andrews unit root test with structural breaks. Estimates of the cointegrating relation are obtained using Engle-Granger test procedure and Gregory Hansen test procedure taking structural breaks into account. The results of cointegration tests show that there is no long run relationship among the variables. The findings of the study indicate that the connections between industrial production and employment have been disappeared, during the time period examined for Turkey. This also suggests that the rise in the industrial production is still far from creating employability.

  3. Term Structure of Credit Spreads of A Firm When Its Underlying Assets are Discontinuous

    Directory of Open Access Journals (Sweden)

    Budhi Arta Surya

    2012-01-01

    Full Text Available We revisit the previous works of Leland [12], Leland and Toft [11] andHilberink and Rogers [7] on optimal capital structure and show that thecredit spreads of short-maturity corporate bonds can have nonzero valueswhen the underlying of the firm’s assets value has downward jumps. We givean analytical treatment of this fact under a general Levy process and discusssome numerical examples under pure jump processes.Keywords: Optimal capital structure, credit risk, term structure of creditspread

  4. Small angle neutron scattering studies of the vortex lattice in the UPt3 mixed state: Direct structural evidence for the B->C transition

    DEFF Research Database (Denmark)

    Yaron, U.; Gammel, P.L.; Boebinger, G.S.

    1997-01-01

    Small angle neutron scattering studies of the flux line lattice (FLL) in UPt3 for fields H perpendicular to c provide direct microscopic evidence for the 5 kOe B --> C transition. We find a pronounced maximum in the longitudinal correlation length of the FLL at the transition and an abrupt change...... in the field dependence of the scattered intensity which can be interpreted as a 15% decrease in the coherence length and a 9% increase in the penetration depth, consistent with discontinuities in the critical fields. Finally, in the low field phase, the FLL distortion evolves roughly linearly with field...

  5. Liquid-like cationic sub-lattice in copper selenide clusters

    Science.gov (United States)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  6. Free-energy analysis of spin models on hyperbolic lattice geometries.

    Science.gov (United States)

    Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej

    2016-04-01

    We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.

  7. Shaken Lattice Interferometry

    Science.gov (United States)

    Weidner, Carrie; Yu, Hoon; Anderson, Dana

    2015-05-01

    This work introduces a method to perform interferometry using atoms trapped in an optical lattice. Starting at t = 0 with atoms in the ground state of a lattice potential V(x) =V0cos [ 2 kx + ϕ(t) ] , we show that it is possible to transform from one atomic wavefunction to another by a prescribed shaking of the lattice, i.e., by an appropriately tailored time-dependent phase shift ϕ(t) . In particular, the standard interferometer sequence of beam splitting, propagation, reflection, reverse propagation, and recombination can be achieved via a set of phase modulation operations {ϕj(t) } . Each ϕj(t) is determined using a learning algorithm, and the split-step method calculates the wavefunction dynamics. We have numerically demonstrated an interferometer in which the shaken wavefunctions match the target states to better than 1 % . We carried out learning using a genetic algorithm and optimal control techniques. The atoms remain trapped in the lattice throughout the full interferometer sequence. Thus, the approach may be suitable for use in an dynamic environment. In addition to the general principles, we discuss aspects of the experimental implementation. Supported by the Office of Naval Research (ONR) and Northrop Grumman.

  8. Lattice Multiverse Models

    OpenAIRE

    Williamson, S. Gill

    2010-01-01

    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  9. Gravitinos on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Maturana, G.; Vanden Doel, C.P. (California Univ., Santa Cruz (USA). Physics Dept.)

    1983-04-07

    We study spin 3/2 fields on the lattice. Species doubling is found to be totally curable with an analogue of Wilson's method and partially with an analogue of the Kogut-Susskind formalism. Only the latter preserves local supersymmetry but describes at least four species.

  10. Elastic lattice polymers

    NARCIS (Netherlands)

    Baiesi, M.; Barkema, G.T.; Carlon, E.

    2010-01-01

    We study a model of “elastic” lattice polymer in which a fixed number of monomers m is hosted by a self-avoiding walk with fluctuating length l. We show that the stored length density m 1− l /m scales asymptotically for large m as m= 1− /m+. . . , where is the polymer entropic exponent, so that can

  11. Quarks, gluons and lattices

    International Nuclear Information System (INIS)

    Krojts, M.

    1987-01-01

    The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form

  12. lattice gauge theory

    Indian Academy of Sciences (India)

    activities in non-perturbative QCD. Keywords. Deflation; overlap operator; GPU; CUDA. PACS Nos 11.15.Ha; 12.38.-t. 1. Introduction. The lattice gauge theory subgroup of the working group in non-perturbative QCD consisted of Mridupavan Deka, Sourendu Gupta, N D Hari Dass, Rajarshi Roy, Sayantan Sharma and.

  13. Noetherian and Artinian Lattices

    Directory of Open Access Journals (Sweden)

    Derya Keskin Tütüncü

    2012-01-01

    Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.

  14. Decidability in Orthomodular Lattices

    Science.gov (United States)

    Hyčko, Marek; Navara, Mirko

    2005-12-01

    We discuss the possibility of automatic simplification of formulas in orthomodular lattices. We describe the principles of a program which decides the validity of equalities and inequalities, as well as implications between them and other important relations significant in quantum mechanics.

  15. Structural modification of aluminium oxynitride phases under stresses at high temperatures, high pressures and under irradiation by fast neutrons

    International Nuclear Information System (INIS)

    Labbe, J.C.; Jeanne, A.; Roult, G.

    1990-01-01

    The structural modifications of the aluminium oxynitride phases under stresses are studied by the time of flight neutron diffraction method, at high temperatures (up to 1375degC), at high pressures (up to 2.4 GPa), and under irradiation by fast neutrons (up to 3.2 X 10 20 n/cm 2 ). In each case the evolutions of cell parameter, interatomic bond angles, bond lengths and atomic positions are given. (orig.)

  16. Structural behavior of human lumbar intervertebral disc under direct shear.

    Science.gov (United States)

    Schmidt, Hendrik; Häussler, Kim; Wilke, Hans-Joachim; Wolfram, Uwe

    2015-03-18

    The intervertebral disc (IVD) is a complex, flexible joint between adjacent vertebral bodies that provides load transmission while permitting movements of the spinal column. Finite element models can be used to help clarify why and how IVDs fail or degenerate. To do so, it is of importance to validate those models against controllable experiments. Due to missing experimental data, shear properties are not used thus far in validating finite element models. This study aimed to investigate the structural shear properties of human lumbar IVDs in posteroanterior (PA) and laterolateral (LL) loading directions. Fourteen lumbar IVDs (median age: 49 years) underwent direct shear in PA and LL loading directions. A custom-build shear device was used in combination with a materials testing machine to load the specimens until failure. Shear stiffness, ultimate shear force and displacement, and work to failure were determined. Each specimen was tested until complete or partial disruption. Median stiffness in PA direction was 490 N/mm and in LL direction 568 N/mm. Median ultimate shear force in the PA direction was 2,877 N and in the LL direction 3,199 N. Work to failure was 12 Nm in the PA and 9 Nm in the LL direction. This study was an experiment to subject IVDs to direct shear. The results could help us to understand the structure and function of IVDs with regard to mechanical spinal stability, and they can be used to validate finite element models of the IVD.

  17. SSC lattice database and graphical interface

    International Nuclear Information System (INIS)

    Trahern, C.G.; Zhou, J.

    1991-11-01

    When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser

  18. Orthomodular Lattices Generated by Graphs of Functions

    Science.gov (United States)

    Cegła, W.; Florek, J.

    2005-10-01

    In a subset where ℝ is the real line and is an arbitrary topological space, an orthogonality relation is constructed from a family of graphs of continuous functions from connected subsets of ℝ to . It is shown that under two conditions on this family a complete lattice of double orthoclosed sets is orthomodular.

  19. On Extended RLS Lattice Adaptive Variants: Error-Feedback, Normalized, and Array-Based Recursions

    Directory of Open Access Journals (Sweden)

    Ricardo Merched

    2005-05-01

    Full Text Available Error-feedback, normalized, and array-based recursions represent equivalent RLS lattice adaptive filters which are known to offer better numerical properties under finite-precision implementations. This is the case when the underlying data structure arises from a tapped-delay-line model for the input signal. On the other hand, in the context of a more general orthonormality-based input model, these variants have not yet been derived and their behavior under finite precision is unknown. This paper develops several lattice structures for the exponentially weighted RLS problem under orthonormality-based data structures, including error-feedback, normalized, and array-based forms. As a result, besides nonminimality of the new recursions, they present unstable modes as well as hyperbolic rotations, so that the well-known good numerical properties observed in the case of FIR models no longer exist. We verify via simulations that, compared to the standard extended lattice equations, these variants do not improve the robustness to quantization, unlike what is normally expected for FIR models.

  20. Two Dimensional Super QCD on a Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab

    2017-10-04

    We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf